WO2019187966A1 - Magnetic information reader and method of controlling magnetic information reader - Google Patents

Magnetic information reader and method of controlling magnetic information reader Download PDF

Info

Publication number
WO2019187966A1
WO2019187966A1 PCT/JP2019/007978 JP2019007978W WO2019187966A1 WO 2019187966 A1 WO2019187966 A1 WO 2019187966A1 JP 2019007978 W JP2019007978 W JP 2019007978W WO 2019187966 A1 WO2019187966 A1 WO 2019187966A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
image data
magnetic
data
unit
Prior art date
Application number
PCT/JP2019/007978
Other languages
French (fr)
Japanese (ja)
Inventor
史彦 二村
上村 吉治
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Publication of WO2019187966A1 publication Critical patent/WO2019187966A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/09Digital recording

Definitions

  • the present invention relates to a magnetic information reading device for reading magnetic information on a magnetic information recording medium such as a magnetic card recorded in a predetermined format (modulation method) and a method for controlling the magnetic information reading device.
  • a magnetic information reader which is a magnetic card reader, reads F and 2F signals for “0” and “1” signals magnetically recorded on a magnetic card or the like by a predetermined modulation method, for example, a frequency modulation method, with a magnetic head.
  • the magnetic head reads magnetic data (magnetic signal, magnetic information) recorded by the F2F modulation method as an analog magnetic waveform signal.
  • magnetic information reader an extreme value detection process is performed to detect the extreme values that are the peak and bottom of the magnetic waveform from the magnetic waveform signal, the output signal is inverted at the extreme value position, and the magnetic waveform is converted into a rectangular wave signal.
  • Waveform shaping This rectangular wave signal is a frequency-modulated (F2F modulated) signal and is demodulated by the F2F demodulator.
  • an analog magnetic waveform signal is converted into digital data by an analog-digital (A (Analog) / D (Digital)) converter, and extreme value detection processing and subsequent processing are performed (for example, see Patent Document 1).
  • A Analog
  • D Digital
  • a magnetic waveform signal that is a read analog signal of a magnetic head is input to an A / D converter via an amplifier circuit.
  • a / D converter a process of sampling an analog signal at a predetermined sampling frequency and converting it into digital data is performed.
  • the obtained digital data is temporarily stored in a storage device called a sampling data memory and then subjected to processing such as extreme value detection processing for obtaining the peak and bottom of the output signal.
  • the maximum value and the minimum value of the sampling data are detected, and the position is set as the extreme value (peak (peak), bottom (valley)) of the waveform.
  • the position becomes a discrete value, and the extreme value detection lacks accuracy, and it is difficult to increase the extreme value detection accuracy.
  • an object of the present invention is to provide a magnetic information reading apparatus that does not require high-performance hardware, a large-capacity memory, and the like and can increase the extreme value detection accuracy. It is another object of the present invention to provide a method for controlling a magnetic information reading apparatus that does not require high-performance hardware, a large-capacity memory, or the like, and can increase the extreme value detection accuracy.
  • a magnetic information reader of the present invention converts a magnetic head that reads magnetic data recorded on a magnetic information recording medium by a predetermined modulation method, and converts an output signal of the magnetic head into digital data.
  • a data processing unit that demodulates the data, and the data processing unit samples an analog signal output from the magnetic head at a predetermined period and converts the analog signal into digital data; and
  • a timing adjustment unit that adjusts timing so that sampling is performed twice at each sampling of the A / D converter, two digital data at each sampling and a data storage unit that stores a sampling position, and two at each sampling
  • An inclination calculation unit that calculates the inclination at each sampling based on digital data and position, and the sign of the inclination is positive or negative
  • An inclination selection unit that selects two inclinations, an approximate curve calculation unit that calculates an approximate curve based on the two selected gradients, and an extreme value calculation that calculates an extreme value and an extreme value position based on the calculated approximate curve
  • a demodulator for demodulating
  • a control method for a magnetic information reading apparatus is a method for reading magnetic data recorded by a magnetic head on a magnetic stripe formed on a magnetic information recording medium by a predetermined modulation method. And a data processing step of converting the output signal of the magnetic head into digital data and demodulating the data, and the data processing step digitally samples the analog signal output from the magnetic head at a predetermined period.
  • An analog-to-digital (A / D) conversion step for converting data a timing adjustment step for adjusting the timing to sample twice at each sampling of the A / D conversion step, two digital data at each sampling and sampling Data storage step to store the position and each sampling time
  • the data processing unit that converts and processes the output signal of the magnetic head into digital data
  • the A / D converter samples the analog signal output from the magnetic head at a predetermined period and converts it into digital data
  • the timing is adjusted so that sampling is performed twice at each sampling of the A / D conversion, two digital data at each sampling and a sampling position are stored, and each of the two digital data and the position at each sampling is stored.
  • Obtain the slope at the time of sampling select two slopes with positive and negative slopes, find an approximate curve based on the two selected slopes, and find the extreme value and extreme value position based on the obtained approximate curve
  • the data read by the magnetic head is demodulated based on the calculated extreme value position.
  • the sampling period of the analog signal may be coarse, so that high-performance hardware and a large-capacity memory are not required, and extreme value detection accuracy can be improved.
  • the A / D converter performs main sampling on the analog signal output from the magnetic head at a predetermined cycle, and sub-samples the main signal before or after the main sampling position (time).
  • the data storage unit stores the main sampled main digital data and position at each sampling and the subsampled subdigital data and position at each sampling, and the slope calculation unit stores the data at the time of each sampling. It is preferable to obtain two slopes at the time of each sampling based on the main digital data and position, and the sub-digital data and position.
  • This sampling is generally performed at a constant cycle. However, in the present invention, it is possible to perform sampling twice per cycle in a time sufficiently shorter than the length of one cycle. Since two points are sampled at intervals, the slope at this time can be easily calculated. The extreme value position can be calculated if the respective slopes at two times are known. Therefore, the extreme position can be calculated from data of two periods (four samples).
  • the approximate curve is preferably represented by a quadratic function curve.
  • the position of the extreme value is a position where the linear function becomes zero, and can be expressed using the first-order coefficient and the zero-order coefficient of the polynomial.
  • the first-order coefficient and the zero-order coefficient can be expressed by two slopes sandwiching extreme values and two sampling positions when the two slopes are obtained. Therefore, the extreme value calculation unit can calculate the position of the extreme value by using the two inclinations calculated by the inclination calculation unit and the two sampling positions when the two inclinations are obtained. It becomes possible.
  • the approximate expression can be easily obtained, the coefficient of the polynomial can be easily obtained, and the position of the extreme value (maximum value, minimum value) of the sampling data can be detected with a smaller error. become.
  • the sub-sampling timing for acquiring the sub-sampling data is set according to the switching interval of the track switching switch of the magnetic head. This makes it possible to easily set the sub-sampling timing in association with the main sampling timing.
  • FIG. 2 (a) shows a mode that the magnetic recording information recorded by the F2F modulation system is read as an analog signal
  • FIG. 2 (b) shows how the amplified analog signal is output to the sampling timing adjustment unit
  • FIG. 2 (c) shows how the timing is adjusted so that it is sampled twice during each A / D conversion sampling.
  • FIG. 2 (d) shows how the F2F signal, which is magnetic data read by the magnetic head, is demodulated.
  • FIG. 1 It is a figure which shows the structural example of the magnetic head and amplifier which read the magnetic data of the magnetic card in which the several magnetic track was formed. It is a figure which shows the structural example of the data calculation process part which is the principal part of the calculating part shown in FIG. It is a figure which shows the structural example of the sampling timing adjustment part which concerns on this embodiment.
  • 2 is a flowchart for explaining an outline of an overall magnetic information reading operation of the magnetic information reading apparatus shown in FIG. 1. It is a figure for demonstrating the process which specifies the peak (maximum value) and peak position of an output signal. It is a flowchart of the process which specifies the peak (maximum value) and peak position of an output signal. It is a figure for demonstrating the process which specifies the bottom (minimum value) and bottom position of an output signal. It is a flowchart of the process which specifies the bottom (minimum value) and bottom position of an output signal.
  • FIG. 1 is a block diagram showing a configuration example of a magnetic information reading apparatus according to an embodiment of the present invention.
  • 2A to 2D are diagrams showing signal processing waveforms of the main part of the magnetic information reading apparatus in FIG.
  • a magnetic information reader that can be applied to a magnetic card reader that reproduces information recorded on a magnetic card MC, which is a magnetic information recording medium, will be described as an example.
  • a magnetic card reader that reproduces information recorded on a magnetic card MC, which is a magnetic information recording medium
  • F and 2F signals corresponding to “0” and “1” signals magnetically recorded by the frequency modulation method are read and reproduced.
  • the present technology is not limited to the F2F method, and various methods such as the F3F method, the NRZI method, and the MFM method can be applied.
  • the magnetic information recording medium of the present embodiment is a magnetic card MC, and the magnetic card MC includes a magnetic stripe MP on which magnetic data is recorded.
  • the magnetic stripe MP is formed in an elongated strip shape.
  • the magnetic stripe MP is formed along the longitudinal direction of the magnetic card MC formed in a rectangular shape.
  • the magnetic card MC may contain an IC chip.
  • the magnetic card MC for example, ISO standard, JIS standard, and other types of magnetic recording formats are used.
  • ISO standard, JIS standard, and other types of magnetic recording formats are used.
  • a plurality of magnetic tracks are formed on the magnetic stripe MP, and magnetic information corresponding to the recording format is recorded on each magnetic track.
  • the magnetic information (magnetic data) recorded on the magnetic track may be in the same magnetic recording format, or may be in a plurality of different magnetic recording formats, and determined in advance according to the specifications of the magnetic card MC. It has been.
  • the magnetic information reader 10 includes a magnetic head 11, a card transport path 12, a card transport unit 13, a control unit 20, and a host device (host device) 50.
  • the magnetic head 11 reads, as an analog signal S11, magnetic recording information recorded on the magnetic card MC by, for example, the F2F modulation method as shown in FIG.
  • FIG. 3 is a diagram illustrating a configuration example of a magnetic head and an amplifier that read magnetic data of a magnetic card on which a plurality of magnetic tracks are formed.
  • the magnetic head 11 rubs against the magnetic stripe MP to reproduce magnetic information recorded on the magnetic stripe MP and output an analog signal.
  • the magnetic card MC is formed with three magnetic tracks # 1, magnetic track # 2, and magnetic track # 3 of magnetic data based on the ISO standard. Therefore, in the magnetic head 11, as shown in FIG. 3, the head portions 11-1, 11-2, and 11-3 correspond to the three magnetic tracks # 1, magnetic track # 2, and magnetic track # 3, respectively. Is provided.
  • Each of the head portions 11-1, 11-2, and 11-3 is composed of at least a pair of magnetic cores arranged to face each other with a magnetic gap interposed therebetween.
  • amplifiers 25-1, 25 corresponding to the head units 11-1, 11-2, 11-3 are provided on the output side of the head units 11-1, 11-2, 11-3 of the magnetic head 11.
  • -2 and 25-3 are arranged.
  • a sampling timing adjustment unit 26 is disposed on the output side of the amplifiers 25-1, 25-2, and 25-3.
  • a magnetic head 11, a card transport section 13, and the like are arranged in the card transport path 12. Specifically, the magnetic card MC is transported along the card transport path 12 by the card transport unit 13, and the head units 11-1, 11-2, and 11-3 of the magnetic head 11 are connected to the transported magnetic card MC.
  • the formed magnetic stripe MP is slid.
  • the card transport unit 13 transports the magnetic card MC along the card transport path 12 by driving the motor (M) 131 through the motor drive circuit (driver) 24.
  • the motor (M) 131 is driven by the motor drive circuit 24 controlled by the control unit 20 and drives the card transport unit 13 to transport the magnetic card MC.
  • a control method of the motor (M) 131 for example, a PWM control method is adopted, and the motor (M) 131 is subjected to PWM control by the control unit 20.
  • the magnetic information reading apparatus 10 mainly includes a control unit 20, a storage unit 21, a calculation unit 22, and a data processing unit 40. Furthermore, in the present embodiment, a clock generation unit 23, a motor drive circuit 24, an amplifier 25, a sampling timing adjustment unit 26, a digital filter 27, an A / D converter 28, a data storage unit 29, and a data calculation processing unit 30 are provided. ing.
  • the data processing unit 40 includes the amplifier 25, the sampling timing adjustment unit 26, the digital filter 27, the A / D converter 28, the data storage unit 29 of the storage unit 21, and the data of the calculation unit 22 among these components. An arithmetic processing unit 30 is used.
  • the data processing unit 40 has a function of converting the output signals of the head units 11-1, 11-2, and 11-3 of the magnetic head 11 into digital data and processing them.
  • the sampling timing adjustment unit 26 has a function of selecting the outputs of the head units 11-1, 11-2, and 11-3 of the magnetic head 11 as predetermined channels and supplying them to the A / D converter 28. .
  • the timing is adjusted so that sampling is performed twice at each sampling of A / D conversion.
  • the data storage unit 29 stores the two digital data and the sampling position at the time of each sampling.
  • the data arithmetic processing unit 30 obtains the slope at each sampling from the two digital data and the position at each sampling, selects the two slopes whose signs of the slope are positive and negative, and selects the selected two An approximate curve is obtained based on the inclination, an extreme value and an extreme value position are calculated based on the obtained approximate curve, and data read by the magnetic head is demodulated based on the calculated extreme value position.
  • the control unit 20 controls the overall operation of the magnetic information reader 10 and is connected to each component to exchange control signals and data. Specifically, the control unit 20 controls each unit of the magnetic information reading device 10 based on a control program and various data stored in the storage unit 21. In addition, the control unit 20 is connected to the host device 50 via a communication interface (not shown). The control unit 20 controls the entire magnetic information reading device 10 according to a command input from the host device 50 through a communication interface (not shown).
  • the storage unit 21 records programs and various data necessary for operation control of the entire apparatus. Further, in the present embodiment, a data storage unit 29 is provided.
  • the data storage unit 29 stores a digital signal obtained by sampling the output signal (analog signal) output from the magnetic head 11 by the A / D converter 28 as sampling data. Specifically, the data storage unit 29 stores two digital data at the time of each sampling of A / D conversion and the sampling position.
  • the calculation unit 22 performs various calculation processes based on the data stored in the data storage unit 29.
  • a data arithmetic processing unit 30 is provided.
  • the data calculation processing unit 30 processes the sampling data A / D converted by the A / D converter 28 based on the output signal of the magnetic head 11.
  • FIG. 4 is a diagram illustrating a configuration example of a data operation processing unit that is a main part of the operation unit illustrated in FIG. 1.
  • the data calculation processing unit 30 includes an inclination calculation unit 301, an inclination selection unit 302, an approximate curve calculation unit 303, an extreme value calculation unit 304, a demodulation unit 305, and a decoding unit 306. I have.
  • the inclination calculation unit 301 obtains the inclination K at each sampling from the two digital data y and the position (time) x at each sampling.
  • the inclination selection unit 302 selects two inclinations K1 and K2 whose signs of inclination are positive and negative.
  • the inclination selection unit 302 selects, for example, one peak position (bottom position) xp (xb) and selects a position (time) x1 having a positive (negative) inclination and a position (time) x2 having a negative (positive) inclination. .
  • the approximate curve calculation unit 303 obtains an approximate function (curve) based on the two selected slopes.
  • the coefficients a and b of the quadratic function are the two digital data y1 at the time of each sampling, It can be obtained from the position (time) x1, x2 of y2 and the slopes K1, K2 at the time of each sampling.
  • the positions (time) x1 and x2 of the two digital data y1 and y2 at the time of each sampling and the slopes K1 and K2 at the time of each sampling are known values.
  • the extreme value calculation unit 304 calculates an extreme value and an extreme value position based on the value related to the calculated quadratic function (approximate curve).
  • the extreme value calculation unit 304 is a position (time) x1, x2 of two digital data y1, y2 at the time of each sampling related to the coefficients a, b of the quadratic function given as known values by the quadratic curve calculation unit 303.
  • the peak (maximum value) and peak position, the bottom (minimum value), and the bottom position, which are extreme values, are calculated using the slopes K1 and K2 at the time of each sampling.
  • the peak indicates the maximum level of the output signal (F2F signal) of the magnetic head 11.
  • the bottom indicates the minimum level of the output signal (F2F signal) of the magnetic head 11.
  • the approximate curve is represented by a quadratic function curve.
  • the position of the extreme value is a position where the linear function becomes zero and can be expressed using the first-order coefficient and the zero-order coefficient of the polynomial.
  • the next coefficient can be expressed by two slopes K1 and K2 sandwiching extreme values, and two sampling positions (time) x1 and x2 when the two slopes are obtained.
  • the extreme value calculation unit 304 calculates the position of the extreme value at the time of two samplings when the two inclinations K1 and K2 calculated by the inclination calculation unit 301 and the two inclinations K1 and k2 are obtained. It can be calculated using the positions x1 and x2.
  • the approximate expression can be easily obtained and the coefficient of the polynomial can be easily obtained, and the position of the extreme value (maximum value, minimum value) of the sampling data can be detected more efficiently and with smaller errors. It is possible to do.
  • the F2F signal which is magnetic data read by the magnetic head 11, is demodulated as shown in FIG.
  • the decoding unit 306 decodes the F2F signal demodulated by the demodulation unit 305 and converts it into “0” and “1” data.
  • the decoding unit 306 converts “0” and “1” data into magnetic data (ASCII), and transmits the converted data to the higher-level device 50 through the communication interface.
  • the clock generator 23 supplies a clock signal CLK that is a time reference in the magnetic information reader 10.
  • the clock generator 23 supplies a sampling clock signal SPCK serving as a sampling time reference input to the A / D converter 28. Further, a reference clock that serves as a drive pulse for the motor 131 is also supplied.
  • the clock generator 23 is supplied to the A / D converter 28 by the sampling timing adjustment unit 26 at each sampling of the A / D converter 28, and continues to a magnetic head 11 (- A sampling clock signal SPCK is supplied so as to sample the read data 1 to -3).
  • the motor drive circuit 24 inputs a drive pulse to the motor 131 based on the motor control pulse input from the control unit 20 and drives the motor 131.
  • the amplifier 25 (-1 to -3) amplifies the analog signal S11 read out by the magnetic head 11 to an appropriate level, and the amplified analog signal S25 as shown in FIG. 26.
  • the amplifier 25 (-1 to -3) can be configured to have an automatic gain control (AGC) function.
  • AGC automatic gain control
  • the sampling timing adjustment unit 26 adjusts the input timing of the read data of the magnetic head 11 (-1 to -3) to the A / D converter 28 so that sampling is performed twice at each sampling of the A / D converter 28. .
  • FIG. 5 is a diagram illustrating a configuration example of the sampling timing adjustment unit according to the present embodiment.
  • the sampling timing adjustment unit 26 in FIG. 5 is configured to read the magnetic data recorded on the three magnetic tracks # 1, # 2 and # 3 by the magnetic heads 11-1, 11-2 and 11-3. It corresponds.
  • the amplifier 25 is omitted in order to simplify and understand the drawing.
  • the sampling timing adjustment unit 26 shown in FIG. In this example, one magnetic track (magnetic head) is connected to two channels CH. Magnetic track # 1 is connected to channels CH1 and CH4, magnetic track # 2 is connected to channels CH2 and CH5, and magnetic track # 3 is connected to channels CH3 and CH6.
  • magnetic tracks # 1, # 2, and # 3 are shown in FIG. As shown, two sampling results are obtained and the time between the two samplings is sufficiently short.
  • sampling for the output data of the main channels CH1, CH2, and CH3 is referred to as main sampling MSPL
  • sampling for the output data of the channels CH4, CH5, and CH6 continuous thereto is referred to as subsampling SSPL.
  • the magnetic head 11 is connected so that, for example, the magnetic data of the magnetic tracks # 1, # 2, and # 3 are selectively input to the A / D converter 28 via the two channels CH, respectively. ing.
  • the multiplexer 261 and the A / D converter 28 of the sampling timing adjusting unit 26 circulate in the order of CH1, CH2, CH3, CH4, CH5, and CH6 over all channels CH1 to CH6 every cycle so as to perform A / D conversion.
  • the main digital data and position, and the sub-digital data and position, which are two sampling results, can be obtained for each of the magnetic tracks # 1, # 2, and # 3.
  • the inclination calculation unit 301 can calculate an inclination corresponding to each magnetic track using the acquired main digital data and position, and sub-digital data and position.
  • the timing of the sub-sampling SSPL for acquiring the sub-sampling data is set according to the channel switching interval of the multiplexer 261 as a track switching switch of the magnetic head.
  • the A / D converter 28 samples the analog signal S25 read by the magnetic head 11 and amplified by the amplifier 25 at a predetermined frequency to convert it into a digital signal.
  • the digital signal is output to the data storage unit 29 via the digital filter 27.
  • the sampling interval (frequency) is not particularly limited, but may be smaller than the conventional sampling number, for example.
  • the A / D converter 28 performs main sampling MSPL on the analog signal output from the magnetic head 11 (-1 to -3) at a predetermined cycle and after the position of the main sampling MSPL (or Sub-sampling SSPL is performed at the previous position (time)) and converted into main digital data and sub-digital data.
  • the data storage unit 29 stores main digital data and position subjected to main sampling MSPL and sub-digital data and position subjected to sub-sampling SSPL at the time of each sampling.
  • the inclination calculation unit 301 obtains two inclinations K1 and K2 at each sampling from the main digital data and position at each sampling and the sub-digital data and position.
  • Sampling by the A / D converter 28 is generally performed at a constant period, but in this embodiment, sampling is performed twice per period in a time sufficiently shorter than the length of one period. Make it. When two points are sampled at short intervals, the change in the slope between the sampling positions is slight, so it can be assumed that the slope between them is constant, and the slope at the time of sampling can be easily calculated based on this assumption. .
  • the extreme value position can be calculated if the slopes at the two positions (time) are known. Therefore, the extreme position can be calculated from data of two periods (four samples).
  • the digital filter 27 performs noise removal processing of the digital signal converted by the A / D converter 28 and stores it as sampling data in the data storage unit 29 together with the position at the time of sampling.
  • An analog filter may be disposed between the magnetic head 11 and the A / D converter 28 instead of the digital filter 27.
  • FIG. 6 is a flowchart for explaining the outline of the overall magnetic information reading operation of the magnetic information reading apparatus 10 shown in FIG.
  • control unit 20 activates the motor 131 of the card transport path 13 through the motor drive circuit 24 (step ST1), and transports (moves) the magnetic card MC relative to the magnetic head 11 to thereby move the magnetic card MC.
  • Magnetic information recorded in the magnetic stripe MP by the F2F modulation method is read (step ST2).
  • the conveyance of the magnetic card MC is completed (step ST3), and the control unit 20 stops the motor 131 of the card conveyance path 13 through the motor drive circuit 24 (step ST4).
  • step ST2 the analog signal S11 (S11-1, S11-2, S11-3) read by the magnetic head 11 (each head unit 11-1, 11-2, 11-3) is supplied to the amplifier 25 ( 25-1, 25-2, 25-3) and amplified to an appropriate level, and the sampling timing adjustment unit 26 samples the magnetic head 11 (each head unit 11-1, 11-2) so that sampling is performed twice at each sampling. , 11-3) the input timing of the read data to the A / D converter 28 is adjusted and input to the A / D converter 28.
  • the data is read by the magnetic head 11 (each head unit 11-1, 11-2, 11-3) and amplified by the amplifier 25 (25-1, 25-2, 25-3)
  • the sampled analog signal S25 (S25-1, S25-2, S25-3) is sampled twice continuously at intervals sufficiently shorter than one sampling period at each sampling and converted into a digital signal.
  • the data is stored in the data storage unit 29 via the digital filter 27.
  • the data calculation processing unit 30 of the calculation unit 22 calculates the peak, peak position, bottom, and bottom position based on the A / D conversion value acquired in step ST2 (step ST5). Based on the calculated peak and peak position (or bottom, bottom position), the data arithmetic processing unit 30 demodulates the F2F signal that is magnetic data read by the demodulator 305 with the magnetic head 11 (step ST6). Then, the decoding unit 306 decodes the F2F signal demodulated by the demodulation unit 305 and converts it into “0” and “1” data (step ST7), and transmits the converted magnetic data to the host device 50 (step ST7). Step ST8).
  • step ST2 the magnetic information acquisition method in step ST2 and the calculation method of the peak, peak position, bottom, and bottom position in step ST5 will be specifically described.
  • FIG. 7 is a diagram for explaining processing for specifying a peak (maximum value) and a peak position of an output signal.
  • FIG. 8 is a flowchart of processing for specifying the peak (maximum value) and peak position of the output signal.
  • FIG. 9 is a diagram for explaining processing for specifying the bottom (minimum value) and bottom position of the output signal.
  • FIG. 10 is a flowchart of processing for specifying the bottom (minimum value) and bottom position of the output signal.
  • the data calculation processing unit 30 performs a process of specifying the peak position Pv and the bottom position Bv based on the A / D conversion value obtained from the analog signal S11 read by the magnetic head 11, and the specified peak position Pv and bottom position
  • the F2F signal is demodulated based on Bv.
  • the output signal (F2F) signal of the magnetic head 11 (each head unit 11-1, 11-2, 11-3) is amplified to an appropriate level by the amplifier 25 (25-1, 25-2, 25-3),
  • the input timing of the read data of the magnetic head 11 (each head unit 11-1, 11-2, 11-3) to the A / D converter 28 is determined so that the sampling timing adjusting unit 26 samples twice at each sampling. It is adjusted and input to the A / D converter 28.
  • the data is read by the magnetic head 11 (each head unit 11-1, 11-2, 11-3) and amplified by the amplifier 25 (25-1, 25-2, 25-3)
  • the analog signal S25 (S25-1, S25-2, S25-3) is sampled twice continuously at intervals sufficiently shorter than one sampling period at each sampling and converted into a digital signal (step ST11).
  • the multiplexer 261 and the A / D converter 28 of the sampling timing adjustment unit 26 circulate in the order of CH1, CH2, CH3, CH4, CH5, and CH6 over all channels CH1 to CH6 every cycle.
  • a command is issued to perform D / D conversion, and the main digital data y11 and position (time) x11, which are two sampling results, and sub-digital data y12 and position for each magnetic track # 1, # 2, # 3 (Time) x12 is acquired.
  • the converted digital signal is stored in the data storage unit 29 together with the sampling position (time) x as sampling data y.
  • two digital data y are obtained as sampling data by the A / D converter 28 and stored in the data storage unit 29 in association with the position (time) x.
  • the data calculation processing unit 30 calculates and processes the sampling data y and the position (time) x stored in the data storage unit 29.
  • the inclination calculation unit 301 uses the acquired main digital data y11 and position x11 and sub-digital data y12 and position x12 stored in the data storage unit 29 to each magnetic track # 1, # 2, # 3. Is calculated (step ST12).
  • the magnetic track # 1 to which the channels CH1 and CH4 are connected will be described, but the other magnetic tracks # 2 and # 3 can be calculated by the same method.
  • the position (time) and amplitude of the main sampling of channel CH1 at position (time) x1 are (x11, y11), and the position (time) and amplitude of subsampling of channel CH4 are (x12 , Y12).
  • the position (time) and amplitude of the main sampling of the channel CH1 at the position (time) x2 are (x21, y21), and the position (time) and amplitude of the sub-sampling of the channel CH4 are (x22, y22).
  • the slope K1 at the position (time) X1 can be obtained by the following equation.
  • the slope K2 at the position (time) X2 can be obtained by the following equation.
  • the inclination selecting unit 302 selects a position (time) x1 having a positive inclination and a position (time) x2 having a negative inclination with one peak position xp interposed therebetween (step ST13).
  • the process waits for a predetermined sampling interval (step ST15), returns to the process in step ST12, and reads the next sampling data.
  • the slope is negative (YES in step ST14)
  • an approximate curve is obtained based on the two slopes selected by the approximate curve calculation unit 304 (step ST16), and the approximation calculated by the extreme value calculation unit 304 is obtained.
  • An extreme value and an extreme value position are calculated based on the curve (step ST17).
  • the peak position xp is calculated using the position information of the positive slope that has already been A / D converted.
  • the peak position (time) xp is the position (time) at which the slope becomes 0, it can be expressed by the coefficients a and b from the expression (3) as in the following expression (4).
  • the coefficient a can be expressed by the slopes K1, K2, and the position (time) x1, x2 as in the equation (7).
  • the equation (7) is substituted into the equation (5), and the coefficient b can be expressed by the slopes K1, K2, and the position (time) x1, x2 as in the equation (8).
  • X1 and x2 are known at the sampling position (time), and the slopes K1 and K2 have also been calculated from the known sampling values from the expressions (1) and (2), and the peak position can be calculated from the expression (9).
  • the bottom (minimum value) and the bottom position Bv are obtained.
  • the calculation processing for obtaining the bottom position is basically performed in the same manner as the calculation processing described in relation to Equations 1 to 8 above. Therefore, detailed description thereof is omitted below. However, so-called Yamatani and positive and negative are reversed. In the following description, the same reference numerals as those in the above description are used for easy understanding.
  • the data calculation processing unit 30 proceeds to the process of specifying the bottom (minimum value) and the bottom position Bv.
  • the peak position Pv and the bottom position Bv are alternately specified by repeating the processes shown in FIGS.
  • the output signal (F2F) of the magnetic head 11 (each head unit 11-1, 11-2, 11-3) is amplified to an appropriate level by the amplifier 25 (-1 to -3), and the sampling timing adjusting unit 26
  • the input timing of the read data of the magnetic head 11 (each head portion 11-1, 11-2, 11-3) to the A / D converter 28 is adjusted so that sampling is performed twice at each sampling, and the A / D Input to the converter 28.
  • the data is read by the magnetic head 11 (each head unit 11-1, 11-2, 11-3) and amplified by the amplifier 25 (25-1, 25-2, 25-3)
  • the analog signal S25 (S25-1, S25-2, S25-3) is sampled twice consecutively at intervals sufficiently shorter than one sampling period at each sampling and converted into a digital signal (step ST21).
  • the multiplexer 261 and the A / D converter 28 of the sampling timing adjustment unit 26 circulate in the order of CH1, CH2, CH3, CH4, CH5, and CH6 over all channels CH1 to CH6 every cycle.
  • a command is issued to perform D / D conversion, and the main digital data y11 and position (time) x11, which are two sampling results, and sub-digital data y12 and position for each magnetic track # 1, # 2, # 3 (Time) x12 is acquired.
  • the converted digital signal is stored in the data storage unit 29 together with the sampling position (time) x as sampling data y.
  • two digital data y are obtained as sampling data by the A / D converter 28 and stored in the data storage unit 29 in association with the position (time) x.
  • the data calculation processing unit 30 calculates and processes the sampling data y and the position (time) x stored in the data storage unit 29.
  • the inclination calculation unit 301 uses the acquired main digital data y11 and position x11 and sub-digital data y12 and position x12 stored in the data storage unit 29 to each magnetic track # 1, # 2, # 3. Is calculated (step ST22).
  • the magnetic track # 1 to which the channels CH1 and CH4 are connected will be described, but the other magnetic tracks # 2 and # 3 can be calculated by the same method.
  • the position (time) and amplitude of the main sampling of the channel CH1 at the position (time) x1 are (x11, y11), and the position (time) and amplitude of the subsampling of the channel CH4 are (x12 , Y12).
  • the position (time) and amplitude of the main sampling of the channel CH1 at the position (time) x2 are (x21, y21), and the position (time) and amplitude of the sub-sampling of the channel CH4 are (x22, y22).
  • the slope K1 at the position (time) X1 can be basically obtained by the above equation (1).
  • the slope K2 at the position (time) X2 can be obtained by the above equation (2).
  • the inclination selecting unit 302 selects a position (time) x1 having a negative inclination and a position (time) x2 having a negative inclination with one bottom position xb interposed therebetween (step ST23). If the slope is negative (NO in step ST24) in the selection process in step ST23, the process waits for a predetermined sampling interval (step ST25), returns to the process in step ST22, and reads the next sampling data. In the selection process, if the slope is positive (YES in step ST24), an approximate curve is obtained based on the two slopes selected by the approximate curve calculation unit 304 (step ST26), and the approximation calculated by the extreme value calculation unit 304 is obtained. An extreme value and an extreme value position are calculated based on the curve (step ST27). In the process of step ST27, the bottom position xb is calculated using the position information of the positive inclination that has already been A / D converted.
  • the demodulator 305 is based on the obtained local maximum value and peak position Pv, local minimum value and bottom position Bv based on the number of peak positions Pv and bottom positions Bv of the output signal of the magnetic head 11.
  • the F2F signal which is magnetic data read by the magnetic head 11, is demodulated.
  • the decoding unit 306 decodes the F2F signal demodulated by the demodulation unit 294 and converts it into “0” and “1” data, and further transmits the converted magnetic data to the host device 50.
  • the data processing unit 40 that converts the output analog signal (F2F signal) of the magnetic head 11 into digital data and processes it is output from the magnetic head 11 by the A / D converter 28.
  • the analog signal is sampled at a predetermined cycle and converted into digital data, and the timing is adjusted so that the sampling timing adjusting unit 26 samples twice at each sampling of the A / D conversion.
  • the digital data and the sampling position are stored in the data storage unit 29, and in the data calculation processing unit 30, the inclination calculation unit 301 obtains the inclination at each sampling from the two digital data and positions at each sampling, and the inclination selection unit 302.
  • the sampling period of the analog signal may be coarse, and high-value detection accuracy can be improved without requiring high-performance hardware or a large-capacity memory.
  • the processing speed of the extreme value detection calculation is improved, and as a result, the processing time of reading out magnetic data can be shortened. That is, for example, in order to realize a magnetic information reader capable of increasing the extreme value detection accuracy, a method of detecting an extreme value by determining a coefficient of an approximate curve using a so-called sweeping method may be adopted. Conceivable. However, since the product quotient operation is several times heavier than the sum / difference operation, the sweep method, which requires a large amount of product quotient operation, is not suitable for computing units such as microcontrollers used for integration. The calculation is not a light load.
  • the A / D converter 28 performs main sampling on the analog signal output from the magnetic head 11 at a predetermined period, and sub-samples at a position (time) before or after the main sampling position.
  • the data storage unit 29 stores the main sampled main digital data and position and the subsampled sub digital data and position at the time of each sampling, and the inclination calculation unit 301 stores the main digital data and the sub digital data. The two slopes at each sampling are obtained from the main digital data and position at each sampling and the sub-digital data and position.
  • Sampling by the A / D converter 28 is generally performed at a constant period, but in this embodiment, sampling is performed twice per period in a time sufficiently shorter than the length of one period. Since two points are sampled at short intervals, it is possible to easily calculate the slope at the time of sampling assuming that the slope between them is constant. The extreme value position can be calculated if the respective slopes at two times are known. Therefore, the extreme position can be calculated from data of two periods (four samples).
  • the approximate curve can be represented by a quadratic function curve.
  • the position of the extreme value is a position where the linear function becomes zero and can be expressed using the first-order coefficient and the zero-order coefficient of the polynomial.
  • the next coefficient can be expressed by two slopes sandwiching the extreme values, and two sampling positions when the two slopes are obtained, and the extreme value calculation unit 304 calculates the extreme value position by the slope. The calculation can be performed using the two inclinations calculated by the calculation unit 304 and the two sampling positions when the two inclinations are obtained.
  • the approximate expression can be easily obtained and the coefficient of the polynomial can be easily obtained, and the position of the extreme value (maximum value, minimum value) of the sampling data can be detected more efficiently and with smaller errors. It becomes possible to do.
  • the subsampling timing for acquiring the subsampling data is set according to the switching interval of the track switching switch of the magnetic head.
  • a plurality of magnetic tracks # 1, # 2, and # 3 are formed on the magnetic stripe MP of the magnetic card MC that is a magnetic information recording medium.
  • the magnetic head 11 can be connected so that, for example, magnetic data of each magnetic track is selectively input to the A / D converter 28 via two channels.
  • the A / D converter 28 receives a command to cycle through all the channels in order for every channel and perform A / D conversion, and the main digital data and position which are two sampling results for each magnetic track,
  • the sub-digital data and position can be acquired, and the tilt calculation unit 301 can calculate the tilt corresponding to each magnetic track using the acquired main digital data and position, and the sub-digital data and position. It becomes possible.
  • sampling timing adjustment unit 26 is connected to the output side of the amplifier 25, but the sampling timing adjustment unit 26 is connected to the input side of the amplifier 25. It is also possible to adopt the configuration that has been described.
  • the magnetic head 11 is a magnetic head that reproduces magnetic information recorded on each of the three magnetic tracks, but is not limited to this.
  • the magnetic head may have one head portion.
  • a magnetic head having a function of writing magnetic information to the magnetic stripe MP of the magnetic card MC may be used.
  • the decoding unit 306 decodes the F2F signal demodulated by the demodulation unit 305 and converts it into “0” and “1” data, and converts the “0” and “1” data into magnetic data (ASCII).
  • the data “0” and “1” are transmitted to the host device 50, and the host device 50 transmits the 0 and “1” data to the magnetic data (ASCII II). It is also possible to configure so as to convert to
  • the magnetic card MC can be a rectangular vinyl chloride card having a thickness of about 0.7 to 0.8 mm, but the magnetic card MC has a thickness of 0.18 to A PET (polyethylene terephthalate) card of about 0.36 mm, a paper card with a predetermined thickness, or the like may be used.
  • the magnetic information recording medium to which the present invention is applied may be a medium other than a card.
  • Approximation may be performed using second-order or higher-order function approximation other than the least square method, approximation using a spline function, approximation using a sampling (sinc) function, or the like.
  • the magnetic card reader described above is a motor drive type
  • a manual card reader such as a swipe type may be used.
  • MC magnetic card (magnetic information recording medium), 10: magnetic information reader, 11, 11-1 to 11-3 ... magnetic head, 12 ... card transport path, 13 ... card Transport unit 131... Motor, 20... Control unit, 21... Storage unit, 22. 1 to 25-3: amplifier, sampling timing adjustment unit, 27: digital filter, 28 ... A / D converter, 29 ... data storage unit, 30 ... data operation processing unit, 301 ... Inclination calculation unit 302. Inclination selection unit 303 303 Approximation curve calculation unit 304 304 Extreme value calculation unit 305 Demodulation unit 306 Decoding unit 40 -Data processing unit, 50 ... host device.

