WO2019187553A1 - Wind power generation system - Google Patents

Wind power generation system Download PDF

Info

Publication number
WO2019187553A1
WO2019187553A1 PCT/JP2019/002106 JP2019002106W WO2019187553A1 WO 2019187553 A1 WO2019187553 A1 WO 2019187553A1 JP 2019002106 W JP2019002106 W JP 2019002106W WO 2019187553 A1 WO2019187553 A1 WO 2019187553A1
Authority
WO
WIPO (PCT)
Prior art keywords
pitch angle
power generation
generation system
wind
blade
Prior art date
Application number
PCT/JP2019/002106
Other languages
French (fr)
Japanese (ja)
Inventor
卓巳 只野
順弘 楠野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019187553A1 publication Critical patent/WO2019187553A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind power generation system, and more particularly to a wind power generation system that reduces a decrease in power generation efficiency due to an increase in torsional deformation of a blade.
  • a solar power generation system is common, but the output changes directly due to solar radiation, so output fluctuations are large and power generation cannot be performed at night.
  • a wind power generation system can generate relatively stable power regardless of day or night by selecting and installing a place where wind conditions such as wind speed and direction are stable.
  • a general large-scale wind power generation system includes a pitch drive device for adjusting the pitch angle and a power converter for adjusting the generator torque, and by adjusting the pitch angle and the generator torque, an arbitrary Control is performed to maximize the power output in the wind speed range.
  • Patent Document 1 there is Patent Document 1.
  • a measurement information input step for inputting measurement information of wind speed and direction of wind flowing into a wind turbine blade, and measurement information and torque input in the measurement information input step are stored in advance.
  • Torque calculation to calculate the optimum torque calculated by the product of the actual torque generated in each blade element and the radial position, weight, and angular velocity of each blade element A difference between the generated torque and the optimum torque is reduced based on the step, a torque comparison step for comparing the generated torque calculated in the torque calculating step and the optimum torque, and a result of the comparison in the torque comparing step.
  • the airflow generator, the pitch angle drive mechanism, and the yaw angle drive mechanism can be individually controlled in accordance with the features.
  • the blades are becoming longer.
  • the blades are attached to the leeward side, and the blades bend to the leeward side due to the wind load. Therefore, it is possible to make the blade longer and flexible in the upwind wind turbine (hereinafter, the longer and flexible blade is referred to as a longer and flexible blade).
  • Patent Document 1 By applying the technology disclosed in Patent Document 1, it is possible to operate at a pitch angle that takes blade aerodynamic performance into account according to the wind speed, the rotational speed of the rotor or the generator, and improve the power generation efficiency.
  • twist the amount of twist deformation (hereinafter referred to as twist) of the blade may increase.
  • the blade aerodynamic performance is determined by the inflow relative wind speed determined by the wind speed and the rotational speed, and the blade angle (pitch angle and twist) in each cross section of the blade.
  • the pitch angle that maximizes the aerodynamic performance is uniquely determined.
  • Patent Document 1 when Patent Document 1 is applied to a long and flexible structure blade, it cannot be considered that the pitch angle that maximizes aerodynamic performance changes due to torsion compared to the case of applying it to a rigid structure blade with less torsion. There is a possibility of adjusting the pitch angle to decrease the efficiency. Further, since the azimuth angle is not used as an input value, the effect of wind shear in which the wind speed increases as the altitude increases cannot be considered. Furthermore, in the downwind wind turbine, the effect of the tower shadow, in which the wind speed decreases near the tower due to the influence of the tower, cannot be considered. Therefore, the effect of changes in wind speed during one rotation period cannot be considered, and power generation efficiency may be reduced.
  • An object of the present invention is to provide an operation control means for improving the aerodynamic performance of the entire blade and improving the power generation efficiency by considering the twist.
  • the present invention provides a wind power generation system including a blade that can change a pitch angle, a rotor that rotates by receiving wind from the blade, and a generator that generates electric power using the rotational energy of the rotor.
  • the control device includes a control device for controlling the pitch angle, and the control device stores measurement information of wind speed, rotation speed of the rotor or generator, and pitch angle control information in consideration of blade twist calculated in advance.
  • the wind power generation system is characterized in that the pitch angle is controlled based on the output of the database.
  • a wind power generation system including a control device that can improve power generation efficiency by considering the twist of the blade.
  • FIG. 1 It is a figure which shows the component of the wind power generation system 1 when not implementing this invention. It is a block diagram which shows the process outline
  • FIG. 1 It is a block diagram which shows the process outline
  • FIG. It is a figure for demonstrating the fall of the aerodynamic performance in a certain blade cross section by the twist in the wind power generation system 1.
  • FIG. It is a figure for demonstrating the relationship between the wind force and the force added to a rotation direction in the case where the database which concerns on 1st embodiment of this invention is applied, and the case where it does not apply.
  • the wind power generation system 1 in FIG. 1 includes a rotor 4 that includes a plurality of blades 2 and a hub 3 that connects the plurality of blades 2.
  • the rotor 4 is connected to the nacelle 5 via a rotating shaft (not shown in FIG. 1), and the position of the blade 2 can be changed by rotating.
  • the nacelle 5 supports the rotor 4 rotatably. When the blade 2 receives wind, the rotor 4 rotates, and the rotational force of the rotor 4 rotates the generator 6 in the nacelle 5 to generate electric power.
  • a wind direction / wind speed sensor 7 for measuring the wind direction and the wind speed is provided on the nacelle 5.
  • Each blade 2 is provided with a pitch angle driving device 8 capable of adjusting the angle (pitch angle) of the blade 2 with respect to the wind.
  • the pitch angle driving device 8 By using the pitch angle driving device 8, the wind energy (air volume) received by the blade 2 can be adjusted by changing the pitch angle, and the rotational energy of the rotor 4 with respect to the wind can be changed. This makes it possible to control the rotational speed and the generated power in a wide wind speed region.
  • the nacelle 5 is installed on the tower 9 and has a mechanism (not shown) that can rotate with respect to the tower 9.
  • the tower 9 supports the load of the blade 2 via the hub 3 and the nacelle 5 and is fixed to a base (not shown in the figure) installed at a predetermined position on the ground, offshore, and floating body.
  • the generator 6 can control the torque generated by the generator (hereinafter referred to as “generator torque”) by the power converter 10 installed in the tower 9 and control the rotational torque of the rotor 4.
  • the wind power generation system 1 includes a controller 11, and the controller 11 generates a generator based on the rotation speed output from the rotation speed sensor 12 that measures the rotation speed of the generator 6 and the generator torque of the generator 6. 6 and the pitch angle driving device 8 are adjusted to adjust the generated power and the rotational speed of the wind power generation system 1.
  • the blade 2 can have a rotor diameter of, for example, 100 m or more. Further, when the rotor diameter is 180 m or more, the effect by the control corresponding to the flexible structure is particularly great.
  • each blade element has an initial twist in terms of shape from the rotating surface of the blade 2, but the blade 2 web, spar cap, etc. are to be twisted by 0.2 ° or more due to the force applied by the wind during power generation operation. Can be designed. Further, in the case of a flexible structure blade that is twisted by 0.5 ° or more during power generation operation, a particularly remarkable effect can be obtained by the present embodiment control.
  • FIG. 2 shows a block diagram of the variable speed control unit 21 mounted on the controller 11.
  • the operation control means shown in FIG. 2 is a pitch angle control that determines a pitch angle command value by feedback control based on a deviation between a target value and a measured value of a generator torque, and a deviation between a target value and a measured value of a generator rotational speed.
  • the unit 22 is provided.
  • the generator torque control part 23 which determines a generator torque command value by feedback control based on the deviation of the target value of a generator rotational speed and a measured value is provided.
  • FIG. 3 is a block diagram showing an outline of the pitch angle control unit 22 of the variable speed control unit 21.
  • the pitch angle control unit 22 includes a rotation speed control unit 22a and a torque control unit 22b.
  • the rotational speed control unit 22a determines the pitch angle command value by feedback control based on the deviation between the target value of the generator rotational speed and the measured value.
  • the torque control part 22b determines a pitch angle command value by feedback control based on the deviation between the target value of the generator torque and the measured value. By adding these two values, the final pitch angle command value of the pitch angle control unit 22 is determined.
  • FIG. 4 shows the characteristics of the wind power generation system 1 obtained by the operation control means mounted on the controller 11 shown in FIGS.
  • FIG. 4 shows the relationship between the generated power with respect to the wind speed, the rotational speed of the generator, the generator torque, and the pitch angle.
  • the horizontal axis of each graph shows the wind speed, and the wind speed increases toward the right side.
  • the vertical axis of each graph indicates that the values of the generated power, the rotational speed, and the generator torque increase as going upward.
  • the pitch angle the upper side is the feather (wind escape) side, and the lower side is the fine (wind receiving) side.
  • Power generation is performed in a range from the cut-in wind speed Vin at which the rotor 4 starts to rotate to the cut-out wind speed Vout at which the rotation stops, and the generated power value increases as the wind speed increases until the wind speed Vd.
  • the generated power is constant at the wind speed.
  • the controller 11 controls the generator torque so that the rotational speed is constant (Wlow) from the cut-in wind speed Vin to the wind speed Va.
  • the rated rotational speed Wrat is maintained.
  • the generator torque and pitch angle are controlled. Basically, the generator torque is controlled to ensure the generated power.
  • the generator torque is changed in accordance with the wind speed from the wind speed Vb to the wind speed Vd until the rated generator torque Qrat is reached. Holds the torque QRat.
  • the pitch angle In the control of the pitch angle, the pitch angle is held at the fine angle ⁇ min up to the wind speed Vc, and the pitch angle is changed from the fine side ⁇ min to the feather side ⁇ max according to the wind speed in the range of the wind speed Vc to the cutout wind speed Vout.
  • a reduction in power generation efficiency due to blade twisting in a wind speed region such as the cut-in wind speed Vin to the wind speed Vd, which is particularly required to improve the power generation efficiency, is prevented by adjusting the pitch angle. It is.
  • FIG. 5 a is a block diagram showing an outline of the twist pitch angle command value calculation unit 100.
  • the torsion pitch angle command value calculation unit 100 is based on the wind speed measurement unit 101, the rotation speed measurement unit 102 of the rotor or the generator, the yaw error measurement unit 103, the nacelle inclination angle measurement unit 104, and the azimuth angle measurement unit 105.
