WO2019187634A1 - Driving device, lens barrel, and imaging device - Google Patents

Driving device, lens barrel, and imaging device Download PDF

Info

Publication number
WO2019187634A1
WO2019187634A1 PCT/JP2019/003858 JP2019003858W WO2019187634A1 WO 2019187634 A1 WO2019187634 A1 WO 2019187634A1 JP 2019003858 W JP2019003858 W JP 2019003858W WO 2019187634 A1 WO2019187634 A1 WO 2019187634A1
Authority
WO
WIPO (PCT)
Prior art keywords
yoke
lens
optical axis
axis direction
movable coil
Prior art date
Application number
PCT/JP2019/003858
Other languages
French (fr)
Japanese (ja)
Inventor
田中 徹
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201980021549.XA priority Critical patent/CN111902758B/en
Priority to JP2020510337A priority patent/JPWO2019187634A1/en
Publication of WO2019187634A1 publication Critical patent/WO2019187634A1/en
Priority to JP2023102430A priority patent/JP2023115126A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present technology relates to a technical field of a driving device that applies a driving force to a moving body having a lens, a lens barrel including the driving device, and an imaging device.
  • Various imaging devices such as a video camera and a still camera are provided with a lens barrel that captures an optical image via a photographing optical system such as a lens, and the lens barrel has a plurality of lens groups arranged in the optical axis direction. There is something that has been.
  • the imaging apparatus is not provided with a lens barrel, and an interchangeable lens or the like that is detachable from the imaging apparatus is used as the lens barrel.
  • Some of these lens barrels have a configuration in which a moving body having a lens is moved in the optical axis direction by the driving force of a driving device in order to perform focusing, zooming, and the like.
  • a driving device that applies a driving force to a moving body
  • a type that has a magnet, a moving coil, and a yoke and applies a thrust generated in a magnetic circuit as a driving force to the moving body when a current is supplied to the moving coil.
  • the drive device described in Patent Document 1 has a configuration in which a movable coil is arranged on the outer peripheral side of a guide shaft formed in a round shaft shape for guiding a moving body, and a magnet is arranged on the outer peripheral side of the movable coil. Yes.
  • the driving device described in Patent Document 2 has a configuration in which a movable coil is disposed on the outer peripheral side of a yoke formed in a round shaft shape, and a magnet is disposed on the outer peripheral side of the movable coil.
  • the drive device described in Patent Document 3 has a configuration in which a movable coil is disposed on the outer peripheral side of the yoke, and a pair of magnets are disposed on the opposite side across the yoke and the movable coil.
  • a movable coil is disposed on the outer peripheral side of the guide shaft or the yoke, and a magnet is disposed on the outer peripheral side of the movable coil. Therefore, it tends to be large in the radial direction, and there is a possibility that the lens barrel and the imaging device become large because the lens barrel in which the driving device is arranged and the arrangement space of the driving device in the imaging device are large.
  • the driving force is increased by increasing the thickness of the central yoke.
  • the driving force is also increased by increasing the thickness of the central yoke. There is a risk that the size of the lens barrel and the imaging device may be hindered due to the increase in size of the device.
  • the drive device which concerns on this technique gives the driving force to an optical axis direction with respect to the moving body which has at least 1 lens and the lens holding frame holding the said lens, and the yoke extended in an optical axis direction
  • a movable coil that is inserted into the yoke and fixed to the movable body and movable in the optical axis direction along the yoke, and a pair of magnets positioned on both sides of the yoke and the movable coil,
  • the surfaces of the pair of magnets facing the movable coil are magnetic flux generation surfaces
  • the movable body is in the optical axis direction inside the cylindrical portion with respect to the cylindrical portion whose axial direction is the optical axis direction. It is moved, and the arrangement direction of the yoke and the pair of magnets is made the circumferential direction of the cylindrical portion.
  • the moving body is moved in the optical axis direction inside the cylindrical portion, and the yoke and the pair of magnets are arranged in the circumferential direction of the cylindrical portion.
  • the cylindrical portion is formed in a substantially cylindrical shape.
  • the yoke and the pair of magnets are positioned side by side in the circumferential direction.
  • the pair of magnets it is preferable that the distance between the inner ends of the magnetic flux generation surface is smaller than the distance between the outer ends.
  • the magnetic flux generation surface is positioned substantially parallel to a virtual plane including the optical axis.
  • the yoke, the movable coil, and the pair of magnets are positioned on the outer peripheral portion in the internal space of the cylindrical portion.
  • the yoke, the movable coil, and the pair of magnets are positioned close to the inner peripheral surface of the cylindrical portion.
  • a frame-shaped outer yoke is disposed at a position surrounding the movable coil, and a pair of bottoms positioned in parallel with the pair of side yoke portions in which the outer yoke is positioned in parallel.
  • the magnet is attached to the pair of side yoke portions, and both end portions in the optical axis direction of the yoke are attached to the pair of bottom yoke portions.
  • the maximum area of the cross section perpendicular to the optical axis of the yoke be 5% or more of the total area of the magnetic flux generation surfaces of the pair of magnets.
  • the movable coil is formed in a cylindrical shape.
  • the lens holding frame is provided with a fixed portion to which the movable coil is fixed by adhesion, and at least a part of the fixed portion is between the pair of magnets and the movable coil. It is desirable to be located in the space.
  • a plurality of the fixed portions are provided, and the plurality of fixed portions are provided at substantially equal intervals in the circumferential direction of the movable coil.
  • the magnetic flux generating surface is formed in an arcuate surface along the outer peripheral surface of the movable coil.
  • the magnetic flux density is improved by reducing the distance between the magnetic flux generating surface and the outer peripheral surface of the movable coil in the circumferential direction of the movable coil.
  • the lens-barrel which concerns on this technique has a cylindrical part by which the axial direction was made into the optical axis direction, at least 1 lens, and the lens holding frame holding the said lens,
  • the inside of the said cylindrical part A moving body that is moved in the optical axis direction, and a driving device that applies a driving force for moving the moving body in the optical axis direction, the driving device including a yoke that extends in the optical axis direction, A movable coil that is fixed to the movable body and movable in the optical axis direction along the yoke, and a pair of magnets positioned on both sides of the yoke and the movable coil.
  • the surface of the magnet that faces the movable coil is a magnetic flux generating surface, and the arrangement direction of the yoke and the pair of magnets is the circumferential direction of the cylindrical portion.
  • the moving body is moved in the optical axis direction inside the cylindrical portion, and the yoke and the pair of magnets are arranged in the circumferential direction of the cylindrical portion.
  • two guide shafts for guiding the movable body in the optical axis direction are provided, and the two guide shafts are positioned on substantially opposite sides across the lens. desirable.
  • the moving body is guided by the two guide shafts positioned substantially opposite to each other across the lens and moved in the optical axis direction, so that the inner peripheral surface of the movable coil becomes the outer peripheral surface of the yoke when the moving body moves. It becomes difficult to touch.
  • one of the guide shafts, one of the driving devices, the other of the guide shafts, and the other of the driving devices are sequentially arranged at substantially equal intervals in the circumferential direction. It is desirable.
  • the driving device is positioned on the substantially opposite side across the lens, and one guide shaft and the other guide shaft are positioned in the circumferential direction between the driving devices.
  • an imaging apparatus includes a lens barrel that captures an optical image and an imaging element that converts the captured optical image into an electrical signal, and the axial direction of the lens barrel is an optical axis direction.
  • a movable body having at least one lens and a lens holding frame for holding the lens, the movable body being moved in the optical axis direction inside the cylindrical portion, and the optical axis direction of the movable body
  • a driving device that applies a driving force for movement to the optical axis, and the driving device includes a yoke that extends in an optical axis direction, and the optical axis along the yoke that is inserted into the yoke and fixed to the moving body.
  • a movable coil movable in a direction, a pair of magnets positioned on both sides of the yoke and the movable coil, and surfaces of the pair of magnets facing the movable coil are magnetic flux generating surfaces, respectively, And said In which the arrangement direction of the pair of magnets are in a circumferential direction of the cylindrical portion.
  • the moving body is moved in the optical axis direction inside the cylindrical portion, and the yoke and the pair of magnets are arranged in the circumferential direction of the cylindrical portion.
  • the moving body is guided by the two guide shafts positioned substantially opposite to each other across the lens and moved in the optical axis direction, so that the inner peripheral surface of the movable coil becomes the outer peripheral surface of the yoke when the moving body moves. It becomes difficult to touch.
  • one said guide shaft, one said drive device, the other said guide shaft, and the other said drive device are arrange
  • the driving device is positioned on the substantially opposite side across the lens, and one guide shaft and the other guide shaft are positioned in the circumferential direction between the driving devices.
  • the moving body is moved in the optical axis direction inside the cylindrical portion, and the yoke and the pair of magnets are arranged in the circumferential direction of the cylindrical portion.
  • the arrangement space can be effectively used, and the lens barrel provided with the driving device and the imaging device can be downsized.
  • FIGS. 2 to 10 show an embodiment of a driving device of the present technology, a lens barrel, and an imaging device
  • this drawing is a perspective view of the imaging device showing the lens barrel and the apparatus main body separately.
  • It is a perspective view of the lens barrel which shows a part in cross section.
  • It is a horizontal sectional view of a lens barrel.
  • It is a vertical sectional view of a lens barrel.
  • It is a perspective view which shows a part of lens holding frame.
  • the imaging device of the present technology is applied to a still camera
  • the lens barrel of the present technology is applied to an interchangeable lens that can be attached to and detached from the main body of the still camera
  • the driving device of the present technology is used as the lens. This is applied to a driving device arranged in a lens barrel.
  • the scope of application of the present technology is not limited to a still camera, an interchangeable lens that can be attached to and detached from the main body of the still camera, and a drive device disposed on the interchangeable lens.
  • the present technology is provided in, for example, various imaging devices incorporated in a video camera or other equipment as an imaging device, a lens barrel configured by a lens group or the like provided in these imaging devices, and these various imaging devices.
  • the present invention can be widely applied to a driving device arranged in a lens barrel.
  • the lens group shown below may include one or a plurality of lenses and other optical elements such as a diaphragm and an iris in addition to the lens group including one or a plurality of lenses.
  • the imaging device 100 is configured by a device main body 200 and a lens barrel 1 (see FIG. 1).
  • the lens barrel 1 is, for example, an interchangeable lens that can be attached to and detached from the apparatus main body 200.
  • the present technology is a type in which a lens barrel having a structure similar to the internal structure of the lens barrel 1 is incorporated inside the apparatus main body, or a retractable type in which this lens barrel protrudes or is stored in the apparatus main body. It is also possible to apply to.
  • the apparatus main body 200 is configured by arranging necessary parts inside and outside the outer casing 201.
  • various operation units 202, 202,... are arranged on the upper surface, the rear surface, and the like.
  • the operation units 202, 202,... For example, a power button, a shutter button, a zoom knob, a mode switching knob, and the like are provided.
  • a display (display unit) (not shown) is disposed on the rear surface of the outer casing 201.
  • a circular opening 201 a is formed in the front surface of the outer casing 201, and a portion around the opening 201 a is provided as a mount portion 203 for attaching the lens barrel 1.
  • An imaging element 204 such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor) is disposed inside the outer casing 201, and the imaging element 204 is positioned behind the opening 201a.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the lens barrel 1 includes a substantially cylindrical outer tube 2 whose axial direction is the front-rear direction, and required parts that are attached to or supported by the inside and outside of the outer tube 2 (see FIG. 1).
  • a lens mount 3 that is bayonet-coupled to the mount portion 203 of the apparatus main body 200 is provided.
  • the lens barrel 1 is provided with operation rings 4 and 4 that function as a zoom ring and a focus ring. Manual zooming and manual focusing are performed by rotating the operation rings 4 and 4.
  • the lens barrel 1 has, for example, a plurality of lens groups 5, 5,.
  • the lens groups 5, 5,... are spaced apart in the optical axis direction (front-rear direction), and have a movable group that can move in the optical axis direction and a fixed group that cannot move in the optical axis direction.
  • One lens group 5 is provided as a focus lens group that moves in the optical axis direction and performs focusing (see FIGS. 2 to 4).
  • a holding body 6 is disposed inside the outer cylinder 2.
  • the holding body 6 has a substantially cylindrical tubular portion 7 whose axial direction is the front-rear direction and a substantially annular annular portion 8 attached to the tubular portion 7.
  • a first support protrusion 7a protruding inward is provided at the rear end of the cylindrical portion 7.
  • a second support protrusion 7 b protruding inward is provided at an intermediate portion in the front-rear direction of the cylindrical portion 7.
  • the first support protrusion 7 a and the second support protrusion 7 b are provided at substantially opposite positions across the central axis of the cylindrical portion 7.
  • the cylindrical portion 7 is formed with a relief recess 7c that is opened inward and extends forward and backward, and the relief recess 7c is formed at a position continuous with the first support projection 7a.
  • Arrangement recesses 7d and 7d opened inward and forward respectively are formed in the substantially first half of the cylindrical portion 7, and the arrangement recesses 7d and 7d are positioned on the substantially opposite side across the central axis of the cylindrical portion 7. ing.
  • Sensor placement holes 7e and 7e are formed in the cylindrical portion 7 at positions substantially opposite to each other across the central axis.
  • the annular portion 8 has at least a first mounting hole 8a and a second mounting hole 8b that are opened at the rear.
  • the first mounting hole 8a and the second mounting hole 8b are located on substantially opposite sides with the central axis of the annular portion 8 interposed therebetween.
  • the annular portion 8 is formed with a clearance recess 8c that is opened inward and rearward, and the clearance recess 8c is positioned in the vicinity of the first mounting hole 8a.
  • the annular portion 8 is attached to the front end portion of the cylindrical portion 7. In a state where the annular portion 8 is attached to the cylindrical portion, the relief recess 8c formed in the annular portion 8 and the relief recess 7c formed in the tubular portion 7 are continuous in the front-rear direction (see FIG. 3).
  • First bearing caps 9 and 9 are inserted and fixed in the first support protrusion 7a of the cylindrical portion 7 and the first support hole 8a of the annular portion 8, respectively.
  • Second bearing caps 10 and 10 are inserted and fixed in the second support protrusion 7b of the cylindrical portion 7 and the second support hole 8b of the annular portion 8, respectively.
  • Both end portions in the axial direction of the first guide shaft 11 are inserted and fixed to the first bearing caps 9 and 9.
  • Both end portions of the second guide shaft 12 in the axial direction are inserted and fixed to the second bearing caps 10 and 10.
  • a movable body 13 is slidably supported by the first guide shaft 11 and the second guide shaft 12, and the movable body 13 is guided by the first guide shaft 11 and the second guide shaft 12 to be in the optical axis direction. (See FIGS. 3 and 4).
  • the moving body 13 includes a lens group 5 and a lens holding frame 14, and the lens group 5 is held by the lens holding frame 14.
  • the lens group 5 of the moving body 13 is, for example, the above-described focus lens group.
  • the lens group 5 of the moving body 13 includes one or a plurality of lenses.
  • the lens group 5 of the moving body 13 may be another movable group such as a zoom lens group that is moved in the optical axis direction for zooming.
  • the lens holding frame 14 includes an annular lens holding portion 15, a protruding portion 16 protruding from the lens holding portion 15, and arm portions 17 and 17 protruding from the lens holding portion 15 in substantially opposite directions.
  • the protruding portion 16 protrudes forward and rearward from the outer peripheral portion of the lens holding portion 15, and both front and rear end portions are provided as first guided portions 16a and 16a, respectively.
  • the first guide shaft 11 is inserted through the first guided portions 16a and 16a.
  • a part of the lens holding portion 15 is provided as the second guided portions 15a and 15a, and the second guided portions 15a and 15a are spaced apart from each other in the front-rear direction.
  • the second guide shaft 12 is inserted through the second guided portions 15a and 15a.
  • the moving body 13 is formed by inserting the first guide shaft 11 through the first guided portions 16a and 16a and the second guide shaft 12 through the second guided portions 15a and 15a.
  • the first guide shaft 11 and the second guide shaft 12 are supported so as to be movable in the optical axis direction.
  • a part of the protruding portion 16 having the first guided portions 16a and 16a is annular with the tubular portion 7. It is inserted into relief recesses 7c and 8c formed in the portion 8 (see FIGS. 3 and 4).
  • the portions of the cylindrical portion 7 and the annular portion 8 where the arrangement recesses 7d and 7d and the relief recesses 7c and 8c are not formed are substantially constant, and the arrangement recesses 7d and 7d and the relief recesses 7c and 8c are formed. It is thicker than the thickness of the part.
  • the arm portions 17, 17 protrude outward from the lens holding portion 15, and are provided at substantially opposite positions across the central axis of the lens group 5.
  • the arm portion 17 has an annular inserted portion 18 and fixing portions 19 and 19 protruding rearward from the outer peripheral portion of the inserted portion 18 (see FIG. 5).
  • the fixing portions 19 are provided so as to be separated from each other in the circumferential direction, and the fixing portion 19 does not exist at a position farthest from the lens holding portion 15 in the arm portion 17.
  • the fixing portion 19 is formed with a bonding concave portion 19a that opens in the center direction and rearward of the inserted portion 18.
  • the portions of the lens holding portion 15 from which the arm portions 17 and 17 are projected are provided as receiving portions 20 and 20, respectively (see FIGS. 4 and 5).
  • the receiving part 20 is formed in an arc shape continuous with a part of the outer peripheral part of the insertion part 18, and the rear end part is provided as a fixing part 21. Accordingly, the fixing portion 21 is located behind the fixing portions 19 and 19.
  • the fixing portion 21 is formed with a bonding concave portion 21a that is opened in the center direction and rearward of the inserted portion 18.
  • the fixing portions 19 and 19 and the fixing portion 21 are located at substantially equal intervals in the circumferential direction.
  • Detecting magnets 22 and 22 are attached to the outer periphery of the lens holding portion 15 (see FIGS. 2 and 4).
  • the detection magnets 22 and 22 are positioned substantially on opposite sides of the central axis of the lens group 5 and are formed in a shape extending in the front-rear direction.
  • Magnetic sensors 23 and 23 are disposed at positions facing the detection magnets 22 and 22, respectively.
  • the magnetic sensors 23 and 23 are attached to the cylindrical portion 7 with at least a part thereof being inserted into the sensor arrangement holes 7e and 7e, respectively.
  • the magnetic sensor 23 is mounted on the circuit board 24.
  • the magnetic sensors 23 and 23 detect the strength of the magnetic field of the detection magnets 22 and 22 that change when the moving body 13 is moved in the optical axis direction, and specify the position of the moving body 13 in the optical axis direction.
  • the driving device 25 includes an outer yoke 26, a yoke 27, a movable coil 28, and magnets 29 and 29.
  • the outer yoke 26 is formed into a frame shape by combining a pair of side yoke portions 30 and 30 and a pair of bottom yoke portions 31 and 31.
  • the side yoke portion 30 is formed in a substantially rectangular plate shape extending in the front-rear direction.
  • the bottom yoke portion 31 is formed in a plate shape that extends in the circumferential direction of the annular portion 8 and is curved in a gentle arc shape.
  • the upper and lower end portions of the side yoke portions 30 and 30 and the left and right end portions of the bottom yoke portions 31 and 31 are coupled to each other.
  • the side yoke parts 30 and 30 and the bottom yoke parts 31 and 31 may each be formed by a separate member, and one part or all part may be formed integrally. .
  • the yoke 27 is formed in a round shaft shape, and the axial direction is the front-rear direction. Therefore, the yoke 27 has a circular cross section in a direction orthogonal to the axial direction.
  • the yoke 27 has both front and rear end portions coupled to the center portions of the bottom yoke portions 31 and 31, respectively, and is positioned between the side yoke portions 30 and 30.
  • the yoke 27 is inserted into the inserted portion 18 of the arm portion 17 in the lens holding frame 14.
  • the yoke 27 may be partially formed in a cavity.
  • the movable coil 28 is formed in a cylindrical shape.
  • the inner diameter of the movable coil 28 is made larger than the outer diameter of the yoke 27, and the yoke 27 is inserted into the movable coil 28.
  • the movable coil 28 is fixed to the fixing portions 19, 19, and 21 with the front end surface in contact with the rear surface of the arm portion 17 in the lens holding frame 14.
  • the movable coil 28 is fixed to the arm portion 17 by filling the adhesive recesses 19a, 19a, and 21a of the fixing portions 19, 19, and 21 with adhesives 50, 50, and 50, respectively. Accordingly, the movable body 13 and the movable coil 28 are moved together in the optical axis direction.
  • the front end portion of the movable coil 28 is fixed to the fixed portions 19 and 19, and the rear end portion is fixed to the fixed portion 21. Therefore, since the movable coil 28 has both front and rear end portions fixed to the fixed portions 19, 19, 21, it is possible to secure a stable and strong fixed state of the movable coil 28 with respect to the lens holding frame 14. Note that the movable coil 28 may be fixed to the receiving portions 20 and 20 by adhesion in a state where the outer peripheral surface is in surface contact with the outer surfaces of the receiving portions 20 and 20.
  • the movable coil 28 is formed in a cylindrical shape and the magnets 29 and 29 located on both sides of the movable coil 28 are formed in a flat plate shape, between the magnets 29 and 29 and the movable coil 28. A space is generated, and at least a part of the fixing portions 19, 19, and 21 is located in this space.
  • the space for filling the adhesives 50, 50, 50 can be effectively used, and the movable coil 28 can be fixed to the lens holding frame 14 without increasing the size of the driving device 25.
  • the fixed portions 19, 19, and 21 are provided at substantially equal intervals in the circumferential direction of the movable coil 28, the fixed positions of the movable coil 28 with respect to the lens holding frame 14 are distributed and positioned in the circumferential direction. A stable and strong fixed state of the movable coil 28 with respect to the lens holding frame 14 can be ensured.