Abstract

Provided are a magnetic information reader capable of speeding up an extreme value detection operation, and also reading of magnetic data as a consequence, and a method of controlling the magnetic information reader. A data processing unit 40 of the magnetic information reader includes: an A/D converter 28; a timing adjustment unit 26 for adjusting timing such that sampling is performed twice for each sampling period of the A/D converter 28; a data storage unit 29 for storing two items of digital data obtained in each sampling period, and sampling positions; an inclination calculation unit 301 for obtaining an inclination in each of the sampling periods from the two items of digital data and the positions; an inclination selection unit 302 for selecting two inclinations that are expressed by a positive sign and a negative sign; an approximate curve calculation unit 303 for obtaining an approximate curve on the basis of the selected two inclinations; and an extreme value calculation unit 304 for calculating an extreme value and an extreme value position on the basis of the calculated approximate curve.

Description

磁気情報読取装置および磁気情報読取装置の制御方法Magnetic information reader and method for controlling magnetic information reader
 本発明は、所定のフォーマット(変調方式)で記録される磁気カード等の磁気情報記録媒体の磁気情報を読み取る磁気情報読取装置および磁気情報読取装置の制御方法に関するものである。 The present invention relates to a magnetic information reading device for reading magnetic information on a magnetic information recording medium such as a magnetic card recorded in a predetermined format (modulation method) and a method for controlling the magnetic information reading device.
 磁気カードリーダである磁気情報読取装置は、磁気カード等に所定の変調方式、たとえば周波数変調方式で磁気記録された“0”および“1”信号に対するFおよび2F信号を磁気ヘッドにより読み取る。 A magnetic information reader, which is a magnetic card reader, reads F and 2F signals for “0” and “1” signals magnetically recorded on a magnetic card or the like by a predetermined modulation method, for example, a frequency modulation method, with a magnetic head.
 磁気ヘッドは、F2F変調方式により記録された磁気データ(磁気信号、磁気情報)をアナログの磁気波形信号として読み出す。
 磁気情報読取装置においては、磁気波形信号により磁気波形のピークおよびボトムである極値を検出する極値検出処理を行って、極値位置で出力信号を反転して、磁気波形は矩形波信号に波形整形される。この矩形波信号は周波数変調(F2F変調)された信号でありF2F復調部で復調される。
The magnetic head reads magnetic data (magnetic signal, magnetic information) recorded by the F2F modulation method as an analog magnetic waveform signal.
In the magnetic information reader, an extreme value detection process is performed to detect the extreme values that are the peak and bottom of the magnetic waveform from the magnetic waveform signal, the output signal is inverted at the extreme value position, and the magnetic waveform is converted into a rectangular wave signal. Waveform shaping. This rectangular wave signal is a frequency-modulated (F2F modulated) signal and is demodulated by the F2F demodulator.
 近年の磁気情報読取装置においては、アナログの磁気波形信号をアナログデジタル(A(Analog)/D(Digital ))変換器でデジタルデータに変換して極値検出処理およびそれ以降の処理が行われる(たとえば特許文献1参照)。 In recent magnetic information readers, an analog magnetic waveform signal is converted into digital data by an analog-digital (A (Analog) / D (Digital)) converter, and extreme value detection processing and subsequent processing are performed ( For example, see Patent Document 1).
 特許文献1に記載されている磁気情報読取装置では、磁気ヘッドの読み取りアナログ信号である磁気波形信号が増幅回路を介してA/D変換器に入力される。A/D変換器では、アナログ信号を所定のサンプリング周波数でサンプリングしてデジタルデータに変換する処理が行われる。そして、得られたデジタルデータはサンプリングデータメモリと呼ばれる記憶装置に一時的に記憶された後、出力信号のピークおよびボトムを求める極値検出処理などの処理が行われる。 In the magnetic information reader described in Patent Document 1, a magnetic waveform signal that is a read analog signal of a magnetic head is input to an A / D converter via an amplifier circuit. In the A / D converter, a process of sampling an analog signal at a predetermined sampling frequency and converting it into digital data is performed. The obtained digital data is temporarily stored in a storage device called a sampling data memory and then subjected to processing such as extreme value detection processing for obtaining the peak and bottom of the output signal.
特開2013-211083号公報JP 2013-211083 A
 特許文献1に示すようなA/D変換器による処理では、アナログ信号のレベル変化とは無関係にサンプリング周波数が決定されるため、サンプリングを行うタイミングがアナログ信号の極値であるピークまたはボトムに一致するとは限らない。
 このため、アナログ信号の極値(ピークまたはボトム)を小さい誤差で検出するために様々な工夫が施されてきた。
In the processing by the A / D converter as shown in Patent Document 1, since the sampling frequency is determined regardless of the level change of the analog signal, the sampling timing coincides with the peak or bottom that is the extreme value of the analog signal. Not always.
For this reason, various ideas have been applied to detect the extreme value (peak or bottom) of an analog signal with a small error.
 たとえば、上記の例においてサンプリング周波数をより高速にし、単位時間あたりのサンプリングの回数を多くする方法が知られている。この場合、より細かくサンプリングが行われるので、アナログ信号のレベルのピーク(またはボトム)が検出されやすくなる。 For example, in the above example, a method of increasing the sampling frequency and increasing the number of times of sampling per unit time is known. In this case, since sampling is performed more finely, the peak (or bottom) of the level of the analog signal is easily detected.
 しかしながら、上記したピークおよびボトムを検出する極値検出方法では、サンプリング周波数を高速化するために、サンプリングの回数が飛躍的に大きくなり、サンプリングされたデジタルデータの量が増大する。 However, in the above-described extreme value detection method for detecting the peak and the bottom, in order to increase the sampling frequency, the number of times of sampling increases dramatically, and the amount of sampled digital data increases.
 このため、得られたデジタルデータをもとに各種処理を行う場合には、多量のデータを保持可能な大容量のサンプリングデータメモリが必要であり、サンプリングデータメモリにかかるコストが増大してしまう。さらに、この方法では、高速でサンプリングを行うA/D変換器が必要になり、その他の各部も高速なサンプリングに耐えうる構成にするため、コストの増大を招いていた。 For this reason, when various processes are performed based on the obtained digital data, a large-capacity sampling data memory capable of holding a large amount of data is required, which increases the cost of the sampling data memory. Furthermore, this method requires an A / D converter that performs sampling at high speed, and the other components are configured to withstand high-speed sampling, resulting in an increase in cost.
 また、上記した極値検出方法では、サンプリングデータの極大値、極小値を検出して、その位置を波形の極値(ピーク(山)、ボトム(谷))の位置としているため、ピーク、ボトムの位置が離散値となり、極値検出に正確性を欠き、極値検出精度を高めることが困難であるという不利益がある。 In the above extreme value detection method, the maximum value and the minimum value of the sampling data are detected, and the position is set as the extreme value (peak (peak), bottom (valley)) of the waveform. The position becomes a discrete value, and the extreme value detection lacks accuracy, and it is difficult to increase the extreme value detection accuracy.
 そこで、本発明の課題は、高性能なハードウェアや大容量のメモリなどを必要とせず、極値検出精度を高めることが可能な磁気情報読取装置を提供することにある。また、本発明の課題は、高性能なハードウェアや大容量のメモリなどを必要とせず、極値検出精度を高めることが可能な磁気情報読取装置の制御方法を提供することにある。 Therefore, an object of the present invention is to provide a magnetic information reading apparatus that does not require high-performance hardware, a large-capacity memory, and the like and can increase the extreme value detection accuracy. It is another object of the present invention to provide a method for controlling a magnetic information reading apparatus that does not require high-performance hardware, a large-capacity memory, or the like, and can increase the extreme value detection accuracy.
 上記課題を解決するために、本発明の磁気情報読取装置は、磁気情報記録媒体に所定の変調方式で記録された磁気データを読み取る磁気ヘッドと、この磁気ヘッドの出力信号をデジタルデータに変換してデータを復調するデータ処理部と、を有し、データ処理部は、磁気ヘッドから出力されるアナログ信号を所定周期でサンプリングしてデジタルデータに変換するアナログデジタル(A/D)変換器と、A/D変換器の各サンプリング時に2回サンプリングするようにタイミングを調整するタイミング調整部と、各サンプリング時の2つのデジタルデータおよびサンプリングの位置を記憶するデータ記憶部と、各サンプリング時の2つのデジタルデータおよび位置により各サンプリング時の傾きを求める傾き算出部と、傾きの符号が正と負となっている2つの傾きを選択する傾き選択部と、選択した2つの傾きに基づいて近似曲線を求める近似曲線算出部と、算出した近似曲線に基づき極値および極値位置を算出する極値算出部と、算出した極値の位置に基づき、前記磁気ヘッドにより読み取ったデータを復調する復調部と、を含むことを特徴とする。 In order to solve the above problems, a magnetic information reader of the present invention converts a magnetic head that reads magnetic data recorded on a magnetic information recording medium by a predetermined modulation method, and converts an output signal of the magnetic head into digital data. A data processing unit that demodulates the data, and the data processing unit samples an analog signal output from the magnetic head at a predetermined period and converts the analog signal into digital data; and A timing adjustment unit that adjusts timing so that sampling is performed twice at each sampling of the A / D converter, two digital data at each sampling and a data storage unit that stores a sampling position, and two at each sampling An inclination calculation unit that calculates the inclination at each sampling based on digital data and position, and the sign of the inclination is positive or negative An inclination selection unit that selects two inclinations, an approximate curve calculation unit that calculates an approximate curve based on the two selected gradients, and an extreme value calculation that calculates an extreme value and an extreme value position based on the calculated approximate curve And a demodulator for demodulating data read by the magnetic head based on the calculated position of the extreme value.
 また、上記課題を解決するために、本発明の磁気情報読取装置の制御方法は、磁気ヘッドにより、磁気情報記録媒体に形成される磁気ストライプに所定の変調方式で記録された磁気データを読み取る読取ステップと、この磁気ヘッドの出力信号をデジタルデータに変換してデータを復調するデータ処理ステップと、を有し、データ処理ステップは、磁気ヘッドから出力されるアナログ信号を所定周期でサンプリングしてデジタルデータに変換するアナログデジタル(A/D)変換ステップと、A/D変換ステップの各サンプリング時に2回サンプリングするようにタイミングを調整するタイミング調整ステップと、各サンプリング時の2つのデジタルデータおよびサンプリングの位置を記憶するデータ記憶ステップと、各サンプリング時の2つのデジタルデータおよび位置により各サンプリング時の傾きを求める傾き算出ステップと、傾きの符号が正と負となっている2つの傾きを選択する傾き選択ステップと、選択した2つの傾きに基づいて近似曲線を求める近似曲線算出ステップと、算出した近似曲線に基づき極値および極値位置を算出する極値算出ステップと、算出した極値の位置に基づき、磁気ヘッドにより読み取ったデータを復調する復調ステップと、を含むことを特徴とする。 In order to solve the above problems, a control method for a magnetic information reading apparatus according to the present invention is a method for reading magnetic data recorded by a magnetic head on a magnetic stripe formed on a magnetic information recording medium by a predetermined modulation method. And a data processing step of converting the output signal of the magnetic head into digital data and demodulating the data, and the data processing step digitally samples the analog signal output from the magnetic head at a predetermined period. An analog-to-digital (A / D) conversion step for converting data, a timing adjustment step for adjusting the timing to sample twice at each sampling of the A / D conversion step, two digital data at each sampling and sampling Data storage step to store the position and each sampling time An inclination calculation step for obtaining an inclination at each sampling from two digital data and positions, an inclination selection step for selecting two inclinations with positive and negative signs of the inclination, and an approximate curve based on the two selected inclinations An approximate curve calculating step for calculating an extreme value and an extreme value position based on the calculated approximate curve; a demodulation step for demodulating data read by the magnetic head based on the calculated extreme value position; , Including.
 本発明では、磁気ヘッドの出力信号をデジタルデータに変換して処理するデータ処理部は、A/D変換器が磁気ヘッドから出力されるアナログ信号を所定周期でサンプリングしてデジタルデータに変換し、かつ、このA/D変換の各サンプリング時に2回サンプリングするようにタイミングを調整し、各サンプリング時の2つのデジタルデータおよびサンプリングの位置を記憶し、各サンプリング時の2つのデジタルデータおよび位置により各サンプリング時の傾きを求め、傾きの符号が正と負となっている2つの傾きを選択し、選択した2つの傾きに基づいて近似曲線を求め、求めた近似曲線に基づき極値および極値位置を算出し、算出した極値の位置に基づき、磁気ヘッドにより読み取ったデータを復調する。これにより、アナログ信号のサンプリング周期は粗くてよく、高性能なハードウェアや大容量のメモリなどを必要とせず、極値検出精度を高めることが可能になる。 In the present invention, the data processing unit that converts and processes the output signal of the magnetic head into digital data, the A / D converter samples the analog signal output from the magnetic head at a predetermined period and converts it into digital data, In addition, the timing is adjusted so that sampling is performed twice at each sampling of the A / D conversion, two digital data at each sampling and a sampling position are stored, and each of the two digital data and the position at each sampling is stored. Obtain the slope at the time of sampling, select two slopes with positive and negative slopes, find an approximate curve based on the two selected slopes, and find the extreme value and extreme value position based on the obtained approximate curve And the data read by the magnetic head is demodulated based on the calculated extreme value position. As a result, the sampling period of the analog signal may be coarse, so that high-performance hardware and a large-capacity memory are not required, and extreme value detection accuracy can be improved.
 本発明において、A/D変換器は、磁気ヘッドから出力されるアナログ信号を所定周期でメインサンプリングし、かつ、このメインサンプリングの位置の前または後の位置(時刻)でサブサンプリングしてメインデジタルデータおよびサブデジタルデータに変換し、データ記憶部は、各サンプリング時のメインサンプリングしたメインデジタルデータおよび位置、並びに、サブサンプリングしたサブデジタルデータおよび位置を記憶し、傾き算出部は、各サンプリング時のメインデジタルデータおよび位置、並びに、サブデジタルデータおよび位置により各サンプリング時の2つの傾きを求めることが好ましい。 In the present invention, the A / D converter performs main sampling on the analog signal output from the magnetic head at a predetermined cycle, and sub-samples the main signal before or after the main sampling position (time). The data storage unit stores the main sampled main digital data and position at each sampling and the subsampled subdigital data and position at each sampling, and the slope calculation unit stores the data at the time of each sampling. It is preferable to obtain two slopes at the time of each sampling based on the main digital data and position, and the sub-digital data and position.
 このサンプリングは、一般的には一定周期で行われるが、本発明では、1周期あたり2回のサンプリングを、1周期の長さに比べて十分に短かい時間で行わせることが可能となり、短い間隔で2点をサンプリングしていることから、この間の傾きはサンプリングした時点での傾きは容易に算出ができる。そして、極値位置は、2つの時刻でのそれぞれの傾きが分かっていれば算出が可能である。したがって、2周期分(4サンプル分)のデータで極値位置が算出できる。 This sampling is generally performed at a constant cycle. However, in the present invention, it is possible to perform sampling twice per cycle in a time sufficiently shorter than the length of one cycle. Since two points are sampled at intervals, the slope at this time can be easily calculated. The extreme value position can be calculated if the respective slopes at two times are known. Therefore, the extreme position can be calculated from data of two periods (four samples).
 本発明において、近似曲線は2次関数曲線で表すことが好ましい。
 このような構成を採用することにより、極値の位置は一次関数がゼロになる位置であってその多項式の一次の係数およびゼロ次の係数を用いて表すことが可能になる。この一次の係数およびゼロ次の係数は、極値を挟んだ2つの傾き、並びに、2つの傾きを求めたときの2つのサンプリング時の位置により表すことができる。したがって、極値算出部は、極値の位置を、傾き算出部で算出された、2つの傾き、並びに、この2つの傾きを求めたときの2つのサンプリング時の位置を用いて算出することが可能になる。
In the present invention, the approximate curve is preferably represented by a quadratic function curve.
By adopting such a configuration, the position of the extreme value is a position where the linear function becomes zero, and can be expressed using the first-order coefficient and the zero-order coefficient of the polynomial. The first-order coefficient and the zero-order coefficient can be expressed by two slopes sandwiching extreme values and two sampling positions when the two slopes are obtained. Therefore, the extreme value calculation unit can calculate the position of the extreme value by using the two inclinations calculated by the inclination calculation unit and the two sampling positions when the two inclinations are obtained. It becomes possible.
 これにより、近似式を容易に求めることができるとともに、その多項式の係数を容易に求めることができ、サンプリングデータの極値(極大値、極小値)の位置をより小さい誤差で検出することが可能になる。 As a result, the approximate expression can be easily obtained, the coefficient of the polynomial can be easily obtained, and the position of the extreme value (maximum value, minimum value) of the sampling data can be detected with a smaller error. become.