  • the pitch angle command value or the correction value is determined from the database 106 storing the pitch angle control information that maximizes the aerodynamic performance in consideration of the above.
  • the pitch angle maximizes the aerodynamic performance considering the torsion that occurs when the rotor 4 is inclined forward and backward. It is possible to adjust.
  • the wind speed measuring means 101 measures the wind speed in the vicinity of the nacelle 5
  • the effect of increasing the wind speed as the altitude increases, called wind shear cannot be considered.
  • the effect of reducing the wind speed in the vicinity of the tower after passing through the tower called tower shadow in a downwind wind turbine cannot be considered. Therefore, by utilizing the azimuth angle measuring means 105, it is possible to consider a change in wind speed during one rotation period due to wind shear and tower shadow. Therefore, it is possible to adjust the pitch angle to maximize the aerodynamic performance in consideration of torsion during one rotation period.
  • each blade can be set to independent pitch control.
  • the values input to the database 106 from the wind speed measuring means 101, the rotational speed measuring means 102, the yaw error measuring means 103, and the nacelle inclination angle measuring means 104 match the output signals of the respective measuring means. It may be a value obtained by performing a filtering process in which a predetermined time constant is set.
  • the pitch angle can be adjusted only by the twist pitch angle command value calculation unit 100 in FIG. 5a.
  • the command value calculated by the twist pitch angle command value calculation unit 100 is used as the command value of the pitch angle control unit 22 of the wind power generation system 1.
  • the final pitch angle command value may be determined by addition.
  • the pitch angle control unit 22 may calculate the pitch angle command value by adding the command value from the rotation speed control unit and the command value from the torque control unit, or based only on the rotation speed control unit.
  • the pitch angle command value may be calculated.
  • FIG. 5b is a flowchart for creating in advance a database of pitch angles that maximizes aerodynamic performance considering torsion.
  • step S100 parameters of wind speed, rotational speed, yaw error, nacelle tilt angle, and azimuth angle are input.
  • step S101 an initial pitch angle value is input.
  • step S102 based on the input values in steps S100 and S101, the torsional and aerodynamic performance of each blade element is calculated from the aerodynamics and physical model of the blade.
  • step S103 it is determined whether or not a pitch angle that maximizes aerodynamic performance has been calculated. If not calculated, the pitch angle value is changed in step S101, and then the process of step S102 is performed again.
  • step S104 it is determined whether or not the possible measurement information is covered. If not, the processes in steps S100 to S103 are executed again. As a result, the pitch angle that maximizes the aerodynamic performance in consideration of torsion is searched for the parameters covering the operating state of the wind turbine.
  • step S105 the pitch angle that maximizes the aerodynamic performance in consideration of torsion is stored in the database for the parameters covering the operating state of the wind turbine.
  • maximization of aerodynamic performance in the wind speed range from cut-in wind speed Vin to wind speed Vd, where improvement in power generation efficiency is required, maximizes the torque and force applied to the rotation direction of the entire blade.
  • the quotient of the applied force and the force applied in the thrust direction of the entire blade is maximized, the lift of the entire blade is maximized, or the quotient of the lift and drag of the entire blade is maximized.
  • maximization of aerodynamic performance during power generation operation such as wind speed Vd or higher, where blade load reduction is required, or during power standby during storms, depends on the force applied to the rotation direction of the entire blade and the thrust direction of the entire blade.
  • the pitch angle that is referred to from the database based on the measurement conditions and maximizes the aerodynamic performance in consideration of torsion can be changed according to the wind speed region.
  • FIG. 5c is a flowchart for creating in advance a generator torque database corresponding to a pitch angle that maximizes aerodynamic performance in consideration of torsion.
  • step S106 parameters of wind speed, rotational speed, yaw error, nacelle tilt angle, azimuth angle, and pitch angle are input.
  • step S107 the generated power and the generator torque are calculated.
  • step S108 it is determined whether or not possible measurement information is covered. If not, the processes in steps S106 and S107 are executed again. As a result, the generator torque is searched for the parameters covering the operating state of the windmill.
  • step S109 the generator torque corresponding to the pitch angle that maximizes the aerodynamic performance in consideration of torsion is added to the database storing the pitch angle and stored for the parameters covering the operating state of the windmill.
  • the database 106 is obtained.
  • the storage form of the database may be a table reference type or a function form.
  • the function is created by fitting methods such as interpolation and exterior, or machine learning based on data from analysis and past operations. As a result, the amount of information stored in the database can be reduced.
  • FIG. 7 is a diagram for explaining the relationship between the angle of attack, the pitch angle, and the initial twist angle with respect to the relative wind speed flowing into the blade element of a certain blade cross section in the wind power generation system 1.
  • FIG. 8 is a diagram for explaining a relationship when twisting occurs in FIG.
  • FIG. 9 is a diagram showing the relationship between the angle of attack of the blade cross-section where a twist has occurred and the aerodynamic performance (cross-section aerodynamic performance) in the wind power generation system 1.
  • the rotational speed ⁇ due to the rotation of the blade 107 and the relative wind speed W due to the wind speed V flow into the blade 107.
  • the angle formed by the rotating surface of the blade 107 and the chord length is the sum of the pitch angle ⁇ p and the initial twist angle ⁇ s of the blade.
  • the angle formed by the relative wind speed W and the chord length is the wing attack angle ⁇ 0.
  • a twist ⁇ is added to the angle formed by the rotation surface and the chord length, and the angle of attack of the wing 107 changes to ⁇ 1. Therefore, as shown in FIG. 9, the cross-sectional aerodynamic performance of the blade 107 is lowered because it changes from ⁇ 0 to ⁇ 1.
  • the cross-sectional aerodynamic performance is a force applied in the rotation direction of the blade 107 or a quotient of a force applied in the rotation direction of the blade 107 and a force applied in the thrust direction.
  • FIG. 10 is a diagram showing an example of the relationship between the wind speed and the force applied in the rotation direction when the database according to the first embodiment of the present invention is applied and when the database is not applied.
  • the force 109 applied in the rotation direction after the application of the database can be improved by about 10% on average with respect to the force 108 applied in the rotation direction before the application of the database.
  • FIG. 11 is a block diagram according to the second embodiment of the present invention.
  • the torsional pitch angle command value calculation unit 200 includes azimuth angle correction value calculation means 201, and the azimuth angle correction value is input to the database 106, and the pitch angle command value is calculated from the database 106.
  • the configuration is taken.
  • the azimuth angle correction value calculation means 201 calculates a pitch angle command value by adding a value obtained by multiplying the value from the azimuth angle measurement means 105 by the time constant of the pitch angle driving device to the rotation speed by the rotation speed measurement means 102. Then, the azimuth angle is calculated by correcting the influence of the phase advance of the azimuth angle until the pitch angle command value is actually reached.
  • FIG. 12 is a block diagram according to the third embodiment of the present invention.
  • an inverse model 300 of the pitch angle driving device is provided, and the pitch angle command value corrected by the inverse model is added to the pitch angle command value in the first or second embodiment.
  • the inverse model is created by obtaining an inverse transfer function of the pitch angle driving device 8 by analysis and machine learning based on past motion data.
  • the calculation is performed based on the measurement information of the arrival time, which is caused by the variation of the measurement information from the calculation time of the pitch angle command value to the time when the pitch angle command value is actually reached. It is possible to correct an error between the pitch angle command value to be performed and the actual pitch angle at the arrival time by utilizing an inverse model, and it is possible to suppress a decrease in power generation efficiency.
  • a pitch angle measuring unit 401 is provided, and a generator torque command value is calculated from the database 106 based on measurement information of the pitch angle measuring unit 401 in addition to the measuring unit.
  • the value calculated from the database 106 may be used as the generator torque command value, or the final generator is obtained by adding the value calculated from the database 106 to the value calculated from the generator torque control unit 23.
  • a torque command value may be determined.
  • mode switching means (mode switching function) 501 capable of switching between a power generation operation mode and a power generation standby mode is provided, and based on measurement information during power generation operation and power generation standby.
  • the pitch angle that maximizes the aerodynamic performance considering the torsion to be referred to is changed. Further, since the rotation of the rotor or the generator is stopped during power generation standby, the rotational speed measuring means is not necessary for the measurement information.
  • a pitch angle that maximizes the force applied in the rotational direction or minimizes the force applied in the thrust direction while maximizing the force applied in the rotational direction refers to a pitch angle that minimizes the force applied in the thrust direction.
  • the addition unit of the command value from the torsion pitch angle command value calculation unit 200 and the command value of the pitch angle control unit 22 includes a weighting calculation unit 250, which adds the weights.
  • k is a weighting factor
  • ⁇ _ (ip_dem) is the pitch angle command value finally determined for the i-th blade
  • ⁇ (p_conv) is the command value of the pitch angle control unit
  • ⁇ (ip_opt) is the twist pitch angle
  • V_1 and V_2 are calculated in advance based on the performance evaluation results.
  • Controls the aerodynamic maximum pitch angle with the derived k if the wind speed is less than V_1.
  • the existing command value is added from the aerodynamic maximum pitch angle with a weight k, and when the wind speed is equal to or higher than V_2, the existing command value is controlled.
  • SYMBOLS 1 Wind power generation system, 2 ... Blade, 3 ... Hub, 4 ... Rotor, 5 ... Nacelle, 6 ... Generator, 7 ... Wind direction wind speed sensor, 8 ... Pitch angle drive device, 9 ... Tower, 10 ... Power converter, DESCRIPTION OF SYMBOLS 11 ... Controller, 12 ... Rotation speed sensor, 21 ... Variable speed control part, 22 ... Pitch angle control part, 22a ... Rotation speed control part, 22b ... Torque control part, 23, Generator torque control part, 100 ... Twist pitch angle Command value calculation unit 101 ... Wind speed measuring means 102 ... Rotational speed measuring means 103 ... Yaw error measuring means 104 ...
  • Nacelle inclination angle measuring means 105 ... Azimuth angle measuring means 106 ... Database 107 107 Wings 108 Force applied in the rotation direction before application of the database, 109 ... Force applied in the rotation direction after application of the database, 200 ... Azimuth angle correction torsion pitch angle command value calculation unit, 201 ... Zimuth angle correction value calculation means, 300 ... inverse model, 400 ... twist generator torque command value calculation section, 401 ... pitch angle measurement means, 500 ... mode switching twist pitch angle command value calculation section, 501 ... mode switching means

