WO2019187523A1 - Determination device, weather information processing device, determination method and weather information processing method - Google Patents

Determination device, weather information processing device, determination method and weather information processing method Download PDF

Info

Publication number
WO2019187523A1
WO2019187523A1 PCT/JP2019/001415 JP2019001415W WO2019187523A1 WO 2019187523 A1 WO2019187523 A1 WO 2019187523A1 JP 2019001415 W JP2019001415 W JP 2019001415W WO 2019187523 A1 WO2019187523 A1 WO 2019187523A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
unit
determination
weather information
generation unit
Prior art date
Application number
PCT/JP2019/001415
Other languages
French (fr)
Japanese (ja)
Inventor
池上洋行
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2020509704A priority Critical patent/JP7207401B2/en
Publication of WO2019187523A1 publication Critical patent/WO2019187523A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a determination device, a weather information processing device, a determination method, and a weather information processing method.
  • This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2018-59457 for which it applied on March 27, 2018, and takes in those the indications of all here.
  • Patent Document 1 JP 2012-205078 A discloses a monitoring system for photovoltaic power generation as follows. That is, the photovoltaic power generation monitoring system is a photovoltaic power generation monitoring system that monitors the power generation status of the solar cell panel for a photovoltaic power generation system that aggregates outputs from a plurality of solar cell panels and sends them to a power converter.
  • the management device determines the presence or absence of abnormality based on the difference in power generation amount at the same time for each solar cell panel, or the maximum value or integration of the power generation amount for a predetermined period for each solar cell panel The presence or absence of abnormality is determined based on the value.
  • the determination device of the present disclosure includes an acquisition unit that acquires weather information at an installation location of a power generation unit including a solar battery panel, and an abnormality determination of the power generation unit based on the weather information acquired by the acquisition unit And a determination unit that determines the abnormality using the determined reference.
  • the weather information processing apparatus is based on the measurement result acquisition unit that acquires the measurement result of the output of the power generation unit including the solar battery panel, and the measurement result acquired by the measurement result acquisition unit. And a creation unit that creates weather information at the installation location of the power generation unit.
  • the determination method of the present disclosure is a determination method in the determination device, the step of acquiring weather information at the installation location of the power generation unit including the solar battery panel, and the power generation unit based on the acquired weather information Determining a criterion used for the abnormality determination, and performing the abnormality determination using the determined criterion.
  • the weather information processing method of the present disclosure is a weather information processing method in a weather information processing apparatus, the step of acquiring a measurement result of an output of a power generation unit including a solar battery panel, and the acquired measurement result And generating weather information at the installation location of the power generation unit.
  • One aspect of the present disclosure can be realized not only as a determination apparatus including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing. Further, one embodiment of the present disclosure can be realized as a semiconductor integrated circuit that realizes part or all of the determination device, or can be realized as a determination system including the determination device.
  • one aspect of the present disclosure can be realized not only as a weather information processing apparatus including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing. Further, one embodiment of the present disclosure can be realized as a semiconductor integrated circuit that realizes part or all of the weather information processing apparatus, or can be realized as a weather information processing system including the weather information processing apparatus.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of the solar cell unit according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing the configuration of the monitoring system according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of the determination device in the monitoring system according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present
  • FIG. 8 is a diagram showing an example of monitoring information held by the determination apparatus in the monitoring system according to the embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of generated power data created by the creation unit in the determination apparatus according to the embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of the first differential data created by the creation unit in the determination apparatus according to the embodiment of the present invention.
  • FIG. 11 is a diagram showing an example of the twice differential data created by the creation unit in the determination apparatus according to the embodiment of the present invention.
  • FIG. 12 is a diagram showing another example of generated power data created by the creation unit in the determination apparatus according to the embodiment of the present invention.
  • FIG. 13 is a diagram showing another example of the once differentiated data created by the creating unit in the determination apparatus according to the embodiment of the present invention.
  • FIG. 14 is a diagram showing another example of the twice differentiated data created by the creating unit in the determination apparatus according to the embodiment of the present invention.
  • FIG. 15 is a diagram showing another example of the generated power data and the twice differential data created by the creation unit in the determination apparatus according to the embodiment of the present invention.
  • FIG. 16 is a diagram for explaining abnormality determination by the determination unit in the determination apparatus according to the embodiment of the present invention.
  • FIG. 17 is a flowchart defining the operation procedure of the determination apparatus according to the embodiment of the present invention.
  • FIG. 18 is a diagram showing a configuration of a weather information processing apparatus according to a modification of the embodiment of the present invention.
  • FIG. 19 is a flowchart defining the operation procedure of the weather information processing apparatus according to the modification of the embodiment of the present invention.
  • This indication was made in order to solve the above-mentioned subject, and the purpose is a judgment device which can use the weather in the installation place of a power generation part containing a solar cell panel more effectively, a weather information processing device, It is to provide a determination method and a weather information processing method.
  • the determination device is based on the acquisition unit that acquires weather information at the installation location of the power generation unit including the solar battery panel, and the weather information acquired by the acquisition unit.
  • a determination unit configured to determine a reference used for abnormality determination of the power generation unit and perform the abnormality determination using the determined reference.
  • the acquisition unit acquires a measurement result of the output of the power generation unit, and creates the weather information based on the acquired measurement result.
  • the weather information is generated based on the power generation results of the power generation unit, and more accurate weather information at the installation location of the power generation unit than in the case of acquiring weather information transmitted from an external server. Can be obtained.
  • the acquisition unit creates the weather information based on a result obtained by differentiating the measurement result twice.
  • the determination unit classifies the plurality of power generation units into a plurality of groups based on the weather information, determines the reference for each group, and each of the power generation units belonging to the same group The abnormality determination is performed by comparing the measurement results of the outputs using the reference corresponding to the group.
  • the accuracy of the abnormality determination can be improved without performing a complicated calculation process.
  • the weather information processing apparatus includes a measurement result acquisition unit that acquires a measurement result of an output of a power generation unit including a solar battery panel, and the measurement result acquired by the measurement result acquisition unit. And a creation unit that creates weather information at a place where the power generation unit is installed.
  • the determination method according to the embodiment of the present invention is a determination method in the determination device, and includes the step of acquiring weather information at the installation location of the power generation unit including the solar battery panel, and the acquired weather information. And determining a standard used for abnormality determination of the power generation unit, and performing the abnormality determination using the determined standard.
  • the abnormality determination of the power generation unit can be performed using the standard of the content according to the weather at the installation location of the power generation unit, so that the accuracy of the abnormality determination can be improved. Therefore, the weather at the place where the power generation unit including the solar battery panel is installed can be used more effectively.
  • a weather information processing method is a weather information processing method in a weather information processing apparatus, and acquires a measurement result of an output of a power generation unit including a solar battery panel, and Creating weather information at an installation location of the power generation unit based on the measurement result.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • solar power generation system 401 includes four PCS (Power Conditioning Subsystem) units 80 and cubicle 6.
  • the cubicle 6 includes a copper bar 73.
  • FIG. 1 representatively shows four PCS units 80, but a larger or smaller number of PCS units 80 may be provided.
  • FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
  • the PCS unit 80 includes four current collecting units 60 and a PCS (power conversion device) 8.
  • the PCS 8 includes a copper bar 7 and a power conversion unit 9.
  • FIG. 2 four current collecting units 60 are representatively shown, but a larger or smaller number of current collecting units 60 may be provided.
  • FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention.
  • the current collecting unit 60 includes four solar cell units 74 and a current collecting box 71.
  • the current collection box 71 has a copper bar 72.
  • FIG. 3 four solar cell units 74 are representatively shown, but a larger number or a smaller number of solar cell units 74 may be provided.
  • FIG. 4 is a diagram showing the configuration of the solar cell unit according to the embodiment of the present invention.
  • solar cell unit 74 includes four power generation units 78 and a junction box 76.
  • the power generation unit 78 has a solar cell panel.
  • the connection box 76 has a copper bar 77.
  • FIG. 4 representatively shows four power generation units 78, but a larger or smaller number of power generation units 78 may be provided.
  • the power generation unit 78 is a string in which four solar cell panels 79A, 79B, 79C, and 79D are connected in series.
  • each of the solar cell panels 79A, 79B, 79C, and 79D is also referred to as a solar cell panel 79.
  • FIG. 4 representatively shows four solar cell panels 79, but a larger or smaller number of solar cell panels 79 may be provided.
  • output lines and aggregated lines that is, power lines from the plurality of power generation units 78 are electrically connected to the cubicles 6, respectively.
  • the output line 1 of the power generation unit 78 has a first end connected to the power generation unit 78 and a second end connected to the copper bar 77.
  • Each output line 1 is aggregated into an aggregation line 5 via a copper bar 77.
  • the copper bar 77 is provided, for example, inside the connection box 76.
  • the power generation unit 78 When the power generation unit 78 receives sunlight, the power generation unit 78 converts the received solar energy into DC power, and outputs the converted DC power to the output line 1.
  • aggregation line 5 has a first end connected to copper bar 77 and a second end connected to copper bar 72 in corresponding solar cell unit 74. Each aggregation line 5 is aggregated into the aggregation line 2 via the copper bar 72.
  • the copper bar 72 is provided, for example, inside the current collection box 71.
  • the output lines 1 from the plurality of power generation units 78 are aggregated into the aggregation line 5, and the aggregation lines 5 are aggregated into the aggregation line 2. Then, each aggregation line 2 is aggregated to the aggregation line 4, and each aggregation line 4 is electrically connected to the cubicle 6.
  • each aggregation line 2 has a first end connected to the copper bar 72 in the corresponding current collecting unit 60 and a second end connected to the copper bar 7.
  • the internal line 3 has a first end connected to the copper bar 7 and a second end connected to the power conversion unit 9.
  • the power conversion unit 9 uses, for example, the DC power generated in each power generation unit 78 via the output line 1, the copper bar 77, the aggregation line 5, the copper bar 72, the aggregation line 2, the copper bar 7 and the internal line 3. Is received, the received DC power is converted into AC power and output to the aggregation line 4.
  • the aggregation line 4 has a first end connected to the power conversion unit 9 and a second end connected to the copper bar 73.
  • FIG. 5 is a diagram showing the configuration of the monitoring system according to the embodiment of the present invention.
  • the solar power generation system 401 includes a monitoring system 301.
  • the monitoring system 301 includes a determination device 101, a plurality of monitoring devices 111, and a collection device 151.
  • FIG. 5 representatively shows four monitoring devices 111 provided corresponding to one current collecting unit 60, but a larger or smaller number of monitoring devices 111 may be provided.
  • the monitoring system 301 includes one collection device 151, but may include a plurality of collection devices 151.
  • sensor information in the monitoring device 111 which is a slave is transmitted to the collection device 151 regularly or irregularly.
  • the monitoring device 111 is provided in the current collecting unit 60, for example. More specifically, four monitoring devices 111 are provided corresponding to the four solar cell units 74, respectively. Each monitoring device 111 is electrically connected to the corresponding output line 1 and aggregation line 5, for example.
  • the monitoring device 111 measures the current of each output line 1 in the corresponding solar cell unit 74 with a sensor. Moreover, the monitoring apparatus 111 measures the voltage of each output line 1 in the corresponding solar cell unit 74 with a sensor.
  • the collecting device 151 is provided in the vicinity of the PCS 8, for example. More specifically, the collection device 151 is provided corresponding to the PCS 8 and is electrically connected to the copper bar 7 via the signal line 46.
  • the monitoring device 111 and the collection device 151 perform transmission and reception of information by performing power line communication (PLC: Power Line Communication) via the aggregation lines 2 and 5.
  • PLC Power Line Communication
  • each monitoring device 111 transmits monitoring information indicating the measurement result of the current and voltage of the corresponding output line.
  • the collection device 151 collects the measurement results of each monitoring device 111.
  • FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention.
  • the output line 1, the aggregation line 5 and the copper bar 77 are shown in more detail.
  • output line 1 includes a plus side output line 1p and a minus side output line 1n.
  • Aggregation line 5 includes a plus-side aggregation line 5p and a minus-side aggregation line 5n.
  • the copper bar 77 includes a plus side copper bar 77p and a minus side copper bar 77n.
  • the copper bar 72 in the current collection box 71 shown in FIG. 3 includes a plus-side copper bar 72p and a minus-side copper bar 72n corresponding to the plus-side aggregation line 5p and the minus-side aggregation line 5n, respectively.
  • the plus side output line 1p has a first end connected to the corresponding power generation unit 78 and a second end connected to the plus side copper bar 77p.
  • the negative side output line 1n has a first end connected to the corresponding power generation unit 78 and a second end connected to the negative side copper bar 77n.
  • the plus side aggregation line 5p has a first end connected to the plus side copper bar 77p and a second end connected to the plus side copper bar 72p in the current collection box 71.
  • the minus-side aggregate line 5n has a first end connected to the minus-side copper bar 77n and a second end connected to the minus-side copper bar 72n in the current collection box 71.
  • the monitoring device 111 includes a detection processing unit 11, four current sensors 16, a voltage sensor 17, and a communication unit 14. Note that the monitoring device 111 may further include a large number or a small number of current sensors 16 depending on the number of output lines 1.
  • the monitoring device 111 is provided in the vicinity of the power generation unit 78, for example. Specifically, the monitoring device 111 is provided, for example, inside a connection box 76 provided with a copper bar 77 to which the output line 1 to be measured is connected. Note that the monitoring device 111 may be provided outside the connection box 76.
  • the monitoring device 111 is electrically connected to, for example, the plus-side aggregate line 5p and the minus-side aggregate line 5n via the plus-side power line 26p and the minus-side power line 26n, respectively.
  • each of the plus-side power line 26p and the minus-side power line 26n is also referred to as a power line 26.
  • Each monitoring device 111 transmits monitoring information indicating a measurement result regarding the corresponding power generation unit 78 via a power line connected to itself and the collecting device 151.
  • the communication unit 14 in the monitoring device 111 can perform power line communication via the aggregation line with the collection device 151 that collects the measurement results of the plurality of monitoring devices 111. More specifically, the communication unit 14 can transmit and receive information via the aggregation lines 2 and 5. Specifically, the communication unit 14 performs power line communication with the collection device 151 via the power line 26 and the aggregation lines 2 and 5.
  • the detection processing unit 11 is set, for example, so as to create monitoring information indicating the measurement results of the current and voltage of the corresponding output line 1 every predetermined time.
  • the current sensor 16 measures the current of the output line 1. More specifically, the current sensor 16 is, for example, a Hall element type current probe. The current sensor 16 measures the current flowing through the corresponding negative output line 1n every 6 seconds using the power received from the power supply circuit (not shown) of the monitoring device 111, and sends a signal indicating the measurement result to the detection processing unit 11. Output. The current sensor 16 may measure a current flowing through the plus side output line 1p.
  • the voltage sensor 17 measures the voltage of the output line 1. More specifically, the voltage sensor 17 measures the voltage between the plus-side copper bar 77p and the minus-side copper bar 77n every 6 seconds, and outputs a signal indicating the measurement result to the detection processing unit 11.
  • the detection processing unit 11 includes the measurement results indicated by the signals received from the current sensor 16 and the voltage sensor 17, the ID of the corresponding current sensor 16 (hereinafter also referred to as current sensor ID), and the ID of the voltage sensor 17 (hereinafter referred to as voltage).
  • the monitoring information including the sensor ID and the ID of the own monitoring device 111 (hereinafter also referred to as the monitoring device ID) is created.
  • the detection processing unit 11 calculates the generated power as the measurement result of the output of the power generation unit 78 by multiplying the current value and the voltage value for each current sensor ID, that is, for each power generation unit 78, for example. Then, the detection processing unit 11 includes the calculated generated power in the monitoring information.
  • the detection processing unit 11 creates a monitoring information packet in which the transmission source ID is its own monitoring device ID, the transmission destination ID is the ID of the collection device 151, and the data portion is monitoring information. Then, the detection processing unit 11 outputs the created monitoring information packet to the communication unit 14.
  • the detection processing unit 11 may include a sequence number in the monitoring information packet.
  • the communication unit 14 transmits the monitoring information packet received from the detection processing unit 11 to the collection device 151.
  • the collection device 151 can send and receive information via the aggregation lines 2 and 5. Specifically, the collection device 151 performs power line communication with the monitoring device 111 via the signal line 46 and the aggregation lines 2 and 5, for example, and receives monitoring information packets from the plurality of monitoring devices 111.
  • the collection device 151 has a counter and a storage unit. When receiving the monitoring information packet from the monitoring device 111, the collecting device 151 acquires the monitoring information from the received monitoring information packet and acquires the count value in the counter as the reception time. Then, after including the reception time in the monitoring information, the collection device 151 stores the monitoring information in a storage unit (not shown).
  • the counter resets the count value at, for example, midnight every day, and increments the count value every time 6 seconds, which is the measurement cycle of the monitoring device 111, elapses.
  • the collection device 151 receives a plurality of monitoring information packets from each of the plurality of monitoring devices 111 until 6 seconds elapse from the timing at which the count value is incremented, the collection device 151 acquires each of the plurality of monitoring information packets. The current same count value is included in the monitoring information as the reception time.
  • FIG. 7 is a diagram showing a configuration of the determination device in the monitoring system according to the embodiment of the present invention.
  • the determination apparatus 101 includes a determination unit 81, a communication processing unit 84, a storage unit 85, and an acquisition unit 86.
  • the acquisition unit 86 includes a measurement result acquisition unit 82 and a creation unit 83.
  • the ID of each monitoring device 111 in the monitoring system 301 that is, the monitoring device ID is registered.
  • the correspondence R1 between the monitoring device ID and the ID of each sensor included in the monitoring device 111 having the monitoring device ID, that is, the current sensor ID and the voltage sensor ID is registered.
  • the determination apparatus 101 periodically acquires monitoring information from the collection apparatus 151, and processes the acquired monitoring information.
  • the determination device 101 may be configured to be incorporated in the collection device 151, for example, or may be configured to be embedded in the monitoring device 111 illustrated in FIG.
  • the determination apparatus 101 may be a server that transmits and receives information to and from other apparatuses such as the collection apparatus 151 via a network.
  • the communication processing unit 84 in the determination apparatus 101 performs monitoring information collection processing at a designated processing timing, for example, every day at midnight.
  • monitoring information can be easily collected at shorter intervals.
  • the communication processing unit 84 refers to each monitoring device ID registered in the storage unit 85, corresponds to each referenced monitoring device ID, and starts 24 hours before the processing timing.
  • a monitoring information request for requesting monitoring information including the reception time belonging to the processing timing (hereinafter also referred to as processing date) is transmitted to the collection device 151.
  • the collection device 151 When the collection device 151 receives the monitoring information request from the determination device 101, the collection device 151 transmits one or more pieces of monitoring information satisfying the content of the monitoring information request to the determination device 101 in accordance with the received monitoring information request.
  • FIG. 8 is a diagram showing an example of monitoring information held by the determination device in the monitoring system according to the embodiment of the present invention.
  • the communication processing unit 84 when the communication processing unit 84 receives one or more pieces of monitoring information from the collection device 151 as a response to the monitoring information request, the communication unit 84 acquires the received one or more pieces of monitoring information in the acquisition unit 86. To the unit 82.
  • the measurement result acquisition unit 82 receives one or more pieces of monitoring information output from the communication processing unit 84, and stores the monitoring information including the reception time in the storage unit 85 and generates a processing completion notification, for example. Output to 83.
  • the creation unit 83 receives the process completion notification output from the measurement result acquisition unit 82 and acquires weather information indicating the weather at the installation location of the power generation unit 78.
  • the creation unit 83 when receiving a processing completion notification, refers to a plurality of pieces of monitoring information stored in the storage unit 85 and determines the total generated power on the processing date for each power generation unit 78. calculate. Then, for example, the creation unit 83 selects the power generation unit 78 having the largest calculated sum.
  • the power generation unit 78 selected by the creation unit 83 is also referred to as “target power generation unit 78”.
  • the creation unit 83 refers to the plurality of monitoring information stored in the storage unit 85 and creates generated power data indicating the time series change of the generated power of the target power generation unit 78 on the processing date. Then, the creation unit 83 estimates the weather at the installation location of the target power generation unit 78 based on the generated power generation data.
  • FIG. 9 is a diagram showing an example of generated power data created by the creation unit in the determination apparatus according to the embodiment of the present invention.
  • the horizontal axis indicates time
  • the vertical axis indicates the ratio of the generated power of the target power generation unit 78 to the maximum value of the generated power of the target power generation unit 78 on the processing date.
  • the creation unit 83 differentiates the graph Gs ⁇ b> 1 indicating the created generated power data, that is, differentiates the time series data of the generated power that is the measurement result of the output of the target power generation unit 78.
  • One-time differential data indicating the slope of Gs1 is created.
  • FIG. 10 is a diagram showing an example of the once differentiated data created by the creating unit in the determination apparatus according to the embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the differential value of the graph Gs1.
  • creation unit 83 further creates twice differentiated data indicating the slope of graph Gs2 by differentiating graph Gs2 indicating the created once differentiated data.
  • FIG. 11 is a diagram showing an example of the twice-differentiated data created by the creation unit in the determination apparatus according to the embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the differential value of the graph Gs2.
  • a graph Gs3 indicating twice differentiated data obtained by differentiating the graph Gs1 shown in FIG. 9 twice approaches a constant value, specifically zero.
  • the generated power of the target power generation unit 78 tends to be output stably.
  • the weather at the installation location of the target power generation unit 78 is cloudy, the light from the sun is often blocked by the clouds, and the generated power output from the target power generation unit 78 tends to be unstable.
  • the creation unit 83 confirms, for example, whether or not the generated power of the target power generation unit 78 is stably output. Specifically, the creation unit 83 checks the slope of the graph Gs2 indicated by the graph Gs3, that is, whether or not the differential value of the graph Gs2 is within the range of the threshold value Th1 to the threshold value Th2, and thereby the target power generation unit 78. Estimate the weather at the installation location.
  • the threshold value Th1 is, for example, +0.2
  • the threshold value Th2 is, for example, ⁇ 0.2.
  • the differential value of the graph Gs2 indicated by the graph Gs3 is within the range of +0.2 to ⁇ 0.2.
  • the creation unit 83 estimates that the weather at the installation location of the target power generation unit 78 is clear. Then, the creation unit 83 outputs weather information indicating the estimated weather to the determination unit 81.
  • FIG. 12 is a diagram showing another example of generated power data created by the creation unit in the determination apparatus according to the embodiment of the present invention.
  • the horizontal axis indicates time
  • the vertical axis indicates the ratio of the generated power of the target power generation unit 78 to the maximum value of the generated power of the target power generation unit 78 on the processing date.
  • the creation unit 83 differentiates the graph Gs11 indicating the generated generated power data, thereby creating single differential data indicating the slope of the graph Gs11.
  • FIG. 13 is a diagram showing another example of the once differentiated data created by the creating unit in the determination apparatus according to the embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the differential value of the graph Gs11.
  • creation unit 83 further creates twice differentiated data indicating the slope of graph Gs12 by differentiating graph Gs12 indicating the created once differentiated data.
  • FIG. 14 is a diagram illustrating another example of the twice differentiated data created by the creating unit in the determination apparatus according to the embodiment of the present invention.
  • the horizontal axis indicates time
  • the vertical axis indicates the differential value of the graph Gs12.
  • the differential value of the graph Gs12 indicated by the graph Gs13 exceeds the range of +0.2 to ⁇ 0.2.
  • the creation unit 83 estimates that the weather at the installation location of the target power generation unit 78 is cloudy. Then, the creation unit 83 outputs weather information indicating the estimated weather to the determination unit 81.
  • FIG. 15 is a diagram showing another example of the generated power data and the twice differential data created by the creation unit in the determination apparatus according to the embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the ratio of the generated power of the target power generation unit 78 to the maximum value of the generated power of the target power generation unit 78 on the processing date, and the differential value obtained by differentiating the graph Gs21 twice. Show.
  • the creation unit 83 estimates the weather for each hour on the processing day, not limited to the configuration for estimating the weather on the entire processing day as in Example 1 and Example 2 described above. It may be a configuration.
  • the creation unit 83 performs one hour on the processing date based on a graph Gs23 indicating twice differentiated data obtained by differentiating twice with respect to a graph Gs21 indicating generated power data. Estimate the weather for each. Accordingly, the creation unit 83 determines that the weather from 7 o'clock to 10 o'clock is sunny, the weather from 10 o'clock to 15 o'clock is cloudy, and the weather from 15 o'clock to 17 o'clock is sunny. Create weather information to show.
  • the creation unit 83 may create weather information indicating that, for example, the weather in the morning is clear and the weather in the afternoon is cloudy by estimating the weather every several hours on the processing date.
  • the creation unit 83 is not limited to the configuration of performing differentiation twice on the graph Gs1, but may be configured to perform differentiation on the graph Gs1 once, or may be configured to perform differentiation on three times or more. There may be. For example, the creation unit 83 performs one or more differentiations until the differential value of the graph Gs1 approaches a certain value.
  • the creation unit 83 only needs to confirm whether or not the power generated by the power generation unit 78 is stably output, and is not limited to a configuration that performs differentiation to make the differential value of the graph Gs1 approach a constant value.
  • the creation unit 83 is not limited to the configuration in which the target power generation unit 78 is selected based on the generated power of each power generation unit 78, and may select the target power generation unit 78 based on some other criteria.
  • the creation unit 83 may select a plurality of target power generation units 78. For example, when a plurality of power generation units 78 included in the solar power generation system 401 are divided and installed in a plurality of sections, the creation unit 83 may select one target power generation unit 78 for each section.
  • the creation unit 83 may be configured not to select the target power generation unit 78. In this case, for example, the creation unit 83 creates weather information for each power generation unit 78 included in the solar power generation system 401 based on the generated power.
  • the creation unit 83 is not limited to a configuration for creating weather information.
  • the creation unit 83 may acquire weather forecast information transmitted from an external server and indicating the weather forecast content in the vicinity of the installation location of the power generation unit 78 via the communication processing unit 84 as weather information.
  • the creation unit 83 obtains weather information based on the measurement result of a measurement device such as a pyranometer provided near the installation location of the power generation unit 78 instead of the measurement result of the output of the power generation unit 78, that is, the generated power. You may create it.
  • a measurement device such as a pyranometer provided near the installation location of the power generation unit 78 instead of the measurement result of the output of the power generation unit 78, that is, the generated power. You may create it.
  • the weather forecast indicated by the weather forecast information transmitted from the external server may be different from the weather at the place where the power generation unit 78 is installed.
  • the weather indicated by the weather information based on the measurement result by the measurement device may be different from the weather at the installation location of the power generation unit 78.
  • the creation unit 83 is configured to create weather information based on the measurement result of the output of the power generation unit 78.
  • the determination part 81 receives the weather information output from the preparation part 83, and determines the reference
  • FIG. 16 is a diagram for explaining abnormality determination by the determination unit in the determination apparatus according to the embodiment of the present invention.
  • creation unit 83 creates weather information indicating morning weather and afternoon weather for each power generation unit 78 included in solar power generation system 401, and creates a plurality of weather information created. Is output to the determination unit 81.
  • the determination unit 81 classifies the plurality of power generation units 78 included in the solar power generation system 401 into a plurality of groups based on the plurality of weather information received from the creation unit 83, for example.
  • the determination unit 81 classifies the power generation unit 78 into “group G1”.
  • the determination unit 81 classifies the power generation unit 78 into “group G2”.
  • the determination unit 81 classifies the power generation unit 78 into “group G3”.
  • the determination unit 81 classifies the power generation unit 78 into “group G4”.
  • the determination unit 81 performs abnormality determination of the power generation unit 78 using different determination criteria for each group to which the power generation unit 78 belongs.
  • the determination unit 81 determines a reference St used for abnormality determination of each power generation unit 78 belonging to the group G1.
  • the determination unit 81 uses one or more power generation units 78 belonging to the group G1 as a plurality of determinations by using k-means based on the generated power of each power generation unit 78 belonging to the group G1, for example. Classify into groups.
  • the determination unit 81 includes one or more power generation units 78 belonging to the group G1 as a determination group G11 that tends to be affected by shadows in the morning and a determination group G12 that tends to be affected by shadows in the afternoon. Classify. And the determination part 81 compares the electric power generation of each power generation part 78 which belongs to the same determination group.
  • the determination unit 81 creates the reference data of the determination group G11 by calculating the average value of the generated power at the same time of each power generation unit 78 belonging to the determination group G11 every hour.
  • the determination unit 81 determines whether the difference between the sum of the generated power on the processing date of the power generation unit 78 to be determined for abnormality determination and the sum of the generated power indicated by the created reference data is greater than or equal to a predetermined threshold value. Whether or not is determined as a reference St. And the determination part 81 performs abnormality determination by comparing the generated electric power of each power generation part 78 which belongs to the determination group G11 using the determined standard St.
  • the determination unit 81 has an abnormality in the power generation unit 78. It is determined that
  • the determination part 81 performs similarly about abnormality determination of each electric power generation part 78 which belongs to the determination group G12. That is, when determining the abnormality of each power generation unit 78 belonging to the determination group G12, the determination unit 81 calculates, for example, an average value of generated power at the same time of each power generation unit 78 belonging to the determination group G12 every hour. Thus, the reference data of the determination group G12 is created.
  • the determination unit 81 determines whether the difference between the sum of the generated power on the processing date of the power generation unit 78 to be determined for abnormality determination and the sum of the generated power indicated by the created reference data is greater than or equal to a predetermined threshold value. Whether or not is determined as a reference St. And the determination part 81 performs abnormality determination by comparing the generated electric power of each power generation part 78 which belongs to the determination group G12 using the determined standard St.
  • the determination unit 81 has an abnormality in the power generation unit 78. Determine that it has occurred.
  • the determination part 81 determines the reference
  • the determination unit 81 uses, for example, k-means based on the generated power of each power generation unit 78 belonging to the group G2 and generated power in a clear time zone, that is, the afternoon time zone.
  • the one or more power generation units 78 belonging to the group G2 are classified into a plurality of determination groups.
  • the determination part 81 produces
  • standard St for every determination group is produced using the created reference data. decide.
  • the determination part 81 performs abnormality determination by comparing the generated electric power of the electric power generation part 78 using the determined reference
  • the determination part 81 determines the reference
  • the determining unit 81 uses, for example, k-means based on the generated power of each power generation unit 78 belonging to the group G3 and based on the generated power in a clear time period, that is, the morning time period.
  • the one or more power generation units 78 belonging to the group G3 are classified into a plurality of determination groups.
  • the determination part 81 produces
  • standard St for every determination group is produced using the created reference data. decide.
  • the determination part 81 performs abnormality determination by comparing the generated electric power of the electric power generation part 78 using the determined reference
  • the determination part 81 determines the reference
  • the determination unit 81 compares the generated power of each power generation unit 78 belonging to the group G4 without classifying one or more power generation units 78 belonging to the group G4 into a plurality of determination groups.
  • the determination unit 81 creates reference data for the group G4 by, for example, calculating an average value of generated power at the same time of the power generation units 78 belonging to the group G4 every hour.
  • the determination unit 81 determines whether or not the difference between the sum of the generated power on the processing date of the power generation unit 78 to be determined for abnormality determination and the sum of the generated power indicated by the created reference data is equal to or greater than a predetermined threshold value. Is determined as a reference St, and abnormality determination is performed by comparing the generated power of each power generation unit 78 belonging to the group G4 using the determined reference St4.
  • the abnormality determination by the determination unit 81 is not limited to the method of comparing the generated power of the power generation units 78 belonging to the same group. For example, when the determination unit 81 performs an abnormality determination of a certain power generation unit 78 and indicates that the weather information corresponding to the power generation unit 78 is clear all day, the catalog specification value of the power generation unit 78 is used as a reference. An abnormality determination of the power generation unit 78 may be performed as St.
  • the determination unit 81 outputs determination information indicating the determination result of the abnormality determination to the communication processing unit 84.
  • the communication processing unit 84 transmits the determination information received from the determination unit 81 to an external device such as a server via a network in a format such as e-mail.
  • Each device in the monitoring system 301 includes a computer, and an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following flowchart from a memory (not shown).
  • an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following flowchart from a memory (not shown).
  • Each of the programs of the plurality of apparatuses can be installed from the outside.
  • the programs of the plurality of apparatuses are distributed while being stored in a recording medium.
  • FIG. 17 is a flowchart that defines the operation procedure of the determination apparatus according to the embodiment of the present invention.
  • the measurement result acquisition unit 82 receives one or a plurality of monitoring information transmitted from the collection device 151 via the communication processing unit 84, and receives the reception time in each received monitoring information. Are stored in the storage unit 85, and a processing completion notification is output to the creation unit 83 (step S11).
  • the creation unit 83 receives the processing completion notification output from the measurement result acquisition unit 82, refers to a plurality of monitoring information stored in the storage unit 85, for example, generates power for each power generation unit 78. Generated power data indicating a time-series change in power is created (step S12).
  • the creation unit 83 confirms whether or not the result of twice differentiation with respect to the graph Gs1 indicating the generated generated power data is within the range of the threshold value Th1 to the threshold value Th2. Thus, it is confirmed whether or not the generated power is stably output (step S13).
  • the creation unit 83 estimates, for example, the weather at the installation location based on the confirmation result of whether or not the generated power is stably output for each power generation unit 78, and provides weather information indicating the estimation result. create. Then, the creation unit 83 outputs the created weather information to the determination unit 81 (step S14).
  • the determination unit 81 classifies the plurality of power generation units 78 included in the solar power generation system 401 into a plurality of groups based on the plurality of weather information output from the creation unit 83 (step S15).
  • the determination unit 81 determines a reference St used for abnormality determination of the power generation unit 78 for each classified group (step S16).
  • the determination unit 81 performs abnormality determination of each power generation unit 78 using the determined reference St for each group, and outputs determination information indicating the determination result of the abnormality determination to the communication processing unit 84 (step S17). .
  • the communication processing unit 84 transmits the determination information received from the determination unit 81 to an external device such as a server via a network, for example (step S18).
  • the acquisition unit 86 acquires weather information at the installation location of the power generation unit 78 including the solar battery panel. And the determination part 81 determines the reference
  • the abnormality determination of the power generation unit 78 can be performed using the reference St having the contents according to the weather at the installation location of the power generation unit 78, so the accuracy of the abnormality determination can be improved.
  • the weather at the installation location of the power generation unit 78 including the solar battery panel can be used more effectively.
  • the acquisition unit 86 acquires a measurement result of the output of the power generation unit 78 and creates weather information based on the acquired measurement result.
  • the configuration in which the weather information is generated based on the power generation results of the power generation unit 78 is more accurate than the case where the weather information transmitted from the external server is acquired. Weather information can be acquired.
  • the acquisition unit 86 creates weather information based on the result obtained by differentiating the measurement result twice.
  • the determination unit 81 classifies the plurality of power generation units 78 into a plurality of groups based on weather information, determines a reference St for each group, and the same group
  • the abnormality determination of the power generation unit 78 is performed by comparing the measurement results of the outputs of the power generation units 78 belonging to the group using the reference St corresponding to the group.
  • the configuration for performing the abnormality determination by comparing the power generation units 78 having the same influence on the generated power due to the weather can improve the accuracy of the abnormality determination without performing complicated calculation processing.
  • the acquisition unit 86 acquires weather information at the installation location of the power generation unit 78 including the solar battery panel.
  • the determination unit 81 determines a reference St used for abnormality determination of the power generation unit 78 based on the weather information acquired by the acquisition unit 86.
  • the determination part 81 performs abnormality determination of the electric power generation part 78 using the determined reference
  • the abnormality determination of the power generation unit 78 can be performed using the reference St having the contents according to the weather at the installation location of the power generation unit 78, so that the accuracy of the abnormality determination can be improved.
  • the weather at the place where the power generation unit 78 including the solar battery panel is installed can be used more effectively.
  • the measurement result acquisition unit 82 and the creation unit 83 illustrated in FIG. 7 are not limited to the configuration included in the determination device 101 that performs abnormality determination of the power generation unit 78.
  • the measurement result acquisition unit 82 and the creation unit 83 may be included in a weather information processing device that transmits weather information to an external device.
  • FIG. 18 is a diagram showing a configuration of a weather information processing apparatus according to a modification of the embodiment of the present invention.
  • the monitoring system 301 includes a weather information processing apparatus 121 instead of or in addition to the determination apparatus 101.
  • the weather information processing apparatus 121 may be configured to be built in the collecting apparatus 151 or may be configured to be built in the monitoring apparatus 111.
  • the weather information processing apparatus 121 may be a server that transmits and receives information to and from other apparatuses such as the collection apparatus 151 via a network.
  • the weather information processing apparatus 121 receives, for example, one or more pieces of monitoring information transmitted from the monitoring apparatus 111 via the collection apparatus 151, and creates weather information based on the received one or more pieces of monitoring information.
  • the weather information processing apparatus 121 includes a communication processing unit 94, a storage unit 95, and an acquisition unit 96.
  • the acquisition unit 96 includes a measurement result acquisition unit 92 and a creation unit 93.
  • the configuration and operation of the measurement result acquisition unit 92, the creation unit 93, the communication processing unit 94, and the storage unit 95 are the same as the measurement result acquisition unit 82, the creation unit 83, and the communication process illustrated in FIG.
  • the configuration and operation of the unit 84 and the storage unit 85 are the same.
  • the creation unit 93 refers to a plurality of pieces of monitoring information stored in the storage unit 95, and creates generated power data indicating, for example, a time-series change in the generated power of each power generation unit 78 on the processing date. Then, the creation unit 83 estimates the weather at the installation location for each power generation unit 78 based on the generated power generation data, and creates weather information indicating the estimated weather.
  • the creation unit 93 outputs the created one or more weather information to the communication processing unit 94.
  • the communication processing unit 94 receives one or more weather information output from the creation unit 93, and converts the received one or more weather information into an external format such as a server via a network in the form of e-mail, for example. To the device.
  • FIG. 19 is a flowchart defining the operation procedure of the weather information processing apparatus according to the modification of the embodiment of the present invention.
  • the measurement result acquisition unit 92 receives one or more pieces of monitoring information transmitted from the collection device 151 via the communication processing unit 94, and receives the reception time in each received monitoring information. Are stored in the storage unit 95, and a processing completion notification is output to the creation unit 93 (step S21).
  • the creation unit 93 receives the processing completion notification output from the measurement result acquisition unit 92 and refers to a plurality of monitoring information stored in the storage unit 95, for example, for each power generation unit 78. Generated power data indicating a time-series change in power is created (step S22).
  • the generation unit 93 confirms whether the result of differentiation twice with respect to the graph Gs1 indicating the generated generated power data is within the range of the threshold value Th1 to the threshold value Th2. Thus, it is confirmed whether or not the generated power is stably output (step S23).
  • the creation unit 93 estimates, for example, the weather at the installation location for each power generation unit 78 based on the confirmation result of whether or not the generated power is stably output, and provides weather information indicating the estimation result. Create (step S24).
  • the creating unit 93 transmits the created weather information to an external device such as a server via the communication processing unit 94 via a network (step S25).
  • the measurement result acquisition unit 82 acquires the measurement result of the output of the power generation unit 78 including the solar battery panel. Then, the creation unit 83 creates weather information at the installation location of the power generation unit 78 based on the measurement result acquired by the measurement result acquisition unit 82.
  • more accurate weather information is created by confirming whether or not the power generation unit 78 stably outputs the generated power based on the measurement result of the output of the power generation unit 78. can do. For this reason, more accurate weather information can be transmitted to an external server or the like.
  • the weather at the installation location of the power generation unit 78 including the solar battery panel can be used more effectively.
  • the measurement result acquisition unit 82 acquires the measurement result of the output of the power generation unit 78 including the solar battery panel. Then, the creation unit 83 creates weather information at the installation location of the power generation unit 78 based on the measurement result acquired by the measurement result acquisition unit 82.
  • the weather at the place where the power generation unit 78 including the solar battery panel is installed can be used more effectively.
  • a measurement result acquisition unit for acquiring a measurement result of the output of the power generation unit including the solar battery panel; Based on the measurement result acquired by the measurement result acquisition unit, comprising a creation unit that creates weather information at the installation location of the power generation unit, The measurement result acquisition unit confirms whether the output is stable by differentiating time series data of the measurement result of the output, and the weather information indicating sunny when the output is stable. The weather information processing apparatus creates the weather information indicating cloudiness when the output is not stable.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

