WO2019187518A1 - Driving control device for electrically-propelled vehicle - Google Patents

Driving control device for electrically-propelled vehicle Download PDF

Info

Publication number
WO2019187518A1
WO2019187518A1 PCT/JP2019/001277 JP2019001277W WO2019187518A1 WO 2019187518 A1 WO2019187518 A1 WO 2019187518A1 JP 2019001277 W JP2019001277 W JP 2019001277W WO 2019187518 A1 WO2019187518 A1 WO 2019187518A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
driver
control device
drive
drive control
Prior art date
Application number
PCT/JP2019/001277
Other languages
French (fr)
Japanese (ja)
Inventor
松尾朋弥
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2020509702A priority Critical patent/JP6946549B2/en
Priority to CN201980023894.7A priority patent/CN111936346B/en
Publication of WO2019187518A1 publication Critical patent/WO2019187518A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K23/00Rider-operated controls specially adapted for cycles, i.e. means for initiating control operations, e.g. levers, grips
    • B62K23/02Rider-operated controls specially adapted for cycles, i.e. means for initiating control operations, e.g. levers, grips hand actuated
    • B62K23/06Levers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M25/00Actuators for gearing speed-change mechanisms specially adapted for cycles
    • B62M25/02Actuators for gearing speed-change mechanisms specially adapted for cycles with mechanical transmitting systems, e.g. cables, levers
    • B62M25/04Actuators for gearing speed-change mechanisms specially adapted for cycles with mechanical transmitting systems, e.g. cables, levers hand actuated
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/02Controlling members for hand actuation by linear movement, e.g. push buttons
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/04Controlling members for hand actuation by pivoting movement, e.g. levers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a drive control device for an electric vehicle in which a drive motor generates a driving force for driving wheels according to an operation of an acceleration operation means by a driver.
  • Japanese Patent Application Laid-Open No. 2010-88154 discloses that the driving torque or regenerative torque of a driving motor is controlled by a driver's turning operation of an accelerator grip (acceleration operating means).
  • the power supplied to the drive motor is zero at the fully closed position of the accelerator grip, and the driver performs regenerative braking by rotating the accelerator grip in the direction opposite to the acceleration side from the fully closed position. .
  • an engine vehicle has been provided with a clutch mechanism for transmitting or interrupting the driving force of the engine. Therefore, by controlling the clutch mechanism based on the operation of the clutch operator by the driver, it is possible to change the speed according to the driver's intention and to cut off the driving force of the engine.
  • centrifugal clutches that transmit the driving force of the drive motor to the wheels when starting, but the driving force is cut off according to the driver's request in situations other than starting. I can't.
  • the present invention changes the driving force transmitted from the driving motor to the wheel or interrupts the transmission of the driving force from the driving motor to the wheel according to the driver's request.
  • An object of the present invention is to provide a drive control apparatus.
  • the present invention is a drive control device for an electric vehicle having acceleration operation means operated by a driver and a drive motor that generates a driving force for driving wheels in response to the operation of the acceleration operation means by the driver. And has the following characteristics.
  • the said drive control apparatus is provided in the said electric vehicle, changes the said driving force by operation of the said driver, or interrupts
  • the driving force changing means is provided on a handle of the electric vehicle.
  • the driving force changing means is a lever-type operator that is operated by the driver by hand.
  • a switch box having a plurality of switches is disposed on the handle, and the driving force changing means is provided on the switch box and is an operator operated by the driver by hand.
  • the operation element is a stroke type operation element.
  • the operation element is a pressure-sensitive operation element.
  • the said drive control apparatus controls the output of the said drive motor according to operation of the said acceleration operation means by the said driver, On the other hand, according to operation of the said driving force change means by the said driver And a control means for adjusting the output of the drive motor based on the operation of the acceleration operation means.
  • the control means turns on or off the output of the drive motor in accordance with the operation of the driving force changing means by the driver.
  • the control means changes the output of the drive motor in accordance with the operation amount of the drive force change means by the driver.
  • control means performs zero torque control on the drive motor in accordance with the rotational speed of the drive motor when the amount of operation of the drive force change means by the driver is 100%. Do.
  • the drive control device further includes vehicle speed detecting means for detecting a vehicle speed of the electric vehicle.
  • the control means controls the output of the drive motor by supplying to the drive motor command values corresponding to the operation amounts of the acceleration operation means and the drive force changing means by the driver and the vehicle speed.
  • the control means amplifies and supplies the command value to the drive motor when the vehicle speed is less than or equal to a predetermined vehicle speed and the operation amount of the drive force change means is less than or equal to a predetermined operation amount. .
  • the driving force changing means is provided in the electric vehicle, so that not only during the conventional start-up, but also during the operation of the electric vehicle (deceleration, stopping, traveling)
  • the driving force (output) of the drive motor can be freely changed or cut off according to the driver's request. That is, in the first feature, the driver can control the output of the drive motor regardless of whether the acceleration operation means is operated or not by performing a pseudo clutch operation using the drive force changing means. .
  • the vehicle body behavior equivalent to an engine vehicle is realizable.
  • the driving force changing means is provided on the handle operated by the driver, the operability is improved.
  • the driving force changing means is an operator simulating a lever, the operability can be further improved.
  • the burden on the driver can be reduced.
  • the driving force (output) of the drive motor can be changed or blocked with a small operation amount.
  • the driving force (output) of the driving motor can be changed or cut off with less force and operation amount.
  • the seventh feature of the present invention it becomes possible to appropriately control the output (drive force) of the drive motor in accordance with the driver's request.
  • the driving force can be transmitted from the driving motor to the wheels and the driving force can be interrupted uniquely, the response of the output of the driving motor to the operation of the driving force changing means. Can increase the sex.
  • the ninth feature of the present invention it is possible to adjust (control) the output of the drive motor in accordance with the operation of the acceleration operation means by the driver in the range of 0% to 100%.
  • the drive control of the drive motor similar to the clutch operation of the engine car can be performed according to the driver's request.
  • the eleventh feature of the present invention since the output of the drive motor is amplified in the low speed range of the electric vehicle, the same effect as when the output of the engine is amplified by the half-clutch operation at the low speed of the engine vehicle is obtained. can get.
  • FIG. 1 is a right side view of an electric vehicle to which a drive control device according to an embodiment is applied. It is a schematic back view of the right periphery of the steering handle of FIG. It is a schematic plan view of the left side periphery of the steering handle of FIG. It is a schematic plan view which shows the 1st modification of the left side periphery of the steering handle of FIG. It is a perspective view which shows the 2nd modification of the left side periphery of the steering handle of FIG. It is a perspective view which shows the 3rd modification of the left side periphery of the steering handle of FIG. It is a block diagram of a drive control device. It is a figure which shows an example of the map of FIG. It is a flowchart which shows operation
  • FIG. 1 is a right side view of an electric vehicle 12 on which a drive control device 10 for an electric vehicle according to the present embodiment (hereinafter also referred to as the drive control device 10 according to the present embodiment) is mounted.
  • the front-rear direction, the left-right direction, and the up-down direction will be described according to the direction viewed from the driver (occupant) seated on the seat 14 of the electric vehicle 12.
  • the electric vehicle 12 is an off-road electric motorcycle.
  • the drive control apparatus 10 which concerns on this embodiment is not limited to the electric vehicle 12 shown in FIG. 1, It is mounted in a straddle-type electric vehicle. Therefore, for example, the drive control device 10 can be mounted on a scooter type electric motorcycle.
  • the electric vehicle 12 has a body frame 16.
  • the vehicle body frame 16 includes a front head pipe 18, a pair of left and right main frames 20 extending rearward and obliquely downward from an upper portion of the head pipe 18, and a down frame 21 extending rearward and obliquely downward from a lower portion of the head pipe 18.
  • a center frame 22 and a seat rail 23 are connected to the rear portion of the main frame 20.
  • the head pipe 18 rotatably supports a steering stem (not shown).
  • a top bridge 25 is provided on the upper portion of the steering stem.
  • a steering handle 24 is attached to the top of the top bridge 25.
  • the top bridge 25 is provided with a meter unit 26 including various instruments.
  • a lighting device 27 such as a headlight that irradiates the front of the electric vehicle 12 may be disposed in front of the head pipe 18.
  • a bottom bridge 29 is provided below the steering stem.
  • the top bridge 25 and the bottom bridge 29 support a front fork 30 that rotatably supports a front wheel (wheel) 28.
  • the front fork 30 is provided with a front fender 31 that covers the front wheel 28 from above.
  • the pair of left and right center frames 22 extend rearward and obliquely downward from the rear portion of the main frame 20.
  • a pivot 32 is provided below the center frame 22.
  • the pivot 32 supports the front end portion of the swing arm 33 so as to be swingable.
  • a rear wheel (wheel) 34 is supported at the rear end of the swing arm 33.
  • the pair of left and right seat rails 23 extends rearward and obliquely upward from the rear portion of the main frame 20 and supports the seat 14 from below.
  • a case 35 simulating a fuel tank is supported by the main frame 20 from below in front of the seat 14.
  • a power unit 36 is disposed below the case 35.
  • the power unit 36 includes a drive motor 38 that is a drive source of the electric vehicle 12.
  • the vehicle body frame 16 further includes a lower frame 39 connected to the lower end portion of the down frame 21.
  • a front end portion of the lower frame 39 is connected to a lower end portion of the down frame 21, and a rear end portion of the lower frame 39 is connected to a lower portion of the center frame 22.
  • the power unit 36 is supported in the space below the case 35 by the down frame 21, the center frame 22, and the lower frame 39.
  • the drive motor 38 transmits drive force to the rear wheels 34 via a transmission and a chain (not shown).
  • a rear wheel brake pedal 42 is provided on the side of the center frame 22 and the power unit 36.
  • the center frame 22 and the seat rail 23 are connected by a rear frame 43.
  • the body frame 16 is covered with a body cover 44.
  • the vehicle body cover 44 includes a pair of left and right shrouds 46 covering a part of the main frame 20 and the down frame 21 from the side, and a pair of left and right side covers 48 covering a part of the main frame 20 and the seat rail 23 from the side.
  • a battery 52 which is a power source of the drive control device 10 including the drive motor 38 and the like, is disposed.
  • a motor driver 56 that is a PDU (power drive unit) of the drive motor 38 and an ECU 60 that is a control means of the drive motor 38 are disposed.
  • the battery 52 can be charged with a household commercial power source or the like by using a charger (not shown). Alternatively, when charging is insufficient, the battery 52 may be replaced.
  • the electric vehicle 12 travels using electric power supplied from the battery 52. In this case, at the time of acceleration or the like, drive control is performed such that the drive motor 38 generates a drive force by supplying power from the battery 52 to the drive motor 38. By transmitting the generated driving force to the rear wheel 34, the electric vehicle 12 can be driven.
  • regenerative control for operating the drive motor 38 as a generator and charging the battery 52 with generated power is performed.
  • These drive control and regenerative control are performed by the motor driver 56 controlling the drive motor 38 based on a command signal (command value) supplied from the ECU 60 to the motor driver 56.
  • cylindrical handle grips 62L and 62R are respectively attached to both ends of the steering handle 24 in the vehicle width direction.
  • a right handle grip (acceleration operation means) 62R shown in FIG. 2 is a throttle grip or an accelerator grip fitted into the right end portion of the steering handle 24.
  • the driver can adjust the driving force of the driving motor 38 according to the operation amount (rotation angle) ⁇ TH by rotating the handle grip 62R around the axis of the steering handle 24 with the right hand. .
  • a sensor housing 64 is provided in the vicinity of the proximal end portion of the handle grip 62R in the steering handle 24. Inside the sensor housing 64, a throttle sensor 66 for detecting a throttle opening TH corresponding to the rotation angle ⁇ TH is provided.
  • the throttle sensor 66 may detect the throttle opening TH by a detection method such as the accelerator opening sensor disclosed in the above publication. Therefore, in this embodiment, an accelerator opening sensor may be used instead of the throttle sensor 66.
  • the left handle grip 62L shown in FIG. 3 is fitted to the left end of the steering handle 24 so as not to rotate.
  • a pseudo clutch lever (driving force changing means, lever-type operating element) 68 is provided in front of the handle grip 62L in the steering handle 24. As will be described later, the pseudo clutch lever 68 is operated by the driver to control the output of the drive motor 38 regardless of whether or not the handle grip 62R is operated. Is provided in order to realize.
  • a lever attaching portion 69 for attaching the pseudo clutch lever 68 to the steering handle 24 is provided at the left end portion of the steering handle 24.
  • the lever attachment portion 69 attaches the pseudo clutch lever 68 to the left end portion of the steering handle 24 so that the pseudo clutch lever 68 rotates about the attachment shaft 70.
  • a pseudo clutch sensor 72 composed of a variable resistor is connected to the mounting shaft 70.
  • the driving force transmitted from the driving motor 38 to the rear wheel 34 is changed according to ⁇ cl, or the transmission of the driving force from the driving motor 38 to the rear wheel 34 is interrupted. That is, the pseudo clutch lever 68 is a lever imitating a clutch operator that connects and disconnects a clutch mechanism in an engine vehicle. Therefore, even when the driver is on the electric vehicle 12, by operating the pseudo clutch lever 68, the driver can experience a pseudo operation similar to the clutch operation of the engine vehicle.
  • the state corresponding to the clutch connection state is a state in which the drive motor 38 and the rear wheel 34 are connected and the driving force of the drive motor 38 can be transmitted to the rear wheel 34 100%.
  • such a state is referred to as a state in which the output reduction rate DR when the output (driving force) of the drive motor 38 is transmitted to the rear wheel 34 is 0%.
  • the pseudo clutch lever 68 When the driver puts the left thumb on the handle grip 62L and puts the remaining four fingers on the pseudo clutch lever 68 and pulls the pseudo clutch lever 68 backward, the pseudo clutch lever 68 is attached to the mounting shaft. Rotate around the handle 70 toward the handle grip 62L.
  • the rotation angle ⁇ cl in the vicinity of the handle grip 62L corresponds to the clutch disengaged state in the engine vehicle.