Abstract

Provided is a wind power generation system capable of improving power generation efficiency. The wind power generation system comprises: a blade having a variable pitch angle; a rotor that receives wind on the blade and rotates; a power generator that uses the rotation energy of the rotor to generate power; and a control device that controls the pitch angle. The control device controls the pitch angle on the basis of outputs from a database that stores: measurement information about wind speed and the rotation speed of the rotor or power generator; and pitch angle control information taking into consideration a pre-calculated blade twist.

Description

風力発電システムWind power generation system
 本発明は、風力発電システムに係り、特に、ブレードのねじれ変形量増大による発電効率の低下を低減する風力発電システムに関する。 The present invention relates to a wind power generation system, and more particularly to a wind power generation system that reduces a decrease in power generation efficiency due to an increase in torsional deformation of a blade.
 近年、二酸化炭素の排出量増加による地球温暖化や、化石燃料の枯渇によるエネルギー不足が問題視されている。そこで、二酸化炭素の排出量を低減し、化石燃料を使用しない発電システムとして、風力や太陽光などの自然から得られる再生可能エネルギーを利用した発電システムの導入が注目を浴びている。 In recent years, global warming due to increased carbon dioxide emissions and energy shortage due to depletion of fossil fuels are regarded as problems. Therefore, as a power generation system that reduces carbon dioxide emissions and does not use fossil fuels, the introduction of a power generation system that uses renewable energy obtained from nature such as wind power and sunlight is drawing attention.
 再生可能エネルギーを利用した発電システムの中では、太陽光発電システムが一般的であるが、日射によって直接的に出力が変化するため、出力変動が大きく、夜間は発電できない。それに対し、風力発電システムは、風速や風向などの風況が安定した場所を選んで設置することで、昼夜を問わず比較的安定な発電が可能である。 ∙ Of the power generation systems that use renewable energy, a solar power generation system is common, but the output changes directly due to solar radiation, so output fluctuations are large and power generation cannot be performed at night. On the other hand, a wind power generation system can generate relatively stable power regardless of day or night by selecting and installing a place where wind conditions such as wind speed and direction are stable.
 一般的な大型風力発電システムでは、ピッチ角を調整するためのピッチ駆動装置と発電機トルクを調整するための電力変換器を備えており、ピッチ角と発電機トルクを調整することにより、任意の風速域で発電出力を最大化するように制御を実施している。 A general large-scale wind power generation system includes a pitch drive device for adjusting the pitch angle and a power converter for adjusting the generator torque, and by adjusting the pitch angle and the generator torque, an arbitrary Control is performed to maximize the power output in the wind speed range.
 上記、制御方法の1つとして、例えば特許文献1がある。特許文献1では、少なくとも風車翼に流入する風の風速および風向の計測情報を入力する計測情報入力ステップと、前記計測情報入力ステップで、入力された計測情報およびトルクを算出するための予め記憶されたデータに基づいて、各翼素に実際に発生している発生トルクおよび各翼素において想定される、各翼素の半径位置、重量および角速度の積で算出される最適トルクを算出するトルク算出ステップと、前記トルク算出ステップにおいて算出された発生トルクと最適トルクとを比較するトルク比較ステップと、前記トルク比較ステップで比較された結果に基づいて、発生トルクと最適トルクの差を小さくするように、気流発生装置、ピッチ角駆動機構、ヨー角度駆動機構の特徴に対応してそれぞれを個々に制御することができる。これによって、風力発電システムの発電効率の向上を図る技術が開示されている。 As one of the above control methods, for example, there is Patent Document 1. In Patent Document 1, at least a measurement information input step for inputting measurement information of wind speed and direction of wind flowing into a wind turbine blade, and measurement information and torque input in the measurement information input step are stored in advance. Torque calculation to calculate the optimum torque calculated by the product of the actual torque generated in each blade element and the radial position, weight, and angular velocity of each blade element A difference between the generated torque and the optimum torque is reduced based on the step, a torque comparison step for comparing the generated torque calculated in the torque calculating step and the optimum torque, and a result of the comparison in the torque comparing step. The airflow generator, the pitch angle drive mechanism, and the yaw angle drive mechanism can be individually controlled in accordance with the features. Thus, a technique for improving the power generation efficiency of the wind power generation system is disclosed.
特開2011-163352号公報JP 2011-163352 A
 近年、風力発電システムは、大型化による発電出力の向上が求められており、これに伴いブレードの長大化が進んでいる。特にダウンウィンド風車では、風下側にブレードが取付けられており、風荷重によって風下側にブレードがたわむため、タワー衝突の危険性が少ない。そのため、アップウィンド風車に対して、ブレードを長大化及び柔構造化(以下、長大化及び柔構造化したブレードを長大・柔構造ブレードと呼ぶ)させることが可能である。 In recent years, wind power generation systems have been required to improve the power generation output by increasing the size, and the blades are becoming longer. Particularly in a downwind wind turbine, the blades are attached to the leeward side, and the blades bend to the leeward side due to the wind load. Therefore, it is possible to make the blade longer and flexible in the upwind wind turbine (hereinafter, the longer and flexible blade is referred to as a longer and flexible blade).
 特許文献1に開示されている技術を適用することで、風速、ロータまたは発電機の回転速度に応じ、ブレード空力性能を考慮したピッチ角で運転し、発電効率を向上させることが可能である。 By applying the technology disclosed in Patent Document 1, it is possible to operate at a pitch angle that takes blade aerodynamic performance into account according to the wind speed, the rotational speed of the rotor or the generator, and improve the power generation efficiency.
 しかし、発電効率の向上を可能にする長大・柔構造ブレードでは、ブレードのねじれ変形量(以下、ねじれと呼ぶ)が大きくなる可能性がある。ブレード空力性能は、風速と回転速度によって決定される流入相対風速とブレードの各断面における翼角度(ピッチ角度とねじれ)によって決まる。剛構造ブレードの場合、ねじれがないため、流入相対風速が決まると、空力性能を最大化するピッチ角は一意に定まる。しかし、柔構造ブレードの場合、流入相対風速に加えてねじれを考慮し、空力性能を最大化するピッチ角を決定する必要がある。そのため、流入風速が同一であっても、剛構造ブレードと柔構造ブレードでは、空力性能を最大化するピッチ角は異なることとなる。 However, in a long and flexible blade that can improve power generation efficiency, the amount of twist deformation (hereinafter referred to as twist) of the blade may increase. The blade aerodynamic performance is determined by the inflow relative wind speed determined by the wind speed and the rotational speed, and the blade angle (pitch angle and twist) in each cross section of the blade. In the case of a rigid blade, since there is no twist, once the inflow relative wind speed is determined, the pitch angle that maximizes the aerodynamic performance is uniquely determined. However, in the case of a flexible structure blade, it is necessary to determine a pitch angle that maximizes aerodynamic performance in consideration of torsion in addition to the inflow relative wind speed. Therefore, even if the inflow wind speed is the same, the rigid structure blade and the flexible structure blade have different pitch angles that maximize the aerodynamic performance.
 したがって、長大・柔構造ブレードに特許文献1を適用した場合、ねじれの少ない剛構造ブレードに適用した場合に比べて、空力性能を最大化するピッチ角がねじれによって変化することを考慮できないため、発電効率が低下するピッチ角に調整する可能性がある。また、アジマス角を入力値に利用しないことから、標高が高くなるほど風速が大きくなるウィンドシアの効果を考慮できない。さらに、ダウンウィンド風車における、タワーの影響によりタワー近傍で風速が減少するタワーシャドウの効果を考慮できない。したがって、回転1周期中における風速変化の影響を考慮できず、発電効率が低下する可能性がある。 Therefore, when Patent Document 1 is applied to a long and flexible structure blade, it cannot be considered that the pitch angle that maximizes aerodynamic performance changes due to torsion compared to the case of applying it to a rigid structure blade with less torsion. There is a possibility of adjusting the pitch angle to decrease the efficiency. Further, since the azimuth angle is not used as an input value, the effect of wind shear in which the wind speed increases as the altitude increases cannot be considered. Furthermore, in the downwind wind turbine, the effect of the tower shadow, in which the wind speed decreases near the tower due to the influence of the tower, cannot be considered. Therefore, the effect of changes in wind speed during one rotation period cannot be considered, and power generation efficiency may be reduced.
 本発明の目的は、ねじれの考慮によって、ブレード全体の空力性能を向上し、発電効率を向上させる運転制御手段を提供することである。 An object of the present invention is to provide an operation control means for improving the aerodynamic performance of the entire blade and improving the power generation efficiency by considering the twist.
 上記課題を解決するために、本発明は、ピッチ角を変更可能なブレードと、前記ブレードに風を受けて回転するロータと、前記ロータの回転エネルギーを用いて発電する発電機を備える風力発電システムであって、前記ピッチ角を制御する制御装置を備え、前記制御装置は、風速、ロータまたは発電機の回転速度の計測情報と、予め算出されたブレードのねじれを考慮したピッチ角制御情報を記憶したデータベースの出力に基づき、前記ピッチ角を制御することを特徴とする風力発電システムを示すものである。 In order to solve the above problems, the present invention provides a wind power generation system including a blade that can change a pitch angle, a rotor that rotates by receiving wind from the blade, and a generator that generates electric power using the rotational energy of the rotor. The control device includes a control device for controlling the pitch angle, and the control device stores measurement information of wind speed, rotation speed of the rotor or generator, and pitch angle control information in consideration of blade twist calculated in advance. The wind power generation system is characterized in that the pitch angle is controlled based on the output of the database.
 本発明によれば、ブレードのねじれを考慮することによって、発電効率を向上できる制御装置を備えた風力発電システムを提供することが可能になる。 According to the present invention, it is possible to provide a wind power generation system including a control device that can improve power generation efficiency by considering the twist of the blade.
本発明を実施しない場合の風力発電システム1の構成要素を示す図である。It is a figure which shows the component of the wind power generation system 1 when not implementing this invention. 本発明を実施しない場合の風力発電システム1のコントローラ11に実装される運転制御手段の処理概要を示すブロック線図である。It is a block diagram which shows the process outline | summary of the operation control means mounted in the controller 11 of the wind power generation system 1 when not implementing this invention. 本発明を実施しない場合の運転制御手段22に実装される運転制御手段の処理概要を示すブロック線図である。It is a block diagram which shows the process outline | summary of the operation control means mounted in the operation control means 22 when not implementing this invention. 風力発電システム1の風速、発電電力、回転速度、発電機トルク、および、ピッチ角の関係を示す概略図である。It is the schematic which shows the relationship of the wind speed of the wind power generation system 1, a generated electric power, a rotational speed, a generator torque, and a pitch angle. 本発明の第1の実施形態に係るコントローラ11に実装される運転制御手段の処理概要を示すブロック線図、および、データベース106を予め作成するためのフローチャートである。It is a block diagram which shows the process outline | summary of the operation control means mounted in the controller 11 which concerns on the 1st Embodiment of this invention, and the flowchart for producing the database 106 previously. 本発明の第1の実施形態に係るコントローラ11に実装されるより広い風速領域での運転制御手段の処理概要を示すブロック線図である。It is a block diagram which shows the process outline | summary of the operation control means in the wider wind speed area | region mounted in the controller 11 which concerns on the 1st Embodiment of this invention. 風力発電システム1における、あるブレード断面の翼素に流入する相対風速に対する迎角と、ピッチ角と初期ねじれ角の関係を説明するための図である。It is a figure for demonstrating the relationship between the angle of attack with respect to the relative wind speed which flows into the blade | wing element of a certain blade cross section in a wind power generation system 1, a pitch angle, and an initial twist angle. 風力発電システム1における、あるブレード断面の翼素に流入する相対風速に対する迎角と、ピッチ角、初期ねじれ角、および、ねじれの関係を説明するための図である。It is a figure for demonstrating the relationship between the angle of attack with respect to the relative wind speed which flows into the blade | wing element of a certain blade cross section in a wind power generation system 1, a pitch angle, an initial twist angle, and a twist. 風力発電システム1における、ねじれにより、あるブレード断面での空力性能の低下を説明するための図である。It is a figure for demonstrating the fall of the aerodynamic performance in a certain blade cross section by the twist in the wind power generation system 1. FIG. 本発明の第一の実施形態に係るデータベースを適用した場合と、適用しない場合における風速と回転方向に加わる力との関係を説明するための図である。It is a figure for demonstrating the relationship between the wind force and the force added to a rotation direction in the case where the database which concerns on 1st embodiment of this invention is applied, and the case where it does not apply. 本発明の第2の実施形態に係るコントローラ11に実装される運転制御手段の処理概要を示すブロック線図である。It is a block diagram which shows the process outline | summary of the operation control means mounted in the controller 11 which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るコントローラ11に実装される運転制御手段の処理概要を示すブロック線図である。It is a block diagram which shows the process outline | summary of the operation control means mounted in the controller 11 which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係るコントローラ11に実装される運転制御手段の処理概要を示すブロック線図である。It is a block diagram which shows the process outline | summary of the operation control means mounted in the controller 11 which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係るコントローラ11に実装される運転制御手段の処理概要を示すブロック線図である。It is a block diagram which shows the process outline | summary of the operation control means mounted in the controller 11 which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係るコントローラ11に実装される運転制御手段の処理概要を示すブロック線図である。It is a block diagram which shows the process outline | summary of the operation control means mounted in the controller 11 which concerns on the 6th Embodiment of this invention.