This determination device (101) is provided with an acquisition unit (86) which acquires weather information about the installation location of a power generating unit which includes solar panels, and a determination unit (81) which, on the basis of the aforementioned weather information acquired by the acquisition unit (86), determines a standard to be used in determining abnormalities in the power generating unit, and uses the aforementioned determined standard to make an abnormality determination.

Description

判定装置、天候情報処理装置、判定方法および天候情報処理方法Determination device, weather information processing device, determination method, and weather information processing method
 本発明は、判定装置、天候情報処理装置、判定方法および天候情報処理方法に関する。
 この出願は、2018年3月27日に出願された日本出願特願2018-59457号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
The present invention relates to a determination device, a weather information processing device, a determination method, and a weather information processing method.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2018-59457 for which it applied on March 27, 2018, and takes in those the indications of all here.
 特開2012-205078号公報(特許文献1)には、以下のような太陽光発電用監視システムが開示されている。すなわち、太陽光発電用監視システムは、複数の太陽電池パネルからの出力を集約して電力変換装置に送り込む太陽光発電システムについて、前記太陽電池パネルの発電状況を監視する太陽光発電用監視システムであって、前記複数の太陽電池パネルからの出力電路が集約された場所に設けられ、各太陽電池パネルの発電量を計測する計測装置と、前記計測装置に接続され、前記計測装置による発電量の計測データを送信する機能を有する下位側通信装置と、前記下位側通信装置から送信される前記計測データを受信する機能を有する上位側通信装置と、前記上位側通信装置を介して前記太陽電池パネルごとの前記計測データを収集する機能を有する管理装置とを備える。前記管理装置は、前記各太陽電池パネルについての、同一時点における発電量の差に基づいて異常の有無を判定するか、または前記各太陽電池パネルについての、所定期間の発電量の最大値又は積算値に基づいて異常の有無を判定する。 JP 2012-205078 A (Patent Document 1) discloses a monitoring system for photovoltaic power generation as follows. That is, the photovoltaic power generation monitoring system is a photovoltaic power generation monitoring system that monitors the power generation status of the solar cell panel for a photovoltaic power generation system that aggregates outputs from a plurality of solar cell panels and sends them to a power converter. A measuring device for measuring the power generation amount of each solar cell panel provided in a place where the output electric circuits from the plurality of solar cell panels are aggregated, and connected to the measurement device, A lower communication device having a function of transmitting measurement data, an upper communication device having a function of receiving the measurement data transmitted from the lower communication device, and the solar cell panel via the upper communication device And a management device having a function of collecting the measurement data for each. The management device determines the presence or absence of abnormality based on the difference in power generation amount at the same time for each solar cell panel, or the maximum value or integration of the power generation amount for a predetermined period for each solar cell panel The presence or absence of abnormality is determined based on the value.
特開2012-205078号公報JP 2012-205078 A
 (1)本開示の判定装置は、太陽電池パネルを含む発電部の設置場所における天候情報を取得する取得部と、前記取得部により取得された前記天候情報に基づいて、前記発電部の異常判定に用いる基準を決定し、決定した前記基準を用いて前記異常判定を行う判定部とを備える。 (1) The determination device of the present disclosure includes an acquisition unit that acquires weather information at an installation location of a power generation unit including a solar battery panel, and an abnormality determination of the power generation unit based on the weather information acquired by the acquisition unit And a determination unit that determines the abnormality using the determined reference.
 (5)本開示の天候情報処理装置は、太陽電池パネルを含む発電部の出力の計測結果を取得する計測結果取得部と、前記計測結果取得部により取得された前記計測結果に基づいて、前記発電部の設置場所における天候情報を作成する作成部とを備える。 (5) The weather information processing apparatus according to the present disclosure is based on the measurement result acquisition unit that acquires the measurement result of the output of the power generation unit including the solar battery panel, and the measurement result acquired by the measurement result acquisition unit. And a creation unit that creates weather information at the installation location of the power generation unit.
 (6)本開示の判定方法は、判定装置における判定方法であって、太陽電池パネルを含む発電部の設置場所における天候情報を取得するステップと、取得した前記天候情報に基づいて、前記発電部の異常判定に用いる基準を決定するステップと、決定した前記基準を用いて前記異常判定を行うステップとを含む。 (6) The determination method of the present disclosure is a determination method in the determination device, the step of acquiring weather information at the installation location of the power generation unit including the solar battery panel, and the power generation unit based on the acquired weather information Determining a criterion used for the abnormality determination, and performing the abnormality determination using the determined criterion.
 (7)本開示の天候情報処理方法は、天候情報処理装置における天候情報処理方法であって、太陽電池パネルを含む発電部の出力の計測結果を取得するステップと、取得した前記計測結果に基づいて、前記発電部の設置場所における天候情報を作成するステップとを含む。 (7) The weather information processing method of the present disclosure is a weather information processing method in a weather information processing apparatus, the step of acquiring a measurement result of an output of a power generation unit including a solar battery panel, and the acquired measurement result And generating weather information at the installation location of the power generation unit.
 本開示の一態様は、このような特徴的な処理部を備える判定装置として実現され得るだけでなく、かかる特徴的な処理をコンピュータに実行させるためのプログラムとして実現され得る。また、本開示の一態様は、判定装置の一部または全部を実現する半導体集積回路として実現され得たり、判定装置を含む判定システムとして実現され得る。 One aspect of the present disclosure can be realized not only as a determination apparatus including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing. Further, one embodiment of the present disclosure can be realized as a semiconductor integrated circuit that realizes part or all of the determination device, or can be realized as a determination system including the determination device.
 また、本開示の一態様は、このような特徴的な処理部を備える天候情報処理装置として実現され得るだけでなく、かかる特徴的な処理をコンピュータに実行させるためのプログラムとして実現され得る。また、本開示の一態様は、天候情報処理装置の一部または全部を実現する半導体集積回路として実現され得たり、天候情報処理装置を含む天候情報処理システムとして実現され得る。 Also, one aspect of the present disclosure can be realized not only as a weather information processing apparatus including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing. Further, one embodiment of the present disclosure can be realized as a semiconductor integrated circuit that realizes part or all of the weather information processing apparatus, or can be realized as a weather information processing system including the weather information processing apparatus.
図1は、本発明の実施の形態に係る太陽光発電システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention. 図2は、本発明の実施の形態に係るPCSユニットの構成を示す図である。FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る集電ユニットの構成を示す図である。FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る太陽電池ユニットの構成を示す図である。FIG. 4 is a diagram showing a configuration of the solar cell unit according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る監視システムの構成を示す図である。FIG. 5 is a diagram showing the configuration of the monitoring system according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る監視システムにおける監視装置の構成を示す図である。FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る監視システムにおける判定装置の構成を示す図である。FIG. 7 is a diagram showing a configuration of the determination device in the monitoring system according to the embodiment of the present invention. 図8は、本発明の実施の形態に係る監視システムにおける判定装置が保持する監視情報の一例を示す図である。FIG. 8 is a diagram showing an example of monitoring information held by the determination apparatus in the monitoring system according to the embodiment of the present invention. 図9は、本発明の実施の形態に係る判定装置における作成部により作成される発電電力データの一例を示す図である。FIG. 9 is a diagram showing an example of generated power data created by the creation unit in the determination apparatus according to the embodiment of the present invention. 図10は、本発明の実施の形態に係る判定装置における作成部により作成される1回微分データの一例を示す図である。FIG. 10 is a diagram illustrating an example of the first differential data created by the creation unit in the determination apparatus according to the embodiment of the present invention. 図11は、本発明の実施の形態に係る判定装置における作成部により作成される2回微分データの一例を示す図である。FIG. 11 is a diagram showing an example of the twice differential data created by the creation unit in the determination apparatus according to the embodiment of the present invention. 図12は、本発明の実施の形態に係る判定装置における作成部により作成される発電電力データの他の一例を示す図である。FIG. 12 is a diagram showing another example of generated power data created by the creation unit in the determination apparatus according to the embodiment of the present invention. 図13は、本発明の実施の形態に係る判定装置における作成部により作成される1回微分データの他の一例を示す図である。FIG. 13 is a diagram showing another example of the once differentiated data created by the creating unit in the determination apparatus according to the embodiment of the present invention. 図14は、本発明の実施の形態に係る判定装置における作成部により作成される2回微分データの他の一例を示す図である。FIG. 14 is a diagram showing another example of the twice differentiated data created by the creating unit in the determination apparatus according to the embodiment of the present invention. 図15は、本発明の実施の形態に係る判定装置における作成部により作成される発電電力データおよび2回微分データの他の一例を示す図である。FIG. 15 is a diagram showing another example of the generated power data and the twice differential data created by the creation unit in the determination apparatus according to the embodiment of the present invention. 図16は、本発明の実施の形態に係る判定装置における判定部による異常判定を説明するための図である。FIG. 16 is a diagram for explaining abnormality determination by the determination unit in the determination apparatus according to the embodiment of the present invention. 図17は、本発明の実施の形態に係る判定装置の動作手順を定めたフローチャートである。FIG. 17 is a flowchart defining the operation procedure of the determination apparatus according to the embodiment of the present invention. 図18は、本発明の実施の形態の変形例に係る天候情報処理装置の構成を示す図である。FIG. 18 is a diagram showing a configuration of a weather information processing apparatus according to a modification of the embodiment of the present invention. 図19は、本発明の実施の形態の変形例に係る天候情報処理装置の動作手順を定めたフローチャートである。FIG. 19 is a flowchart defining the operation procedure of the weather information processing apparatus according to the modification of the embodiment of the present invention.
 近年、太陽光発電システムを監視して異常を判別するための技術が開発されている。 In recent years, techniques for monitoring solar power generation systems and determining abnormalities have been developed.
 [本開示が解決しようとする課題]
 太陽電池パネルを含む発電部の発電量は天候による影響を受けるため、発電部の設置場所における天候を把握して、より有効に利用することのできる技術が望まれる。
[Problems to be solved by the present disclosure]
Since the amount of power generated by the power generation unit including the solar cell panel is affected by the weather, a technology that can grasp the weather at the installation location of the power generation unit and use it more effectively is desired.
 本開示は、上述の課題を解決するためになされたもので、その目的は、太陽電池パネルを含む発電部の設置場所における天候をより有効に利用することができる判定装置、天候情報処理装置、判定方法および天候情報処理方法を提供することである。 This indication was made in order to solve the above-mentioned subject, and the purpose is a judgment device which can use the weather in the installation place of a power generation part containing a solar cell panel more effectively, a weather information processing device, It is to provide a determination method and a weather information processing method.
 [本開示の効果]
 本開示によれば、太陽電池パネルを含む発電部の設置場所における天候をより有効に利用することができる。
[Effects of the present disclosure]
According to this indication, the weather in the installation place of the power generation part containing a solar cell panel can be used more effectively.
 [本願発明の実施形態の説明]
 最初に、本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of Present Invention]
First, the contents of the embodiment of the present invention will be listed and described.
 (1)本発明の実施の形態に係る判定装置は、太陽電池パネルを含む発電部の設置場所における天候情報を取得する取得部と、前記取得部により取得された前記天候情報に基づいて、前記発電部の異常判定に用いる基準を決定し、決定した前記基準を用いて前記異常判定を行う判定部とを備える。 (1) The determination device according to the embodiment of the present invention is based on the acquisition unit that acquires weather information at the installation location of the power generation unit including the solar battery panel, and the weather information acquired by the acquisition unit. A determination unit configured to determine a reference used for abnormality determination of the power generation unit and perform the abnormality determination using the determined reference.
 このような構成により、発電部の設置場所における天候に応じた内容の基準を用いて発電部の異常判定を行うことができるため、異常判定の精度を向上させることができる。したがって、太陽電池パネルを含む発電部の設置場所における天候をより有効に利用することができる。 With such a configuration, it is possible to determine the abnormality of the power generation unit using the standard of the content according to the weather at the installation location of the power generation unit, so that the accuracy of the abnormality determination can be improved. Therefore, the weather at the place where the power generation unit including the solar battery panel is installed can be used more effectively.
 (2)好ましくは、前記取得部は、前記発電部の出力の計測結果を取得し、取得した前記計測結果に基づいて前記天候情報を作成する。 (2) Preferably, the acquisition unit acquires a measurement result of the output of the power generation unit, and creates the weather information based on the acquired measurement result.
 このように、発電部の発電実績に基づいて天候情報を作成する構成により、外部サーバから送信された天候情報などを取得する場合と比較して、当該発電部の設置場所におけるより正確な天候情報を取得することができる。 As described above, the weather information is generated based on the power generation results of the power generation unit, and more accurate weather information at the installation location of the power generation unit than in the case of acquiring weather information transmitted from an external server. Can be obtained.
 (3)より好ましくは、前記取得部は、前記計測結果を2回微分した結果に基づいて前記天候情報を作成する。 (3) More preferably, the acquisition unit creates the weather information based on a result obtained by differentiating the measurement result twice.
 このような構成により、発電部が発電電力を安定して出力しているか否かを容易に確認することができる。 With such a configuration, it can be easily confirmed whether or not the power generation unit stably outputs the generated power.
 (4)好ましくは、前記判定部は、前記天候情報に基づいて、複数の前記発電部を複数のグループに分類し、前記グループごとに前記基準を決定し、同じ前記グループに属する各前記発電部の出力の計測結果を、前記グループに対応する前記基準を用いて比較することにより前記異常判定を行う。 (4) Preferably, the determination unit classifies the plurality of power generation units into a plurality of groups based on the weather information, determines the reference for each group, and each of the power generation units belonging to the same group The abnormality determination is performed by comparing the measurement results of the outputs using the reference corresponding to the group.
 このように、天候による発電電力への影響が同様である発電部同士を比較して異常判定を行う構成により、複雑な演算処理を行うことなく、異常判定の精度を向上させることができる。 As described above, with the configuration in which the abnormality determination is performed by comparing the power generation units having the same influence on the generated power due to the weather, the accuracy of the abnormality determination can be improved without performing a complicated calculation process.
 (5)本発明の実施の形態に係る天候情報処理装置は、太陽電池パネルを含む発電部の出力の計測結果を取得する計測結果取得部と、前記計測結果取得部により取得された前記計測結果に基づいて、前記発電部の設置場所における天候情報を作成する作成部とを備える。 (5) The weather information processing apparatus according to the embodiment of the present invention includes a measurement result acquisition unit that acquires a measurement result of an output of a power generation unit including a solar battery panel, and the measurement result acquired by the measurement result acquisition unit. And a creation unit that creates weather information at a place where the power generation unit is installed.
 このような構成により、たとえば、発電部の出力の計測結果に基づいて、当該発電部が発電電力を安定して出力しているか否かを確認することにより、より正確な天候情報を作成することができる。このため、より正確な天候情報を外部サーバ等へ送信することができる。したがって、太陽電池パネルを含む発電部の設置場所における天候をより有効に利用することができる。 With such a configuration, for example, based on the measurement result of the output of the power generation unit, it is possible to create more accurate weather information by checking whether or not the power generation unit stably outputs the generated power Can do. For this reason, more accurate weather information can be transmitted to an external server or the like. Therefore, the weather at the place where the power generation unit including the solar battery panel is installed can be used more effectively.
 (6)本発明の実施の形態に係る判定方法は、判定装置における判定方法であって、太陽電池パネルを含む発電部の設置場所における天候情報を取得するステップと、取得した前記天候情報に基づいて、前記発電部の異常判定に用いる基準を決定するステップと、決定した前記基準を用いて前記異常判定を行うステップとを含む。 (6) The determination method according to the embodiment of the present invention is a determination method in the determination device, and includes the step of acquiring weather information at the installation location of the power generation unit including the solar battery panel, and the acquired weather information. And determining a standard used for abnormality determination of the power generation unit, and performing the abnormality determination using the determined standard.
 このような方法により、発電部の設置場所における天候に応じた内容の基準を用いて発電部の異常判定を行うことができるため、異常判定の精度を向上させることができる。したがって、太陽電池パネルを含む発電部の設置場所における天候をより有効に利用することができる。 By such a method, the abnormality determination of the power generation unit can be performed using the standard of the content according to the weather at the installation location of the power generation unit, so that the accuracy of the abnormality determination can be improved. Therefore, the weather at the place where the power generation unit including the solar battery panel is installed can be used more effectively.
 (7)本発明の実施の形態に係る天候情報処理方法は、天候情報処理装置における天候情報処理方法であって、太陽電池パネルを含む発電部の出力の計測結果を取得するステップと、取得した前記計測結果に基づいて、前記発電部の設置場所における天候情報を作成するステップとを含む。 (7) A weather information processing method according to an embodiment of the present invention is a weather information processing method in a weather information processing apparatus, and acquires a measurement result of an output of a power generation unit including a solar battery panel, and Creating weather information at an installation location of the power generation unit based on the measurement result.
 このような方法により、たとえば、発電部の出力の計測結果に基づいて、当該発電部が発電電力を安定して出力しているか否かを確認することにより、より正確な天候情報を作成することができる。このため、より正確な天候情報を外部サーバ等へ送信することができる。したがって、太陽電池パネルを含む発電部の設置場所における天候をより有効に利用することができる。 By such a method, for example, based on the measurement result of the output of the power generation unit, it is possible to create more accurate weather information by checking whether or not the power generation unit stably outputs the generated power Can do. For this reason, more accurate weather information can be transmitted to an external server or the like. Therefore, the weather at the place where the power generation unit including the solar battery panel is installed can be used more effectively.
 以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. Moreover, you may combine arbitrarily at least one part of embodiment described below.
<構成および基本動作>
[太陽光発電システムの構成]
 図1は、本発明の実施の形態に係る太陽光発電システムの構成を示す図である。
<Configuration and basic operation>
[Configuration of solar power generation system]
FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