  • the magnets 29 and 29 are formed in a rectangular plate shape whose longitudinal direction is the front-rear direction, and are fixed to the surfaces of the side yoke portions 30 and 30 facing the movable coil 28 side, respectively.
  • the magnets 29, 29 are opposed to each other as magnetic flux generation surfaces 29 a, 29 a, and the magnetic flux generation surfaces 29 a, 29 a are positioned to face the movable coil 28 and the yoke 27.
  • thrust is generated by the magnetic flux generated from the magnetic flux generation surfaces 29a and 29a of the magnets 29 and 29 and the current flowing through the movable coil 28, and the generated thrust is movable as the driving force.
  • the movable coil 28 and the moving body 13 are moved together in a direction according to the direction of the current applied to the coil 28 and flowing through the movable coil 28.
  • the lens holding frame 14 of the moving body 13 is guided by the first guide shaft 11 and the second guide shaft 12, the movable coil 28 and the moving body 13 are lighted according to the direction of the current flowing through the movable coil 28.
  • the driving devices 25 and 25 are moved in the inner space of the cylindrical portion 7 forward or rearward in the axial direction.
  • the rear surfaces of the annular portion 8 are partially inserted into the arrangement concave portions 7d and 7d of the cylindrical portion 7, respectively. Is attached.
  • one bottom yoke portion 31 is attached to the annular portion 8 by adhesion or the like.
  • the bottom yoke portion 31 formed in an arc shape is positioned along the outer peripheral edge of the annular portion 8, and the magnets 29 and 29 are circumferential directions of the tubular portion 7. Is spaced apart from each other. Therefore, the arrangement direction of the yoke 27 and the pair of magnets 29, 29 is set to the circumferential direction S (see FIG. 4) of the cylindrical portion 7.
  • the bottom yoke portions 31 and 31 are formed in a gently curved shape, and the magnetic flux generation surfaces 29a of the magnets 29 and 29 attached to the side yoke portions 30 and 30, In 29a, the distance H1 between the front ends (inner ends) is made smaller than the distance H2 between the rear ends (outer ends), and the distance H between the magnetic flux generating surfaces 29a and 29a is made smaller as the lens group 5 is approached (FIG. 6). reference).
  • the distance H1 between the inner ends of the magnetic flux generation surfaces 29a and 29a is made smaller than the distance H2 between the outer ends, so that the side yoke portions 30 and 30 and the bottom yoke portions 31 and 31 are formed. Since it becomes difficult to protrude outside from the outer periphery of the cylindrical part 7, it becomes possible to make the outer diameter of the cylindrical part 7 small.
  • the driving devices 25 and 25 are located on opposite sides of the central axis of the lens group 5 and are respectively located between the first guide shaft 11 and the second guide shaft 12 in the circumferential direction. At this time, the driving devices 25, 25, the first guide shaft 11, and the second guide shaft 12 are present at substantially equal intervals in the circumferential direction.
  • the surfaces of the pair of magnets 29, 29 that face the movable coil 28 are the magnetic flux generation surfaces 29 a, 29 a, respectively, and the moving body 13 is opposed to the cylindrical portion 7 whose axial direction is the optical axis direction.
  • the yoke 27 and the magnets 29 and 29 are arranged in the circumferential direction of the cylindrical portion 7.
  • the movable body 13 is moved in the optical axis direction inside the cylindrical portion 7 and the yoke 27 and the pair of magnets 29 and 29 are arranged in the circumferential direction of the cylindrical portion 7.
  • the arrangement space of the driving devices 25 and 25 in the lens is effectively utilized, the driving devices 25 and 25 are efficiently arranged in a limited space, and the lens barrel 1 and the imaging device 100 in which the driving devices 25 and 25 are provided are small. Can be achieved.
  • the arm portion 17 of the lens holding frame 14 can be easily inserted between the magnets 29 and 29 and the arm portion 17. Since the movable coil 28 can be easily fixed to the lens holding frame 14, the shape of the lens holding frame 14 including the arm portion 17 can be simplified, and the structure of the lens barrel 1 can be simplified and the manufacturing cost can be reduced. Can be reduced.
  • the magnets 29 and 29 are configured to be positioned on both sides of the movable coil 28 in the circumferential direction, so that, for example, a cylindrical shape is provided as compared with a configuration in which a cylindrical magnet is disposed on the outer peripheral side of the movable coil 28.
  • the drive device 25 can be downsized in the radial direction R (see FIG. 4) of the portion 7, and the lens barrel 1 can be downsized in the radial direction.
  • the magnetic flux density can be increased without increasing the size of the cylindrical portion 7 in the radial direction, and the size of the lens barrel 1 in the radial direction is increased.
  • the driving force for the movable coil 28 can be improved.
  • the arrangement direction of the yoke 27 and the pair of magnets 29, 29 is set to the circumferential direction of the cylindrical portion 7 formed in a cylindrical shape. 27 and the pair of magnets 29 and 29 are arranged side by side in the circumferential direction, and the space efficiency related to the arrangement space of the drive devices 25 and 25 can be improved.
  • the distance H1 between the inner ends of the magnetic flux generation surfaces 29a, 29a of the magnets 29, 29 is smaller than the distance H2 between the outer ends.
  • the magnets 29 and 29 are not positioned in parallel, and the side yoke parts 30 and 30 and the bottom yoke parts 31 and 31 are difficult to protrude outward from the outer periphery of the cylindrical part 7, so that the outer diameter of the cylindrical part 7 is reduced.
  • the outer shape of the cylindrical portion 7 can be reduced in size.
  • the magnetic flux generation surfaces 29a and 29a be positioned on the plane Q including the optical axis P (the central axis of the lens) or substantially parallel to the plane Q. (See FIG. 7).
  • the side yoke portions 30 and 30 and the bottom yoke portions 31 and 31 are more difficult to protrude outward from the outer periphery of the cylindrical portion 7, so that the outer shape of the cylindrical portion 7 is reduced in size. It is possible to increase the magnetic flux density by increasing the thickness of the magnets 29 and 29.
  • the magnetic flux density related to the magnets 29 and 29 can be increased, sufficient thrust can be obtained without arranging the magnet around the whole of the yoke 27 and sufficient driving for the movable coil 28 can be obtained.
  • the drive device 25 can be reduced in size while securing the force.
  • the magnetic flux generating surfaces 29a and 29a are configured to be positioned on the plane Q including the optical axis P or positioned substantially parallel to the plane Q, the inclination angles of the magnetic flux generating surfaces 29a and 29a with each other May increase, and the generated magnetic flux may increase and the thrust generated may decrease. Therefore, it is desirable that the direction of the magnetic flux generation surfaces 29a and 29a be set to an optimum direction in consideration of the downsizing of the outer shape of the cylindrical portion 7 and the magnitude of the generated thrust.
  • the yoke 27 is formed in a round shaft shape and the movable coil 28 is formed in a cylindrical shape, the yoke 27 and the movable coil 28 are changed even if the directions of the magnetic flux generation surfaces 29a and 29a are changed. Therefore, the design can be simplified.
  • the yoke 27, the movable coil 28, and the pair of magnets 29 and 29 are positioned on the outer peripheral portion in the internal space of the cylindrical portion 7.
  • the yoke 27, the movable coil 28, and the pair of magnets 29 and 29 are positioned close to the inner peripheral surface of the cylindrical portion 7, the arrangement space of the moving body 13 and the driving device 25 inside the cylindrical portion 7 is concerned. Space efficiency can be improved.
  • a frame-shaped outer yoke 26 is provided at a position surrounding the movable coil 28, and a pair of bottom yoke portions 31, 31 positioned in parallel with the pair of side yoke portions 30, 30 in which the outer yoke 26 is positioned in parallel.
  • Magnets 29 and 29 are attached to the side yoke portions 30 and 30, respectively, and both end portions of the yoke 27 are attached to the bottom yoke portions 31 and 31, respectively.
  • the movable coil 28 is formed in a cylindrical shape and the side yoke portions 30 and 30 are positioned on both sides of the movable coil 28, so that the movable coil 28 crosses the magnetic field existing between the magnets 29 and 29 and the yoke 27.
  • the existence ratio of the coil 28 is increased, and a large driving force applied to the movable coil 28 can be ensured.
  • the product of the total area of the magnetic flux generation surfaces 29a and 29a of the magnets 29 and 29 and the magnetic flux density of the magnets 29 and 29 is approximately the total magnetic flux flowing into the yoke 27, and this total magnetic flux is By dividing by the area of the cross section perpendicular to the optical axis of the yoke 27, the approximate magnetic flux density inside the yoke 27 is obtained. Therefore, in order to suppress magnetic saturation in the magnetic circuit of the driving device 25, it is desirable that the maximum area of the cross section perpendicular to the optical axis of the yoke 27 with respect to the total area of the magnetic flux generation surfaces 29a and 29a be greater than a certain size. .
  • the maximum area of the cross section perpendicular to the optical axis of the yoke 27 is set to 5% or more of the total area of the magnetic flux generation surfaces 29a and 29a. That is, the circular cross-sectional area of the yoke 27 is set to 5% or more of the total area of the two magnetic flux generation surfaces 29a and 29a.
  • the yoke 27 and the magnets 29 and 29 By configuring the yoke 27 and the magnets 29 and 29 to have such a relationship, magnetic saturation is less likely to occur in the relationship between the magnets 29 and 29 and the yoke 27, and a reduction in thrust generated in the magnetic circuit is suppressed. A sufficient driving force for the movable body 13 can be ensured.
  • the outer shape of the yoke 27 in the direction orthogonal to the optical axis direction is formed in a circular shape, the outer shape of the yoke 27 is reduced and the area of the cross section orthogonal to the optical axis is increased. Thus, magnetic saturation is less likely to occur, and the drive efficiency can be improved after the drive device 25 is downsized.
  • the movable coil 28 is formed in a cylindrical shape, it is possible to increase the number of turns while reducing the outer shape of the movable coil 28, and to drive the drive device 25 with further miniaturization. Efficiency can be improved.
  • the yoke 27 is formed in a round shaft shape and the movable coil 28 is formed in a cylindrical shape, so that the orientation of the magnets 29 and 29 with respect to the yoke 27 and the movable coil 28 can be changed to the position of the lens group 5 and the lens barrel 1. It is possible to easily adjust the positional relationship with other components, so that the degree of freedom in design and the size of the lens barrel 1 can be reduced.
  • the holding body 6 is provided with disposition recesses 7d and 7d in which a part of the drive devices 25 and 25 are disposed and escape recesses 7c and 8c in which a part of the projecting portion 16 is disposed.
  • the thickness of the portion of the annular portion 8 where the arrangement recesses 7d and 7d and the relief recesses 7c and 8c are not formed is thicker than the thickness of the portion where the placement recesses 7d and 7d and the relief recesses 7c and 8c are formed.
  • the lens barrel 1 is provided with two drive devices 25, 25, and the drive devices 25, 25 are positioned on the substantially opposite side across the lens group 5.
  • the driving devices 25 and 25 are positioned on both sides of the lens group 5, unnecessary moment is hardly generated in the moving body 13, and the moving body 13 can be smoothly moved in the optical axis direction.
  • the lens barrel 1 is configured such that the total thrust generation point in the driving devices 25 and 25 is substantially coincident with the center of gravity of the moving body 13, so that almost no unnecessary moment is generated in the moving body 13.
  • the moving body 13 can be moved more smoothly in the optical axis direction.
  • first guide shaft 11 and a second guide shaft 12 for guiding the moving body 13 in the optical axis direction are provided, and the first guide shaft 11 and the second guide shaft 12 are substantially sandwiched between the lens group 5. Located on the opposite side.
  • the moving body 13 is guided by the first guide shaft 11 and the second guide shaft 12 that are positioned substantially opposite to each other with the lens group 5 interposed therebetween, and is moved in the optical axis direction.
  • the inner peripheral surface of the movable coil 28 is difficult to contact the outer peripheral surface of the yoke 27, and the movable body 13 is smoothly moved in the optical axis direction while ensuring high positional accuracy in the direction orthogonal to the optical axis of the lens group 5. be able to.
  • first guide shaft 11, the one drive device 25, the second guide shaft 12, and the other drive device 25 are arranged at substantially equal intervals in order in the circumferential direction.
  • the driving devices 25 and 25 are positioned on the substantially opposite sides of the lens group 5, and the first guide shaft 11 and the second guide shaft 12 are positioned between the driving devices 25 and 25 in the circumferential direction, respectively. Therefore, the moving body 13 can be moved more smoothly in the optical axis direction.
  • the first guide shaft 11 and the second guide shaft 12 may be disposed at any position in the circumferential direction.
  • the shaft 12 may be arranged at a position aligned in the circumferential direction.
  • the driving devices 25 and 25 may be arranged at any position in the circumferential direction, for example, the driving devices 25 and 25 may be arranged at positions arranged in the circumferential direction.
  • the magnets 29 and 29 formed in flat form was shown above, for example, the magnets 29A and 29A formed in circular arc shape along the movable coil 28 may be used (refer FIG. 8). In this case, magnets 29A and 29A formed in an arc shape may be used (see FIG. 8). In this case, arc-shaped side yoke portions 30A, 30A or other shape side yokes may be used.
  • the magnets 29 ⁇ / b> A and 29 ⁇ / b> A formed in an arc shape along the movable coil 28 the distance between the magnetic flux generating surfaces 29 b and 29 b and the outer peripheral surface of the movable coil 28 is reduced in the circumferential direction of the movable coil 28. As a result, the magnetic flux density is improved, and the driving force for the movable coil 28 can be improved.
  • the flat magnets 29 and 29 are easy to mold, have high mass productivity, and can reduce the manufacturing cost. Whether the magnet 29 or the magnet 29A is used depends on the manufacturing cost and the necessary driving force. It is desirable to decide in consideration.
  • the outer shape of the cylindrical portion 7 may be noncircular.
  • an elliptical shape, a rectangular shape, a substantially rectangular shape, or the like may be used (see FIG. 9).
  • the arrangement direction of the yoke 27 and the pair of magnets 29 and 29 is set to the circumferential direction S of the cylindrical portion 7 in the driving device 25. Accordingly, also in this case, the lens barrel 1 in which the arrangement space of the driving devices 25 and 25 is effectively utilized, the driving devices 25 and 25 are efficiently arranged in a limited space, and the driving devices 25 and 25 are provided. In addition, the imaging device 100 can be downsized.
  • the yoke 27 is formed in a round shaft shape and the movable coil 28 is formed in a cylindrical shape.
  • the yoke 27 may have a non-circular outer shape. It may be a shape, a rectangular shape, a substantially rectangular shape, or the like.
  • the movable coil 28 may also be formed in a non-cylindrical shape according to the shape of the yoke 27.
  • the manufacturing cost can be reduced if the yoke 27 is substantially rectangular.
  • the cross-sectional shapes of the yoke 27 and the movable coil 30 it is desirable to determine in consideration of the manufacturing cost and the necessary driving force.
  • the imaging apparatus 100 includes an imaging element 204 having a photoelectric conversion function for converting captured light into an electrical signal, a camera signal processing unit 81 that performs signal processing such as analog-digital conversion of a captured image signal, and an image signal. And an image processing unit 82 for performing the recording / reproducing process.
  • the imaging apparatus 100 includes a display unit 83 that displays captured images and the like, an R / W (reader / writer) 84 that writes and reads image signals to and from the memory 88, and the entire imaging apparatus 100.
  • CPU Central Processing Unit
  • input unit 86 operation unit 202
  • lens drive control unit that controls driving of the lens group (movable group) 5 87.
  • the camera signal processing unit 81 performs various signal processing such as conversion of the output signal from the image sensor 204 into a digital signal, noise removal, image quality correction, and conversion into a luminance / color difference signal.
  • the image processing unit 82 performs compression encoding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and the like.
  • the display unit 83 has a function of displaying various data such as an operation state of the user input unit 86 and a photographed image.
  • the R / W 84 writes the image data encoded by the image processing unit 82 into the memory 88 and reads out the image data recorded in the memory 88.
  • the CPU 85 functions as a control processing unit that controls each circuit block provided in the imaging apparatus 100 and controls each circuit block based on an instruction input signal or the like from the input unit 86.
  • the input unit 86 outputs an instruction input signal corresponding to the operation by the user to the CPU 85.
  • the lens drive control unit 87 controls a motor (not shown) that drives the lens groups 5, 5,... Based on a control signal from the CPU 85.
  • the memory 88 is a semiconductor memory that can be attached to and detached from a slot connected to the R / W 84, for example. Note that the memory 88 may not be detachable from the slot but may be incorporated in the imaging apparatus 100.
  • the shot image signal is output to the display unit 83 via the camera signal processing unit 81 and displayed as a camera through image.
  • the CPU 85 outputs a control signal to the lens drive control unit 87, and a predetermined lens group 5 is controlled based on the control of the lens drive control unit 87. Moved.
  • the captured image signal is output from the camera signal processing unit 81 to the image processing unit 82, subjected to compression coding processing, and converted into digital data of a predetermined data format. Is done.
  • the converted data is output to the R / W 84 and written to the memory 88.
  • Focusing is performed by the lens drive control unit 87 moving a predetermined lens group 5 based on a control signal from the CPU 85.
  • predetermined image data is read from the memory 88 by the R / W 84 in accordance with an operation on the input unit 86, and decompression decoding processing is performed by the image processing unit 82. Then, the reproduced image signal is output to the display unit 83 to display the reproduced image.
  • imaging refers to conversion from a photoelectric conversion process that converts light captured by the image sensor 204 into an electrical signal, to a digital signal for an output signal from the image sensor 204 by the camera signal processing unit 81. Processing such as noise removal, image quality correction, conversion to luminance / color difference signals, compression / decompression processing of image signals based on a predetermined image data format by the image processing unit 82, and conversion processing of data specifications such as resolution , A process including only a part or all of a series of processes up to the process of writing the image signal to the memory 88 by the R / W 84.
  • imaging may refer only to a photoelectric conversion process that converts light captured by the image sensor 204 into an electrical signal, and from a photoelectric conversion process that converts light captured by the image sensor 204 into an electrical signal.
  • the camera signal processing unit 81 may refer to processing such as conversion of an output signal from the image sensor 204 to a digital signal, noise removal, image quality correction, and conversion to a luminance / color difference signal, and the like. Through processing such as conversion from photoelectric conversion processing for converting light into electrical signals to digital signals output from the image sensor 204 by the camera signal processing unit 81, noise removal, image quality correction, conversion to luminance / color difference signals, etc.
  • the image processor 82 performs compression encoding / decompression processing of image signals based on a predetermined image data format, and changes in data specifications such as resolution.
  • the process may be referred to as processing, conversion from photoelectric conversion processing for converting light captured by the image sensor 204 into an electrical signal, conversion of an output signal from the image sensor 204 by the camera signal processing unit 81 to a digital signal, noise removal, image quality Pointing through corrections, conversion to luminance / color difference signals, etc., and compression / decompression processing of image signals based on a predetermined image data format by the image processing unit 82 and conversion processing of data specifications such as resolution Alternatively, it may indicate the processing up to the writing of the image signal to the memory 88 by the R / W 84. ⁇ ⁇ ⁇ ⁇ In the above processing, the order of each processing may be changed as appropriate.
  • the lens barrel 1 and the imaging device 100 are configured to include only some or all of the imaging element 204, the camera signal processing unit 81, the image processing unit 82, and the R / W 84 that perform the above processing. May be.
  • the lens barrel 1 may be configured to include a part of the image sensor 204, the camera signal processing unit 81, the image processing unit 82, and the R / W 84, and the apparatus main body 200 to include the rest.
  • the present technology may be configured as follows.
  • a frame-shaped outer yoke is disposed at a position surrounding the movable coil,
  • the outer yoke has a pair of side yoke portions positioned in parallel and a pair of bottom yoke portions positioned in parallel;
  • the magnet is attached to each of the pair of side yoke portions,
  • the drive device according to any one of (1) to (5), wherein both ends of the yoke in the optical axis direction are attached to the pair of bottom yoke portions.
  • the lens holding frame is provided with a fixed portion to which the movable coil is fixed by adhesion,
  • a plurality of the fixing portions are provided, The drive unit according to (10), wherein the plurality of fixed portions are provided at substantially equal intervals in the circumferential direction of the movable coil.
  • the driving device includes: A yoke extending in the optical axis direction; A movable coil that is inserted in the yoke and fixed to the movable body and movable in the optical axis direction along the yoke; A pair of magnets positioned on both sides of the yoke and the movable coil; The surfaces of the pair of magnets facing the movable coil are magnetic flux generation surfaces, A lens barrel in which an arrangement direction of the yoke and the pair of magnets is set to a circumferential direction of the cylindrical portion.
  • Two guide shafts for guiding the moving body in the optical axis direction are provided,
  • a lens barrel that captures an optical image and an image sensor that converts the captured optical image into an electrical signal
  • the lens barrel is A cylindrical portion whose axial direction is the optical axis direction;
  • a movable body that has at least one lens and a lens holding frame that holds the lens and is moved in the optical axis direction inside the cylindrical portion;
  • the driving device includes: A yoke extending in the optical axis direction;
  • a movable coil that is inserted in the yoke and fixed to the movable body and movable in the optical axis direction along the yoke;
  • a pair of magnets positioned on both sides of the yoke and the movable coil;
  • the surfaces of the pair of magnets facing the movable coil are magnetic flux generation surfaces,
  • An imaging apparatus in which an arrangement direction of the yoke and the pair of magnets is set to a circumferential direction of the cylindrical portion
  • Two driving devices are provided; The imaging device according to (17), wherein the two driving devices are positioned substantially on opposite sides of the lens.
  • DESCRIPTION OF SYMBOLS 100 ... Imaging device, 204 ... Imaging element, 1 ... Lens barrel, 5 ... Lens group (lens), 7 ... Cylindrical part, 11 ... 1st guide shaft, 12 ... 2nd guide shaft, 13 ... Moving body , 14 ... Lens holding frame, 19 ... Fixing part, 21 ... Fixing part, 25 ... Driving device, 26 ... Outer yoke, 27 ... Yoke, 28 ... Driving coil, 29 ... Magnet, 29a ... Magnetic flux generating surface, 30 ... Side yoke Part, 31 ... bottom yoke part