 以下、本発明の実施形態を、図面を参照して説明する。なお、各図面において同一の構成については同一の符号を記し、重複する部分についてはその詳細な説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and detailed description of overlapping portions is omitted.
 [第1の実施形態]
 図1を用いて、本発明を適用可能な風力発電システム全体の概略構成について説明する。図1の風力発電システム1は、複数のブレード2と、複数のブレード2を接続するハブ3とで、構成されるロータ4を備える。ロータ4はナセル5に回転軸(図1では省略する)を介して連結されており、回転することでブレード2の位置を変更可能である。ナセル5はロータ4を回転可能に支持している。ブレード2が風を受けることによりロータ4が回転し、ロータ4の回転力がナセル5内の発電機6を回転させることで電力を発生することができる。なお、ナセル5上には風向や風速を計測する風向風速センサ7が備えられている。
[First embodiment]
A schematic configuration of the entire wind power generation system to which the present invention can be applied will be described with reference to FIG. The wind power generation system 1 in FIG. 1 includes a rotor 4 that includes a plurality of blades 2 and a hub 3 that connects the plurality of blades 2. The rotor 4 is connected to the nacelle 5 via a rotating shaft (not shown in FIG. 1), and the position of the blade 2 can be changed by rotating. The nacelle 5 supports the rotor 4 rotatably. When the blade 2 receives wind, the rotor 4 rotates, and the rotational force of the rotor 4 rotates the generator 6 in the nacelle 5 to generate electric power. A wind direction / wind speed sensor 7 for measuring the wind direction and the wind speed is provided on the nacelle 5.
 個々のブレード2には、風に対するブレード2の角度(ピッチ角)を調整可能なピッチ角駆動装置8を備えている。ピッチ角駆動装置8を用いて、ピッチ角を変更することでブレード2の受ける風力(風量)を調整して、風に対するロータ4の回転エネルギーを変更することができる。これによって、広い風速領域において回転速度および発電電力を制御することが可能となっている。 Each blade 2 is provided with a pitch angle driving device 8 capable of adjusting the angle (pitch angle) of the blade 2 with respect to the wind. By using the pitch angle driving device 8, the wind energy (air volume) received by the blade 2 can be adjusted by changing the pitch angle, and the rotational energy of the rotor 4 with respect to the wind can be changed. This makes it possible to control the rotational speed and the generated power in a wide wind speed region.
 風力発電システム1において、ナセル5はタワー9上に設置されており、タワー9に対して回転可能な機構(図では省略)を有している。タワー9は、ハブ3やナセル5を介してブレード2の荷重を支持するようになっており、地上、洋上、浮体の所定位置に設置された基部(図では省略)に固定されている。 In the wind power generation system 1, the nacelle 5 is installed on the tower 9 and has a mechanism (not shown) that can rotate with respect to the tower 9. The tower 9 supports the load of the blade 2 via the hub 3 and the nacelle 5 and is fixed to a base (not shown in the figure) installed at a predetermined position on the ground, offshore, and floating body.
 発電機6は、タワー9内に設置される電力変換器10によって、発電機が発生するトルク(以下、発電機トルクと呼ぶ)が制御され、ロータ4の回転トルクを制御することができる。 The generator 6 can control the torque generated by the generator (hereinafter referred to as “generator torque”) by the power converter 10 installed in the tower 9 and control the rotational torque of the rotor 4.
 また、風力発電システム1はコントローラ11を備えており、発電機6の回転速度を計測する回転速度センサ12から出力される回転速度と、発電機6の発電機トルクに基づき、コントローラ11で発電機6とピッチ角駆動装置8を調整することで、風力発電システム1の発電電力や回転速度を調整する。 Further, the wind power generation system 1 includes a controller 11, and the controller 11 generates a generator based on the rotation speed output from the rotation speed sensor 12 that measures the rotation speed of the generator 6 and the generator torque of the generator 6. 6 and the pitch angle driving device 8 are adjusted to adjust the generated power and the rotational speed of the wind power generation system 1.
 ブレード2は、例えばロータ径100m以上とすることができる。また、ロータ径180m以上にする場合、特に柔構造に対応する制御による効果が大きい。また、ブレード2は、回転面から各翼素が形状的に初期ねじれを有するが、発電運転時に風により加わる力によりそこから0.2°以上ねじれが生じるように、ブレード2のウェブやスパーキャップ等を設計することができる。また、発電運転時に0.5°以上ねじれが生じる柔構造ブレードである場合、本実施例制御により特に顕著な効果が得られる。 The blade 2 can have a rotor diameter of, for example, 100 m or more. Further, when the rotor diameter is 180 m or more, the effect by the control corresponding to the flexible structure is particularly great. In addition, each blade element has an initial twist in terms of shape from the rotating surface of the blade 2, but the blade 2 web, spar cap, etc. are to be twisted by 0.2 ° or more due to the force applied by the wind during power generation operation. Can be designed. Further, in the case of a flexible structure blade that is twisted by 0.5 ° or more during power generation operation, a particularly remarkable effect can be obtained by the present embodiment control.
 図2に、コントローラ11に実装される可変速制御部21のブロック線図を示す。図2に示す運転制御手段は、発電機トルクの目標値と計測値の偏差と発電機回転速度の目標値と計測値の偏差に基づいて、フィードバック制御によりピッチ角指令値を決定するピッチ角制御部22を備える。また、発電機回転速度の目標値と計測値の偏差に基づいて、フィードバック制御により発電機トルク指令値を決定する発電機トルク制御部23を備える。 FIG. 2 shows a block diagram of the variable speed control unit 21 mounted on the controller 11. The operation control means shown in FIG. 2 is a pitch angle control that determines a pitch angle command value by feedback control based on a deviation between a target value and a measured value of a generator torque, and a deviation between a target value and a measured value of a generator rotational speed. The unit 22 is provided. Moreover, the generator torque control part 23 which determines a generator torque command value by feedback control based on the deviation of the target value of a generator rotational speed and a measured value is provided.
 図3に、可変速制御部21のピッチ角制御部22の概要を示すブロック線図である。ピッチ角制御部22は、回転速度制御部22aと、トルク制御部22bより構成される。回転速度制御部22aは、発電機回転速度の目標値と計測値の偏差に基づいて、フィードバック制御によりピッチ角指令値を決定する。また、トルク制御部22bは、発電機トルクの目標値と計測値の偏差に基づいて、フィードバック制御によりピッチ角指令値を決定する。これら2つの値を加算することで、ピッチ角制御部22の最終的なピッチ角指令値を決定する。 FIG. 3 is a block diagram showing an outline of the pitch angle control unit 22 of the variable speed control unit 21. The pitch angle control unit 22 includes a rotation speed control unit 22a and a torque control unit 22b. The rotational speed control unit 22a determines the pitch angle command value by feedback control based on the deviation between the target value of the generator rotational speed and the measured value. Moreover, the torque control part 22b determines a pitch angle command value by feedback control based on the deviation between the target value of the generator torque and the measured value. By adding these two values, the final pitch angle command value of the pitch angle control unit 22 is determined.
 図4に、図2と図3に示すコントローラ11に実装される運転制御手段によって得られる風力発電システム1の特性を示す。図4は、風速に対する発電電力、発電機の回転速度、発電機トルクおよびピッチ角の関係を示している。各グラフの横軸は風速を示し、右側に行くほど風速は速くなる。また、各グラフの縦軸は上方に行くほど発電電力、回転速度、発電機トルクの各値が大きくなることを示している。ピッチ角に関しては、上方がフェザー(風を逃がす)側、下方がファイン(風を受ける)側となる。 FIG. 4 shows the characteristics of the wind power generation system 1 obtained by the operation control means mounted on the controller 11 shown in FIGS. FIG. 4 shows the relationship between the generated power with respect to the wind speed, the rotational speed of the generator, the generator torque, and the pitch angle. The horizontal axis of each graph shows the wind speed, and the wind speed increases toward the right side. In addition, the vertical axis of each graph indicates that the values of the generated power, the rotational speed, and the generator torque increase as going upward. As for the pitch angle, the upper side is the feather (wind escape) side, and the lower side is the fine (wind receiving) side.
 発電は、ロータ4の回転を開始するカットイン風速Vinから回転を停止するカットアウト風速Voutの範囲で行われ、風速Vdまでは風速の増加に伴って発電電力値も増加するが、それ以上の風速では発電電力は一定となる。 Power generation is performed in a range from the cut-in wind speed Vin at which the rotor 4 starts to rotate to the cut-out wind speed Vout at which the rotation stops, and the generated power value increases as the wind speed increases until the wind speed Vd. The generated power is constant at the wind speed.
 コントローラ11では、カットイン風速Vinから風速Vaまでは回転速度が一定(Wlow)になるように発電機トルクを制御し、回転速度が定格回転速度Wratに達したら、定格回転速度Wratを維持するように発電機トルクおよびピッチ角を制御する。基本的には、発電機トルクの制御は発電電力を確保するために行う。発電機トルクの制御では、風速Vbから風速Vdの範囲で、風速に応じて発電機トルクを定格発電機トルクQratになるまで変化させ、風速Vdからカットアウト風速Voutまでの範囲では、定格発電機トルクQratを保持する。 The controller 11 controls the generator torque so that the rotational speed is constant (Wlow) from the cut-in wind speed Vin to the wind speed Va. When the rotational speed reaches the rated rotational speed Wrat, the rated rotational speed Wrat is maintained. The generator torque and pitch angle are controlled. Basically, the generator torque is controlled to ensure the generated power. In the control of the generator torque, the generator torque is changed in accordance with the wind speed from the wind speed Vb to the wind speed Vd until the rated generator torque Qrat is reached. Holds the torque QRat.
 ピッチ角の制御では、風速Vcまではピッチ角をファイン角θminに保持し、風速Vcからカットアウト風速Voutの範囲で、風速に応じてピッチ角をファイン側θminからフェザー側θmaxまで変化させる。ただし、図4の例においては、風速Vcから風速Vdの範囲で発電機トルクとピッチ角の制御をオーバーラップさせているが、これをVc=Vdとしてオーバーラップをなくし、発電機トルクの制御とピッチ角の制御を独立に実行させるようにしてもよい。 In the control of the pitch angle, the pitch angle is held at the fine angle θmin up to the wind speed Vc, and the pitch angle is changed from the fine side θmin to the feather side θmax according to the wind speed in the range of the wind speed Vc to the cutout wind speed Vout. However, in the example of FIG. 4, the generator torque and the pitch angle are overlapped in the range from the wind speed Vc to the wind speed Vd, but this is set to Vc = Vd to eliminate the overlap, You may make it perform control of a pitch angle independently.
 本発明の第1の実施形態では、特に発電効率の向上が求められる、カットイン風速Vinから風速Vdのような風速領域における、ブレードのねじれによる発電効率の低下をピッチ角の調整により防止するものである。 In the first embodiment of the present invention, a reduction in power generation efficiency due to blade twisting in a wind speed region such as the cut-in wind speed Vin to the wind speed Vd, which is particularly required to improve the power generation efficiency, is prevented by adjusting the pitch angle. It is.
 図5aは、ねじれピッチ角指令値算出部100の概要を示すブロック線図である。ねじれピッチ角指令値算出部100は、風速計測手段101、ロータまたは発電機の回転速度計測手段102、ヨー誤差計測手段103、ナセル傾斜角計測手段104、および、アジマス角計測手段105に基づき、ねじれを考慮した空力性能を最大化するピッチ角制御情報を記憶したデータベース106よりピッチ角指令値若しくは補正値を決定する。 FIG. 5 a is a block diagram showing an outline of the twist pitch angle command value calculation unit 100. The torsion pitch angle command value calculation unit 100 is based on the wind speed measurement unit 101, the rotation speed measurement unit 102 of the rotor or the generator, the yaw error measurement unit 103, the nacelle inclination angle measurement unit 104, and the azimuth angle measurement unit 105. The pitch angle command value or the correction value is determined from the database 106 storing the pitch angle control information that maximizes the aerodynamic performance in consideration of the above.
