WO2019187825A1 - Variable valve mechanism and actuator - Google Patents

Variable valve mechanism and actuator Download PDF

Info

Publication number
WO2019187825A1
WO2019187825A1 PCT/JP2019/006491 JP2019006491W WO2019187825A1 WO 2019187825 A1 WO2019187825 A1 WO 2019187825A1 JP 2019006491 W JP2019006491 W JP 2019006491W WO 2019187825 A1 WO2019187825 A1 WO 2019187825A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
motor
variable valve
valve mechanism
drive control
Prior art date
Application number
PCT/JP2019/006491
Other languages
French (fr)
Japanese (ja)
Inventor
健 篠▲崎▼
中川 光
小川 徹
真宏 ▲高▼野
水野 大輔
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020510431A priority Critical patent/JP6840290B2/en
Publication of WO2019187825A1 publication Critical patent/WO2019187825A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • the present invention relates to a variable valve mechanism that adjusts valve timing of an internal combustion engine by a motor, and an actuator.
  • Patent Document 1 In order to adjust the opening / closing timing (valve timing) of an intake valve and an exhaust valve of an internal combustion engine, a variable valve mechanism having a motor as shown in Patent Document 1 is known.
  • the present invention has been made to solve such a problem, and an object thereof is to provide a variable valve mechanism and an actuator in which the influence of heat received by the drive control device is reduced.
  • a variable valve mechanism is a variable valve mechanism that adjusts the opening and closing timings of an intake valve and an exhaust valve of an internal combustion engine by a motor that outputs a rotational force to an output shaft end side.
  • the drive control device is provided on the other end side of the motor located on the opposite side to the output shaft end side, and controls the drive of the motor, and the drive control device is located on the side facing the motor.
  • the motor has a first cover, and the motor has a first refrigerant flow path through which a refrigerant to which heat of the motor is transmitted flows, and the refrigerant flows between the motor and the first cover through the first refrigerant flow path.
  • a second refrigerant channel is provided.
  • the actuator according to the present invention includes a speed reducer, an output shaft end side disposed radially inward of the speed reducer, a motor that drives the speed reducer, and a motor that is located on the opposite side of the output shaft end side.
  • a drive control device for controlling the drive of the motor
  • the drive control device has a first cover located on the side facing the motor
  • the motor has a refrigerant through which the heat of the motor is transmitted.
  • a first refrigerant flow path is provided, and a second refrigerant flow path is provided between the motor and the first cover so as to communicate with the first refrigerant flow path.
  • variable valve mechanism and the actuator according to the present invention have a first refrigerant flow path through which a refrigerant that transmits heat of the motor flows, and communicate with the first refrigerant flow path between the motor and the first cover. Therefore, the influence of the heat received by the drive control device can be reduced.
  • FIG. 1 is a schematic view of a system having a variable valve mechanism according to Embodiment 1 of the present invention. It is sectional drawing which shows the variable valve mechanism shown in FIG. It is the enlarged view to which the A section of FIG. 2 was expanded. It is sectional drawing of the variable valve mechanism which concerns on Embodiment 2 of this invention.
  • FIG. 5 is a cross-sectional view of the heat transfer promoting body shown in FIG. 4 cut along a cutting line BB. 6 is a cross-sectional view of a heat transfer promoting body according to a first modification of the second embodiment.
  • FIG. FIG. 10 is a cross-sectional view of a heat transfer promoting body according to a second modification of the second embodiment.
  • FIG. 12 is a cross-sectional view of a heat transfer promoting body according to a third modification of the second embodiment. It is sectional drawing of the variable valve mechanism which concerns on Embodiment 3 of this invention. It is sectional drawing of the drive control apparatus which concerns on Embodiment 4 of this invention. It is sectional drawing of the drive control apparatus which concerns on Embodiment 5 of this invention. It is sectional drawing of the drive control apparatus which concerns on Embodiment 6 of this invention. It is sectional drawing of the drive control apparatus which concerns on Embodiment 7 of this invention. It is the schematic of the system which has a variable valve mechanism based on Embodiment 8 of this invention. It is a front view of the 2nd internal gear concerning Embodiment 9 of this invention.
  • FIG. Embodiment 1 of the present invention will be described below with reference to the accompanying drawings.
  • the variable valve mechanism 100 rotates the camshaft 40 (refer to FIG. 2) relative to a crankshaft (not shown) of the internal combustion engine 101, thereby It adjusts the opening / closing timing of the exhaust valve, that is, the valve timing.
  • the variable valve mechanism 100 is provided in a driving force transmission system from the crankshaft to the camshaft 40.
  • the variable valve mechanism 100 is provided with a motor described later, and the motor is cooled by a refrigerant.
  • the refrigerant 104 that has flowed through the motor is discharged to the outside of the variable valve mechanism 100 and is collected in the drain pan 102.
  • the refrigerant 104 collected in the drain pan 102 is pumped up by the pump 103 and supplied to the variable valve mechanism 100 again to circulate.
  • the refrigerant 104 for example, hydrofluorocarbon (HFC) or automatic transmission fluid (ATF) can be used.
  • variable valve mechanism 100 is provided with a speed reducer 10.
  • a motor 30 is provided inside the speed reducer 10.
  • a camshaft 40 is provided on the output shaft end side of the motor 30.
  • a drive control device 50 that drives and controls the motor 30 is provided on the other end side opposite to the output shaft end side of the motor 30.
  • the variable valve mechanism 100 is fixed to a cover (not shown) of the internal combustion engine 101.
  • the variable valve mechanism 100 may be fixed to a chain cover (not shown) of the internal combustion engine 101.
  • the speed reducer 10 has a first external housing 11 and a second external housing 12 that are arranged in the axial direction of the camshaft 40.
  • the first outer housing 11 and the second outer housing 12 are fixed by bolts (not shown), for example.
  • a sprocket 20 is provided outside the second outer housing 12.
  • a chain (not shown) is attached to the sprocket 20, and the power of a crankshaft (not shown) of the internal combustion engine 101 (see FIG. 1) is transmitted to the sprocket 20. Therefore, the second outer housing 12 can rotate in conjunction with a crankshaft (not shown).
  • a first internal gear 13 is fixed inside the first outer housing 11.
  • a second internal gear 14 is slidably provided inside the second external housing 12 via a lubricating liquid.
  • the lubricating liquid includes oil, and the second outer housing 12 and the second internal gear are lubricated by the oil film of the oil.
  • a pinion 15 is provided inside the first internal gear 13 and the second internal gear 14.
  • the first internal gear 13 and the second internal gear 14 are provided eccentrically with respect to the pinion 15.
  • the pinion 15 has a first external gear 15 a and a second external gear 15 b, and is engaged with the first internal gear 13 and the second internal gear 14.
  • the first outer housing 11, the second internal gear 14, and the pinion 15 are supported by the inner housing 32 of the motor 30 via a bearing 31.
  • the inner housing 32 is joined to the rotor 33 and can be rotated together with the rotation of the rotor 33.
  • a stator 35 that supports the rotor 33 via a bearing 34 is provided inside the rotor 33.
  • the rotor 33 is configured to be rotatable while maintaining a gap between the rotor 33 and the stator 35.
  • the second internal gear 14 is connected to the camshaft 40 via the connecting member 41.
  • the rotor 33 rotates and the inner housing 32 rotates.
  • the rotation of the internal housing 32 is transmitted from the second external gear 15 b to the second internal gear 14.
  • the camshaft 40 is rotated by the rotation of the second internal gear 14. Thereby, the rotational force of the motor 30 is transmitted to the camshaft 40, and the camshaft 40 adjusts the valve timing of an intake valve or an exhaust valve (not shown).
  • the drive control device 50 includes an upper cover 51, a lower cover 52, and an electronic device 53.
  • the upper cover 51 and the lower cover 52 are housings that house the electronic device 53, and the lower cover 52 is located on the side of the drive control device 50 that faces the motor 30.
  • the upper cover 51 is provided so as to be sandwiched between the electronic device 53 and the lower cover 52, and covers the drive control device 50 on the side where the lower cover 52 is not provided.
  • the lower cover 52 constitutes a first cover
  • the upper cover 51 constitutes a second cover.
  • the upper cover 51 and the lower cover 52 protect the electronic device 53 from dust and droplets outside the drive control device 50.
  • the lower cover 52 is provided with a fastening portion 54 for fastening the drive control device 50 to the motor 30.
  • the fastening portion 54 has a first fastening member 54 a and a second fastening member 54 b, and the first fastening member 54 a and the second fastening member 54 b are fastened to a holding mechanism 55 attached to the stator 35. As a result, the drive control device 50 is fastened to the motor 30.
  • the electronic device 53 includes a power module, a control board that controls driving of the power module, and other electronic devices.
  • the power module may be a power semiconductor or a switching element.
  • the electronic device 53 is electrically connected to the motor 30, applies a drive current to the motor 30, and controls the rotation speed and phase of the motor 30. That is, the motor 30 is electronically controlled.
  • the drive control device 50 is disposed close to the motor 30 in order to shorten the wiring length to the motor 30 and prevent the motor 30 from being overheated due to a voltage drop or an increase in current due to a voltage drop. Further, the drive control device 50 is disposed in the vicinity of the motor 30 in order to prevent an increase in the size of the entire variable valve mechanism 100 due to an increase in the wiring length with the motor 30.
  • the drive control device 50 Since the drive control device 50 is disposed on the far side from the internal combustion engine in the axial direction of the motor 30, the temperature rise of the drive control device 50 is prevented, and the occurrence of problems due to the temperature rise of the drive control device 50 is prevented. be able to. In addition, since the gap 64 communicating with the outside of the motor 30 is formed between the motor 30 and the drive control device 50, heat transfer from the motor 30 to the drive control device 50 can be prevented.
  • a circulation channel 62 is formed inside the stator 35 of the motor 30.
  • the circulation channel 62 is a cylindrical space through which a refrigerant can flow.
  • a refrigerant supply path 60 is formed at the outermost radial direction of the camshaft 40, and communicates with the circulation flow path 62 via a refrigerant supply hole 61 provided in the second internal gear 14.
  • the circulation flow path 62 communicates with the gap 64 via the refrigerant circulation hole 63 formed in the fastening portion 54.
  • the gap 64 is opened toward the outside of the variable valve mechanism 100, and a drain pan 102 (see FIG. 1) is provided below. That is, the refrigerant supply path 60, the circulation flow path 62, and the gap 64 constitute a refrigerant flow path through which the refrigerant flows.
  • the circulation flow path 62 is provided in the stator 35, the circulation flow path 62 can be shortened compared with the case where the circulation flow path 62 is arrange
  • variable valve mechanism 100 of the first embodiment will be described.
  • the second internal gear 14 when the second internal gear 14 is viewed from the camshaft 40 side along the rotation axis of the motor 30, the second internal gear 14 is in relation to the second external housing 12.
  • the direction rotating clockwise is the advance side
  • the direction rotating counterclockwise is the retard side.
  • the drive control device 50 moves the rotor 33 at a higher speed relative to the second outer housing 12. Rotate with That is, the drive control device 50 rotates the rotor 33 relative to the second external housing 12 in the advance side. At this time, the rotation of the rotor 33 is decelerated by the pinion 15 and transmitted to the second internal gear 14. As a result, the second internal gear 14 rotates relative to the second external housing 12 toward the advance side, and the valve timing of the intake valve of the internal combustion engine is advanced.
  • the drive control device 50 moves the rotor 33 at a lower speed relative to the second outer housing 12. Rotate with or reverse. That is, the drive control device 50 rotates the rotor 33 relative to the second outer housing 12 in the retarded angle direction. At this time, the rotation of the rotor 33 is decelerated by the pinion 15 and transmitted to the second internal gear 14. As a result, the second internal gear 14 rotates relative to the second external housing 12 toward the retard side, and the valve timing of the intake valve of the internal combustion engine is retarded.
  • the rotation of the rotor 33 causes the stator 35 to move in the circumferential direction. It generates heat almost uniformly. Therefore, in order to cool the stator 35 which is a main heat source of the motor 30, the refrigerant is caused to flow through the circulation passage 62 of the stator 35.
  • the refrigerant supplied from the refrigerant supply path 60 flows into the circulation path 62 via the refrigerant supply hole 61.
  • the refrigerant flowing into the circulation channel 62 contacts the stator 35, and most of the heat of the stator 35 is transmitted to the refrigerant.
  • the refrigerant to which the heat of the stator 35 has been transmitted flows into the gap 64 via the refrigerant circulation hole 63 as a refrigerant flow 65 indicated by a broken line in FIG. 3.
  • the refrigerant flowing through the gap 64 flows out of the variable valve mechanism 100 from below the variable valve mechanism 100 (see FIG. 1) and is collected by the drain pan 102.
  • the refrigerant collected in the drain pan 102 is pumped up by the pump 103 and flows into the circulation channel 62 again as shown in FIG.
  • the inside of the stator 35 can be efficiently cooled. Therefore, it is not necessary to provide the drive control device 50 away from the motor 30 that is the heat source of the variable valve mechanism 100 in consideration of the heat problem. Therefore, in designing the variable valve mechanism 100, an increase in the size of the variable valve mechanism 100 can be avoided. Further, since the heat of the stator 35 transmitted to the drive control device 50 side is transmitted to the drive control device 50 side via the holding mechanism 55 and the fastening portion 54, the heat is lost on the path through which the heat is transmitted. Thereby, it is possible to prevent high heat from being transmitted to the electronic device 53 and damaging the electronic device 53.
  • a gap 64 is provided between the motor 30 and the drive control device 50, and an air layer having a low thermal conductivity is formed between the motor 30 and the drive control device 50. Therefore, heat transfer from the motor 30 to the drive control device 50 can be reduced, and high heat can be prevented from being transmitted to the electronic device 53 and damaging the electronic device 53.
  • variable valve mechanism adjusts the opening / closing timings of the intake valve and the exhaust valve of the internal combustion engine 101 by the motor 30 that outputs the rotational force to the output shaft end side.
  • 100 provided on the other end side of the motor 30 located on the opposite side to the output shaft end side, and provided with a drive control device for controlling the drive of the motor.
  • the drive control device 50 has a lower cover 52 located on the side facing the motor 30, and the motor 30 has a circulation flow path 62 through which a refrigerant that transmits heat of the motor 30 flows.
  • the variable valve mechanism 100 is provided that has a gap 64 through which the refrigerant flows and between the motor 30 and the lower cover 52 and through which the refrigerant flows. be able to.
  • the second refrigerant flow path is a gap 64, and the refrigerant flows out to the outside through the gap 64, so that the refrigerant can circulate through the variable valve mechanism 100 efficiently.
  • the motor 30 includes a rotor 33 and a stator 35 on the radially inner side of the rotor 33, and the circulation flow path 62 is provided inside the stator 35.
  • the stator 35 can be efficiently cooled.
  • the reduction gear 10 is connected to the camshaft 40 that adjusts the opening and closing timings of the intake valve and the exhaust valve, and the motor 30 that drives the reduction gear 10 is disposed inside the reduction gear 10 in the radial direction.
  • the variable valve mechanism 100 can be reduced in size.
  • the circulation flow path 62 communicates with the refrigerant supply path 60 provided in the camshaft 40, the stator 35 can be efficiently cooled.
  • Embodiment 2 a second embodiment of the present invention will be described.
  • the same reference numerals as those in FIGS. 1 to 3 are the same or similar components, and detailed description thereof is omitted.
  • the variable valve mechanism according to the second embodiment is different from the first embodiment in that a heat transfer promoting body is provided in the circulation channel.
  • the variable valve mechanism 200 has a heat transfer promoting body 66 in the circulation channel 62.
  • the stator 35 has a stator winding 36 and a stator core 37.
  • a plurality of heat transfer promoting bodies 66 having a rectangular cross section are provided so as to protrude from the stator core 37 toward the circulation flow path 62 inside the stator 35.
  • the heat transfer promoting body 66 is made of a resin having good thermal conductivity, and the heat of the stator 35 is transmitted.
  • the material of the heat transfer promotion body 66 may be other than resin, for example, a metal having good heat conductivity. Other configurations are the same as those of the first embodiment.
  • the contact area with the refrigerant is wider in the circulation flow path 62 of the second embodiment than the circulation flow path 62 of the first embodiment. Thereby, the heat of the stator 35 can be efficiently transmitted to the refrigerant.