  • the state corresponding to the clutch disengagement is a state where transmission of driving force from the driving motor 38 to the rear wheel 34 is interrupted, that is, a state where the output of the driving motor 38 is zero. In the following description, such a state is referred to as a state where the reduction rate DR is 100%.
  • the angle range between the rotation angle ⁇ cl of 0 ° and the rotation angle on the handle grip 62L side corresponds to the half-clutch state in the engine vehicle.
  • the decrease rate DR is in the range of 0% to 100%.
  • the pseudo clutch sensor 72 detects, as a detection signal, a voltage value corresponding to the operation amount (rotation angle ⁇ cl) of the pseudo clutch lever 68 when the pseudo clutch lever 68 rotates about the mounting shaft 70 by the driver's operation. Output.
  • This voltage value is a voltage value corresponding to the reduction rate DR of the output of the drive motor 38 requested by the driver to the drive motor 38. Therefore, the driver can instruct connection / disconnection of transmission of the driving force from the drive motor 38 to the rear wheel 34 by operating the pseudo clutch lever 68.
  • Such a driving force changing means is not limited to the example of FIG. 3, but can be configured as in the first to third modifications of FIGS.
  • the pseudo clutch sensor 72 is disposed at a position away from the pseudo clutch lever 68.
  • One end of a connecting member 76 is connected to the rotating shaft 74 of the pseudo clutch sensor 72 in the radial direction, and the other end of the connecting member 76 is connected to the base end portion of the pseudo clutch lever 68 via a wire 78.
  • the pseudo clutch lever 68 is rotated about the mounting shaft 70 by the driver's operation, the wire 78 connected to the pseudo clutch lever 68 is pulled, and the rotating shaft 74 is rotated via the connecting member 76. be able to.
  • the pseudo clutch sensor 72 outputs a voltage value based on the rotation amount of the rotating shaft 74 according to the rotation angle ⁇ cl of the pseudo clutch lever 68 as a detection signal.
  • the switch box 80 is disposed at a location close to the handle grip 62 ⁇ / b> L on the left end side of the steering handle 24.
  • various switches 82 such as a winker switch and a horn switch are arranged.
  • a small pseudo clutch lever 84 is provided below the switch box 80.
  • the pseudo clutch sensor 72 outputs a voltage value corresponding to the rotation angle ⁇ cl of the pseudo clutch lever 84 as a detection signal.
  • a rear wheel brake lever 86 is provided in front of the handle grip 62L.
  • the switch box 80 is disposed at a position close to the handle grip 62 ⁇ / b> L on the left end side of the steering handle 24.
  • Various switches 82 are also arranged in the switch box 80.
  • the lower switch is assigned as a pseudo clutch switch (driving force changing means, operator) 88.
  • the pseudo clutch switch 88 is a stroke type or pressure sensitive type switch. In the case of the stroke type pseudo clutch switch 88, the driver operates the pseudo clutch switch 88 with the thumb or index finger of the left hand while holding the handle grip 62L.
  • the pseudo clutch sensor 72 outputs a detection signal corresponding to the operation amount.
  • the driver presses the pseudo clutch switch 88 with the left thumb or forefinger while holding the handle grip 62L.
  • the pseudo clutch sensor 72 outputs a detection signal corresponding to the number of operations of the pseudo clutch switch 88.
  • FIG. 7 is a block diagram of the drive control apparatus 10 according to the present embodiment.
  • the drive control device 10 includes a throttle operator (acceleration operating means) 100, a throttle sensor 66, a pseudo clutch operator (driving force changing means) 102, a pseudo clutch sensor 72, a wheel speed sensor 104, or a motor rotation speed sensor. 106, an ECU 60, and a motor driver 56.
  • the throttle operator 100 is an acceleration operation means for the driver to perform a throttle operation like a handle grip 62R shown in FIG. Therefore, the throttle operator 100 is not limited to the handle grip 62R, and may be any as long as the driver can perform the throttle operation.
  • the throttle sensor 66 detects the throttle opening TH according to the operation amount (rotation angle ⁇ TH) of the throttle operator 100 by the driver and outputs it to the ECU 60.
  • the pseudo clutch operator 102 is a driving force changing means for the driver to instruct a change or disconnection of the driving force, like the pseudo clutch levers 68 and 84 or the pseudo clutch switch 88 shown in FIGS. Therefore, the pseudo clutch operation element 102 is not limited to the pseudo clutch levers 68 and 84 and the pseudo clutch switch 88, and may be any one that can be operated by the driver and instructed to change or cut off the driving force.
  • the pseudo clutch sensor 72 outputs a detection signal to the ECU 60 according to the operation amount (for example, the rotation angle ⁇ cl) of the pseudo clutch operator 102 by the driver.
  • the wheel speed sensor 104 detects the wheel speed of the rear wheel 34 or the front wheel 28 (wheel) and outputs it to the ECU 60.
  • the motor rotation speed sensor 106 outputs the rotation speed of the drive motor 38 to the ECU 60.
  • the drive control device 10 only needs to include any one of the wheel speed sensor 104 and the motor rotation speed sensor 106.
  • the ECU 60 implements various processing functions by reading and executing a program stored in a memory (not shown). Specifically, the ECU 60 includes a required output calculation unit 60a, a decrease rate calculation unit 60b, a vehicle speed calculation unit (vehicle speed detection means) 60c, a required output adjustment unit 60d, and a map 60e.
  • the required output calculation unit 60a calculates a required output for the drive motor 38 based on the throttle opening TH output from the throttle sensor 66.
  • the reduction rate calculation unit 60 b calculates the reduction rate DR of the driving force output based on the detection signal from the pseudo clutch sensor 72.
  • the vehicle speed calculation unit 60 c calculates the vehicle speed V of the electric vehicle 12 based on the wheel speed detected by the wheel speed sensor 104 or the rotation speed of the drive motor 38 detected by the motor rotation speed sensor 106.
  • the map 60e is a map showing the relationship between the vehicle speed V and the output of the drive motor 38, and has a standard map shown by a solid line and an amplification map shown by a one-dot chain line.
  • the standard map is a map that can be used in the entire vehicle speed region of the electric vehicle 12.
  • the amplification map is a map used in the low speed region of the electric vehicle 12.
  • the horizontal axis of the map 60e in FIG. 8 may be the rotational speed of the drive motor 38 instead of the vehicle speed V.
  • the request output adjustment unit 60d refers to the standard map or the amplification map stored in the map 60e, and the vehicle speed V calculated by the vehicle speed calculation unit 60c and the decrease rate DR calculated by the decrease rate calculation unit 60b. Are used to adjust the request output calculated by the request output calculation unit 60a.
  • the requested output adjusting unit 60d outputs the adjusted requested output to the motor driver 56 as a command value (command signal) for the drive motor 38.
  • the command value is determined from the relationship between the throttle opening TH and the vehicle speed V or the rotation speed of the drive motor 38.
  • the request output adjustment unit 60d allows the reduction rate DR (based on the operation amount of the pseudo clutch operator 102 by the driver to be DR: 0% to 100%) is taken into consideration, and the required output is adjusted, and the adjusted required output is set as a command value.
  • the motor driver 56 controls the drive motor 38 based on the command value supplied from the ECU 60. A specific drive control method for the drive motor 38 will be described later.
  • step S1 of FIG. 9 when the driver operates the right handle grip 62R (throttle operator 100) (see FIGS. 2 and 7) with the right hand while the electric vehicle 12 (see FIG. 1) is traveling, the throttle sensor 66 is operated. Detects the throttle opening TH according to the rotation angle ⁇ TH of the handle grip 62R, and outputs the detected throttle opening TH to the ECU 60.
  • step S2 the required output calculation unit 60a of the ECU 60 calculates a required output for the drive motor 38 based on the throttle opening TH.
  • the required output calculation unit 60a operates according to the throttle opening TH actually detected by the throttle sensor 66 when the output of the drive motor 38 corresponding to the maximum value of the throttle opening TH is 100%.
  • the output of the drive motor 38 requested by the person is calculated as the required output within the range of 0% to 100%.
  • step S3 when the driver operates the pseudo clutch operator 102 (pseudo clutch levers 68 and 84 or the pseudo clutch switch 88) (see FIGS. 3 to 7) with the left hand while the electric vehicle 12 is traveling, the pseudo clutch sensor 72 is operated. Detects the operation amount (for example, the rotation angle ⁇ cl) of the pseudo clutch operator 102 and outputs the detected operation amount to the ECU 60.
  • the pseudo clutch sensor 72 Detects the operation amount (for example, the rotation angle ⁇ cl) of the pseudo clutch operator 102 and outputs the detected operation amount to the ECU 60.
  • step S4 the reduction rate calculation unit 60b of the ECU 60, based on the input operation amount, reduces the stroke amount (operation amount) of the pseudo clutch operator 102 operated by the driver, that is, the reduction rate with respect to the output of the drive motor 38.
  • DR and stroke speed (operation speed of the pseudo clutch operator 102) are calculated.
  • step S5 the wheel speed of the front wheel 28 or the rear wheel 34 detected by the wheel speed sensor 104 or the rotation speed of the drive motor 38 detected by the motor rotation speed sensor 106 is sequentially input to the vehicle speed calculation unit 60c of the ECU 60.
  • step S6 the vehicle speed calculation unit 60c calculates the vehicle speed V of the electric vehicle 12 using the input wheel speed or rotation speed.
  • the required output adjustment unit 60d refers to the standard map or the amplification map stored in the map 60e, determines the reduction rate DR calculated by the reduction rate calculation unit 60b and the vehicle speed V calculated by the vehicle speed calculation unit 60c. The request output calculated by the request output calculation unit 60a is adjusted.
  • step S8 the requested output adjusting unit 60d supplies the adjusted requested output to the motor driver 56 as a command value.
  • step S9 the motor driver 56 drives and controls the drive motor 38 based on the supplied command value.
  • a driving force corresponding to the operation amount of the handle grip 62R (throttle operator 100) and / or the pseudo clutch operator 102 operated by the driver and / or the vehicle speed V is generated in the drive motor 38 and transmitted to the rear wheel 34.
  • the electric vehicle 12 can perform a traveling operation desired by the driver.
  • FIG. 10 is a flowchart illustrating details of the process in step S7 of FIG.
  • step S71 the required output adjustment unit 60d has the reduction rate DR calculated by the reduction rate calculation unit 60b of 100%, that is, is an instruction to cut off the transmission from the drive motor 38 to the rear wheel 34. Determine if. If it is not such an instruction (step S71: NO), the process proceeds to the next step S72.
  • step S72 the required output adjustment unit 60d determines whether the vehicle speed V of the electric vehicle 12 calculated by the vehicle speed calculation unit 60c is a low vehicle speed range, that is, whether the vehicle speed V is less than a predetermined vehicle speed threshold value V ⁇ . (V ⁇ V ⁇ ) is determined. When the vehicle speed is not in the low vehicle speed range (step S72: NO), the process proceeds to the next step S73.
  • step S73 the required output adjustment unit 60d determines whether to control the output (driving force) of the drive motor 38 according to the decrease rate DR.
  • step S73: YES the drive control of the drive motor 38 according to the reduction rate DR is determined (step S73: YES)
  • step S74 the process proceeds to the next step S74.
  • step S74 the request output adjustment unit 60d refers to the standard map stored in the map 60e, and adjusts the request output calculated by the request output calculation unit 60a to the request output according to the decrease rate DR. Accordingly, in step S74, the required output in the half-clutch state where the reduction rate DR is in the range of 0% to 100% is determined as the command value.
  • the required output adjusting unit 60d sets the required output of 50% as it is to the command value.
  • the required output adjusting unit 60d determines that it is necessary to suppress the output of the drive motor 38, changes the required output from 100% to 50%, and sets the changed required output (50%) to the command value. Set.
  • step S73 when the driving force is not controlled according to the decrease rate DR in step S73 (step S73: NO), the process proceeds to step S75.
  • step S75 the requested output adjustment unit 60d turns on or off the output of the drive motor 38, that is, transmits the drive force from the drive motor 38 to the rear wheel 34 as it is, or transmits the drive force from the drive motor 38 to the rear wheel 34. It is determined that the transmission of the driving force is interrupted or any driving control is performed.
  • the required output adjusting unit 60d determines the required output in the half-clutch state where the reduction rate DR is in the range of 0% to 100% as a command value, for example, as in step S74. do it.
  • step S72 when the vehicle speed V of the electric vehicle 12 is in the low vehicle speed range (V ⁇ V ⁇ , step S72: YES), the process proceeds to step S76.
  • the request output adjustment unit 60d refers to the amplification map stored in the map 60e and adjusts the request output calculated by the request output calculation unit 60a based on the decrease rate DR. Therefore, in step S76, the amplified required output is determined as the command value. That is, in the low vehicle speed region, the driver tries to operate the throttle operator 100 so that the driving force of the drive motor 38 is increased. Therefore, the required output adjustment unit 60d sets a command value obtained by amplifying the required output in such a way as to respond to the driver's intention.
  • step S76 when the reduction rate DR is less than 20% (the rotation angle range of ⁇ ca in FIGS. 3 and 4) and the request output calculated by the request output calculation unit 60a is 70% or more,
  • the required output adjustment unit 60d can increase the amplification factor of 150% according to the amplification factor regardless of the reduction rate DR and the magnitude of the required output.
  • the rotation angle range of ⁇ cb corresponds to the rotation angle range in which the decrease rate DR is 20% to 100%. In this rotation angle range, for example, the process of step S74 is executed.
  • the required output adjustment unit 60d determines the amplification factor of the output of the drive motor 38 from the amplification map based on the operation speed (clutch speed) of the pseudo clutch operator 102, and according to the determined amplification factor.
  • the requested output may be set as a command value.
  • the required output adjusting unit 60d determines from the amplification map based on the operation amount (rotation angle ⁇ TH) of the throttle operator 100 or the time change amount of the operation amount (time change amount of the rotation angle ⁇ TH).
  • the amplification factor of the output of the drive motor 38 may be determined, and the required output corresponding to the determined amplification factor may be set as the command value.
  • step S71 when the decrease rate DR is 100% (step S71: YES), the process proceeds to step S77.