 図1を参照して、太陽光発電システム401は、4つのPCS(Power Conditioning Subsystem)ユニット80と、キュービクル6とを備える。キュービクル6は、銅バー73を含む。 Referring to FIG. 1, solar power generation system 401 includes four PCS (Power Conditioning Subsystem) units 80 and cubicle 6. The cubicle 6 includes a copper bar 73.
 図1では、4つのPCSユニット80を代表的に示しているが、さらに多数または少数のPCSユニット80が設けられてもよい。 FIG. 1 representatively shows four PCS units 80, but a larger or smaller number of PCS units 80 may be provided.
 図2は、本発明の実施の形態に係るPCSユニットの構成を示す図である。 FIG. 2 is a diagram showing a configuration of the PCS unit according to the embodiment of the present invention.
 図2を参照して、PCSユニット80は、4つの集電ユニット60と、PCS(電力変換装置)8とを備える。PCS8は、銅バー7と、電力変換部9とを含む。 2, the PCS unit 80 includes four current collecting units 60 and a PCS (power conversion device) 8. The PCS 8 includes a copper bar 7 and a power conversion unit 9.
 図2では、4つの集電ユニット60を代表的に示しているが、さらに多数または少数の集電ユニット60が設けられてもよい。 In FIG. 2, four current collecting units 60 are representatively shown, but a larger or smaller number of current collecting units 60 may be provided.
 図3は、本発明の実施の形態に係る集電ユニットの構成を示す図である。 FIG. 3 is a diagram showing a configuration of the current collecting unit according to the embodiment of the present invention.
 図3を参照して、集電ユニット60は、4つの太陽電池ユニット74と、集電箱71とを含む。集電箱71は、銅バー72を有する。 Referring to FIG. 3, the current collecting unit 60 includes four solar cell units 74 and a current collecting box 71. The current collection box 71 has a copper bar 72.
 図3では、4つの太陽電池ユニット74を代表的に示しているが、さらに多数または少数の太陽電池ユニット74が設けられてもよい。 In FIG. 3, four solar cell units 74 are representatively shown, but a larger number or a smaller number of solar cell units 74 may be provided.
 図4は、本発明の実施の形態に係る太陽電池ユニットの構成を示す図である。 FIG. 4 is a diagram showing the configuration of the solar cell unit according to the embodiment of the present invention.
 図4を参照して、太陽電池ユニット74は、4つの発電部78と、接続箱76とを含む。発電部78は、太陽電池パネルを有する。接続箱76は、銅バー77を有する。 Referring to FIG. 4, solar cell unit 74 includes four power generation units 78 and a junction box 76. The power generation unit 78 has a solar cell panel. The connection box 76 has a copper bar 77.
 図4では、4つの発電部78を代表的に示しているが、さらに多数または少数の発電部78が設けられてもよい。 FIG. 4 representatively shows four power generation units 78, but a larger or smaller number of power generation units 78 may be provided.
 発電部78は、この例では4つの太陽電池パネル79A,79B,79C,79Dが直列接続されたストリングである。以下、太陽電池パネル79A,79B,79C,79Dの各々を、太陽電池パネル79とも称する。 In this example, the power generation unit 78 is a string in which four solar cell panels 79A, 79B, 79C, and 79D are connected in series. Hereinafter, each of the solar cell panels 79A, 79B, 79C, and 79D is also referred to as a solar cell panel 79.
 図4では、4つの太陽電池パネル79を代表的に示しているが、さらに多数または少数の太陽電池パネル79が設けられてもよい。 FIG. 4 representatively shows four solar cell panels 79, but a larger or smaller number of solar cell panels 79 may be provided.
 太陽光発電システム401では、複数の発電部78からの出力ラインおよび集約ラインすなわち電力線がそれぞれキュービクル6に電気的に接続される。 In the solar power generation system 401, output lines and aggregated lines, that is, power lines from the plurality of power generation units 78 are electrically connected to the cubicles 6, respectively.
 より詳細には、発電部78の出力ライン1は、発電部78に接続された第1端と、銅バー77に接続された第2端とを有する。各出力ライン1は、銅バー77を介して集約ライン5に集約される。銅バー77は、たとえば接続箱76の内部に設けられている。 More specifically, the output line 1 of the power generation unit 78 has a first end connected to the power generation unit 78 and a second end connected to the copper bar 77. Each output line 1 is aggregated into an aggregation line 5 via a copper bar 77. The copper bar 77 is provided, for example, inside the connection box 76.
 発電部78は、太陽光を受けると、受けた太陽光のエネルギーを直流電力に変換し、変換した直流電力を出力ライン1へ出力する。 When the power generation unit 78 receives sunlight, the power generation unit 78 converts the received solar energy into DC power, and outputs the converted DC power to the output line 1.
 図3および図4を参照して、集約ライン5は、対応の太陽電池ユニット74における銅バー77に接続された第1端と、銅バー72に接続された第2端とを有する。各集約ライン5は、銅バー72を介して集約ライン2に集約される。銅バー72は、たとえば集電箱71の内部に設けられている。 3 and 4, aggregation line 5 has a first end connected to copper bar 77 and a second end connected to copper bar 72 in corresponding solar cell unit 74. Each aggregation line 5 is aggregated into the aggregation line 2 via the copper bar 72. The copper bar 72 is provided, for example, inside the current collection box 71.
 図1~図4を参照して、太陽光発電システム401では、上述のように複数の発電部78からの各出力ライン1が集約ライン5に集約され、各集約ライン5が集約ライン2に集約され、各集約ライン2が集約ライン4に集約され、各集約ライン4がキュービクル6に電気的に接続される。 With reference to FIGS. 1 to 4, in the photovoltaic power generation system 401, as described above, the output lines 1 from the plurality of power generation units 78 are aggregated into the aggregation line 5, and the aggregation lines 5 are aggregated into the aggregation line 2. Then, each aggregation line 2 is aggregated to the aggregation line 4, and each aggregation line 4 is electrically connected to the cubicle 6.
 より詳細には、各集約ライン2は、対応の集電ユニット60における銅バー72に接続された第1端と、銅バー7に接続された第2端とを有する。PCS8において、内部ライン3は、銅バー7に接続された第1端と、電力変換部9に接続された第2端とを有する。 More specifically, each aggregation line 2 has a first end connected to the copper bar 72 in the corresponding current collecting unit 60 and a second end connected to the copper bar 7. In the PCS 8, the internal line 3 has a first end connected to the copper bar 7 and a second end connected to the power conversion unit 9.
 PCS8において、電力変換部9は、たとえば、各発電部78において発電された直流電力を出力ライン1、銅バー77、集約ライン5、銅バー72、集約ライン2、銅バー7および内部ライン3経由で受けると、受けた直流電力を交流電力に変換して集約ライン4へ出力する。 In the PCS 8, the power conversion unit 9 uses, for example, the DC power generated in each power generation unit 78 via the output line 1, the copper bar 77, the aggregation line 5, the copper bar 72, the aggregation line 2, the copper bar 7 and the internal line 3. Is received, the received DC power is converted into AC power and output to the aggregation line 4.
 集約ライン4は、電力変換部9に接続された第1端と、銅バー73に接続された第2端とを有する。 The aggregation line 4 has a first end connected to the power conversion unit 9 and a second end connected to the copper bar 73.
 キュービクル6において、各PCS8における電力変換部9から各集約ライン4へ出力された交流電力は、銅バー73を介して系統へ出力される。 In the cubicle 6, AC power output from the power conversion unit 9 in each PCS 8 to each aggregation line 4 is output to the system via the copper bar 73.
[監視システム301の構成]
 図5は、本発明の実施の形態に係る監視システムの構成を示す図である。
[Configuration of Monitoring System 301]
FIG. 5 is a diagram showing the configuration of the monitoring system according to the embodiment of the present invention.
 図5を参照して、太陽光発電システム401は、監視システム301を備える。監視システム301は、判定装置101と、複数の監視装置111と、収集装置151とを含む。 Referring to FIG. 5, the solar power generation system 401 includes a monitoring system 301. The monitoring system 301 includes a determination device 101, a plurality of monitoring devices 111, and a collection device 151.
 図5では、1つの集電ユニット60に対応して設けられた4つの監視装置111を代表的に示しているが、さらに多数または少数の監視装置111が設けられてもよい。また、監視システム301は、1つの収集装置151を備えているが、複数の収集装置151を備えてもよい。 FIG. 5 representatively shows four monitoring devices 111 provided corresponding to one current collecting unit 60, but a larger or smaller number of monitoring devices 111 may be provided. In addition, the monitoring system 301 includes one collection device 151, but may include a plurality of collection devices 151.
 監視システム301では、子機である監視装置111におけるセンサの情報が、収集装置151へ定期的または不定期に伝送される。 In the monitoring system 301, sensor information in the monitoring device 111 which is a slave is transmitted to the collection device 151 regularly or irregularly.
 監視装置111は、たとえば集電ユニット60に設けられている。より詳細には、監視装置111は、4つの太陽電池ユニット74にそれぞれ対応して4つ設けられている。各監視装置111は、たとえば、対応の出力ライン1および集約ライン5に電気的に接続されている。 The monitoring device 111 is provided in the current collecting unit 60, for example. More specifically, four monitoring devices 111 are provided corresponding to the four solar cell units 74, respectively. Each monitoring device 111 is electrically connected to the corresponding output line 1 and aggregation line 5, for example.
 監視装置111は、対応の太陽電池ユニット74における各出力ライン1の電流をセンサにより計測する。また、監視装置111は、対応の太陽電池ユニット74における各出力ライン1の電圧をセンサにより計測する。 The monitoring device 111 measures the current of each output line 1 in the corresponding solar cell unit 74 with a sensor. Moreover, the monitoring apparatus 111 measures the voltage of each output line 1 in the corresponding solar cell unit 74 with a sensor.
 収集装置151は、たとえばPCS8の近傍に設けられている。より詳細には、収集装置151は、PCS8に対応して設けられ、信号線46を介して銅バー7に電気的に接続されている。 The collecting device 151 is provided in the vicinity of the PCS 8, for example. More specifically, the collection device 151 is provided corresponding to the PCS 8 and is electrically connected to the copper bar 7 via the signal line 46.
 監視装置111および収集装置151は、集約ライン2,5を介して電力線通信(PLC:Power Line Communication)を行うことにより情報の送受信を行う。 The monitoring device 111 and the collection device 151 perform transmission and reception of information by performing power line communication (PLC: Power Line Communication) via the aggregation lines 2 and 5.
 より詳細には、各監視装置111は、対応の出力ラインの電流および電圧の計測結果を示す監視情報を送信する。収集装置151は、各監視装置111の計測結果を収集する。 More specifically, each monitoring device 111 transmits monitoring information indicating the measurement result of the current and voltage of the corresponding output line. The collection device 151 collects the measurement results of each monitoring device 111.
[監視装置111の構成]
 図6は、本発明の実施の形態に係る監視システムにおける監視装置の構成を示す図である。図6では、出力ライン1、集約ライン5および銅バー77がより詳細に示されている。
[Configuration of Monitoring Device 111]
FIG. 6 is a diagram showing a configuration of a monitoring device in the monitoring system according to the embodiment of the present invention. In FIG. 6, the output line 1, the aggregation line 5 and the copper bar 77 are shown in more detail.
 図6を参照して、出力ライン1は、プラス側出力ライン1pと、マイナス側出力ライン1nとを含む。集約ライン5は、プラス側集約ライン5pと、マイナス側集約ライン5nとを含む。銅バー77は、プラス側銅バー77pと、マイナス側銅バー77nとを含む。 Referring to FIG. 6, output line 1 includes a plus side output line 1p and a minus side output line 1n. Aggregation line 5 includes a plus-side aggregation line 5p and a minus-side aggregation line 5n. The copper bar 77 includes a plus side copper bar 77p and a minus side copper bar 77n.
 図示しないが、図3に示す集電箱71における銅バー72は、プラス側集約ライン5pおよびマイナス側集約ライン5nにそれぞれ対応して、プラス側銅バー72pおよびマイナス側銅バー72nを含む。 Although not shown, the copper bar 72 in the current collection box 71 shown in FIG. 3 includes a plus-side copper bar 72p and a minus-side copper bar 72n corresponding to the plus-side aggregation line 5p and the minus-side aggregation line 5n, respectively.
 プラス側出力ライン1pは、対応の発電部78に接続された第1端と、プラス側銅バー77pに接続された第2端とを有する。マイナス側出力ライン1nは、対応の発電部78に接続された第1端と、マイナス側銅バー77nに接続された第2端とを有する。 The plus side output line 1p has a first end connected to the corresponding power generation unit 78 and a second end connected to the plus side copper bar 77p. The negative side output line 1n has a first end connected to the corresponding power generation unit 78 and a second end connected to the negative side copper bar 77n.
 プラス側集約ライン5pは、プラス側銅バー77pに接続された第1端と、集電箱71におけるプラス側銅バー72pに接続された第2端とを有する。マイナス側集約ライン5nは、マイナス側銅バー77nに接続された第1端と、集電箱71におけるマイナス側銅バー72nに接続された第2端とを有する。 The plus side aggregation line 5p has a first end connected to the plus side copper bar 77p and a second end connected to the plus side copper bar 72p in the current collection box 71. The minus-side aggregate line 5n has a first end connected to the minus-side copper bar 77n and a second end connected to the minus-side copper bar 72n in the current collection box 71.
 監視装置111は、検出処理部11と、4つの電流センサ16と、電圧センサ17と、通信部14とを備える。なお、監視装置111は、出力ライン1の数に応じて、さらに多数または少数の電流センサ16を備えてもよい。 The monitoring device 111 includes a detection processing unit 11, four current sensors 16, a voltage sensor 17, and a communication unit 14. Note that the monitoring device 111 may further include a large number or a small number of current sensors 16 depending on the number of output lines 1.
 監視装置111は、たとえば、発電部78の近傍に設けられている。具体的には、監視装置111は、たとえば、計測対象の出力ライン1が接続された銅バー77が設けられた接続箱76の内部に設けられている。なお、監視装置111は、接続箱76の外部に設けられてもよい。 The monitoring device 111 is provided in the vicinity of the power generation unit 78, for example. Specifically, the monitoring device 111 is provided, for example, inside a connection box 76 provided with a copper bar 77 to which the output line 1 to be measured is connected. Note that the monitoring device 111 may be provided outside the connection box 76.
 監視装置111は、たとえば、プラス側集約ライン5pおよびマイナス側集約ライン5nとそれぞれプラス側電源線26pおよびマイナス側電源線26nを介して電気的に接続されている。以下、プラス側電源線26pおよびマイナス側電源線26nの各々を、電源線26とも称する。 The monitoring device 111 is electrically connected to, for example, the plus-side aggregate line 5p and the minus-side aggregate line 5n via the plus-side power line 26p and the minus-side power line 26n, respectively. Hereinafter, each of the plus-side power line 26p and the minus-side power line 26n is also referred to as a power line 26.
 各監視装置111は、対応の発電部78に関する計測結果を示す監視情報を、自己および収集装置151に接続される電力線を介して送信する。 Each monitoring device 111 transmits monitoring information indicating a measurement result regarding the corresponding power generation unit 78 via a power line connected to itself and the collecting device 151.
 詳細には、監視装置111における通信部14は、集約ラインを介した電力線通信を、複数の監視装置111の計測結果を収集する収集装置151と行うことが可能である。より詳細には、通信部14は、集約ライン2,5経由で情報を送受信することが可能である。具体的には、通信部14は、電源線26および集約ライン2,5を介して収集装置151と電力線通信を行う。 Specifically, the communication unit 14 in the monitoring device 111 can perform power line communication via the aggregation line with the collection device 151 that collects the measurement results of the plurality of monitoring devices 111. More specifically, the communication unit 14 can transmit and receive information via the aggregation lines 2 and 5. Specifically, the communication unit 14 performs power line communication with the collection device 151 via the power line 26 and the aggregation lines 2 and 5.
 検出処理部11は、たとえば、対応の出力ライン1の電流および電圧の計測結果を示す監視情報を所定時間ごとに作成するように設定されている。 The detection processing unit 11 is set, for example, so as to create monitoring information indicating the measurement results of the current and voltage of the corresponding output line 1 every predetermined time.
 電流センサ16は、出力ライン1の電流を計測する。より詳細には、電流センサ16は、たとえば、ホール素子タイプの電流プローブである。電流センサ16は、監視装置111の図示しない電源回路から受けた電力を用いて、対応のマイナス側出力ライン1nを通して流れる電流を6秒ごとに計測し、計測結果を示す信号を検出処理部11へ出力する。なお、電流センサ16は、プラス側出力ライン1pを通して流れる電流を計測してもよい。 The current sensor 16 measures the current of the output line 1. More specifically, the current sensor 16 is, for example, a Hall element type current probe. The current sensor 16 measures the current flowing through the corresponding negative output line 1n every 6 seconds using the power received from the power supply circuit (not shown) of the monitoring device 111, and sends a signal indicating the measurement result to the detection processing unit 11. Output. The current sensor 16 may measure a current flowing through the plus side output line 1p.
 電圧センサ17は、出力ライン1の電圧を計測する。より詳細には、電圧センサ17は、プラス側銅バー77pおよびマイナス側銅バー77n間の電圧を6秒ごとに計測し、計測結果を示す信号を検出処理部11へ出力する。 The voltage sensor 17 measures the voltage of the output line 1. More specifically, the voltage sensor 17 measures the voltage between the plus-side copper bar 77p and the minus-side copper bar 77n every 6 seconds, and outputs a signal indicating the measurement result to the detection processing unit 11.
 検出処理部11は、電流センサ16および電圧センサ17からそれぞれ受けた信号の示す計測結果、対応の電流センサ16のID(以下、電流センサIDとも称する。)、電圧センサ17のID(以下、電圧センサIDとも称する。)、および自己の監視装置111のID(以下、監視装置IDとも称する。)を含む監視情報を作成する。 The detection processing unit 11 includes the measurement results indicated by the signals received from the current sensor 16 and the voltage sensor 17, the ID of the corresponding current sensor 16 (hereinafter also referred to as current sensor ID), and the ID of the voltage sensor 17 (hereinafter referred to as voltage). The monitoring information including the sensor ID and the ID of the own monitoring device 111 (hereinafter also referred to as the monitoring device ID) is created.
 また、検出処理部11は、たとえば、電流センサIDごとすなわち発電部78ごとに、電流値と電圧値とを乗じることにより、発電部78の出力の計測結果として、発電電力を算出する。そして、検出処理部11は、算出した発電電力を監視情報に含める。 The detection processing unit 11 calculates the generated power as the measurement result of the output of the power generation unit 78 by multiplying the current value and the voltage value for each current sensor ID, that is, for each power generation unit 78, for example. Then, the detection processing unit 11 includes the calculated generated power in the monitoring information.
 また、検出処理部11は、送信元IDが自己の監視装置IDであり、送信先IDが収集装置151のIDであり、データ部分が監視情報である監視情報パケットを作成する。そして、検出処理部11は、作成した監視情報パケットを通信部14へ出力する。なお、検出処理部11は、監視情報パケットにシーケンス番号を含めてもよい。 Also, the detection processing unit 11 creates a monitoring information packet in which the transmission source ID is its own monitoring device ID, the transmission destination ID is the ID of the collection device 151, and the data portion is monitoring information. Then, the detection processing unit 11 outputs the created monitoring information packet to the communication unit 14. The detection processing unit 11 may include a sequence number in the monitoring information packet.
 通信部14は、検出処理部11から受ける監視情報パケットを収集装置151へ送信する。 The communication unit 14 transmits the monitoring information packet received from the detection processing unit 11 to the collection device 151.
 再び図5を参照して、収集装置151は、集約ライン2,5経由で情報を送受信することが可能である。具体的には、収集装置151は、たとえば、信号線46および集約ライン2,5を介して監視装置111と電力線通信を行い、監視情報パケットを複数の監視装置111から受信する。 Referring to FIG. 5 again, the collection device 151 can send and receive information via the aggregation lines 2 and 5. Specifically, the collection device 151 performs power line communication with the monitoring device 111 via the signal line 46 and the aggregation lines 2 and 5, for example, and receives monitoring information packets from the plurality of monitoring devices 111.
 収集装置151は、カウンタおよび記憶部を有しており、監視装置111から監視情報パケットを受信すると、受信した監視情報パケットから監視情報を取得するとともに、カウンタにおけるカウント値を受信時刻として取得する。そして、収集装置151は、受信時刻を監視情報に含めた後、図示しない記憶部に当該監視情報を保存する。 The collection device 151 has a counter and a storage unit. When receiving the monitoring information packet from the monitoring device 111, the collecting device 151 acquires the monitoring information from the received monitoring information packet and acquires the count value in the counter as the reception time. Then, after including the reception time in the monitoring information, the collection device 151 stores the monitoring information in a storage unit (not shown).
 より詳細には、上記カウンタは、たとえば、毎日の午前0時においてカウント値をリセットし、監視装置111の計測周期である6秒が経過するたびにカウント値をインクリメントする。この場合、収集装置151は、カウント値をインクリメントしたタイミングから6秒経過するまでの間に複数の監視装置111からそれぞれ複数の監視情報パケットを受信すると、これら複数の監視情報パケットの各々から取得した監視情報に現在の同一のカウント値を受信時刻として含める。 More specifically, the counter resets the count value at, for example, midnight every day, and increments the count value every time 6 seconds, which is the measurement cycle of the monitoring device 111, elapses. In this case, when the collection device 151 receives a plurality of monitoring information packets from each of the plurality of monitoring devices 111 until 6 seconds elapse from the timing at which the count value is incremented, the collection device 151 acquires each of the plurality of monitoring information packets. The current same count value is included in the monitoring information as the reception time.
[判定装置101の構成]