  • the heat transfer promoting body 66 that transmits the heat of the stator 35 to the refrigerant is provided inside the stator 35, the heat of the rotor 33 can be efficiently transmitted to the refrigerant flowing through the rotor 33.
  • the stator 35 has the heat transfer promoting body 66 in the circulation flow path, but may have a heat transfer promoting body in a form other than this.
  • a transmission having a cylindrical portion fitted to the inner periphery of the stator 35 and a plurality of protruding portions protruding from the cylindrical portion to the circulation flow path 62.
  • the heat promoting body 66a may be installed inside the stator 35 by any means such as press fitting, brazing, and adhesion.
  • a plurality of heat transfer promoting bodies 66b having wedge-shaped cross sections protruding from the stator core 37 toward the circulation flow path 62 are provided. May be.
  • a heat transfer promotion body 66 c that is fitted to the inner periphery of the stator 35 and has an inner periphery that is uneven in the circumferential direction is used as the stator 35. It may be installed by any means of press fitting, brazing, and bonding.
  • Embodiment 3 FIG. Next, a third embodiment of the present invention will be described.
  • the variable valve mechanism according to the third embodiment is different from the first embodiment in that a diversion promoting body is provided in the circulation channel.
  • a diversion promoting body 67 is provided in the circulation flow path 62 inside the stator 35.
  • the diversion promoting body is an orifice-shaped member having a hole in the center formed of resin, and is formed so as to restrict the diameter of the circulation flow path 62 to the inner side in the radial direction.
  • the flow resistance of the circulation flow path 62 is increased by providing the branch flow promoting body 67 in the circulation flow path 62. Due to this increase in flow resistance, a part of the refrigerant flow that passes through the circulation flow path 62 shown as the first refrigerant flow 65a passes through the gap of the bearing 31 shown as the second refrigerant flow 65b, and the rotor 33 and the stator.
  • the flow is divided into a flow passing through the gap of the flow bearing 34.
  • the diversion promoting body 67 divides the flow rates of the first refrigerant flow 65a and the second refrigerant flow 65b at an appropriate ratio determined in advance. It is formed so as to be shunted to the ratio.
  • Other configurations are the same as those of the first embodiment.
  • the stator 35 has the diversion promoting body 67 for diverting a part of the refrigerant flowing through the circulation flow path 62 so as to flow between the rotor 33 and the stator 35, the motor 30 is provided.
  • the size can be reduced, and the variable valve mechanism 300 can be reduced accordingly.
  • the diversion promoting body 67 of the third embodiment is not limited to an orifice-shaped member made of resin, and a structure such as a porous body can also be used.
  • the heat transfer promoting body 66 of the second embodiment may be provided in the circulation channel 62.
  • Embodiment 4 FIG. Next, a fourth embodiment of the present invention will be described.
  • the variable valve mechanism according to the fourth embodiment is different from the first embodiment in that the material of the lower cover of the drive control device is changed.
  • FIG. 7 shows a cross-sectional view of the drive control device 50a.
  • the lower cover 52a of the drive control device 50a may be formed entirely of a synthetic resin material having a low thermal conductivity, for example, polyphenylene sulfide (PPS) resin. . That is, the lower cover 52a constitutes a heat insulating member.
  • PPS polyphenylene sulfide
  • the lower cover 52a is formed of a material having low thermal conductivity, when the high-temperature refrigerant that has received the heat of the stator 35 (see FIG. 2) flows through the gap 64, the lower cover 52a that is in contact with the high-temperature refrigerant. It is possible to prevent heat from being transmitted to the electronic device 53 of the drive control device 50a via the, and to prevent the electronic device 53 from failing.
  • the lower cover 52a includes the heat insulating member 52a that prevents heat from being transferred from the refrigerant to the drive control device 50a. Since the lower cover 52a that prevents heat from being transferred from the refrigerant to the drive control device 50a is provided, it is possible to prevent the electronic control device 53 from malfunctioning and the drive control device 50a from malfunctioning.
  • Embodiment 5 FIG. Next, a fifth embodiment of the present invention will be described.
  • the variable valve mechanism according to the fifth embodiment is different from the first embodiment in that a heat insulator is provided on the lower cover of the drive control device.
  • FIG. 8 shows a cross-sectional view of the drive control device 50b.
  • the lower cover 52b of the drive control device 50b has a heat insulator 56 formed of a synthetic resin material having a low thermal conductivity, for example.
  • the heat insulator 56 may be made of, for example, PPS resin. Further, the heat insulator 56 is provided at a position corresponding to the axial extension of the motor 30 in the lower cover 53b. Further, the heat insulator 56 constitutes a heat insulating member. Other configurations are the same as those of the first embodiment.
  • the lower cover 52b Since the lower cover 52b has the heat insulator 56 as a separate body, when the high-temperature refrigerant receiving the heat of the stator 35 (see FIG. 2) flows through the gap 64, the high-temperature refrigerant contacts the lower cover 52b. Thus, heat can be prevented from being transmitted to the electronic device 53 of the drive control device 50b, and the electronic device 53 can be prevented from being damaged.
  • a place where the heat insulator 56 is not provided in the lower cover 52b may be formed of a material having a high thermal conductivity such as an aluminum alloy material. Thereby, the heat of the electronic device 53 can be released from the aluminum alloy material portion and the temperature of the electronic device 53 can be lowered while preventing the electronic device 53 from being damaged by the heat of the refrigerant transmitted to the electronic device 53. .
  • the lower cover 52b has the heat insulator 56 separate from the lower cover 52b, which prevents heat from being transferred from the refrigerant to the drive control device 50b, the electronic device 53 fails and the drive control device 50b It is possible to prevent malfunction.
  • Embodiment 6 FIG. Next, a sixth embodiment of the present invention will be described.
  • the variable valve mechanism according to the sixth embodiment is different from the first embodiment in that the drive control device is provided with a sealing body.
  • FIG. 9 shows a cross-sectional view of the drive control device 50c.
  • the wiring that electrically connects the electronic device 53 and the motor 30 is passed through the lower cover 52.
  • An opening is formed. This opening is sealed with a sealing body 57 formed of a material that does not allow the refrigerant to pass therethrough.
  • Other configurations are the same as those of the first embodiment.
  • the sealing body 57 seals the opening formed at the position where the first fastening member 54a and the second fastening member 54b fasten the lower cover 52, the stator 35 When the high-temperature refrigerant that has received the heat (see FIG. 2) flows through the gap 64, it is possible to prevent the high-temperature refrigerant from entering the drive control device 50c and causing the electronic device 53 to fail.
  • the lower cover 52 has the sealing body 57 that prevents the refrigerant from entering the inside of the drive control device 50c, the electronic device 53 is prevented from malfunctioning and the drive control device 50c from malfunctioning. can do.
  • Embodiment 7 FIG. Next, a seventh embodiment of the present invention will be described.
  • the variable valve mechanism according to the seventh embodiment is different from the first embodiment in that an electronic device is provided with a heat radiation promoting material.
  • FIG. 10 shows a cross-sectional view of the drive control device 50d.
  • the drive control device 50d has a substrate 71 on which a switching element 70 constituting the electronic device 53a is mounted. Further, a heat radiation promoting material 72 is attached to and contacts the surface opposite to the surface mounted on the substrate 71 of the switching element 70. Further, the heat radiation promoting material 72 is attached to the inner wall of the upper cover 51. Further, the heat radiation promoting material 72 is made of a sheet-like resin having good thermal conductivity. Other configurations are the same as those of the first embodiment.
  • the switching element 70 is attached to the upper cover 51 via the heat radiation promoting material 72. Therefore, the heat generated by the operation of the switching element 70 is transmitted to the upper cover 51 through the heat radiation promoting material 72. Thereby, the heat generated in the switching element 70 can be radiated from the upper cover 51. Accordingly, the high-temperature refrigerant that has received the heat of the stator 35 (see FIG. 2) flows through the gap 64, the refrigerant contacts the lower cover 52, and the lower cover 52 becomes hot due to the heat of the refrigerant. Can be prevented by radiating heat from the upper cover 51.
  • the drive control device 50d includes the electronic device 53a that drives the motor 30, the upper cover 51 that is positioned so as to sandwich the electronic device 53a between the lower cover 52, the electronic device 53a, and the upper cover 51. Since the heat radiation promoting material 72 that contacts the inner wall and transfers heat from the electronic device 53a to the upper cover 51 is provided, it is possible to prevent the switching element 70 from failing and prevent the drive control device 50d from malfunctioning. it can.
  • a sheet-like resin having good thermal conductivity is used as the heat radiation promoting material 72.
  • a heat radiation promoting material formed of an arbitrary shape and material may be used, for example, using a heat sink. May be.
  • the electronic device 53a mounted on the substrate 71 includes the switching element 70, the electronic device 53a is not limited to this.
  • the electronic device 53 a mounted on the substrate 71 includes, for example, a filter reactor and a capacitor in addition to the switching element 70, a heat radiation promoting material 72 may be provided between these components and the upper cover 51.
  • Embodiment 8 FIG. Next, an eighth embodiment of the present invention will be described.
  • the variable valve mechanism according to the eighth embodiment shares a refrigerant for cooling the variable valve mechanism and a refrigerant for cooling the internal combustion engine with respect to the first embodiment.
  • the refrigerant 104 is supplied from the internal combustion engine 101 to the variable valve mechanism 100.
  • the refrigerant 104 is a refrigerant that has flowed through the internal combustion engine 101 for use in cooling the internal combustion engine 101.
  • the refrigerant supplied to the variable valve mechanism 100 flows into the circulation flow path 62 from the refrigerant supply path 60 via the refrigerant supply hole 61 (see FIG. 2).
  • the refrigerant to which the heat of the stator 35 is transferred flows into the gap 64 through the refrigerant circulation hole 63.
  • the refrigerant that has flowed through the gap 64 flows out below the drive control device 50 and is collected in the drain pan 102.
  • the refrigerant collected in the drain pan 102 is pumped up by the pump 103, supplied again to the internal combustion engine 101, and reused.
  • the refrigerant supplied to the internal combustion engine 101 is cooled by exchanging heat with cooling water (not shown) in the internal combustion engine.
  • the cooled refrigerant flows through the internal combustion engine 101 and is used for cooling the internal combustion engine 101.
  • the refrigerant flow path including the circulation flow path 62 and the gap 64 is connected to the internal combustion engine 101, and the refrigerant cools the internal combustion engine 101. Therefore, the variable valve mechanism 100 and the internal combustion engine 101 supply the refrigerant separately. Therefore, the apparatus configuration is simplified and the efficiency of the apparatus is improved.
  • the cooling method of the refrigerant in the internal combustion engine 101 is a method of exchanging heat with cooling water, but other methods may be used, for example, a method of cooling by a heat exchanger (not shown). There may be.
  • the refrigerant is used to cool the variable valve mechanism 100.
  • the first internal gear 13, the second internal gear, and the pinion shown in FIG. 15 and the lubricating oil used for lubricating the bearings 31 and 34 may be used.
  • the variable valve mechanism 100 can be cooled without separately circulating a refrigerant.
  • Embodiment 9 FIG. Next, a ninth embodiment of the present invention will be described.
  • the variable valve mechanism according to the ninth embodiment is different from the first embodiment in that the refrigerant supply hole provided in the second internal gear is configured as a multistage hole or a conical shape.
  • FIG. 12 shows a front view of the second internal gear 14.
  • FIG. 13 shows a cross-sectional view of the second internal gear 14.
  • the second internal gear 14 is supplied from the refrigerant supply path 60 provided at the outermost radial direction of the camshaft 40 (see FIG. 2) to the circulation flow path 62 provided inside the stator 35 of the motor 30.
  • Other configurations are the same as those of the first embodiment.
  • the shape of the refrigerant supply hole 61b is approximately the same as the diameter of the refrigerant supply path 60 on the refrigerant supply path 60 side, whereas the diameter on the circulation flow path 62 side is the refrigerant supply. It is larger than the diameter on the path 60 side. Therefore, the pressure loss when the refrigerant flows through the refrigerant supply hole 61b can be reduced. Accordingly, the amount of refrigerant flowing through the refrigerant supply path 60 and the circulation flow path 62 can be increased without changing the capacity of the pump 103 that supplies the refrigerant. Therefore, the stator 35 can be efficiently cooled.
  • the shape of the refrigerant supply hole 61b is a multistage hole, but it may be a conical shape such as a trumpet.
  • the refrigerant supply hole 61b is formed in a multistage hole or a conical shape, so that the amount of refrigerant flowing through the refrigerant supply path 60 and the circulation flow path 62 can be increased without changing the capacity of the pump 103 that supplies the refrigerant. Can do.
  • variable valve mechanism according to the tenth embodiment is different from the first embodiment in that the second internal gear is provided with a refrigerant supply groove.
  • FIG. 14 shows a front view of the second internal gear 14.
  • the second internal gear 14 has a refrigerant supply groove 80 for supplying a refrigerant between the second internal gear 14 and the second external housing 12.
  • Other configurations are the same as those of the first embodiment.
  • the second internal gear 14 is provided with a refrigerant supply groove 80 for supplying a refrigerant between the second internal gear 14 and the second external housing 12.
  • a refrigerant is supplied to a gap formed between the toothed gear 14 and the second outer housing 12 to promote formation of an oil film.
  • the oil film functions as a lubricating liquid between the second internal gear 14 and the second outer housing 12. Therefore, it is possible to prevent the second internal gear 14 and the second outer housing 12 from being worn by stably supplying the refrigerant through the refrigerant supply groove 80.
  • the second external housing 12 having the second internal gear 14 slidably provided therein is provided, and the second internal gear 14 is disposed between the second internal gear 14 and the second external housing 12. Since the coolant supply groove 80 for supplying the coolant to the coolant is stably supplied, it is possible to prevent the second internal gear 14 and the second external housing 12 from being worn by stably supplying the coolant.
  • the refrigerant supply groove 80 is formed at a position of 180 degrees with respect to the refrigerant supply hole 61.
  • the present invention is not limited to this position. It may be formed.
  • Embodiment 11 FIG. Next, an eleventh embodiment of the present invention will be described.
  • the variable valve mechanism according to the eleventh embodiment is provided in an automobile vehicle relative to the first embodiment.
  • variable valve mechanism 200 is installed in an internal combustion engine 202 provided in an automobile vehicle 201.
  • Other configurations are the same as those in the eighth embodiment.
  • variable valve mechanism 200 By installing the variable valve mechanism 200 in the internal combustion engine 202 provided in the automobile vehicle 201, the variable valve mechanism 200 can be efficiently operated in accordance with the driving situation of the automobile vehicle 201. Therefore, the fuel efficiency of the internal combustion engine 202 is improved, and an efficient automobile vehicle 201 can be configured.
  • the motor 30 installed in the automobile vehicle 201 having the internal combustion engine 202 and outputting the rotational force to the output shaft end side adjusts the opening and closing timings of the intake valve and the exhaust valve of the internal combustion engine 202.
  • the variable valve mechanism 200 since the variable valve mechanism 200 operates, the internal combustion engine 202 operates efficiently, thereby improving fuel efficiency and providing an efficient automobile vehicle for an automobile vehicle not provided with the variable valve mechanism 200. can do.
  • a motor instead of a variable valve mechanism, a motor, a speed reducer, and a drive control device that controls driving of the motor are provided, and the motor speed is reduced as an actuator that decelerates by the speed reducer. May be.
  • the output shaft end side is disposed on the radially inner side of the speed reducer, and is provided on the other end side of the motor, which is located on the opposite side of the speed reducer, the motor that drives the speed reducer, and the output shaft end side.
  • a drive control device for controlling the drive of the motor the drive control device having a lower cover positioned on the side facing the motor, and the motor having a circulation flow path through which a refrigerant for transferring the heat of the motor flows.
  • the drive control device since there is a gap through which the refrigerant flows between the motor and the lower cover and through which the refrigerant flows, it is possible to provide an actuator in which the influence of heat received by the drive control device is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