 風速計測手段101と、回転速度計測手段102の出力を活用することによって、ねじれを考慮した空力性能を最大化するピッチ角に調整することが可能である。 By using the outputs of the wind speed measuring means 101 and the rotational speed measuring means 102, it is possible to adjust the pitch angle to maximize the aerodynamic performance in consideration of torsion.
 さらに、ヨー誤差計測手段103を活用することによって、風力発電システム1が風向と正対していない場合に生じるねじれを考慮した空力性能を最大化するピッチ角に調整することが可能である。 Furthermore, by utilizing the yaw error measuring means 103, it is possible to adjust the pitch angle to maximize the aerodynamic performance in consideration of the torsion that occurs when the wind power generation system 1 does not face the wind direction.
 また、ナセル傾斜角計測手段104を活用することによって、風力発電システム1が浮体に設置された場合に、ロータ4が前後に傾いた場合に生じるねじれを考慮した空力性能を最大化するピッチ角に調整することが可能である。 Further, by utilizing the nacelle inclination angle measuring means 104, when the wind power generation system 1 is installed on a floating body, the pitch angle maximizes the aerodynamic performance considering the torsion that occurs when the rotor 4 is inclined forward and backward. It is possible to adjust.
 前記風速計測手段101は、ナセル5近傍の風速を計測しているため、ウィンドシアと呼ばれる、標高が高くなるほど風速が大きくなる効果を考慮できない。さらに、ダウンウィンド方式風車におけるタワーシャドウと呼ばれるタワー通過後のタワー近傍の風速が低下する効果は考慮できない。そこで、アジマス角計測手段105を活用することによって、ウィンドシアとタワーシャドウによる回転1周期中の風速変化が考慮できる。したがって、回転1周期中のねじれを考慮した空力性能を最大化するピッチ角に調整することが可能となる。この場合、各ブレードを独立ピッチ制御とすることができる。 Since the wind speed measuring means 101 measures the wind speed in the vicinity of the nacelle 5, the effect of increasing the wind speed as the altitude increases, called wind shear, cannot be considered. Furthermore, the effect of reducing the wind speed in the vicinity of the tower after passing through the tower called tower shadow in a downwind wind turbine cannot be considered. Therefore, by utilizing the azimuth angle measuring means 105, it is possible to consider a change in wind speed during one rotation period due to wind shear and tower shadow. Therefore, it is possible to adjust the pitch angle to maximize the aerodynamic performance in consideration of torsion during one rotation period. In this case, each blade can be set to independent pitch control.
 ここで、風速計測手段101、回転速度計測手段102、ヨー誤差計測手段103、ナセル傾斜角計測手段104からデータベース106に入力される値は、各計測手段の出力信号と一致するものであっても良いし、所定の時定数を設定したフィルタ処理を施した値であっても良い。 Here, even if the values input to the database 106 from the wind speed measuring means 101, the rotational speed measuring means 102, the yaw error measuring means 103, and the nacelle inclination angle measuring means 104 match the output signals of the respective measuring means. It may be a value obtained by performing a filtering process in which a predetermined time constant is set.
 なお、カットイン風速Vinから風速Vdのような低風速領域のみの運転であれば、図5aのねじれピッチ角指令値算出部100のみでピッチ角を調整することが可能である。より広い風速領域での運転を考慮する場合には、図6に示すように、風力発電システム1のピッチ角制御部22の指令値に、ねじれピッチ角指令値算出部100より算出した指令値を加算することで、最終的なピッチ角指令値を決定してもよい。ここで、ピッチ角制御部22は、ピッチ角指令値を回転速度制御部からの指令値とトルク制御部からの指令値を加算して算出しても良いし、回転速度制御部のみに基づいて、ピッチ角指令値を算出しても良い。 If the operation is performed only in a low wind speed region such as the cut-in wind speed Vin to the wind speed Vd, the pitch angle can be adjusted only by the twist pitch angle command value calculation unit 100 in FIG. 5a. When considering operation in a wider wind speed region, as shown in FIG. 6, the command value calculated by the twist pitch angle command value calculation unit 100 is used as the command value of the pitch angle control unit 22 of the wind power generation system 1. The final pitch angle command value may be determined by addition. Here, the pitch angle control unit 22 may calculate the pitch angle command value by adding the command value from the rotation speed control unit and the command value from the torque control unit, or based only on the rotation speed control unit. The pitch angle command value may be calculated.
 図5bは、ねじれを考慮した空力性能を最大化するピッチ角のデータベースを予め作成するためのフローチャートである。ステップS100にて、風速、回転速度、ヨー誤差、ナセル傾斜角、アジマス角のパラメータを入力する。ステップS101にて、ピッチ角の初期値を入力する。ステップS102にて、ステップS100とステップS101の入力値に基づき、各翼素でのねじれと空力性能をブレードの空力及び物理モデルにより算出する。ステップS103にて、空力性能を最大化するピッチ角が算出されたか否かを判定し、算出されていない場合、ステップS101でピッチ角の値を変更した後、ステップS102の処理を再び実施する。これにより、同一パラメータに対して、ねじれを考慮した空力性能を最大化するピッチ角が探索されることとなる。ステップS104にて、取りうる計測情報が網羅されたか否かを判定し、網羅されていない場合、ステップS100~S103の処理を再び実行する。これにより、風車の運転状態を網羅したパラメータに対して、ねじれを考慮した空力性能を最大化するピッチ角が探索されることとなる。ステップS105にて、風車の運転状態を網羅したパラメータに対して、ねじれを考慮した空力性能を最大化するピッチ角をデータベースに格納する。 FIG. 5b is a flowchart for creating in advance a database of pitch angles that maximizes aerodynamic performance considering torsion. In step S100, parameters of wind speed, rotational speed, yaw error, nacelle tilt angle, and azimuth angle are input. In step S101, an initial pitch angle value is input. In step S102, based on the input values in steps S100 and S101, the torsional and aerodynamic performance of each blade element is calculated from the aerodynamics and physical model of the blade. In step S103, it is determined whether or not a pitch angle that maximizes aerodynamic performance has been calculated. If not calculated, the pitch angle value is changed in step S101, and then the process of step S102 is performed again. As a result, the pitch angle that maximizes the aerodynamic performance considering the torsion is searched for the same parameter. In step S104, it is determined whether or not the possible measurement information is covered. If not, the processes in steps S100 to S103 are executed again. As a result, the pitch angle that maximizes the aerodynamic performance in consideration of torsion is searched for the parameters covering the operating state of the wind turbine. In step S105, the pitch angle that maximizes the aerodynamic performance in consideration of torsion is stored in the database for the parameters covering the operating state of the wind turbine.
 なお、発電効率の向上が求められる、カットイン風速Vinから風速Vdのような風速領域における空力性能の最大化は、ブレード全体の回転方向に加わるトルク・力を最大化、ブレード全体の回転方向に加わる力とブレード全体のスラスト方向に加わる力の商を最大化、ブレード全体の揚力を最大化、または、ブレード全体の揚力と抗力の商を最大化することを示す。また、ブレードの荷重低下が求められる風速Vd以上のような発電運転時、または、暴風時の発電待機時における空力性能の最大化は、ブレード全体の回転方向に加わる力とブレード全体のスラスト方向に加わる力の商を最大化、ブレード全体のスラスト方向に加わる力を最小化、ブレード全体の揚力と抗力の商を最大化、または、ブレード全体の抗力を最小化することを示す。したがって、計測条件に基づいてデータベースから参照される、ねじれを考慮した空力性能を最大化するピッチ角は、風速領域に応じて変更することも可能である。 Note that maximization of aerodynamic performance in the wind speed range from cut-in wind speed Vin to wind speed Vd, where improvement in power generation efficiency is required, maximizes the torque and force applied to the rotation direction of the entire blade. Indicates that the quotient of the applied force and the force applied in the thrust direction of the entire blade is maximized, the lift of the entire blade is maximized, or the quotient of the lift and drag of the entire blade is maximized. Also, maximization of aerodynamic performance during power generation operation such as wind speed Vd or higher, where blade load reduction is required, or during power standby during storms, depends on the force applied to the rotation direction of the entire blade and the thrust direction of the entire blade. Indicates that the quotient of applied force is maximized, the force applied in the thrust direction of the entire blade is minimized, the quotient of lift and drag of the entire blade is maximized, or the drag of the entire blade is minimized. Therefore, the pitch angle that is referred to from the database based on the measurement conditions and maximizes the aerodynamic performance in consideration of torsion can be changed according to the wind speed region.
 図5cは、ねじれを考慮した空力性能を最大化するピッチ角に対応した発電機トルクのデータベースを予め作成するためのフローチャートである。ステップS106にて、風速、回転速度、ヨー誤差、ナセル傾斜角、アジマス角、ピッチ角のパラメータを入力する。ステップS107にて、発電電力と発電機トルクを算出する。ステップS108にて、取りうる計測情報が網羅されたか否かを判定し、網羅されていない場合、ステップS106とステップS107の処理を再び実行する。これにより、風車の運転状態を網羅したパラメータに対して、発電機トルクが探索されることとなる。ステップS109にて、風車の運転状態を網羅したパラメータに対して、ねじれを考慮した空力性能を最大化するピッチ角に対応した発電機トルクを、前記ピッチ角を格納したデータベースに追加して格納することで、データベース106とする。 FIG. 5c is a flowchart for creating in advance a generator torque database corresponding to a pitch angle that maximizes aerodynamic performance in consideration of torsion. In step S106, parameters of wind speed, rotational speed, yaw error, nacelle tilt angle, azimuth angle, and pitch angle are input. In step S107, the generated power and the generator torque are calculated. In step S108, it is determined whether or not possible measurement information is covered. If not, the processes in steps S106 and S107 are executed again. As a result, the generator torque is searched for the parameters covering the operating state of the windmill. In step S109, the generator torque corresponding to the pitch angle that maximizes the aerodynamic performance in consideration of torsion is added to the database storing the pitch angle and stored for the parameters covering the operating state of the windmill. Thus, the database 106 is obtained.
 なお、データベースの格納形態は、テーブル参照型、及び、関数の形態であってもよい。関数は、解析及び過去動作によるデータによって、内挿及び外装などのフィッティング手法もしくは、機械学習によって作成される。これによって、データベース格納の情報量削減が可能となる。 Note that the storage form of the database may be a table reference type or a function form. The function is created by fitting methods such as interpolation and exterior, or machine learning based on data from analysis and past operations. As a result, the amount of information stored in the database can be reduced.
 図7は、風力発電システム1における、あるブレード断面の翼素に流入する相対風速に対する迎角と、ピッチ角、初期ねじれ角の関係を説明するための図である。また、図8は、図7において、ねじれが生じた場合の関係を説明するための図である。図9は、風力発電システム1において、ねじれが生じた場合のあるブレード断面の迎角と空力性能(断面空力性能)との関係を示す図である。図7に示すように、翼107の回転による回転速度ωと風速Vによる相対風速Wが、翼107に流入する。翼107の回転面と翼弦長のなす角は、ピッチ角θpとブレードの初期ねじれ角θsの和である。また、相対風速Wと翼弦長のなす角が翼の迎角α0となる。前記翼107にねじれが生じた場合、図8に示すように、回転面と翼弦長のなす角にねじれφが加わり、翼107の迎角はα1に変化する。したがって、図9に示すように、α0からα1に変化するため、翼107の断面空力性能が低下する。ここで、断面空力性能は、翼107の回転方向に加わる力、または、翼107の回転方向に加わる力とスラスト方向に加わる力の商である。 FIG. 7 is a diagram for explaining the relationship between the angle of attack, the pitch angle, and the initial twist angle with respect to the relative wind speed flowing into the blade element of a certain blade cross section in the wind power generation system 1. FIG. 8 is a diagram for explaining a relationship when twisting occurs in FIG. FIG. 9 is a diagram showing the relationship between the angle of attack of the blade cross-section where a twist has occurred and the aerodynamic performance (cross-section aerodynamic performance) in the wind power generation system 1. As shown in FIG. 7, the rotational speed ω due to the rotation of the blade 107 and the relative wind speed W due to the wind speed V flow into the blade 107. The angle formed by the rotating surface of the blade 107 and the chord length is the sum of the pitch angle θp and the initial twist angle θs of the blade. The angle formed by the relative wind speed W and the chord length is the wing attack angle α0. When the wing 107 is twisted, as shown in FIG. 8, a twist φ is added to the angle formed by the rotation surface and the chord length, and the angle of attack of the wing 107 changes to α1. Therefore, as shown in FIG. 9, the cross-sectional aerodynamic performance of the blade 107 is lowered because it changes from α0 to α1. Here, the cross-sectional aerodynamic performance is a force applied in the rotation direction of the blade 107 or a quotient of a force applied in the rotation direction of the blade 107 and a force applied in the thrust direction.
 図10は、本発明の第一の実施形態に係るデータベースを適用した場合と、適用しない場合における風速と回転方向に加わる力との関係の1例を示す図である。図10に示すように、データベース適用前の回転方向に加わる力108に対して、データベース適用後の回転方向に加わる力109は、平均で約10%向上することが可能となる。 FIG. 10 is a diagram showing an example of the relationship between the wind speed and the force applied in the rotation direction when the database according to the first embodiment of the present invention is applied and when the database is not applied. As shown in FIG. 10, the force 109 applied in the rotation direction after the application of the database can be improved by about 10% on average with respect to the force 108 applied in the rotation direction before the application of the database.