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Structure And Mechanism Of Cameras (AREA)
  • Studio Devices (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

The present invention miniaturizes an imaging device and a lens barrel to which a driving device is provided. This invention is provided with: a yoke that extends in an optical axis direction and applies, in the optical axis direction, a driving force to a mobile body having at least one lens and a lens holding frame for holding the lens; a movable coil into which the yoke is inserted and which is fixed to the mobile body and movable along the yoke in the optical axis direction; and a pair of magnets that are positioned on both sides of the yoke and the movable coil. The surfaces of the magnets opposed to the movable coil are set as magnetic flux generating surfaces. In a cylindrical part disposed such that the axis direction thereof matches the optical axis direction, the mobile body is moved in the optical axis direction inside a cylindrical part. The arraying direction of the yoke and the magnets is set as the circumferential direction of the cylindrical part.

Description

駆動装置、レンズ鏡筒及び撮像装置Driving device, lens barrel, and imaging device
 本技術はレンズを有する移動体に駆動力を付与する駆動装置、この駆動装置を備えたレンズ鏡筒及び撮像装置についての技術分野に関する。 The present technology relates to a technical field of a driving device that applies a driving force to a moving body having a lens, a lens barrel including the driving device, and an imaging device.
 ビデオカメラやスチルカメラ等の各種の撮像装置にはレンズ等の撮影光学系を介して光学像を取り込むレンズ鏡筒が設けられ、レンズ鏡筒が光軸方向に並ぶ複数のレンズ群を有する構成にされているものがある。また、撮像装置にはレンズ鏡筒が設けられておらず、撮像装置に着脱可能にされた交換レンズ等がレンズ鏡筒として用いられる場合もある。 Various imaging devices such as a video camera and a still camera are provided with a lens barrel that captures an optical image via a photographing optical system such as a lens, and the lens barrel has a plurality of lens groups arranged in the optical axis direction. There is something that has been. In some cases, the imaging apparatus is not provided with a lens barrel, and an interchangeable lens or the like that is detachable from the imaging apparatus is used as the lens barrel.
 このようなレンズ鏡筒においては、フォーカシングやズーミング等を行うために、レンズを有する移動体が駆動装置の駆動力によって光軸方向へ移動される構成にされたものがある。 Some of these lens barrels have a configuration in which a moving body having a lens is moved in the optical axis direction by the driving force of a driving device in order to perform focusing, zooming, and the like.
 移動体に駆動力を付与する駆動装置としては、マグネットと可動コイルとヨークを有し可動コイルに電流が供給されたときに磁気回路に発生する推力を移動体に駆動力として付与するタイプがある(例えば、特許文献1、特許文献2及び特許文献3参照)。 As a driving device that applies a driving force to a moving body, there is a type that has a magnet, a moving coil, and a yoke and applies a thrust generated in a magnetic circuit as a driving force to the moving body when a current is supplied to the moving coil. (For example, refer to Patent Document 1, Patent Document 2, and Patent Document 3).
 特許文献1に記載された駆動装置は、移動体を案内する丸軸状に形成されたガイド軸の外周側に可動コイルが配置され、可動コイルの外周側にマグネットが配置された構成にされている。 The drive device described in Patent Document 1 has a configuration in which a movable coil is arranged on the outer peripheral side of a guide shaft formed in a round shaft shape for guiding a moving body, and a magnet is arranged on the outer peripheral side of the movable coil. Yes.
 特許文献2に記載された駆動装置は、丸軸状に形成されたヨークの外周側に可動コイルが配置され、可動コイルの外周側にマグネットが配置された構成にされている。 The driving device described in Patent Document 2 has a configuration in which a movable coil is disposed on the outer peripheral side of a yoke formed in a round shaft shape, and a magnet is disposed on the outer peripheral side of the movable coil.
 特許文献3に記載された駆動装置は、ヨークの外周側に可動コイルが配置され、ヨークと可動コイルを挟んだ反対側に一対のマグネットが配置された構成にされている。 The drive device described in Patent Document 3 has a configuration in which a movable coil is disposed on the outer peripheral side of the yoke, and a pair of magnets are disposed on the opposite side across the yoke and the movable coil.
特開平4-30506号公報Japanese Patent Laid-Open No. 4-30506 特開平7-170710号公報Japanese Patent Laid-Open No. 7-170710 特開2006-14514号公報JP 2006-14514 A
 ところが、特許文献1と特許文献2に記載された駆動装置にあっては、ガイド軸又はヨークの外周側に可動コイルが配置され、さらに可動コイルの外周側にマグネットが配置された構成にされているため、径方向において大型になり易く、駆動装置が配置されるレンズ鏡筒や撮像装置における駆動装置の配置スペースが大きく、レンズ鏡筒や撮像装置が大型になってしまうおそれがある。 However, in the driving devices described in Patent Document 1 and Patent Document 2, a movable coil is disposed on the outer peripheral side of the guide shaft or the yoke, and a magnet is disposed on the outer peripheral side of the movable coil. Therefore, it tends to be large in the radial direction, and there is a possibility that the lens barrel and the imaging device become large because the lens barrel in which the driving device is arranged and the arrangement space of the driving device in the imaging device are large.
 また、特許文献3に記載された駆動装置にあっては、中央のヨークの厚さを厚くして駆動力を高めるようにしているが、中央のヨークの厚さを厚くすることにより、やはり駆動装置が大きくなってレンズ鏡筒や撮像装置の小型化が阻害されるおそれがある。 In the driving device described in Patent Document 3, the driving force is increased by increasing the thickness of the central yoke. However, the driving force is also increased by increasing the thickness of the central yoke. There is a risk that the size of the lens barrel and the imaging device may be hindered due to the increase in size of the device.
 そこで、本技術駆動装置、レンズ鏡筒及び撮像装置は、上記した問題点を克服し、駆動装置が設けられるレンズ鏡筒や撮像装置の小型化を図ることを目的とする。 Therefore, it is an object of the present technology driving device, lens barrel, and imaging device to overcome the above-described problems and to reduce the size of the lens barrel and imaging device provided with the driving device.
 第1に、本技術に係る駆動装置は、少なくとも一つのレンズと前記レンズを保持するレンズ保持枠とを有する移動体に対して光軸方向への駆動力を付与し、光軸方向に延びるヨークと、前記ヨークが挿通されると共に前記移動体に固定され前記ヨークに沿って光軸方向へ移動可能な可動コイルと、前記ヨークと前記可動コイルの両側に位置された一対のマグネットとを備え、前記一対のマグネットの前記可動コイルと対向する面がそれぞれ磁束発生面とされ、前記移動体は軸方向が光軸方向にされた筒状部に対して前記筒状部の内部において光軸方向へ移動され、前記ヨークと前記一対のマグネットとの並び方向が前記筒状部の周方向にされたものである。 1stly, the drive device which concerns on this technique gives the driving force to an optical axis direction with respect to the moving body which has at least 1 lens and the lens holding frame holding the said lens, and the yoke extended in an optical axis direction And a movable coil that is inserted into the yoke and fixed to the movable body and movable in the optical axis direction along the yoke, and a pair of magnets positioned on both sides of the yoke and the movable coil, The surfaces of the pair of magnets facing the movable coil are magnetic flux generation surfaces, and the movable body is in the optical axis direction inside the cylindrical portion with respect to the cylindrical portion whose axial direction is the optical axis direction. It is moved, and the arrangement direction of the yoke and the pair of magnets is made the circumferential direction of the cylindrical portion.
 これにより、筒状部の内部において移動体が光軸方向へ移動されると共に筒状部の周方向においてヨークと一対のマグネットとが並ぶ状態にされる。 Thereby, the moving body is moved in the optical axis direction inside the cylindrical portion, and the yoke and the pair of magnets are arranged in the circumferential direction of the cylindrical portion.
 第2に、上記した駆動装置においては、前記筒状部が略円筒状に形成されることが望ましい。 Second, in the above drive device, it is desirable that the cylindrical portion is formed in a substantially cylindrical shape.
 これにより、ヨークと一対のマグネットが円周方向に並んで位置される。 Thus, the yoke and the pair of magnets are positioned side by side in the circumferential direction.
 第3に、上記した駆動装置においては、前記レンズの径方向において前記磁束発生面の前記レンズ側の一端を内側端とし前記レンズと反対側の一端を外側端としたときに、前記一対のマグネットの前記磁束発生面における前記内側端間の距離が前記外側端間の距離より小さくされることが望ましい。 Thirdly, in the driving device described above, when the one end on the lens side of the magnetic flux generating surface in the radial direction of the lens is an inner end and the one end opposite to the lens is an outer end, the pair of magnets It is preferable that the distance between the inner ends of the magnetic flux generation surface is smaller than the distance between the outer ends.
 これにより、一対のマグネットが平行に位置されず、マグネットの端部が筒状部の外周から外側に突出し難くなる。 This prevents the pair of magnets from being positioned in parallel and makes it difficult for the ends of the magnets to protrude outwardly from the outer periphery of the cylindrical portion.
 第4に、上記した駆動装置においては、前記磁束発生面が光軸を含む仮想の平面と略平行に位置されることが望ましい。 Fourthly, in the above-described driving device, it is desirable that the magnetic flux generation surface is positioned substantially parallel to a virtual plane including the optical axis.
 これにより、マグネットの端部が筒状部の外周から外側に一層突出し難くなる。 This makes it more difficult for the end of the magnet to protrude outward from the outer periphery of the cylindrical portion.
 第5に、上記した駆動装置においては、前記ヨークと前記可動コイルと前記一対のマグネットが前記筒状部の内部空間における外周部に位置されることが望ましい。 Fifth, in the drive device described above, it is desirable that the yoke, the movable coil, and the pair of magnets are positioned on the outer peripheral portion in the internal space of the cylindrical portion.
 これにより、ヨークと可動コイルと一対のマグネットが筒状部の内周面に近付いて位置される。 Thus, the yoke, the movable coil, and the pair of magnets are positioned close to the inner peripheral surface of the cylindrical portion.
 第6に、上記した駆動装置においては、前記可動コイルを囲む位置に枠状の外ヨークが配置され、前記外ヨークが平行に位置された一対のサイドヨーク部と平行に位置された一対のボトムヨーク部とを有し、前記一対のサイドヨーク部にそれぞれ前記マグネットが取り付けられ、前記一対のボトムヨーク部に前記ヨークの光軸方向における両端部が取り付けられることが望ましい。 Sixth, in the drive device described above, a frame-shaped outer yoke is disposed at a position surrounding the movable coil, and a pair of bottoms positioned in parallel with the pair of side yoke portions in which the outer yoke is positioned in parallel. Preferably, the magnet is attached to the pair of side yoke portions, and both end portions in the optical axis direction of the yoke are attached to the pair of bottom yoke portions.
 これにより、可動コイルを囲む位置にマグネットとヨークが取り付けられた外ヨークとが配置される。 This places a magnet and an outer yoke with a yoke attached at a position surrounding the movable coil.
 第7に、上記した駆動装置においては、前記ヨークの光軸に直交する断面の最大面積が前記一対のマグネットにおける前記磁束発生面の合計面積の5%以上にされることが望ましい。 Seventhly, in the drive device described above, it is desirable that the maximum area of the cross section perpendicular to the optical axis of the yoke be 5% or more of the total area of the magnetic flux generation surfaces of the pair of magnets.
 これにより、マグネットとヨークの関係において磁気飽和が生じ難くなり、磁気回路において発生する推力の低下が抑制される。 This makes it difficult for magnetic saturation to occur in the relationship between the magnet and the yoke, and suppresses a reduction in thrust generated in the magnetic circuit.
 第8に、上記した駆動装置においては、前記ヨークは光軸方向に直交する方向における断面の少なくとも一部が円形状に形成されることが望ましい。 Eighth, in the above drive device, it is desirable that at least a part of a cross section of the yoke in a direction orthogonal to the optical axis direction is formed in a circular shape.
 これにより、ヨークの外形状を小さくした上で光軸に直交する断面の面積を大きくすることが可能になる。 This makes it possible to increase the cross-sectional area perpendicular to the optical axis while reducing the outer shape of the yoke.
 第9に、上記した駆動装置においては、前記可動コイルが円筒状に形成されることが望ましい。 Ninth, in the above drive device, it is desirable that the movable coil is formed in a cylindrical shape.
 これにより、可動コイルの外形状を小さくした上で巻き数を増やすことが可能になる。 This makes it possible to increase the number of turns while reducing the outer shape of the movable coil.
 第10に、上記した駆動装置においては、前記レンズ保持枠には前記可動コイルが接着によって固定される固定部が設けられ、前記固定部の少なくとも一部が前記一対のマグネットと前記可動コイルの間の空間に位置されることが望ましい。 Tenth, in the drive device described above, the lens holding frame is provided with a fixed portion to which the movable coil is fixed by adhesion, and at least a part of the fixed portion is between the pair of magnets and the movable coil. It is desirable to be located in the space.
 これにより、接着剤の充填スペースの有効活用が図られる。 This will enable effective use of the adhesive filling space.
 第11に、上記した駆動装置においては、前記固定部が複数設けられ、前記複数の固定部が前記可動コイルの周方向において略等間隔の位置に設けられることが望ましい。 Eleventh, in the drive device described above, it is preferable that a plurality of the fixed portions are provided, and the plurality of fixed portions are provided at substantially equal intervals in the circumferential direction of the movable coil.
 これにより、レンズ保持枠に対する可動コイルの固定位置が周方向において分散して位置される。 Thereby, the fixed positions of the movable coil with respect to the lens holding frame are distributed in the circumferential direction.
 第12に、上記した駆動装置においては、前記磁束発生面が前記可動コイルの外周面に沿う円弧面状に形成されることが望ましい。 12thly, in the above drive device, it is desirable that the magnetic flux generating surface is formed in an arcuate surface along the outer peripheral surface of the movable coil.
 これにより、磁束発生面と可動コイルの外周面との距離が可動コイルの周方向において縮まることにより磁束密度が向上する。 Thereby, the magnetic flux density is improved by reducing the distance between the magnetic flux generating surface and the outer peripheral surface of the movable coil in the circumferential direction of the movable coil.
 第13に、本技術に係るレンズ鏡筒は、軸方向が光軸方向にされた筒状部と、少なくとも一つのレンズと前記レンズを保持するレンズ保持枠とを有し前記筒状部の内部において光軸方向へ移動される移動体と、前記移動体の光軸方向への移動のための駆動力を付与する駆動装置とを備え、前記駆動装置は、光軸方向に延びるヨークと、前記ヨークが挿通されると共に前記移動体に固定され前記ヨークに沿って光軸方向へ移動可能な可動コイルと、前記ヨークと前記可動コイルの両側に位置された一対のマグネットとを備え、前記一対のマグネットの前記可動コイルと対向する面がそれぞれ磁束発生面とされ、前記ヨークと前記一対のマグネットとの並び方向が前記筒状部の周方向にされたものである。 13thly, the lens-barrel which concerns on this technique has a cylindrical part by which the axial direction was made into the optical axis direction, at least 1 lens, and the lens holding frame holding the said lens, The inside of the said cylindrical part A moving body that is moved in the optical axis direction, and a driving device that applies a driving force for moving the moving body in the optical axis direction, the driving device including a yoke that extends in the optical axis direction, A movable coil that is fixed to the movable body and movable in the optical axis direction along the yoke, and a pair of magnets positioned on both sides of the yoke and the movable coil. The surface of the magnet that faces the movable coil is a magnetic flux generating surface, and the arrangement direction of the yoke and the pair of magnets is the circumferential direction of the cylindrical portion.
 これにより、筒状部の内部において移動体が光軸方向へ移動されると共に筒状部の周方向においてヨークと一対のマグネットとが並ぶ状態にされる。 Thereby, the moving body is moved in the optical axis direction inside the cylindrical portion, and the yoke and the pair of magnets are arranged in the circumferential direction of the cylindrical portion.
 第14に、上記したレンズ鏡筒においては、前記駆動装置が二つ設けられ、二つの前記駆動装置が前記レンズを挟んで略反対側に位置されることが望ましい。 14thly, in the lens barrel described above, it is desirable that two of the driving devices are provided, and that the two driving devices are positioned on substantially opposite sides of the lens.
 これにより、移動体に不必要なモーメントが生じ難い。 This makes it difficult to generate unnecessary moments on the moving object.
 第15に、上記したレンズ鏡筒においては、前記移動体を光軸方向に案内する二つのガイド軸が設けられ、前記二つのガイド軸が前記レンズを挟んで略反対側に位置されることが望ましい。 Fifteenth, in the lens barrel described above, two guide shafts for guiding the movable body in the optical axis direction are provided, and the two guide shafts are positioned on substantially opposite sides across the lens. desirable.
 これにより、移動体がレンズを挟んで略反対側に位置された二つのガイド軸に案内されて光軸方向へ移動されるため、移動体の移動時に可動コイルの内周面がヨークの外周面に接し難くなる。 As a result, the moving body is guided by the two guide shafts positioned substantially opposite to each other across the lens and moved in the optical axis direction, so that the inner peripheral surface of the movable coil becomes the outer peripheral surface of the yoke when the moving body moves. It becomes difficult to touch.
 第16に、上記したレンズ鏡筒においては、一方の前記ガイド軸と一方の前記駆動装置と他方の前記ガイド軸と他方の前記駆動装置とが周方向において順に略等間隔の位置に配置されることが望ましい。 Sixteenth, in the lens barrel described above, one of the guide shafts, one of the driving devices, the other of the guide shafts, and the other of the driving devices are sequentially arranged at substantially equal intervals in the circumferential direction. It is desirable.
 これにより、駆動装置がレンズを挟んで略反対側に位置されると共に駆動装置の間に周方向においてそれぞれ一方のガイド軸と他方のガイド軸が位置される。 Thus, the driving device is positioned on the substantially opposite side across the lens, and one guide shaft and the other guide shaft are positioned in the circumferential direction between the driving devices.
 第17に、本技術に係る撮像装置は、光学像を取り込むレンズ鏡筒と取り込まれた光学像を電気的信号に変換する撮像素子とを備え、前記レンズ鏡筒は、軸方向が光軸方向にされた筒状部と、少なくとも一つのレンズと前記レンズを保持するレンズ保持枠とを有し前記筒状部の内部において光軸方向へ移動される移動体と、前記移動体の光軸方向への移動のための駆動力を付与する駆動装置とを備え、前記駆動装置は、光軸方向に延びるヨークと、前記ヨークが挿通されると共に前記移動体に固定され前記ヨークに沿って光軸方向へ移動可能な可動コイルと、前記ヨークと前記可動コイルの両側に位置された一対のマグネットとを備え、前記一対のマグネットの前記可動コイルと対向する面がそれぞれ磁束発生面とされ、前記ヨークと前記一対のマグネットとの並び方向が前記筒状部の周方向にされたものである。 Seventeenth, an imaging apparatus according to the present technology includes a lens barrel that captures an optical image and an imaging element that converts the captured optical image into an electrical signal, and the axial direction of the lens barrel is an optical axis direction. A movable body having at least one lens and a lens holding frame for holding the lens, the movable body being moved in the optical axis direction inside the cylindrical portion, and the optical axis direction of the movable body A driving device that applies a driving force for movement to the optical axis, and the driving device includes a yoke that extends in an optical axis direction, and the optical axis along the yoke that is inserted into the yoke and fixed to the moving body. A movable coil movable in a direction, a pair of magnets positioned on both sides of the yoke and the movable coil, and surfaces of the pair of magnets facing the movable coil are magnetic flux generating surfaces, respectively, And said In which the arrangement direction of the pair of magnets are in a circumferential direction of the cylindrical portion.
 これにより、筒状部の内部において移動体が光軸方向へ移動されると共に筒状部の周方向においてヨークと一対のマグネットとが並ぶ状態にされる。 Thereby, the moving body is moved in the optical axis direction inside the cylindrical portion, and the yoke and the pair of magnets are arranged in the circumferential direction of the cylindrical portion.
 第18に、上記した撮像装置においては、前記駆動装置が二つ設けられ、二つの前記駆動装置が前記レンズを挟んで略反対側に位置されることが望ましい。 Eighteenth, in the above-described imaging device, it is desirable that two drive devices are provided, and the two drive devices are positioned on substantially opposite sides of the lens.
 これにより、移動体に不必要なモーメントが生じ難い。 This makes it difficult to generate unnecessary moments on the moving object.
 第19に、上記した撮像装置においては、前記移動体を光軸方向に案内する二つのガイド軸が設けられ、前記二つのガイド軸が前記レンズを挟んで略反対側に位置されることが望ましい。 Nineteenth, in the above-described imaging apparatus, it is desirable that two guide shafts for guiding the moving body in the optical axis direction are provided, and the two guide shafts are positioned on substantially opposite sides with the lens interposed therebetween. .
 これにより、移動体がレンズを挟んで略反対側に位置された二つのガイド軸に案内されて光軸方向へ移動されるため、移動体の移動時に可動コイルの内周面がヨークの外周面に接し難くなる。 As a result, the moving body is guided by the two guide shafts positioned substantially opposite to each other across the lens and moved in the optical axis direction, so that the inner peripheral surface of the movable coil becomes the outer peripheral surface of the yoke when the moving body moves. It becomes difficult to touch.
 第20に、上記した撮像装置においては、一方の前記ガイド軸と一方の前記駆動装置と他方の前記ガイド軸と他方の前記駆動装置とが周方向において順に略等間隔の位置に配置されることが望ましい。 20thly, in the above-mentioned imaging device, one said guide shaft, one said drive device, the other said guide shaft, and the other said drive device are arrange | positioned in the position of substantially equal intervals in order in the circumferential direction. Is desirable.
 これにより、駆動装置がレンズを挟んで略反対側に位置されると共に駆動装置の間に周方向においてそれぞれ一方のガイド軸と他方のガイド軸が位置される。 Thus, the driving device is positioned on the substantially opposite side across the lens, and one guide shaft and the other guide shaft are positioned in the circumferential direction between the driving devices.