Provided is a variable valve mechanism in which a motor 30 which outputs rotational force to the output shaft end side regulates the timing of opening and closing the intake valve and exhaust valve of an internal combustion engine. The variable valve mechanism is provided with a drive control device 50 provided on the other end side of the motor 30, which is located opposite the output shaft end, and controlling the drive of the motor 30. The drive control device 50 has a lower cover 52 located on the side thereof facing the motor 30. The motor 30 has therein a circulation flow passage 62 through which a refrigerant to which the heat of the motor 30 is transmitted flows. A gap 64 which is in communication with the circulation flow passage 62 and through which a refrigerant flows is provided between the motor 30 and the lower cover 52.

Description

可変動弁機構及びアクチュエータVariable valve mechanism and actuator
 この発明は、モータにより内燃機関のバルブタイミング調整を行う可変動弁機構、及びアクチュエータに関する。 The present invention relates to a variable valve mechanism that adjusts valve timing of an internal combustion engine by a motor, and an actuator.
 内燃機関の吸気バルブ及び排気バルブの開閉タイミング(バルブタイミング)を調整するため、特許文献1に示すようなモータを有する可変動弁機構が知られている。 In order to adjust the opening / closing timing (valve timing) of an intake valve and an exhaust valve of an internal combustion engine, a variable valve mechanism having a motor as shown in Patent Document 1 is known.
特開2015-148183号公報JP2015-148183A
 近年では可変動弁機構の電子制御化が望まれている、しかしながら、特許文献1に記載の可変動弁機構に、電子制御化のために駆動制御装置を取り付けると、可変動弁機構に生じる熱の影響を駆動制御装置が受けるおそれがあった。 In recent years, electronic control of a variable valve mechanism has been desired. However, if a drive control device is attached to the variable valve mechanism described in Patent Document 1 for electronic control, heat generated in the variable valve mechanism is generated. The drive control device may be affected by the above.
 この発明は、このような課題を解決するためになされたものであり、駆動制御装置が受ける熱の影響を低減した、可変動弁機構及びアクチュエータを提供することを目的とする。 The present invention has been made to solve such a problem, and an object thereof is to provide a variable valve mechanism and an actuator in which the influence of heat received by the drive control device is reduced.
 上記の課題を解決するために、この発明に係る可変動弁機構は、回転力を出力軸端側に出力するモータにより、内燃機関の吸気バルブ及び排気バルブの開閉タイミングを調整する可変動弁機構であって、出力軸端側とは反対側に位置する、モータの他端側に設けられ、モータの駆動を制御する駆動制御装置を備え、駆動制御装置は、モータに対向する側に位置する第1カバーを有し、モータは、内部にモータの熱が伝わる冷媒が流れる第1冷媒流路を有し、モータと第1カバーとの間に、第1冷媒流路と通じ、冷媒が流れる第2冷媒流路を有する。 In order to solve the above problems, a variable valve mechanism according to the present invention is a variable valve mechanism that adjusts the opening and closing timings of an intake valve and an exhaust valve of an internal combustion engine by a motor that outputs a rotational force to an output shaft end side. The drive control device is provided on the other end side of the motor located on the opposite side to the output shaft end side, and controls the drive of the motor, and the drive control device is located on the side facing the motor. The motor has a first cover, and the motor has a first refrigerant flow path through which a refrigerant to which heat of the motor is transmitted flows, and the refrigerant flows between the motor and the first cover through the first refrigerant flow path. A second refrigerant channel is provided.
 また、この発明に係るアクチュエータは、減速機と、出力軸端側が減速機の径方向内側に配置され、減速機を駆動するモータと、出力軸端側とは反対側に位置する、モータの他端側に設けられ、モータの駆動を制御する駆動制御装置を備え、駆動制御装置は、モータに対向する側に位置する第1カバーを有し、モータは、内部にモータの熱が伝わる冷媒が流れる第1冷媒流路を有し、モータと第1カバーとの間に、第1冷媒流路と通じ、冷媒が流れる第2冷媒流路を有する。 Further, the actuator according to the present invention includes a speed reducer, an output shaft end side disposed radially inward of the speed reducer, a motor that drives the speed reducer, and a motor that is located on the opposite side of the output shaft end side. Provided on the end side is provided with a drive control device for controlling the drive of the motor, the drive control device has a first cover located on the side facing the motor, and the motor has a refrigerant through which the heat of the motor is transmitted. A first refrigerant flow path is provided, and a second refrigerant flow path is provided between the motor and the first cover so as to communicate with the first refrigerant flow path.
 この発明に係る可変動弁機構及びアクチュエータは、内部にモータの熱が伝わる冷媒が流れる第1冷媒流路を有し、モータと第1カバーとの間に、第1冷媒流路と通じ、冷媒が流れる第2冷媒流路を有するので、駆動制御装置が受ける熱の影響を低減できる。 The variable valve mechanism and the actuator according to the present invention have a first refrigerant flow path through which a refrigerant that transmits heat of the motor flows, and communicate with the first refrigerant flow path between the motor and the first cover. Therefore, the influence of the heat received by the drive control device can be reduced.
この発明の実施の形態1に係る可変動弁機構を有するシステムの概略図である。1 is a schematic view of a system having a variable valve mechanism according to Embodiment 1 of the present invention. 図1に示す可変動弁機構を示す断面図である。It is sectional drawing which shows the variable valve mechanism shown in FIG. 図2のA部を拡大した拡大図である。It is the enlarged view to which the A section of FIG. 2 was expanded. この発明の実施の形態2に係る可変動弁機構の断面図である。It is sectional drawing of the variable valve mechanism which concerns on Embodiment 2 of this invention. 図4に示す伝熱促進体を切断線B-Bで切断した断面図である。FIG. 5 is a cross-sectional view of the heat transfer promoting body shown in FIG. 4 cut along a cutting line BB. 実施の形態2の第1の変形例に係る伝熱促進体の断面図である。6 is a cross-sectional view of a heat transfer promoting body according to a first modification of the second embodiment. FIG. 実施の形態2の第2の変形例に係る伝熱促進体の断面図である。FIG. 10 is a cross-sectional view of a heat transfer promoting body according to a second modification of the second embodiment. 実施の形態2の第3の変形例に係る伝熱促進体の断面図である。FIG. 12 is a cross-sectional view of a heat transfer promoting body according to a third modification of the second embodiment. この発明の実施の形態3に係る可変動弁機構の断面図である。It is sectional drawing of the variable valve mechanism which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る駆動制御装置の断面図である。It is sectional drawing of the drive control apparatus which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る駆動制御装置の断面図である。It is sectional drawing of the drive control apparatus which concerns on Embodiment 5 of this invention. この発明の実施の形態6に係る駆動制御装置の断面図である。It is sectional drawing of the drive control apparatus which concerns on Embodiment 6 of this invention. この発明の実施の形態7に係る駆動制御装置の断面図である。It is sectional drawing of the drive control apparatus which concerns on Embodiment 7 of this invention. この発明の実施の形態8に係る可変動弁機構を有するシステムの概略図である。It is the schematic of the system which has a variable valve mechanism based on Embodiment 8 of this invention. この発明の実施の形態9に係る第2内歯歯車の正面図である。It is a front view of the 2nd internal gear concerning Embodiment 9 of this invention. この発明の実施の形態9に係る第2内歯歯車の断面図である。It is sectional drawing of the 2nd internal gear which concerns on Embodiment 9 of this invention. この発明の実施の形態10に係る第2内歯歯車の正面図である。It is a front view of the 2nd internal gear concerning Embodiment 10 of this invention. この発明の実施の形態11に係る可変動弁機構を有する自動車車両システムの概略図である。It is the schematic of the motor vehicle system which has a variable valve mechanism based on Embodiment 11 of this invention.
 実施の形態1.
 以下、この発明の実施の形態1について添付図面に基づいて説明する。
 図1に示すように、可変動弁機構100は、内燃機関101の図示しないクランクシャフトに対してカムシャフト40(図2参照)を相対的に回転させることにより、図示しない内燃機関の吸気バルブ又は排気バルブの開閉タイミングすなわちバルブタイミングを調整するものである。可変動弁機構100は、クランクシャフトからカムシャフト40までの駆動力伝達系に設けられている。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the accompanying drawings.
As shown in FIG. 1, the variable valve mechanism 100 rotates the camshaft 40 (refer to FIG. 2) relative to a crankshaft (not shown) of the internal combustion engine 101, thereby It adjusts the opening / closing timing of the exhaust valve, that is, the valve timing. The variable valve mechanism 100 is provided in a driving force transmission system from the crankshaft to the camshaft 40.
 可変動弁機構100には後述するモータが設けられており、モータは冷媒により冷却されている。モータを流れた冷媒104は可変動弁機構100の外部に排出され、ドレンパン102に回収される。ドレンパン102に回収された冷媒104は、ポンプ103により汲み上げられて、再度可変動弁機構100へ供給されて循環する。冷媒104としては、例えばハイドロフルオロカーボン(HFC)、オートマチックトランスミッションフルード(ATF)を用いることができる。 The variable valve mechanism 100 is provided with a motor described later, and the motor is cooled by a refrigerant. The refrigerant 104 that has flowed through the motor is discharged to the outside of the variable valve mechanism 100 and is collected in the drain pan 102. The refrigerant 104 collected in the drain pan 102 is pumped up by the pump 103 and supplied to the variable valve mechanism 100 again to circulate. As the refrigerant 104, for example, hydrofluorocarbon (HFC) or automatic transmission fluid (ATF) can be used.
 図2に示すように、可変動弁機構100には減速機10が設けられている。また、減速機10の内側にはモータ30が設けられている。モータ30の出力軸端側には、カムシャフト40が設けられている。また、モータ30の出力軸端側とは反対側の他端側には、モータ30を駆動し制御する駆動制御装置50が設けられている。可変動弁機構100は、内燃機関101の図示しないカバーに固定されている。また、可変動弁機構100は、内燃機関101の図示しないチェーンカバーに固定されていてもよい。 As shown in FIG. 2, the variable valve mechanism 100 is provided with a speed reducer 10. A motor 30 is provided inside the speed reducer 10. A camshaft 40 is provided on the output shaft end side of the motor 30. A drive control device 50 that drives and controls the motor 30 is provided on the other end side opposite to the output shaft end side of the motor 30. The variable valve mechanism 100 is fixed to a cover (not shown) of the internal combustion engine 101. The variable valve mechanism 100 may be fixed to a chain cover (not shown) of the internal combustion engine 101.
 減速機10は、カムシャフト40の軸方向に並べられて設けられた第1外部ハウジング11及び第2外部ハウジング12を有している。第1外部ハウジング11及び第2外部ハウジング12は、例えば図示しないボルトにより固定されている。第2外部ハウジング12の外側には、スプロケット20が設けられている。スプロケット20には図示しないチェーンが装着され、内燃機関101(図1参照)の図示しないクランクシャフトの動力がスプロケット20に伝達される。したがって、第2外部ハウジング12は、図示しないクランクシャフトに連動して回転可能である。 The speed reducer 10 has a first external housing 11 and a second external housing 12 that are arranged in the axial direction of the camshaft 40. The first outer housing 11 and the second outer housing 12 are fixed by bolts (not shown), for example. A sprocket 20 is provided outside the second outer housing 12. A chain (not shown) is attached to the sprocket 20, and the power of a crankshaft (not shown) of the internal combustion engine 101 (see FIG. 1) is transmitted to the sprocket 20. Therefore, the second outer housing 12 can rotate in conjunction with a crankshaft (not shown).
 第1外部ハウジング11の内側には、第1内歯歯車13が固着されている。第2外部ハウジング12の内側には、潤滑液を介して、第2内歯歯車14が摺動可能に設けられている。この潤滑液としてはオイルが挙げられ、このオイルの油膜により第2外部ハウジング12及び第2内部歯車が潤滑されている。第1内歯歯車13及び第2内歯歯車14の内側には、ピニオン15が設けられている。第1内歯歯車13及び第2内歯歯車14は、ピニオン15に対して偏心して設けられている。ピニオン15は、第1外歯歯車15a及び第2外歯歯車15bを有しており、第1内歯歯車13及び第2内歯歯車14に係合している。 A first internal gear 13 is fixed inside the first outer housing 11. A second internal gear 14 is slidably provided inside the second external housing 12 via a lubricating liquid. The lubricating liquid includes oil, and the second outer housing 12 and the second internal gear are lubricated by the oil film of the oil. A pinion 15 is provided inside the first internal gear 13 and the second internal gear 14. The first internal gear 13 and the second internal gear 14 are provided eccentrically with respect to the pinion 15. The pinion 15 has a first external gear 15 a and a second external gear 15 b, and is engaged with the first internal gear 13 and the second internal gear 14.
 第1外部ハウジング11、第2内歯歯車14及びピニオン15は、軸受31を介してモータ30の内部ハウジング32に支持されている。また、内部ハウジング32は回転子33に接合されており、回転子33の回転と共に回転可能である。回転子33の内側に、軸受34を介して回転子33を支持する固定子35が設けられている。回転子33は、固定子35との間に空隙を保ちつつ回転可能に構成されている。 The first outer housing 11, the second internal gear 14, and the pinion 15 are supported by the inner housing 32 of the motor 30 via a bearing 31. The inner housing 32 is joined to the rotor 33 and can be rotated together with the rotation of the rotor 33. A stator 35 that supports the rotor 33 via a bearing 34 is provided inside the rotor 33. The rotor 33 is configured to be rotatable while maintaining a gap between the rotor 33 and the stator 35.
 第2内歯歯車14は、連結部材41を介してカムシャフト40に接続されている。モータ30に電流が印加されると、回転子33が回転すると共に内部ハウジング32が回転する。次に、内部ハウジング32の回転が第2外歯歯車15bから第2内歯歯車14に伝達される。そして、第2内歯歯車14の回転により、カムシャフト40が回転する。これにより、モータ30の回転力がカムシャフト40に伝達され、カムシャフト40が図示しない吸気バルブ又は排気バルブのバルブタイミングを調節する。 The second internal gear 14 is connected to the camshaft 40 via the connecting member 41. When a current is applied to the motor 30, the rotor 33 rotates and the inner housing 32 rotates. Next, the rotation of the internal housing 32 is transmitted from the second external gear 15 b to the second internal gear 14. The camshaft 40 is rotated by the rotation of the second internal gear 14. Thereby, the rotational force of the motor 30 is transmitted to the camshaft 40, and the camshaft 40 adjusts the valve timing of an intake valve or an exhaust valve (not shown).
 駆動制御装置50は、上カバー51と、下カバー52と、電子機器53とを有している。上カバー51及び下カバー52は、電子機器53を収納する筐体であり、下カバー52は駆動制御装置50の、モータ30に対向する側に位置している。また、上カバー51は電子機器53を下カバー52との間に挟むように対向して設けられ、下カバー52の無い側の駆動制御装置50を覆っている。下カバー52は第1カバーを、上カバー51は第2カバーを構成している。上カバー51及び下カバー52は、駆動制御装置50の外部の粉塵及び液滴から電子機器53を保護している。 The drive control device 50 includes an upper cover 51, a lower cover 52, and an electronic device 53. The upper cover 51 and the lower cover 52 are housings that house the electronic device 53, and the lower cover 52 is located on the side of the drive control device 50 that faces the motor 30. The upper cover 51 is provided so as to be sandwiched between the electronic device 53 and the lower cover 52, and covers the drive control device 50 on the side where the lower cover 52 is not provided. The lower cover 52 constitutes a first cover, and the upper cover 51 constitutes a second cover. The upper cover 51 and the lower cover 52 protect the electronic device 53 from dust and droplets outside the drive control device 50.
 下カバー52には、駆動制御装置50をモータ30に締結するために、締結部54が設けられている。締結部54は第1締結部材54a及び第2締結部材54bを有し、第1締結部材54a及び第2締結部材54bは固定子35に取り付けられた保持機構55に締結されている。これにより、駆動制御装置50はモータ30に締結されている。 The lower cover 52 is provided with a fastening portion 54 for fastening the drive control device 50 to the motor 30. The fastening portion 54 has a first fastening member 54 a and a second fastening member 54 b, and the first fastening member 54 a and the second fastening member 54 b are fastened to a holding mechanism 55 attached to the stator 35. As a result, the drive control device 50 is fastened to the motor 30.
 電子機器53は、パワーモジュール、パワーモジュールの駆動を制御する制御基板及びその他の電子機器を有している。パワーモジュールは、パワー半導体であってもよく、スイッチング素子であってもよい。また電子機器53は、モータ30と電気的に接続されており、モータ30に駆動電流を印加すると共にモータ30の回転速度及び位相を制御する。すなわち、モータ30は電子制御されている。 The electronic device 53 includes a power module, a control board that controls driving of the power module, and other electronic devices. The power module may be a power semiconductor or a switching element. The electronic device 53 is electrically connected to the motor 30, applies a drive current to the motor 30, and controls the rotation speed and phase of the motor 30. That is, the motor 30 is electronically controlled.