 本発明の第1の実施形態を適用した場合、ねじれを考慮した回転方向に加わる力を最大化するピッチ角に調整することによって、ねじれによる発電効率の低下を抑制することが可能である。 When applying the first embodiment of the present invention, it is possible to suppress a decrease in power generation efficiency due to twist by adjusting the pitch angle to maximize the force applied in the rotational direction in consideration of twist.
 [第2の実施形態]
 図11を用いて、本発明の第2の実施形態について説明する。なお、実施形態1と重複する点については詳細な説明を省略する。図11は、本発明の第2の実施形態に係るブロック線図である。第1の実施形態と異なり、ねじれピッチ角指令値算出部200はアジマス角補正値算出手段201を備えており、アジマス角の補正値がデータベース106に入力され、データベース106からピッチ角指令値が算出される構成をとる。アジマス角補正値算出手段201は、アジマス角計測手段105からの値に、ピッチ角駆動装置の時定数に回転速度計測手段102による回転速度を乗じた値を加算することによって、ピッチ角指令値算出から実際にピッチ角指令値に到達するまでのアジマス角の位相が進む影響を補正したアジマス角を算出する。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG. Detailed description of points that are the same as those in the first embodiment will be omitted. FIG. 11 is a block diagram according to the second embodiment of the present invention. Unlike the first embodiment, the torsional pitch angle command value calculation unit 200 includes azimuth angle correction value calculation means 201, and the azimuth angle correction value is input to the database 106, and the pitch angle command value is calculated from the database 106. The configuration is taken. The azimuth angle correction value calculation means 201 calculates a pitch angle command value by adding a value obtained by multiplying the value from the azimuth angle measurement means 105 by the time constant of the pitch angle driving device to the rotation speed by the rotation speed measurement means 102. Then, the azimuth angle is calculated by correcting the influence of the phase advance of the azimuth angle until the pitch angle command value is actually reached.
 本発明の第2の実施形態を適用した場合、アジマス角計測時刻でのピッチ角指令値と、実際にピッチ角指令値に到達した時刻で算出すべきピッチ角指令値のずれを補正し、発電効率の低下を抑制することが可能である。 When the second embodiment of the present invention is applied, a deviation between the pitch angle command value at the azimuth angle measurement time and the pitch angle command value to be calculated at the time when the pitch angle command value is actually reached is corrected, and power generation It is possible to suppress a decrease in efficiency.
 [第3の実施形態]
 図12を用いて、本発明の第3の実施形態について説明する。なお、第1および第2の実施形態と重複する点については詳細な説明を省略する。図12は、本発明の第3の実施形態に係るブロック線図である。第1および第2の実施形態と異なり、ピッチ角駆動装置の逆モデル300を備えており、逆モデルにより補正したピッチ角指令値を、第1または第2の実施形態におけるピッチ角指令値に加算することで、最終的なピッチ角指令値を決定する。逆モデルは、解析及び過去動作のデータによる機械学習によってピッチ角駆動装置8の逆伝達関数を求めることで作成する。
[Third embodiment]
A third embodiment of the present invention will be described with reference to FIG. Detailed description of the same points as those in the first and second embodiments will be omitted. FIG. 12 is a block diagram according to the third embodiment of the present invention. Unlike the first and second embodiments, an inverse model 300 of the pitch angle driving device is provided, and the pitch angle command value corrected by the inverse model is added to the pitch angle command value in the first or second embodiment. Thus, the final pitch angle command value is determined. The inverse model is created by obtaining an inverse transfer function of the pitch angle driving device 8 by analysis and machine learning based on past motion data.
 本発明の第3の実施形態を適用した場合、ピッチ角指令値の算出時刻から実際にピッチ角指令値に到達する時刻までに、計測情報が変動することによって生じる、到達時刻の計測情報により算出されるピッチ角指令値と、到達時刻における実際のピッチ角との誤差を逆モデルの活用により補正することが可能であり、発電効率の低下を抑制することが可能である。 When the third embodiment of the present invention is applied, the calculation is performed based on the measurement information of the arrival time, which is caused by the variation of the measurement information from the calculation time of the pitch angle command value to the time when the pitch angle command value is actually reached. It is possible to correct an error between the pitch angle command value to be performed and the actual pitch angle at the arrival time by utilizing an inverse model, and it is possible to suppress a decrease in power generation efficiency.
 [第4の実施形態]
 図13を用いて、本発明の第4の実施形態について説明する。本発明の第4の実施形態に関わるピッチ角運転制御手段は、第1~第3の実施形態と同様のため、説明を省略する。
[Fourth Embodiment]
A fourth embodiment of the present invention will be described with reference to FIG. Since the pitch angle operation control means according to the fourth embodiment of the present invention is the same as that of the first to third embodiments, the description thereof is omitted.
 第1~第3の実施形態と異なり、ピッチ角計測手段401を備え、前記計測手段に加えて、ピッチ角計測手段401の計測情報に基づき、データベース106より発電機トルク指令値を算出する。 Unlike the first to third embodiments, a pitch angle measuring unit 401 is provided, and a generator torque command value is calculated from the database 106 based on measurement information of the pitch angle measuring unit 401 in addition to the measuring unit.
 なお、発電機トルク指令値は、データベース106より算出した値のみを用いても良いし、発電機トルク制御部23より算出した値に、データベース106より算出した値を加算して最終的な発電機トルク指令値を決定しても良い。 Note that only the value calculated from the database 106 may be used as the generator torque command value, or the final generator is obtained by adding the value calculated from the database 106 to the value calculated from the generator torque control unit 23. A torque command value may be determined.
 本発明の第4の実施形態を適用した場合、ねじれを考慮したピッチ角指令値での運転に対応した発電機トルクに調整することで、発電効率の低下を抑制することが可能である。 When the fourth embodiment of the present invention is applied, it is possible to suppress a decrease in power generation efficiency by adjusting the generator torque corresponding to the operation with the pitch angle command value in consideration of torsion.
 [第5の実施形態]
 図14を用いて、本発明の第5の実施形態について説明する。第1~第4の実施形態と異なり、発電運転モードと発電待機モードを切り替えることができるモード切替え手段(モード切替え機能)501を備え、これによって発電運転時と発電待機時で、計測情報に基づいて参照するねじれを考慮した空力性能を最大化するピッチ角を変更する。また、発電待機時には、ロータまたは発電機の回転は停止するため、計測情報に回転速度計測手段は不要となる。
[Fifth Embodiment]
A fifth embodiment of the present invention will be described with reference to FIG. Unlike the first to fourth embodiments, mode switching means (mode switching function) 501 capable of switching between a power generation operation mode and a power generation standby mode is provided, and based on measurement information during power generation operation and power generation standby. The pitch angle that maximizes the aerodynamic performance considering the torsion to be referred to is changed. Further, since the rotation of the rotor or the generator is stopped during power generation standby, the rotational speed measuring means is not necessary for the measurement information.
 発電運転時には、回転方向の力を最大化、または、回転方向に加わる力を最大化しつつ、スラスト方向に加わる力を最小化するようなピッチ角を参照する。一方、発電待機時には、スラスト方向に加わる力を最小化するようなピッチ角を参照する。 During power generation operation, refer to a pitch angle that maximizes the force applied in the rotational direction or minimizes the force applied in the thrust direction while maximizing the force applied in the rotational direction. On the other hand, during power generation standby, a pitch angle that minimizes the force applied in the thrust direction is referred to.
 本発明の第5の実施形態を適用した場合、発電待機時におけるねじれを考慮した空力性能を最大化することで、ブレードに加わる荷重を低減することが可能である。 When the fifth embodiment of the present invention is applied, it is possible to reduce the load applied to the blade by maximizing the aerodynamic performance in consideration of torsion during power generation standby.
 [第6の実施形態]
 図15を用いて、本発明の第2の実施形態について説明する。なお、実施形態1と重複する点については詳細な説明を省略する。本実施例においては、ねじれピッチ角指令値算出部200からの指令値と、ピッチ角制御部22の指令値の加算部に重みつけ演算部250を有し、重みをつけて加算する。これにより、風によるエネルギーの入力を調節する風速の高い定格運転領域において、空力最大化ピッチ角度の近傍にピッチ角度を制御して発電電力低下を抑制できる。このときの加算方法は下式により決定する。
[Sixth Embodiment]
A second embodiment of the present invention will be described with reference to FIG. Detailed description of points that are the same as those in the first embodiment will be omitted. In the present embodiment, the addition unit of the command value from the torsion pitch angle command value calculation unit 200 and the command value of the pitch angle control unit 22 includes a weighting calculation unit 250, which adds the weights. As a result, in a rated operation region with a high wind speed that adjusts the input of energy by wind, it is possible to control the pitch angle in the vicinity of the aerodynamic maximization pitch angle and suppress the decrease in generated power. The addition method at this time is determined by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、kは重み係数、θ_(ip_dem)は、i番目のブレードにおける最終的に決定したピッチ角度指令値、θ(p_conv)はピッチ角制御部の指令値、θ(ip_opt)はねじれピッチ角指令値算出部200からの指令値である。kは、風速の計測値V、ピッチ角度が増加し始める風速V_1、既存制御に対する発電電力の向上率が正、かつ、最小となる風速V_2によって下記式より導出する。なお、V_1とV_2は事前に性能評価結果を基に演算しておく。 Here, k is a weighting factor, θ_ (ip_dem) is the pitch angle command value finally determined for the i-th blade, θ (p_conv) is the command value of the pitch angle control unit, and θ (ip_opt) is the twist pitch angle This is a command value from the command value calculation unit 200. k is derived from the following equation using the measured value V of the wind speed, the wind speed V_1 at which the pitch angle starts to increase, and the wind speed V_2 at which the improvement rate of the generated power with respect to the existing control is positive and minimum. V_1 and V_2 are calculated in advance based on the performance evaluation results.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 導出したkによって、風速V_1未満では空力最大化ピッチ角度に制御する。また、風速V_1以上、かつ、風速V_2未満では空力最大化ピッチ角度から既存指令値へ重みkで加算させ、風速V_2以上では、既存指令値に制御する。 ∙ Controls the aerodynamic maximum pitch angle with the derived k if the wind speed is less than V_1. When the wind speed is equal to or higher than V_1 and lower than the wind speed V_2, the existing command value is added from the aerodynamic maximum pitch angle with a weight k, and when the wind speed is equal to or higher than V_2, the existing command value is controlled.
1…風力発電システム、2…ブレード、3…ハブ、4…ロータ、5…ナセル、6…発電機、7…風向風速センサ、8…ピッチ角駆動装置、9…タワー、10…電力変換器、11…コントローラ、12…回転速度センサ、21…可変速制御部、22…ピッチ角制御部、22a…回転速度制御部、22b…トルク制御部、23、発電機トルク制御部、100…ねじれピッチ角指令値算出部、101…風速計測手段、102…回転速度計測手段、103…ヨー誤差計測手段、104…ナセル傾斜角計測手段、105…アジマス角計測手段、106…データベース、107…翼、108…データベース適用前の回転方向に加わる力、109…データベース適用後の回転方向に加わる力、200…アジマス角補正ねじれピッチ角指令値算出部、201…アジマス角補正値算出手段、300…逆モデル、400…ねじれ発電機トルク指令値算出部、401…ピッチ角計測手段、500…モード切替ねじれピッチ角指令値算出部、501…モード切替え手段 DESCRIPTION OF SYMBOLS 1 ... Wind power generation system, 2 ... Blade, 3 ... Hub, 4 ... Rotor, 5 ... Nacelle, 6 ... Generator, 7 ... Wind direction wind speed sensor, 8 ... Pitch angle drive device, 9 ... Tower, 10 ... Power converter, DESCRIPTION OF SYMBOLS 11 ... Controller, 12 ... Rotation speed sensor, 21 ... Variable speed control part, 22 ... Pitch angle control part, 22a ... Rotation speed control part, 22b ... Torque control part, 23, Generator torque control part, 100 ... Twist pitch angle Command value calculation unit 101 ... Wind speed measuring means 102 ... Rotational speed measuring means 103 ... Yaw error measuring means 104 ... Nacelle inclination angle measuring means 105 ... Azimuth angle measuring means 106 ... Database 107 107 Wings 108 Force applied in the rotation direction before application of the database, 109 ... Force applied in the rotation direction after application of the database, 200 ... Azimuth angle correction torsion pitch angle command value calculation unit, 201 ... Zimuth angle correction value calculation means, 300 ... inverse model, 400 ... twist generator torque command value calculation section, 401 ... pitch angle measurement means, 500 ... mode switching twist pitch angle command value calculation section, 501 ... mode switching means