 図7は、本発明の実施の形態に係る監視システムにおける判定装置の構成を示す図である。
[Configuration of Determination Device 101]
FIG. 7 is a diagram showing a configuration of the determination device in the monitoring system according to the embodiment of the present invention.
 図7を参照して、判定装置101は、判定部81と、通信処理部84と、記憶部85と、取得部86とを備える。取得部86は、計測結果取得部82と、作成部83とを含む。 7, the determination apparatus 101 includes a determination unit 81, a communication processing unit 84, a storage unit 85, and an acquisition unit 86. The acquisition unit 86 includes a measurement result acquisition unit 82 and a creation unit 83.
 (a)計測結果取得部、通信処理部および記憶部
 記憶部85には、たとえば、監視システム301における各監視装置111のID、すなわち監視装置IDが登録されている。また、記憶部85には、監視装置IDと当該監視装置IDを有する監視装置111に含まれる各センサのID、すなわち電流センサIDおよび電圧センサIDとの対応関係R1が登録されている。
(A) Measurement result acquisition unit, communication processing unit, and storage unit In the storage unit 85, for example, the ID of each monitoring device 111 in the monitoring system 301, that is, the monitoring device ID is registered. In the storage unit 85, the correspondence R1 between the monitoring device ID and the ID of each sensor included in the monitoring device 111 having the monitoring device ID, that is, the current sensor ID and the voltage sensor ID is registered.
 判定装置101は、監視情報を収集装置151から定期的に取得し、取得した監視情報を処理する。なお、判定装置101は、たとえば収集装置151に内蔵される構成であってもよいし、図6に示す監視装置111に内蔵される構成であってもよい。また、判定装置101は、ネットワークを介して収集装置151等の他の装置と情報の送受信を行うサーバであってもよい。 The determination apparatus 101 periodically acquires monitoring information from the collection apparatus 151, and processes the acquired monitoring information. Note that the determination device 101 may be configured to be incorporated in the collection device 151, for example, or may be configured to be embedded in the monitoring device 111 illustrated in FIG. The determination apparatus 101 may be a server that transmits and receives information to and from other apparatuses such as the collection apparatus 151 via a network.
 より詳細には、判定装置101における通信処理部84は、指定された処理タイミング、たとえば毎日の午前0時において監視情報の収集処理を行う。なお、判定装置101が収集装置151に内蔵される場合、より短い間隔で監視情報を容易に収集することができる。 More specifically, the communication processing unit 84 in the determination apparatus 101 performs monitoring information collection processing at a designated processing timing, for example, every day at midnight. When the determination apparatus 101 is built in the collection apparatus 151, monitoring information can be easily collected at shorter intervals.
 より詳細には、通信処理部84は、処理タイミングが到来すると、記憶部85に登録されている各監視装置IDを参照し、参照した各監視装置IDに対応し、処理タイミングの24時間前から当該処理タイミングまで(以下、処理日とも称する。)に属する受信時刻を含む監視情報を要求するための監視情報要求を収集装置151へ送信する。 More specifically, when the processing timing arrives, the communication processing unit 84 refers to each monitoring device ID registered in the storage unit 85, corresponds to each referenced monitoring device ID, and starts 24 hours before the processing timing. A monitoring information request for requesting monitoring information including the reception time belonging to the processing timing (hereinafter also referred to as processing date) is transmitted to the collection device 151.
 収集装置151は、判定装置101から監視情報要求を受信すると、受信した監視情報要求に従って、監視情報要求の内容を満足する1または複数の監視情報を判定装置101へ送信する。 When the collection device 151 receives the monitoring information request from the determination device 101, the collection device 151 transmits one or more pieces of monitoring information satisfying the content of the monitoring information request to the determination device 101 in accordance with the received monitoring information request.
 図8は、本発明の実施の形態に係る監視システムにおける判定装置が保持する監視情報の一例を示す図である。 FIG. 8 is a diagram showing an example of monitoring information held by the determination device in the monitoring system according to the embodiment of the present invention.
 図8を参照して、通信処理部84は、監視情報要求の応答として収集装置151から1または複数の監視情報を受信すると、受信した1または複数の監視情報を、取得部86における計測結果取得部82へ出力する。 Referring to FIG. 8, when the communication processing unit 84 receives one or more pieces of monitoring information from the collection device 151 as a response to the monitoring information request, the communication unit 84 acquires the received one or more pieces of monitoring information in the acquisition unit 86. To the unit 82.
 計測結果取得部82は、通信処理部84から出力された1または複数の監視情報を受けて、たとえば、各監視情報に受信時刻を含めて記憶部85に保存するとともに、処理完了通知を作成部83へ出力する。 The measurement result acquisition unit 82 receives one or more pieces of monitoring information output from the communication processing unit 84, and stores the monitoring information including the reception time in the storage unit 85 and generates a processing completion notification, for example. Output to 83.
 (b)作成部
 作成部83は、計測結果取得部82から出力された処理完了通知を受けて、発電部78の設置場所における天候を示す天候情報を取得する。
(B) Creation Unit The creation unit 83 receives the process completion notification output from the measurement result acquisition unit 82 and acquires weather information indicating the weather at the installation location of the power generation unit 78.
 より詳細には、作成部83は、たとえば、処理完了通知を受けると、記憶部85に保存されている複数の監視情報を参照して、発電部78ごとに、処理日における発電電力の総和を算出する。そして、作成部83は、たとえば、算出した総和が最も大きい発電部78を選択する。以下、作成部83により選択される発電部78を「対象発電部78」とも称する。 More specifically, for example, when receiving a processing completion notification, the creation unit 83 refers to a plurality of pieces of monitoring information stored in the storage unit 85 and determines the total generated power on the processing date for each power generation unit 78. calculate. Then, for example, the creation unit 83 selects the power generation unit 78 having the largest calculated sum. Hereinafter, the power generation unit 78 selected by the creation unit 83 is also referred to as “target power generation unit 78”.
 また、作成部83は、記憶部85に保存されている複数の監視情報を参照して、処理日における対象発電部78の発電電力の時系列変化を示す発電電力データを作成する。そして、作成部83は、作成した発電電力データに基づいて、対象発電部78の設置場所における天候を推定する。 Also, the creation unit 83 refers to the plurality of monitoring information stored in the storage unit 85 and creates generated power data indicating the time series change of the generated power of the target power generation unit 78 on the processing date. Then, the creation unit 83 estimates the weather at the installation location of the target power generation unit 78 based on the generated power generation data.
 (例1)
 図9は、本発明の実施の形態に係る判定装置における作成部により作成される発電電力データの一例を示す図である。図9において、横軸は時間を示し、縦軸は処理日における対象発電部78の発電電力の最大値に対する、対象発電部78の発電電力の割合を示す。
(Example 1)
FIG. 9 is a diagram showing an example of generated power data created by the creation unit in the determination apparatus according to the embodiment of the present invention. In FIG. 9, the horizontal axis indicates time, and the vertical axis indicates the ratio of the generated power of the target power generation unit 78 to the maximum value of the generated power of the target power generation unit 78 on the processing date.
 図9を参照して、作成部83は、作成した発電電力データを示すグラフGs1を微分する、すなわち対象発電部78の出力の計測結果である発電電力の時系列データを微分することにより、グラフGs1の傾きを示す1回微分データを作成する。 Referring to FIG. 9, the creation unit 83 differentiates the graph Gs <b> 1 indicating the created generated power data, that is, differentiates the time series data of the generated power that is the measurement result of the output of the target power generation unit 78. One-time differential data indicating the slope of Gs1 is created.
 図10は、本発明の実施の形態に係る判定装置における作成部により作成される1回微分データの一例を示す図である。図10において、横軸は時間を示し、縦軸はグラフGs1の微分値を示す。 FIG. 10 is a diagram showing an example of the once differentiated data created by the creating unit in the determination apparatus according to the embodiment of the present invention. In FIG. 10, the horizontal axis represents time, and the vertical axis represents the differential value of the graph Gs1.
 図10を参照して、作成部83は、さらに、作成した1回微分データを示すグラフGs2を微分することにより、グラフGs2の傾きを示す2回微分データを作成する。 Referring to FIG. 10, creation unit 83 further creates twice differentiated data indicating the slope of graph Gs2 by differentiating graph Gs2 indicating the created once differentiated data.
 図11は、本発明の実施の形態に係る判定装置における作成部により作成される2回微分データの一例を示す図である。図11において、横軸は時間を示し、縦軸はグラフGs2の微分値を示す。 FIG. 11 is a diagram showing an example of the twice-differentiated data created by the creation unit in the determination apparatus according to the embodiment of the present invention. In FIG. 11, the horizontal axis represents time, and the vertical axis represents the differential value of the graph Gs2.
 図11を参照して、図9に示すグラフGs1を2回微分することにより得られる2回微分データを示すグラフGs3は、一定値、具体的にはゼロに近づく。 Referring to FIG. 11, a graph Gs3 indicating twice differentiated data obtained by differentiating the graph Gs1 shown in FIG. 9 twice approaches a constant value, specifically zero.
 ここで、対象発電部78の設置場所における天候が晴れである場合、対象発電部78の発電電力は安定して出力される傾向がある。一方、対象発電部78の設置場所における天候が曇りである場合、太陽からの光が雲に遮られることが多く、対象発電部78から出力される発電電力は安定しない傾向がある。 Here, when the weather at the installation location of the target power generation unit 78 is clear, the generated power of the target power generation unit 78 tends to be output stably. On the other hand, when the weather at the installation location of the target power generation unit 78 is cloudy, the light from the sun is often blocked by the clouds, and the generated power output from the target power generation unit 78 tends to be unstable.
 このため、作成部83は、たとえば、対象発電部78の発電電力が安定して出力されているか否かを確認する。具体的には、作成部83は、グラフGs3の示すグラフGs2の傾き、すなわちグラフGs2の微分値が閾値Th1~閾値Th2の範囲内であるか否かを確認することにより、当該対象発電部78の設置場所における天候を推定する。閾値Th1は、たとえば+0.2であり、閾値Th2は、たとえば-0.2である。 For this reason, the creation unit 83 confirms, for example, whether or not the generated power of the target power generation unit 78 is stably output. Specifically, the creation unit 83 checks the slope of the graph Gs2 indicated by the graph Gs3, that is, whether or not the differential value of the graph Gs2 is within the range of the threshold value Th1 to the threshold value Th2, and thereby the target power generation unit 78. Estimate the weather at the installation location. The threshold value Th1 is, for example, +0.2, and the threshold value Th2 is, for example, −0.2.
 図11に示す例では、グラフGs3の示すグラフGs2の微分値が、+0.2~-0.2の範囲内である。この場合、作成部83は、対象発電部78の設置場所における天候が晴れであると推定する。そして、作成部83は、推定した天候を示す天候情報を判定部81へ出力する。 In the example shown in FIG. 11, the differential value of the graph Gs2 indicated by the graph Gs3 is within the range of +0.2 to −0.2. In this case, the creation unit 83 estimates that the weather at the installation location of the target power generation unit 78 is clear. Then, the creation unit 83 outputs weather information indicating the estimated weather to the determination unit 81.
 (例2)
 図12は、本発明の実施の形態に係る判定装置における作成部により作成される発電電力データの他の一例を示す図である。図12において、横軸は時間を示し、縦軸は処理日における対象発電部78の発電電力の最大値に対する、対象発電部78の発電電力の割合を示す。
(Example 2)
FIG. 12 is a diagram showing another example of generated power data created by the creation unit in the determination apparatus according to the embodiment of the present invention. In FIG. 12, the horizontal axis indicates time, and the vertical axis indicates the ratio of the generated power of the target power generation unit 78 to the maximum value of the generated power of the target power generation unit 78 on the processing date.
 図12を参照して、作成部83は、作成した発電電力データを示すグラフGs11を微分することにより、グラフGs11の傾きを示す1回微分データを作成する。 Referring to FIG. 12, the creation unit 83 differentiates the graph Gs11 indicating the generated generated power data, thereby creating single differential data indicating the slope of the graph Gs11.
 図13は、本発明の実施の形態に係る判定装置における作成部により作成される1回微分データの他の一例を示す図である。図13において、横軸は時間を示し、縦軸はグラフGs11の微分値を示す。 FIG. 13 is a diagram showing another example of the once differentiated data created by the creating unit in the determination apparatus according to the embodiment of the present invention. In FIG. 13, the horizontal axis represents time, and the vertical axis represents the differential value of the graph Gs11.
 図13を参照して、作成部83は、さらに、作成した1回微分データを示すグラフGs12を微分することにより、グラフGs12の傾きを示す2回微分データを作成する。 Referring to FIG. 13, creation unit 83 further creates twice differentiated data indicating the slope of graph Gs12 by differentiating graph Gs12 indicating the created once differentiated data.
 図14は、本発明の実施の形態に係る判定装置における作成部により作成される2回微分データの他の一例を示す図である。図14において、横軸は時間を示し、縦軸はグラフGs12の微分値を示す。 FIG. 14 is a diagram illustrating another example of the twice differentiated data created by the creating unit in the determination apparatus according to the embodiment of the present invention. In FIG. 14, the horizontal axis indicates time, and the vertical axis indicates the differential value of the graph Gs12.
 図14に示す例では、グラフGs13の示すグラフGs12の微分値が、+0.2~-0.2の範囲を超えている。この場合、作成部83は、対象発電部78の設置場所における天候が曇りであると推定する。そして、作成部83は、推定した天候を示す天候情報を判定部81へ出力する。 In the example shown in FIG. 14, the differential value of the graph Gs12 indicated by the graph Gs13 exceeds the range of +0.2 to −0.2. In this case, the creation unit 83 estimates that the weather at the installation location of the target power generation unit 78 is cloudy. Then, the creation unit 83 outputs weather information indicating the estimated weather to the determination unit 81.
 (例3)
 図15は、本発明の実施の形態に係る判定装置における作成部により作成される発電電力データおよび2回微分データの他の一例を示す図である。図15において、横軸は時間を示し、縦軸は処理日における対象発電部78の発電電力の最大値に対する、対象発電部78の発電電力の割合、およびグラフGs21を2回微分した微分値を示す。
(Example 3)
FIG. 15 is a diagram showing another example of the generated power data and the twice differential data created by the creation unit in the determination apparatus according to the embodiment of the present invention. In FIG. 15, the horizontal axis represents time, and the vertical axis represents the ratio of the generated power of the target power generation unit 78 to the maximum value of the generated power of the target power generation unit 78 on the processing date, and the differential value obtained by differentiating the graph Gs21 twice. Show.
 図15を参照して、作成部83は、上述した例1および例2のように、処理日の1日全体の天候を推定する構成に限らず、処理日における1時間ごとの天候を推定する構成であってもよい。 Referring to FIG. 15, the creation unit 83 estimates the weather for each hour on the processing day, not limited to the configuration for estimating the weather on the entire processing day as in Example 1 and Example 2 described above. It may be a configuration.
 たとえば、作成部83は、図15に示すように、発電電力データを示すグラフGs21に対して2回微分することにより得られる、2回微分データを示すグラフGs23に基づいて、処理日における1時間ごとの天候を推定する。これにより、作成部83は、たとえば、7時~10時までの天候は晴れであり、10時~15時までの天候は曇りであり、15時~17時までの天候は晴れであることを示す天候情報を作成する。 For example, as illustrated in FIG. 15, the creation unit 83 performs one hour on the processing date based on a graph Gs23 indicating twice differentiated data obtained by differentiating twice with respect to a graph Gs21 indicating generated power data. Estimate the weather for each. Accordingly, the creation unit 83 determines that the weather from 7 o'clock to 10 o'clock is sunny, the weather from 10 o'clock to 15 o'clock is cloudy, and the weather from 15 o'clock to 17 o'clock is sunny. Create weather information to show.
 また、作成部83は、処理日における数時間ごとの天候を推定することにより、たとえば、午前の天候は晴れであり、午後の天候は曇りであることを示す天候情報を作成してもよい。 Further, the creation unit 83 may create weather information indicating that, for example, the weather in the morning is clear and the weather in the afternoon is cloudy by estimating the weather every several hours on the processing date.
 なお、作成部83は、グラフGs1に対して2回微分を行う構成に限らず、グラフGs1に対して、1回微分を行う構成であってもよいし、3回以上の微分を行う構成であってもよい。たとえば、作成部83は、グラフGs1の微分値が一定値に近づくまで、1回または複数回の微分を行う。 Note that the creation unit 83 is not limited to the configuration of performing differentiation twice on the graph Gs1, but may be configured to perform differentiation on the graph Gs1 once, or may be configured to perform differentiation on three times or more. There may be. For example, the creation unit 83 performs one or more differentiations until the differential value of the graph Gs1 approaches a certain value.
 また、作成部83は、発電部78の発電電力が安定して出力されているか否かを確認できればよく、グラフGs1の微分値を一定値に近づかせるための微分を行う構成に限らない。 Further, the creation unit 83 only needs to confirm whether or not the power generated by the power generation unit 78 is stably output, and is not limited to a configuration that performs differentiation to make the differential value of the graph Gs1 approach a constant value.
 また、作成部83は、各発電部78の発電電力に基づいて対象発電部78を選択する構成に限らず、他の何らかの基準により対象発電部78を選択してもよい。 Further, the creation unit 83 is not limited to the configuration in which the target power generation unit 78 is selected based on the generated power of each power generation unit 78, and may select the target power generation unit 78 based on some other criteria.
 また、作成部83は、複数の対象発電部78を選択してもよい。たとえば、作成部83は、太陽光発電システム401に含まれる複数の発電部78が複数の区画に分かれて設置されている場合、区画ごとに対象発電部78を1つずつ選択してもよい。 Further, the creation unit 83 may select a plurality of target power generation units 78. For example, when a plurality of power generation units 78 included in the solar power generation system 401 are divided and installed in a plurality of sections, the creation unit 83 may select one target power generation unit 78 for each section.
 また、作成部83は、対象発電部78を選択しない構成であってもよい。この場合、作成部83は、たとえば、太陽光発電システム401に含まれる発電部78ごとに、発電電力に基づいて天候情報を作成する。 Further, the creation unit 83 may be configured not to select the target power generation unit 78. In this case, for example, the creation unit 83 creates weather information for each power generation unit 78 included in the solar power generation system 401 based on the generated power.
 また、作成部83は、天候情報を作成する構成に限らない。たとえば、作成部83は、外部サーバから送信された、発電部78の設置場所付近における天気予報の内容を示す天気予報情報を、天候情報として通信処理部84経由で取得してもよい。 Further, the creation unit 83 is not limited to a configuration for creating weather information. For example, the creation unit 83 may acquire weather forecast information transmitted from an external server and indicating the weather forecast content in the vicinity of the installation location of the power generation unit 78 via the communication processing unit 84 as weather information.
 また、作成部83は、発電部78の出力の計測結果すなわち発電電力の代わりに、たとえば、発電部78の設置場所付近に設けられた日射計などの計測装置による計測結果に基づいて天候情報を作成してもよい。 In addition, the creation unit 83 obtains weather information based on the measurement result of a measurement device such as a pyranometer provided near the installation location of the power generation unit 78 instead of the measurement result of the output of the power generation unit 78, that is, the generated power. You may create it.
 しかしながら、外部サーバから送信される天気予報情報の示す天気予報は、発電部78の設置場所における天候と異なる可能性がある。また、計測装置の設置場所と発電部78の設置場所とが異なる場合、計測装置による計測結果に基づく天候情報の示す天候は、発電部78の設置場所における天候と異なる可能性がある。 However, the weather forecast indicated by the weather forecast information transmitted from the external server may be different from the weather at the place where the power generation unit 78 is installed. When the installation location of the measurement device and the installation location of the power generation unit 78 are different, the weather indicated by the weather information based on the measurement result by the measurement device may be different from the weather at the installation location of the power generation unit 78.
 このため、作成部83は、発電部78の出力の計測結果に基づいて天候情報を作成する構成であることが好ましい。 For this reason, it is preferable that the creation unit 83 is configured to create weather information based on the measurement result of the output of the power generation unit 78.