 駆動制御装置50は、モータ30に対する配線長を短くし電圧低下によるモータ30のトルク不足又は電流増加によるモータ30の過熱を防止するために、モータ30に近接して配置されている。また、駆動制御装置50は、モータ30との配線長の増加による可変動弁機構100全体の大型化を防止するために、モータ30に近接して配置されている。 The drive control device 50 is disposed close to the motor 30 in order to shorten the wiring length to the motor 30 and prevent the motor 30 from being overheated due to a voltage drop or an increase in current due to a voltage drop. Further, the drive control device 50 is disposed in the vicinity of the motor 30 in order to prevent an increase in the size of the entire variable valve mechanism 100 due to an increase in the wiring length with the motor 30.
 駆動制御装置50はモータ30の軸方向のうち、内燃機関から遠い側に配置されているので、駆動制御装置50の温度上昇が防止され、駆動制御装置50の温度上昇による不具合の発生を防止することができる。また、モータ30と駆動制御装置50との間にモータ30の外部に通じている間隙64が形成されているので、モータ30から駆動制御装置50への熱の移動を防止することができる。 Since the drive control device 50 is disposed on the far side from the internal combustion engine in the axial direction of the motor 30, the temperature rise of the drive control device 50 is prevented, and the occurrence of problems due to the temperature rise of the drive control device 50 is prevented. be able to. In addition, since the gap 64 communicating with the outside of the motor 30 is formed between the motor 30 and the drive control device 50, heat transfer from the motor 30 to the drive control device 50 can be prevented.
 モータ30の固定子35の内部に、循環流路62が形成されている。循環流路62は、冷媒を流すことのできる筒状の空間である。また、カムシャフト40の径方向最外部には冷媒供給路60が形成されており、第2内歯歯車14に設けられた冷媒供給孔61を経由して循環流路62に連通している。また、循環流路62は、締結部54に形成された冷媒循環孔63を経由して、間隙64に連通している。間隙64は可変動弁機構100の外側へ向かって開放されており、下方にドレンパン102(図1参照)が設けられている。すなわち冷媒供給路60、循環流路62及び間隙64は、冷媒が流れる冷媒流路を構成している。 A circulation channel 62 is formed inside the stator 35 of the motor 30. The circulation channel 62 is a cylindrical space through which a refrigerant can flow. A refrigerant supply path 60 is formed at the outermost radial direction of the camshaft 40, and communicates with the circulation flow path 62 via a refrigerant supply hole 61 provided in the second internal gear 14. The circulation flow path 62 communicates with the gap 64 via the refrigerant circulation hole 63 formed in the fastening portion 54. The gap 64 is opened toward the outside of the variable valve mechanism 100, and a drain pan 102 (see FIG. 1) is provided below. That is, the refrigerant supply path 60, the circulation flow path 62, and the gap 64 constitute a refrigerant flow path through which the refrigerant flows.
 循環流路62が固定子35に設けられているので、例えば減速機10の外周側の位置に循環流路62を配置する場合に比べて循環流路62を短くすることができ、可変動弁機構100の全体として、特に径方向の大型化を防止することができる。 Since the circulation flow path 62 is provided in the stator 35, the circulation flow path 62 can be shortened compared with the case where the circulation flow path 62 is arrange | positioned in the position of the outer peripheral side of the reduction gear 10, for example, and a variable valve As a whole of the mechanism 100, it is possible to prevent an increase in size particularly in the radial direction.
 次に、この実施の形態1の可変動弁機構100の動作を説明する。
 なお、以下の動作説明においては、第2内歯歯車14をモータ30の回転軸に沿ってカムシャフト40の側から見たときに、第2外部ハウジング12に対して第2内歯歯車14が時計回りに回転する方向が進角側、反時計回りに回転する方向が遅角側である。
Next, the operation of the variable valve mechanism 100 of the first embodiment will be described.
In the following description of the operation, when the second internal gear 14 is viewed from the camshaft 40 side along the rotation axis of the motor 30, the second internal gear 14 is in relation to the second external housing 12. The direction rotating clockwise is the advance side, and the direction rotating counterclockwise is the retard side.
 図1に示す内燃機関101が運転されると、図2に示すように駆動制御装置50の指示に応じた駆動電流がモータ30に供給される。第2外部ハウジング12に対する第2内歯歯車14の回転位相が目標値と一致している場合には、駆動制御装置50は、回転子33と第2外部ハウジング12とを同じ速度で回転させる。このとき、ピニオン15が第2外部ハウジング12及び第2内歯歯車9と同じ速度で回転する。そのため内燃機関の吸気バルブのバルブタイミングが保持される。 When the internal combustion engine 101 shown in FIG. 1 is operated, a drive current according to an instruction from the drive control device 50 is supplied to the motor 30 as shown in FIG. When the rotation phase of the second internal gear 14 with respect to the second external housing 12 matches the target value, the drive control device 50 rotates the rotor 33 and the second external housing 12 at the same speed. At this time, the pinion 15 rotates at the same speed as the second external housing 12 and the second internal gear 9. Therefore, the valve timing of the intake valve of the internal combustion engine is maintained.
 第2外部ハウジング12に対する第2内歯歯車14の回転位相が目標値よりも遅角側にある場合には、駆動制御装置50は、第2外部ハウジング12に対して回転子33をより高い速度で回転させる。すなわち、駆動制御装置50は回転子33を、第2外部ハウジング12に対して進角側に相対回転させる。このとき、回転子33の回転は、ピニオン15により減速して第2内歯歯車14に伝達される。これにより、第2内歯歯車14が第2外部ハウジング12に対して進角側に相対回転し、内燃機関の吸気バルブのバルブタイミングが進角される。 When the rotational phase of the second internal gear 14 with respect to the second outer housing 12 is on the retard side with respect to the target value, the drive control device 50 moves the rotor 33 at a higher speed relative to the second outer housing 12. Rotate with That is, the drive control device 50 rotates the rotor 33 relative to the second external housing 12 in the advance side. At this time, the rotation of the rotor 33 is decelerated by the pinion 15 and transmitted to the second internal gear 14. As a result, the second internal gear 14 rotates relative to the second external housing 12 toward the advance side, and the valve timing of the intake valve of the internal combustion engine is advanced.
 第2外部ハウジング12に対する第2内歯歯車14の回転位相が目標値よりも進角側にある場合には、駆動制御装置50は、第2外部ハウジング12に対して回転子33をより低い速度で回転させるか、又は逆回転させる。すなわち、駆動制御装置50は回転子33を、第2外部ハウジング12に対して遅角側に相対回転させる。このとき、回転子33の回転は、ピニオン15により減速して第2内歯歯車14に伝達される。これにより、第2内歯歯車14が第2外部ハウジング12に対して遅角側に相対回転し、内燃機関の吸気バルブのバルブタイミングが遅角される。 When the rotation phase of the second internal gear 14 with respect to the second outer housing 12 is on the more advanced side than the target value, the drive control device 50 moves the rotor 33 at a lower speed relative to the second outer housing 12. Rotate with or reverse. That is, the drive control device 50 rotates the rotor 33 relative to the second outer housing 12 in the retarded angle direction. At this time, the rotation of the rotor 33 is decelerated by the pinion 15 and transmitted to the second internal gear 14. As a result, the second internal gear 14 rotates relative to the second external housing 12 toward the retard side, and the valve timing of the intake valve of the internal combustion engine is retarded.
 回転子33が、上記のように第2外部ハウジング12に対して同じ速度、より高い速度、より低い速度又は逆回転の回転状態であるとき、回転子33の回転により固定子35がその周方向に略均一に発熱する。したがってモータ30の主要な熱源である固定子35を冷却するために、固定子35の循環流路62に冷媒が流される。 When the rotor 33 is rotating at the same speed, higher speed, lower speed, or reverse rotation with respect to the second outer housing 12 as described above, the rotation of the rotor 33 causes the stator 35 to move in the circumferential direction. It generates heat almost uniformly. Therefore, in order to cool the stator 35 which is a main heat source of the motor 30, the refrigerant is caused to flow through the circulation passage 62 of the stator 35.
 冷媒供給路60から供給された冷媒は、冷媒供給孔61を経由して循環流路62に流入する。循環流路62に流入した冷媒は固定子35に接触し、固定子35の熱のほとんどが冷媒に伝わる。 The refrigerant supplied from the refrigerant supply path 60 flows into the circulation path 62 via the refrigerant supply hole 61. The refrigerant flowing into the circulation channel 62 contacts the stator 35, and most of the heat of the stator 35 is transmitted to the refrigerant.
 図3に示すように固定子35の熱が伝わった冷媒は、冷媒循環孔63を経由して、図3に破線で示す冷媒流れ65のように間隙64へ流入する。間隙64を流れた冷媒は、可変動弁機構100(図1参照)の下方から可変動弁機構100の外部へ流出し、ドレンパン102で回収される。前述したとおり、ドレンパン102に回収された冷媒は、ポンプ103により汲み上げられて、図2に示すように再度循環流路62に流入する。 As shown in FIG. 3, the refrigerant to which the heat of the stator 35 has been transmitted flows into the gap 64 via the refrigerant circulation hole 63 as a refrigerant flow 65 indicated by a broken line in FIG. 3. The refrigerant flowing through the gap 64 flows out of the variable valve mechanism 100 from below the variable valve mechanism 100 (see FIG. 1) and is collected by the drain pan 102. As described above, the refrigerant collected in the drain pan 102 is pumped up by the pump 103 and flows into the circulation channel 62 again as shown in FIG.
 循環流路62を冷媒が流れることで、固定子35の内部を効率的に冷却することができる。そのため、熱の問題を考慮して駆動制御装置50を可変動弁機構100の熱源であるモータ30から遠ざけて設ける構成とする必要がなくなる。ゆえに、可変動弁機構100を設計するにあたり、可変動弁機構100の大型化を避けることができる。また、駆動制御装置50側へ伝わる固定子35の熱は、保持機構55及び締結部54を経由して駆動制御装置50側へ伝わるので、熱が伝わる経路上で熱が失われる。これにより、高熱が電子機器53に伝わり電子機器53が破損することを防ぐことができる。 When the refrigerant flows through the circulation flow path 62, the inside of the stator 35 can be efficiently cooled. Therefore, it is not necessary to provide the drive control device 50 away from the motor 30 that is the heat source of the variable valve mechanism 100 in consideration of the heat problem. Therefore, in designing the variable valve mechanism 100, an increase in the size of the variable valve mechanism 100 can be avoided. Further, since the heat of the stator 35 transmitted to the drive control device 50 side is transmitted to the drive control device 50 side via the holding mechanism 55 and the fastening portion 54, the heat is lost on the path through which the heat is transmitted. Thereby, it is possible to prevent high heat from being transmitted to the electronic device 53 and damaging the electronic device 53.
 また、モータ30と駆動制御装置50との間に間隙64が設けられており、モータ30と駆動制御装置50との間に熱伝導率の低い空気層が形成される。そのため、モータ30から駆動制御装置50への熱の移動を低減し、高熱が電子機器53に伝わり電子機器53が破損することを防ぐことができる。 Further, a gap 64 is provided between the motor 30 and the drive control device 50, and an air layer having a low thermal conductivity is formed between the motor 30 and the drive control device 50. Therefore, heat transfer from the motor 30 to the drive control device 50 can be reduced, and high heat can be prevented from being transmitted to the electronic device 53 and damaging the electronic device 53.
 このように、この実施の形態1に係る可変動弁機構は、回転力を出力軸端側に出力するモータ30により、内燃機関101の吸気バルブ及び排気バルブの開閉タイミングを調整する可変動弁機構100であって、出力軸端側とは反対側に位置する、モータ30の他端側に設けられ、モータの駆動を制御する駆動制御装置を備える。また、駆動制御装置50は、モータ30に対向する側に位置する下カバー52を有し、モータ30は、内部にモータ30の熱が伝わる冷媒が流れる循環流路62を有する。さらに、モータ30と下カバー52との間に、循環流路62と通じ、冷媒が流れる間隙64を有するので、駆動制御装置50が受ける熱の影響を低減した、可変動弁機構100を提供することができる。 Thus, the variable valve mechanism according to the first embodiment adjusts the opening / closing timings of the intake valve and the exhaust valve of the internal combustion engine 101 by the motor 30 that outputs the rotational force to the output shaft end side. 100, provided on the other end side of the motor 30 located on the opposite side to the output shaft end side, and provided with a drive control device for controlling the drive of the motor. Further, the drive control device 50 has a lower cover 52 located on the side facing the motor 30, and the motor 30 has a circulation flow path 62 through which a refrigerant that transmits heat of the motor 30 flows. In addition, the variable valve mechanism 100 is provided that has a gap 64 through which the refrigerant flows and between the motor 30 and the lower cover 52 and through which the refrigerant flows. be able to.
 また、第2冷媒流路は間隙64であって、間隙64を通じて冷媒が外部へ流出するので、冷媒が効率よく可変動弁機構100を循環することができる。 Further, the second refrigerant flow path is a gap 64, and the refrigerant flows out to the outside through the gap 64, so that the refrigerant can circulate through the variable valve mechanism 100 efficiently.
 また、モータ30は、回転子33と、回転子33の径方向内側に固定子35とを有し、循環流路62は、固定子35の内部に設けられるので、モータ30のうち主要な熱源である固定子35を効率よく冷却することができる。 The motor 30 includes a rotor 33 and a stator 35 on the radially inner side of the rotor 33, and the circulation flow path 62 is provided inside the stator 35. The stator 35 can be efficiently cooled.
 また、吸気バルブ及び排気バルブの開閉タイミングを調整するカムシャフト40に接続された減速機10を有し、減速機10を駆動するモータ30は、減速機10の径方向内側に配置されるので、可変動弁機構100を小型にすることができる。 In addition, the reduction gear 10 is connected to the camshaft 40 that adjusts the opening and closing timings of the intake valve and the exhaust valve, and the motor 30 that drives the reduction gear 10 is disposed inside the reduction gear 10 in the radial direction. The variable valve mechanism 100 can be reduced in size.
 また、循環流路62はカムシャフト40に設けられた冷媒供給路60と連通するので、固定子35を効率よく冷却することができる。 Further, since the circulation flow path 62 communicates with the refrigerant supply path 60 provided in the camshaft 40, the stator 35 can be efficiently cooled.
 実施の形態2. 
 次に、この発明の実施の形態2について説明する。尚、以下の実施の形態において、図1~図3の参照符号と同一の符号は、同一又は同様な構成要素であるので、その詳細な説明は省略する。
 この実施の形態2に係る可変動弁機構は、実施の形態1に対して、循環流路に伝熱促進体を設けたものである。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described. In the following embodiments, the same reference numerals as those in FIGS. 1 to 3 are the same or similar components, and detailed description thereof is omitted.
The variable valve mechanism according to the second embodiment is different from the first embodiment in that a heat transfer promoting body is provided in the circulation channel.
 図4に示す通り、この実施の形態2に係る可変動弁機構200は、循環流路62に伝熱促進体66を有している。図5Aに示すように、固定子35は、固定子巻線36と固定子鉄心37とを有している。固定子鉄心37から、固定子35の内側の循環流路62に向かって、矩形の断面を有する複数の伝熱促進体66が突出するように設けられている。伝熱促進体66は、熱伝導性の良い樹脂により構成されており、固定子35の熱が伝わる。なお、伝熱促進体66の材料は樹脂以外であってもよく、例えば熱伝導性の良い金属であってもよい。その他の構成は、実施の形態1と同じである。 As shown in FIG. 4, the variable valve mechanism 200 according to the second embodiment has a heat transfer promoting body 66 in the circulation channel 62. As shown in FIG. 5A, the stator 35 has a stator winding 36 and a stator core 37. A plurality of heat transfer promoting bodies 66 having a rectangular cross section are provided so as to protrude from the stator core 37 toward the circulation flow path 62 inside the stator 35. The heat transfer promoting body 66 is made of a resin having good thermal conductivity, and the heat of the stator 35 is transmitted. In addition, the material of the heat transfer promotion body 66 may be other than resin, for example, a metal having good heat conductivity. Other configurations are the same as those of the first embodiment.
 伝熱促進体66を有することにより、実施の形態1の循環流路62に対して実施の形態2の循環流路62では冷媒との接触面積が広くなる。これにより、冷媒へ固定子35の熱を効率よく伝えることができる。 By having the heat transfer promoting body 66, the contact area with the refrigerant is wider in the circulation flow path 62 of the second embodiment than the circulation flow path 62 of the first embodiment. Thereby, the heat of the stator 35 can be efficiently transmitted to the refrigerant.