 本技術によれば、筒状部の内部において移動体が光軸方向へ移動されると共に筒状部の周方向においてヨークと一対のマグネットとが並ぶ状態にされるため、保持体における駆動装置の配置スペースの有効活用が図られ、駆動装置が設けられるレンズ鏡筒や撮像装置の小型化を図ることができる。 According to the present technology, the moving body is moved in the optical axis direction inside the cylindrical portion, and the yoke and the pair of magnets are arranged in the circumferential direction of the cylindrical portion. The arrangement space can be effectively used, and the lens barrel provided with the driving device and the imaging device can be downsized.
 尚、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、他の効果があってもよい。 It should be noted that the effects described in this specification are merely examples and are not limited, and may have other effects.
図2乃至図10と共に本技術駆動装置、レンズ鏡筒及び撮像装置の実施の形態を示すものであり、本図は、レンズ鏡筒と装置本体を分離して示す撮像装置の斜視図である。FIGS. 2 to 10 show an embodiment of a driving device of the present technology, a lens barrel, and an imaging device, and this drawing is a perspective view of the imaging device showing the lens barrel and the apparatus main body separately. 一部を断面にして示すレンズ鏡筒の斜視図である。It is a perspective view of the lens barrel which shows a part in cross section. レンズ鏡筒の水平断面図である。It is a horizontal sectional view of a lens barrel. レンズ鏡筒の垂直断面図である。It is a vertical sectional view of a lens barrel. レンズ保持枠の一部を示す斜視図である。It is a perspective view which shows a part of lens holding frame. 筒状部とマグネットの位置関係を示す概念図である。It is a conceptual diagram which shows the positional relationship of a cylindrical part and a magnet. マグネットの磁束発生面が光軸を含む平面上に位置された例を示す概念図である。It is a conceptual diagram which shows the example in which the magnetic flux generation surface of the magnet was located on the plane containing an optical axis. 磁束発生面が円弧面状に形成されたマグネットが用いられた例を示す概念図である。It is a conceptual diagram which shows the example using the magnet in which the magnetic flux generation surface was formed in circular arc surface shape. 保持体が非円形状に形成された場合の駆動装置の配置構成の例を示す概念図である。It is a conceptual diagram which shows the example of arrangement | positioning structure of a drive device when a holding body is formed in non-circular shape. 撮像装置のブロック図である。It is a block diagram of an imaging device.
 以下に、本技術を実施するための形態を添付図面を参照して説明する。 Hereinafter, modes for carrying out the present technology will be described with reference to the accompanying drawings.
 以下に示す実施の形態は、本技術撮像装置をスチルカメラに適用し、本技術レンズ鏡筒をこのスチルカメラの装置本体に対して着脱可能な交換レンズに適用し、本技術駆動装置をこのレンズ鏡筒に配置された駆動装置に適用したものである。 In the embodiment described below, the imaging device of the present technology is applied to a still camera, the lens barrel of the present technology is applied to an interchangeable lens that can be attached to and detached from the main body of the still camera, and the driving device of the present technology is used as the lens. This is applied to a driving device arranged in a lens barrel.
 尚、本技術の適用範囲はスチルカメラ、スチルカメラの装置本体に対して着脱可能な交換レンズ、交換レンズに配置された駆動装置に限られることはない。本技術は、例えば、撮像装置としてビデオカメラや他の機器に組み込まれる各種の撮像装置、これらの撮像装置に設けられるレンズ群等により構成されるレンズ鏡筒、これらの各種の撮像装置に設けられるレンズ鏡筒に配置される駆動装置に広く適用することができる。 It should be noted that the scope of application of the present technology is not limited to a still camera, an interchangeable lens that can be attached to and detached from the main body of the still camera, and a drive device disposed on the interchangeable lens. The present technology is provided in, for example, various imaging devices incorporated in a video camera or other equipment as an imaging device, a lens barrel configured by a lens group or the like provided in these imaging devices, and these various imaging devices. The present invention can be widely applied to a driving device arranged in a lens barrel.
 以下の説明にあっては、スチルカメラの撮影時において撮影者から見た方向で前後上下左右の方向を示すものとする。従って、被写体側が前方となり、撮影者側が後方となる。 In the following explanation, it is assumed that the front, rear, top, bottom, left and right directions are shown in the direction seen from the photographer when photographing with the still camera. Therefore, the subject side is the front and the photographer side is the rear.
 尚、以下に示す前後上下左右の方向は説明の便宜上のものであり、本技術の実施に関しては、これらの方向に限定されることはない。 It should be noted that the front, rear, up, down, left, and right directions shown below are for convenience of explanation, and the implementation of the present technology is not limited to these directions.
 また、以下に示すレンズ群は、単数又は複数のレンズにより構成されたものの他、これらの単数又は複数のレンズと絞りやアイリス等の他の光学素子を含んでもよい。 Further, the lens group shown below may include one or a plurality of lenses and other optical elements such as a diaphragm and an iris in addition to the lens group including one or a plurality of lenses.
 <撮像装置の構成>
 撮像装置100は装置本体200とレンズ鏡筒1によって構成されている(図1参照)。レンズ鏡筒1は、例えば、装置本体200に着脱可能な交換レンズである。尚、本技術は、装置本体の内部にレンズ鏡筒1の内部構造と同様の構造を有するレンズ鏡筒が組み込まれたタイプやこのレンズ鏡筒が装置本体に対して突出又は収納される沈胴タイプにも適用することが可能である。
<Configuration of imaging device>
The imaging device 100 is configured by a device main body 200 and a lens barrel 1 (see FIG. 1). The lens barrel 1 is, for example, an interchangeable lens that can be attached to and detached from the apparatus main body 200. The present technology is a type in which a lens barrel having a structure similar to the internal structure of the lens barrel 1 is incorporated inside the apparatus main body, or a retractable type in which this lens barrel protrudes or is stored in the apparatus main body. It is also possible to apply to.
 装置本体200は外筐201の内外に所要の各部が配置されて成る。 The apparatus main body 200 is configured by arranging necessary parts inside and outside the outer casing 201.
 外筐201には、例えば、上面や後面等に各種の操作部202、202、・・・が配置されている。操作部202、202、・・・としては、例えば、電源釦、シャッター釦、ズーム摘子、モード切替摘子等が設けられている。 In the outer casing 201, for example, various operation units 202, 202,... Are arranged on the upper surface, the rear surface, and the like. As the operation units 202, 202,..., For example, a power button, a shutter button, a zoom knob, a mode switching knob, and the like are provided.
 外筐201の後面には図示しないディスプレイ(表示部)が配置されている。 A display (display unit) (not shown) is disposed on the rear surface of the outer casing 201.
 外筐201の前面には円形状の開口201aが形成され、開口201aの周囲の部分がレンズ鏡筒1を取り付けるためのマウント部203として設けられている。 A circular opening 201 a is formed in the front surface of the outer casing 201, and a portion around the opening 201 a is provided as a mount portion 203 for attaching the lens barrel 1.
 外筐201の内部にはCCD(Charge Coupled Device)やCMOS(Complementary Metal-Oxide Semiconductor)等の撮像素子204が配置され、撮像素子204は開口201aの後方に位置されている。 An imaging element 204 such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor) is disposed inside the outer casing 201, and the imaging element 204 is positioned behind the opening 201a.
 <レンズ鏡筒の構成>
 レンズ鏡筒1は軸方向が前後方向にされた略円筒状の外筒2と外筒2の内外に取り付けられ又は支持された所要の各部とから成る(図1参照)。
<Configuration of lens barrel>
The lens barrel 1 includes a substantially cylindrical outer tube 2 whose axial direction is the front-rear direction, and required parts that are attached to or supported by the inside and outside of the outer tube 2 (see FIG. 1).
 レンズ鏡筒1の後端部には、装置本体200のマウント部203に、例えば、バヨネット結合されるレンズマウント3が設けられている。レンズ鏡筒1にはズームリングやフォーカスリングとして機能する操作リング4、4が設けられている。操作リング4、4が回転操作されることによりマニュアルズーミングやマニュアルフォーカシングが行われる。 At the rear end of the lens barrel 1, for example, a lens mount 3 that is bayonet-coupled to the mount portion 203 of the apparatus main body 200 is provided. The lens barrel 1 is provided with operation rings 4 and 4 that function as a zoom ring and a focus ring. Manual zooming and manual focusing are performed by rotating the operation rings 4 and 4.
 レンズ鏡筒1は、例えば、複数のレンズ群5、5、・・・を有している。尚、図1には、最も前側のレンズ群5のみを図示する。レンズ群5、5、・・・は光軸方向(前後方向)に離隔して位置され、光軸方向へ移動可能な可動群と光軸方向へ移動不能な固定群とを有している。レンズ群5、5、・・・のうち一つのレンズ群5は、光軸方向へ移動されてフォーカシングを行うフォーカスレンズ群として設けられている(図2乃至図4参照)。 The lens barrel 1 has, for example, a plurality of lens groups 5, 5,. In FIG. 1, only the frontmost lens group 5 is shown. The lens groups 5, 5,... Are spaced apart in the optical axis direction (front-rear direction), and have a movable group that can move in the optical axis direction and a fixed group that cannot move in the optical axis direction. Among the lens groups 5, 5,..., One lens group 5 is provided as a focus lens group that moves in the optical axis direction and performs focusing (see FIGS. 2 to 4).
 外筒2の内部には保持体6が配置されている。保持体6は軸方向が前後方向にされた略円筒状の筒状部7と筒状部7に取り付けられた略円環状の環状部8とを有している。 A holding body 6 is disposed inside the outer cylinder 2. The holding body 6 has a substantially cylindrical tubular portion 7 whose axial direction is the front-rear direction and a substantially annular annular portion 8 attached to the tubular portion 7.
 筒状部7の後端部には内方に突出された第1の支持突部7aが設けられている。筒状部7の前後方向における中間部には内方に突出された第2の支持突部7bが設けられている。第1の支持突部7aと第2の支持突部7bは筒状部7の中心軸を挟んで略反対側の位置に設けられている。筒状部7には内方に開口され前後に延びる逃げ凹部7cが形成され、逃げ凹部7cは第1の支持突部7aに連続する位置に形成されている。筒状部7の略前半部にはそれぞれ内方及び前方に開口された配置凹部7d、7dが形成され、配置凹部7d、7dは筒状部7の中心軸を挟んで略反対側に位置されている。筒状部7には中心軸を挟んで略反対側の位置にセンサー配置孔7e、7eが形成されている。 At the rear end of the cylindrical portion 7, a first support protrusion 7a protruding inward is provided. A second support protrusion 7 b protruding inward is provided at an intermediate portion in the front-rear direction of the cylindrical portion 7. The first support protrusion 7 a and the second support protrusion 7 b are provided at substantially opposite positions across the central axis of the cylindrical portion 7. The cylindrical portion 7 is formed with a relief recess 7c that is opened inward and extends forward and backward, and the relief recess 7c is formed at a position continuous with the first support projection 7a. Arrangement recesses 7d and 7d opened inward and forward respectively are formed in the substantially first half of the cylindrical portion 7, and the arrangement recesses 7d and 7d are positioned on the substantially opposite side across the central axis of the cylindrical portion 7. ing. Sensor placement holes 7e and 7e are formed in the cylindrical portion 7 at positions substantially opposite to each other across the central axis.
 環状部8にはそれぞれ少なくとも後方に開口された第1の取付穴8aと第2の取付穴8bが形成されている。第1の取付穴8aと第2の取付穴8bは環状部8の中心軸を挟んで略反対側に位置されている。環状部8には内方及び後方に開口された逃げ凹部8cが形成され、逃げ凹部8cは第1の取付穴8aの近傍に位置されている。 The annular portion 8 has at least a first mounting hole 8a and a second mounting hole 8b that are opened at the rear. The first mounting hole 8a and the second mounting hole 8b are located on substantially opposite sides with the central axis of the annular portion 8 interposed therebetween. The annular portion 8 is formed with a clearance recess 8c that is opened inward and rearward, and the clearance recess 8c is positioned in the vicinity of the first mounting hole 8a.
 環状部8は筒状部7の前端部に取り付けられている。環状部8が筒状部に取り付けられた状態においては、環状部8に形成された逃げ凹部8cと筒状部7に形成された逃げ凹部7cとが前後で連続される(図3参照)。 The annular portion 8 is attached to the front end portion of the cylindrical portion 7. In a state where the annular portion 8 is attached to the cylindrical portion, the relief recess 8c formed in the annular portion 8 and the relief recess 7c formed in the tubular portion 7 are continuous in the front-rear direction (see FIG. 3).
 筒状部7の第1の支持突部7aと環状部8の第1の支持穴8aにはそれぞれ第1の軸受キャップ9、9が挿入されて固定されている。筒状部7の第2の支持突部7bと環状部8の第2の支持穴8bにはそれぞれ第2の軸受キャップ10、10が挿入されて固定されている。 First bearing caps 9 and 9 are inserted and fixed in the first support protrusion 7a of the cylindrical portion 7 and the first support hole 8a of the annular portion 8, respectively. Second bearing caps 10 and 10 are inserted and fixed in the second support protrusion 7b of the cylindrical portion 7 and the second support hole 8b of the annular portion 8, respectively.
 第1の軸受キャップ9、9には第1のガイド軸11の軸方向における両端部が挿入されて固定されている。第2の軸受キャップ10、10には第2のガイド軸12の軸方向における両端部が挿入されて固定されている。 Both end portions in the axial direction of the first guide shaft 11 are inserted and fixed to the first bearing caps 9 and 9. Both end portions of the second guide shaft 12 in the axial direction are inserted and fixed to the second bearing caps 10 and 10.
 第1のガイド軸11と第2のガイド軸12には移動体13が摺動自在に支持され、移動体13が第1のガイド軸11と第2のガイド軸12に案内されて光軸方向へ移動可能にされている(図3及び図4参照)。 A movable body 13 is slidably supported by the first guide shaft 11 and the second guide shaft 12, and the movable body 13 is guided by the first guide shaft 11 and the second guide shaft 12 to be in the optical axis direction. (See FIGS. 3 and 4).
 移動体13はレンズ群5とレンズ保持枠14を有し、レンズ群5がレンズ保持枠14に保持されて構成されている。移動体13のレンズ群5は、例えば、上記したフォーカスレンズ群である。移動体13のレンズ群5は一つ又は複数のレンズによって構成されている。尚、移動体13のレンズ群5は、ズーミングを行うために光軸方向へ移動されるズームレンズ群等の他の可動群であってもよい。 The moving body 13 includes a lens group 5 and a lens holding frame 14, and the lens group 5 is held by the lens holding frame 14. The lens group 5 of the moving body 13 is, for example, the above-described focus lens group. The lens group 5 of the moving body 13 includes one or a plurality of lenses. The lens group 5 of the moving body 13 may be another movable group such as a zoom lens group that is moved in the optical axis direction for zooming.
 レンズ保持枠14は環状のレンズ保持部15とレンズ保持部15から突出された突状部16とレンズ保持部15からそれぞれ略反対方向に突出された腕部17、17とを有している。 
 突状部16はレンズ保持部15の外周部から前方及び後方に突出され、前後両端部がそれぞれ第1の被ガイド部16a、16aとして設けられている。第1の被ガイド部16a、16aには第1のガイド軸11が挿通されている。
The lens holding frame 14 includes an annular lens holding portion 15, a protruding portion 16 protruding from the lens holding portion 15, and arm portions 17 and 17 protruding from the lens holding portion 15 in substantially opposite directions.
The protruding portion 16 protrudes forward and rearward from the outer peripheral portion of the lens holding portion 15, and both front and rear end portions are provided as first guided portions 16a and 16a, respectively. The first guide shaft 11 is inserted through the first guided portions 16a and 16a.
 レンズ保持部15は一部が第2の被ガイド部15a、15aとして設けられ、第2の被ガイド部15a、15aは前後に離隔して位置されている。第2の被ガイド部15a、15aには第2のガイド軸12が挿通されている。 A part of the lens holding portion 15 is provided as the second guided portions 15a and 15a, and the second guided portions 15a and 15a are spaced apart from each other in the front-rear direction. The second guide shaft 12 is inserted through the second guided portions 15a and 15a.
 上記のように、移動体13は第1の被ガイド部16a、16aに第1のガイド軸11が挿通され第2の被ガイド部15a、15aに第2のガイド軸12が挿通されることにより、第1のガイド軸11と第2のガイド軸12に支持されて光軸方向へ移動可能にされている。 As described above, the moving body 13 is formed by inserting the first guide shaft 11 through the first guided portions 16a and 16a and the second guide shaft 12 through the second guided portions 15a and 15a. The first guide shaft 11 and the second guide shaft 12 are supported so as to be movable in the optical axis direction.
 移動体13が第1のガイド軸11と第2のガイド軸12に支持された状態においては、第1の被ガイド部16a、16aを有する突状部16の一部が筒状部7と環状部8にそれぞれ形成された逃げ凹部7c、8cに挿入されている(図3及び図4参照)。筒状部7と環状部8の配置凹部7d、7dと逃げ凹部7c、8cが形成されていない部分の厚みは略一定の厚みにされ、配置凹部7d、7dと逃げ凹部7c、8cが形成された部分の厚みより厚くされている。 In a state where the moving body 13 is supported by the first guide shaft 11 and the second guide shaft 12, a part of the protruding portion 16 having the first guided portions 16a and 16a is annular with the tubular portion 7. It is inserted into relief recesses 7c and 8c formed in the portion 8 (see FIGS. 3 and 4). The portions of the cylindrical portion 7 and the annular portion 8 where the arrangement recesses 7d and 7d and the relief recesses 7c and 8c are not formed are substantially constant, and the arrangement recesses 7d and 7d and the relief recesses 7c and 8c are formed. It is thicker than the thickness of the part.
 腕部17、17はレンズ保持部15から外方に突出され、レンズ群5の中心軸を挟んで略反対側の位置に設けられている。 The arm portions 17, 17 protrude outward from the lens holding portion 15, and are provided at substantially opposite positions across the central axis of the lens group 5.
 腕部17は円環状の被挿通部18と被挿通部18の外周部からそれぞれ後方に突出された固定部19、19とを有している(図5参照)。固定部19、19は周方向に離隔して設けられ、腕部17におけるレンズ保持部15から最も離隔した位置には固定部19が存在しない。固定部19には被挿通部18の中心方向と後方に開口された接着用凹部19aが形成されている。 The arm portion 17 has an annular inserted portion 18 and fixing portions 19 and 19 protruding rearward from the outer peripheral portion of the inserted portion 18 (see FIG. 5). The fixing portions 19 are provided so as to be separated from each other in the circumferential direction, and the fixing portion 19 does not exist at a position farthest from the lens holding portion 15 in the arm portion 17. The fixing portion 19 is formed with a bonding concave portion 19a that opens in the center direction and rearward of the inserted portion 18.
 レンズ保持部15における腕部17、17が突出された部分はそれぞれ受部20、20として設けられている(図4及び図5参照)。受部20は被挿通部18の外周部の一部に連続された円弧状に形成され、後端部が固定部21として設けられている。従って、固定部21は固定部19、19より後方に位置されている。固定部21には被挿通部18の中心方向と後方に開口された接着用凹部21aが形成されている。 The portions of the lens holding portion 15 from which the arm portions 17 and 17 are projected are provided as receiving portions 20 and 20, respectively (see FIGS. 4 and 5). The receiving part 20 is formed in an arc shape continuous with a part of the outer peripheral part of the insertion part 18, and the rear end part is provided as a fixing part 21. Accordingly, the fixing portion 21 is located behind the fixing portions 19 and 19. The fixing portion 21 is formed with a bonding concave portion 21a that is opened in the center direction and rearward of the inserted portion 18.
 固定部19、19と固定部21は周方向において略等間隔に離隔して位置されている。 The fixing portions 19 and 19 and the fixing portion 21 are located at substantially equal intervals in the circumferential direction.
 レンズ保持部15の外周部には検出用マグネット22、22が取り付けられている(図2及び図4参照)。検出用マグネット22、22はレンズ群5の中心軸を挟んで略反対側に位置され、前後に延びる形状に形成されている。 Detecting magnets 22 and 22 are attached to the outer periphery of the lens holding portion 15 (see FIGS. 2 and 4). The detection magnets 22 and 22 are positioned substantially on opposite sides of the central axis of the lens group 5 and are formed in a shape extending in the front-rear direction.
 検出用マグネット22、22に対向する位置には、それぞれ磁気センサー23、23が配置されている。磁気センサー23、23は少なくとも一部がそれぞれセンサー配置孔7e、7eに挿入された状態で筒状部7に取り付けられている。磁気センサー23は回路基板24に搭載されている。 Magnetic sensors 23 and 23 are disposed at positions facing the detection magnets 22 and 22, respectively. The magnetic sensors 23 and 23 are attached to the cylindrical portion 7 with at least a part thereof being inserted into the sensor arrangement holes 7e and 7e, respectively. The magnetic sensor 23 is mounted on the circuit board 24.
 磁気センサー23、23は移動体13が光軸方向へ移動されるときにそれぞれ変化する検出用マグネット22、22の磁界の強さを検出し、移動体13の光軸方向における位置を特定する機能を有する。 The magnetic sensors 23 and 23 detect the strength of the magnetic field of the detection magnets 22 and 22 that change when the moving body 13 is moved in the optical axis direction, and specify the position of the moving body 13 in the optical axis direction. Have
 尚、上記には、二つずつの磁気センサー23、23と検出用マグネット22、22が配置された例を示したが、磁気センサー23と検出用マグネット22の設けられる数は、同数であれば任意である。 In the above, an example in which two magnetic sensors 23 and 23 and detection magnets 22 and 22 are arranged is shown. However, if the number of magnetic sensors 23 and detection magnets 22 is the same, Is optional.
 保持体6の環状部8には駆動装置25、25が取り付けられている(図2乃至図4参照)。駆動装置25は外ヨーク26とヨーク27と可動コイル28とマグネット29、29によって構成されている。 駆 動 Drive devices 25, 25 are attached to the annular portion 8 of the holding body 6 (see Figs. 2 to 4). The driving device 25 includes an outer yoke 26, a yoke 27, a movable coil 28, and magnets 29 and 29.
 外ヨーク26は一対のサイドヨーク部30、30と一対のボトムヨーク部31、31とが結合されて枠状にされている。サイドヨーク部30は前後方向に延びる略矩形の板状に形成されている。ボトムヨーク部31は環状部8の周方向に延び緩やかな円弧状に湾曲された板状に形成されている。外ヨーク26はサイドヨーク部30、30の上下両端部とボトムヨーク部31、31の左右両端部とがそれぞれ結合されている。尚、外ヨーク26は、上記したように、サイドヨーク部30、30とボトムヨーク部31、31がそれぞれ別部材で形成されていてもよく、一部又は全部が一体に形成されていてもよい。 The outer yoke 26 is formed into a frame shape by combining a pair of side yoke portions 30 and 30 and a pair of bottom yoke portions 31 and 31. The side yoke portion 30 is formed in a substantially rectangular plate shape extending in the front-rear direction. The bottom yoke portion 31 is formed in a plate shape that extends in the circumferential direction of the annular portion 8 and is curved in a gentle arc shape. In the outer yoke 26, the upper and lower end portions of the side yoke portions 30 and 30 and the left and right end portions of the bottom yoke portions 31 and 31 are coupled to each other. In addition, as above-mentioned, as for the outer yoke 26, the side yoke parts 30 and 30 and the bottom yoke parts 31 and 31 may each be formed by a separate member, and one part or all part may be formed integrally. .