 (c)判定部
 判定部81は、作成部83から出力された天候情報を受けて、当該天候情報に基づいて発電部78の異常判定に用いる基準を決定する。そして、判定部81は、決定した基準を用いて発電部78の異常判定を行う。
(C) Determination part The determination part 81 receives the weather information output from the preparation part 83, and determines the reference | standard used for the abnormality determination of the electric power generation part 78 based on the said weather information. And the determination part 81 performs abnormality determination of the electric power generation part 78 using the determined reference | standard.
 図16は、本発明の実施の形態に係る判定装置における判定部による異常判定を説明するための図である。 FIG. 16 is a diagram for explaining abnormality determination by the determination unit in the determination apparatus according to the embodiment of the present invention.
 図16を参照して、ここでは、作成部83は、太陽光発電システム401に含まれる発電部78ごとに、午前の天候および午後の天候を示す天候情報を作成し、作成した複数の天候情報を判定部81へ出力したとする。 Referring to FIG. 16, here, creation unit 83 creates weather information indicating morning weather and afternoon weather for each power generation unit 78 included in solar power generation system 401, and creates a plurality of weather information created. Is output to the determination unit 81.
 この場合、判定部81は、作成部83から受けた複数の天候情報に基づいて、たとえば、太陽光発電システム401に含まれる複数の発電部78を複数のグループに分類する。 In this case, the determination unit 81 classifies the plurality of power generation units 78 included in the solar power generation system 401 into a plurality of groups based on the plurality of weather information received from the creation unit 83, for example.
 具体的には、ある発電部78の発電電力の変動が午前の時間帯および午後の時間帯のいずれにおいても小さい場合、当該発電部78に対応する天候情報は、終日晴れであることを示す。この場合、判定部81は、当該発電部78を「グループG1」に分類する。 Specifically, when the fluctuation of the generated power of a certain power generation unit 78 is small in both the morning time zone and the afternoon time zone, the weather information corresponding to the power generation unit 78 indicates that it is sunny all day. In this case, the determination unit 81 classifies the power generation unit 78 into “group G1”.
 また、ある発電部78の発電電力の変動が午前の時間帯において大きく、午後の時間帯において小さい場合、当該発電部78に対応する天候情報は、午前が曇りであり午後が晴れであることを示す。この場合、判定部81は、当該発電部78を「グループG2」に分類する。 Further, when the fluctuation of the generated power of a certain power generation unit 78 is large in the morning time zone and small in the afternoon time zone, the weather information corresponding to the power generation unit 78 indicates that the morning is cloudy and the afternoon is clear. Show. In this case, the determination unit 81 classifies the power generation unit 78 into “group G2”.
 また、ある発電部78の発電電力の変動が午前の時間帯において小さく、午後の時間帯において大きい場合、当該発電部78に対応する天候情報は、午前が晴れであり午後が曇りであることを示す。この場合、判定部81は、当該発電部78を「グループG3」に分類する。 When the fluctuation of the generated power of a certain power generation unit 78 is small in the morning time zone and large in the afternoon time zone, the weather information corresponding to the power generation unit 78 indicates that the morning is sunny and the afternoon is cloudy. Show. In this case, the determination unit 81 classifies the power generation unit 78 into “group G3”.
 また、ある発電部78の発電電力の変動が午前の時間帯および午後の時間帯のいずれにおいても大きい場合、当該発電部78に対応する天候情報は、終日曇りであることを示す。この場合、判定部81は、当該発電部78を「グループG4」に分類する。 Further, when the fluctuation in the generated power of a certain power generation unit 78 is large in both the morning time zone and the afternoon time zone, the weather information corresponding to the power generation unit 78 is cloudy all day. In this case, the determination unit 81 classifies the power generation unit 78 into “group G4”.
 ここで、発電部78の発電電力は、当該発電部78の設置場所における天候が晴れである場合、太陽からの光が直進することにより、陰による影響を受ける可能性が高い。一方、発電部78の発電電力は、当該発電部78の設置場所における天候が曇りである場合、太陽からの光が散乱することにより、陰による影響を受ける可能性が低い。このため、判定部81は、発電部78の属するグループごとに異なる判定基準を用いて、発電部78の異常判定を行う。 Here, when the weather at the place where the power generation unit 78 is installed is sunny, the power generated by the power generation unit 78 is highly likely to be affected by shadows as the light from the sun goes straight. On the other hand, when the weather at the place where the power generation unit 78 is installed is cloudy, the power generated by the power generation unit 78 is less likely to be affected by shadows due to scattering of light from the sun. For this reason, the determination unit 81 performs abnormality determination of the power generation unit 78 using different determination criteria for each group to which the power generation unit 78 belongs.
 (グループG1に属する発電部の異常判定)
 判定部81は、グループG1に属する各発電部78の異常判定に用いる基準Stを決定する。
(Abnormality judgment of power generation unit belonging to group G1)
The determination unit 81 determines a reference St used for abnormality determination of each power generation unit 78 belonging to the group G1.
 より詳細には、判定部81は、たとえば、グループG1に属する各発電部78の発電電力に基づいて、k-meansを用いることにより、グループG1に属する1または複数の発電部78を複数の判定グループに分類する。 More specifically, the determination unit 81 uses one or more power generation units 78 belonging to the group G1 as a plurality of determinations by using k-means based on the generated power of each power generation unit 78 belonging to the group G1, for example. Classify into groups.
 たとえば、判定部81は、グループG1に属する1または複数の発電部78を、午前に陰の影響を受ける傾向にある判定グループG11と、午後に陰の影響を受ける傾向にある判定グループG12とに分類する。そして、判定部81は、同じ判定グループに属する各発電部78の発電電力を比較する。 For example, the determination unit 81 includes one or more power generation units 78 belonging to the group G1 as a determination group G11 that tends to be affected by shadows in the morning and a determination group G12 that tends to be affected by shadows in the afternoon. Classify. And the determination part 81 compares the electric power generation of each power generation part 78 which belongs to the same determination group.
 具体的には、判定部81は、判定グループG11に属する各発電部78の同一時刻における発電電力の平均値を1時間ごとに算出することにより、判定グループG11の基準データを作成する。 Specifically, the determination unit 81 creates the reference data of the determination group G11 by calculating the average value of the generated power at the same time of each power generation unit 78 belonging to the determination group G11 every hour.
 また、判定部81は、たとえば、異常判定の判定対象となる発電部78の処理日における発電電力の総和と、作成した基準データの示す発電電力の総和との差が所定の閾値以上であるか否かを基準Stとして決定する。そして、判定部81は、判定グループG11に属する各発電部78の発電電力を、決定した基準Stを用いて比較することにより異常判定を行う。 In addition, for example, the determination unit 81 determines whether the difference between the sum of the generated power on the processing date of the power generation unit 78 to be determined for abnormality determination and the sum of the generated power indicated by the created reference data is greater than or equal to a predetermined threshold value. Whether or not is determined as a reference St. And the determination part 81 performs abnormality determination by comparing the generated electric power of each power generation part 78 which belongs to the determination group G11 using the determined standard St.
 すなわち、判定部81は、当該発電部78の処理日における発電電力の総和と、基準データの示す発電電力の総和との差が所定の閾値以上である場合、当該発電部78に異常が生じていると判定する。 That is, when the difference between the total generated power on the processing date of the power generation unit 78 and the total generated power indicated by the reference data is equal to or greater than a predetermined threshold, the determination unit 81 has an abnormality in the power generation unit 78. It is determined that
 また、判定部81は、判定グループG12に属する各発電部78の異常判定についても同様に行う。すなわち、判定部81は、判定グループG12に属する各発電部78の異常判定を行う場合、たとえば、判定グループG12に属する各発電部78の同一時刻における発電電力の平均値を1時間ごとに算出することにより、判定グループG12の基準データを作成する。 Moreover, the determination part 81 performs similarly about abnormality determination of each electric power generation part 78 which belongs to the determination group G12. That is, when determining the abnormality of each power generation unit 78 belonging to the determination group G12, the determination unit 81 calculates, for example, an average value of generated power at the same time of each power generation unit 78 belonging to the determination group G12 every hour. Thus, the reference data of the determination group G12 is created.
 また、判定部81は、たとえば、異常判定の判定対象となる発電部78の処理日における発電電力の総和と、作成した基準データの示す発電電力の総和との差が所定の閾値以上であるか否かを基準Stとして決定する。そして、判定部81は、判定グループG12に属する各発電部78の発電電力を、決定した基準Stを用いて比較することにより異常判定を行う。 In addition, for example, the determination unit 81 determines whether the difference between the sum of the generated power on the processing date of the power generation unit 78 to be determined for abnormality determination and the sum of the generated power indicated by the created reference data is greater than or equal to a predetermined threshold value. Whether or not is determined as a reference St. And the determination part 81 performs abnormality determination by comparing the generated electric power of each power generation part 78 which belongs to the determination group G12 using the determined standard St.
 すなわち、判定部81は、当該発電部78の処理日における発電電力の総和と、第2基準データの示す発電電力の総和との差が所定の閾値以上である場合、当該発電部78に異常が生じていると判定する。 That is, when the difference between the total generated power on the processing date of the power generation unit 78 and the total generated power indicated by the second reference data is equal to or greater than a predetermined threshold, the determination unit 81 has an abnormality in the power generation unit 78. Determine that it has occurred.
 (グループG2に属する発電部の異常判定)
 また、判定部81は、グループG2に属する各発電部78の異常判定に用いる基準Stを決定する。
(Abnormality determination of power generation unit belonging to group G2)
Moreover, the determination part 81 determines the reference | standard St used for abnormality determination of each electric power generation part 78 which belongs to the group G2.
 より詳細には、判定部81は、たとえば、グループG2に属する各発電部78の発電電力であって、晴れの時間帯すなわち午後の時間帯における発電電力に基づいて、k-meansを用いることにより、グループG2に属する1または複数の発電部78を複数の判定グループに分類する。 More specifically, the determination unit 81 uses, for example, k-means based on the generated power of each power generation unit 78 belonging to the group G2 and generated power in a clear time zone, that is, the afternoon time zone. The one or more power generation units 78 belonging to the group G2 are classified into a plurality of determination groups.
 また、判定部81は、たとえば、上述のグループG1に属する発電部78の異常判定と同様に、判定グループごとに基準データを作成し、作成した基準データを用いて、判定グループごとの基準Stを決定する。そして、判定部81は、判定グループごとに、決定した基準Stを用いて発電部78の発電電力を比較することにより、異常判定を行う。 Moreover, the determination part 81 produces | generates reference data for every determination group, for example similarly to the abnormality determination of the electric power generation part 78 which belongs to the above-mentioned group G1, The reference | standard St for every determination group is produced using the created reference data. decide. And the determination part 81 performs abnormality determination by comparing the generated electric power of the electric power generation part 78 using the determined reference | standard St for every determination group.
 (グループG3に属する発電部の異常判定)
 また、判定部81は、グループG3に属する各発電部78の異常判定に用いる基準Stを決定する。
(Abnormality judgment of power generation unit belonging to group G3)
Moreover, the determination part 81 determines the reference | standard St used for abnormality determination of each electric power generation part 78 which belongs to the group G3.
 より詳細には、判定部81は、たとえば、グループG3に属する各発電部78の発電電力であって、晴れの時間帯すなわち午前の時間帯における発電電力に基づいて、k-meansを用いることにより、グループG3に属する1または複数の発電部78を複数の判定グループに分類する。 More specifically, the determining unit 81 uses, for example, k-means based on the generated power of each power generation unit 78 belonging to the group G3 and based on the generated power in a clear time period, that is, the morning time period. The one or more power generation units 78 belonging to the group G3 are classified into a plurality of determination groups.
 また、判定部81は、たとえば、上述のグループG1に属する発電部78の異常判定と同様に、判定グループごとに基準データを作成し、作成した基準データを用いて、判定グループごとの基準Stを決定する。そして、判定部81は、判定グループごとに、決定した基準Stを用いて発電部78の発電電力を比較することにより、異常判定を行う。 Moreover, the determination part 81 produces | generates reference data for every determination group, for example similarly to the abnormality determination of the electric power generation part 78 which belongs to the above-mentioned group G1, The reference | standard St for every determination group is produced using the created reference data. decide. And the determination part 81 performs abnormality determination by comparing the generated electric power of the electric power generation part 78 using the determined reference | standard St for every determination group.
 (グループG4に属する発電部の異常判定)
 また、判定部81は、グループG4に属する各発電部78の異常判定に用いる基準Stを決定する。
(Abnormality determination of power generation unit belonging to group G4)
Moreover, the determination part 81 determines the reference | standard St used for abnormality determination of each electric power generation part 78 which belongs to the group G4.
 より詳細には、判定部81は、たとえば、グループG4に属する1または複数の発電部78を複数の判定グループに分類せず、グループG4に属する各発電部78の発電電力を比較する。 More specifically, for example, the determination unit 81 compares the generated power of each power generation unit 78 belonging to the group G4 without classifying one or more power generation units 78 belonging to the group G4 into a plurality of determination groups.
 具体的には、判定部81は、たとえば、グループG4に属する各発電部78の同一時刻における発電電力の平均値を1時間ごとに算出することにより、グループG4の基準データを作成する。 Specifically, the determination unit 81 creates reference data for the group G4 by, for example, calculating an average value of generated power at the same time of the power generation units 78 belonging to the group G4 every hour.
 そして、判定部81は、異常判定の判定対象となる発電部78の処理日における発電電力の総和と、作成した基準データの示す発電電力の総和との差が所定の閾値以上であるか否かを基準Stとして決定し、決定した基準St4を用いて、グループG4に属する各発電部78の発電電力を比較することにより、異常判定を行う。 Then, the determination unit 81 determines whether or not the difference between the sum of the generated power on the processing date of the power generation unit 78 to be determined for abnormality determination and the sum of the generated power indicated by the created reference data is equal to or greater than a predetermined threshold value. Is determined as a reference St, and abnormality determination is performed by comparing the generated power of each power generation unit 78 belonging to the group G4 using the determined reference St4.
 なお、判定部81による異常判定は、同じグループに属する各発電部78の発電電力を比較する方法に限らない。たとえば、判定部81は、ある発電部78の異常判定を行う場合であって、当該発電部78に対応する天候情報が終日晴れであることを示す場合、当該発電部78のカタログ仕様値を基準Stとして、当該発電部78の異常判定を行ってもよい。 Note that the abnormality determination by the determination unit 81 is not limited to the method of comparing the generated power of the power generation units 78 belonging to the same group. For example, when the determination unit 81 performs an abnormality determination of a certain power generation unit 78 and indicates that the weather information corresponding to the power generation unit 78 is clear all day, the catalog specification value of the power generation unit 78 is used as a reference. An abnormality determination of the power generation unit 78 may be performed as St.
(判定結果の通知)
 判定部81は、異常判定の判定結果を示す判定情報を通信処理部84へ出力する。通信処理部84は、判定部81から受けた判定情報を、たとえば、e-mail等の形式にしてネットワーク経由でサーバ等の外部の装置へ送信する。
(Notification of judgment result)
The determination unit 81 outputs determination information indicating the determination result of the abnormality determination to the communication processing unit 84. The communication processing unit 84 transmits the determination information received from the determination unit 81 to an external device such as a server via a network in a format such as e-mail.
<動作の流れ>
 監視システム301における各装置は、コンピュータを備え、当該コンピュータにおけるCPU等の演算処理部は、以下のフローチャートの各ステップの一部または全部を含むプログラムを図示しないメモリからそれぞれ読み出して実行する。これら複数の装置のプログラムは、それぞれ、外部からインストールすることができる。これら複数の装置のプログラムは、それぞれ、記録媒体に格納された状態で流通する。
<Operation flow>
Each device in the monitoring system 301 includes a computer, and an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following flowchart from a memory (not shown). Each of the programs of the plurality of apparatuses can be installed from the outside. The programs of the plurality of apparatuses are distributed while being stored in a recording medium.
 図17は、本発明の実施の形態に係る判定装置の動作手順を定めたフローチャートである。 FIG. 17 is a flowchart that defines the operation procedure of the determination apparatus according to the embodiment of the present invention.
 図7および図17を参照して、まず、計測結果取得部82は、収集装置151から送信された1または複数の監視情報を通信処理部84経由で受信し、受信した各監視情報に受信時刻を含めて記憶部85に保存するとともに、処理完了通知を作成部83へ出力する(ステップS11)。 7 and 17, first, the measurement result acquisition unit 82 receives one or a plurality of monitoring information transmitted from the collection device 151 via the communication processing unit 84, and receives the reception time in each received monitoring information. Are stored in the storage unit 85, and a processing completion notification is output to the creation unit 83 (step S11).
 次に、作成部83は、計測結果取得部82から出力された処理完了通知を受けて、記憶部85に保存されている複数の監視情報を参照して、たとえば、発電部78ごとに、発電電力の時系列変化を示す発電電力データを作成する(ステップS12)。 Next, the creation unit 83 receives the processing completion notification output from the measurement result acquisition unit 82, refers to a plurality of monitoring information stored in the storage unit 85, for example, generates power for each power generation unit 78. Generated power data indicating a time-series change in power is created (step S12).
 次に、作成部83は、たとえば、発電部78ごとに、作成した発電電力データを示すグラフGs1に対して2回微分した結果が閾値Th1~閾値Th2の範囲内であるか否かを確認することにより、発電電力が安定して出力されているか否かを確認する(ステップS13)。 Next, for example, for each power generation unit 78, the creation unit 83 confirms whether or not the result of twice differentiation with respect to the graph Gs1 indicating the generated generated power data is within the range of the threshold value Th1 to the threshold value Th2. Thus, it is confirmed whether or not the generated power is stably output (step S13).
 次に、作成部83は、たとえば、発電部78ごとに、発電電力が安定して出力されているか否かの確認結果に基づいて設置場所における天候を推定し、推定した結果を示す天候情報を作成する。そして、作成部83は、作成した天候情報を判定部81へ出力する(ステップS14)。 Next, the creation unit 83 estimates, for example, the weather at the installation location based on the confirmation result of whether or not the generated power is stably output for each power generation unit 78, and provides weather information indicating the estimation result. create. Then, the creation unit 83 outputs the created weather information to the determination unit 81 (step S14).
 次に、判定部81は、たとえば、作成部83から出力された複数の天候情報に基づいて、太陽光発電システム401に含まれる複数の発電部78を複数のグループに分類する(ステップS15)。 Next, for example, the determination unit 81 classifies the plurality of power generation units 78 included in the solar power generation system 401 into a plurality of groups based on the plurality of weather information output from the creation unit 83 (step S15).
 次に、判定部81は、分類したグループごとに、発電部78の異常判定に用いる基準Stを決定する(ステップS16)。 Next, the determination unit 81 determines a reference St used for abnormality determination of the power generation unit 78 for each classified group (step S16).