 このように、固定子35の内側に、固定子35の熱を冷媒に伝える伝熱促進体66を有するので、回転子33を流れる冷媒へ回転子33の熱を効率よく伝えることができる。 Thus, since the heat transfer promoting body 66 that transmits the heat of the stator 35 to the refrigerant is provided inside the stator 35, the heat of the rotor 33 can be efficiently transmitted to the refrigerant flowing through the rotor 33.
 実施の形態2では、固定子35は循環流路に伝熱促進体66を有していたが、これ以外の形態の伝熱促進体を有していてもよい。第1の変形例として、図5Bに示すように固定子35の内周に嵌合する円筒状の部分と、その円筒状の部分から循環流路62へ突出する複数の突出部とを有する伝熱促進体66aを、固定子35の内部に圧入、蝋付け、接着の任意の手段により設置してもよい。 In Embodiment 2, the stator 35 has the heat transfer promoting body 66 in the circulation flow path, but may have a heat transfer promoting body in a form other than this. As a first modified example, as shown in FIG. 5B, a transmission having a cylindrical portion fitted to the inner periphery of the stator 35 and a plurality of protruding portions protruding from the cylindrical portion to the circulation flow path 62. The heat promoting body 66a may be installed inside the stator 35 by any means such as press fitting, brazing, and adhesion.
 また、実施の形態2の第2の変形例として、図5Cに示すように固定子鉄心37から、循環流路62の方向へ突出する、楔形の断面を有する複数の伝熱促進体66bを有してもよい。 Further, as a second modification of the second embodiment, as shown in FIG. 5C, a plurality of heat transfer promoting bodies 66b having wedge-shaped cross sections protruding from the stator core 37 toward the circulation flow path 62 are provided. May be.
 また、実施の形態2の第3の変形例として、図5Dに示すように固定子35の内周に嵌合し、その内周が周方向に凹凸を有する伝熱促進体66cを固定子35の内部に圧入、蝋付け、接着の任意の手段により設置してもよい。 Further, as a third modification of the second embodiment, as shown in FIG. 5D, a heat transfer promotion body 66 c that is fitted to the inner periphery of the stator 35 and has an inner periphery that is uneven in the circumferential direction is used as the stator 35. It may be installed by any means of press fitting, brazing, and bonding.
 実施の形態3. 
 次に、この発明の実施の形態3について説明する。
 この実施の形態3に係る可変動弁機構は、実施の形態1に対して、循環流路に分流促進体を設けたものである。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described.
The variable valve mechanism according to the third embodiment is different from the first embodiment in that a diversion promoting body is provided in the circulation channel.
 図6に示すように、固定子35の内側の循環流路62に分流促進体67が設けられている。分流促進体は、樹脂で形成された中心に孔を有するオリフィス状の部材であり、循環流路62の径を径方向内側へ絞るように形成されている。循環流路62に分流促進体67が設けられることで、循環流路62の流動抵抗が増加する。この流動抵抗の増加により、第1冷媒流れ65aとして示す循環流路62を経由する冷媒の流れの一部が、第2冷媒流れ65bとして示す軸受31の間隙を経由して回転子33と固定子35との間を流れ軸受34の間隙を経由する流れに分流する。分流促進体67は、固定子35を冷却するときに要求される冷却性能を発揮するために、第1冷媒流れ65a及び第2冷媒流れ65bの流量を、予め決められた適当な比率である分流比に分流するように形成されている。その他の構成は、実施の形態1と同じである。 As shown in FIG. 6, a diversion promoting body 67 is provided in the circulation flow path 62 inside the stator 35. The diversion promoting body is an orifice-shaped member having a hole in the center formed of resin, and is formed so as to restrict the diameter of the circulation flow path 62 to the inner side in the radial direction. The flow resistance of the circulation flow path 62 is increased by providing the branch flow promoting body 67 in the circulation flow path 62. Due to this increase in flow resistance, a part of the refrigerant flow that passes through the circulation flow path 62 shown as the first refrigerant flow 65a passes through the gap of the bearing 31 shown as the second refrigerant flow 65b, and the rotor 33 and the stator. The flow is divided into a flow passing through the gap of the flow bearing 34. In order to exhibit the cooling performance required when the stator 35 is cooled, the diversion promoting body 67 divides the flow rates of the first refrigerant flow 65a and the second refrigerant flow 65b at an appropriate ratio determined in advance. It is formed so as to be shunted to the ratio. Other configurations are the same as those of the first embodiment.
 このように、固定子35の内部に、循環流路62を流れる冷媒の一部を、回転子33と固定子35との間を流れるように分流させる分流促進体67を有するので、モータ30を小型化することができ、ひいては可変動弁機構300を小型化することができる。 As described above, since the stator 35 has the diversion promoting body 67 for diverting a part of the refrigerant flowing through the circulation flow path 62 so as to flow between the rotor 33 and the stator 35, the motor 30 is provided. The size can be reduced, and the variable valve mechanism 300 can be reduced accordingly.
 なお、この実施の形態3の分流促進体67は樹脂で形成されたオリフィス状の部材に限られず、例えば多孔質体のような構造体を用いることもできる。 In addition, the diversion promoting body 67 of the third embodiment is not limited to an orifice-shaped member made of resin, and a structure such as a porous body can also be used.
 また、この実施の形態3の分流促進体67に加えて、実施の形態2の伝熱促進体66が循環流路62に設けられていてもよい。 Further, in addition to the diversion promoting body 67 of the third embodiment, the heat transfer promoting body 66 of the second embodiment may be provided in the circulation channel 62.
 実施の形態4. 
 次に、この発明の実施の形態4について説明する。
 この実施の形態4に係る可変動弁機構は、実施の形態1に対して、駆動制御装置の下カバーの材質を変更したものである。
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described.
The variable valve mechanism according to the fourth embodiment is different from the first embodiment in that the material of the lower cover of the drive control device is changed.
 図7に、駆動制御装置50aの断面図を示す。この実施の形態4では、駆動制御装置50aの下カバー52aは、その全体が熱伝導率の低い合成樹脂材料で形成されていればよく、例えばポリフェニレンサルファイド(PPS)樹脂で形成されていてもよい。すなわち、下カバー52aは、断熱部材を構成している。その他の構成は、実施の形態1と同じである。 FIG. 7 shows a cross-sectional view of the drive control device 50a. In the fourth embodiment, the lower cover 52a of the drive control device 50a may be formed entirely of a synthetic resin material having a low thermal conductivity, for example, polyphenylene sulfide (PPS) resin. . That is, the lower cover 52a constitutes a heat insulating member. Other configurations are the same as those of the first embodiment.
 下カバー52aが熱伝導率の低い材料で形成されているので、固定子35(図2参照)の熱を受け取った高温の冷媒が間隙64を流れるときに、高温の冷媒が接触した下カバー52aを経由して駆動制御装置50aの電子機器53に熱が伝わることを防止し、電子機器53が故障することを防止することができる。 Since the lower cover 52a is formed of a material having low thermal conductivity, when the high-temperature refrigerant that has received the heat of the stator 35 (see FIG. 2) flows through the gap 64, the lower cover 52a that is in contact with the high-temperature refrigerant. It is possible to prevent heat from being transmitted to the electronic device 53 of the drive control device 50a via the, and to prevent the electronic device 53 from failing.
 このように、下カバー52aは、冷媒から駆動制御装置50aへ熱が伝わることを防止する断熱部材52aから構成される。冷媒から駆動制御装置50aへの熱の移動を防止する下カバー52aを有するので、電子機器53が故障し駆動制御装置50aが動作不全となることを防止することができる。 As described above, the lower cover 52a includes the heat insulating member 52a that prevents heat from being transferred from the refrigerant to the drive control device 50a. Since the lower cover 52a that prevents heat from being transferred from the refrigerant to the drive control device 50a is provided, it is possible to prevent the electronic control device 53 from malfunctioning and the drive control device 50a from malfunctioning.
 実施の形態5. 
 次に、この発明の実施の形態5について説明する。
 この実施の形態5に係る可変動弁機構は、実施の形態1に対して、駆動制御装置の下カバーに断熱体を設けたものである。
Embodiment 5 FIG.
Next, a fifth embodiment of the present invention will be described.
The variable valve mechanism according to the fifth embodiment is different from the first embodiment in that a heat insulator is provided on the lower cover of the drive control device.
 図8に、駆動制御装置50bの断面図を示す。この実施の形態5では、駆動制御装置50bの下カバー52bは、その一部に例えば熱伝導率の低い合成樹脂材料で形成された断熱体56を有している。断熱体56は、例えばPPS樹脂で構成されてもよい。また、断熱体56は、下カバー53bのうちモータ30の軸方向の延長上に対応する位置に設けられている。また、断熱体56は断熱部材を構成している。その他の構成は、実施の形態1と同じである。 FIG. 8 shows a cross-sectional view of the drive control device 50b. In the fifth embodiment, the lower cover 52b of the drive control device 50b has a heat insulator 56 formed of a synthetic resin material having a low thermal conductivity, for example. The heat insulator 56 may be made of, for example, PPS resin. Further, the heat insulator 56 is provided at a position corresponding to the axial extension of the motor 30 in the lower cover 53b. Further, the heat insulator 56 constitutes a heat insulating member. Other configurations are the same as those of the first embodiment.
 下カバー52bが断熱体56を別体として有することで、固定子35(図2参照)の熱を受け取った高温の冷媒が間隙64を流れるときに、高温の冷媒が接触した下カバー52bを経由して駆動制御装置50bの電子機器53に熱が伝わることを防止し、電子機器53が破損することを防止することができる。 Since the lower cover 52b has the heat insulator 56 as a separate body, when the high-temperature refrigerant receiving the heat of the stator 35 (see FIG. 2) flows through the gap 64, the high-temperature refrigerant contacts the lower cover 52b. Thus, heat can be prevented from being transmitted to the electronic device 53 of the drive control device 50b, and the electronic device 53 can be prevented from being damaged.
 また、下カバー52bのうち、断熱体56が設けられていない場所を例えばアルミ合金材料のように熱伝導率の高い材料で形成してもよい。これにより、電子機器53に冷媒の熱が伝わり電子機器53が破損することを防止しつつ、アルミ合金材料の部分から電子機器53の発する熱を放出して電子機器53の温度を下げることができる。 Further, a place where the heat insulator 56 is not provided in the lower cover 52b may be formed of a material having a high thermal conductivity such as an aluminum alloy material. Thereby, the heat of the electronic device 53 can be released from the aluminum alloy material portion and the temperature of the electronic device 53 can be lowered while preventing the electronic device 53 from being damaged by the heat of the refrigerant transmitted to the electronic device 53. .
 このように、下カバー52bは、冷媒から駆動制御装置50bへ熱が伝わることを防止する、下カバー52bとは別体の断熱体56を有するので、電子機器53が故障し駆動制御装置50bが動作不全となることを防止することができる。 Thus, since the lower cover 52b has the heat insulator 56 separate from the lower cover 52b, which prevents heat from being transferred from the refrigerant to the drive control device 50b, the electronic device 53 fails and the drive control device 50b It is possible to prevent malfunction.
 実施の形態6. 
 次に、この発明の実施の形態6について説明する。
 この実施の形態6に係る可変動弁機構は、実施の形態1に対して、駆動制御装置に封止体を設けたものである。
Embodiment 6 FIG.
Next, a sixth embodiment of the present invention will be described.
The variable valve mechanism according to the sixth embodiment is different from the first embodiment in that the drive control device is provided with a sealing body.
 図9に、駆動制御装置50cの断面図を示す。第1締結部材54a及び第2締結部材54bが下カバー52を締結している位置において、電子機器53とモータ30(図2参照)とを電気的に接続する配線を通すため、下カバー52に開口が形成されている。この開口を、冷媒が透過しない材料で形成された封止体57が封止している。その他の構成は、実施の形態1と同じである。 FIG. 9 shows a cross-sectional view of the drive control device 50c. At the position where the first fastening member 54 a and the second fastening member 54 b fasten the lower cover 52, the wiring that electrically connects the electronic device 53 and the motor 30 (see FIG. 2) is passed through the lower cover 52. An opening is formed. This opening is sealed with a sealing body 57 formed of a material that does not allow the refrigerant to pass therethrough. Other configurations are the same as those of the first embodiment.
 この実施の形態6では、第1締結部材54a及び第2締結部材54bが下カバー52を締結している位置に形成されている開口を封止体57が封止しているので、固定子35(図2参照)の熱を受け取った高温の冷媒が間隙64を流れるときに、高温の冷媒が駆動制御装置50cに浸入して電子機器53が故障することを防止することができる。 In the sixth embodiment, since the sealing body 57 seals the opening formed at the position where the first fastening member 54a and the second fastening member 54b fasten the lower cover 52, the stator 35 When the high-temperature refrigerant that has received the heat (see FIG. 2) flows through the gap 64, it is possible to prevent the high-temperature refrigerant from entering the drive control device 50c and causing the electronic device 53 to fail.
 このように、下カバー52は、冷媒が駆動制御装置50cの内部に浸入することを防止する封止体57を有するので、電子機器53が故障し駆動制御装置50cが動作不全となることを防止することができる。 Thus, since the lower cover 52 has the sealing body 57 that prevents the refrigerant from entering the inside of the drive control device 50c, the electronic device 53 is prevented from malfunctioning and the drive control device 50c from malfunctioning. can do.
 実施の形態7. 
 次に、この発明の実施の形態7について説明する。
 この実施の形態7に係る可変動弁機構は、実施の形態1に対して、電子機器に放熱促進材を設けたものである。
Embodiment 7 FIG.
Next, a seventh embodiment of the present invention will be described.
The variable valve mechanism according to the seventh embodiment is different from the first embodiment in that an electronic device is provided with a heat radiation promoting material.
 図10に、駆動制御装置50dの断面図を示す。駆動制御装置50dは、電子機器53aを構成するスイッチング素子70が実装された基板71を有している。また、スイッチング素子70の基板71に実装されている面とは反対の面には、放熱促進材72が取り付けられて接触している。また、放熱促進材72は、上カバー51の内壁に取り付けられている。また、放熱促進材72は熱伝導性のよいシート状の樹脂で形成されている。その他の構成は、実施の形態1と同じである。 FIG. 10 shows a cross-sectional view of the drive control device 50d. The drive control device 50d has a substrate 71 on which a switching element 70 constituting the electronic device 53a is mounted. Further, a heat radiation promoting material 72 is attached to and contacts the surface opposite to the surface mounted on the substrate 71 of the switching element 70. Further, the heat radiation promoting material 72 is attached to the inner wall of the upper cover 51. Further, the heat radiation promoting material 72 is made of a sheet-like resin having good thermal conductivity. Other configurations are the same as those of the first embodiment.
 この実施の形態7では、スイッチング素子70が放熱促進材72を介して上カバー51に取り付けられている。したがって、スイッチング素子70の動作により生じた熱が、放熱促進材72を通して上カバー51に伝わる。これにより、スイッチング素子70に生じた熱を、上カバー51から放熱することができる。したがって、固定子35(図2参照)の熱を受け取った高温の冷媒が間隙64を流れ、冷媒が下カバー52に接触し冷媒の熱により下カバー52が高温となって下カバー52からの放熱が不十分になる場合に、上カバー51から放熱することで熱によるスイッチング素子70の故障を防止することができる。 In the seventh embodiment, the switching element 70 is attached to the upper cover 51 via the heat radiation promoting material 72. Therefore, the heat generated by the operation of the switching element 70 is transmitted to the upper cover 51 through the heat radiation promoting material 72. Thereby, the heat generated in the switching element 70 can be radiated from the upper cover 51. Accordingly, the high-temperature refrigerant that has received the heat of the stator 35 (see FIG. 2) flows through the gap 64, the refrigerant contacts the lower cover 52, and the lower cover 52 becomes hot due to the heat of the refrigerant. Can be prevented by radiating heat from the upper cover 51.
 このように、駆動制御装置50dは、モータ30を駆動する電子機器53aと、電子機器53aを下カバー52との間に挟むように位置する上カバー51と、電子機器53aと、上カバー51の内壁とに接触し、電子機器53aから上カバー51に熱を伝える放熱促進材72とを有するので、スイッチング素子70の故障を防止し、駆動制御装置50dが動作不全となることを防止することができる。 As described above, the drive control device 50d includes the electronic device 53a that drives the motor 30, the upper cover 51 that is positioned so as to sandwich the electronic device 53a between the lower cover 52, the electronic device 53a, and the upper cover 51. Since the heat radiation promoting material 72 that contacts the inner wall and transfers heat from the electronic device 53a to the upper cover 51 is provided, it is possible to prevent the switching element 70 from failing and prevent the drive control device 50d from malfunctioning. it can.