  • step S77 the required output adjusting unit 60d determines that the output (driving force) of the driving motor 38 is 0, and that the transmission of the driving force from the driving motor 38 to the rear wheel 34 is interrupted, and the driving motor 38.
  • the driving operation desired by the driver can be easily executed. Can do.
  • the pseudo clutch levers 68 and 84 and the pseudo clutch switch 88 which are the pseudo clutch operator 102 are disposed at the left end portion of the steering handle 24. In the present embodiment, these pseudo clutch operators 102 may be disposed at the right end of the steering handle 24. In short, it is only necessary that the pseudo clutch operation element 102 is provided at a location that is easy for the driver to operate.
  • the above-described pseudo clutch levers 68 and 84 and the pseudo clutch switch 88 are examples, and the pseudo clutch operator 102 may be an operator that can be easily operated by the driver.
  • the switches 82 provided on the top and bottom or the left and right may be used as the pseudo clutch switch 88.
  • a seesaw type or winker type switch provided in the switch box 80 may be used as the pseudo clutch switch 88.
  • the power unit 36 is disposed below the case 35 and the driving force is transmitted from the drive motor 38 of the power unit 36 to the rear wheel 34.
  • the drive motor 38 is placed in the wheel of the rear wheel 34.
  • a driving force may be directly transmitted to the rear wheel 34 by using the arranged in-wheel motor. In either case, the driving force can be transmitted from the drive motor 38 to the rear wheel 34 to drive the electric vehicle 12.
  • the location of the battery 52 is not limited to the space between the case 35 and the power unit 36, and the battery 52 may be disposed in the vicinity of the power unit 36.
  • the arrangement location of the motor driver 56 is not limited to the inside of the case 35, and the motor driver 56 may be arranged near the power unit 36 or the battery 52 or below the seat 14.
  • the arrangement location of the ECU 60 is not limited to the inside of the case 35, and the ECU 60 may be arranged below the seat 14.
  • the ECU 60 and the motor driver 56 are separated from each other, but they can be configured as a single unit.
  • the pseudo clutch operation element 102 as the driving force changing means is provided in the electric vehicle 12, so that not only the conventional start but also the electric vehicle 12 can be operated. Even during operation (deceleration, stopping, traveling), the output (driving force) of the drive motor 38 can be freely changed or interrupted according to the driver's request. That is, when the driver performs a pseudo clutch operation using the pseudo clutch operator 102, the output of the drive motor 38 can be controlled regardless of whether or not the throttle operator 100 as the acceleration operation means is operated. it can. Thereby, also in the electric vehicle 12, the vehicle body behavior equivalent to an engine vehicle is realizable.
  • the driver gives an instruction to change the output of the drive motor 38 by rotating the handle grip 62R.
  • the driver in order to cut off the output of the drive motor 38, the driver must rotate the handle grip 62R greatly.
  • the output of the drive motor 38 cannot be changed in a short time.
  • the driver can operate the pseudo clutch operator 102 independently of the operation of the throttle operator 100. . Further, unlike the engine vehicle, the electric vehicle 12 does not cut (idle) the rotational speed of the drive motor 38 by the operation of the pseudo clutch operator 102.
  • the output of the drive motor 38 can be set to 0 in a short time from time t1 to time t2. it can. Further, in this embodiment, when the pseudo clutch operator 102 is returned to the original position at time t2, the output of the drive motor 38 can be set to a desired output in a short time from time t2 to time t3.
  • the driver operates the pseudo clutch operator 102 to quickly cut off the output of the drive motor 38 and return from the shut-off state while making the driver feel free running. Can be done. As a result, the behavior of the electric vehicle 12 desired by the driver can be quickly realized.
  • the pseudo clutch operator 102 is provided on the handle that is easy for the driver to operate, so that the operability is improved.
  • the pseudo clutch operation element 102 is the pseudo clutch lever 68 simulating a lever, the operability can be further improved.
  • the switch box 80 is provided with a pseudo clutch lever 84 or a pseudo clutch switch 88.
  • the driver can change or cut off the driving force (output) of the driving motor 38 with a small operation amount.
  • the pressure-sensitive pseudo clutch switch 88 makes it easy to operate, and can change or cut off the driving force (output) of the driving motor 38 with less force and operation amount.
  • the ECU 60 can appropriately control the output (drive force) of the drive motor 38 according to the driver's request.
  • the ECU 60 turns on or off the output of the drive motor 38 in accordance with the operation of the pseudo clutch operator 102 by the driver, thereby transmitting the drive force from the drive motor 38 to the rear wheel 34 or driving force. Can be unambiguously performed. Thereby, the response of the output of the drive motor 38 to the operation of the pseudo clutch operator 102 can be enhanced.
  • the ECU 60 adjusts (controls) the output of the drive motor 38 according to the operation of the throttle operator 100 by the driver in a range of 0% to 100% according to the operation amount of the pseudo clutch operator 102 by the driver. )can do.
  • the drive control of the drive motor 38 similar to the clutch operation of the engine car can be performed according to the driver's request.
  • the ECU 60 performs zero torque control in accordance with the rotational speed of the drive motor 38, so that regenerative braking (drag torque) by the drive motor 38 is performed. Is suppressed, and it is possible to make the driver feel a feeling of free running.
  • the output of the drive motor 38 is amplified in the low speed region of the electric vehicle 12, the same effect as the amplification of the engine output by half-clutch operation at the low speed of the engine vehicle can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Steering Devices For Bicycles And Motorcycles (AREA)
  • Mechanical Control Devices (AREA)

Abstract

An electrically-propelled vehicle (12) has: a pseudo clutch operation piece (102) that is operated by a driver; and a drive motor (38) that generates a driving force for driving a rear wheel (34) in accordance with a driver's operation of a throttle operation piece (100). A drive control device (10) is mounted on the electrically-propelled vehicle (12). The drive control device (10) changes the driving force or cuts off transmission of the driving force on the basis of a driver's operation of the pseudo clutch operation piece (102).

Description

電動車両の駆動制御装置Drive control device for electric vehicle
 本発明は、運転者による加速操作手段の操作に応じて、駆動モータが車輪を駆動させる駆動力を発生する電動車両の駆動制御装置に関する。 The present invention relates to a drive control device for an electric vehicle in which a drive motor generates a driving force for driving wheels according to an operation of an acceleration operation means by a driver.
 例えば、特開2010-88154号公報には、運転者によるアクセルグリップ(加速操作手段)の回動操作によって、駆動モータの駆動トルク又は回生トルクを制御することが開示されている。上記公報では、アクセルグリップの全閉位置で駆動モータへの供給電力がゼロとなり、運転者が全閉位置より加速側とは逆方向にアクセルグリップを回動操作することで、回生制動を行わせる。 For example, Japanese Patent Application Laid-Open No. 2010-88154 discloses that the driving torque or regenerative torque of a driving motor is controlled by a driver's turning operation of an accelerator grip (acceleration operating means). In the above publication, the power supplied to the drive motor is zero at the fully closed position of the accelerator grip, and the driver performs regenerative braking by rotating the accelerator grip in the direction opposite to the acceleration side from the fully closed position. .
 ところで、従来より、エンジン車には、エンジンの駆動力を伝達又は遮断するクラッチ機構が設けられている。従って、運転者によるクラッチ操作子の操作に基づきクラッチ機構を制御することで、運転者の意図に応じた変速やエンジンの駆動力の遮断が可能である。 By the way, conventionally, an engine vehicle has been provided with a clutch mechanism for transmitting or interrupting the driving force of the engine. Therefore, by controlling the clutch mechanism based on the operation of the clutch operator by the driver, it is possible to change the speed according to the driver's intention and to cut off the driving force of the engine.
 これに対して、電動車両には、発進時に駆動モータの駆動力を車輪に伝達する遠心クラッチは存在するが、発進時以外の場面で、運転者の要望に応じて、駆動力を遮断することはできない。 On the other hand, there are centrifugal clutches that transmit the driving force of the drive motor to the wheels when starting, but the driving force is cut off according to the driver's request in situations other than starting. I can't.
 そこで、本発明は、運転者の要望に応じて、駆動モータから車輪に伝達される駆動力を変更し、又は、駆動モータから車輪への駆動力の伝達を遮断することを可能とする電動車両の駆動制御装置を提供することを目的とする。 Therefore, the present invention changes the driving force transmitted from the driving motor to the wheel or interrupts the transmission of the driving force from the driving motor to the wheel according to the driver's request. An object of the present invention is to provide a drive control apparatus.
 本発明は、運転者が操作する加速操作手段と、前記運転者による前記加速操作手段の操作に応じて、車輪を駆動させる駆動力を発生する駆動モータとを有する電動車両の駆動制御装置であって、以下の特徴を有する。 The present invention is a drive control device for an electric vehicle having acceleration operation means operated by a driver and a drive motor that generates a driving force for driving wheels in response to the operation of the acceleration operation means by the driver. And has the following characteristics.
 第1の特徴;前記駆動制御装置は、前記電動車両に設けられ、前記運転者の操作によって、前記駆動力を変更し、又は、前記駆動モータから前記車輪への前記駆動力の伝達を遮断する駆動力変更手段を備える。 1st characteristic; The said drive control apparatus is provided in the said electric vehicle, changes the said driving force by operation of the said driver, or interrupts | blocks transmission of the said driving force from the said drive motor to the said wheel Driving force changing means is provided.
 第2の特徴;前記駆動力変更手段は、前記電動車両のハンドルに設けられる。 Second feature: The driving force changing means is provided on a handle of the electric vehicle.
 第3の特徴;前記駆動力変更手段は、前記運転者が手で操作するレバータイプの操作子である。 Third feature: The driving force changing means is a lever-type operator that is operated by the driver by hand.
 第4の特徴;前記ハンドルには、複数のスイッチを有するスイッチボックスが配置され、前記駆動力変更手段は、前記スイッチボックスに設けられ、前記運転者が手で操作する操作子である。 Fourth feature: A switch box having a plurality of switches is disposed on the handle, and the driving force changing means is provided on the switch box and is an operator operated by the driver by hand.
 第5の特徴;前記操作子は、ストロークタイプの操作子である。 Fifth feature; the operation element is a stroke type operation element.
 第6の特徴;前記操作子は、圧力感応型の操作子である。 Sixth feature; the operation element is a pressure-sensitive operation element.
 第7の特徴;前記駆動制御装置は、前記運転者による前記加速操作手段の操作に応じて、前記駆動モータの出力を制御し、一方で、前記運転者による前記駆動力変更手段の操作に応じて、前記加速操作手段の操作に基づく前記駆動モータの出力を調整する制御手段をさらに備える。 7th characteristic; The said drive control apparatus controls the output of the said drive motor according to operation of the said acceleration operation means by the said driver, On the other hand, according to operation of the said driving force change means by the said driver And a control means for adjusting the output of the drive motor based on the operation of the acceleration operation means.
 第8の特徴;前記制御手段は、前記運転者による前記駆動力変更手段の操作に応じて、前記駆動モータの出力をオン又はオフする。 Eighth feature: The control means turns on or off the output of the drive motor in accordance with the operation of the driving force changing means by the driver.
 第9の特徴;前記制御手段は、前記運転者による前記駆動力変更手段の操作量に応じて、前記駆動モータの出力を変更する。 Ninth feature: The control means changes the output of the drive motor in accordance with the operation amount of the drive force change means by the driver.
 第10の特徴;前記制御手段は、前記運転者による前記駆動力変更手段の操作量が100%である場合には、前記駆動モータに対して、該駆動モータの回転数に応じたゼロトルク制御を行う。 Tenth feature; the control means performs zero torque control on the drive motor in accordance with the rotational speed of the drive motor when the amount of operation of the drive force change means by the driver is 100%. Do.
 第11の特徴;前記駆動制御装置は、前記電動車両の車速を検出する車速検出手段をさらに備える。前記制御手段は、前記運転者による前記加速操作手段及び前記駆動力変更手段の各操作量と前記車速とに応じた指令値を前記駆動モータに供給することにより、前記駆動モータの出力を制御する。また、前記制御手段は、前記車速が所定車速以下であり、且つ、前記駆動力変更手段の操作量が所定操作量以下である場合には、前記指令値を増幅して前記駆動モータに供給する。 Eleventh feature; the drive control device further includes vehicle speed detecting means for detecting a vehicle speed of the electric vehicle. The control means controls the output of the drive motor by supplying to the drive motor command values corresponding to the operation amounts of the acceleration operation means and the drive force changing means by the driver and the vehicle speed. . The control means amplifies and supplies the command value to the drive motor when the vehicle speed is less than or equal to a predetermined vehicle speed and the operation amount of the drive force change means is less than or equal to a predetermined operation amount. .
 本発明の第1の特徴によれば、駆動力変更手段が電動車両に設けられることで、従来の発進時のみならず、電動車両の動作時(減速時、停車時、走行中)においても、運転者の要望に応じて、駆動モータの駆動力(出力)を自由に変更又は遮断することができる。すなわち、第1の特徴では、運転者が駆動力変更手段を用いて擬似的なクラッチ操作を行うことで、加速操作手段の操作の有無に関わりなく、前記駆動モータの出力を制御することができる。これにより、電動車両においても、エンジン車と同等の車体挙動を実現することができる。 According to the first feature of the present invention, the driving force changing means is provided in the electric vehicle, so that not only during the conventional start-up, but also during the operation of the electric vehicle (deceleration, stopping, traveling) The driving force (output) of the drive motor can be freely changed or cut off according to the driver's request. That is, in the first feature, the driver can control the output of the drive motor regardless of whether the acceleration operation means is operated or not by performing a pseudo clutch operation using the drive force changing means. . Thereby, also in an electric vehicle, the vehicle body behavior equivalent to an engine vehicle is realizable.
 本発明の第2の特徴によれば、運転者が操作するハンドルに駆動力変更手段が設けられるので、操作性が向上する。 According to the second feature of the present invention, since the driving force changing means is provided on the handle operated by the driver, the operability is improved.
 本発明の第3の特徴によれば、駆動力変更手段がレバーを模した操作子であるため、操作性をさらに向上させることができる。 According to the third feature of the present invention, since the driving force changing means is an operator simulating a lever, the operability can be further improved.