 本発明において、サブサンプリングデータを取得するためのサブサンプリングのタイミングは、磁気ヘッドのトラック切替用スイッチの切り替え間隔に応じて設定されていることが好ましい。これにより、サブサンプリングのタイミングをメインサンプリングのタイミングに関連付けて容易に設定することが可能になる。 In the present invention, it is preferable that the sub-sampling timing for acquiring the sub-sampling data is set according to the switching interval of the track switching switch of the magnetic head. This makes it possible to easily set the sub-sampling timing in association with the main sampling timing.
 以上のように、本発明によれば、高性能なハードウェアや大容量のメモリなどを必要とせず、極値検出精度を高めることが可能になる。 As described above, according to the present invention, it is possible to increase the extreme value detection accuracy without requiring high-performance hardware or a large-capacity memory.
本発明の実施形態に係る磁気情報読取装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the magnetic information reader which concerns on embodiment of this invention. 図1の磁気情報読取装置の要部の信号処理波形を示す図であり、図2(a)に、F2F変調方式により記録された磁気記録情報を、アナログ信号として読み出す様子を示し、図2(b)に、増幅したアナログ信号をサンプリングタイミング調整部に出力する様子を示し、図2(c)に、A/D変換の各サンプリング時に2回サンプリングするようにタイミングを調整する様子を示し、図2(d)に、磁気ヘッドにより読み取った磁気データであるF2F信号を復調する様子を示している。It is a figure which shows the signal processing waveform of the principal part of the magnetic information reader of FIG. 1, FIG. 2 (a) shows a mode that the magnetic recording information recorded by the F2F modulation system is read as an analog signal, FIG. FIG. 2 (b) shows how the amplified analog signal is output to the sampling timing adjustment unit, and FIG. 2 (c) shows how the timing is adjusted so that it is sampled twice during each A / D conversion sampling. FIG. 2 (d) shows how the F2F signal, which is magnetic data read by the magnetic head, is demodulated. 複数の磁気トラックが形成された磁気カードの磁気データを読み取る磁気ヘッド、増幅器の構成例を示す図である。It is a figure which shows the structural example of the magnetic head and amplifier which read the magnetic data of the magnetic card in which the several magnetic track was formed. 図1に示す演算部の要部であるデータ演算処理部の構成例を示す図である。It is a figure which shows the structural example of the data calculation process part which is the principal part of the calculating part shown in FIG. 本実施形態に係るサンプリングタイミング調整部の構成例を示す図である。It is a figure which shows the structural example of the sampling timing adjustment part which concerns on this embodiment. 図1に示す磁気情報読取装置の全体的な磁気情報読み取り動作の概要を説明するためのフローチャートである。2 is a flowchart for explaining an outline of an overall magnetic information reading operation of the magnetic information reading apparatus shown in FIG. 1. 出力信号のピーク(極大値)およびピーク位置を特定する処理を説明するための図である。It is a figure for demonstrating the process which specifies the peak (maximum value) and peak position of an output signal. 出力信号のピーク(極大値)およびピーク位置を特定する処理のフローチャートである。It is a flowchart of the process which specifies the peak (maximum value) and peak position of an output signal. 出力信号のボトム(極小値)およびボトム位置を特定する処理を説明するための図である。It is a figure for demonstrating the process which specifies the bottom (minimum value) and bottom position of an output signal. 出力信号のボトム(極小値)およびボトム位置を特定する処理のフローチャートである。It is a flowchart of the process which specifies the bottom (minimum value) and bottom position of an output signal.
 以下、図面を参照しながら、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(磁気情報読取装置の構成)
 図1は、本発明の実施形態に係る磁気情報読取装置の構成例を示すブロック図である。図2(a)~(d)は、図1の磁気情報読取装置の要部の信号処理波形を示す図である。
(Configuration of magnetic information reader)
FIG. 1 is a block diagram showing a configuration example of a magnetic information reading apparatus according to an embodiment of the present invention. 2A to 2D are diagrams showing signal processing waveforms of the main part of the magnetic information reading apparatus in FIG.
 本実施形態においては、磁気情報記録媒体である磁気カードMC等に記録された情報を再生する磁気カードリーダに適用可能な磁気情報読取装置を例に説明する。また、本実施形態においては、周波数変調方式で磁気記録された“0”および“1”信号に対するFおよび2F信号を読み取り再生する場合を例に説明する。ただし、本技術はF2F方式に限らず、F3F方式、NRZI方式、MFM方式等、種々の方式が適用可能である。 In the present embodiment, a magnetic information reader that can be applied to a magnetic card reader that reproduces information recorded on a magnetic card MC, which is a magnetic information recording medium, will be described as an example. In this embodiment, an example in which F and 2F signals corresponding to “0” and “1” signals magnetically recorded by the frequency modulation method are read and reproduced will be described. However, the present technology is not limited to the F2F method, and various methods such as the F3F method, the NRZI method, and the MFM method can be applied.
 本実施形態の磁気情報記録媒体は磁気カードMCであり、磁気カードMCは、磁気データが記録される磁気ストライプMPを備えている。磁気ストライプMPは、細長い帯状に形成されている。この磁気ストライプMPは、長方形状に形成される磁気カードMCの長手方向に沿って形成されている。なお、磁気カードMCには、ICチップが内蔵されていても良い。 The magnetic information recording medium of the present embodiment is a magnetic card MC, and the magnetic card MC includes a magnetic stripe MP on which magnetic data is recorded. The magnetic stripe MP is formed in an elongated strip shape. The magnetic stripe MP is formed along the longitudinal direction of the magnetic card MC formed in a rectangular shape. The magnetic card MC may contain an IC chip.
 磁気カードMCでは、たとえばISO規格、JIS規格その他複数種の磁気記録形式が用いられ、たとえば磁気ストライプMPには複数の磁気トラックが形成され、各磁気トラックには記録形式に応じた磁気情報が記録されている。磁気トラックに記録されている磁気情報(磁気データ)は、同一の磁気記録形式であってもよいし、それぞれ異なる複数の磁気記録形式であってもよく、磁気カードMCの仕様に応じてあらかじめ定められている。 In the magnetic card MC, for example, ISO standard, JIS standard, and other types of magnetic recording formats are used. For example, a plurality of magnetic tracks are formed on the magnetic stripe MP, and magnetic information corresponding to the recording format is recorded on each magnetic track. Has been. The magnetic information (magnetic data) recorded on the magnetic track may be in the same magnetic recording format, or may be in a plurality of different magnetic recording formats, and determined in advance according to the specifications of the magnetic card MC. It has been.
 本磁気情報読取装置10は、図1に示すように、磁気ヘッド11、カード搬送路12、カード搬送部13、制御部20、および上位装置(ホスト装置)50を含んで構成されている。 As shown in FIG. 1, the magnetic information reader 10 includes a magnetic head 11, a card transport path 12, a card transport unit 13, a control unit 20, and a host device (host device) 50.
 磁気ヘッド11は、磁気カードMCに、たとえば図2(a)に示すように、F2F変調方式により記録された磁気記録情報を、アナログ信号S11として読み出す。図3は、複数の磁気トラックが形成された磁気カードの磁気データを読み取る磁気ヘッド、増幅器の構成例を示す図である。 The magnetic head 11 reads, as an analog signal S11, magnetic recording information recorded on the magnetic card MC by, for example, the F2F modulation method as shown in FIG. FIG. 3 is a diagram illustrating a configuration example of a magnetic head and an amplifier that read magnetic data of a magnetic card on which a plurality of magnetic tracks are formed.
 磁気ヘッド11は、磁気ストライプMPに擦動することで、磁気ストライプMPに記録されている磁気情報を再生しアナログ信号を出力している。本形態では、図3に示すように、磁気カードMCには、ISO規格に基づいた磁気データが3つの磁気トラック#1、磁気トラック#2、磁気トラック#3が形成されている。そのため、磁気ヘッド11は、図3に示すように、ヘッド部11-1、11-2、11-3が、3つの磁気トラック#1、磁気トラック#2、磁気トラック#3に対応してそれぞれ設けられている。ヘッド部11-1、11-2、11-3は、それぞれ磁気ギャップを挟んで対向配置された少なくとも一対の磁気コアから構成されている。さらに、磁気ヘッド11の各ヘッド部11-1、11-2、11-3の出力側には、各ヘッド部11-1、11-2、11-3に対応して増幅器25-1、25-2、25-3が配置されている。増幅器25-1、25―2、25-3の出力側には、サンプリングタイミング調整部26が配置されている。 The magnetic head 11 rubs against the magnetic stripe MP to reproduce magnetic information recorded on the magnetic stripe MP and output an analog signal. In this embodiment, as shown in FIG. 3, the magnetic card MC is formed with three magnetic tracks # 1, magnetic track # 2, and magnetic track # 3 of magnetic data based on the ISO standard. Therefore, in the magnetic head 11, as shown in FIG. 3, the head portions 11-1, 11-2, and 11-3 correspond to the three magnetic tracks # 1, magnetic track # 2, and magnetic track # 3, respectively. Is provided. Each of the head portions 11-1, 11-2, and 11-3 is composed of at least a pair of magnetic cores arranged to face each other with a magnetic gap interposed therebetween. Further, on the output side of the head units 11-1, 11-2, 11-3 of the magnetic head 11, amplifiers 25-1, 25 corresponding to the head units 11-1, 11-2, 11-3 are provided. -2 and 25-3 are arranged. A sampling timing adjustment unit 26 is disposed on the output side of the amplifiers 25-1, 25-2, and 25-3.
 カード搬送路12には、磁気ヘッド11、カード搬送部13等が配置されている。具体的には、磁気カードMCは、カード搬送部13によりカード搬送路12を搬送され、磁気ヘッド11の各ヘッド部11-1、11-2、11-3は、搬送される磁気カードMCに形成された磁気ストライプMPを摺動するようになっている。 In the card transport path 12, a magnetic head 11, a card transport section 13, and the like are arranged. Specifically, the magnetic card MC is transported along the card transport path 12 by the card transport unit 13, and the head units 11-1, 11-2, and 11-3 of the magnetic head 11 are connected to the transported magnetic card MC. The formed magnetic stripe MP is slid.
 カード搬送部13は、モータ駆動回路(ドライバ)24を通してのモータ(M)131の駆動により磁気カードMCをカード搬送路12に沿って搬送させる。モータ(M)131は、制御部20により制御されるモータ駆動回路24により駆動され、カード搬送部13を駆動して磁気カードMCを搬送させる。モータ(M)131の制御方式として、たとえばPWM制御方式が採用され、モータ(M)131は、制御部20によりPWM制御を受ける。 The card transport unit 13 transports the magnetic card MC along the card transport path 12 by driving the motor (M) 131 through the motor drive circuit (driver) 24. The motor (M) 131 is driven by the motor drive circuit 24 controlled by the control unit 20 and drives the card transport unit 13 to transport the magnetic card MC. As a control method of the motor (M) 131, for example, a PWM control method is adopted, and the motor (M) 131 is subjected to PWM control by the control unit 20.
 磁気情報読取装置10は、制御部20、記憶部21、演算部22、データ処理部40を主な構成としている。さらに、本実施形態では、クロック発生部23、モータ駆動回路24、増幅器25、サンプリングタイミング調整部26、デジタルフィルタ27、A/D変換器28、データ記憶部29、およびデータ演算処理部30を備えている。また、データ処理部40は、これらの構成要素のうち、増幅器25、サンプリングタイミング調整部26、デジタルフィルタ27、A/D変換器28、記憶部21のデータ記憶部29、および演算部22のデータ演算処理部30により構成されている。 The magnetic information reading apparatus 10 mainly includes a control unit 20, a storage unit 21, a calculation unit 22, and a data processing unit 40. Furthermore, in the present embodiment, a clock generation unit 23, a motor drive circuit 24, an amplifier 25, a sampling timing adjustment unit 26, a digital filter 27, an A / D converter 28, a data storage unit 29, and a data calculation processing unit 30 are provided. ing. The data processing unit 40 includes the amplifier 25, the sampling timing adjustment unit 26, the digital filter 27, the A / D converter 28, the data storage unit 29 of the storage unit 21, and the data of the calculation unit 22 among these components. An arithmetic processing unit 30 is used.
 データ処理部40は、磁気ヘッド11の各ヘッド部11-1、11-2、11-3の出力信号をデジタルデータに変換して処理する機能を有している。 The data processing unit 40 has a function of converting the output signals of the head units 11-1, 11-2, and 11-3 of the magnetic head 11 into digital data and processing them.
 サンプリングタイミング調整部26は、磁気ヘッド11の各ヘッド部11-1、11-2、11-3の出力を所定のチャンネルとして選択してA/D変換器28に供給する機能を有している。本実施形態では、図2(c)に示すように、A/D変換の各サンプリング時に2回サンプリングするようにタイミングを調整する。この各サンプリング時の2つのデジタルデータおよびサンプリングの位置をデータ記憶部29が記憶する。そして、データ演算処理部30において、各サンプリング時の2つのデジタルデータおよび位置により各サンプリング時の傾きを求め、傾きの符号が正と負となっている2つの傾きを選択し、選択した2つの傾きに基づいて近似曲線を求め、求めた近似曲線に基づき極値および極値位置を算出し、算出した極値の位置に基づき、磁気ヘッドにより読み取ったデータを復調する。 The sampling timing adjustment unit 26 has a function of selecting the outputs of the head units 11-1, 11-2, and 11-3 of the magnetic head 11 as predetermined channels and supplying them to the A / D converter 28. . In the present embodiment, as shown in FIG. 2C, the timing is adjusted so that sampling is performed twice at each sampling of A / D conversion. The data storage unit 29 stores the two digital data and the sampling position at the time of each sampling. Then, the data arithmetic processing unit 30 obtains the slope at each sampling from the two digital data and the position at each sampling, selects the two slopes whose signs of the slope are positive and negative, and selects the selected two An approximate curve is obtained based on the inclination, an extreme value and an extreme value position are calculated based on the obtained approximate curve, and data read by the magnetic head is demodulated based on the calculated extreme value position.
 制御部20は、磁気情報読取装置10全体の動作を制御し、各構成要素と接続され制御信号やデータをやりとりする。具体的には、制御部20は、記憶部21に格納されている制御プログラムや各種データに基づき、磁気情報読取装置10の各部を制御する。また、制御部20は、図示しない通信インタフェースを介して上位装置50に接続されている。制御部20は、図示しない通信インタフェースを通じて上位装置50から入力される指令に従って、磁気情報読取装置10の全体を制御する。 The control unit 20 controls the overall operation of the magnetic information reader 10 and is connected to each component to exchange control signals and data. Specifically, the control unit 20 controls each unit of the magnetic information reading device 10 based on a control program and various data stored in the storage unit 21. In addition, the control unit 20 is connected to the host device 50 via a communication interface (not shown). The control unit 20 controls the entire magnetic information reading device 10 according to a command input from the host device 50 through a communication interface (not shown).
 記憶部21は、装置全体の動作制御に必要なプログラムや各種のデータを記録する。さらに、本実施形態では、データ記憶部29を有している。データ記憶部29は、磁気ヘッド11から出力された出力信号(アナログ信号)をA/D変換器28によってサンプリングしたデジタル信号をサンプリングデータとして格納している。具体的には、データ記憶部29は、A/D変換の各サンプリング時の2つのデジタルデータおよびサンプリングの位置を記憶する。 The storage unit 21 records programs and various data necessary for operation control of the entire apparatus. Further, in the present embodiment, a data storage unit 29 is provided. The data storage unit 29 stores a digital signal obtained by sampling the output signal (analog signal) output from the magnetic head 11 by the A / D converter 28 as sampling data. Specifically, the data storage unit 29 stores two digital data at the time of each sampling of A / D conversion and the sampling position.
 演算部22は、データ記憶部29に記憶されたデータに基づき各種演算処理を行う。本実施形態では、データ演算処理部30を有している。 The calculation unit 22 performs various calculation processes based on the data stored in the data storage unit 29. In the present embodiment, a data arithmetic processing unit 30 is provided.
 データ演算処理部30は、磁気ヘッド11の出力信号に基づきA/D変換器28でA/D変換されたサンプリングデータを処理する。 The data calculation processing unit 30 processes the sampling data A / D converted by the A / D converter 28 based on the output signal of the magnetic head 11.
 図4は、図1に示す演算部の要部であるデータ演算処理部の構成例を示す図である。
 本実施形態において、データ演算処理部30は、図4に示すように、傾き算出部301、傾き選択部302、近似曲線算出部303、極値算出部304、復調部305、および復号部306を備えている。
FIG. 4 is a diagram illustrating a configuration example of a data operation processing unit that is a main part of the operation unit illustrated in FIG. 1.
In this embodiment, as shown in FIG. 4, the data calculation processing unit 30 includes an inclination calculation unit 301, an inclination selection unit 302, an approximate curve calculation unit 303, an extreme value calculation unit 304, a demodulation unit 305, and a decoding unit 306. I have.
 傾き算出部301は、各サンプリング時の2つのデジタルデータyおよび位置(時刻)xにより各サンプリング時の傾きKを求める。 The inclination calculation unit 301 obtains the inclination K at each sampling from the two digital data y and the position (time) x at each sampling.
 傾き選択部302は、傾きの符号が正と負となっている2つの傾きK1,K2を選択する。傾き選択部302は、たとえば1つのピーク位置(ボトム位置)xp(xb)を挟み、傾きが正(負)の位置(時刻)x1と傾きが負(正)の位置(時刻)x2を選択する。 The inclination selection unit 302 selects two inclinations K1 and K2 whose signs of inclination are positive and negative. The inclination selection unit 302 selects, for example, one peak position (bottom position) xp (xb) and selects a position (time) x1 having a positive (negative) inclination and a position (time) x2 having a negative (positive) inclination. .