 なお、実施の形態7では、放熱促進材72として熱伝導性の良いシート状の樹脂を用いていたが、任意の形状及び材料で形成された放熱促進材を用いてもよく、例えばヒートシンクを用いてもよい。また、基板71に実装された電子機器53aはスイッチング素子70を含んでいたが、電子機器53aはこれに限定されるものではない。例えば、基板71に実装された電子機器53aが、スイッチング素子70以外に例えばフィルタリアクトル、コンデンサを含む場合には、これらの部品と上カバー51との間に放熱促進材72を設けてもよい。 In the seventh embodiment, a sheet-like resin having good thermal conductivity is used as the heat radiation promoting material 72. However, a heat radiation promoting material formed of an arbitrary shape and material may be used, for example, using a heat sink. May be. Moreover, although the electronic device 53a mounted on the substrate 71 includes the switching element 70, the electronic device 53a is not limited to this. For example, when the electronic device 53 a mounted on the substrate 71 includes, for example, a filter reactor and a capacitor in addition to the switching element 70, a heat radiation promoting material 72 may be provided between these components and the upper cover 51.
 実施の形態8. 
 次に、この発明の実施の形態8について説明する。
 この実施の形態8に係る可変動弁機構は、実施の形態1に対して、可変動弁機構を冷却する冷媒と、内燃機関を冷却する冷媒とを共用するものである。
Embodiment 8 FIG.
Next, an eighth embodiment of the present invention will be described.
The variable valve mechanism according to the eighth embodiment shares a refrigerant for cooling the variable valve mechanism and a refrigerant for cooling the internal combustion engine with respect to the first embodiment.
 図11に示すように、内燃機関101から可変動弁機構100に冷媒104が供給される。冷媒104は内燃機関101の冷却に用いるために内燃機関101内を流れた冷媒である。可変動弁機構100に供給された冷媒は、冷媒供給路60から冷媒供給孔61を経由して循環流路62に流入する(図2参照)。その後、固定子35の熱が伝わった冷媒は、冷媒循環孔63を経由して、間隙64へ流入する。間隙64を流れた冷媒は、駆動制御装置50の下方へ流出し、ドレンパン102に回収される。ドレンパン102に回収された冷媒は、ポンプ103により汲み上げられて、再度内燃機関101へ供給されて再利用される。 As shown in FIG. 11, the refrigerant 104 is supplied from the internal combustion engine 101 to the variable valve mechanism 100. The refrigerant 104 is a refrigerant that has flowed through the internal combustion engine 101 for use in cooling the internal combustion engine 101. The refrigerant supplied to the variable valve mechanism 100 flows into the circulation flow path 62 from the refrigerant supply path 60 via the refrigerant supply hole 61 (see FIG. 2). Thereafter, the refrigerant to which the heat of the stator 35 is transferred flows into the gap 64 through the refrigerant circulation hole 63. The refrigerant that has flowed through the gap 64 flows out below the drive control device 50 and is collected in the drain pan 102. The refrigerant collected in the drain pan 102 is pumped up by the pump 103, supplied again to the internal combustion engine 101, and reused.
 内燃機関101に供給された冷媒は、内燃機関内において図示しない冷却水と熱交換して冷却される。冷却された冷媒は内燃機関101内部を流れて内燃機関101の冷却に用いられる。これにより、可変動弁機構100を冷却するための専用の冷媒を別途供給するための装置を設けなくとも、効率よく可変動弁機構100及び内燃機関101を有するシステムを構成することができる。 The refrigerant supplied to the internal combustion engine 101 is cooled by exchanging heat with cooling water (not shown) in the internal combustion engine. The cooled refrigerant flows through the internal combustion engine 101 and is used for cooling the internal combustion engine 101. As a result, a system having the variable valve mechanism 100 and the internal combustion engine 101 can be configured efficiently without providing a device for separately supplying a dedicated refrigerant for cooling the variable valve mechanism 100.
 このように、循環流路62及び間隙64を含む冷媒流路は内燃機関101へ接続され、冷媒が内燃機関101を冷却するので、可変動弁機構100と内燃機関101とで別々に冷媒を供給する装置を設けるよりも装置構成が簡単になり装置の効率がよくなる。 Thus, the refrigerant flow path including the circulation flow path 62 and the gap 64 is connected to the internal combustion engine 101, and the refrigerant cools the internal combustion engine 101. Therefore, the variable valve mechanism 100 and the internal combustion engine 101 supply the refrigerant separately. Therefore, the apparatus configuration is simplified and the efficiency of the apparatus is improved.
 なお、実施の形態8では、内燃機関101における冷媒の冷却方法は冷却水と熱交換する方法であったがこれ以外の方法であってもよく、例えば図示しない熱交換器により冷却される方法であってもよい。 In the eighth embodiment, the cooling method of the refrigerant in the internal combustion engine 101 is a method of exchanging heat with cooling water, but other methods may be used, for example, a method of cooling by a heat exchanger (not shown). There may be.
 なお、実施の形態1~8では、可変動弁機構100を冷却するために冷媒を用いていたが、冷媒に代えて、図2に示す第1内歯歯車13,第2内歯歯車,ピニオン15及び軸受31,34の潤滑に用いられる潤滑油を用いてもよい。これにより、別途冷媒を流通させることなく、可変動弁機構100を冷却することができる。 In the first to eighth embodiments, the refrigerant is used to cool the variable valve mechanism 100. However, instead of the refrigerant, the first internal gear 13, the second internal gear, and the pinion shown in FIG. 15 and the lubricating oil used for lubricating the bearings 31 and 34 may be used. As a result, the variable valve mechanism 100 can be cooled without separately circulating a refrigerant.
 実施の形態9.
 次に、この発明の実施の形態9について説明する。
 この実施の形態9に係る可変動弁機構は、実施の形態1に対して、第2内歯歯車に設けた冷媒供給孔を多段孔もしくは円錐型で構成したものである。
Embodiment 9 FIG.
Next, a ninth embodiment of the present invention will be described.
The variable valve mechanism according to the ninth embodiment is different from the first embodiment in that the refrigerant supply hole provided in the second internal gear is configured as a multistage hole or a conical shape.
 図12に、第2内歯歯車14の正面図を示す。図13に第2内歯歯車14の断面図を示す。第2内歯歯車14は、カムシャフト40(図2参照)の径方向最外部に設けられた冷媒供給路60から、モータ30の固定子35の内部に設けられた循環流路62に、冷媒を供給するための冷媒供給孔61bを有している。その他の構成は、実施の形態1と同じである。 FIG. 12 shows a front view of the second internal gear 14. FIG. 13 shows a cross-sectional view of the second internal gear 14. The second internal gear 14 is supplied from the refrigerant supply path 60 provided at the outermost radial direction of the camshaft 40 (see FIG. 2) to the circulation flow path 62 provided inside the stator 35 of the motor 30. Has a refrigerant supply hole 61b. Other configurations are the same as those of the first embodiment.
 この実施の形態9では、冷媒供給孔61bの形状が、冷媒供給路60側の径が冷媒供給路60の径とほぼ同等径であるのに対して、循環流路62側の径が冷媒供給路60側の径よりも大きくなっている。したがって、冷媒が冷媒供給孔61bを流れるときの圧力損失を軽減することができる。これにより、冷媒を供給するポンプ103の能力を変えずに、冷媒供給路60及び循環流路62を流れる冷媒量を増加させることができる。したがって、固定子35を効率的に冷却することができる。 In the ninth embodiment, the shape of the refrigerant supply hole 61b is approximately the same as the diameter of the refrigerant supply path 60 on the refrigerant supply path 60 side, whereas the diameter on the circulation flow path 62 side is the refrigerant supply. It is larger than the diameter on the path 60 side. Therefore, the pressure loss when the refrigerant flows through the refrigerant supply hole 61b can be reduced. Accordingly, the amount of refrigerant flowing through the refrigerant supply path 60 and the circulation flow path 62 can be increased without changing the capacity of the pump 103 that supplies the refrigerant. Therefore, the stator 35 can be efficiently cooled.
 なお、実施の形態9では、冷媒供給孔61bの形状を多段孔としていたが、例えばラッパのような円錐型にしてもよい。 In the ninth embodiment, the shape of the refrigerant supply hole 61b is a multistage hole, but it may be a conical shape such as a trumpet.
 このように、モータ30に設けられた内部ハウジング32と、内部ハウジング32に支持された第2内歯歯車14とを有し、第2内歯歯車14は、冷媒が供給される冷媒供給孔61bを有し、冷媒供給孔61bは多段孔あるいは円錐型で構成されるため、冷媒を供給するポンプ103の能力を変えずに、冷媒供給路60及び循環流路62を流れる冷媒量を増加させることができる。 Thus, it has the internal housing 32 provided in the motor 30, and the 2nd internal gear 14 supported by the internal housing 32, and the 2nd internal gear 14 is the refrigerant | coolant supply hole 61b in which a refrigerant | coolant is supplied. And the refrigerant supply hole 61b is formed in a multistage hole or a conical shape, so that the amount of refrigerant flowing through the refrigerant supply path 60 and the circulation flow path 62 can be increased without changing the capacity of the pump 103 that supplies the refrigerant. Can do.
 実施の形態10.
 次に、この発明の実施の形態10について説明する。
 この実施の形態10に係る可変動弁機構は、実施の形態1に対して、第2内歯歯車に冷媒供給溝を設けたものである。
Embodiment 10 FIG.
Next, an embodiment 10 of the invention will be described.
The variable valve mechanism according to the tenth embodiment is different from the first embodiment in that the second internal gear is provided with a refrigerant supply groove.
 図14に第2内歯歯車14の正面図を示す。第2内歯歯車14は、第2内歯歯車14と第2外部ハウジング12との間に冷媒を供給するための冷媒供給溝80を有している。その他の構成は、実施の形態1と同じである。 FIG. 14 shows a front view of the second internal gear 14. The second internal gear 14 has a refrigerant supply groove 80 for supplying a refrigerant between the second internal gear 14 and the second external housing 12. Other configurations are the same as those of the first embodiment.
 この実施の形態10では、第2内歯歯車14に、第2内歯歯車14と第2外部ハウジング12との間に冷媒を供給するための冷媒供給溝80が設けられており、第2内歯歯車14と第2外部ハウジング12の間に形成された隙間に冷媒を供給し、油膜の形成を促進する。なお、この油膜は第2内歯歯車14と第2外部ハウジング12との間の潤滑液として機能するものである。したがって、冷媒供給溝80により安定的に冷媒が供給されることにより、第2内歯歯車14と第2外部ハウジング12の摩耗を防止することができる。 In the tenth embodiment, the second internal gear 14 is provided with a refrigerant supply groove 80 for supplying a refrigerant between the second internal gear 14 and the second external housing 12. A refrigerant is supplied to a gap formed between the toothed gear 14 and the second outer housing 12 to promote formation of an oil film. The oil film functions as a lubricating liquid between the second internal gear 14 and the second outer housing 12. Therefore, it is possible to prevent the second internal gear 14 and the second outer housing 12 from being worn by stably supplying the refrigerant through the refrigerant supply groove 80.
 このように、第2内歯歯車14を摺動可能に内側に備える第2外部ハウジング12を有し、第2内歯歯車14は、第2内歯歯車14と第2外部ハウジング12との間に冷媒を供給するための冷媒供給溝80を有するため、安定的に冷媒が供給されることにより、第2内歯歯車14と第2外部ハウジング12の摩耗を防止することができる。 As described above, the second external housing 12 having the second internal gear 14 slidably provided therein is provided, and the second internal gear 14 is disposed between the second internal gear 14 and the second external housing 12. Since the coolant supply groove 80 for supplying the coolant to the coolant is stably supplied, it is possible to prevent the second internal gear 14 and the second external housing 12 from being worn by stably supplying the coolant.
 なお、実施の形態10では、冷媒供給孔61に対して180度の位置に冷媒供給溝80を形成していたが、この位置に限定されるものではなく、例えば冷媒供給孔61と同じ位置に形成してもよい。 In the tenth embodiment, the refrigerant supply groove 80 is formed at a position of 180 degrees with respect to the refrigerant supply hole 61. However, the present invention is not limited to this position. It may be formed.
 実施の形態11.
 次に、この発明の実施の形態11について説明する。
 この実施の形態11に係る可変動弁機構は、実施の形態1に対して、自動車車両に設けられたものである。
Embodiment 11 FIG.
Next, an eleventh embodiment of the present invention will be described.
The variable valve mechanism according to the eleventh embodiment is provided in an automobile vehicle relative to the first embodiment.
 図15に示すように、自動車車両201内に設けられた内燃機関202に可変動弁機構200が設置されている。その他の構成は、実施の形態8と同じである。 As shown in FIG. 15, a variable valve mechanism 200 is installed in an internal combustion engine 202 provided in an automobile vehicle 201. Other configurations are the same as those in the eighth embodiment.
 自動車車両201内に設けられた内燃機関202に可変動弁機構200を設置することで、自動車車両201の運転状況に合わせて、可変動弁機構200を効率よく動作させることが可能となる。したがって、内燃機関202の燃費効率が向上し、効率のよい自動車車両201を構成することができる。 By installing the variable valve mechanism 200 in the internal combustion engine 202 provided in the automobile vehicle 201, the variable valve mechanism 200 can be efficiently operated in accordance with the driving situation of the automobile vehicle 201. Therefore, the fuel efficiency of the internal combustion engine 202 is improved, and an efficient automobile vehicle 201 can be configured.
 このように、内燃機関202を有する自動車車両201に設置され、回転力を出力軸端側に出力するモータ30により、内燃機関202の吸気バルブ及び排気バルブの開閉タイミングを調整するため、運転状況に合わせて可変動弁機構200が動作することで、内燃機関202が効率よく動作するので、燃費効率が向上し、可変動弁機構200を設けない自動車車両に対して、効率のよい自動車車両を提供することができる。 In this way, the motor 30 installed in the automobile vehicle 201 having the internal combustion engine 202 and outputting the rotational force to the output shaft end side adjusts the opening and closing timings of the intake valve and the exhaust valve of the internal combustion engine 202. In addition, since the variable valve mechanism 200 operates, the internal combustion engine 202 operates efficiently, thereby improving fuel efficiency and providing an efficient automobile vehicle for an automobile vehicle not provided with the variable valve mechanism 200. can do.
 本発明の他の実施形態では、可変動弁機構ではなく、モータと、減速機と、モータの駆動を制御する駆動制御装置とを備え、モータの回転数を減速機によって減速するアクチュエータとして実施してもよい。 In another embodiment of the present invention, instead of a variable valve mechanism, a motor, a speed reducer, and a drive control device that controls driving of the motor are provided, and the motor speed is reduced as an actuator that decelerates by the speed reducer. May be.
 このように、出力軸端側が減速機の径方向内側に配置され、減速機と、減速機を駆動するモータと、出力軸端側とは反対側に位置する、モータの他端側に設けられ、モータの駆動を制御する駆動制御装置を備え、駆動制御装置は、モータに対向する側に位置する下カバーを有し、モータは、内部にモータの熱が伝わる冷媒が流れる循環流路を有し、モータと下カバーとの間に、循環流路と通じ、冷媒が流れる間隙を有するので、駆動制御装置が受ける熱の影響を低減した、アクチュエータを提供することができる。 As described above, the output shaft end side is disposed on the radially inner side of the speed reducer, and is provided on the other end side of the motor, which is located on the opposite side of the speed reducer, the motor that drives the speed reducer, and the output shaft end side. A drive control device for controlling the drive of the motor, the drive control device having a lower cover positioned on the side facing the motor, and the motor having a circulation flow path through which a refrigerant for transferring the heat of the motor flows. In addition, since there is a gap through which the refrigerant flows between the motor and the lower cover and through which the refrigerant flows, it is possible to provide an actuator in which the influence of heat received by the drive control device is reduced.
 本発明は、上述した実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲で種々の形態で実施可能である。 The present invention is not limited to the embodiments described above, and can be implemented in various forms without departing from the spirit of the invention.
 10 減速機、14 第2内歯歯車、30 モータ、32 内部ハウジング、33 回転子、35 固定子、40 カムシャフト、50 駆動制御装置、51 上カバー(カバー)、52 下カバー(カバー)、52a 下カバー(カバー、断熱部材)、53,53a 電子機器、56 断熱体(断熱部材)、57 封止体、60 冷媒供給路(第3冷媒流路)、61b 冷媒供給孔、62 循環流路(第1冷媒流路)、64 間隙(第2冷媒流路)、66,66a,66b,66c 伝熱促進体、67 分流促進体、72 放熱促進材、80 冷媒供給溝、201 自動車車両。 10 reducer, 14 second internal gear, 30 motor, 32 internal housing, 33 rotor, 35 stator, 40 camshaft, 50 drive control device, 51 upper cover (cover), 52 lower cover (cover), 52a Lower cover (cover, heat insulating member), 53, 53a electronic device, 56 heat insulating body (heat insulating member), 57 sealed body, 60 refrigerant supply path (third refrigerant flow path), 61b refrigerant supply hole, 62 circulation flow path ( (First refrigerant flow path), 64 gap (second refrigerant flow path), 66, 66a, 66b, 66c heat transfer promotion body, 67 shunting promotion body, 72 heat release promotion material, 80 refrigerant supply groove, 201 automobile vehicle.