 本発明の第4の特徴によれば、運転者が手で操作子を操作できるので、運転者の負担を軽減することができる。 According to the fourth feature of the present invention, since the driver can operate the operator by hand, the burden on the driver can be reduced.
 本発明の第5の特徴によれば、指等の手で操作子を操作することが可能であるため、少ない操作量で駆動モータの駆動力(出力)を変更又は遮断させることができる。 According to the fifth feature of the present invention, since the operator can be operated with a hand such as a finger, the driving force (output) of the drive motor can be changed or blocked with a small operation amount.
 本発明の第6の特徴によれば、操作がしやすくなると共に、より少ない力及び操作量で駆動モータの駆動力(出力)を変更又は遮断させることができる。 According to the sixth feature of the present invention, it is easy to operate, and the driving force (output) of the driving motor can be changed or cut off with less force and operation amount.
 本発明の第7の特徴によれば、運転者の要望に応じて、駆動モータの出力(駆動力)を適切に制御することが可能となる。 According to the seventh feature of the present invention, it becomes possible to appropriately control the output (drive force) of the drive motor in accordance with the driver's request.
 本発明の第8の特徴によれば、駆動モータから車輪への駆動力の伝達や、駆動力の遮断を一義的に行うことができるので、駆動力変更手段の操作に対する駆動モータの出力の応答性を高めることができる。 According to the eighth aspect of the present invention, since the driving force can be transmitted from the driving motor to the wheels and the driving force can be interrupted uniquely, the response of the output of the driving motor to the operation of the driving force changing means. Can increase the sex.
 本発明の第9の特徴によれば、運転者による加速操作手段の操作に応じた駆動モータの出力を、0%~100%の範囲で調整(制御)することができる。この結果、運転者の要望に応じて、エンジン車のクラッチ操作に類似した、駆動モータの駆動制御が可能となる。 According to the ninth feature of the present invention, it is possible to adjust (control) the output of the drive motor in accordance with the operation of the acceleration operation means by the driver in the range of 0% to 100%. As a result, the drive control of the drive motor similar to the clutch operation of the engine car can be performed according to the driver's request.
 本発明の第10の特徴によれば、駆動モータによる回生制動(引きずりトルク)が抑制されるので、運転者に空走感を感じさせることが可能となる。 According to the tenth feature of the present invention, since regenerative braking (drag torque) by the drive motor is suppressed, it is possible to make the driver feel a feeling of idling.
 本発明の第11の特徴によれば、電動車両の低速域で駆動モータの出力が増幅されるので、エンジン車の低速時の半クラッチ操作でエンジンの出力が増幅される場合と同様の効果が得られる。 According to the eleventh feature of the present invention, since the output of the drive motor is amplified in the low speed range of the electric vehicle, the same effect as when the output of the engine is amplified by the half-clutch operation at the low speed of the engine vehicle is obtained. can get.
本実施形態に係る駆動制御装置が適用される電動車両の右側面図である。1 is a right side view of an electric vehicle to which a drive control device according to an embodiment is applied. 図1の操向ハンドルの右側周辺の概略背面図である。It is a schematic back view of the right periphery of the steering handle of FIG. 図1の操向ハンドルの左側周辺の概略平面図である。It is a schematic plan view of the left side periphery of the steering handle of FIG. 図3の操向ハンドルの左側周辺の第1変形例を示す概略平面図である。It is a schematic plan view which shows the 1st modification of the left side periphery of the steering handle of FIG. 図3の操向ハンドルの左側周辺の第2変形例を示す斜視図である。It is a perspective view which shows the 2nd modification of the left side periphery of the steering handle of FIG. 図3の操向ハンドルの左側周辺の第3変形例を示す斜視図である。It is a perspective view which shows the 3rd modification of the left side periphery of the steering handle of FIG. 駆動制御装置のブロック図である。It is a block diagram of a drive control device. 図7のマップの一例を示す図である。It is a figure which shows an example of the map of FIG. 図7の駆動制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the drive control apparatus of FIG. 図9のステップS7の処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the process of step S7 of FIG. 駆動制御装置の効果を示すタイミングチャートである。It is a timing chart which shows the effect of a drive control device.
 本発明に係る電動車両の駆動制御装置について、好適な実施形態を掲げ、添付の図面を参照しながら、以下詳細に説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A drive control device for an electric vehicle according to the present invention will be described in detail below with reference to the accompanying drawings with preferred embodiments.
[電動車両12の概略構成]
 図1は、本実施形態に係る電動車両の駆動制御装置10(以下、本実施形態に係る駆動制御装置10ともいう。)が搭載される電動車両12の右側面図である。本実施形態の説明では、電動車両12のシート14に着座する運転者(乗員)から見た方向に従って、前後、左右及び上下の方向を説明する。
[Schematic configuration of electric vehicle 12]
FIG. 1 is a right side view of an electric vehicle 12 on which a drive control device 10 for an electric vehicle according to the present embodiment (hereinafter also referred to as the drive control device 10 according to the present embodiment) is mounted. In the description of the present embodiment, the front-rear direction, the left-right direction, and the up-down direction will be described according to the direction viewed from the driver (occupant) seated on the seat 14 of the electric vehicle 12.
 電動車両12は、オフロード型の電動自動二輪車である。なお、本実施形態に係る駆動制御装置10は、図1に示す電動車両12に限定されることはなく、鞍乗型の電動車両に搭載される。従って、例えば、スクータ型の電動自動二輪車にも、駆動制御装置10を搭載可能である。 The electric vehicle 12 is an off-road electric motorcycle. In addition, the drive control apparatus 10 which concerns on this embodiment is not limited to the electric vehicle 12 shown in FIG. 1, It is mounted in a straddle-type electric vehicle. Therefore, for example, the drive control device 10 can be mounted on a scooter type electric motorcycle.
 電動車両12は、車体フレーム16を有する。車体フレーム16は、前方のヘッドパイプ18と、ヘッドパイプ18の上部から後方斜め下方に延びる左右一対のメインフレーム20と、ヘッドパイプ18の下部から後方斜め下方に延びるダウンフレーム21とを有する。メインフレーム20の後部には、センターフレーム22とシートレール23とが連結されている。 The electric vehicle 12 has a body frame 16. The vehicle body frame 16 includes a front head pipe 18, a pair of left and right main frames 20 extending rearward and obliquely downward from an upper portion of the head pipe 18, and a down frame 21 extending rearward and obliquely downward from a lower portion of the head pipe 18. A center frame 22 and a seat rail 23 are connected to the rear portion of the main frame 20.
 ヘッドパイプ18は、図示しないステアリングステムを回転自在に軸支する。ステアリングステムの上部には、トップブリッジ25が設けられている。トップブリッジ25の上部には、操向ハンドル24が取り付けられている。また、トップブリッジ25には、各種の計器類を含むメータユニット26が配設される。なお、ヘッドパイプ18の前方には、電動車両12の前方を照射するヘッドライト等の灯火器類27を配設してもよい。 The head pipe 18 rotatably supports a steering stem (not shown). A top bridge 25 is provided on the upper portion of the steering stem. A steering handle 24 is attached to the top of the top bridge 25. Further, the top bridge 25 is provided with a meter unit 26 including various instruments. A lighting device 27 such as a headlight that irradiates the front of the electric vehicle 12 may be disposed in front of the head pipe 18.
 一方、ステアリングステムの下部には、ボトムブリッジ29が設けられている。トップブリッジ25及びボトムブリッジ29は、前輪(車輪)28を回転自在に軸支するフロントフォーク30を支持する。フロントフォーク30には、前輪28を上方から覆うフロントフェンダ31が設けられている。 On the other hand, a bottom bridge 29 is provided below the steering stem. The top bridge 25 and the bottom bridge 29 support a front fork 30 that rotatably supports a front wheel (wheel) 28. The front fork 30 is provided with a front fender 31 that covers the front wheel 28 from above.
 左右一対のセンターフレーム22は、メインフレーム20の後部から後方斜め下方に延びている。センターフレーム22の下部には、ピボット32が設けられている。ピボット32は、スイングアーム33の前端部を揺動可能に支持する。スイングアーム33の後端部には、後輪(車輪)34が支持されている。 The pair of left and right center frames 22 extend rearward and obliquely downward from the rear portion of the main frame 20. A pivot 32 is provided below the center frame 22. The pivot 32 supports the front end portion of the swing arm 33 so as to be swingable. A rear wheel (wheel) 34 is supported at the rear end of the swing arm 33.
 左右一対のシートレール23は、メインフレーム20の後部から後方斜め上方に延び、シート14を下方から支持する。シート14の前方には、燃料タンクを模したケース35がメインフレーム20によって下方から支持されている。 The pair of left and right seat rails 23 extends rearward and obliquely upward from the rear portion of the main frame 20 and supports the seat 14 from below. A case 35 simulating a fuel tank is supported by the main frame 20 from below in front of the seat 14.
 ケース35の下方には、パワーユニット36が配設されている。パワーユニット36は、電動車両12の駆動源である駆動モータ38を有する。車体フレーム16は、ダウンフレーム21の下端部に連結されるロアフレーム39をさらに有する。ロアフレーム39の前端部は、ダウンフレーム21の下端部に連結され、ロアフレーム39の後端部は、センターフレーム22の下部に連結される。パワーユニット36は、ダウンフレーム21、センターフレーム22及びロアフレーム39によって、ケース35の下方の空間内で支持される。また、駆動モータ38は、不図示の変速機及びチェーンを介して、後輪34に駆動力を伝達する。なお、センターフレーム22及びパワーユニット36の側方には、後輪ブレーキペダル42が設けられている。また、センターフレーム22とシートレール23とは、リアフレーム43で連結されている。 A power unit 36 is disposed below the case 35. The power unit 36 includes a drive motor 38 that is a drive source of the electric vehicle 12. The vehicle body frame 16 further includes a lower frame 39 connected to the lower end portion of the down frame 21. A front end portion of the lower frame 39 is connected to a lower end portion of the down frame 21, and a rear end portion of the lower frame 39 is connected to a lower portion of the center frame 22. The power unit 36 is supported in the space below the case 35 by the down frame 21, the center frame 22, and the lower frame 39. The drive motor 38 transmits drive force to the rear wheels 34 via a transmission and a chain (not shown). A rear wheel brake pedal 42 is provided on the side of the center frame 22 and the power unit 36. The center frame 22 and the seat rail 23 are connected by a rear frame 43.
 車体フレーム16は、車体カバー44で覆われている。車体カバー44は、メインフレーム20及びダウンフレーム21の一部を側方から覆う左右一対のシュラウド46と、メインフレーム20の一部及びシートレール23を側方から覆う左右一対のサイドカバー48とを有する。ケース35とパワーユニット36との間の空間には、駆動モータ38等を含む駆動制御装置10の電源であるバッテリ52が配設されている。 The body frame 16 is covered with a body cover 44. The vehicle body cover 44 includes a pair of left and right shrouds 46 covering a part of the main frame 20 and the down frame 21 from the side, and a pair of left and right side covers 48 covering a part of the main frame 20 and the seat rail 23 from the side. Have. In the space between the case 35 and the power unit 36, a battery 52, which is a power source of the drive control device 10 including the drive motor 38 and the like, is disposed.
 ケース35の内部には、駆動モータ38のPDU(パワードライブユニット)であるモータドライバ56、及び、駆動モータ38の制御手段であるECU60が配設されている。バッテリ52は、不図示の充電器を用いることで、家庭用の商用電源等で充電可能である。あるいは、充電が足りない場合には、バッテリ52を交換してもよい。電動車両12は、バッテリ52から供給される電力によって走行する。この場合、加速時等には、バッテリ52から駆動モータ38に給電することで、駆動モータ38に駆動力を発生させる駆動制御が行われる。発生した駆動力を後輪34に伝達することで、電動車両12を走行させることができる。一方、減速時には、駆動モータ38を発電機として作動させ、発電電力をバッテリ52に充電する回生制御が行われる。これらの駆動制御及び回生制御は、ECU60からモータドライバ56に供給される指令信号(指令値)に基づき、モータドライバ56が駆動モータ38を制御することにより行われる。 In the case 35, a motor driver 56 that is a PDU (power drive unit) of the drive motor 38 and an ECU 60 that is a control means of the drive motor 38 are disposed. The battery 52 can be charged with a household commercial power source or the like by using a charger (not shown). Alternatively, when charging is insufficient, the battery 52 may be replaced. The electric vehicle 12 travels using electric power supplied from the battery 52. In this case, at the time of acceleration or the like, drive control is performed such that the drive motor 38 generates a drive force by supplying power from the battery 52 to the drive motor 38. By transmitting the generated driving force to the rear wheel 34, the electric vehicle 12 can be driven. On the other hand, at the time of deceleration, regenerative control for operating the drive motor 38 as a generator and charging the battery 52 with generated power is performed. These drive control and regenerative control are performed by the motor driver 56 controlling the drive motor 38 based on a command signal (command value) supplied from the ECU 60 to the motor driver 56.
[操向ハンドル24周辺の構成]
 次に、操向ハンドル24周辺の構成について、図1~図6を参照しながら説明する。
[Configuration around the steering handle 24]
Next, the configuration around the steering handle 24 will be described with reference to FIGS.
 図1~図3に示すように、操向ハンドル24の車幅方向の両端部には、筒状のハンドルグリップ62L、62Rがそれぞれ取り付けられている。図2に示す右側のハンドルグリップ(加速操作手段)62Rは、操向ハンドル24の右端部に嵌め込まれたスロットルグリップ又はアクセルグリップである。この場合、運転者が右手で操向ハンドル24の軸回りにハンドルグリップ62Rを回動させることで、その操作量(回動角度)θTHに応じて、駆動モータ38の駆動力を調整可能である。 As shown in FIGS. 1 to 3, cylindrical handle grips 62L and 62R are respectively attached to both ends of the steering handle 24 in the vehicle width direction. A right handle grip (acceleration operation means) 62R shown in FIG. 2 is a throttle grip or an accelerator grip fitted into the right end portion of the steering handle 24. In this case, the driver can adjust the driving force of the driving motor 38 according to the operation amount (rotation angle) θTH by rotating the handle grip 62R around the axis of the steering handle 24 with the right hand. .