 近似曲線算出部303は、選択した2つの傾きに基づいて近似関数(曲線)を求める。本実施形態において、近似曲線算出部303は、近似関数として2次関数近似式(y=ax+bx+c)を求める。2次関数近似式(y=ax+bx+c)の位置(時刻)xの傾きy´は2次関数を微分したy´=2ax+bで求めることが可能である。ピーク位置(ボトム位置)の位置(時刻)xp(xb)は傾きが0になる位置(時刻)であることから、2次関数の係数a,bは、各サンプリング時の2つのデジタルデータy1、y2の位置(時刻)x1、x2および各サンプリング時の傾きK1,K2により求めることができる。これらの各サンプリング時の2つのデジタルデータy1、y2の位置(時刻)x1、x2および各サンプリング時の傾きK1,K2は既知の値である。 The approximate curve calculation unit 303 obtains an approximate function (curve) based on the two selected slopes. In the present embodiment, the approximate curve calculation unit 303 obtains a quadratic function approximate expression (y = ax 2 + bx + c) as an approximate function. The slope y ′ of the position (time) x of the quadratic function approximation (y = ax 2 + bx + c) can be obtained by y ′ = 2ax + b obtained by differentiating the quadratic function. Since the position (time) xp (xb) of the peak position (bottom position) is the position (time) at which the slope becomes 0, the coefficients a and b of the quadratic function are the two digital data y1 at the time of each sampling, It can be obtained from the position (time) x1, x2 of y2 and the slopes K1, K2 at the time of each sampling. The positions (time) x1 and x2 of the two digital data y1 and y2 at the time of each sampling and the slopes K1 and K2 at the time of each sampling are known values.
 極値算出部304は、算出した2次関数(近似曲線)に関連した値に基づき極値および極値位置を算出する。極値算出部304は、二次曲線算出部303で既知の値として与えられる2次関数の係数a,bに関連する各サンプリング時の2つのデジタルデータy1、y2の位置(時刻)x1、x2および各サンプリング時の傾きK1,K2を用いて、極値であるピーク(極大値)およびピーク位置、ボトム(極小値)およびボトム位置を算出する。ここで、ピークは磁気ヘッド11の出力信号(F2F信号)の極大レベルを示している。また、ボトムは磁気ヘッド11の出力信号(F2F信号)の極小レベルを示している。 The extreme value calculation unit 304 calculates an extreme value and an extreme value position based on the value related to the calculated quadratic function (approximate curve). The extreme value calculation unit 304 is a position (time) x1, x2 of two digital data y1, y2 at the time of each sampling related to the coefficients a, b of the quadratic function given as known values by the quadratic curve calculation unit 303. Further, the peak (maximum value) and peak position, the bottom (minimum value), and the bottom position, which are extreme values, are calculated using the slopes K1 and K2 at the time of each sampling. Here, the peak indicates the maximum level of the output signal (F2F signal) of the magnetic head 11. The bottom indicates the minimum level of the output signal (F2F signal) of the magnetic head 11.
 上述したように、本実施形態において、近似曲線は2次関数曲線で表す。このような構成を採用することにより、極値の位置は一次関数がゼロになる位置であってその多項式の一次の係数およびゼロ次の係数を用いて表すことが可能で、一次の係数およびゼロ次の係数は、極値を挟んだ2つの傾きK1,K2、並びに、2つの傾きを求めたときの2つのサンプリング時の位置(時刻)x1、x2により表すことができる。そして、極値算出部304は、極値の位置を、傾き算出部301で算出された、2つの傾きK1,K2、並びに、この2つの傾きK1,k2を求めたときの2つのサンプリング時の位置x1,x2を用いて算出することができる。 As described above, in this embodiment, the approximate curve is represented by a quadratic function curve. By adopting such a configuration, the position of the extreme value is a position where the linear function becomes zero and can be expressed using the first-order coefficient and the zero-order coefficient of the polynomial. The next coefficient can be expressed by two slopes K1 and K2 sandwiching extreme values, and two sampling positions (time) x1 and x2 when the two slopes are obtained. Then, the extreme value calculation unit 304 calculates the position of the extreme value at the time of two samplings when the two inclinations K1 and K2 calculated by the inclination calculation unit 301 and the two inclinations K1 and k2 are obtained. It can be calculated using the positions x1 and x2.
 これにより、近似式を容易に求めることができるとともに、その多項式の係数は容易に求めることができ、サンプリングデータの極値(極大値、極小値)の位置をより効率よく、より小さい誤差で検出することが可能となっている。 As a result, the approximate expression can be easily obtained and the coefficient of the polynomial can be easily obtained, and the position of the extreme value (maximum value, minimum value) of the sampling data can be detected more efficiently and with smaller errors. It is possible to do.
 復調部305、極値算出部304で算出した極値の位置に基づき、図2(d)に示すように、磁気ヘッド11により読み取った磁気データであるF2F信号を復調する。 Based on the position of the extreme value calculated by the demodulation unit 305 and the extreme value calculation unit 304, the F2F signal, which is magnetic data read by the magnetic head 11, is demodulated as shown in FIG.
 復号部306は、復調部305で復調されたF2F信号を復号して“0”および“1”データに変換する。復号部306は、“0”および“1”データを磁気データ(ASCII)に変換し、この変換データを通信インタフェースを通して上位装置50に送信する。  The decoding unit 306 decodes the F2F signal demodulated by the demodulation unit 305 and converts it into “0” and “1” data. The decoding unit 306 converts “0” and “1” data into magnetic data (ASCII), and transmits the converted data to the higher-level device 50 through the communication interface.
 クロック発生部23は、磁気情報読取装置10内の時間基準となるクロック信号CLKを供給する。本実施形態では、クロック発生部23は、A/D変換器28に入力するサンプリング時間基準となるサンプリングクロック信号SPCKを供給する。さらにモータ131の駆動パルスとなる基準クロックも供給する。クロック発生部23は、A/D変換器28の各サンプリング時に、サンプリングタイミング調整部26によりA/D変換器28に供給される、サンプリングの1周期より極めて短い時間に連続する磁気ヘッド11(-1~-3)の読み取りデータをサンプリングするようにサンプリングクロック信号SPCKを供給する。 The clock generator 23 supplies a clock signal CLK that is a time reference in the magnetic information reader 10. In the present embodiment, the clock generator 23 supplies a sampling clock signal SPCK serving as a sampling time reference input to the A / D converter 28. Further, a reference clock that serves as a drive pulse for the motor 131 is also supplied. The clock generator 23 is supplied to the A / D converter 28 by the sampling timing adjustment unit 26 at each sampling of the A / D converter 28, and continues to a magnetic head 11 (- A sampling clock signal SPCK is supplied so as to sample the read data 1 to -3).
 モータ駆動回路24は、制御部20から入力されるモータ制御パルスに基づき駆動パルスをモータ131に入力して、モータ131を駆動する。 The motor drive circuit 24 inputs a drive pulse to the motor 131 based on the motor control pulse input from the control unit 20 and drives the motor 131.
 増幅器25(-1~-3)は、磁気ヘッド11により読み出されたアナログ信号S11を適正なレベルに増幅して、図2(b)に示すような増幅したアナログ信号S25をサンプリングタイミング調整部26に出力する。また、増幅器25(-1~-3)は、自動利得制御(AGC)機能を持つように構成することも可能である。 The amplifier 25 (-1 to -3) amplifies the analog signal S11 read out by the magnetic head 11 to an appropriate level, and the amplified analog signal S25 as shown in FIG. 26. The amplifier 25 (-1 to -3) can be configured to have an automatic gain control (AGC) function.
 サンプリングタイミング調整部26は、A/D変換器28の各サンプリング時に2回サンプリングするように磁気ヘッド11(-1~-3)の読み取りデータのA/D変換器28への入力タイミングを調整する。 The sampling timing adjustment unit 26 adjusts the input timing of the read data of the magnetic head 11 (-1 to -3) to the A / D converter 28 so that sampling is performed twice at each sampling of the A / D converter 28. .
 図5は、本実施形態に係るサンプリングタイミング調整部の構成例を示す図である。
 図5のサンプリングタイミング調整部26は、3つの磁気トラック#1、磁気トラック#2、磁気トラック#3に記録された磁気データを磁気ヘッド11-1,11-2,11-3で読み出す構成に対応している。なお、図5では、図面の簡単化および理解を容易にするために増幅器25を省略してある。
FIG. 5 is a diagram illustrating a configuration example of the sampling timing adjustment unit according to the present embodiment.
The sampling timing adjustment unit 26 in FIG. 5 is configured to read the magnetic data recorded on the three magnetic tracks # 1, # 2 and # 3 by the magnetic heads 11-1, 11-2 and 11-3. It corresponds. In FIG. 5, the amplifier 25 is omitted in order to simplify and understand the drawing.
 図5のサンプリングタイミング調整部26は、マルチプレクサ261を含んで構成されている。この例では、1つの磁気トラック(磁気ヘッド)を2つのチャネルCHに接続する。磁気トラック#1をチャネルCH1とCH4に、磁気トラック#2をチャネルCH2とCH5に、磁気トラック#3をチャネルCH3とCH6に接続に接続してある。この接続状態で、A/D変換器28に対し1周期毎にチャネルCH1~CH6までA/D変換する指令を出すと、各磁気トラック#1,#2,#3において図2(c)に示すように、2つのサンプリング結果が得られ、2つのサンプリングの間の時間は十分短くなる。 5 includes a multiplexer 261. The sampling timing adjustment unit 26 shown in FIG. In this example, one magnetic track (magnetic head) is connected to two channels CH. Magnetic track # 1 is connected to channels CH1 and CH4, magnetic track # 2 is connected to channels CH2 and CH5, and magnetic track # 3 is connected to channels CH3 and CH6. In this connection state, when a command for A / D conversion from the channels CH1 to CH6 is issued for each cycle to the A / D converter 28, the magnetic tracks # 1, # 2, and # 3 are shown in FIG. As shown, two sampling results are obtained and the time between the two samplings is sufficiently short.
 ここでは、メインのチャネルCH1,CH2,CH3の出力データに対するサンプリングをメインサンプリングMSPLとし、それに連続するチャネルCH4,CH5,CH6の出力データに対するサンプリングをサブサンプリングSSPLとする。 Here, sampling for the output data of the main channels CH1, CH2, and CH3 is referred to as main sampling MSPL, and sampling for the output data of the channels CH4, CH5, and CH6 continuous thereto is referred to as subsampling SSPL.
 これにより、サブサンプリングSSPLのタイミングをメインサンプリングMSPLのタイミングに関連付けて容易に設定することが可能になる。本構成では、磁気ヘッド11は、たとえば各磁気トラック#1,#2,#3の磁気データがそれぞれ2つのチャネルCHを介してA/D変換器28に選択的に入力されるように接続されている。サンプリングタイミング調整部26のマルチプレクサ261およびA/D変換器28は、1周期ごとに全チャネルCH1~CH6にわたってCH1、CH2、CH3、CH4、CH5、CH6の順番に巡回してA/D変換するように指令を受けて、各磁気トラック#1,#2,#3に対して2つのサンプリング結果であるメインデジタルデータおよび位置、並びに、サブデジタルデータおよび位置を取得するこができる。傾き算出部301は、取得したメインデジタルデータおよび位置、並びに、サブデジタルデータおよび位置を用いて各磁気トラックに対応する傾きを算出することが可能になる。 This makes it possible to easily set the timing of the sub-sampling SSPL in association with the timing of the main sampling MSPL. In this configuration, the magnetic head 11 is connected so that, for example, the magnetic data of the magnetic tracks # 1, # 2, and # 3 are selectively input to the A / D converter 28 via the two channels CH, respectively. ing. The multiplexer 261 and the A / D converter 28 of the sampling timing adjusting unit 26 circulate in the order of CH1, CH2, CH3, CH4, CH5, and CH6 over all channels CH1 to CH6 every cycle so as to perform A / D conversion. The main digital data and position, and the sub-digital data and position, which are two sampling results, can be obtained for each of the magnetic tracks # 1, # 2, and # 3. The inclination calculation unit 301 can calculate an inclination corresponding to each magnetic track using the acquired main digital data and position, and sub-digital data and position.
 このように、本実施形態において、サブサンプリングデータを取得するためのサブサンプリングSSPLのタイミングは、磁気ヘッドのトラック切替用スイッチとしてマルチプレクサ261のチャネル切り替え間隔に応じて設定されている。 As described above, in this embodiment, the timing of the sub-sampling SSPL for acquiring the sub-sampling data is set according to the channel switching interval of the multiplexer 261 as a track switching switch of the magnetic head.
 A/D変換器28は、図2(c)に示すように、磁気ヘッド11により読み出され、増幅器25で増幅されたアナログ信号S25を所定の周波数でサンプリングしてデジタル信号に変換し、このデジタル信号をデジタルフィルタ27を介してデータ記憶部29に出力する。本実施形態において、サンプリング間隔(周波数)は、特に限定されるものではないが、たとえば、従来のサンプリング数より少なくて良い。 As shown in FIG. 2C, the A / D converter 28 samples the analog signal S25 read by the magnetic head 11 and amplified by the amplifier 25 at a predetermined frequency to convert it into a digital signal. The digital signal is output to the data storage unit 29 via the digital filter 27. In the present embodiment, the sampling interval (frequency) is not particularly limited, but may be smaller than the conventional sampling number, for example.
 上述したように、A/D変換器28は、磁気ヘッド11(-1~-3)から出力されるアナログ信号を所定周期でメインサンプリングMSPLし、かつ、このメインサンプリングMSPLの位置の後(あるいは前の位置(時刻))でサブサンプリングSSPLしてメインデジタルデータおよびサブデジタルデータに変換する。データ記憶部29は、各サンプリング時のメインサンプリングMSPLしたメインデジタルデータおよび位置、並びに、サブサンプリングSSPLしたサブデジタルデータおよび位置を記憶する。傾き算出部301は、各サンプリング時のメインデジタルデータおよび位置、並びに、サブデジタルデータおよび位置により各サンプリング時の2つの傾きK1,K2を求める。 As described above, the A / D converter 28 performs main sampling MSPL on the analog signal output from the magnetic head 11 (-1 to -3) at a predetermined cycle and after the position of the main sampling MSPL (or Sub-sampling SSPL is performed at the previous position (time)) and converted into main digital data and sub-digital data. The data storage unit 29 stores main digital data and position subjected to main sampling MSPL and sub-digital data and position subjected to sub-sampling SSPL at the time of each sampling. The inclination calculation unit 301 obtains two inclinations K1 and K2 at each sampling from the main digital data and position at each sampling and the sub-digital data and position.
 A/D変換器28のサンプリングは、一般的には一定周期で行われるが、本実施形態では、1周期あたり2回のサンプリングを、1周期の長さに比べて十分に短かい時間で行わせる。短い間隔で2点をサンプリングした場合、サンプリング位置間の傾きの変化はわずかであるため、この間の傾きは一定であると仮定でき、この仮定に基づきサンプリングした時点での傾きは容易に算出ができる。そして、極値位置は、2つの位置(時刻)でのそれぞれの傾きが分かっていれば算出が可能である。したがって、2周期分(4サンプル分)のデータで極値位置が算出できる。 Sampling by the A / D converter 28 is generally performed at a constant period, but in this embodiment, sampling is performed twice per period in a time sufficiently shorter than the length of one period. Make it. When two points are sampled at short intervals, the change in the slope between the sampling positions is slight, so it can be assumed that the slope between them is constant, and the slope at the time of sampling can be easily calculated based on this assumption. . The extreme value position can be calculated if the slopes at the two positions (time) are known. Therefore, the extreme position can be calculated from data of two periods (four samples).
 デジタルフィルタ27は、A/D変換器28で変換されたデジタル信号のノイズ除去処理を行って、サンプリングデータとしてデータ記憶部29にサンプリング時の位置とともに格納させる。なお、デジタルフィルタ27の換わりにアナログフィルタを磁気ヘッド11とA/D変換器28の間に配置してもよい。 The digital filter 27 performs noise removal processing of the digital signal converted by the A / D converter 28 and stores it as sampling data in the data storage unit 29 together with the position at the time of sampling. An analog filter may be disposed between the magnetic head 11 and the A / D converter 28 instead of the digital filter 27.
(磁気情報読取装置の制御フロー)
 図6は、図1に示す磁気情報読取装置10の全体的な磁気情報読み取り動作の概要を説明するためのフローチャートである。
(Control flow of magnetic information reader)
FIG. 6 is a flowchart for explaining the outline of the overall magnetic information reading operation of the magnetic information reading apparatus 10 shown in FIG.
 まず、制御部20がモータ駆動回路24を通してカード搬送路13のモータ131を起動し(ステップST1)、磁気カードMCを磁気ヘッド11に対して相対的に搬送(移動)させることにより、磁気カードMCの磁気ストライプMPにF2F変調方式で記録されている磁気情報が読み出される(ステップST2)。これにより、磁気カードMCの搬送が完了し(ステップST3)、制御部20がモータ駆動回路24を通してカード搬送路13のモータ131を停止させる(ステップST4)。 First, the control unit 20 activates the motor 131 of the card transport path 13 through the motor drive circuit 24 (step ST1), and transports (moves) the magnetic card MC relative to the magnetic head 11 to thereby move the magnetic card MC. Magnetic information recorded in the magnetic stripe MP by the F2F modulation method is read (step ST2). Thereby, the conveyance of the magnetic card MC is completed (step ST3), and the control unit 20 stops the motor 131 of the card conveyance path 13 through the motor drive circuit 24 (step ST4).
 ステップST2において、磁気ヘッド11(の各ヘッド部11-1、11-2、11-3)により読み出されたアナログ信号S11(S11-1、S11-2、S11-3)は、増幅器25(25-1、25-2、25-3)で適正なレベルに増幅され、サンプリングタイミング調整部26で各サンプリング時に2回サンプリングするように磁気ヘッド11(の各ヘッド部11-1、11-2、11-3)の読み取りデータのA/D変換器28への入力タイミングが調整され、A/D変換器28に入力される。
 A/D変換器28では、磁気ヘッド11(の各ヘッド部11-1、11-2、11-3)により読み出され、増幅器25(25-1、25-2、25-3)で増幅されたアナログ信号S25(S25-1、S25-2、S25-3)が各サンプリング時にサンプリングの1周期より十分に短い間隔で2回連続してサンプリングされてデジタル信号に変換され、このデジタル信号がデジタルフィルタ27を介してデータ記憶部29に記憶される。
In step ST2, the analog signal S11 (S11-1, S11-2, S11-3) read by the magnetic head 11 (each head unit 11-1, 11-2, 11-3) is supplied to the amplifier 25 ( 25-1, 25-2, 25-3) and amplified to an appropriate level, and the sampling timing adjustment unit 26 samples the magnetic head 11 (each head unit 11-1, 11-2) so that sampling is performed twice at each sampling. , 11-3) the input timing of the read data to the A / D converter 28 is adjusted and input to the A / D converter 28.