Claims (16)

  1.  回転力を出力軸端側に出力するモータにより、内燃機関の吸気バルブ及び排気バルブの開閉タイミングを調整する可変動弁機構であって、
     前記出力軸端側とは反対側に位置する、前記モータの他端側に設けられ、前記モータの駆動を制御する駆動制御装置
    を備え、
     前記駆動制御装置は、前記モータに対向する側に位置する第1カバーを有し、
     前記モータは、内部に前記モータの熱が伝わる冷媒が流れる第1冷媒流路を有し、
     前記モータと前記第1カバーとの間に、前記第1冷媒流路と通じ、前記冷媒が流れる第2冷媒流路を有する可変動弁機構。
    A variable valve mechanism that adjusts the opening and closing timing of an intake valve and an exhaust valve of an internal combustion engine by a motor that outputs a rotational force to the output shaft end side,
    Provided on the other end side of the motor, located on the opposite side to the output shaft end side, and provided with a drive control device for controlling the drive of the motor,
    The drive control device has a first cover located on a side facing the motor,
    The motor has a first refrigerant flow path through which a refrigerant through which the heat of the motor is transmitted flows,
    A variable valve mechanism that has a second refrigerant channel that communicates with the first refrigerant channel and through which the refrigerant flows, between the motor and the first cover.
  2.  前記第2冷媒流路は、間隙であって、前記間隙を通じて前記冷媒が外部へ流出する請求項1に記載の可変動弁機構。 The variable valve mechanism according to claim 1, wherein the second refrigerant flow path is a gap, and the refrigerant flows out through the gap.
  3.  前記モータは、回転子と、前記回転子の径方向内側に固定子とを有し、
     前記第1冷媒流路は、前記固定子の内部に設けられる請求項1又は2に記載の可変動弁機構。
    The motor has a rotor and a stator on a radially inner side of the rotor,
    The variable valve mechanism according to claim 1 or 2, wherein the first refrigerant flow path is provided inside the stator.
  4.  前記固定子の内部に、前記固定子の熱を前記冷媒に伝える伝熱促進体を有する請求項3に記載の可変動弁機構。 The variable valve mechanism according to claim 3, further comprising a heat transfer promoting body that transfers heat of the stator to the refrigerant inside the stator.
  5.  前記固定子の内部に、前記第1冷媒流路を流れる前記冷媒の一部を、前記回転子と前記固定子との間を流れるように分流させる分流促進体を有する請求項3又は4に記載の可変動弁機構。 5. The shunt promoting body according to claim 3, further comprising a shunt promoting body that shunts a part of the refrigerant flowing through the first refrigerant flow path so as to flow between the rotor and the stator. Variable valve mechanism.
  6.  前記第1カバーは、前記冷媒から前記駆動制御装置へ熱が伝わることを防止する断熱部材から構成される請求項1~5のいずれか一項に記載の可変動弁機構。 The variable valve mechanism according to any one of claims 1 to 5, wherein the first cover includes a heat insulating member that prevents heat from being transferred from the refrigerant to the drive control device.
  7.  前記第1カバーは、前記冷媒から前記駆動制御装置へ熱が伝わることを防止する、前記第1カバーとは別体の断熱部材を有する請求項1~5のいずれか一項に記載の可変動弁機構。 The variable motion according to any one of claims 1 to 5, wherein the first cover includes a heat insulating member separate from the first cover, which prevents heat from being transferred from the refrigerant to the drive control device. Valve mechanism.
  8.  前記第1カバーは、前記冷媒が前記駆動制御装置の内部に浸入することを防止する封止体を有する請求項1~7のいずれか一項に記載の可変動弁機構。 The variable valve mechanism according to any one of claims 1 to 7, wherein the first cover includes a sealing body that prevents the refrigerant from entering the drive control device.
  9.  前記駆動制御装置は、
     前記モータを駆動する電子機器と、
     前記電子機器を前記第1カバーとの間に挟むように位置する第2カバーと、
     前記電子機器と、前記第2カバーの内壁とに接触し、前記電子機器から前記第2カバーに熱を伝える放熱促進材とを有する請求項1~8のいずれか一項に記載の可変動弁機構。
    The drive control device includes:
    An electronic device for driving the motor;
    A second cover positioned so as to sandwich the electronic device with the first cover;
    The variable valve operating system according to any one of claims 1 to 8, further comprising a heat radiation promoting material that contacts the electronic device and an inner wall of the second cover and transfers heat from the electronic device to the second cover. mechanism.
  10.  前記第1冷媒流路及び前記第2冷媒流路は、前記内燃機関へ接続され、前記冷媒が前記内燃機関を冷却する請求項1~9のいずれか一項に記載の可変動弁機構。 The variable valve mechanism according to any one of claims 1 to 9, wherein the first refrigerant channel and the second refrigerant channel are connected to the internal combustion engine, and the refrigerant cools the internal combustion engine.
  11.  前記モータに設けられた内部ハウジングと、
     前記内部ハウジングに支持された第2内歯歯車と
    を有し、
     第2内歯歯車は、前記冷媒が供給される冷媒供給孔を有し、前記冷媒供給孔は多段孔又は円錐型で構成される請求項1~10のいずれか一項に記載の可変動弁機構。
    An internal housing provided in the motor;
    A second internal gear supported by the inner housing;
    The variable valve according to any one of claims 1 to 10, wherein the second internal gear has a refrigerant supply hole through which the refrigerant is supplied, and the refrigerant supply hole is configured in a multistage hole or a conical shape. mechanism.
  12.  前記第2内歯歯車を摺動可能に内側に備える第2外部ハウジングを有し、
     前記第2内歯歯車は、前記第2内歯歯車と前記第2外部ハウジングとの間に前記冷媒を供給するための冷媒供給溝を有する請求項11に記載の可変動弁機構。
    A second external housing provided with the second internal gear slidably on the inside;
    The variable valve mechanism according to claim 11, wherein the second internal gear has a refrigerant supply groove for supplying the refrigerant between the second internal gear and the second external housing.
  13.  前記内燃機関を有する自動車車両に設置され、回転力を前記出力軸端側に出力する前記モータにより、前記内燃機関の前記吸気バルブ及び前記排気バルブの開閉タイミングを調整する請求項1~12のいずれか一項に記載の可変動弁機構。 The opening / closing timing of the intake valve and the exhaust valve of the internal combustion engine is adjusted by the motor that is installed in the automobile vehicle having the internal combustion engine and outputs rotational force to the output shaft end side. The variable valve mechanism according to claim 1.
  14.  前記吸気バルブ及び前記排気バルブの開閉タイミングを調整するカムシャフトに接続された減速機を有し、
     前記減速機を駆動する前記モータは、前記減速機の径方向内側に配置される請求項1に記載の可変動弁機構。
    A reduction gear connected to a camshaft for adjusting the opening and closing timing of the intake valve and the exhaust valve;
    The variable valve mechanism according to claim 1, wherein the motor that drives the speed reducer is disposed radially inside the speed reducer.
  15.  前記第1冷媒流路は前記カムシャフトに設けられた第3冷媒流路と連通する請求項14に記載の可変動弁機構。 The variable valve mechanism according to claim 14, wherein the first refrigerant flow path communicates with a third refrigerant flow path provided in the camshaft.
  16.  減速機と、
     出力軸端側が前記減速機の径方向内側に配置され、前記減速機を駆動するモータと、
     前記出力軸端側とは反対側に位置する、前記モータの他端側に設けられ、前記モータの
    駆動を制御する駆動制御装置を備え、
     前記駆動制御装置は、前記モータに対向する側に位置する第1カバーを有し、
     前記モータは、内部に前記モータの熱が伝わる冷媒が流れる第1冷媒流路を有し、
     前記モータと前記第1カバーとの間に、前記第1冷媒流路と通じ、前記冷媒が流れる第2冷媒流路を有するアクチュエータ。
    A reducer,
    An output shaft end side is arranged on the radially inner side of the speed reducer, and a motor that drives the speed reducer;
    Provided on the other end side of the motor, located on the opposite side to the output shaft end side, and provided with a drive control device for controlling the drive of the motor,
    The drive control device has a first cover located on a side facing the motor,
    The motor has a first refrigerant flow path through which a refrigerant through which the heat of the motor is transmitted flows,
    An actuator having a second refrigerant flow path that communicates with the first refrigerant flow path and through which the refrigerant flows, between the motor and the first cover.
PCT/JP2019/006491 2018-03-27 2019-02-21 Variable valve mechanism and actuator WO2019187825A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020510431A JP6840290B2 (en) 2018-03-27 2019-02-21 Variable valve mechanism and actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018060034 2018-03-27
JP2018-060034 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019187825A1 true WO2019187825A1 (en) 2019-10-03