 ヨーク27は丸軸状に形成され、軸方向が前後方向にされている。従って、ヨーク27は軸方向に直交する方向における断面形状が円形状に形成されている。ヨーク27は前後両端部がそれぞれボトムヨーク部31、31の中央部に結合され、サイドヨーク部30、30間に位置されている。ヨーク27はレンズ保持枠14における腕部17の被挿通部18に挿通されている。尚、ヨーク27は一部が空洞に形成されていてもよい。 The yoke 27 is formed in a round shaft shape, and the axial direction is the front-rear direction. Therefore, the yoke 27 has a circular cross section in a direction orthogonal to the axial direction. The yoke 27 has both front and rear end portions coupled to the center portions of the bottom yoke portions 31 and 31, respectively, and is positioned between the side yoke portions 30 and 30. The yoke 27 is inserted into the inserted portion 18 of the arm portion 17 in the lens holding frame 14. The yoke 27 may be partially formed in a cavity.
 可動コイル28は円筒状に形成されている。可動コイル28の内径はヨーク27の外径より稍大きくされ、可動コイル28にはヨーク27が挿通されている。可動コイル28は前端面がレンズ保持枠14における腕部17の後面に接した状態で固定部19、19、21に接着によって固定されている。可動コイル28は固定部19、19、21の接着用凹部19a、19a、21aにそれぞれ接着剤50、50、50が充填されることにより腕部17に固定されている。従って、移動体13と可動コイル28は一体になって光軸方向へ移動される。 The movable coil 28 is formed in a cylindrical shape. The inner diameter of the movable coil 28 is made larger than the outer diameter of the yoke 27, and the yoke 27 is inserted into the movable coil 28. The movable coil 28 is fixed to the fixing portions 19, 19, and 21 with the front end surface in contact with the rear surface of the arm portion 17 in the lens holding frame 14. The movable coil 28 is fixed to the arm portion 17 by filling the adhesive recesses 19a, 19a, and 21a of the fixing portions 19, 19, and 21 with adhesives 50, 50, and 50, respectively. Accordingly, the movable body 13 and the movable coil 28 are moved together in the optical axis direction.
 可動コイル28は前端部が固定部19、19に固定され後端部が固定部21に固定される。従って、可動コイル28は前後両端部が固定部19、19、21に固定されるため、可動コイル28のレンズ保持枠14に対する安定かつ強固な固定状態を確保することができる。尚、可動コイル28は外周面が受部20、20の外面に面接触された状態で受部20、20にも接着により固定されていてもよい。 The front end portion of the movable coil 28 is fixed to the fixed portions 19 and 19, and the rear end portion is fixed to the fixed portion 21. Therefore, since the movable coil 28 has both front and rear end portions fixed to the fixed portions 19, 19, 21, it is possible to secure a stable and strong fixed state of the movable coil 28 with respect to the lens holding frame 14. Note that the movable coil 28 may be fixed to the receiving portions 20 and 20 by adhesion in a state where the outer peripheral surface is in surface contact with the outer surfaces of the receiving portions 20 and 20.
 上記のように、可動コイル28が円筒状に形成されると共に可動コイル28の両側に位置されたマグネット29、29が平板状に形成されているため、マグネット29、29と可動コイル28の間には空間が生じ、この空間に固定部19、19、21の少なくとも一部が位置されている。 As described above, since the movable coil 28 is formed in a cylindrical shape and the magnets 29 and 29 located on both sides of the movable coil 28 are formed in a flat plate shape, between the magnets 29 and 29 and the movable coil 28. A space is generated, and at least a part of the fixing portions 19, 19, and 21 is located in this space.
 従って、接着剤50、50、50の充填スペースの有効活用が図られ、駆動装置25の大型化を来すことなくレンズ保持枠14に可動コイル28を固定することができる。 Therefore, the space for filling the adhesives 50, 50, 50 can be effectively used, and the movable coil 28 can be fixed to the lens holding frame 14 without increasing the size of the driving device 25.
 また、固定部19、19、21が可動コイル28の周方向において略等間隔の位置に設けられているため、レンズ保持枠14に対する可動コイル28の固定位置が周方向において分散して位置され、レンズ保持枠14に対する可動コイル28の安定かつ強固な固定状態を確保することができる。 In addition, since the fixed portions 19, 19, and 21 are provided at substantially equal intervals in the circumferential direction of the movable coil 28, the fixed positions of the movable coil 28 with respect to the lens holding frame 14 are distributed and positioned in the circumferential direction. A stable and strong fixed state of the movable coil 28 with respect to the lens holding frame 14 can be ensured.
 マグネット29、29は長手方向が前後方向にされた矩形の板状に形成され、それぞれサイドヨーク部30、30の可動コイル28側を向く面に固定されている。マグネット29、29は互いに対向する側の面がそれぞれ磁束発生面29a、29aとされ、磁束発生面29a、29aが可動コイル28とヨーク27に対向して位置されている。 The magnets 29 and 29 are formed in a rectangular plate shape whose longitudinal direction is the front-rear direction, and are fixed to the surfaces of the side yoke portions 30 and 30 facing the movable coil 28 side, respectively. The magnets 29, 29 are opposed to each other as magnetic flux generation surfaces 29 a, 29 a, and the magnetic flux generation surfaces 29 a, 29 a are positioned to face the movable coil 28 and the yoke 27.
 上記のように構成された駆動装置25においては、マグネット29、29の磁束発生面29a、29aから発生する磁束と可動コイル28に流れる電流とによって推力が発生し、発生した推力が駆動力として可動コイル28に付与され、可動コイル28に流れる電流の向きに応じた方向へ可動コイル28と移動体13が一体になって移動される。このとき移動体13のレンズ保持枠14が第1のガイド軸11と第2のガイド軸12に案内されるため、可動コイル28に流れる電流の向きに応じて可動コイル28と移動体13が光軸方向である前方又は後方へ筒状部7の内部空間において移動される
 駆動装置25、25は一部がそれぞれ筒状部7の配置凹部7d、7dに挿入された状態で環状部8の後面に取り付けられている。駆動装置25は一方のボトムヨーク部31が接着等によって環状部8に取り付けられている。
In the driving device 25 configured as described above, thrust is generated by the magnetic flux generated from the magnetic flux generation surfaces 29a and 29a of the magnets 29 and 29 and the current flowing through the movable coil 28, and the generated thrust is movable as the driving force. The movable coil 28 and the moving body 13 are moved together in a direction according to the direction of the current applied to the coil 28 and flowing through the movable coil 28. At this time, since the lens holding frame 14 of the moving body 13 is guided by the first guide shaft 11 and the second guide shaft 12, the movable coil 28 and the moving body 13 are lighted according to the direction of the current flowing through the movable coil 28. The driving devices 25 and 25 are moved in the inner space of the cylindrical portion 7 forward or rearward in the axial direction. The rear surfaces of the annular portion 8 are partially inserted into the arrangement concave portions 7d and 7d of the cylindrical portion 7, respectively. Is attached. In the driving device 25, one bottom yoke portion 31 is attached to the annular portion 8 by adhesion or the like.
 駆動装置25が環状部8に取り付けられた状態においては、円弧状に形成されたボトムヨーク部31が環状部8の外周縁に沿って位置され、マグネット29、29が筒状部7の周方向に離隔して位置される。従って、ヨーク27と一対のマグネット29、29との並び方向が筒状部7の周方向S(図4参照)にされている。 In a state in which the driving device 25 is attached to the annular portion 8, the bottom yoke portion 31 formed in an arc shape is positioned along the outer peripheral edge of the annular portion 8, and the magnets 29 and 29 are circumferential directions of the tubular portion 7. Is spaced apart from each other. Therefore, the arrangement direction of the yoke 27 and the pair of magnets 29, 29 is set to the circumferential direction S (see FIG. 4) of the cylindrical portion 7.
 駆動装置25においては、上記したように、ボトムヨーク部31、31は緩やかに湾曲された形状に形成されており、サイドヨーク部30、30に取り付けられたマグネット29、29の磁束発生面29a、29aは前端(内端)間の距離H1が後端(外端)間の距離H2より小さくされ、磁束発生面29a、29a間の距離Hがレンズ群5に近付くに従って小さくされている(図6参照)。 In the driving device 25, as described above, the bottom yoke portions 31 and 31 are formed in a gently curved shape, and the magnetic flux generation surfaces 29a of the magnets 29 and 29 attached to the side yoke portions 30 and 30, In 29a, the distance H1 between the front ends (inner ends) is made smaller than the distance H2 between the rear ends (outer ends), and the distance H between the magnetic flux generating surfaces 29a and 29a is made smaller as the lens group 5 is approached (FIG. 6). reference).
 一方、例えば、磁束発生面29a、29aが平行な状態で位置されている場合には、図6に点線で示すように、サイドヨーク部30、30における筒状部7の外周側の端部30a、30aやボトムヨーク部31、31における筒状部7の外周側の端部31a、31aが筒状部7の外周から外側に突出し易くなり、その分、筒状部7の外径を大きくする必要がある。 On the other hand, for example, when the magnetic flux generating surfaces 29a and 29a are positioned in a parallel state, as shown by a dotted line in FIG. 6, the end portion 30a on the outer peripheral side of the cylindrical portion 7 in the side yoke portions 30 and 30. 30a and the end portions 31a, 31a on the outer peripheral side of the cylindrical portion 7 in the bottom yoke portions 31, 31 are likely to protrude outward from the outer periphery of the cylindrical portion 7, and the outer diameter of the cylindrical portion 7 is increased accordingly. There is a need.
 従って、駆動装置25のように、磁束発生面29a、29aの内端間の距離H1が外端間の距離H2より小さくされることにより、サイドヨーク部30、30とボトムヨーク部31、31が筒状部7の外周から外側に突出し難くなるため、筒状部7の外径を小さくすることが可能になる。 Accordingly, as in the driving device 25, the distance H1 between the inner ends of the magnetic flux generation surfaces 29a and 29a is made smaller than the distance H2 between the outer ends, so that the side yoke portions 30 and 30 and the bottom yoke portions 31 and 31 are formed. Since it becomes difficult to protrude outside from the outer periphery of the cylindrical part 7, it becomes possible to make the outer diameter of the cylindrical part 7 small.
 駆動装置25、25はレンズ群5の中心軸を挟んだ反対側に位置され、周方向においてそれぞれ第1のガイド軸11と第2のガイド軸12の間に位置されている。このとき駆動装置25、25と第1のガイド軸11と第2のガイド軸12は周方向において略等間隔の位置に存在する。 The driving devices 25 and 25 are located on opposite sides of the central axis of the lens group 5 and are respectively located between the first guide shaft 11 and the second guide shaft 12 in the circumferential direction. At this time, the driving devices 25, 25, the first guide shaft 11, and the second guide shaft 12 are present at substantially equal intervals in the circumferential direction.
 <まとめ>
 以上に記載した通り、一対のマグネット29、29の可動コイル28と対向する面がそれぞれ磁束発生面29a、29aとされ、移動体13は軸方向が光軸方向にされた筒状部7に対して筒状部7の内部において光軸方向へ移動され、ヨーク27とマグネット29、29との並び方向が筒状部7の周方向にされている。
<Summary>
As described above, the surfaces of the pair of magnets 29, 29 that face the movable coil 28 are the magnetic flux generation surfaces 29 a, 29 a, respectively, and the moving body 13 is opposed to the cylindrical portion 7 whose axial direction is the optical axis direction. The yoke 27 and the magnets 29 and 29 are arranged in the circumferential direction of the cylindrical portion 7.
 従って、筒状部7の内部において移動体13が光軸方向へ移動されると共に筒状部7の周方向においてヨーク27と一対のマグネット29、29とが並ぶ状態にされるため、保持体6における駆動装置25、25の配置スペースの有効活用が図られ、駆動装置25、25が限られたスペースに効率よく配置され、駆動装置25、25が設けられるレンズ鏡筒1及び撮像装置100の小型化を図ることができる。 Accordingly, the movable body 13 is moved in the optical axis direction inside the cylindrical portion 7 and the yoke 27 and the pair of magnets 29 and 29 are arranged in the circumferential direction of the cylindrical portion 7. The arrangement space of the driving devices 25 and 25 in the lens is effectively utilized, the driving devices 25 and 25 are efficiently arranged in a limited space, and the lens barrel 1 and the imaging device 100 in which the driving devices 25 and 25 are provided are small. Can be achieved.
 また、ヨーク27とマグネット29、29の並び方向が筒状部7の周方向にされることにより、レンズ保持枠14の腕部17をマグネット29、29の間に容易に挿入して腕部17に可動コイル28を容易に固定することができるため、腕部17を含めたレンズ保持枠14の形状を簡素な形状にすることが可能になり、レンズ鏡筒1の構造の簡素化及び製造コストの低減を図ることができる。 Further, by arranging the yoke 27 and the magnets 29 and 29 in the circumferential direction of the cylindrical portion 7, the arm portion 17 of the lens holding frame 14 can be easily inserted between the magnets 29 and 29 and the arm portion 17. Since the movable coil 28 can be easily fixed to the lens holding frame 14, the shape of the lens holding frame 14 including the arm portion 17 can be simplified, and the structure of the lens barrel 1 can be simplified and the manufacturing cost can be reduced. Can be reduced.
 さらに、マグネット29、29が周方向において可動コイル28の両側に位置される構成にされることにより、例えば、可動コイル28の外周側に円筒状のマグネットが配置される構成に比し、筒状部7の径方向R(図4参照)において駆動装置25の小型化が図られ、レンズ鏡筒1の径方向における小型化を図ることができる。 Furthermore, the magnets 29 and 29 are configured to be positioned on both sides of the movable coil 28 in the circumferential direction, so that, for example, a cylindrical shape is provided as compared with a configuration in which a cylindrical magnet is disposed on the outer peripheral side of the movable coil 28. The drive device 25 can be downsized in the radial direction R (see FIG. 4) of the portion 7, and the lens barrel 1 can be downsized in the radial direction.
 特に、マグネット29、29の厚みを増やしても筒状部7の径方向における大きさを大きくすることなく磁束密度を高めることが可能になり、レンズ鏡筒1の径方向における大型化を来すことなく可動コイル28に対する駆動力の向上を図ることができる。 In particular, even if the thickness of the magnets 29 and 29 is increased, the magnetic flux density can be increased without increasing the size of the cylindrical portion 7 in the radial direction, and the size of the lens barrel 1 in the radial direction is increased. Thus, the driving force for the movable coil 28 can be improved.
 さらにまた、筒状部7が円筒状に形成されているため、ヨーク27と一対のマグネット29、29との並び方向が円筒状に形成された筒状部7の周方向にされるため、ヨーク27と一対のマグネット29、29が円周方向に並んで位置され、駆動装置25、25の配置スペースに関するスペース効率の向上を図ることができる。 Furthermore, since the cylindrical portion 7 is formed in a cylindrical shape, the arrangement direction of the yoke 27 and the pair of magnets 29, 29 is set to the circumferential direction of the cylindrical portion 7 formed in a cylindrical shape. 27 and the pair of magnets 29 and 29 are arranged side by side in the circumferential direction, and the space efficiency related to the arrangement space of the drive devices 25 and 25 can be improved.
 加えて、マグネット29、29の磁束発生面29a、29aにおいて内側端間の距離H1が外側端間の距離H2より小さくされている。 In addition, the distance H1 between the inner ends of the magnetic flux generation surfaces 29a, 29a of the magnets 29, 29 is smaller than the distance H2 between the outer ends.
 従って、マグネット29、29が平行に位置されず、サイドヨーク部30、30とボトムヨーク部31、31が筒状部7の外周から外側に突出し難くなるため、筒状部7の外径を小さくすることが可能になり、筒状部7の外形状の小型化を図ることができる。 Accordingly, the magnets 29 and 29 are not positioned in parallel, and the side yoke parts 30 and 30 and the bottom yoke parts 31 and 31 are difficult to protrude outward from the outer periphery of the cylindrical part 7, so that the outer diameter of the cylindrical part 7 is reduced. Thus, the outer shape of the cylindrical portion 7 can be reduced in size.
 特に、距離H1を距離H2より小さくすることにより、磁束発生面29a、29aが光軸P(レンズの中心軸)を含む平面Q上に位置され又は平面Qと略平行に位置されることが望ましい(図7参照)。このように構成することにより、サイドヨーク部30、30とボトムヨーク部31、31が筒状部7の外周から外側に一層突出し難くなるため、筒状部7の外形状の小型化を図った上でマグネット29、29の厚みを厚くして磁束密度を高めることが可能になる。 In particular, by making the distance H1 smaller than the distance H2, it is desirable that the magnetic flux generation surfaces 29a and 29a be positioned on the plane Q including the optical axis P (the central axis of the lens) or substantially parallel to the plane Q. (See FIG. 7). With this configuration, the side yoke portions 30 and 30 and the bottom yoke portions 31 and 31 are more difficult to protrude outward from the outer periphery of the cylindrical portion 7, so that the outer shape of the cylindrical portion 7 is reduced in size. It is possible to increase the magnetic flux density by increasing the thickness of the magnets 29 and 29.
 このようにマグネット29、29に関する磁束密度を高めることが可能になるため、ヨーク27の周囲の全体にマグネットを配置することなく十分な推力を得ることが可能であり、可動コイル28に対する十分な駆動力を確保した上で駆動装置25の小型化を図ることができる。 As described above, since the magnetic flux density related to the magnets 29 and 29 can be increased, sufficient thrust can be obtained without arranging the magnet around the whole of the yoke 27 and sufficient driving for the movable coil 28 can be obtained. The drive device 25 can be reduced in size while securing the force.
 但し、磁束発生面29a、29aが光軸Pを含む平面Q上に位置される構成又は平面Qと略平行に位置される構成にした場合には、磁束発生面29a、29aの互いの傾斜角度が大きくなり、漏れ磁束が増えて発生する推力が低下する可能性がある。従って、磁束発生面29a、29aの向きは、筒状部7の外形状の小型化と発生する推力の大きさとを考慮して最適な向きに設定することが望ましい。 However, when the magnetic flux generating surfaces 29a and 29a are configured to be positioned on the plane Q including the optical axis P or positioned substantially parallel to the plane Q, the inclination angles of the magnetic flux generating surfaces 29a and 29a with each other May increase, and the generated magnetic flux may increase and the thrust generated may decrease. Therefore, it is desirable that the direction of the magnetic flux generation surfaces 29a and 29a be set to an optimum direction in consideration of the downsizing of the outer shape of the cylindrical portion 7 and the magnitude of the generated thrust.
 尚、レンズ鏡筒1においては、ヨーク27が丸軸状に形成され可動コイル28が円筒状に形成されているため、磁束発生面29a、29aの向きが変化してもヨーク27と可動コイル28の形状の変更をする必要がなく、設計の容易化を図ることができる。 In the lens barrel 1, since the yoke 27 is formed in a round shaft shape and the movable coil 28 is formed in a cylindrical shape, the yoke 27 and the movable coil 28 are changed even if the directions of the magnetic flux generation surfaces 29a and 29a are changed. Therefore, the design can be simplified.
 また、駆動装置25においては、ヨーク27と可動コイル28と一対のマグネット29、29が筒状部7の内部空間における外周部に位置されている。 Further, in the drive device 25, the yoke 27, the movable coil 28, and the pair of magnets 29 and 29 are positioned on the outer peripheral portion in the internal space of the cylindrical portion 7.
 従って、ヨーク27と可動コイル28と一対のマグネット29、29が筒状部7の内周面に近付いて位置されるため、筒状部7の内部における移動体13と駆動装置25の配置スペースに関するスペース効率の向上を図ることができる。 Accordingly, since the yoke 27, the movable coil 28, and the pair of magnets 29 and 29 are positioned close to the inner peripheral surface of the cylindrical portion 7, the arrangement space of the moving body 13 and the driving device 25 inside the cylindrical portion 7 is concerned. Space efficiency can be improved.
 さらに、可動コイル28を囲む位置に枠状の外ヨーク26が設けられ、外ヨーク26が平行に位置された一対のサイドヨーク部30、30と平行に位置された一対のボトムヨーク部31、31とを有し、サイドヨーク部30、30にそれぞれマグネット29、29が取り付けられ、ボトムヨーク部31、31にヨーク27の両端部が取り付けられている。 Further, a frame-shaped outer yoke 26 is provided at a position surrounding the movable coil 28, and a pair of bottom yoke portions 31, 31 positioned in parallel with the pair of side yoke portions 30, 30 in which the outer yoke 26 is positioned in parallel. Magnets 29 and 29 are attached to the side yoke portions 30 and 30, respectively, and both end portions of the yoke 27 are attached to the bottom yoke portions 31 and 31, respectively.
 従って、可動コイル28を囲む位置にマグネット29、29とヨーク27が取り付けられた外ヨーク26とが配置されるため、移動体13に対する大きな駆動力を確保することができる。 Therefore, since the magnets 29 and 29 and the outer yoke 26 to which the yoke 27 is attached are disposed at a position surrounding the movable coil 28, a large driving force for the moving body 13 can be ensured.
 また、可動コイル28が円筒状に形成され可動コイル28の両側にサイドヨーク部30、30が位置される構成にされることにより、マグネット29、29とヨーク27の間に存在する磁場を横切る可動コイル28の存在比率が高くなり、可動コイル28に付与される大きな駆動力を確保することができる。 Further, the movable coil 28 is formed in a cylindrical shape and the side yoke portions 30 and 30 are positioned on both sides of the movable coil 28, so that the movable coil 28 crosses the magnetic field existing between the magnets 29 and 29 and the yoke 27. The existence ratio of the coil 28 is increased, and a large driving force applied to the movable coil 28 can be ensured.
 駆動装置25のような構成においては、マグネット29、29における磁束発生面29a、29aの合計面積とマグネット29、29の磁束密度との積がおおよそヨーク27に流れ込む総磁束とされ、この総磁束をヨーク27の光軸に直交する断面の面積で除すことによりヨーク27の内部におけるおおよその磁束密度が求められる。そこで、駆動装置25の磁気回路において磁気飽和を抑制するために、磁束発生面29a、29aの合計面積に対するヨーク27の光軸に直交する断面の最大面積を一定の大きさ以上にすることが望ましい。 In the configuration like the driving device 25, the product of the total area of the magnetic flux generation surfaces 29a and 29a of the magnets 29 and 29 and the magnetic flux density of the magnets 29 and 29 is approximately the total magnetic flux flowing into the yoke 27, and this total magnetic flux is By dividing by the area of the cross section perpendicular to the optical axis of the yoke 27, the approximate magnetic flux density inside the yoke 27 is obtained. Therefore, in order to suppress magnetic saturation in the magnetic circuit of the driving device 25, it is desirable that the maximum area of the cross section perpendicular to the optical axis of the yoke 27 with respect to the total area of the magnetic flux generation surfaces 29a and 29a be greater than a certain size. .
 駆動装置25においては、ヨーク27の光軸に直交する断面の最大面積が磁束発生面29a、29aの合計面積の5%以上にされている。即ち、ヨーク27の円形状の断面積が二つの磁束発生面29a、29aを合計した面積の5%以上にされている。 In the driving device 25, the maximum area of the cross section perpendicular to the optical axis of the yoke 27 is set to 5% or more of the total area of the magnetic flux generation surfaces 29a and 29a. That is, the circular cross-sectional area of the yoke 27 is set to 5% or more of the total area of the two magnetic flux generation surfaces 29a and 29a.