In the A / D converter 28, the data is read by the magnetic head 11 (each head unit 11-1, 11-2, 11-3) and amplified by the amplifier 25 (25-1, 25-2, 25-3) The sampled analog signal S25 (S25-1, S25-2, S25-3) is sampled twice continuously at intervals sufficiently shorter than one sampling period at each sampling and converted into a digital signal. The data is stored in the data storage unit 29 via the digital filter 27.
 その後、演算部22のデータ演算処理部30は、ステップST2で取得したA/D変換値に基づいてピーク、ピーク位置およびボトム、ボトム位置を算出する(ステップST5)。データ演算処理部30では、算出されたピーク、ピーク位置(またはボトム、ボトム位置)に基づいて、復調部305が磁気ヘッド11により読み取った磁気データであるF2F信号を復調する(ステップST6)。そして、復号部306が、復調部305で復調されたF2F信号を復号して“0”および”1”データに変換し(ステップST7)、さらに変換された磁気データを上位装置50に送信する(ステップST8)。 Thereafter, the data calculation processing unit 30 of the calculation unit 22 calculates the peak, peak position, bottom, and bottom position based on the A / D conversion value acquired in step ST2 (step ST5). Based on the calculated peak and peak position (or bottom, bottom position), the data arithmetic processing unit 30 demodulates the F2F signal that is magnetic data read by the demodulator 305 with the magnetic head 11 (step ST6). Then, the decoding unit 306 decodes the F2F signal demodulated by the demodulation unit 305 and converts it into “0” and “1” data (step ST7), and transmits the converted magnetic data to the host device 50 (step ST7). Step ST8).
 以下、ステップST2の磁気情報取得方法、並びに、ステップST5におけるピーク、ピーク位置およびボトム、ボトム位置の算出方法を具体的に説明する。 Hereinafter, the magnetic information acquisition method in step ST2 and the calculation method of the peak, peak position, bottom, and bottom position in step ST5 will be specifically described.
(磁気ヘッド11の出力信号のピーク位置Pvよびボトム位置Bvを特定する処理)
 図7は、出力信号のピーク(極大値)およびピーク位置を特定する処理を説明するための図である。図8は、出力信号のピーク(極大値)およびピーク位置を特定する処理のフローチャートである。図9は、出力信号のボトム(極小値)およびボトム位置を特定する処理を説明するための図である。図10は、出力信号のボトム(極小値)およびボトム位置を特定する処理のフローチャートである。
(Process for specifying the peak position Pv and the bottom position Bv of the output signal of the magnetic head 11)
FIG. 7 is a diagram for explaining processing for specifying a peak (maximum value) and a peak position of an output signal. FIG. 8 is a flowchart of processing for specifying the peak (maximum value) and peak position of the output signal. FIG. 9 is a diagram for explaining processing for specifying the bottom (minimum value) and bottom position of the output signal. FIG. 10 is a flowchart of processing for specifying the bottom (minimum value) and bottom position of the output signal.
 データ演算処理部30は、磁気ヘッド11により読み取ったアナログ信号S11から得られたA/D変換値に基づきピーク位置Pv、ボトム位置Bvを特定する処理を行い、特定されたピーク位置Pv、ボトム位置Bvに基づいてF2F信号を復調する。 The data calculation processing unit 30 performs a process of specifying the peak position Pv and the bottom position Bv based on the A / D conversion value obtained from the analog signal S11 read by the magnetic head 11, and the specified peak position Pv and bottom position The F2F signal is demodulated based on Bv.
(極大値を求める)
 磁気ヘッド11(の各ヘッド部11-1、11-2、11-3)出力信号(F2F)信号が増幅器25(25-1、25-2、25-3)で適正なレベルに増幅され、サンプリングタイミング調整部26で各サンプリング時に2回サンプリングするように磁気ヘッド11(の各ヘッド部11-1、11-2、11-3)の読み取りデータのA/D変換器28への入力タイミングが調整され、A/D変換器28に入力される。A/D変換器28では、磁気ヘッド11(の各ヘッド部11-1、11-2、11-3)により読み出され、増幅器25(25-1、25-2、25-3)で増幅されたアナログ信号S25(S25-1、S25-2、S25-3)が各サンプリング時にサンプリングの1周期より十分に短い間隔で2回連続してサンプリングされてデジタル信号に変換される(ステップST11)。この場合、サンプリングタイミング調整部26のマルチプレクサ261およびA/D変換器28に対して、1周期ごとに全チャネルCH1~CH6にわたってCH1、CH2、CH3、CH4、CH5、CH6の順番に巡回してA/D変換するように指令が発行され、各磁気トラック#1,#2,#3に対して2つのサンプリング結果であるメインデジタルデータy11および位置(時刻)x11、並びに、サブデジタルデータy12および位置(時刻)x12が取得される。変換されたデジタル信号は、デジタルフィルタ27を介して、ノイズが除去された後、サンプリングデータyとしてデータ記憶部29にサンプリング時の位置(時刻)xとともに格納される。具体的には、A/D変換器28において2つずつデジタルデータyがサンプリングデータとして得られ、位置(時刻)xと関連付けてデータ記憶部29に保存される。
(Calculate the maximum value)
The output signal (F2F) signal of the magnetic head 11 (each head unit 11-1, 11-2, 11-3) is amplified to an appropriate level by the amplifier 25 (25-1, 25-2, 25-3), The input timing of the read data of the magnetic head 11 (each head unit 11-1, 11-2, 11-3) to the A / D converter 28 is determined so that the sampling timing adjusting unit 26 samples twice at each sampling. It is adjusted and input to the A / D converter 28. In the A / D converter 28, the data is read by the magnetic head 11 (each head unit 11-1, 11-2, 11-3) and amplified by the amplifier 25 (25-1, 25-2, 25-3) The analog signal S25 (S25-1, S25-2, S25-3) is sampled twice continuously at intervals sufficiently shorter than one sampling period at each sampling and converted into a digital signal (step ST11). . In this case, the multiplexer 261 and the A / D converter 28 of the sampling timing adjustment unit 26 circulate in the order of CH1, CH2, CH3, CH4, CH5, and CH6 over all channels CH1 to CH6 every cycle. A command is issued to perform D / D conversion, and the main digital data y11 and position (time) x11, which are two sampling results, and sub-digital data y12 and position for each magnetic track # 1, # 2, # 3 (Time) x12 is acquired. After the noise is removed via the digital filter 27, the converted digital signal is stored in the data storage unit 29 together with the sampling position (time) x as sampling data y. Specifically, two digital data y are obtained as sampling data by the A / D converter 28 and stored in the data storage unit 29 in association with the position (time) x.
 データ演算処理部30は、データ記憶部29に格納されているサンプリングデータyおよび位置(時刻)xを演算し処理する。まず、傾き算出部301が、データ記憶部29に格納されている取得したメインデジタルデータy11および位置x11、並びに、サブデジタルデータy12および位置x12を用いて各磁気トラック#1,#2,#3に対応する傾きを算出する(ステップST12)。ここでは、チャネルCH1、CH4が接続された磁気トラック#1について説明するが、他の磁気トラック#2,#3についても同様の方法で算出できる。 The data calculation processing unit 30 calculates and processes the sampling data y and the position (time) x stored in the data storage unit 29. First, the inclination calculation unit 301 uses the acquired main digital data y11 and position x11 and sub-digital data y12 and position x12 stored in the data storage unit 29 to each magnetic track # 1, # 2, # 3. Is calculated (step ST12). Here, the magnetic track # 1 to which the channels CH1 and CH4 are connected will be described, but the other magnetic tracks # 2 and # 3 can be calculated by the same method.
 たとえば、図7に示すように、位置(時刻)x1でのチャネルCH1のメインサンプリングの位置(時刻)および振幅を(x11,y11)、チャネルCH4のサブサンプリングの位置(時刻)および振幅を(x12,y12)とする。同様に、位置(時刻)x2でのチャネルCH1のメインサンプリングの位置(時刻)および振幅を(x21,y21)、チャネルCH4のサブサンプリングの位置(時刻)および振幅を(x22,y22)とする。 For example, as shown in FIG. 7, the position (time) and amplitude of the main sampling of channel CH1 at position (time) x1 are (x11, y11), and the position (time) and amplitude of subsampling of channel CH4 are (x12 , Y12). Similarly, the position (time) and amplitude of the main sampling of the channel CH1 at the position (time) x2 are (x21, y21), and the position (time) and amplitude of the sub-sampling of the channel CH4 are (x22, y22).
 このような状態において、位置(時刻)X1での傾きK1は次式で求めることができる。 In such a state, the slope K1 at the position (time) X1 can be obtained by the following equation.
[数1]
 K1=(y12-y11)/(x12-x11)・・・(1)
[Equation 1]
K1 = (y12−y11) / (x12−x11) (1)
 同様に、位置(時刻)X2での傾きK2は次式で求めることができる。 Similarly, the slope K2 at the position (time) X2 can be obtained by the following equation.
[数2]
 K2=(y22-y21)/(x22-x21)・・・(2)
[Equation 2]
K2 = (y22−y21) / (x22−x21) (2)
 次に、傾き選択部302が、1つのピーク位置xpを挟み、傾きが正の位置(時刻)x1と傾きが負の位置(時刻)x2を選択する(ステップST13)。ステップST13の選択処理において、傾きが正の場合には(ステップST14のNO)、所定のサンプリング間隔の間待機して(ステップST15)、ステップST12の処理に戻り、次のサンプリングデータを読み出す。選択処理において、傾きが負の場合には(ステップST14のYES)、近似曲線算出部304が選択した2つの傾きに基づいて近似曲線を求め(ステップST16)、極値算出部304が算出した近似曲線に基づき極値および極値位置を算出する(ステップST17)。このステップST17の処理においては、既にA/D変換済みの正の傾きの位置情報を用いてピーク位置xpを算出する。 Next, the inclination selecting unit 302 selects a position (time) x1 having a positive inclination and a position (time) x2 having a negative inclination with one peak position xp interposed therebetween (step ST13). In the selection process in step ST13, if the slope is positive (NO in step ST14), the process waits for a predetermined sampling interval (step ST15), returns to the process in step ST12, and reads the next sampling data. In the selection process, when the slope is negative (YES in step ST14), an approximate curve is obtained based on the two slopes selected by the approximate curve calculation unit 304 (step ST16), and the approximation calculated by the extreme value calculation unit 304 is obtained. An extreme value and an extreme value position are calculated based on the curve (step ST17). In the process of step ST17, the peak position xp is calculated using the position information of the positive slope that has already been A / D converted.
 ステップST16において、近似曲線算出部303は、近似関数として2次関数近似式(y=ax+bx+c)を求める。2次関数近似式(y=ax+bx+c)の位置(時刻)xの傾きy´は2次関数を微分した次式で求めることが可能である。 In step ST16, the approximate curve calculation unit 303 obtains a quadratic function approximate expression (y = ax 2 + bx + c) as an approximate function. The slope y ′ of the position (time) x of the quadratic function approximation formula (y = ax 2 + bx + c) can be obtained by the following formula obtained by differentiating the quadratic function.
[数3]
 y´=2ax+b・・・(3)
[Equation 3]
y ′ = 2ax + b (3)
 ピークの位置(時刻)xpは、傾きが0になる位置(時刻)であるので、式(3)より、次式(4)のように係数aおよびbにより表すことができる。 Since the peak position (time) xp is the position (time) at which the slope becomes 0, it can be expressed by the coefficients a and b from the expression (3) as in the following expression (4).
[数4]
 2axp+b=0
 xp=-b/2a・・・(4)
[Equation 4]
2axp + b = 0
xp = −b / 2a (4)
 さらに、位置(時刻)x1,x2における傾きK1,K2と係数a,bとの関係は、次のように表すことができる。 Furthermore, the relationship between the slopes K1 and K2 and the coefficients a and b at the positions (time) x1 and x2 can be expressed as follows.
[数5]
 2ax1+b=K1・・・(5)
 2ax2+b=K2・・・(6)
[Equation 5]
2ax1 + b = K1 (5)
2ax2 + b = K2 (6)
 式(5)から式(6)を減算することにより、式(7)のように係数aを傾きK1,K2,位置(時刻)x1,x2により表すことができる。 By subtracting the equation (6) from the equation (5), the coefficient a can be expressed by the slopes K1, K2, and the position (time) x1, x2 as in the equation (7).
[数6]
 2ax1-2ax2=K1-K2
 a=(K1-K2)/2(x1-x2)・・・(7)
[Equation 6]
2ax1-2ax2 = K1-K2
a = (K1-K2) / 2 (x1-x2) (7)
 式(7)を式(5)に代入して式(8)のように係数bを傾きK1,K2,位置(時刻)x1,x2により表すことができる。 The equation (7) is substituted into the equation (5), and the coefficient b can be expressed by the slopes K1, K2, and the position (time) x1, x2 as in the equation (8).
[数7]
 2{(K1-K2)/2(x1-x2)}x1+b=K1
 b=(-K1x2+K2x1)/(x1-x2)・・・(8)
[Equation 7]
2 {(K1-K2) / 2 (x1-x2)} x1 + b = K1
b = (− K1 × 2 + K2 × 1) / (x1−x2) (8)
 ピーク位置xpは、式(4)、(7)、(8)に関連付けて、式(9)により与えられる。 The peak position xp is given by equation (9) in association with equations (4), (7), and (8).
[数8]
 xp=-{(-K1x2+K2x1)/(x1-x2)}/2{(K1-K2)/2(x1-x2)}
 xp=(-x1K2+x2K1/(K1-K2)・・・(9)
[Equation 8]
xp =-{(-K1x2 + K2x1) / (x1-x2)} / 2 {(K1-K2) / 2 (x1-x2)}
xp = (− x1K2 + x2K1 / (K1−K2) (9)
 x1,x2 はサンプリング位置(時刻)で既知、傾きK1、K2も式(1)、(2)より既知のサンプリング値から算出済みであり、式(9)によりピーク位置が算出できる。 X1 and x2 are known at the sampling position (time), and the slopes K1 and K2 have also been calculated from the known sampling values from the expressions (1) and (2), and the peak position can be calculated from the expression (9).
 つぎに、ボトム(極小値)およびボトム位置Bvを求める。なお、ボトム位置を求める演算処理は、基本的に上記数1~数8に関連付けて説明した演算処理と同様に行われる。したがって、以下では、その詳細な説明は省略する。ただし、いわゆる山谷、正負が逆になる。また、以下の説明においても、理解を容易にするために上記説明と同様の符号を用いて説明する。 Next, the bottom (minimum value) and the bottom position Bv are obtained. Note that the calculation processing for obtaining the bottom position is basically performed in the same manner as the calculation processing described in relation to Equations 1 to 8 above. Therefore, detailed description thereof is omitted below. However, so-called Yamatani and positive and negative are reversed. In the following description, the same reference numerals as those in the above description are used for easy understanding.
 上述したように、データ演算処理部30は、ピーク(極大値)およびピーク位置Pvを特定すると、続いて、ボトム(極小値)およびボトム位置Bvを特定する処理へ進む。以下、図8および図10に示す処理を繰り返すことにより、ピーク位置Pv、ボトム位置Bvが交互に特定される。 As described above, after specifying the peak (maximum value) and the peak position Pv, the data calculation processing unit 30 proceeds to the process of specifying the bottom (minimum value) and the bottom position Bv. Hereinafter, the peak position Pv and the bottom position Bv are alternately specified by repeating the processes shown in FIGS.
(極小値を求める)
 磁気ヘッド11(の各ヘッド部11-1、11-2、11-3)出力信号(F2F)信号が増幅器25(-1~-3)で適正なレベルに増幅され、サンプリングタイミング調整部26で各サンプリング時に2回サンプリングするように磁気ヘッド11(の各ヘッド部11-1、11-2、11-3)の読み取りデータのA/D変換器28への入力タイミングが調整され、A/D変換器28に入力される。A/D変換器28では、磁気ヘッド11(の各ヘッド部11-1、11-2、11-3)により読み出され、増幅器25(25-1、25-2、25-3)で増幅されたアナログ信号S25(S25-1、S25-2、S25-3)が各サンプリング時にサンプリングの1周期より十分に短い間隔で2回連続してサンプリングされてデジタル信号に変換される(ステップST21)。
 この場合、サンプリングタイミング調整部26のマルチプレクサ261およびA/D変換器28に対して、1周期ごとに全チャネルCH1~CH6にわたってCH1、CH2、CH3、CH4、CH5、CH6の順番に巡回してA/D変換するように指令が発行され、各磁気トラック#1,#2,#3に対して2つのサンプリング結果であるメインデジタルデータy11および位置(時刻)x11、並びに、サブデジタルデータy12および位置(時刻)x12が取得される。変換されたデジタル信号は、デジタルフィルタ27を介して、ノイズが除去された後、サンプリングデータyとしてデータ記憶部29にサンプリング時の位置(時刻)xとともに格納される。具体的には、A/D変換器28において2つずつデジタルデータyがサンプリングデータとして得られ、位置(時刻)xと関連付けてデータ記憶部29に保存される。
(Calculate the minimum value)
The output signal (F2F) of the magnetic head 11 (each head unit 11-1, 11-2, 11-3) is amplified to an appropriate level by the amplifier 25 (-1 to -3), and the sampling timing adjusting unit 26 The input timing of the read data of the magnetic head 11 (each head portion 11-1, 11-2, 11-3) to the A / D converter 28 is adjusted so that sampling is performed twice at each sampling, and the A / D Input to the converter 28. In the A / D converter 28, the data is read by the magnetic head 11 (each head unit 11-1, 11-2, 11-3) and amplified by the amplifier 25 (25-1, 25-2, 25-3) The analog signal S25 (S25-1, S25-2, S25-3) is sampled twice consecutively at intervals sufficiently shorter than one sampling period at each sampling and converted into a digital signal (step ST21). .
In this case, the multiplexer 261 and the A / D converter 28 of the sampling timing adjustment unit 26 circulate in the order of CH1, CH2, CH3, CH4, CH5, and CH6 over all channels CH1 to CH6 every cycle. A command is issued to perform D / D conversion, and the main digital data y11 and position (time) x11, which are two sampling results, and sub-digital data y12 and position for each magnetic track # 1, # 2, # 3 (Time) x12 is acquired. After the noise is removed via the digital filter 27, the converted digital signal is stored in the data storage unit 29 together with the sampling position (time) x as sampling data y. Specifically, two digital data y are obtained as sampling data by the A / D converter 28 and stored in the data storage unit 29 in association with the position (time) x.
 データ演算処理部30は、データ記憶部29に格納されているサンプリングデータyおよび位置(時刻)xを演算し処理する。まず、傾き算出部301が、データ記憶部29に格納されている取得したメインデジタルデータy11および位置x11、並びに、サブデジタルデータy12および位置x12を用いて各磁気トラック#1,#2,#3に対応する傾きを算出する(ステップST22)。ここでは、チャネルCH1、CH4が接続された磁気トラック#1について説明するが、他の磁気トラック#2,#3についても同様の方法で算出できる。 The data calculation processing unit 30 calculates and processes the sampling data y and the position (time) x stored in the data storage unit 29. First, the inclination calculation unit 301 uses the acquired main digital data y11 and position x11 and sub-digital data y12 and position x12 stored in the data storage unit 29 to each magnetic track # 1, # 2, # 3. Is calculated (step ST22). Here, the magnetic track # 1 to which the channels CH1 and CH4 are connected will be described, but the other magnetic tracks # 2 and # 3 can be calculated by the same method.