 次に、判定部81は、グループごとに、決定した基準Stを用いて各発電部78の異常判定を行い、異常判定の判定結果を示す判定情報を通信処理部84へ出力する(ステップS17)。 Next, the determination unit 81 performs abnormality determination of each power generation unit 78 using the determined reference St for each group, and outputs determination information indicating the determination result of the abnormality determination to the communication processing unit 84 (step S17). .
 次に、通信処理部84は、判定部81から受けた判定情報を、たとえばネットワーク経由でサーバ等の外部の装置へ送信する(ステップS18)。 Next, the communication processing unit 84 transmits the determination information received from the determination unit 81 to an external device such as a server via a network, for example (step S18).
 ところで、太陽電池パネルを含む発電部の発電量は天候による影響を受けるため、発電部の設置場所における天候を把握して、より有効に利用することのできる技術が望まれる。 By the way, since the amount of power generated by the power generation unit including the solar cell panel is affected by the weather, a technology that can grasp the weather at the installation location of the power generation unit and use it more effectively is desired.
 これに対して、本発明の実施の形態に係る判定装置101では、取得部86は、太陽電池パネルを含む発電部78の設置場所における天候情報を取得する。そして、判定部81は、取得部86により取得された天候情報に基づいて、発電部78の異常判定に用いる基準Stを決定し、決定した基準Stを用いて異常判定を行う。 On the other hand, in the determination apparatus 101 according to the embodiment of the present invention, the acquisition unit 86 acquires weather information at the installation location of the power generation unit 78 including the solar battery panel. And the determination part 81 determines the reference | standard St used for abnormality determination of the electric power generation part 78 based on the weather information acquired by the acquisition part 86, and performs abnormality determination using the determined reference | standard St.
 このような構成により、発電部78の設置場所における天候に応じた内容の基準Stを用いて発電部78の異常判定を行うことができるため、異常判定の精度を向上させることができる。 With such a configuration, the abnormality determination of the power generation unit 78 can be performed using the reference St having the contents according to the weather at the installation location of the power generation unit 78, so the accuracy of the abnormality determination can be improved.
 したがって、本発明の実施の形態に係る判定装置101では、太陽電池パネルを含む発電部78の設置場所における天候をより有効に利用することができる。 Therefore, in the determination apparatus 101 according to the embodiment of the present invention, the weather at the installation location of the power generation unit 78 including the solar battery panel can be used more effectively.
 また、本発明の実施の形態に係る判定装置101では、取得部86は、発電部78の出力の計測結果を取得し、取得した計測結果に基づいて天候情報を作成する。 Moreover, in the determination apparatus 101 according to the embodiment of the present invention, the acquisition unit 86 acquires a measurement result of the output of the power generation unit 78 and creates weather information based on the acquired measurement result.
 このように、発電部78の発電実績に基づいて天候情報を作成する構成により、外部サーバから送信された天候情報などを取得する場合と比較して、当該発電部78の設置場所におけるより正確な天候情報を取得することができる。 As described above, the configuration in which the weather information is generated based on the power generation results of the power generation unit 78 is more accurate than the case where the weather information transmitted from the external server is acquired. Weather information can be acquired.
 また、本発明の実施の形態に係る判定装置101では、取得部86は、計測結果を2回微分した結果に基づいて天候情報を作成する。 Moreover, in the determination apparatus 101 according to the embodiment of the present invention, the acquisition unit 86 creates weather information based on the result obtained by differentiating the measurement result twice.
 このような構成により、発電部78が発電電力を安定して出力しているか否かを容易に確認することができる。 With such a configuration, it can be easily confirmed whether or not the power generation unit 78 stably outputs the generated power.
 また、本発明の実施の形態に係る判定装置101では、判定部81は、天候情報に基づいて、複数の発電部78を複数のグループに分類し、グループごとに基準Stを決定し、同じグループに属する各発電部78の出力の計測結果を、当該グループに対応する基準Stを用いて比較することにより、発電部78の異常判定を行う。 Moreover, in the determination apparatus 101 according to the embodiment of the present invention, the determination unit 81 classifies the plurality of power generation units 78 into a plurality of groups based on weather information, determines a reference St for each group, and the same group The abnormality determination of the power generation unit 78 is performed by comparing the measurement results of the outputs of the power generation units 78 belonging to the group using the reference St corresponding to the group.
 このように、天候による発電電力への影響が同様である発電部78同士を比較して異常判定を行う構成により、複雑な演算処理を行うことなく、異常判定の精度を向上させることができる。 As described above, the configuration for performing the abnormality determination by comparing the power generation units 78 having the same influence on the generated power due to the weather can improve the accuracy of the abnormality determination without performing complicated calculation processing.
 また、本発明の実施の形態に係る判定方法では、まず、取得部86が、太陽電池パネルを含む発電部78の設置場所における天候情報を取得する。次に、判定部81が、取得部86により取得された天候情報に基づいて、発電部78の異常判定に用いる基準Stを決定する。そして、判定部81が、決定した基準Stを用いて発電部78の異常判定を行う。 In the determination method according to the embodiment of the present invention, first, the acquisition unit 86 acquires weather information at the installation location of the power generation unit 78 including the solar battery panel. Next, the determination unit 81 determines a reference St used for abnormality determination of the power generation unit 78 based on the weather information acquired by the acquisition unit 86. And the determination part 81 performs abnormality determination of the electric power generation part 78 using the determined reference | standard St.
 このような方法により、発電部78の設置場所における天候に応じた内容の基準Stを用いて発電部78の異常判定を行うことができるため、異常判定の精度を向上させることができる。 By such a method, the abnormality determination of the power generation unit 78 can be performed using the reference St having the contents according to the weather at the installation location of the power generation unit 78, so that the accuracy of the abnormality determination can be improved.
 したがって、本発明の実施の形態に係る判定方法では、太陽電池パネルを含む発電部78の設置場所における天候をより有効に利用することができる。 Therefore, in the determination method according to the embodiment of the present invention, the weather at the place where the power generation unit 78 including the solar battery panel is installed can be used more effectively.
<変形例>
 図7に示す計測結果取得部82および作成部83は、発電部78の異常判定を行う判定装置101に含まれる構成に限らない。たとえば、計測結果取得部82および作成部83は、天候情報を外部の装置へ送信する天候情報処理装置に含まれてもよい。
<Modification>
The measurement result acquisition unit 82 and the creation unit 83 illustrated in FIG. 7 are not limited to the configuration included in the determination device 101 that performs abnormality determination of the power generation unit 78. For example, the measurement result acquisition unit 82 and the creation unit 83 may be included in a weather information processing device that transmits weather information to an external device.
[構成および基本動作]
 図18は、本発明の実施の形態の変形例に係る天候情報処理装置の構成を示す図である。
[Configuration and basic operation]
FIG. 18 is a diagram showing a configuration of a weather information processing apparatus according to a modification of the embodiment of the present invention.
 図5および図18を参照して、監視システム301は、判定装置101の代わりに、または判定装置101に加えて、天候情報処理装置121を含む。なお、天候情報処理装置121は、収集装置151に内蔵される構成であってもよいし、監視装置111に内蔵される構成であってもよい。また、天候情報処理装置121は、ネットワークを介して収集装置151等の他の装置と情報の送受信を行うサーバであってもよい。 5 and 18, the monitoring system 301 includes a weather information processing apparatus 121 instead of or in addition to the determination apparatus 101. The weather information processing apparatus 121 may be configured to be built in the collecting apparatus 151 or may be configured to be built in the monitoring apparatus 111. The weather information processing apparatus 121 may be a server that transmits and receives information to and from other apparatuses such as the collection apparatus 151 via a network.
 天候情報処理装置121は、たとえば、監視装置111から送信された1または複数の監視情報を収集装置151経由で受信し、受信した1または複数の監視情報に基づいて天候情報を作成する。 The weather information processing apparatus 121 receives, for example, one or more pieces of monitoring information transmitted from the monitoring apparatus 111 via the collection apparatus 151, and creates weather information based on the received one or more pieces of monitoring information.
 より詳細には、天候情報処理装置121は、通信処理部94と、記憶部95と、取得部96とを備える。取得部96は、計測結果取得部92と、作成部93とを含む。計測結果取得部92、作成部93、通信処理部94および記憶部95の構成および動作は、それぞれ、以下で説明する内容を除き、図7に示す計測結果取得部82、作成部83、通信処理部84および記憶部85の構成および動作と同様である。 More specifically, the weather information processing apparatus 121 includes a communication processing unit 94, a storage unit 95, and an acquisition unit 96. The acquisition unit 96 includes a measurement result acquisition unit 92 and a creation unit 93. The configuration and operation of the measurement result acquisition unit 92, the creation unit 93, the communication processing unit 94, and the storage unit 95 are the same as the measurement result acquisition unit 82, the creation unit 83, and the communication process illustrated in FIG. The configuration and operation of the unit 84 and the storage unit 85 are the same.
 作成部93は、記憶部95に保存されている複数の監視情報を参照して、たとえば、処理日における各発電部78の発電電力の時系列変化を示す発電電力データを作成する。そして、作成部83は、作成した発電電力データに基づいて、たとえば、発電部78ごとに、設置場所における天候を推定し、推定した天候を示す天候情報を作成する。 The creation unit 93 refers to a plurality of pieces of monitoring information stored in the storage unit 95, and creates generated power data indicating, for example, a time-series change in the generated power of each power generation unit 78 on the processing date. Then, the creation unit 83 estimates the weather at the installation location for each power generation unit 78 based on the generated power generation data, and creates weather information indicating the estimated weather.
 また、作成部93は、作成した1または複数の天候情報を通信処理部94へ出力する。 Also, the creation unit 93 outputs the created one or more weather information to the communication processing unit 94.
 通信処理部94は、作成部93から出力された1または複数の天候情報を受信し、受信した1または複数の天候情報を、たとえば、e-mail等の形式にしてネットワーク経由でサーバ等の外部の装置へ送信する。 The communication processing unit 94 receives one or more weather information output from the creation unit 93, and converts the received one or more weather information into an external format such as a server via a network in the form of e-mail, for example. To the device.
[動作の流れ]
 図19は、本発明の実施の形態の変形例に係る天候情報処理装置の動作手順を定めたフローチャートである。
[Flow of operation]
FIG. 19 is a flowchart defining the operation procedure of the weather information processing apparatus according to the modification of the embodiment of the present invention.
 図18および図19を参照して、まず、計測結果取得部92は、収集装置151から送信された1または複数の監視情報を通信処理部94経由で受信し、受信した各監視情報に受信時刻を含めて記憶部95に保存するとともに、処理完了通知を作成部93へ出力する(ステップS21)。 18 and 19, first, the measurement result acquisition unit 92 receives one or more pieces of monitoring information transmitted from the collection device 151 via the communication processing unit 94, and receives the reception time in each received monitoring information. Are stored in the storage unit 95, and a processing completion notification is output to the creation unit 93 (step S21).
 次に、作成部93は、計測結果取得部92から出力された処理完了通知を受けて、記憶部95に保存されている複数の監視情報を参照して、たとえば、発電部78ごとに、発電電力の時系列変化を示す発電電力データを作成する(ステップS22)。 Next, the creation unit 93 receives the processing completion notification output from the measurement result acquisition unit 92 and refers to a plurality of monitoring information stored in the storage unit 95, for example, for each power generation unit 78. Generated power data indicating a time-series change in power is created (step S22).
 次に、作成部93は、たとえば、発電部78ごとに、作成した発電電力データを示すグラフGs1に対して2回微分した結果が閾値Th1~閾値Th2の範囲内であるか否かを確認することにより、発電電力が安定して出力されているか否かを確認する(ステップS23)。 Next, for example, for each power generation unit 78, the generation unit 93 confirms whether the result of differentiation twice with respect to the graph Gs1 indicating the generated generated power data is within the range of the threshold value Th1 to the threshold value Th2. Thus, it is confirmed whether or not the generated power is stably output (step S23).
 次に、作成部93は、たとえば、発電部78ごとに、発電電力が安定して出力されているか否かの確認結果に基づいて設置場所における天候を推定し、推定した結果を示す天候情報を作成する(ステップS24)。 Next, the creation unit 93 estimates, for example, the weather at the installation location for each power generation unit 78 based on the confirmation result of whether or not the generated power is stably output, and provides weather information indicating the estimation result. Create (step S24).
 そして、作成部93は、作成した天候情報を、たとえばネットワーク経由でサーバ等の外部の装置へ通信処理部94経由で送信する(ステップS25)。 Then, the creating unit 93 transmits the created weather information to an external device such as a server via the communication processing unit 94 via a network (step S25).
 このように、本発明の実施の形態の変形例に係る天候情報処理装置121では、計測結果取得部82は、太陽電池パネルを含む発電部78の出力の計測結果を取得する。そして、作成部83は、計測結果取得部82により取得された計測結果に基づいて、発電部78の設置場所における天候情報を作成する。 Thus, in the weather information processing apparatus 121 according to the modification of the embodiment of the present invention, the measurement result acquisition unit 82 acquires the measurement result of the output of the power generation unit 78 including the solar battery panel. Then, the creation unit 83 creates weather information at the installation location of the power generation unit 78 based on the measurement result acquired by the measurement result acquisition unit 82.
 このような構成により、たとえば、発電部78の出力の計測結果に基づいて、当該発電部78が発電電力を安定して出力しているか否かを確認することにより、より正確な天候情報を作成することができる。このため、より正確な天候情報を外部サーバ等へ送信することができる。 With such a configuration, for example, more accurate weather information is created by confirming whether or not the power generation unit 78 stably outputs the generated power based on the measurement result of the output of the power generation unit 78. can do. For this reason, more accurate weather information can be transmitted to an external server or the like.
 したがって、本発明の実施の形態の変形例に係る天候情報処理装置121では、太陽電池パネルを含む発電部78の設置場所における天候をより有効に利用することができる。 Therefore, in the weather information processing apparatus 121 according to the modification of the embodiment of the present invention, the weather at the installation location of the power generation unit 78 including the solar battery panel can be used more effectively.
 また、本発明の実施の形態の変形例に係る天候情報処理方法では、まず、計測結果取得部82が、太陽電池パネルを含む発電部78の出力の計測結果を取得する。そして、作成部83が、計測結果取得部82により取得された計測結果に基づいて、発電部78の設置場所における天候情報を作成する。 In the weather information processing method according to the modification of the embodiment of the present invention, first, the measurement result acquisition unit 82 acquires the measurement result of the output of the power generation unit 78 including the solar battery panel. Then, the creation unit 83 creates weather information at the installation location of the power generation unit 78 based on the measurement result acquired by the measurement result acquisition unit 82.
 このような方法により、たとえば、発電部78の出力の計測結果に基づいて、当該発電部78が発電電力を安定して出力しているか否かを確認することにより、より正確な天候情報を作成することができる。このため、より正確な天候情報を外部サーバ等へ送信することができる。 By such a method, for example, based on the measurement result of the output of the power generation unit 78, by confirming whether or not the power generation unit 78 stably outputs the generated power, more accurate weather information is created. can do. For this reason, more accurate weather information can be transmitted to an external server or the like.
 したがって、本発明の実施の形態の変形例に係る天候情報処理方法では、太陽電池パネルを含む発電部78の設置場所における天候をより有効に利用することができる。 Therefore, in the weather information processing method according to the modification of the embodiment of the present invention, the weather at the place where the power generation unit 78 including the solar battery panel is installed can be used more effectively.
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the above embodiment is illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 以上の説明は、以下に付記する特徴を含む。
 [付記1]
 太陽電池パネルを含む発電部の設置場所における天候情報を取得する取得部と、
 前記取得部により取得された前記天候情報に基づいて、前記発電部の異常判定に用いる基準を決定し、決定した前記基準を用いて前記異常判定を行う判定部とを備え、
 前記取得部は、前記発電部の出力の計測結果の時系列データを微分することにより、前記出力が安定しているか否かを確認し、前記出力が安定している場合は晴れを示す前記天候情報を作成し、前記出力が安定していない場合は曇りを示す前記天候情報を作成する、判定装置。
The above description includes the following features.
[Appendix 1]
An acquisition unit for acquiring weather information at the installation location of the power generation unit including the solar panel;
Based on the weather information acquired by the acquisition unit, determining a reference used for abnormality determination of the power generation unit, and a determination unit that performs the abnormality determination using the determined criterion,
The acquisition unit confirms whether or not the output is stable by differentiating time-series data of the measurement result of the output of the power generation unit, and the weather indicating sunny when the output is stable A determination apparatus that creates information and creates the weather information indicating cloudiness when the output is not stable.
 [付記2]
 太陽電池パネルを含む発電部の出力の計測結果を取得する計測結果取得部と、
 前記計測結果取得部により取得された前記計測結果に基づいて、前記発電部の設置場所における天候情報を作成する作成部とを備え、
 前記計測結果取得部は、前記出力の計測結果の時系列データを微分することにより、前記出力が安定しているか否かを確認し、前記出力が安定している場合は晴れを示す前記天候情報を作成し、前記出力が安定していない場合は曇りを示す前記天候情報を作成する、天候情報処理装置。
[Appendix 2]
A measurement result acquisition unit for acquiring a measurement result of the output of the power generation unit including the solar battery panel;
Based on the measurement result acquired by the measurement result acquisition unit, comprising a creation unit that creates weather information at the installation location of the power generation unit,
The measurement result acquisition unit confirms whether the output is stable by differentiating time series data of the measurement result of the output, and the weather information indicating sunny when the output is stable The weather information processing apparatus creates the weather information indicating cloudiness when the output is not stable.
 1 出力ライン
 1p プラス側出力ライン
 1n マイナス側出力ライン
 2,4,5 集約ライン
 5p プラス側集約ライン
 5n マイナス側集約ライン
 3 内部ライン
 6 キュービクル
 7 銅バー
 8 PCS
 9 電力変換部
 11 検出処理部
 14 通信部
 16 電流センサ
 17 電圧センサ
 26 電源線
 26p プラス側電源線
 26n マイナス側電源線
 46 信号線
 60 集電ユニット
 71 集電箱
 72,73,77 銅バー
 77p プラス側銅バー
 77n マイナス側銅バー
 74 太陽電池ユニット
 76 接続箱
 78 発電部
 79,79A,79B,79C,79D 太陽電池パネル
 80 PCSユニット
 81 判定部
 82,92 計測結果取得部
 83,93 作成部
 84,94 通信処理部
 85,95 記憶部
 86,96 取得部
 101 判定装置
 111 監視装置
 121 天候情報処理装置
 151 収集装置
 301 監視システム
 401 太陽光発電システム
1 output line 1p plus side output line 1n minus side output line 2,4,5 aggregation line 5p plus side aggregation line 5n minus side aggregation line 3 internal line 6 cubicle 7 copper bar 8 PCS
DESCRIPTION OF SYMBOLS 9 Power conversion part 11 Detection processing part 14 Communication part 16 Current sensor 17 Voltage sensor 26 Power supply line 26p Positive side power supply line 26n Negative side power supply line 46 Signal line 60 Current collection unit 71 Current collection box 72, 73, 77 Copper bar 77p Plus Side copper bar 77n Negative side copper bar 74 Solar cell unit 76 Junction box 78 Power generation unit 79, 79A, 79B, 79C, 79D Solar cell panel 80 PCS unit 81 Determination unit 82, 92 Measurement result acquisition unit 83, 93 Creation unit 84, 94 Communication Processing Unit 85, 95 Storage Unit 86, 96 Acquisition Unit 101 Determination Device 111 Monitoring Device 121 Weather Information Processing Device 151 Collection Device 301 Monitoring System 401 Solar Power Generation System