Claims (10)

  1.  ピッチ角を変更可能なブレードと、
     前記ブレードに風を受けて回転するロータと、
     前記ロータの回転エネルギーを用いて発電する発電機を備える風力発電システムであって、
     前記ピッチ角を制御する制御装置を備え、
     前記制御装置は、風速、ロータまたは発電機の回転速度の計測情報と、
     予め算出されたブレードのねじれを考慮したピッチ角制御情報を記憶したデータベースの出力に基づき、前記ピッチ角を制御することを特徴とする風力発電システム。
    A blade capable of changing the pitch angle;
    A rotor that rotates by receiving wind on the blade;
    A wind power generation system including a generator that generates electric power using rotational energy of the rotor,
    A control device for controlling the pitch angle;
    The control device includes measurement information of wind speed, rotation speed of a rotor or a generator,
    A wind power generation system that controls the pitch angle based on an output of a database that stores pitch angle control information that takes into account blade twist calculated in advance.
  2.  請求項1に記載の風力発電システムであって、
     前記制御装置は、発電を開始する風速である第1の風速以上、かつ、定格発電にいたる風速である第2の風速以下の場合に、前記データベースから取得した、前記ブレードの回転方向に加わる力若しくはトルクを最大化するように演算されたピッチ角制御情報に基づき、前記ピッチ角を制御することを特徴とする風力発電システム。
    The wind power generation system according to claim 1,
    The control device applies a force applied in the rotation direction of the blade obtained from the database when the wind speed is equal to or higher than the first wind speed that is the wind speed at which power generation is started and is equal to or lower than the second wind speed that is the wind speed leading to rated power generation. Alternatively, the wind power generation system is characterized in that the pitch angle is controlled based on pitch angle control information calculated so as to maximize the torque.
  3.  請求項1に記載の風力発電システムであって、
     前記制御装置は、発電を開始する風速である第1の風速以上、かつ、発電を停止する風速である第3の風速以下の場合に、前記データベースから取得した、前記ブレードの回転方向に加わる力とブレードスラスト方向に加わる力の商を最大化するように演算されたピッチ角制御情報に基づき、前記ピッチ角を制御することを特徴とする風力発電システム。
    The wind power generation system according to claim 1,
    The control device applies a force applied to the rotation direction of the blade obtained from the database when the wind speed is equal to or higher than the first wind speed that is the wind speed at which power generation is started and is equal to or lower than the third wind speed that is the wind speed at which power generation is stopped. And the pitch angle is controlled based on the pitch angle control information calculated so as to maximize the quotient of the force applied in the blade thrust direction.
  4.  請求項1から請求項3のいずれかに記載の風力発電システムであって、
     前記制御装置は、ピッチ角の計測情報と、前記データベースに記憶された発電機トルクに基づき、前記発電機トルクを制御することを特徴とする風力発電システム。
    The wind power generation system according to any one of claims 1 to 3,
    The said control apparatus controls the said generator torque based on the measurement information of pitch angle, and the generator torque memorize | stored in the said database, The wind power generation system characterized by the above-mentioned.
  5.  請求項1から請求項4のいずれかに記載の風力発電システムであって、
     前記制御装置は、前記ロータまたは発電機の回転速度の目標値と計測値の偏差を入力値に利用して、ピッチ角指令値を算出するフィードバック制御部を備え、
     前記データベースにより算出されるピッチ角指令値と、前記フィードバック制御部によるピッチ角指令値に基づいて、ピッチ角を制御することを特徴とする風力発電システム。
    The wind power generation system according to any one of claims 1 to 4,
    The control device includes a feedback control unit that calculates a pitch angle command value by using a deviation between a target value and a measured value of the rotation speed of the rotor or the generator as an input value,
    A wind power generation system that controls a pitch angle based on a pitch angle command value calculated by the database and a pitch angle command value by the feedback control unit.
  6.  請求項1から請求項5のいずれかに記載の風力発電システムであって、
     前記制御装置は、発電機トルクの目標値と計測値の偏差を入力値に利用して、ピッチ角指令値を算出するフィードバック制御部を備え、
     前記データベースにより算出されるピッチ角指令値と、前記フィードバック制御部により算出されるピッチ角指令値に基づいて、ピッチ角を制御することを特徴とする風力発電システム。
    The wind power generation system according to any one of claims 1 to 5,
    The control device includes a feedback control unit that calculates a pitch angle command value by using a deviation between a target value of a generator torque and a measured value as an input value,
    A wind power generation system that controls a pitch angle based on a pitch angle command value calculated by the database and a pitch angle command value calculated by the feedback control unit.
  7.  請求項1から請求項6のいずれかに記載の風力発電システムであって、
     前記制御装置は、前記ロータまたは発電機の回転速度にピッチ角駆動装置の時定数を乗じた値を、アジマス角計測手段によって計測したアジマス角に加算した値と、前記データベースの出力に基づき、前記ピッチ角を制御することを特徴とする風力発電システム。
    The wind power generation system according to any one of claims 1 to 6,
    The control device is based on the value obtained by multiplying the rotational speed of the rotor or generator by the time constant of the pitch angle driving device, the value added to the azimuth angle measured by the azimuth angle measuring means, and the output of the database, A wind power generation system characterized by controlling a pitch angle.
  8.  請求項1から請求項7のいずれかに記載の風力発電システムであって、
     前記制御装置は、前記データベースによるピッチ角指令値を、ピッチ角駆動装置の逆伝達関数より作成される逆モデルによって補正したピッチ角指令値に基づき、
     ピッチ角を調整することを特徴とする風力発電システム。
    The wind power generation system according to any one of claims 1 to 7,
    The control device is based on a pitch angle command value obtained by correcting the pitch angle command value by the database using an inverse model created from an inverse transfer function of the pitch angle driving device,
    A wind power generation system characterized by adjusting a pitch angle.
  9.  請求項1から請求項8のいずれかに記載の風力発電システムであって、
     前記制御装置は、発電運転モードと発電待機モードを切り替えるモード切替え手段を備え、
     前記発電待機モード時には風速の計測情報に基づき、前記データベースに記憶された、前記ブレードのスラスト方向に加わる力を最小化するように演算されたピッチ角制御情報に基づき、前記ピッチ角を制御することを特徴とする風力発電システム。
    The wind power generation system according to any one of claims 1 to 8,
    The control device includes mode switching means for switching between a power generation operation mode and a power generation standby mode,
    Controlling the pitch angle based on pitch angle control information calculated to minimize the force applied in the thrust direction of the blade, stored in the database, based on wind speed measurement information in the power generation standby mode. Wind power generation system characterized by
  10.  請求項1から請求項9のいずれかに記載の風力発電システムであって、
     前記ブレードが柔構造であることを特徴とする風力発電システム。
    The wind power generation system according to any one of claims 1 to 9,
    The wind power generation system characterized in that the blade has a flexible structure.
PCT/JP2019/002106 2018-03-30 2019-01-23 Wind power generation system WO2019187553A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-066603 2018-03-30
JP2018066603A JP2019178615A (en) 2018-03-30 2018-03-30 Wind power generation system