 操向ハンドル24におけるハンドルグリップ62Rの基端部近傍には、センサハウジング64が設けられている。センサハウジング64の内部には、回動角度θTHに応じたスロットル開度THを検出するスロットルセンサ66が設けられている。なお、スロットルセンサ66は、例えば、上記公報のアクセル開度センサのような検出方法によりスロットル開度THを検出すればよい。従って、本実施形態では、スロットルセンサ66に代えて、アクセル開度センサを用いてもよい。 A sensor housing 64 is provided in the vicinity of the proximal end portion of the handle grip 62R in the steering handle 24. Inside the sensor housing 64, a throttle sensor 66 for detecting a throttle opening TH corresponding to the rotation angle θTH is provided. The throttle sensor 66 may detect the throttle opening TH by a detection method such as the accelerator opening sensor disclosed in the above publication. Therefore, in this embodiment, an accelerator opening sensor may be used instead of the throttle sensor 66.
 図3に示す左側のハンドルグリップ62Lは、回動不能に操向ハンドル24の左端部に嵌め込まれている。操向ハンドル24におけるハンドルグリップ62Lの前方には、擬似クラッチレバー(駆動力変更手段、レバータイプの操作子)68が設けられている。擬似クラッチレバー68は、後述するように、運転者が操作することで、ハンドルグリップ62Rの操作の有無に関わりなく、駆動モータ38の出力を制御し、エンジン車と同等の車体挙動を電動車両12で実現するために設けられている。 The left handle grip 62L shown in FIG. 3 is fitted to the left end of the steering handle 24 so as not to rotate. A pseudo clutch lever (driving force changing means, lever-type operating element) 68 is provided in front of the handle grip 62L in the steering handle 24. As will be described later, the pseudo clutch lever 68 is operated by the driver to control the output of the drive motor 38 regardless of whether or not the handle grip 62R is operated. Is provided in order to realize.
 また、操向ハンドル24の左端部には、擬似クラッチレバー68を操向ハンドル24に取り付けるためのレバー取付部69が設けられている。レバー取付部69は、擬似クラッチレバー68が取付軸70を中心に回動するように、該擬似クラッチレバー68を操向ハンドル24の左端部に取り付ける。取付軸70には、例えば、可変抵抗器で構成される擬似クラッチセンサ72が連結されている。 Further, at the left end portion of the steering handle 24, a lever attaching portion 69 for attaching the pseudo clutch lever 68 to the steering handle 24 is provided. The lever attachment portion 69 attaches the pseudo clutch lever 68 to the left end portion of the steering handle 24 so that the pseudo clutch lever 68 rotates about the attachment shaft 70. For example, a pseudo clutch sensor 72 composed of a variable resistor is connected to the mounting shaft 70.
 擬似クラッチレバー68は、図3に示す回動角度θcl=0°の位置から、運転者が取付軸70を中心に擬似クラッチレバー68をハンドルグリップ62L側に回動させることで、その回動角度θclに応じて、駆動モータ38から後輪34に伝達される駆動力を変更し、又は、駆動モータ38から後輪34への駆動力の伝達を遮断する。すなわち、擬似クラッチレバー68は、エンジン車におけるクラッチ機構の断接を行うクラッチ操作子を模したレバーである。従って、運転者は、電動車両12に乗車している場合でも、擬似クラッチレバー68を操作することで、エンジン車のクラッチ操作に類似する操作を擬似的に体験することができる。 The pseudo clutch lever 68 is rotated when the driver rotates the pseudo clutch lever 68 toward the handle grip 62L around the mounting shaft 70 from the position of the rotation angle θcl = 0 ° shown in FIG. The driving force transmitted from the driving motor 38 to the rear wheel 34 is changed according to θcl, or the transmission of the driving force from the driving motor 38 to the rear wheel 34 is interrupted. That is, the pseudo clutch lever 68 is a lever imitating a clutch operator that connects and disconnects a clutch mechanism in an engine vehicle. Therefore, even when the driver is on the electric vehicle 12, by operating the pseudo clutch lever 68, the driver can experience a pseudo operation similar to the clutch operation of the engine vehicle.
 この場合、図3に示すθcl=0°の位置は、エンジン車におけるクラッチ接続状態に対応する。本実施形態では、クラッチ接続状態に対応する状態は、駆動モータ38と後輪34とが接続され、駆動モータ38の駆動力を後輪34に100%伝達可能な状態である。以下の説明では、このような状態を、駆動モータ38の出力(駆動力)を後輪34に伝達する際の該出力の減少率DRが0%の状態と呼称する。 In this case, the position of θcl = 0 ° shown in FIG. 3 corresponds to the clutch engagement state in the engine vehicle. In the present embodiment, the state corresponding to the clutch connection state is a state in which the drive motor 38 and the rear wheel 34 are connected and the driving force of the drive motor 38 can be transmitted to the rear wheel 34 100%. In the following description, such a state is referred to as a state in which the output reduction rate DR when the output (driving force) of the drive motor 38 is transmitted to the rear wheel 34 is 0%.
 また、運転者が左手の親指をハンドルグリップ62Lにかけた状態で、左手の残りの4本の指を擬似クラッチレバー68にかけ、擬似クラッチレバー68を後方に引くと、擬似クラッチレバー68は、取付軸70を中心にハンドルグリップ62L側に回動する。ハンドルグリップ62L近傍の回動角度θclがエンジン車におけるクラッチ断の状態に対応する。本実施形態では、クラッチ断に対応する状態は、駆動モータ38から後輪34への駆動力の伝達が遮断された状態、すなわち、駆動モータ38の出力が0の状態である。以下の説明では、このような状態を、減少率DRが100%の状態と呼称する。 When the driver puts the left thumb on the handle grip 62L and puts the remaining four fingers on the pseudo clutch lever 68 and pulls the pseudo clutch lever 68 backward, the pseudo clutch lever 68 is attached to the mounting shaft. Rotate around the handle 70 toward the handle grip 62L. The rotation angle θcl in the vicinity of the handle grip 62L corresponds to the clutch disengaged state in the engine vehicle. In the present embodiment, the state corresponding to the clutch disengagement is a state where transmission of driving force from the driving motor 38 to the rear wheel 34 is interrupted, that is, a state where the output of the driving motor 38 is zero. In the following description, such a state is referred to as a state where the reduction rate DR is 100%.
 さらに、回動角度θclが0°からハンドルグリップ62L側の回動角度までの間の角度範囲は、エンジン車における半クラッチ状態に対応する。この場合、減少率DRは、0%~100%の範囲内となる。 Furthermore, the angle range between the rotation angle θcl of 0 ° and the rotation angle on the handle grip 62L side corresponds to the half-clutch state in the engine vehicle. In this case, the decrease rate DR is in the range of 0% to 100%.
 擬似クラッチセンサ72は、運転者の操作によって、擬似クラッチレバー68が取付軸70を中心に回動する場合、擬似クラッチレバー68の操作量(回動角度θcl)に応じた電圧値を検出信号として出力する。この電圧値は、運転者が駆動モータ38に要求する該駆動モータ38の出力の減少率DRに対応する電圧値である。従って、運転者は、擬似クラッチレバー68を操作することで、駆動モータ38から後輪34への駆動力の伝達の断接を指示することができる。 The pseudo clutch sensor 72 detects, as a detection signal, a voltage value corresponding to the operation amount (rotation angle θcl) of the pseudo clutch lever 68 when the pseudo clutch lever 68 rotates about the mounting shaft 70 by the driver's operation. Output. This voltage value is a voltage value corresponding to the reduction rate DR of the output of the drive motor 38 requested by the driver to the drive motor 38. Therefore, the driver can instruct connection / disconnection of transmission of the driving force from the drive motor 38 to the rear wheel 34 by operating the pseudo clutch lever 68.
 このような駆動力変更手段は、図3の例に限定されることはなく、図4~図6の第1~第3変形例のように構成することも可能である。 Such a driving force changing means is not limited to the example of FIG. 3, but can be configured as in the first to third modifications of FIGS.
 図4の第1変形例では、擬似クラッチセンサ72が擬似クラッチレバー68から離間した箇所に配置されている。擬似クラッチセンサ72の回転軸74には、連結部材76の一端が径方向に連結され、連結部材76の他端は、ワイヤ78を介して、擬似クラッチレバー68の基端部に連結されている。この場合、運転者の操作によって、擬似クラッチレバー68が取付軸70を中心に回動すると、擬似クラッチレバー68に連結されたワイヤ78が引っ張られ、連結部材76を介して回転軸74を回転させることができる。これにより、擬似クラッチセンサ72は、擬似クラッチレバー68の回動角度θclに応じた回転軸74の回転量に基づく電圧値を検出信号として出力する。 4, the pseudo clutch sensor 72 is disposed at a position away from the pseudo clutch lever 68. In the first modification shown in FIG. One end of a connecting member 76 is connected to the rotating shaft 74 of the pseudo clutch sensor 72 in the radial direction, and the other end of the connecting member 76 is connected to the base end portion of the pseudo clutch lever 68 via a wire 78. . In this case, when the pseudo clutch lever 68 is rotated about the mounting shaft 70 by the driver's operation, the wire 78 connected to the pseudo clutch lever 68 is pulled, and the rotating shaft 74 is rotated via the connecting member 76. be able to. Thereby, the pseudo clutch sensor 72 outputs a voltage value based on the rotation amount of the rotating shaft 74 according to the rotation angle θcl of the pseudo clutch lever 68 as a detection signal.
 図5の第2変形例では、操向ハンドル24の左端部側でハンドルグリップ62Lに近接する箇所にスイッチボックス80が配置されている。スイッチボックス80には、ウィンカスイッチ、ホーンスイッチ等の各種のスイッチ82が配置されている。この場合、スイッチボックス80の下部に、小型の擬似クラッチレバー84が設けられている。運転者がハンドルグリップ62Lを握った状態で、左手の親指で擬似クラッチレバー84を操作すると、擬似クラッチレバー84は、スイッチボックス80に設けられた図示しない取付軸を中心に回動する。擬似クラッチセンサ72は、擬似クラッチレバー84の回動角度θclに応じた電圧値を検出信号として出力する。なお、ハンドルグリップ62Lの前方には、後輪ブレーキレバー86が設けられている。 In the second modification of FIG. 5, the switch box 80 is disposed at a location close to the handle grip 62 </ b> L on the left end side of the steering handle 24. In the switch box 80, various switches 82 such as a winker switch and a horn switch are arranged. In this case, a small pseudo clutch lever 84 is provided below the switch box 80. When the driver holds the handle grip 62L and operates the pseudo clutch lever 84 with the thumb of the left hand, the pseudo clutch lever 84 rotates about a mounting shaft (not shown) provided in the switch box 80. The pseudo clutch sensor 72 outputs a voltage value corresponding to the rotation angle θcl of the pseudo clutch lever 84 as a detection signal. A rear wheel brake lever 86 is provided in front of the handle grip 62L.
 図6の第3変形例でも、操向ハンドル24の左端部側でハンドルグリップ62Lに近接する箇所にスイッチボックス80が配置されている。このスイッチボックス80にも、各種のスイッチ82が配置されている。この場合、スイッチボックス80に配置されている複数のスイッチ82のうち、例えば、下側のスイッチが擬似クラッチスイッチ(駆動力変更手段、操作子)88として割り当てられている。 Also in the third modified example of FIG. 6, the switch box 80 is disposed at a position close to the handle grip 62 </ b> L on the left end side of the steering handle 24. Various switches 82 are also arranged in the switch box 80. In this case, among the plurality of switches 82 arranged in the switch box 80, for example, the lower switch is assigned as a pseudo clutch switch (driving force changing means, operator) 88.
 擬似クラッチスイッチ88は、ストロークタイプ又は圧力感応型のスイッチである。ストロークタイプの擬似クラッチスイッチ88の場合、運転者は、ハンドルグリップ62Lを握った状態で、左手の親指又は人差し指で擬似クラッチスイッチ88を操作する。擬似クラッチセンサ72は、その操作量に応じた検出信号を出力する。 The pseudo clutch switch 88 is a stroke type or pressure sensitive type switch. In the case of the stroke type pseudo clutch switch 88, the driver operates the pseudo clutch switch 88 with the thumb or index finger of the left hand while holding the handle grip 62L. The pseudo clutch sensor 72 outputs a detection signal corresponding to the operation amount.
 また、圧力感応型の擬似クラッチスイッチ88の場合、運転者は、ハンドルグリップ62Lを握った状態で、左手の親指又は人差し指で擬似クラッチスイッチ88を押圧する。擬似クラッチセンサ72は、擬似クラッチスイッチ88の操作回数に応じた検出信号を出力する。 In the case of the pressure-sensitive pseudo clutch switch 88, the driver presses the pseudo clutch switch 88 with the left thumb or forefinger while holding the handle grip 62L. The pseudo clutch sensor 72 outputs a detection signal corresponding to the number of operations of the pseudo clutch switch 88.
[駆動制御装置10の構成]
 図7は、本実施形態に係る駆動制御装置10のブロック図である。
[Configuration of Drive Control Device 10]
FIG. 7 is a block diagram of the drive control apparatus 10 according to the present embodiment.
 駆動制御装置10は、スロットル操作子(加速操作手段)100と、スロットルセンサ66と、擬似クラッチ操作子(駆動力変更手段)102と、擬似クラッチセンサ72と、車輪速センサ104又はモータ回転数センサ106と、ECU60と、モータドライバ56とを有する。 The drive control device 10 includes a throttle operator (acceleration operating means) 100, a throttle sensor 66, a pseudo clutch operator (driving force changing means) 102, a pseudo clutch sensor 72, a wheel speed sensor 104, or a motor rotation speed sensor. 106, an ECU 60, and a motor driver 56.