 たとえば、図9に示すように、位置(時刻)x1でのチャネルCH1のメインサンプリングの位置(時刻)および振幅を(x11,y11)、チャネルCH4のサブサンプリングの位置(時刻)および振幅を(x12,y12)とする。同様に、位置(時刻)x2でのチャネルCH1のメインサンプリングの位置(時刻)および振幅を(x21,y21)、チャネルCH4のサブサンプリングの位置(時刻)および振幅を(x22,y22)とする。 For example, as shown in FIG. 9, the position (time) and amplitude of the main sampling of the channel CH1 at the position (time) x1 are (x11, y11), and the position (time) and amplitude of the subsampling of the channel CH4 are (x12 , Y12). Similarly, the position (time) and amplitude of the main sampling of the channel CH1 at the position (time) x2 are (x21, y21), and the position (time) and amplitude of the sub-sampling of the channel CH4 are (x22, y22).
 このような状態において、位置(時刻)X1での傾きK1は基本的に上記式(1)で求めることができる。同様に、位置(時刻)X2での傾きK2は上記式(2)で求めることができる。 In such a state, the slope K1 at the position (time) X1 can be basically obtained by the above equation (1). Similarly, the slope K2 at the position (time) X2 can be obtained by the above equation (2).
 次に、傾き選択部302が、1つのボトム位置xbを挟み、傾きが負の位置(時刻)x1と傾きが正の位置(時刻)x2を選択する(ステップST23)。ステップST23の選択処理において、傾きが負の場合には(ステップST24のNO)、所定のサンプリング間隔の間待機して(ステップST25)、ステップST22の処理に戻り、次のサンプリングデータを読み出す。選択処理において、傾きが正の場合には(ステップST24のYES)、近似曲線算出部304が選択した2つの傾きに基づいて近似曲線を求め(ステップST26)、極値算出部304が算出した近似曲線に基づき極値および極値位置を算出する(ステップST27)。このステップST27の処理においては、既にA/D変換済みの正の傾きの位置情報を用いてボトム位置xbを算出する。 Next, the inclination selecting unit 302 selects a position (time) x1 having a negative inclination and a position (time) x2 having a negative inclination with one bottom position xb interposed therebetween (step ST23). If the slope is negative (NO in step ST24) in the selection process in step ST23, the process waits for a predetermined sampling interval (step ST25), returns to the process in step ST22, and reads the next sampling data. In the selection process, if the slope is positive (YES in step ST24), an approximate curve is obtained based on the two slopes selected by the approximate curve calculation unit 304 (step ST26), and the approximation calculated by the extreme value calculation unit 304 is obtained. An extreme value and an extreme value position are calculated based on the curve (step ST27). In the process of step ST27, the bottom position xb is calculated using the position information of the positive inclination that has already been A / D converted.
 以下、サンプリングデータを最後まで処理した後、求めた極大値とピーク位置Pv、極小値とボトム位置Bvから磁気ヘッド11の出力信号のピーク位置Pvやボトム位置Bvの数に基づいて、復調部305が磁気ヘッド11により読み取った磁気データであるF2F信号を復調する。そして、復号部306が、復調部294で復調されたF2F信号を復号して“0”および”1”データに変換し、さらに変換された磁気データを上位装置50に送信する。 Hereinafter, after the sampling data is processed to the end, the demodulator 305 is based on the obtained local maximum value and peak position Pv, local minimum value and bottom position Bv based on the number of peak positions Pv and bottom positions Bv of the output signal of the magnetic head 11. The F2F signal, which is magnetic data read by the magnetic head 11, is demodulated. Then, the decoding unit 306 decodes the F2F signal demodulated by the demodulation unit 294 and converts it into “0” and “1” data, and further transmits the converted magnetic data to the host device 50.
(本実施形態の主な効果)
 以上説明したように、本実施形態では、磁気ヘッド11の出力アナログ信号(F2F信号)をデジタルデータに変換して処理するデータ処理部40は、A/D変換器28が磁気ヘッド11から出力されるアナログ信号を所定周期でサンプリングしてデジタルデータに変換し、かつ、サンプリングタイミング調整部26がこのA/D変換の各サンプリング時に2回サンプリングするようにタイミングを調整し、各サンプリング時の2つのデジタルデータおよびサンプリングの位置をデータ記憶部29に記憶し、データ演算処理部30において、傾き算出部301が各サンプリング時の2つのデジタルデータおよび位置により各サンプリング時の傾きを求め、傾き選択部302が傾きの符号が正と負となっている2つの傾きを選択し、近似曲線算出部303が選択した2つの傾きに基づいて近似曲線、たとえば二次関数近似式(y=ax+bx+c)を求め、極値算出部304が求めた近似曲線に基づき極値および極値位置を算出し、復調部305が、算出した極値の位置に基づき、磁気ヘッドにより読み取ったデータを復調する。
(Main effects of this embodiment)
As described above, in this embodiment, the data processing unit 40 that converts the output analog signal (F2F signal) of the magnetic head 11 into digital data and processes it is output from the magnetic head 11 by the A / D converter 28. The analog signal is sampled at a predetermined cycle and converted into digital data, and the timing is adjusted so that the sampling timing adjusting unit 26 samples twice at each sampling of the A / D conversion. The digital data and the sampling position are stored in the data storage unit 29, and in the data calculation processing unit 30, the inclination calculation unit 301 obtains the inclination at each sampling from the two digital data and positions at each sampling, and the inclination selection unit 302. Select two slopes with the sign of the slope being positive and negative, and calculate the approximate curve Approximate curve based on the two slope section 303 selects, for example, obtains the quadratic approximate expression (y = ax 2 + bx + c), calculating an extreme value and extreme positions on the basis of the approximate curve extreme calculating unit 304 has determined Then, the demodulator 305 demodulates the data read by the magnetic head based on the calculated extreme value position.
 その結果、本実施形態によれば、アナログ信号のサンプリング周期は粗くてよく、高性能なハードウェアや大容量のメモリなどを必要とせず、極値検出精度を高めることが可能になる。 As a result, according to the present embodiment, the sampling period of the analog signal may be coarse, and high-value detection accuracy can be improved without requiring high-performance hardware or a large-capacity memory.
 また、本実施形態では、極値検出演算の処理速度が向上し、結果として磁気データの読み出しの処理時間を短縮することが可能になる。すなわち、たとえば、極値検出精度を高めることが可能な磁気情報読取装置を実現するために、いわゆる掃出法を用いて近似曲線の係数を決定して極値を検出する方法を採用することも考えられる。しかしながら、積商の演算は和差の演算に比べて数倍重たい処理であることから、積商の演算が大量に必要となる掃出法は組み込みに使用されるマイクロコントローラ等の演算器にとってこの計算は軽い負荷ではない。そのため、極値検出の完了まで時間がかかり、結果として磁気カードの読み取り完了まで時間がかかるおそれある。これに対し、本方式により極値位置の算出をする場合、必要となる演算(特に積商)が掃出法に比べて少ないことから、極値検出演算の処理速度が向上し、結果として磁気データの読み出しの処理時間を短縮することが可能になる。 Further, in this embodiment, the processing speed of the extreme value detection calculation is improved, and as a result, the processing time of reading out magnetic data can be shortened. That is, for example, in order to realize a magnetic information reader capable of increasing the extreme value detection accuracy, a method of detecting an extreme value by determining a coefficient of an approximate curve using a so-called sweeping method may be adopted. Conceivable. However, since the product quotient operation is several times heavier than the sum / difference operation, the sweep method, which requires a large amount of product quotient operation, is not suitable for computing units such as microcontrollers used for integration. The calculation is not a light load. Therefore, it takes time to complete the extreme value detection, and as a result, it may take time to complete the reading of the magnetic card. In contrast, when the extreme position is calculated using this method, the required calculation (particularly product) is less than the sweep method, which increases the processing speed of the extreme value detection calculation, resulting in magnetic Data read processing time can be shortened.
 本実施形態において、A/D変換器28は、磁気ヘッド11から出力されるアナログ信号を所定周期でメインサンプリングし、かつ、このメインサンプリングの位置の前または後の位置(時刻)でサブサンプリングしてメインデジタルデータおよびサブデジタルデータに変換し、データ記憶部29は、各サンプリング時のメインサンプリングしたメインデジタルデータおよび位置、並びに、サブサンプリングしたサブデジタルデータおよび位置を記憶し、傾き算出部301は、各サンプリング時のメインデジタルデータおよび位置、並びに、サブデジタルデータおよび位置により各サンプリング時の2つの傾きを求める。 In the present embodiment, the A / D converter 28 performs main sampling on the analog signal output from the magnetic head 11 at a predetermined period, and sub-samples at a position (time) before or after the main sampling position. The data storage unit 29 stores the main sampled main digital data and position and the subsampled sub digital data and position at the time of each sampling, and the inclination calculation unit 301 stores the main digital data and the sub digital data. The two slopes at each sampling are obtained from the main digital data and position at each sampling and the sub-digital data and position.
 A/D変換器28でのサンプリングは、一般的には一定周期で行われるが、本実施形態では、1周期あたり2回のサンプリングを、1周期の長さに比べて十分に短かい時間で行わせることが可能となり、短い間隔で2点をサンプリングしているので、この間の傾きは一定であるとしてサンプリングした時点での傾きは容易に算出ができる。そして、極値位置は、2つの時刻でのそれぞれの傾きが分かっていれば算出が可能である。したがって、2周期分(4サンプル分)のデータで極値位置が算出できる。 Sampling by the A / D converter 28 is generally performed at a constant period, but in this embodiment, sampling is performed twice per period in a time sufficiently shorter than the length of one period. Since two points are sampled at short intervals, it is possible to easily calculate the slope at the time of sampling assuming that the slope between them is constant. The extreme value position can be calculated if the respective slopes at two times are known. Therefore, the extreme position can be calculated from data of two periods (four samples).
 本実施形態において、近似曲線は2次関数曲線で表すことができる。このような構成を採用することにより、極値の位置は一次関数がゼロになる位置であってその多項式の一次の係数およびゼロ次の係数を用いて表すことが可能で、一次の係数およびゼロ次の係数は、極値を挟んだ2つの傾き、並びに、2つの傾きを求めたときの2つのサンプリング時の位置により表すことができ、極値算出部304は、極値の位置を、傾き算出部304で算出された、2つの傾き、並びに、この2つの傾きを求めたときの2つのサンプリング時の位置を用いて算出することができる。 In this embodiment, the approximate curve can be represented by a quadratic function curve. By adopting such a configuration, the position of the extreme value is a position where the linear function becomes zero and can be expressed using the first-order coefficient and the zero-order coefficient of the polynomial. The next coefficient can be expressed by two slopes sandwiching the extreme values, and two sampling positions when the two slopes are obtained, and the extreme value calculation unit 304 calculates the extreme value position by the slope. The calculation can be performed using the two inclinations calculated by the calculation unit 304 and the two sampling positions when the two inclinations are obtained.
 これにより、近似式を容易に求めることができるとともに、その多項式の係数は容易に求めることができ、サンプリングデータの極値(極大値、極小値)の位置をより効率よく、より小さい誤差で検出することが可能になる。 As a result, the approximate expression can be easily obtained and the coefficient of the polynomial can be easily obtained, and the position of the extreme value (maximum value, minimum value) of the sampling data can be detected more efficiently and with smaller errors. It becomes possible to do.
 本実施形態においては、サブサンプリングデータを取得するためのサブサンプリングのタイミングは、磁気ヘッドのトラック切替用スイッチの切り替え間隔に応じて設定されている。 In this embodiment, the subsampling timing for acquiring the subsampling data is set according to the switching interval of the track switching switch of the magnetic head.
 これにより、サブサンプリングのタイミングをメインサンプリングのタイミングに関連付けて設定することが可能になる。通常、磁気情報記録媒体である磁気カードMCの磁気ストライプMPには複数の磁気トラック#1,#2,#3が形成される。これに対応して、磁気ヘッド11は、たとえば各磁気トラックの磁気データがそれぞれ2つのチャネルを介してA/D変換器28に選択的に入力されるように接続することが可能である。A/D変換器28は、1周期ごとに全チャネルにわたって順番に巡回してA/D変換するように指令を受けて、各磁気トラックに対して2つのサンプリング結果であるメインデジタルデータおよび位置、並びに、サブデジタルデータおよび位置を取得するこができ、傾き算出部301は、取得したメインデジタルデータおよび位置、並びに、サブデジタルデータおよび位置を用いて各磁気トラックに対応する傾きを算出することが可能になる。 This makes it possible to set the sub-sampling timing in association with the main sampling timing. Usually, a plurality of magnetic tracks # 1, # 2, and # 3 are formed on the magnetic stripe MP of the magnetic card MC that is a magnetic information recording medium. Correspondingly, the magnetic head 11 can be connected so that, for example, magnetic data of each magnetic track is selectively input to the A / D converter 28 via two channels. The A / D converter 28 receives a command to cycle through all the channels in order for every channel and perform A / D conversion, and the main digital data and position which are two sampling results for each magnetic track, In addition, the sub-digital data and position can be acquired, and the tilt calculation unit 301 can calculate the tilt corresponding to each magnetic track using the acquired main digital data and position, and the sub-digital data and position. It becomes possible.
(他の実施の形態)
 上述した形態は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々変形実施が可能である。
(Other embodiments)
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited to this, and various modifications can be made without departing from the scope of the present invention.
 上述した実施形態では、図1に示すように、サンプリングタイミング調整部26が増幅器25の出力側に接続されている構成が採用されているが、サンプリングタイミング調整部26が増幅器25の入力側に接続されている構成を採用することも可能である。 In the above-described embodiment, as shown in FIG. 1, a configuration in which the sampling timing adjustment unit 26 is connected to the output side of the amplifier 25 is employed, but the sampling timing adjustment unit 26 is connected to the input side of the amplifier 25. It is also possible to adopt the configuration that has been described.
 また、磁気ヘッド11は3つの磁気トラックにそれぞれ記録されている磁気情報を再生する磁気ヘッドであるが、これに限定されるものではない。たとえば、磁気ヘッドに一つのヘッド部を有するものでもよい。さらに、磁気カードMCの磁気ストライプMPに対して磁気情報を書き込む機能を備えた磁気ヘッドでもよい。 The magnetic head 11 is a magnetic head that reproduces magnetic information recorded on each of the three magnetic tracks, but is not limited to this. For example, the magnetic head may have one head portion. Furthermore, a magnetic head having a function of writing magnetic information to the magnetic stripe MP of the magnetic card MC may be used.
 上述した実施形態では、復号部306は、復調部305で復調されたF2F信号を復号して“0”および“1”データに変換し、“0”および“1”データを磁気データ(ASCII)に変換して上位装置50に送信するように構成されているが、“0”および“1”データを上位装置50に送信し、上位装置50で0”および“1”データを磁気データ(ASCII)に変換するように構成することも可能である。 In the embodiment described above, the decoding unit 306 decodes the F2F signal demodulated by the demodulation unit 305 and converts it into “0” and “1” data, and converts the “0” and “1” data into magnetic data (ASCII). However, the data “0” and “1” are transmitted to the host device 50, and the host device 50 transmits the 0 and “1” data to the magnetic data (ASCII II). It is also possible to configure so as to convert to
上述した実施形態では、磁気カードMCは、厚さが0.7~0.8mm程度の矩形状の塩化ビニール製のカードが採用可能であるが、磁気カードMCは、厚さが0.18~0.36mm程度のPET(ポリエチレンテレフタレート)カードや、所定の厚さの紙カード等であっても良い。また、本発明が適用される磁気情報記録媒体は、カード以外の媒体であっても良い。 In the embodiment described above, the magnetic card MC can be a rectangular vinyl chloride card having a thickness of about 0.7 to 0.8 mm, but the magnetic card MC has a thickness of 0.18 to A PET (polyethylene terephthalate) card of about 0.36 mm, a paper card with a predetermined thickness, or the like may be used. The magnetic information recording medium to which the present invention is applied may be a medium other than a card.
 また、近似は、最小二乗法以外の2次以上の高次関数近似、スプライン関数を用いた近似、標本化(sinc)関数による近似、などを用いてもよい。 Approximation may be performed using second-order or higher-order function approximation other than the least square method, approximation using a spline function, approximation using a sampling (sinc) function, or the like.
 さらに、上述した磁気カードリーダは、モータ駆動式であるが、スワイプ式などの手動式カードリーダであってもよい。 Furthermore, although the magnetic card reader described above is a motor drive type, a manual card reader such as a swipe type may be used.
 MC・・・磁気カード(磁気情報記録媒体)、10・・・磁気情報読取装置、11,11-1~11-3・・・磁気ヘッド、12・・・カード搬送路、13・・・カード搬送部、131・・・モータ、20・・・制御部、21・・・記憶部、22・・・演算部、23・・・クロック発生部、24・・・モータ駆動回路、25,25-1~25-3・・・増幅器、サンプリングタイミング調整部、27・・・デジタルフィルタ、28・・・A/D変換器、29・・・データ記憶部、30・・・データ演算処理部、301・・・傾き算出部、302・・・傾き選択部、303・・・近似曲線算出部、304・・・極値算出部、305・・・復調部、306・・・復号部、40・・・データ処理部、50・・・上位装置。 MC: magnetic card (magnetic information recording medium), 10: magnetic information reader, 11, 11-1 to 11-3 ... magnetic head, 12 ... card transport path, 13 ... card Transport unit 131... Motor, 20... Control unit, 21... Storage unit, 22. 1 to 25-3: amplifier, sampling timing adjustment unit, 27: digital filter, 28 ... A / D converter, 29 ... data storage unit, 30 ... data operation processing unit, 301 ... Inclination calculation unit 302. Inclination selection unit 303 303 Approximation curve calculation unit 304 304 Extreme value calculation unit 305 Demodulation unit 306 Decoding unit 40 -Data processing unit, 50 ... host device.