Claims (7)

  1.  太陽電池パネルを含む発電部の設置場所における天候情報を取得する取得部と、
     前記取得部により取得された前記天候情報に基づいて、前記発電部の異常判定に用いる基準を決定し、決定した前記基準を用いて前記異常判定を行う判定部とを備える、判定装置。
    An acquisition unit for acquiring weather information at the installation location of the power generation unit including the solar panel;
    A determination apparatus comprising: a determination unit configured to determine a reference to be used for abnormality determination of the power generation unit based on the weather information acquired by the acquisition unit, and to perform the abnormality determination using the determined reference.
  2.  前記取得部は、前記発電部の出力の計測結果を取得し、取得した前記計測結果に基づいて前記天候情報を作成する、請求項1に記載の判定装置。 The determination device according to claim 1, wherein the acquisition unit acquires a measurement result of an output of the power generation unit, and creates the weather information based on the acquired measurement result.
  3.  前記取得部は、前記計測結果を2回微分した結果に基づいて前記天候情報を作成する、請求項2に記載の判定装置。 The determination device according to claim 2, wherein the acquisition unit creates the weather information based on a result obtained by differentiating the measurement result twice.
  4.  前記判定部は、前記天候情報に基づいて、複数の前記発電部を複数のグループに分類し、前記グループごとに前記基準を決定し、同じ前記グループに属する各前記発電部の出力の計測結果を、前記グループに対応する前記基準を用いて比較することにより前記異常判定を行う、請求項1から請求項3のいずれか1項に記載の判定装置。 The determination unit classifies the plurality of power generation units into a plurality of groups based on the weather information, determines the reference for each group, and outputs measurement results of the power generation units belonging to the same group. The determination apparatus according to any one of claims 1 to 3, wherein the abnormality determination is performed by comparison using the reference corresponding to the group.
  5.  太陽電池パネルを含む発電部の出力の計測結果を取得する計測結果取得部と、
     前記計測結果取得部により取得された前記計測結果に基づいて、前記発電部の設置場所における天候情報を作成する作成部とを備える、天候情報処理装置。
    A measurement result acquisition unit for acquiring a measurement result of the output of the power generation unit including the solar battery panel;
    A weather information processing apparatus comprising: a creation unit that creates weather information at an installation location of the power generation unit based on the measurement result acquired by the measurement result acquisition unit.
  6.  判定装置における判定方法であって、
     太陽電池パネルを含む発電部の設置場所における天候情報を取得するステップと、
     取得した前記天候情報に基づいて、前記発電部の異常判定に用いる基準を決定するステップと、
     決定した前記基準を用いて前記異常判定を行うステップとを含む、判定方法。
    A determination method in a determination apparatus,
    Obtaining weather information at the installation location of the power generation unit including the solar panel;
    Based on the acquired weather information, determining a reference used for abnormality determination of the power generation unit;
    Performing the abnormality determination using the determined reference.
  7.  天候情報処理装置における天候情報処理方法であって、
     太陽電池パネルを含む発電部の出力の計測結果を取得するステップと、
     取得した前記計測結果に基づいて、前記発電部の設置場所における天候情報を作成するステップとを含む、天候情報処理方法。
    A weather information processing method in a weather information processing apparatus,
    Obtaining a measurement result of the output of the power generation unit including the solar battery panel;
    Creating weather information at an installation location of the power generation unit based on the acquired measurement result.
PCT/JP2019/001415 2018-03-27 2019-01-18 Determination device, weather information processing device, determination method and weather information processing method WO2019187523A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509704A JP7207401B2 (en) 2018-03-27 2019-01-18 Determination device, weather information processing device, determination method, and weather information processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-059457 2018-03-27
JP2018059457 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019187523A1 true WO2019187523A1 (en) 2019-10-03