Family

ID=68059866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006491 WO2019187825A1 (en) 2018-03-27 2019-02-21 Variable valve mechanism and actuator

Country Status (2)

Country Link
JP (1) JP6840290B2 (en)
WO (1) WO2019187825A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307761A (en) * 2005-04-28 2006-11-09 Denso Corp Actuator of valve lift controller
JP2007231800A (en) * 2006-02-28 2007-09-13 Toyota Motor Corp Cooling mechanism for variable valve train
JP2015059519A (en) * 2013-09-19 2015-03-30 日立オートモティブシステムズ株式会社 Controller of variable valve device and variable valve system of internal combustion engine
WO2016194544A1 (en) * 2015-06-02 2016-12-08 日立オートモティブシステムズ株式会社 Valve timing control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307761A (en) * 2005-04-28 2006-11-09 Denso Corp Actuator of valve lift controller
JP2007231800A (en) * 2006-02-28 2007-09-13 Toyota Motor Corp Cooling mechanism for variable valve train
JP2015059519A (en) * 2013-09-19 2015-03-30 日立オートモティブシステムズ株式会社 Controller of variable valve device and variable valve system of internal combustion engine
WO2016194544A1 (en) * 2015-06-02 2016-12-08 日立オートモティブシステムズ株式会社 Valve timing control device for internal combustion engine

Also Published As

Publication number Publication date
JPWO2019187825A1 (en) 2020-12-03
JP6840290B2 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
JP6846083B2 (en) Valve and cooling water circulation system
EP2634388B1 (en) Cooling water control valve apparatus
JP4025762B2 (en) Disc valve for engine cooling
JP5925456B2 (en) Cooling water control valve device
US8601792B2 (en) Oil cooler having adjustable heat transfer effectiveness
JP4600379B2 (en) Valve timing adjustment device
US20090120388A1 (en) Electro-hydraulic hybrid camshaft phaser
JP5831471B2 (en) Electronic component housing
JP5231059B2 (en) Hydraulic pump unit
JP2019527790A (en) Controller with internal active cooling function and pump assembly with built-in motor
WO2019187825A1 (en) Variable valve mechanism and actuator
US10094454B2 (en) Axial through-shaft actuator arrangement
US9556759B2 (en) Valve timing controller
JP7058736B2 (en) Control valve, flow control valve
JP6112129B2 (en) Valve timing adjustment device
JP2009085119A (en) Vacuum pump mounting structure
JP2008121558A (en) Valve timing adjusting device
WO2020202705A1 (en) Control valve
JP2009062894A (en) Valve timing adjusting device
JPH0988595A (en) Water-cooling device for automobile engine
JP6107693B2 (en) Valve timing adjustment device
JP5783309B2 (en) Camshaft support structure
JP2008215312A (en) Valve timing device
JP5991274B2 (en) Valve timing adjustment device
JP5783308B2 (en) Camshaft support structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776976

Country of ref document: EP

Kind code of ref document: A1