Claims (4)

  1.  デジタル画像を用いて、矩形状をした媒体の画像上の回転角度を検出する画像処理装置であって、
     前記矩形状をした媒体の画像データの水平軸および垂直軸のそれぞれに対して輝度投影による画素値の射影を生成する射影生成部と、
     前記水平軸への射影および前記垂直軸への射影のそれぞれについて、その射影波形の射影パターンの両端点を決定する端点検出部と、
     左右上下の4端点からなる矩形部分を処理対象として第1画像データを切り出す処理対象切り出し部と、
     前記処理対象の区域について、前記媒体を切り出した第1画像データと、当該第1画像データを180度回転させた第2画像データとを重ね合わせた第3画像データを生成する画像調整部と、
     前記処理対象の区域の前記第3画像データについて、当該処理対象の区域を通過する位置に2本の平行線を少なくとも前記水平軸または前記垂直軸に平行に引き、各平行線上における前記矩形状をした媒体のエッジ位置を求め、二つの前記エッジ位置のエッジ間隔を求める媒体エッジ点偏差算出部と、
     前記エッジ間隔と前記2本の平行線の離間距離とから傾斜角を算出する角度算出部と、
     を備えることを特徴とする画像処理装置。
    An image processing apparatus that detects a rotation angle on an image of a rectangular medium using a digital image,
    A projection generation unit that generates a projection of pixel values by luminance projection for each of a horizontal axis and a vertical axis of the image data of the rectangular medium;
    For each of the projection onto the horizontal axis and the projection onto the vertical axis, an end point detection unit that determines both end points of the projection pattern of the projection waveform;
    A processing target cutout unit that cuts out first image data using a rectangular portion including four end points on the left, right, top, and bottom as a processing target;
    An image adjusting unit that generates third image data obtained by superimposing the first image data obtained by cutting out the medium and the second image data obtained by rotating the first image data by 180 degrees with respect to the area to be processed;
    For the third image data in the area to be processed, at least two parallel lines are drawn parallel to the horizontal axis or the vertical axis at positions passing through the area to be processed, and the rectangular shape on each parallel line is drawn. A medium edge point deviation calculating unit for obtaining an edge position of the medium and obtaining an edge interval between the two edge positions;
    An angle calculation unit that calculates an inclination angle from the edge interval and a separation distance between the two parallel lines;
    An image processing apparatus comprising:
  2.  前記処理対象区域画像調整部は、
      前記第1画像データと、当該第1画像データを180度回転させた前記第2画像データの各画素値の平均をとって前記第3画像データを生成する
     ことを特徴とする請求項1記載の画像処理装置。
    The processing target area image adjustment unit,
    2. The third image data is generated by taking an average of each pixel value of the first image data and the second image data obtained by rotating the first image data by 180 degrees. Image processing device.
  3.  デジタル画像を用いて、矩形状をした媒体の画像上の回転角度を検出する画像処理方法であって、
     前記矩形状をした媒体の画像データの水平軸および垂直軸のそれぞれに対して輝度投影による画素値の射影を生成する射影生成ステップと、
     前記水平軸への射影および前記垂直軸への射影のそれぞれについて、その射影波形の射影パターンの両端点を決定する端点検出ステップと、
     左右上下の4端点からなる矩形部分を処理対象として第1画像データを切り出す処理対象切り出しステップと、
     前記処理対象の区域について、前記媒体を切り出した第1画像データと、当該第1画像データを180度回転させた第2画像データとを重ね合わせた第3画像データを生成する画像調整ステップと、
     前記処理対象の区域の前記第3画像データについて、当該処理対象の区域を通過する位置に2本の平行線を少なくとも前記水平軸または前記垂直軸に平行に引き、各平行線上における前記矩形状をした媒体のエッジ位置を求め、二つの前記エッジ位置のエッジ間隔を求める媒体エッジ点偏差算出ステップと、
     前記エッジ間隔と前記2本の平行線の離間距離とから傾斜角を算出する角度算出ステップと、
     を備えることを特徴とする画像処理方法。
    An image processing method for detecting a rotation angle on an image of a rectangular medium using a digital image,
    A projection generation step of generating a projection of pixel values by luminance projection for each of a horizontal axis and a vertical axis of the image data of the rectangular medium;
    For each of the projection onto the horizontal axis and the projection onto the vertical axis, an endpoint detection step for determining both end points of the projection pattern of the projection waveform;
    A processing target cutout step of cutting out the first image data using a rectangular portion composed of four end points on the left, right, top and bottom as processing targets;
    An image adjustment step for generating third image data in which the first image data obtained by cutting out the medium and the second image data obtained by rotating the first image data by 180 degrees are superimposed on the processing target area;
    For the third image data in the area to be processed, at least two parallel lines are drawn parallel to the horizontal axis or the vertical axis at positions passing through the area to be processed, and the rectangular shape on each parallel line is drawn. A medium edge point deviation calculating step for determining an edge position of the medium and determining an edge interval between the two edge positions;
    An angle calculating step of calculating an inclination angle from the edge interval and a distance between the two parallel lines;
    An image processing method comprising:
  4.  前記画像調整ステップでは、
      前記第1画像データと、当該第1画像データを180度回転させた前記第2画像データの各画素値の平均をとって前記第3画像データを生成する
     ことを特徴とする請求項3記載の画像処理方法。
    In the image adjustment step,
    The third image data is generated by taking an average of each pixel value of the first image data and the second image data obtained by rotating the first image data by 180 degrees. Image processing method.
PCT/JP2019/007978 2018-03-29 2019-03-01 Magnetic information reader and method of controlling magnetic information reader WO2019187966A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-065599 2018-03-29
JP2018065599A JP2019175534A (en) 2018-03-29 2018-03-29 Magnetic information reading device and method for controlling magnetic information reading device