 スロットル操作子100は、図2に示すハンドルグリップ62Rのように、運転者がスロットル操作を行うための加速操作手段である。従って、スロットル操作子100は、ハンドルグリップ62Rに限定されることはなく、運転者がスロットル操作を行えるものであればよい。スロットルセンサ66は、運転者によるスロットル操作子100の操作量(回動角度θTH)に応じたスロットル開度THを検出してECU60に出力する。 The throttle operator 100 is an acceleration operation means for the driver to perform a throttle operation like a handle grip 62R shown in FIG. Therefore, the throttle operator 100 is not limited to the handle grip 62R, and may be any as long as the driver can perform the throttle operation. The throttle sensor 66 detects the throttle opening TH according to the operation amount (rotation angle θTH) of the throttle operator 100 by the driver and outputs it to the ECU 60.
 擬似クラッチ操作子102は、図3~図6に示す擬似クラッチレバー68、84又は擬似クラッチスイッチ88のように、運転者が駆動力の変更又は遮断を指示するための駆動力変更手段である。従って、擬似クラッチ操作子102は、擬似クラッチレバー68、84及び擬似クラッチスイッチ88に限定されることはなく、運転者が操作して駆動力の変更又は遮断を指示できるものであればよい。擬似クラッチセンサ72は、運転者による擬似クラッチ操作子102の操作量(例えば、回動角度θcl)に応じた検出信号をECU60に出力する。 The pseudo clutch operator 102 is a driving force changing means for the driver to instruct a change or disconnection of the driving force, like the pseudo clutch levers 68 and 84 or the pseudo clutch switch 88 shown in FIGS. Therefore, the pseudo clutch operation element 102 is not limited to the pseudo clutch levers 68 and 84 and the pseudo clutch switch 88, and may be any one that can be operated by the driver and instructed to change or cut off the driving force. The pseudo clutch sensor 72 outputs a detection signal to the ECU 60 according to the operation amount (for example, the rotation angle θcl) of the pseudo clutch operator 102 by the driver.
 車輪速センサ104は、後輪34又は前輪28(車輪)の車輪速を検出してECU60に出力する。モータ回転数センサ106は、駆動モータ38の回転数をECU60に出力する。なお、駆動制御装置10は、車輪速センサ104及びモータ回転数センサ106のうち、いずれか一方のセンサを備えていればよい。 The wheel speed sensor 104 detects the wheel speed of the rear wheel 34 or the front wheel 28 (wheel) and outputs it to the ECU 60. The motor rotation speed sensor 106 outputs the rotation speed of the drive motor 38 to the ECU 60. The drive control device 10 only needs to include any one of the wheel speed sensor 104 and the motor rotation speed sensor 106.
 ECU60は、図示しないメモリに格納されたプログラムを読み出して実行することにより、種々の処理機能を実現する。具体的に、ECU60は、要求出力算出部60a、減少率算出部60b、車速算出部(車速検出手段)60c、要求出力調整部60d及びマップ60eを有する。 The ECU 60 implements various processing functions by reading and executing a program stored in a memory (not shown). Specifically, the ECU 60 includes a required output calculation unit 60a, a decrease rate calculation unit 60b, a vehicle speed calculation unit (vehicle speed detection means) 60c, a required output adjustment unit 60d, and a map 60e.
 要求出力算出部60aは、スロットルセンサ66が出力したスロットル開度THに基づいて、駆動モータ38に対する要求出力を算出する。減少率算出部60bは、擬似クラッチセンサ72からの検出信号に基づいて、駆動力の出力の減少率DRを算出する。車速算出部60cは、車輪速センサ104が検出した車輪速、又は、モータ回転数センサ106が検出した駆動モータ38の回転数に基づいて、電動車両12の車速Vを算出する。 The required output calculation unit 60a calculates a required output for the drive motor 38 based on the throttle opening TH output from the throttle sensor 66. The reduction rate calculation unit 60 b calculates the reduction rate DR of the driving force output based on the detection signal from the pseudo clutch sensor 72. The vehicle speed calculation unit 60 c calculates the vehicle speed V of the electric vehicle 12 based on the wheel speed detected by the wheel speed sensor 104 or the rotation speed of the drive motor 38 detected by the motor rotation speed sensor 106.
 マップ60eは、図8に示すように、車速Vと駆動モータ38の出力との関係を示すマップであって、実線で示す標準マップと、一点鎖線で示す増幅マップとを有する。標準マップは、電動車両12の全車速領域で用いることが可能なマップである。一方、増幅マップは、電動車両12の低速域で用いられるマップである。なお、図8のマップ60eの横軸は、車速Vに代えて、駆動モータ38の回転数としてもよい。 As shown in FIG. 8, the map 60e is a map showing the relationship between the vehicle speed V and the output of the drive motor 38, and has a standard map shown by a solid line and an amplification map shown by a one-dot chain line. The standard map is a map that can be used in the entire vehicle speed region of the electric vehicle 12. On the other hand, the amplification map is a map used in the low speed region of the electric vehicle 12. The horizontal axis of the map 60e in FIG. 8 may be the rotational speed of the drive motor 38 instead of the vehicle speed V.
 図7に戻り、要求出力調整部60dは、マップ60eに格納されている標準マップ又は増幅マップを参照し、車速算出部60cが算出した車速Vと、減少率算出部60bが算出した減少率DRとを用いて、要求出力算出部60aが算出した要求出力を調整する。要求出力調整部60dは、調整後の要求出力を駆動モータ38に対する指令値(指令信号)としてモータドライバ56に出力する。 Returning to FIG. 7, the request output adjustment unit 60d refers to the standard map or the amplification map stored in the map 60e, and the vehicle speed V calculated by the vehicle speed calculation unit 60c and the decrease rate DR calculated by the decrease rate calculation unit 60b. Are used to adjust the request output calculated by the request output calculation unit 60a. The requested output adjusting unit 60d outputs the adjusted requested output to the motor driver 56 as a command value (command signal) for the drive motor 38.
 すなわち、従来の電動車両では、スロットル開度THと車速V又は駆動モータ38の回転数との関係から、指令値を決定している。これに対して、本実施形態に係る駆動制御装置10では、擬似クラッチ操作子102を設けることで、要求出力調整部60dは、運転者による擬似クラッチ操作子102の操作量に基づく減少率DR(DR:0%~100%)を考慮して、要求出力を調整し、調整後の要求出力を指令値として設定する。 That is, in the conventional electric vehicle, the command value is determined from the relationship between the throttle opening TH and the vehicle speed V or the rotation speed of the drive motor 38. On the other hand, in the drive control apparatus 10 according to the present embodiment, by providing the pseudo clutch operator 102, the request output adjustment unit 60d allows the reduction rate DR (based on the operation amount of the pseudo clutch operator 102 by the driver to be DR: 0% to 100%) is taken into consideration, and the required output is adjusted, and the adjusted required output is set as a command value.
 モータドライバ56は、ECU60から供給された指令値に基づき、駆動モータ38を制御する。なお、駆動モータ38に対する具体的な駆動制御方法については、後述する。 The motor driver 56 controls the drive motor 38 based on the command value supplied from the ECU 60. A specific drive control method for the drive motor 38 will be described later.
[本実施形態の動作]
 以上のように構成される本実施形態に係る駆動制御装置10の動作について、図9及び図10のフローチャートを参照しながら説明する。この動作説明では、必要に応じて、図1~図8も参照しながら説明する。
[Operation of this embodiment]
The operation of the drive control apparatus 10 according to the present embodiment configured as described above will be described with reference to the flowcharts of FIGS. 9 and 10. This operation will be described with reference to FIGS. 1 to 8 as necessary.
 図9のステップS1において、電動車両12(図1参照)の走行中、運転者が右手で右側のハンドルグリップ62R(スロットル操作子100)(図2及び図7参照)を操作すると、スロットルセンサ66は、ハンドルグリップ62Rの回動角度θTHに応じたスロットル開度THを検出し、検出したスロットル開度THをECU60に出力する。 In step S1 of FIG. 9, when the driver operates the right handle grip 62R (throttle operator 100) (see FIGS. 2 and 7) with the right hand while the electric vehicle 12 (see FIG. 1) is traveling, the throttle sensor 66 is operated. Detects the throttle opening TH according to the rotation angle θTH of the handle grip 62R, and outputs the detected throttle opening TH to the ECU 60.
 ステップS2において、ECU60の要求出力算出部60aは、スロットル開度THに基づいて、駆動モータ38に対する要求出力を算出する。この場合、要求出力算出部60aは、スロットル開度THの最大値に応じた駆動モータ38の出力を100%としたときに、スロットルセンサ66が実際に検出したスロットル開度THに応じた、運転者の要求する駆動モータ38の出力を、0%~100%の範囲内の要求出力として算出する。 In step S2, the required output calculation unit 60a of the ECU 60 calculates a required output for the drive motor 38 based on the throttle opening TH. In this case, the required output calculation unit 60a operates according to the throttle opening TH actually detected by the throttle sensor 66 when the output of the drive motor 38 corresponding to the maximum value of the throttle opening TH is 100%. The output of the drive motor 38 requested by the person is calculated as the required output within the range of 0% to 100%.
 ステップS3において、電動車両12の走行中、運転者が左手で擬似クラッチ操作子102(擬似クラッチレバー68、84又は擬似クラッチスイッチ88)(図3~図7参照)を操作すると、擬似クラッチセンサ72は、擬似クラッチ操作子102の操作量(例えば、回動角度θcl)を検出し、検出した操作量をECU60に出力する。 In step S3, when the driver operates the pseudo clutch operator 102 (pseudo clutch levers 68 and 84 or the pseudo clutch switch 88) (see FIGS. 3 to 7) with the left hand while the electric vehicle 12 is traveling, the pseudo clutch sensor 72 is operated. Detects the operation amount (for example, the rotation angle θcl) of the pseudo clutch operator 102 and outputs the detected operation amount to the ECU 60.
 ステップS4において、ECU60の減少率算出部60bは、入力された操作量に基づいて、運転者が操作した擬似クラッチ操作子102のストローク量(操作量)、すなわち、駆動モータ38の出力に対する減少率DRや、ストローク速度(擬似クラッチ操作子102の操作速度)を算出する。 In step S4, the reduction rate calculation unit 60b of the ECU 60, based on the input operation amount, reduces the stroke amount (operation amount) of the pseudo clutch operator 102 operated by the driver, that is, the reduction rate with respect to the output of the drive motor 38. DR and stroke speed (operation speed of the pseudo clutch operator 102) are calculated.
 ステップS5において、ECU60の車速算出部60cには、車輪速センサ104が検出した前輪28又は後輪34の車輪速、あるいは、モータ回転数センサ106が検出した駆動モータ38の回転数が逐次入力される。 In step S5, the wheel speed of the front wheel 28 or the rear wheel 34 detected by the wheel speed sensor 104 or the rotation speed of the drive motor 38 detected by the motor rotation speed sensor 106 is sequentially input to the vehicle speed calculation unit 60c of the ECU 60. The
 ステップS6において、車速算出部60cは、入力された車輪速又は回転数を用いて、電動車両12の車速Vを算出する。 In step S6, the vehicle speed calculation unit 60c calculates the vehicle speed V of the electric vehicle 12 using the input wheel speed or rotation speed.
 ステップS7において、要求出力調整部60dは、マップ60eに格納された標準マップ又は増幅マップを参照し、減少率算出部60bが算出した減少率DR等や、車速算出部60cが算出した車速Vを用いて、要求出力算出部60aが算出した要求出力を調整する。 In step S7, the required output adjustment unit 60d refers to the standard map or the amplification map stored in the map 60e, determines the reduction rate DR calculated by the reduction rate calculation unit 60b and the vehicle speed V calculated by the vehicle speed calculation unit 60c. The request output calculated by the request output calculation unit 60a is adjusted.
 ステップS8において、要求出力調整部60dは、調整後の要求出力を指令値としてモータドライバ56に供給する。 In step S8, the requested output adjusting unit 60d supplies the adjusted requested output to the motor driver 56 as a command value.
 ステップS9において、モータドライバ56は、供給された指令値に基づいて、駆動モータ38を駆動制御する。これにより、運転者が操作したハンドルグリップ62R(スロットル操作子100)及び/又は擬似クラッチ操作子102の操作量や車速Vに応じた駆動力が駆動モータ38に発生し、後輪34に伝達される。この結果、電動車両12は、運転者の所望する走行動作を行うことができる。 In step S9, the motor driver 56 drives and controls the drive motor 38 based on the supplied command value. As a result, a driving force corresponding to the operation amount of the handle grip 62R (throttle operator 100) and / or the pseudo clutch operator 102 operated by the driver and / or the vehicle speed V is generated in the drive motor 38 and transmitted to the rear wheel 34. The As a result, the electric vehicle 12 can perform a traveling operation desired by the driver.
 図10は、図9のステップS7の処理の詳細を図示したフローチャートである。 FIG. 10 is a flowchart illustrating details of the process in step S7 of FIG.
 ステップS71において、要求出力調整部60dは、減少率算出部60bが算出した減少率DRが100%であるか、すなわち、駆動モータ38から後輪34への伝達を遮断する旨の指示であるかどうかを判定する。そのような指示でない場合(ステップS71:NO)、次のステップS72に進む。 In step S71, the required output adjustment unit 60d has the reduction rate DR calculated by the reduction rate calculation unit 60b of 100%, that is, is an instruction to cut off the transmission from the drive motor 38 to the rear wheel 34. Determine if. If it is not such an instruction (step S71: NO), the process proceeds to the next step S72.
 ステップS72において、要求出力調整部60dは、車速算出部60cが算出した電動車両12の車速Vが低車速域の車速であるかどうか、すなわち、車速Vが所定の車速閾値Vα未満であるかどうか(V<Vα)を判定する。低車速域の車速でない場合(ステップS72:NO)、次のステップS73に進む。 In step S72, the required output adjustment unit 60d determines whether the vehicle speed V of the electric vehicle 12 calculated by the vehicle speed calculation unit 60c is a low vehicle speed range, that is, whether the vehicle speed V is less than a predetermined vehicle speed threshold value Vα. (V <Vα) is determined. When the vehicle speed is not in the low vehicle speed range (step S72: NO), the process proceeds to the next step S73.