 ヨーク27とマグネット29、29において、このような関係を有する構成にすることにより、マグネット29、29とヨーク27の関係において磁気飽和が生じ難くなり、磁気回路において発生する推力の低下を抑制し、移動体13に対する十分な駆動力を確保することができる。 By configuring the yoke 27 and the magnets 29 and 29 to have such a relationship, magnetic saturation is less likely to occur in the relationship between the magnets 29 and 29 and the yoke 27, and a reduction in thrust generated in the magnetic circuit is suppressed. A sufficient driving force for the movable body 13 can be ensured.
 また、ヨーク27は光軸方向に直交する方向における断面の少なくとも一部が円形状に形成されているため、ヨーク27の外形状を小さくした上で光軸に直交する断面の面積を大きくすることが可能になり、磁気飽和が生じ難くなり、駆動装置25の小型化を図った上で駆動効率の向上を図ることができる。 Further, since at least a part of the cross section of the yoke 27 in the direction orthogonal to the optical axis direction is formed in a circular shape, the outer shape of the yoke 27 is reduced and the area of the cross section orthogonal to the optical axis is increased. Thus, magnetic saturation is less likely to occur, and the drive efficiency can be improved after the drive device 25 is downsized.
 さらに、可動コイル28が円筒状に形成されているため、可動コイル28の外形状を小さくした上で巻き数を増やすことが可能になり、駆動装置25の一層の小型化を図った上で駆動効率の向上を図ることができる。 Furthermore, since the movable coil 28 is formed in a cylindrical shape, it is possible to increase the number of turns while reducing the outer shape of the movable coil 28, and to drive the drive device 25 with further miniaturization. Efficiency can be improved.
 さらにまた、ヨーク27を丸軸状に形成すると共に可動コイル28を円筒状に形成することにより、マグネット29、29のヨーク27と可動コイル28に対する向きをレンズ群5の位置やレンズ鏡筒1の他の構成部品との位置関係において容易に調整することが可能になり、設計の自由度の向上及びレンズ鏡筒1の小型化を図ることができる。 Furthermore, the yoke 27 is formed in a round shaft shape and the movable coil 28 is formed in a cylindrical shape, so that the orientation of the magnets 29 and 29 with respect to the yoke 27 and the movable coil 28 can be changed to the position of the lens group 5 and the lens barrel 1. It is possible to easily adjust the positional relationship with other components, so that the degree of freedom in design and the size of the lens barrel 1 can be reduced.
 加えて、保持体6には駆動装置25、25の一部が配置される配置凹部7d、7dと突状部16の一部が配置される逃げ凹部7c、8cが形成され、筒状部7と環状部8の配置凹部7d、7dと逃げ凹部7c、8cが形成されていない部分の厚みが配置凹部7d、7dと逃げ凹部7c、8cが形成された部分の厚みより厚くされている。 In addition, the holding body 6 is provided with disposition recesses 7d and 7d in which a part of the drive devices 25 and 25 are disposed and escape recesses 7c and 8c in which a part of the projecting portion 16 is disposed. The thickness of the portion of the annular portion 8 where the arrangement recesses 7d and 7d and the relief recesses 7c and 8c are not formed is thicker than the thickness of the portion where the placement recesses 7d and 7d and the relief recesses 7c and 8c are formed.
 従って、保持体6の十分な強度を確保した上で保持体6の外径を小さくすることが可能になり、レンズ鏡筒1の高い強度を確保することができると共に小型化を図ることができる。 Accordingly, it is possible to reduce the outer diameter of the holding body 6 while ensuring a sufficient strength of the holding body 6, so that the high strength of the lens barrel 1 can be ensured and the size can be reduced. .
 また、レンズ鏡筒1には、二つの駆動装置25、25が設けられ、駆動装置25、25がレンズ群5を挟んで略反対側に位置されている。 Also, the lens barrel 1 is provided with two drive devices 25, 25, and the drive devices 25, 25 are positioned on the substantially opposite side across the lens group 5.
 従って、レンズ群5の両側にそれぞれ駆動装置25、25が位置されるため、移動体13に不必要なモーメントが生じ難く、移動体13を光軸方向へ円滑に移動させることができる。 Therefore, since the driving devices 25 and 25 are positioned on both sides of the lens group 5, unnecessary moment is hardly generated in the moving body 13, and the moving body 13 can be smoothly moved in the optical axis direction.
 尚、レンズ鏡筒1においては、駆動装置25、25における合計の推力の発生点が移動体13の重心に略一致されるように構成することにより、移動体13に不必要なモーメントがほとんど生じなくなり、移動体13を光軸方向へ一層円滑に移動させることができる。 The lens barrel 1 is configured such that the total thrust generation point in the driving devices 25 and 25 is substantially coincident with the center of gravity of the moving body 13, so that almost no unnecessary moment is generated in the moving body 13. The moving body 13 can be moved more smoothly in the optical axis direction.
 さらに、移動体13を光軸方向へ案内する第1のガイド軸11と第2のガイド軸12が設けられ、第1のガイド軸11と第2のガイド軸12がレンズ群5を挟んで略反対側に位置されている。 Further, a first guide shaft 11 and a second guide shaft 12 for guiding the moving body 13 in the optical axis direction are provided, and the first guide shaft 11 and the second guide shaft 12 are substantially sandwiched between the lens group 5. Located on the opposite side.
 従って、移動体13がレンズ群5を挟んで略反対側に位置された第1のガイド軸11と第2のガイド軸12に案内されて光軸方向へ移動されるため、移動体13の移動時に可動コイル28の内周面がヨーク27の外周面に接し難くなり、レンズ群5の光軸に直交する方向における高い位置精度を確保した上で移動体13を円滑に光軸方向へ移動させることができる。 Accordingly, the moving body 13 is guided by the first guide shaft 11 and the second guide shaft 12 that are positioned substantially opposite to each other with the lens group 5 interposed therebetween, and is moved in the optical axis direction. Sometimes the inner peripheral surface of the movable coil 28 is difficult to contact the outer peripheral surface of the yoke 27, and the movable body 13 is smoothly moved in the optical axis direction while ensuring high positional accuracy in the direction orthogonal to the optical axis of the lens group 5. be able to.
 さらにまた、第1のガイド軸11と一方の駆動装置25と第2のガイド軸12と他方の駆動装置25とが周方向において順に略等間隔の位置に配置されている。 Furthermore, the first guide shaft 11, the one drive device 25, the second guide shaft 12, and the other drive device 25 are arranged at substantially equal intervals in order in the circumferential direction.
 従って、駆動装置25、25がレンズ群5を挟んで略反対側に位置されると共に駆動装置25、25の間に周方向においてそれぞれ第1のガイド軸11と第2のガイド軸12が位置されるため、移動体13を光軸方向へ一層円滑に移動させることができる。 Accordingly, the driving devices 25 and 25 are positioned on the substantially opposite sides of the lens group 5, and the first guide shaft 11 and the second guide shaft 12 are positioned between the driving devices 25 and 25 in the circumferential direction, respectively. Therefore, the moving body 13 can be moved more smoothly in the optical axis direction.
 尚、レンズ鏡筒1においては、第1のガイド軸11と第2のガイド軸12が周方向において何れの位置に配置されていてもよく、例えば、第1のガイド軸11と第2のガイド軸12が周方向において並んだ位置に配置されていてもよい。 In the lens barrel 1, the first guide shaft 11 and the second guide shaft 12 may be disposed at any position in the circumferential direction. For example, the first guide shaft 11 and the second guide shaft The shaft 12 may be arranged at a position aligned in the circumferential direction.
 また、同様に、駆動装置25、25も周方向において何れの位置に配置されていてもよく、例えば、駆動装置25、25が周方向において並んだ位置に配置されていてもよい。 Similarly, the driving devices 25 and 25 may be arranged at any position in the circumferential direction, for example, the driving devices 25 and 25 may be arranged at positions arranged in the circumferential direction.
 <その他>
 上記には、平板状に形成されたマグネット29、29の例を示したが、例えば、可動コイル28に沿う円弧状に形成されたマグネット29A、29Aが用いられてもよい(図8参照)。この場合には、円弧状に形成されたマグネット29A、29Aが用いられてもよい(図8参照)。この場合には円弧状のサイドヨーク部30A、30A又は他の形状のサイドヨークが用いられていてもよい。
<Others>
Although the example of the magnets 29 and 29 formed in flat form was shown above, for example, the magnets 29A and 29A formed in circular arc shape along the movable coil 28 may be used (refer FIG. 8). In this case, magnets 29A and 29A formed in an arc shape may be used (see FIG. 8). In this case, arc-shaped side yoke portions 30A, 30A or other shape side yokes may be used.
 このような可動コイル28に沿う円弧状に形成されたマグネット29A、29Aが用いられることにより、磁束発生面29b、29bと可動コイル28の外周面との距離が可動コイル28の周方向において縮まることにより磁束密度が向上し、可動コイル28に対する駆動力の向上を図ることができる。 By using the magnets 29 </ b> A and 29 </ b> A formed in an arc shape along the movable coil 28, the distance between the magnetic flux generating surfaces 29 b and 29 b and the outer peripheral surface of the movable coil 28 is reduced in the circumferential direction of the movable coil 28. As a result, the magnetic flux density is improved, and the driving force for the movable coil 28 can be improved.
 但し、平板状のマグネット29、29は成形が容易であり量産性も高く製造コストを低くすることが可能であり、マグネット29を用いるかマグネット29Aを用いるかは製造コストと必要な駆動力とを考慮して決定することが望ましい。 However, the flat magnets 29 and 29 are easy to mold, have high mass productivity, and can reduce the manufacturing cost. Whether the magnet 29 or the magnet 29A is used depends on the manufacturing cost and the necessary driving force. It is desirable to decide in consideration.
 また、上記には、外形状が円形状の筒状部7の内部に駆動装置25、25が配置された例を示したが、筒状部7は外形状が非円形状であってもよく、例えば、楕円形状や矩形状や略矩形状等であってもよい(図9参照)。 In the above, an example in which the driving devices 25 and 25 are arranged inside the cylindrical portion 7 whose outer shape is circular is shown, but the outer shape of the cylindrical portion 7 may be noncircular. For example, an elliptical shape, a rectangular shape, a substantially rectangular shape, or the like may be used (see FIG. 9).
 このように筒状部7が非円形状である場合にも、駆動装置25はヨーク27と一対のマグネット29、29の並び方向が筒状部7の周方向Sにされる。従って、この場合にも、駆動装置25、25の配置スペースの有効活用が図られ、駆動装置25、25が限られたスペースに効率よく配置され、駆動装置25、25が設けられるレンズ鏡筒1及び撮像装置100の小型化を図ることができる。 Thus, even when the cylindrical portion 7 is non-circular, the arrangement direction of the yoke 27 and the pair of magnets 29 and 29 is set to the circumferential direction S of the cylindrical portion 7 in the driving device 25. Accordingly, also in this case, the lens barrel 1 in which the arrangement space of the driving devices 25 and 25 is effectively utilized, the driving devices 25 and 25 are efficiently arranged in a limited space, and the driving devices 25 and 25 are provided. In addition, the imaging device 100 can be downsized.
 また、上記には、ヨーク27が丸軸状に形成され、可動コイル28が円筒状に形成された例を示したが、ヨーク27は外形状が非円形状であってもよく、例えば、楕円形状や矩形状や略矩形状等であってもよい。可動コイル28もヨーク27の形状に応じて非円筒形状に形成されていてもよい。 In the above example, the yoke 27 is formed in a round shaft shape and the movable coil 28 is formed in a cylindrical shape. However, the yoke 27 may have a non-circular outer shape. It may be a shape, a rectangular shape, a substantially rectangular shape, or the like. The movable coil 28 may also be formed in a non-cylindrical shape according to the shape of the yoke 27.
 但し、ヨーク27は略矩形状のほうが製造コストを低くすることが可能である。ヨーク27や可動コイル30の断面形状を決定する際は、製造コストと必要な駆動力とを考慮して決定することが望ましい。  However, the manufacturing cost can be reduced if the yoke 27 is substantially rectangular. When determining the cross-sectional shapes of the yoke 27 and the movable coil 30, it is desirable to determine in consideration of the manufacturing cost and the necessary driving force.
 <撮像装置の一実施形態>
 以下に、本技術撮像装置の一実施形態の構成例について説明する(図10参照)。
<One Embodiment of Imaging Device>
Below, the structural example of one Embodiment of this technique imaging device is demonstrated (refer FIG. 10).
 撮像装置100は、取り込まれた光を電気信号に変換する光電変換機能を有する撮像素子204と、撮影された画像信号のアナログ-デジタル変換等の信号処理を行うカメラ信号処理部81と、画像信号の記録再生処理を行う画像処理部82とを有している。また、撮像装置100は、撮影された画像等を表示する表示部83と、メモリー88への画像信号の書込及び読出を行うR/W(リーダ/ライタ)84と、撮像装置100の全体を制御するCPU(Central Processing Unit)85と、ユーザーによって所要の操作が行われる各種のスイッチ等の入力部86(操作部202)と、レンズ群(可動群)5の駆動を制御するレンズ駆動制御部87とを備えている。 The imaging apparatus 100 includes an imaging element 204 having a photoelectric conversion function for converting captured light into an electrical signal, a camera signal processing unit 81 that performs signal processing such as analog-digital conversion of a captured image signal, and an image signal. And an image processing unit 82 for performing the recording / reproducing process. In addition, the imaging apparatus 100 includes a display unit 83 that displays captured images and the like, an R / W (reader / writer) 84 that writes and reads image signals to and from the memory 88, and the entire imaging apparatus 100. CPU (Central Processing Unit) 85 to be controlled, input unit 86 (operation unit 202) such as various switches that are operated by a user, and lens drive control unit that controls driving of the lens group (movable group) 5 87.
 カメラ信号処理部81は、撮像素子204からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の各種の信号処理を行う。 The camera signal processing unit 81 performs various signal processing such as conversion of the output signal from the image sensor 204 into a digital signal, noise removal, image quality correction, and conversion into a luminance / color difference signal.
 画像処理部82は、所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理等を行う。 The image processing unit 82 performs compression encoding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and the like.
 表示部83はユーザーの入力部86に対する操作状態や撮影した画像等の各種のデータを表示する機能を有している。 The display unit 83 has a function of displaying various data such as an operation state of the user input unit 86 and a photographed image.
 R/W84は、画像処理部82によって符号化された画像データのメモリー88への書込及びメモリー88に記録された画像データの読出を行う。 The R / W 84 writes the image data encoded by the image processing unit 82 into the memory 88 and reads out the image data recorded in the memory 88.
 CPU85は、撮像装置100に設けられた各回路ブロックを制御する制御処理部として機能し、入力部86からの指示入力信号等に基づいて各回路ブロックを制御する。 The CPU 85 functions as a control processing unit that controls each circuit block provided in the imaging apparatus 100 and controls each circuit block based on an instruction input signal or the like from the input unit 86.
 入力部86はユーザーによる操作に応じた指示入力信号をCPU85に対して出力する。 The input unit 86 outputs an instruction input signal corresponding to the operation by the user to the CPU 85.
 レンズ駆動制御部87は、CPU85からの制御信号に基づいてレンズ群5、5、・・・を駆動する図示しないモータ等を制御する。 The lens drive control unit 87 controls a motor (not shown) that drives the lens groups 5, 5,... Based on a control signal from the CPU 85.
 メモリー88は、例えば、R/W84に接続されたスロットに対して着脱可能な半導体メモリーである。尚、メモリー88は、スロットに対して着脱可能にされておらず、撮像装置100の内部に組み込まれていてもよい。 The memory 88 is a semiconductor memory that can be attached to and detached from a slot connected to the R / W 84, for example. Note that the memory 88 may not be detachable from the slot but may be incorporated in the imaging apparatus 100.
 以下に、撮像装置100における動作を説明する。 Hereinafter, the operation of the imaging apparatus 100 will be described.
 撮影の待機状態では、CPU85による制御の下で、撮影された画像信号がカメラ信号処理部81を介して表示部83に出力され、カメラスルー画像として表示される。また、入力部86からのズーミングのための指示入力信号が入力されると、CPU85がレンズ駆動制御部87に制御信号を出力し、レンズ駆動制御部87の制御に基づいて所定のレンズ群5が移動される。 In the standby state for shooting, under the control of the CPU 85, the shot image signal is output to the display unit 83 via the camera signal processing unit 81 and displayed as a camera through image. When an instruction input signal for zooming is input from the input unit 86, the CPU 85 outputs a control signal to the lens drive control unit 87, and a predetermined lens group 5 is controlled based on the control of the lens drive control unit 87. Moved.
 入力部86からの指示入力信号により撮影が行われると、撮影された画像信号がカメラ信号処理部81から画像処理部82に出力されて圧縮符号化処理され、所定のデータフォーマットのデジタルデータに変換される。変換されたデータはR/W84に出力され、メモリー88に書き込まれる。 When shooting is performed by an instruction input signal from the input unit 86, the captured image signal is output from the camera signal processing unit 81 to the image processing unit 82, subjected to compression coding processing, and converted into digital data of a predetermined data format. Is done. The converted data is output to the R / W 84 and written to the memory 88.
 フォーカシングはCPU85からの制御信号に基づいてレンズ駆動制御部87が所定のレンズ群5を移動させることにより行われる。 Focusing is performed by the lens drive control unit 87 moving a predetermined lens group 5 based on a control signal from the CPU 85.
 メモリー88に記録された画像データを再生する場合には、入力部86に対する操作に応じてR/W84によってメモリー88から所定の画像データが読み出され、画像処理部82によって伸張復号化処理が行われた後に、再生画像信号が表示部83に出力されて再生画像が表示される。 When the image data recorded in the memory 88 is reproduced, predetermined image data is read from the memory 88 by the R / W 84 in accordance with an operation on the input unit 86, and decompression decoding processing is performed by the image processing unit 82. Then, the reproduced image signal is output to the display unit 83 to display the reproduced image.
 尚、本技術において、「撮像」とは、撮像素子204による取り込まれた光を電気信号に変換する光電変換処理から、カメラ信号処理部81による撮像素子204からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理、画像処理部82による所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理、R/W84によるメモリー88への画像信号の書込処理までの一連の処理の一部のみ、または全てを含む処理のことを言う。 In the present technology, “imaging” refers to conversion from a photoelectric conversion process that converts light captured by the image sensor 204 into an electrical signal, to a digital signal for an output signal from the image sensor 204 by the camera signal processing unit 81. Processing such as noise removal, image quality correction, conversion to luminance / color difference signals, compression / decompression processing of image signals based on a predetermined image data format by the image processing unit 82, and conversion processing of data specifications such as resolution , A process including only a part or all of a series of processes up to the process of writing the image signal to the memory 88 by the R / W 84.
 即ち、「撮像」とは、撮像素子204による取り込まれた光を電気信号に変換する光電変換処理のみを指してもよく、撮像素子204による取り込まれた光を電気信号に変換する光電変換処理からカメラ信号処理部81による撮像素子204からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理までを指してもよく、撮像素子204による取り込まれた光を電気信号に変換する光電変換処理からカメラ信号処理部81による撮像素子204からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理を経て、画像処理部82による所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理までを指してもよく、撮像素子204による取り込まれた光を電気信号に変換する光電変換処理からカメラ信号処理部81による撮像素子204からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理、及び画像処理部82による所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理を経て指してもよく、R/W84によるメモリー88への画像信号の書込処理までを指してもよい。 上記の処理において各処理の順番は適宜入れ替わってもよい。 That is, “imaging” may refer only to a photoelectric conversion process that converts light captured by the image sensor 204 into an electrical signal, and from a photoelectric conversion process that converts light captured by the image sensor 204 into an electrical signal. The camera signal processing unit 81 may refer to processing such as conversion of an output signal from the image sensor 204 to a digital signal, noise removal, image quality correction, and conversion to a luminance / color difference signal, and the like. Through processing such as conversion from photoelectric conversion processing for converting light into electrical signals to digital signals output from the image sensor 204 by the camera signal processing unit 81, noise removal, image quality correction, conversion to luminance / color difference signals, etc. The image processor 82 performs compression encoding / decompression processing of image signals based on a predetermined image data format, and changes in data specifications such as resolution. The process may be referred to as processing, conversion from photoelectric conversion processing for converting light captured by the image sensor 204 into an electrical signal, conversion of an output signal from the image sensor 204 by the camera signal processing unit 81 to a digital signal, noise removal, image quality Pointing through corrections, conversion to luminance / color difference signals, etc., and compression / decompression processing of image signals based on a predetermined image data format by the image processing unit 82 and conversion processing of data specifications such as resolution Alternatively, it may indicate the processing up to the writing of the image signal to the memory 88 by the R / W 84.に お い て In the above processing, the order of each processing may be changed as appropriate.
 また、本技術において、レンズ鏡筒1及び撮影装置100は、上記の処理を行う撮像素子204、カメラ信号処理部81、画像処理部82、R/W84の一部のみまたは全てを含むように構成されていてもよい。 In the present technology, the lens barrel 1 and the imaging device 100 are configured to include only some or all of the imaging element 204, the camera signal processing unit 81, the image processing unit 82, and the R / W 84 that perform the above processing. May be.
 また、レンズ鏡筒1が撮像素子204、カメラ信号処理部81、画像処理部82、R/W84のうち一部を含み、装置本体200が残りを含むように構成されていてもよい。 Further, the lens barrel 1 may be configured to include a part of the image sensor 204, the camera signal processing unit 81, the image processing unit 82, and the R / W 84, and the apparatus main body 200 to include the rest.
 <本技術>
 本技術は、以下のような構成にすることもできる。
<Technology>
The present technology may be configured as follows.
 (1)
 少なくとも一つのレンズと前記レンズを保持するレンズ保持枠とを有する移動体に対して光軸方向への駆動力を付与し、