Publications (1)

Publication Number Publication Date
WO2019187553A1 true WO2019187553A1 (en) 2019-10-03

Family

ID=68061125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002106 WO2019187553A1 (en) 2018-03-30 2019-01-23 Wind power generation system

Country Status (2)

Country Link
JP (1) JP2019178615A (en)
WO (1) WO2019187553A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847211A (en) * 2020-06-28 2021-12-28 北京金风科创风电设备有限公司 Clearance monitoring system and method for wind generating set and controller

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178884A (en) * 1982-04-02 1983-10-19 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Wind-force turbine system for electric power generation
JP2004301116A (en) * 2003-03-19 2004-10-28 Mitsubishi Electric Corp Wind power generating system
JP2015001212A (en) * 2013-06-18 2015-01-05 株式会社日立製作所 Output control device and output control method for wind power generator, and wind power generation system
EP2848805A1 (en) * 2013-09-17 2015-03-18 Alstom Renovables España, S.L. Method of operating a wind turbine
JP2015532382A (en) * 2012-10-01 2015-11-09 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Wind turbine control method using predicted input wind speed
JP2016089732A (en) * 2014-11-06 2016-05-23 株式会社日立製作所 Wind power generation device
WO2017085156A1 (en) * 2015-11-18 2017-05-26 Wobben Properties Gmbh Control of a wind turbine having adjustable rotor blades
US20170321660A1 (en) * 2014-11-21 2017-11-09 Vestas Wind Systems A/S A method for estimating a wind speed including calculating a pitch angle adjusted for blade torsion

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178884A (en) * 1982-04-02 1983-10-19 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Wind-force turbine system for electric power generation
JP2004301116A (en) * 2003-03-19 2004-10-28 Mitsubishi Electric Corp Wind power generating system
JP2015532382A (en) * 2012-10-01 2015-11-09 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Wind turbine control method using predicted input wind speed
JP2015001212A (en) * 2013-06-18 2015-01-05 株式会社日立製作所 Output control device and output control method for wind power generator, and wind power generation system
EP2848805A1 (en) * 2013-09-17 2015-03-18 Alstom Renovables España, S.L. Method of operating a wind turbine
JP2016089732A (en) * 2014-11-06 2016-05-23 株式会社日立製作所 Wind power generation device
US20170321660A1 (en) * 2014-11-21 2017-11-09 Vestas Wind Systems A/S A method for estimating a wind speed including calculating a pitch angle adjusted for blade torsion
WO2017085156A1 (en) * 2015-11-18 2017-05-26 Wobben Properties Gmbh Control of a wind turbine having adjustable rotor blades

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847211A (en) * 2020-06-28 2021-12-28 北京金风科创风电设备有限公司 Clearance monitoring system and method for wind generating set and controller

Also Published As

Publication number Publication date
JP2019178615A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
US9372201B2 (en) Yaw and pitch angles
US8025476B2 (en) System and methods for controlling a wind turbine
EP2556249B1 (en) A wind turbine
EP2500562A2 (en) Methods and systems for alleviating the loads generated in wind turbines by wind asymmetries
CN103850876B (en) A kind of Wind turbines independent pitch control method being applicable to no-load and measuring
US8979492B2 (en) Methods and systems for determining a pitch angle offset signal and for controlling a rotor frequency of a rotor of a wind turbine for speed avoidance control
US20100014969A1 (en) Wind turbine with blade pitch control to compensate for wind shear and wind misalignment
EP2556248B1 (en) A wind turbine
TWI708893B (en) Wind power system
US20130045098A1 (en) Cyclic Pitch Control System for Wind Turbine Blades
US20130300115A1 (en) Systems and methods for optimizing power generation in a wind farm turbine array
NO342746B1 (en) Procedure for reducing axial power variations in a wind turbine.
US9556850B2 (en) Method of controlling a wind turbine
CN108488035B (en) Stall and variable pitch hybrid control method for permanent magnet direct-drive wind generating set
US10208734B2 (en) Lift-driven wind turbine with force canceling blade configuration
CN111749845B (en) Load reduction control method and device for wind turbine generator
JP2020139427A (en) Wind turbine generator system and control method for the same
KR102018579B1 (en) Pitch controller of control system of Wind turbine
WO2019187553A1 (en) Wind power generation system
KR102042259B1 (en) Wind-Electric Power Generation System and Driving Stop Method Thereof
KR101242766B1 (en) wind-driven generator with Apparatus of reducing rotor load and method of reducing rotor load for wind-driven generator with Apparatus of reducing rotor load
WO2024028232A1 (en) Wind turbine blade, wind turbine and method for operating a wind turbine
WO2023078521A1 (en) A method for reducing blade flap loads in a wind turbine
Bergami et al. Preliminary Evaluation with Feed-Forward Cyclic Control
JP2020002781A (en) Control method for wind power generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778096

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19778096

Country of ref document: EP

Kind code of ref document: A1