 ステップS73において、要求出力調整部60dは、減少率DRに応じて、駆動モータ38の出力(駆動力)を制御するかどうかを判定する。減少率DRに応じた駆動モータ38の駆動制御を判定した場合(ステップS73:YES)、次のステップS74に進む。 In step S73, the required output adjustment unit 60d determines whether to control the output (driving force) of the drive motor 38 according to the decrease rate DR. When the drive control of the drive motor 38 according to the reduction rate DR is determined (step S73: YES), the process proceeds to the next step S74.
 ステップS74において、要求出力調整部60dは、マップ60eに格納された標準マップを参照し、要求出力算出部60aが算出した要求出力を、減少率DRに応じた要求出力に調整する。従って、ステップS74では、減少率DRが0%~100%の範囲内の半クラッチ状態の要求出力が指令値として決定される。 In step S74, the request output adjustment unit 60d refers to the standard map stored in the map 60e, and adjusts the request output calculated by the request output calculation unit 60a to the request output according to the decrease rate DR. Accordingly, in step S74, the required output in the half-clutch state where the reduction rate DR is in the range of 0% to 100% is determined as the command value.
 例えば、電動車両12の発進時に、DR=0%、且つ、要求出力算出部60aで算出された要求出力が該要求出力の最大値に対して50%である場合、駆動モータ38の出力を後輪34にそのまま伝達することになる。この場合、要求出力調整部60dは、50%の要求出力をそのまま指令値に設定する。 For example, when the electric vehicle 12 starts, if DR = 0% and the required output calculated by the required output calculation unit 60a is 50% of the maximum value of the required output, the output of the drive motor 38 is reduced. It is transmitted to the wheel 34 as it is. In this case, the required output adjusting unit 60d sets the required output of 50% as it is to the command value.
 また、電動車両12の走行中、DR=50%、且つ、要求出力算出部60aで算出された要求出力が該要求出力の最大値に対して100%である場合は、エンジン車の半クラッチ状態に類似した状態である。そのため、要求出力調整部60dは、駆動モータ38の出力を抑制する必要があると判断し、要求出力を100%から50%に変更して、変更後の要求出力(50%)を指令値に設定する。 Further, when the electric vehicle 12 is running, when DR = 50% and the required output calculated by the required output calculating unit 60a is 100% with respect to the maximum value of the required output, the half clutch state of the engine vehicle It is a state similar to. Therefore, the required output adjusting unit 60d determines that it is necessary to suppress the output of the drive motor 38, changes the required output from 100% to 50%, and sets the changed required output (50%) to the command value. Set.
 一方、ステップS73において、減少率DRに応じて駆動力の制御を行わない場合(ステップS73:NO)、ステップS75に進む。ステップS75において、要求出力調整部60dは、駆動モータ38の出力をオン又はオフ、すなわち、駆動モータ38から後輪34に駆動力をそのまま伝達するか、又は、駆動モータ38から後輪34への駆動力の伝達を遮断するか、いずれかの駆動制御を行うことを決定する。 On the other hand, when the driving force is not controlled according to the decrease rate DR in step S73 (step S73: NO), the process proceeds to step S75. In step S75, the requested output adjustment unit 60d turns on or off the output of the drive motor 38, that is, transmits the drive force from the drive motor 38 to the rear wheel 34 as it is, or transmits the drive force from the drive motor 38 to the rear wheel 34. It is determined that the transmission of the driving force is interrupted or any driving control is performed.
 駆動モータ38の出力をオンする場合、要求出力調整部60dは、例えば、ステップS74のように、減少率DRが0%~100%の範囲内の半クラッチ状態での要求出力を指令値として決定すればよい。 When the output of the drive motor 38 is turned on, the required output adjusting unit 60d determines the required output in the half-clutch state where the reduction rate DR is in the range of 0% to 100% as a command value, for example, as in step S74. do it.
 一方、駆動モータ38の出力をオフする場合、要求出力調整部60dは、要求出力算出部60aで算出された要求出力の値に関わりなく、DR=100%、すなわち、駆動モータ38の出力(駆動力)を0とする指令値を決定する。従って、DR=100%の場合、スロットル操作子100の操作量(スロットル開度TH)に関わりなく、指令値が0となる。この場合、要求出力算出部60aは、スロットルセンサ66からのスロットル開度THの入力を受け付けないようにしてもよい。あるいは、要求出力算出部60aで要求出力の算出処理を行った場合でも、算出された要求出力を要求出力調整部60dで受け付けないようにしてもよい。 On the other hand, when the output of the drive motor 38 is turned off, the request output adjustment unit 60d is DR = 100%, that is, the output (drive) of the drive motor 38 regardless of the value of the request output calculated by the request output calculation unit 60a. Determine the command value for zero force. Therefore, when DR = 100%, the command value becomes 0 regardless of the operation amount of the throttle operator 100 (throttle opening TH). In this case, the request output calculation unit 60a may not accept the input of the throttle opening TH from the throttle sensor 66. Alternatively, even if the request output calculation unit 60a performs the request output calculation process, the request output adjustment unit 60d may not accept the calculated request output.
 また、ステップS72において、電動車両12の車速Vが低車速域である場合(V<Vα、ステップS72:YES)、ステップS76に進む。ステップS76において、要求出力調整部60dは、マップ60eに格納された増幅マップを参照し、減少率DRに基づいて、要求出力算出部60aが算出した要求出力を増幅するように調整する。従って、ステップS76では、増幅された要求出力が指令値として決定される。すなわち、低車速領域では、運転者は、駆動モータ38の駆動力が大きくなるようにスロットル操作子100を操作しようとする。そこで、要求出力調整部60dは、このような運転者の意思に応える形で、要求出力を増幅した指令値を設定する。 In step S72, when the vehicle speed V of the electric vehicle 12 is in the low vehicle speed range (V <Vα, step S72: YES), the process proceeds to step S76. In step S76, the request output adjustment unit 60d refers to the amplification map stored in the map 60e and adjusts the request output calculated by the request output calculation unit 60a based on the decrease rate DR. Therefore, in step S76, the amplified required output is determined as the command value. That is, in the low vehicle speed region, the driver tries to operate the throttle operator 100 so that the driving force of the drive motor 38 is increased. Therefore, the required output adjustment unit 60d sets a command value obtained by amplifying the required output in such a way as to respond to the driver's intention.
 具体的に、ステップS76では、減少率DRが20%未満(図3及び図4のθcaの回動角度範囲)、且つ、要求出力算出部60aが算出した要求出力が70%以上である場合、増幅マップに基づいて、駆動モータ38の出力の増幅率を150%とすることで、要求出力調整部60dは、減少率DR及び要求出力の大きさに関わりなく、増幅率に応じた150%の要求出力を指令値に設定する。なお、図3及び図4において、θcbの回動角度範囲は、減少率DRが20%~100%の回動角度範囲に対応する。この回動角度範囲では、例えば、ステップS74の処理が実行される。 Specifically, in step S76, when the reduction rate DR is less than 20% (the rotation angle range of θca in FIGS. 3 and 4) and the request output calculated by the request output calculation unit 60a is 70% or more, By setting the amplification factor of the output of the drive motor 38 to 150% based on the amplification map, the required output adjustment unit 60d can increase the amplification factor of 150% according to the amplification factor regardless of the reduction rate DR and the magnitude of the required output. Set the required output to the command value. 3 and 4, the rotation angle range of θcb corresponds to the rotation angle range in which the decrease rate DR is 20% to 100%. In this rotation angle range, for example, the process of step S74 is executed.
 あるいは、ステップS76において、要求出力調整部60dは、擬似クラッチ操作子102の操作速度(クラッチ速度)に基づいて、増幅マップから駆動モータ38の出力の増幅率を決定し、決定した増幅率に応じた要求出力を指令値に設定してもよい。また、ステップS76において、要求出力調整部60dは、スロットル操作子100の操作量(回動角度θTH)又は操作量の時間変化量(回動角度θTHの時間変化量)に基づいて、増幅マップから駆動モータ38の出力の増幅率を決定し、決定した増幅率に応じた要求出力を指令値に設定してもよい。 Alternatively, in step S76, the required output adjustment unit 60d determines the amplification factor of the output of the drive motor 38 from the amplification map based on the operation speed (clutch speed) of the pseudo clutch operator 102, and according to the determined amplification factor. The requested output may be set as a command value. In step S76, the required output adjusting unit 60d determines from the amplification map based on the operation amount (rotation angle θTH) of the throttle operator 100 or the time change amount of the operation amount (time change amount of the rotation angle θTH). The amplification factor of the output of the drive motor 38 may be determined, and the required output corresponding to the determined amplification factor may be set as the command value.
 さらに、ステップS71において、減少率DRが100%である場合(ステップS71:YES)、ステップS77に進む。ステップS77において、要求出力調整部60dは、駆動モータ38の出力(駆動力)を0にして、駆動モータ38から後輪34への駆動力の伝達を遮断することを決定すると共に、駆動モータ38の回転数に応じたゼロトルク制御を行うような指令値を決定する。すなわち、DR=100%の場合、要求出力調整部60dは、要求出力算出部60aが算出した要求出力の値(例えば、50%)に関わりなく、0%の指令値に設定する。 Further, in step S71, when the decrease rate DR is 100% (step S71: YES), the process proceeds to step S77. In step S77, the required output adjusting unit 60d determines that the output (driving force) of the driving motor 38 is 0, and that the transmission of the driving force from the driving motor 38 to the rear wheel 34 is interrupted, and the driving motor 38. A command value for performing zero torque control corresponding to the number of rotations is determined. That is, when DR = 100%, the required output adjusting unit 60d sets the command value to 0% regardless of the required output value (for example, 50%) calculated by the required output calculating unit 60a.
 このように、擬似クラッチ操作子102の操作量や電動車両12の車速Vに応じて要求出力を適宜変更して指令値を設定することにより、運転者の所望する走行動作を容易に実行することができる。 Thus, by appropriately changing the required output according to the operation amount of the pseudo clutch operator 102 and the vehicle speed V of the electric vehicle 12 and setting the command value, the driving operation desired by the driver can be easily executed. Can do.
[本実施形態の変形例]
 上記の説明では、擬似クラッチ操作子102である擬似クラッチレバー68、84及び擬似クラッチスイッチ88が、操向ハンドル24の左端部に配設されている。本実施形態では、これらの擬似クラッチ操作子102が操向ハンドル24の右端部に配設されてもよい。要は、運転者にとって操作が容易な箇所に擬似クラッチ操作子102が設けられていればよい。
[Modification of this embodiment]
In the above description, the pseudo clutch levers 68 and 84 and the pseudo clutch switch 88 which are the pseudo clutch operator 102 are disposed at the left end portion of the steering handle 24. In the present embodiment, these pseudo clutch operators 102 may be disposed at the right end of the steering handle 24. In short, it is only necessary that the pseudo clutch operation element 102 is provided at a location that is easy for the driver to operate.
 従って、上述した擬似クラッチレバー68、84及び擬似クラッチスイッチ88は一例であり、擬似クラッチ操作子102は、運転者の操作しやすい操作子であればよい。具体的に、スイッチボックス80において、上下又は左右に設けられたスイッチ82を擬似クラッチスイッチ88としてもよい。また、スイッチボックス80に設けられたシーソータイプ又はウィンカタイプのスイッチを擬似クラッチスイッチ88としてもよい。 Therefore, the above-described pseudo clutch levers 68 and 84 and the pseudo clutch switch 88 are examples, and the pseudo clutch operator 102 may be an operator that can be easily operated by the driver. Specifically, in the switch box 80, the switches 82 provided on the top and bottom or the left and right may be used as the pseudo clutch switch 88. Further, a seesaw type or winker type switch provided in the switch box 80 may be used as the pseudo clutch switch 88.
 また、上記の説明では、パワーユニット36をケース35の下方に配設し、パワーユニット36の駆動モータ38から後輪34に駆動力を伝達しているが、駆動モータ38を後輪34のホイール内に配置したインホイールモータとし、駆動力を後輪34に直接伝達してもよい。いずれの場合でも、駆動モータ38から後輪34に駆動力を伝達し、電動車両12を走行させることができる。 In the above description, the power unit 36 is disposed below the case 35 and the driving force is transmitted from the drive motor 38 of the power unit 36 to the rear wheel 34. However, the drive motor 38 is placed in the wheel of the rear wheel 34. A driving force may be directly transmitted to the rear wheel 34 by using the arranged in-wheel motor. In either case, the driving force can be transmitted from the drive motor 38 to the rear wheel 34 to drive the electric vehicle 12.
 さらに、バッテリ52の配置箇所についても、ケース35とパワーユニット36との間の空間に限定されることはなく、パワーユニット36の近傍にバッテリ52が配置されていればよい。さらにまた、モータドライバ56の配置箇所についても、ケース35の内部に限定されることはなく、パワーユニット36又はバッテリ52の近傍やシート14の下方にモータドライバ56を配置してもよい。また、ECU60の配置箇所についても、ケース35の内部に限定されることはなく、シート14の下方にECU60を配置してもよい。 Furthermore, the location of the battery 52 is not limited to the space between the case 35 and the power unit 36, and the battery 52 may be disposed in the vicinity of the power unit 36. Furthermore, the arrangement location of the motor driver 56 is not limited to the inside of the case 35, and the motor driver 56 may be arranged near the power unit 36 or the battery 52 or below the seat 14. Further, the arrangement location of the ECU 60 is not limited to the inside of the case 35, and the ECU 60 may be arranged below the seat 14.
 さらに、上記の説明では、ECU60とモータドライバ56とを別体にしているが、1つのユニットにまとめて構成することも可能である。 Furthermore, in the above description, the ECU 60 and the motor driver 56 are separated from each other, but they can be configured as a single unit.