Publications (1)

Publication Number Publication Date
WO2019187966A1 true WO2019187966A1 (en) 2019-10-03

Family

ID=68061383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007978 WO2019187966A1 (en) 2018-03-29 2019-03-01 Magnetic information reader and method of controlling magnetic information reader

Country Status (2)

Country Link
JP (1) JP2019175534A (en)
WO (1) WO2019187966A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172300A (en) * 1994-10-19 1996-07-02 Sanyo Electric Co Ltd Component-position recognition apparatus
JP2000341501A (en) * 1999-03-23 2000-12-08 Minolta Co Ltd Device and method for processing image and recording medium with image processing program stored therein
JP2018055496A (en) * 2016-09-29 2018-04-05 日本電産サンキョー株式会社 Medium recognition device and medium recognition method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172300A (en) * 1994-10-19 1996-07-02 Sanyo Electric Co Ltd Component-position recognition apparatus
JP2000341501A (en) * 1999-03-23 2000-12-08 Minolta Co Ltd Device and method for processing image and recording medium with image processing program stored therein
JP2018055496A (en) * 2016-09-29 2018-04-05 日本電産サンキョー株式会社 Medium recognition device and medium recognition method

Also Published As

Publication number Publication date
JP2019175534A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
CN104978976B (en) Disk set and reading and control method thereof
US5280160A (en) Recording and reproducing method and apparatus compensating for predicted deviation based on detected relative skewing of recording medium
US9129645B2 (en) Data demodulation device, data demodulation method, reproduction device for magnetically recorded data, and program
US7564637B2 (en) Storage media having areas for storing data for correcting servo information errors
US8098449B2 (en) Magnetic recording device, control device, and magnetic recording device control method
EP2833357A1 (en) Information reproduction device and information reproduction method
EP2693432B1 (en) Magnetic head device
WO2019187966A1 (en) Magnetic information reader and method of controlling magnetic information reader
KR920006123B1 (en) Magnetic disk operating device and magnetic head position setting method
KR100975328B1 (en) Clock generating apparatus, magnetic disk apparatus, and write synchronization method
US10311897B1 (en) Multitrack data stored using perpendicular and longitudinal magnetic fields
US5822144A (en) Apparatus and method for adjusting positional sensitivity of disk unit
US6934099B2 (en) Digital data reproducing apparatus
GB2093227A (en) Rotary recording system capable of special reproduction
WO2019172095A1 (en) Magnetic information reader and method of controlling magnetic information reader
JP2637301B2 (en) Reproduction circuit of data recording / reproduction device
US8238052B2 (en) Method and apparatus for measuring phase shift in a disk drive having bit-patterned media
JP2871154B2 (en) Tracking control device
JPS61182680A (en) Servo system for magnetic disks
JPH06243617A (en) Magnetic disk device and integrated circuit for read reproduction
JPS6276072A (en) Index servo system
JP2664739B2 (en) Information recording / reproducing device
US7379261B2 (en) Apparatus and method for reproducing recorded signal
EP0701248A1 (en) Magnetic disk apparatus
JPH07254244A (en) Sector-servo type magnetic disc apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775278

Country of ref document: EP

Kind code of ref document: A1