Family

ID=68059669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001415 WO2019187523A1 (en) 2018-03-27 2019-01-18 Determination device, weather information processing device, determination method and weather information processing method

Country Status (2)

Country Link
JP (1) JP7207401B2 (en)
WO (1) WO2019187523A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113441A1 (en) * 2020-11-26 2022-06-02 住友電気工業株式会社 Power generation status determination device, power generation status determination method, and determination program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123594A (en) * 1993-10-22 1995-05-12 Omron Corp Abnormality detector for solar cell
JP2003121558A (en) * 2001-10-12 2003-04-23 Canon Inc Apparatus and method for information processing
US20090171597A1 (en) * 2008-01-01 2009-07-02 Sma Solar Technology Ag Evaluation method
JP2010239856A (en) * 2009-01-19 2010-10-21 Commissariat A L'energie Atomique Method of forecasting electrical production of photovoltaic device
JP2013258796A (en) * 2012-06-11 2013-12-26 Toyota Motor Corp Deterioration diagnostic device of power generation system utilizing natural energy
JP2017046447A (en) * 2015-08-26 2017-03-02 東北電力株式会社 Solar battery deterioration abnormality determination system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123594A (en) * 1993-10-22 1995-05-12 Omron Corp Abnormality detector for solar cell
JP2003121558A (en) * 2001-10-12 2003-04-23 Canon Inc Apparatus and method for information processing
US20090171597A1 (en) * 2008-01-01 2009-07-02 Sma Solar Technology Ag Evaluation method
JP2010239856A (en) * 2009-01-19 2010-10-21 Commissariat A L'energie Atomique Method of forecasting electrical production of photovoltaic device
JP2013258796A (en) * 2012-06-11 2013-12-26 Toyota Motor Corp Deterioration diagnostic device of power generation system utilizing natural energy
JP2017046447A (en) * 2015-08-26 2017-03-02 東北電力株式会社 Solar battery deterioration abnormality determination system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113441A1 (en) * 2020-11-26 2022-06-02 住友電気工業株式会社 Power generation status determination device, power generation status determination method, and determination program

Also Published As

Publication number Publication date
JPWO2019187523A1 (en) 2021-03-25
JP7207401B2 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
KR101728692B1 (en) System and method of predicting and monitoring anomaly of solar module
US20210313928A1 (en) Method and apparatus for determining key performance photovoltaic characteristics using sensors from module-level power electronics
JP6115764B2 (en) Photovoltaic power generation system, abnormality determination processing device, abnormality determination processing method, and program
US8892411B2 (en) Information processor, power generation determining method, and program
JP7188399B2 (en) Determination device, photovoltaic power generation system, determination method and determination program
WO2016166991A1 (en) Diagnostic system for photovoltaic power generation equipment, and program
WO2014173414A1 (en) Monitoring system
JP2010130762A (en) Electric power supply system containing natural energy generating apparatus and supply/demand adjusting method
JP6756188B2 (en) Power generation status judgment device, power generation status judgment method and judgment program
JP2017153333A (en) Power demand prediction device and power demand prediction system including the same, and power demand predication method
CN115792457A (en) Method and system for diagnosing and analyzing station acquisition fault based on edge calculation
WO2019187523A1 (en) Determination device, weather information processing device, determination method and weather information processing method
TW201941530A (en) Method for determining orientation of solar power generation module utilizing a power generation efficiency formula to compute power generation efficiency
JP7163931B2 (en) Determination device, determination method and determination program
JP7173128B2 (en) GENERATING UNIT RELOCATION EQUIPMENT AND OPERATION PROCESSING METHOD
JP7157393B2 (en) Determination device, photovoltaic power generation system, determination method and determination program
JP7095734B2 (en) Judgment device, photovoltaic system and judgment method
TW201727559A (en) Management method and system of renewable energy power plant checking whether the power generation of a renewable energy power plant is normal according to the estimated power generation amount
JP2023009777A (en) Determination device and determination method
WO2022113441A1 (en) Power generation status determination device, power generation status determination method, and determination program
WO2023203843A1 (en) Power generation state determination device, power generation state determination method, and determination program
WO2023095387A1 (en) Determination device and determination method
TWI636658B (en) Method and system for judging the orientation of a unit under test
JP2023009783A (en) Determination device and determination method
CN116545112A (en) Intelligent electricity management system and method based on big data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509704

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775749

Country of ref document: EP

Kind code of ref document: A1