 光軸方向に延びるヨークと、
 前記ヨークが挿通されると共に前記移動体に固定され前記ヨークに沿って光軸方向へ移動可能な可動コイルと、
 前記ヨークと前記可動コイルの両側に位置された一対のマグネットとを備え、
 前記一対のマグネットの前記可動コイルと対向する面がそれぞれ磁束発生面とされ、
 前記移動体は軸方向が光軸方向にされた筒状部に対して前記筒状部の内部において光軸方向へ移動され、
 前記ヨークと前記一対のマグネットとの並び方向が前記筒状部の周方向にされた
 駆動装置。
(1)
Giving a driving force in the optical axis direction to a moving body having at least one lens and a lens holding frame for holding the lens;

A yoke extending in the optical axis direction;
A movable coil that is inserted in the yoke and fixed to the movable body and movable in the optical axis direction along the yoke;
A pair of magnets positioned on both sides of the yoke and the movable coil;
The surfaces of the pair of magnets facing the movable coil are magnetic flux generation surfaces,
The moving body is moved in the optical axis direction inside the cylindrical portion with respect to the cylindrical portion whose axial direction is the optical axis direction,
The drive device in which the arrangement direction of the yoke and the pair of magnets is the circumferential direction of the cylindrical portion.
 (2)
 前記筒状部が略円筒状に形成された
 前記(1)に記載の駆動装置。
(2)
The drive device according to (1), wherein the cylindrical portion is formed in a substantially cylindrical shape.
 (3)
 前記レンズの径方向において前記磁束発生面の前記レンズ側の一端を内側端とし前記レンズと反対側の一端を外側端としたときに、
 前記一対のマグネットの前記磁束発生面における前記内側端間の距離が前記外側端間の距離より小さくされた
 前記(2)に記載の駆動装置。
(3)
When one end on the lens side of the magnetic flux generation surface in the radial direction of the lens is an inner end and one end on the opposite side of the lens is an outer end,
The drive unit according to (2), wherein a distance between the inner ends of the pair of magnets on the magnetic flux generation surface is smaller than a distance between the outer ends.
 (4)
 前記磁束発生面が光軸を含む仮想の平面と略平行に位置された
 前記(1)又は前記(2)に記載の駆動装置。
(4)
The drive device according to (1) or (2), wherein the magnetic flux generation surface is positioned substantially parallel to a virtual plane including an optical axis.
 (5)
 前記ヨークと前記可動コイルと前記一対のマグネットが前記筒状部の内部空間における外周部に位置された
 前記(1)から前記(4)の何れかに記載の駆動装置。
(5)
The drive device according to any one of (1) to (4), wherein the yoke, the movable coil, and the pair of magnets are positioned on an outer peripheral portion in an internal space of the cylindrical portion.
 (6)
 前記可動コイルを囲む位置に枠状の外ヨークが配置され、
 前記外ヨークが平行に位置された一対のサイドヨーク部と平行に位置された一対のボトムヨーク部とを有し、
 前記一対のサイドヨーク部にそれぞれ前記マグネットが取り付けられ、
 前記一対のボトムヨーク部に前記ヨークの光軸方向における両端部が取り付けられた
 前記(1)から前記(5)の何れかに記載の駆動装置。
(6)
A frame-shaped outer yoke is disposed at a position surrounding the movable coil,
The outer yoke has a pair of side yoke portions positioned in parallel and a pair of bottom yoke portions positioned in parallel;
The magnet is attached to each of the pair of side yoke portions,
The drive device according to any one of (1) to (5), wherein both ends of the yoke in the optical axis direction are attached to the pair of bottom yoke portions.
 (7)
 前記ヨークの光軸に直交する断面の最大面積が前記一対のマグネットにおける前記磁束発生面の合計面積の5%以上にされた
 前記(1)から前記(6)の何れかに記載の駆動装置。
(7)
The drive device according to any one of (1) to (6), wherein a maximum area of a cross section perpendicular to the optical axis of the yoke is set to 5% or more of a total area of the magnetic flux generation surfaces of the pair of magnets.
 (8)
 前記ヨークは光軸方向に直交する方向における断面の少なくとも一部が円形状に形成された
 前記(1)から前記(7)の何れかに記載の駆動装置。
(8)
The drive device according to any one of (1) to (7), wherein at least a part of a cross section of the yoke in a direction orthogonal to the optical axis direction is formed in a circular shape.
 (9)
 前記可動コイルが円筒状に形成された
 前記(8)に記載の駆動装置。
(9)
The drive device according to (8), wherein the movable coil is formed in a cylindrical shape.
 (10)
 前記レンズ保持枠には前記可動コイルが接着によって固定される固定部が設けられ、
 前記固定部の少なくとも一部が前記一対のマグネットと前記可動コイルの間の空間に位置された
 前記(9)に記載の駆動装置。
(10)
The lens holding frame is provided with a fixed portion to which the movable coil is fixed by adhesion,
The drive device according to (9), wherein at least a part of the fixed portion is located in a space between the pair of magnets and the movable coil.
 (11)
 前記固定部が複数設けられ、
 前記複数の固定部が前記可動コイルの周方向において略等間隔の位置に設けられた
 前記(10)に記載の駆動装置。
(11)
A plurality of the fixing portions are provided,
The drive unit according to (10), wherein the plurality of fixed portions are provided at substantially equal intervals in the circumferential direction of the movable coil.
 (12)
 前記磁束発生面が前記可動コイルの外周面に沿う円弧面状に形成された
 前記(9)から前記(11)の何れかに記載の駆動装置。
(12)
The drive device according to any one of (9) to (11), wherein the magnetic flux generation surface is formed in a circular arc shape along an outer peripheral surface of the movable coil.
 (13)
 軸方向が光軸方向にされた筒状部と、
 少なくとも一つのレンズと前記レンズを保持するレンズ保持枠とを有し前記筒状部の内部において光軸方向へ移動される移動体と、
 前記移動体の光軸方向への移動のための駆動力を付与する駆動装置とを備え、
 前記駆動装置は、
 光軸方向に延びるヨークと、
 前記ヨークが挿通されると共に前記移動体に固定され前記ヨークに沿って光軸方向へ移動可能な可動コイルと、
 前記ヨークと前記可動コイルの両側に位置された一対のマグネットとを備え、
 前記一対のマグネットの前記可動コイルと対向する面がそれぞれ磁束発生面とされ、
 前記ヨークと前記一対のマグネットとの並び方向が前記筒状部の周方向にされた
 レンズ鏡筒。
(13)
A cylindrical portion whose axial direction is the optical axis direction;
A movable body that has at least one lens and a lens holding frame that holds the lens and is moved in the optical axis direction inside the cylindrical portion;
A driving device for applying a driving force for moving the moving body in the optical axis direction;
The driving device includes:
A yoke extending in the optical axis direction;
A movable coil that is inserted in the yoke and fixed to the movable body and movable in the optical axis direction along the yoke;
A pair of magnets positioned on both sides of the yoke and the movable coil;
The surfaces of the pair of magnets facing the movable coil are magnetic flux generation surfaces,
A lens barrel in which an arrangement direction of the yoke and the pair of magnets is set to a circumferential direction of the cylindrical portion.
 (14)
 前記駆動装置が二つ設けられ、
 二つの前記駆動装置が前記レンズを挟んで略反対側に位置された
 前記(13)に記載のレンズ鏡筒。
(14)
Two driving devices are provided;
The lens barrel according to (13), wherein the two driving devices are positioned substantially on opposite sides of the lens.
 (15)
 前記移動体を光軸方向に案内する二つのガイド軸が設けられ、
 前記二つのガイド軸が前記レンズを挟んで略反対側に位置された
 前記(14)に記載のレンズ鏡筒。
(15)
Two guide shafts for guiding the moving body in the optical axis direction are provided,
The lens barrel according to (14), wherein the two guide shafts are positioned substantially on opposite sides of the lens.
 (16)
 一方の前記ガイド軸と一方の前記駆動装置と他方の前記ガイド軸と他方の前記駆動装置とが周方向において順に略等間隔の位置に配置された
 前記(15)に記載のレンズ鏡筒。
(16)
The lens barrel according to (15), wherein the one guide shaft, the one drive device, the other guide shaft, and the other drive device are sequentially arranged at substantially equal intervals in the circumferential direction.
 (17)
 光学像を取り込むレンズ鏡筒と取り込まれた光学像を電気的信号に変換する撮像素子とを備え、
 前記レンズ鏡筒は、
 軸方向が光軸方向にされた筒状部と、
 少なくとも一つのレンズと前記レンズを保持するレンズ保持枠とを有し前記筒状部の内部において光軸方向へ移動される移動体と、
 前記移動体の光軸方向への移動のための駆動力を付与する駆動装置とを備え、
 前記駆動装置は、
 光軸方向に延びるヨークと、
 前記ヨークが挿通されると共に前記移動体に固定され前記ヨークに沿って光軸方向へ移動可能な可動コイルと、
 前記ヨークと前記可動コイルの両側に位置された一対のマグネットとを備え、
 前記一対のマグネットの前記可動コイルと対向する面がそれぞれ磁束発生面とされ、
 前記ヨークと前記一対のマグネットとの並び方向が前記筒状部の周方向にされた
 撮像装置。
(17)
A lens barrel that captures an optical image and an image sensor that converts the captured optical image into an electrical signal;
The lens barrel is
A cylindrical portion whose axial direction is the optical axis direction;
A movable body that has at least one lens and a lens holding frame that holds the lens and is moved in the optical axis direction inside the cylindrical portion;
A driving device for applying a driving force for moving the moving body in the optical axis direction;
The driving device includes:
A yoke extending in the optical axis direction;
A movable coil that is inserted in the yoke and fixed to the movable body and movable in the optical axis direction along the yoke;
A pair of magnets positioned on both sides of the yoke and the movable coil;
The surfaces of the pair of magnets facing the movable coil are magnetic flux generation surfaces,
An imaging apparatus in which an arrangement direction of the yoke and the pair of magnets is set to a circumferential direction of the cylindrical portion.
 (18)
 前記駆動装置が二つ設けられ、
 二つの前記駆動装置が前記レンズを挟んで略反対側に位置された
 前記(17)に記載の撮像装置。
(18)
Two driving devices are provided;
The imaging device according to (17), wherein the two driving devices are positioned substantially on opposite sides of the lens.
 (19)
 前記移動体を光軸方向に案内する二つのガイド軸が設けられ、
 前記二つのガイド軸が前記レンズを挟んで略反対側に位置された
 前記(18)に記載の撮像装置。
(19)
Two guide shafts for guiding the moving body in the optical axis direction are provided,
The imaging device according to (18), wherein the two guide shafts are positioned on substantially opposite sides of the lens.
 (20)
 一方の前記ガイド軸と一方の前記駆動装置と他方の前記ガイド軸と他方の前記駆動装置とが周方向において順に略等間隔の位置に配置された
 前記(19)に記載の撮像装置。
(20)
The imaging device according to (19), wherein the one guide shaft, the one driving device, the other guide shaft, and the other driving device are sequentially arranged at substantially equal intervals in the circumferential direction.
 100…撮像装置、204…撮像素子、1…レンズ鏡筒、5…レンズ群(レンズ)、7…筒状部、11…第1のガイド軸、12…第2のガイド軸、13…移動体、14…レンズ保持枠、19…固定部、21…固定部、25…駆動装置、26…外ヨーク、27…ヨーク、28…駆動コイル、29…マグネット、29a…磁束発生面、30…サイドヨーク部、31…ボトムヨーク部 DESCRIPTION OF SYMBOLS 100 ... Imaging device, 204 ... Imaging element, 1 ... Lens barrel, 5 ... Lens group (lens), 7 ... Cylindrical part, 11 ... 1st guide shaft, 12 ... 2nd guide shaft, 13 ... Moving body , 14 ... Lens holding frame, 19 ... Fixing part, 21 ... Fixing part, 25 ... Driving device, 26 ... Outer yoke, 27 ... Yoke, 28 ... Driving coil, 29 ... Magnet, 29a ... Magnetic flux generating surface, 30 ... Side yoke Part, 31 ... bottom yoke part

Claims (20)

  1.  少なくとも一つのレンズと前記レンズを保持するレンズ保持枠とを有する移動体に対して光軸方向への駆動力を付与し、
     光軸方向に延びるヨークと、
     前記ヨークが挿通されると共に前記移動体に固定され前記ヨークに沿って光軸方向へ移動可能な可動コイルと、
     前記ヨークと前記可動コイルの両側に位置された一対のマグネットとを備え、
     前記一対のマグネットの前記可動コイルと対向する面がそれぞれ磁束発生面とされ、
     前記移動体は軸方向が光軸方向にされた筒状部に対して前記筒状部の内部において光軸方向へ移動され、
     前記ヨークと前記一対のマグネットとの並び方向が前記筒状部の周方向にされた
     駆動装置。
    Giving a driving force in the optical axis direction to a moving body having at least one lens and a lens holding frame for holding the lens;
    A yoke extending in the optical axis direction;
    A movable coil that is inserted in the yoke and fixed to the movable body and movable in the optical axis direction along the yoke;
    A pair of magnets positioned on both sides of the yoke and the movable coil;
    The surfaces of the pair of magnets facing the movable coil are magnetic flux generation surfaces,
    The moving body is moved in the optical axis direction inside the cylindrical portion with respect to the cylindrical portion whose axial direction is the optical axis direction,
    The drive device in which the arrangement direction of the yoke and the pair of magnets is the circumferential direction of the cylindrical portion.
  2.  前記筒状部が略円筒状に形成された
     請求項1に記載の駆動装置。
    The drive device according to claim 1, wherein the cylindrical portion is formed in a substantially cylindrical shape.
  3.  前記レンズの径方向において前記磁束発生面の前記レンズ側の一端を内側端とし前記レンズと反対側の一端を外側端としたときに、
     前記一対のマグネットの前記磁束発生面における前記内側端間の距離が前記外側端間の距離より小さくされた
     請求項2に記載の駆動装置。
    When one end on the lens side of the magnetic flux generation surface in the radial direction of the lens is an inner end and one end on the opposite side of the lens is an outer end,
    The drive device according to claim 2, wherein a distance between the inner ends of the pair of magnets on the magnetic flux generation surface is smaller than a distance between the outer ends.
  4.  前記磁束発生面が光軸を含む仮想の平面と略平行に位置された
     請求項1に記載の駆動装置。
    The drive device according to claim 1, wherein the magnetic flux generation surface is positioned substantially parallel to a virtual plane including an optical axis.
  5.  前記ヨークと前記可動コイルと前記一対のマグネットが前記筒状部の内部空間における外周部に位置された
     請求項1に記載の駆動装置。
    The drive device according to claim 1, wherein the yoke, the movable coil, and the pair of magnets are positioned on an outer peripheral portion in an internal space of the cylindrical portion.
  6.  前記可動コイルを囲む位置に枠状の外ヨークが配置され、
     前記外ヨークが平行に位置された一対のサイドヨーク部と平行に位置された一対のボトムヨーク部とを有し、
     前記一対のサイドヨーク部にそれぞれ前記マグネットが取り付けられ、
     前記一対のボトムヨーク部に前記ヨークの光軸方向における両端部が取り付けられた
     請求項1に記載の駆動装置。
    A frame-shaped outer yoke is disposed at a position surrounding the movable coil,
    The outer yoke has a pair of side yoke portions positioned in parallel and a pair of bottom yoke portions positioned in parallel;
    The magnet is attached to each of the pair of side yoke portions,
    The drive device according to claim 1, wherein both ends of the yoke in the optical axis direction are attached to the pair of bottom yoke portions.
  7.  前記ヨークの光軸に直交する断面の最大面積が前記一対のマグネットにおける前記磁束発生面の合計面積の5%以上にされた
     請求項1に記載の駆動装置。
    The drive device according to claim 1, wherein a maximum area of a cross section perpendicular to the optical axis of the yoke is 5% or more of a total area of the magnetic flux generation surfaces of the pair of magnets.
  8.  前記ヨークは光軸方向に直交する方向における断面の少なくとも一部が円形状に形成された
     請求項1に記載の駆動装置。
    The drive device according to claim 1, wherein at least a part of a cross section of the yoke in a direction orthogonal to the optical axis direction is formed in a circular shape.
  9.  前記可動コイルが円筒状に形成された
     請求項8に記載の駆動装置。
    The drive device according to claim 8, wherein the movable coil is formed in a cylindrical shape.
  10.  前記レンズ保持枠には前記可動コイルが接着によって固定される固定部が設けられ、
     前記固定部の少なくとも一部が前記一対のマグネットと前記可動コイルの間の空間に位置された
     請求項9に記載の駆動装置。
    The lens holding frame is provided with a fixed portion to which the movable coil is fixed by adhesion,
    The drive device according to claim 9, wherein at least a part of the fixed portion is located in a space between the pair of magnets and the movable coil.
  11.  前記固定部が複数設けられ、
     前記複数の固定部が前記可動コイルの周方向において略等間隔の位置に設けられた
     請求項10に記載の駆動装置。
    A plurality of the fixing portions are provided,
    The drive device according to claim 10, wherein the plurality of fixed portions are provided at substantially equal intervals in the circumferential direction of the movable coil.
  12.  前記磁束発生面が前記可動コイルの外周面に沿う円弧面状に形成された
     請求項9に記載の駆動装置。
    The drive device according to claim 9, wherein the magnetic flux generation surface is formed in a circular arc shape along an outer peripheral surface of the movable coil.
  13.  軸方向が光軸方向にされた筒状部と、
     少なくとも一つのレンズと前記レンズを保持するレンズ保持枠とを有し前記筒状部の内部において光軸方向へ移動される移動体と、
     前記移動体の光軸方向への移動のための駆動力を付与する駆動装置とを備え、
     前記駆動装置は、
     光軸方向に延びるヨークと、
     前記ヨークが挿通されると共に前記移動体に固定され前記ヨークに沿って光軸方向へ移動可能な可動コイルと、
     前記ヨークと前記可動コイルの両側に位置された一対のマグネットとを備え、
     前記一対のマグネットの前記可動コイルと対向する面がそれぞれ磁束発生面とされ、
     前記ヨークと前記一対のマグネットとの並び方向が前記筒状部の周方向にされた
     レンズ鏡筒。
    A cylindrical portion whose axial direction is the optical axis direction;
    A movable body that has at least one lens and a lens holding frame that holds the lens and is moved in the optical axis direction inside the cylindrical portion;
    A driving device for applying a driving force for moving the moving body in the optical axis direction;
    The driving device includes:
    A yoke extending in the optical axis direction;
    A movable coil that is inserted in the yoke and fixed to the movable body and movable in the optical axis direction along the yoke;
    A pair of magnets positioned on both sides of the yoke and the movable coil;
    The surfaces of the pair of magnets facing the movable coil are magnetic flux generation surfaces,
    A lens barrel in which an arrangement direction of the yoke and the pair of magnets is set to a circumferential direction of the cylindrical portion.
  14.  前記駆動装置が二つ設けられ、
     二つの前記駆動装置が前記レンズを挟んで略反対側に位置された
     請求項13に記載のレンズ鏡筒。
    Two driving devices are provided;
    The lens barrel according to claim 13, wherein the two driving devices are positioned substantially on opposite sides of the lens.
  15.  前記移動体を光軸方向に案内する二つのガイド軸が設けられ、
     前記二つのガイド軸が前記レンズを挟んで略反対側に位置された
     請求項14に記載のレンズ鏡筒。
    Two guide shafts for guiding the moving body in the optical axis direction are provided,
    The lens barrel according to claim 14, wherein the two guide shafts are positioned substantially on opposite sides of the lens.
  16.  一方の前記ガイド軸と一方の前記駆動装置と他方の前記ガイド軸と他方の前記駆動装置とが周方向において順に略等間隔の位置に配置された
     請求項15に記載のレンズ鏡筒。
    The lens barrel according to claim 15, wherein the one guide shaft, the one driving device, the other guide shaft, and the other driving device are sequentially arranged at substantially equal intervals in the circumferential direction.
  17.  光学像を取り込むレンズ鏡筒と取り込まれた光学像を電気的信号に変換する撮像素子とを備え、
     前記レンズ鏡筒は、
     軸方向が光軸方向にされた筒状部と、
     少なくとも一つのレンズと前記レンズを保持するレンズ保持枠とを有し前記筒状部の内部において光軸方向へ移動される移動体と、
     前記移動体の光軸方向への移動のための駆動力を付与する駆動装置とを備え、
     前記駆動装置は、
     光軸方向に延びるヨークと、
     前記ヨークが挿通されると共に前記移動体に固定され前記ヨークに沿って光軸方向へ移動可能な可動コイルと、
     前記ヨークと前記可動コイルの両側に位置された一対のマグネットとを備え、
     前記一対のマグネットの前記可動コイルと対向する面がそれぞれ磁束発生面とされ、
     前記ヨークと前記一対のマグネットとの並び方向が前記筒状部の周方向にされた
     撮像装置。
    A lens barrel that captures an optical image and an image sensor that converts the captured optical image into an electrical signal;
    The lens barrel is
    A cylindrical portion whose axial direction is the optical axis direction;
    A movable body that has at least one lens and a lens holding frame that holds the lens and is moved in the optical axis direction inside the cylindrical portion;
    A driving device for applying a driving force for moving the moving body in the optical axis direction;
    The driving device includes:
    A yoke extending in the optical axis direction;
    A movable coil that is inserted in the yoke and fixed to the movable body and movable in the optical axis direction along the yoke;
    A pair of magnets positioned on both sides of the yoke and the movable coil;
    The surfaces of the pair of magnets facing the movable coil are magnetic flux generation surfaces,
    An imaging apparatus in which an arrangement direction of the yoke and the pair of magnets is set to a circumferential direction of the cylindrical portion.
  18.  前記駆動装置が二つ設けられ、
     二つの前記駆動装置が前記レンズを挟んで略反対側に位置された
     請求項17に記載の撮像装置。
    Two driving devices are provided;
    The imaging device according to claim 17, wherein the two driving devices are positioned substantially on opposite sides of the lens.
  19.  前記移動体を光軸方向に案内する二つのガイド軸が設けられ、
     前記二つのガイド軸が前記レンズを挟んで略反対側に位置された
     請求項18に記載の撮像装置。
    Two guide shafts for guiding the moving body in the optical axis direction are provided,
    The imaging device according to claim 18, wherein the two guide shafts are positioned substantially on opposite sides of the lens.
  20.  一方の前記ガイド軸と一方の前記駆動装置と他方の前記ガイド軸と他方の前記駆動装置とが周方向において順に略等間隔の位置に配置された
     請求項19に記載の撮像装置。
    The imaging apparatus according to claim 19, wherein the one guide shaft, the one drive device, the other guide shaft, and the other drive device are sequentially arranged at substantially equal intervals in the circumferential direction.
PCT/JP2019/003858 2018-03-30 2019-02-04 Driving device, lens barrel, and imaging device WO2019187634A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980021549.XA CN111902758B (en) 2018-03-30 2019-02-04 Driving apparatus, lens barrel, and imaging apparatus
JP2020510337A JPWO2019187634A1 (en) 2018-03-30 2019-02-04 Drive device, lens barrel and image pickup device
JP2023102430A JP2023115126A (en) 2018-03-30 2023-06-22 Lens barrel and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018067277 2018-03-30
JP2018-067277 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019187634A1 true WO2019187634A1 (en) 2019-10-03

Family

ID=68059006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003858 WO2019187634A1 (en) 2018-03-30 2019-02-04 Driving device, lens barrel, and imaging device

Country Status (3)

Country Link
JP (2) JPWO2019187634A1 (en)
CN (1) CN111902758B (en)
WO (1) WO2019187634A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153017A1 (en) * 2020-01-31 2021-08-05 ソニーグループ株式会社 Linear actuator, interchangeable lens, and image capturing device
JP2021175244A (en) * 2020-04-22 2021-11-01 パナソニックIpマネジメント株式会社 Lens drive unit and lens barrel with the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024077438A1 (en) * 2022-10-10 2024-04-18 华为技术有限公司 Camera assembly and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014514A (en) * 2004-06-25 2006-01-12 Mitsumi Electric Co Ltd Electromagnetic type linear actuator
JP2007025099A (en) * 2005-07-14 2007-02-01 Sony Corp Lens barrel and imaging apparatus
WO2017072922A1 (en) * 2015-10-29 2017-05-04 オリンパス株式会社 Imaging device and endoscopic system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM413885U (en) * 2011-03-16 2011-10-11 Lumos Technology Co Ltd Lens adapter module and photographic device
JP6501450B2 (en) * 2014-03-31 2019-04-17 キヤノン株式会社 Lens barrel and optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014514A (en) * 2004-06-25 2006-01-12 Mitsumi Electric Co Ltd Electromagnetic type linear actuator
JP2007025099A (en) * 2005-07-14 2007-02-01 Sony Corp Lens barrel and imaging apparatus
WO2017072922A1 (en) * 2015-10-29 2017-05-04 オリンパス株式会社 Imaging device and endoscopic system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153017A1 (en) * 2020-01-31 2021-08-05 ソニーグループ株式会社 Linear actuator, interchangeable lens, and image capturing device
JPWO2021153017A1 (en) * 2020-01-31 2021-08-05
JP7347548B2 (en) 2020-01-31 2023-09-20 ソニーグループ株式会社 Linear actuator, interchangeable lens and imaging device
JP2021175244A (en) * 2020-04-22 2021-11-01 パナソニックIpマネジメント株式会社 Lens drive unit and lens barrel with the same

Also Published As

Publication number Publication date
JPWO2019187634A1 (en) 2021-05-13
JP2023115126A (en) 2023-08-18
CN111902758B (en) 2023-03-24
CN111902758A (en) 2020-11-06

Similar Documents

Publication Publication Date Title
US8928985B2 (en) Image blur correction device and imaging apparatus
US20070133092A1 (en) Lens device and imager apparatus
US9338335B2 (en) Lens drive apparatus, lens barrel to which the lens drive apparatus is applied, and image pickup apparatus
JP4493046B2 (en) Lens barrel and imaging device including the lens barrel
JP2013257499A (en) Lens barrel and image pickup apparatus
JP4661915B2 (en) Image blur correction device, lens barrel device, and camera device
JP2023115126A (en) Lens barrel and imaging device
JP4513879B2 (en) Image blur correction device, lens barrel device, and camera device
JP2013140284A (en) Image-blurring correction device and imaging apparatus
JP2008180774A (en) Lens barrel and digital camera
JP2013246412A (en) Image blur correction device and imaging device
JP2015141278A (en) Driving unit, optical unit, imaging device and endoscope
JP2013246416A (en) Image blur correction device and imaging device
US8660417B2 (en) Drive motor, image blur correction unit, and imaging apparatus
US20140098278A1 (en) Lens barrel and imaging apparatus
JP2013246414A (en) Image blur correction device and imaging device
TWI418844B (en) Photographing module with optical zoom
JP5566163B2 (en) Lens barrel and imaging device
JP6935801B2 (en) Optical equipment and imaging equipment
JP5855474B2 (en) Lens barrel
JP2013257498A (en) Lens barrel and image pickup apparatus
JP2013250487A (en) Lens barrel and imaging device
JP2007108540A (en) Imaging apparatus
JP2013251821A (en) Imaging apparatus
JP2010164985A (en) Image blur correction device, lens barrel device, and camera device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510337

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19776691

Country of ref document: EP

Kind code of ref document: A1