[本実施形態の効果]
 以上説明したように、本実施形態に係る駆動制御装置10では、駆動力変更手段としての擬似クラッチ操作子102が電動車両12に設けられることで、従来の発進時のみならず、電動車両12の動作時(減速時、停車時、走行中)においても、運転者の要望に応じて、駆動モータ38の出力(駆動力)を自由に変更又は遮断することができる。すなわち、運転者が擬似クラッチ操作子102を用いて擬似的なクラッチ操作を行うことで、加速操作手段としてのスロットル操作子100の操作の有無に関わりなく、駆動モータ38の出力を制御することができる。これにより、電動車両12においても、エンジン車と同等の車体挙動を実現することができる。
[Effect of this embodiment]
As described above, in the drive control device 10 according to the present embodiment, the pseudo clutch operation element 102 as the driving force changing means is provided in the electric vehicle 12, so that not only the conventional start but also the electric vehicle 12 can be operated. Even during operation (deceleration, stopping, traveling), the output (driving force) of the drive motor 38 can be freely changed or interrupted according to the driver's request. That is, when the driver performs a pseudo clutch operation using the pseudo clutch operator 102, the output of the drive motor 38 can be controlled regardless of whether or not the throttle operator 100 as the acceleration operation means is operated. it can. Thereby, also in the electric vehicle 12, the vehicle body behavior equivalent to an engine vehicle is realizable.
 従来の電動車両では、スロットル操作子100が設けられる一方で、擬似クラッチ操作子102が設けられていない。そのため、運転者は、ハンドルグリップ62Rの回動操作によって、駆動モータ38の出力の変化を指示することになる。しかしながら、駆動モータ38の出力を遮断するため、運転者は、ハンドルグリップ62Rを大きく回動させなければならない。この結果、駆動モータ38の出力を短時間で変化させることができない。駆動モータ38の出力を短時間で変化させるためには、ハンドルグリップ62Rを素早く回動させる必要があるが、運転者の負担が大きくなる。 In the conventional electric vehicle, while the throttle operator 100 is provided, the pseudo clutch operator 102 is not provided. Therefore, the driver gives an instruction to change the output of the drive motor 38 by rotating the handle grip 62R. However, in order to cut off the output of the drive motor 38, the driver must rotate the handle grip 62R greatly. As a result, the output of the drive motor 38 cannot be changed in a short time. In order to change the output of the drive motor 38 in a short time, it is necessary to quickly turn the handle grip 62R, but this increases the burden on the driver.
 そのため、図11で破線に示すように、従来は、時点t0でスロットル操作子100のスロットル開度THを0にしても、時点t2まで駆動モータ38の出力が0に低下することはなかった。また、時点t2でスロットル操作子100を大きく回動させても、時点t4になるまで駆動モータ38の出力を所望の出力にすることができなかった。 Therefore, as shown by the broken line in FIG. 11, conventionally, even if the throttle opening TH of the throttle operator 100 is set to 0 at time t0, the output of the drive motor 38 does not decrease to 0 until time t2. Further, even if the throttle operator 100 is largely rotated at time t2, the output of the drive motor 38 cannot be set to a desired output until time t4.
 これに対して、本実施形態に係る駆動制御装置10を搭載した電動車両12では、運転者は、スロットル操作子100の操作とは独立して、擬似クラッチ操作子102の操作を行うことができる。また、電動車両12は、エンジン車とは異なり、擬似クラッチ操作子102の操作によって、駆動モータ38の回転数がカット(アイドリング)されることはない。 In contrast, in the electric vehicle 12 equipped with the drive control apparatus 10 according to the present embodiment, the driver can operate the pseudo clutch operator 102 independently of the operation of the throttle operator 100. . Further, unlike the engine vehicle, the electric vehicle 12 does not cut (idle) the rotational speed of the drive motor 38 by the operation of the pseudo clutch operator 102.
 そのため、図11に実線で示すように、本実施形態では、時点t1で擬似クラッチ操作子102を操作した場合、時点t1から時点t2までの短時間で駆動モータ38の出力を0にすることができる。また、本実施形態では、時点t2で擬似クラッチ操作子102を元の位置に戻した場合、時点t2から時点t3までの短時間で駆動モータ38の出力を所望の出力にすることができる。 Therefore, as shown by a solid line in FIG. 11, in this embodiment, when the pseudo clutch operator 102 is operated at time t1, the output of the drive motor 38 can be set to 0 in a short time from time t1 to time t2. it can. Further, in this embodiment, when the pseudo clutch operator 102 is returned to the original position at time t2, the output of the drive motor 38 can be set to a desired output in a short time from time t2 to time t3.
 このように、本実施形態では、運転者が擬似クラッチ操作子102を操作することで、運転者に空走感を感じさせつつ、駆動モータ38の出力の遮断や、遮断状態からの復帰を速やかに行うことができる。この結果、運転者の所望する電動車両12の挙動を速やかに実現することができる。 As described above, in the present embodiment, the driver operates the pseudo clutch operator 102 to quickly cut off the output of the drive motor 38 and return from the shut-off state while making the driver feel free running. Can be done. As a result, the behavior of the electric vehicle 12 desired by the driver can be quickly realized.
 また、本実施形態に係る駆動制御装置10では、運転者が操作しやすいハンドルに擬似クラッチ操作子102が設けられるので、操作性が向上する。 Further, in the drive control apparatus 10 according to the present embodiment, the pseudo clutch operator 102 is provided on the handle that is easy for the driver to operate, so that the operability is improved.
 さらに、本実施形態に係る駆動制御装置10では、擬似クラッチ操作子102がレバーを模した擬似クラッチレバー68であるため、操作性をさらに向上させることができる。 Furthermore, in the drive control apparatus 10 according to the present embodiment, since the pseudo clutch operation element 102 is the pseudo clutch lever 68 simulating a lever, the operability can be further improved.
 さらにまた、本実施形態に係る駆動制御装置10では、スイッチボックス80に擬似クラッチレバー84又は擬似クラッチスイッチ88が設けられている。これにより、運転者は、手で操作できるので、操作に対する運転者の負担を軽減することができる。 Furthermore, in the drive control apparatus 10 according to the present embodiment, the switch box 80 is provided with a pseudo clutch lever 84 or a pseudo clutch switch 88. Thereby, since the driver can operate by hand, the burden on the driver for the operation can be reduced.
 この場合、ストロークタイプの擬似クラッチレバー84又は擬似クラッチスイッチ88であれば、運転者は、少ない操作量で駆動モータ38の駆動力(出力)を変更又は遮断させることができる。 In this case, if the stroke type pseudo clutch lever 84 or the pseudo clutch switch 88 is used, the driver can change or cut off the driving force (output) of the driving motor 38 with a small operation amount.
 また、圧力感応型の擬似クラッチスイッチ88であれば、操作がしやすくなると共に、より少ない力及び操作量で駆動モータ38の駆動力(出力)を変更又は遮断させることができる。 Further, the pressure-sensitive pseudo clutch switch 88 makes it easy to operate, and can change or cut off the driving force (output) of the driving motor 38 with less force and operation amount.
 さらに、本実施形態に係る駆動制御装置10では、ECU60が運転者の要望に応じて駆動モータ38の出力(駆動力)を適切に制御することができる。 Furthermore, in the drive control apparatus 10 according to the present embodiment, the ECU 60 can appropriately control the output (drive force) of the drive motor 38 according to the driver's request.
 この場合、ECU60は、運転者による擬似クラッチ操作子102の操作に応じて、駆動モータ38の出力をオン又はオフすることで、駆動モータ38から後輪34への駆動力の伝達や、駆動力の遮断を一義的に行うことができる。これにより、擬似クラッチ操作子102の操作に対する駆動モータ38の出力の応答性を高めることができる。 In this case, the ECU 60 turns on or off the output of the drive motor 38 in accordance with the operation of the pseudo clutch operator 102 by the driver, thereby transmitting the drive force from the drive motor 38 to the rear wheel 34 or driving force. Can be unambiguously performed. Thereby, the response of the output of the drive motor 38 to the operation of the pseudo clutch operator 102 can be enhanced.
 また、ECU60は、運転者によるスロットル操作子100の操作に応じた駆動モータ38の出力を、運転者による擬似クラッチ操作子102の操作量に応じて、0%~100%の範囲で調整(制御)することができる。この結果、運転者の要望に応じて、エンジン車のクラッチ操作に類似した、駆動モータ38の駆動制御が可能となる。 Further, the ECU 60 adjusts (controls) the output of the drive motor 38 according to the operation of the throttle operator 100 by the driver in a range of 0% to 100% according to the operation amount of the pseudo clutch operator 102 by the driver. )can do. As a result, the drive control of the drive motor 38 similar to the clutch operation of the engine car can be performed according to the driver's request.
 さらに、ECU60は、運転者による擬似クラッチ操作子102の操作量が100%である場合には、駆動モータ38の回転数に応じたゼロトルク制御を行うので、駆動モータ38による回生制動(引きずりトルク)が抑制され、運転者に空走感を感じさせることが可能となる。 Furthermore, when the amount of operation of the pseudo clutch operator 102 by the driver is 100%, the ECU 60 performs zero torque control in accordance with the rotational speed of the drive motor 38, so that regenerative braking (drag torque) by the drive motor 38 is performed. Is suppressed, and it is possible to make the driver feel a feeling of free running.
 さらにまた、電動車両12の低速域で駆動モータ38の出力が増幅されるので、エンジン車の低速時における半クラッチ操作でのエンジン出力の増幅と同様の効果が得られる。 Furthermore, since the output of the drive motor 38 is amplified in the low speed region of the electric vehicle 12, the same effect as the amplification of the engine output by half-clutch operation at the low speed of the engine vehicle can be obtained.
 以上、本発明について好適な実施形態を用いて説明したが、本発明の技術的範囲は、上記の実施形態の記載範囲に限定されることはない。上記の実施形態に、多様な変更又は改良を加えることが可能であることは、当業者に明らかである。そのような変更又は改良を加えた形態も、本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。また、請求の範囲に記載された括弧書きの符号は、本発明の理解の容易化のために添付図面中の符号に倣って付したものであり、本発明がその符号をつけた要素に限定されて解釈されるものではない。 As mentioned above, although this invention was demonstrated using suitable embodiment, the technical scope of this invention is not limited to the description range of said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiments. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can also be included in the technical scope of the present invention. Further, the reference numerals in parentheses described in the claims are appended to the reference numerals in the attached drawings for easy understanding of the present invention, and the present invention is limited to the elements to which the reference numerals are attached. Is not to be interpreted.

Claims (11)

  1.  運転者が操作する加速操作手段(62R、100)と、前記運転者による前記加速操作手段(62R、100)の操作に応じて、車輪(28、34)を駆動させる駆動力を発生する駆動モータ(38)とを有する電動車両(12)の駆動制御装置(10)において、
     前記電動車両(12)に設けられ、前記運転者の操作によって、前記駆動力を変更し、又は、前記駆動モータ(38)から前記車輪(28、34)への前記駆動力の伝達を遮断する駆動力変更手段(68、84、88、102)を備えることを特徴とする電動車両(12)の駆動制御装置(10)。
    Acceleration operation means (62R, 100) operated by the driver, and a drive motor that generates a driving force for driving the wheels (28, 34) according to the operation of the acceleration operation means (62R, 100) by the driver In the drive control device (10) of the electric vehicle (12) having (38),
    Provided in the electric vehicle (12), the driving force is changed by the operation of the driver, or transmission of the driving force from the driving motor (38) to the wheels (28, 34) is cut off. A drive control device (10) for an electric vehicle (12) comprising drive force changing means (68, 84, 88, 102).
  2.  請求項1記載の電動車両(12)の駆動制御装置(10)において、
     前記駆動力変更手段(68、84、88、102)は、前記電動車両(12)のハンドル(24)に設けられることを特徴とする電動車両(12)の駆動制御装置(10)。
    In the drive control device (10) of the electric vehicle (12) according to claim 1,
    The drive control device (10) of the electric vehicle (12), wherein the drive force changing means (68, 84, 88, 102) is provided on a handle (24) of the electric vehicle (12).
  3.  請求項2記載の電動車両(12)の駆動制御装置(10)において、
     前記駆動力変更手段(68、84)は、前記運転者が手で操作するレバータイプの操作子であることを特徴とする電動車両(12)の駆動制御装置(10)。
    In the drive control device (10) of the electric vehicle (12) according to claim 2,
    The drive control device (10) of the electric vehicle (12), wherein the drive force change means (68, 84) is a lever-type operator that is operated by the driver by hand.
  4.  請求項2記載の電動車両(12)の駆動制御装置(10)において、
     前記ハンドル(24)には、複数のスイッチ(82)を有するスイッチボックス(80)が配置され、
     前記駆動力変更手段(84、88)は、前記スイッチボックス(80)に設けられ、前記運転者が手で操作する操作子であることを特徴とする電動車両(12)の駆動制御装置(10)。
    In the drive control device (10) of the electric vehicle (12) according to claim 2,
    The handle (24) is provided with a switch box (80) having a plurality of switches (82),
    The drive force change means (84, 88) is an operator that is provided in the switch box (80) and is operated by the driver by hand. ).
  5.  請求項4記載の電動車両(12)の駆動制御装置(10)において、
     前記操作子(84、88)は、ストロークタイプの操作子であることを特徴とする電動車両(12)の駆動制御装置(10)。
    In the drive control device (10) of the electric vehicle (12) according to claim 4,
    The operation control device (10) of the electric vehicle (12), wherein the operation devices (84, 88) are stroke type operation devices.
  6.  請求項4記載の電動車両(12)の駆動制御装置(10)において、
     前記操作子(88)は、圧力感応型の操作子であることを特徴とする電動車両(12)の駆動制御装置(10)。
    In the drive control device (10) of the electric vehicle (12) according to claim 4,
    The drive control device (10) of the electric vehicle (12), wherein the operation element (88) is a pressure-sensitive operation element.
  7.  請求項1~6のいずれか1項に記載の電動車両(12)の駆動制御装置(10)において、
     前記運転者による前記加速操作手段(62R、100)の操作に応じて、前記駆動モータ(38)の出力を制御し、一方で、前記運転者による前記駆動力変更手段(68、84、88、102)の操作に応じて、前記加速操作手段(62R、100)の操作に基づく前記駆動モータ(38)の出力を調整する制御手段(60)をさらに備えることを特徴とする電動車両(12)の駆動制御装置(10)。
    In the drive control device (10) of the electric vehicle (12) according to any one of claims 1 to 6,
    The output of the drive motor (38) is controlled according to the operation of the acceleration operation means (62R, 100) by the driver, while the driving force changing means (68, 84, 88, 102) further comprising a control means (60) for adjusting the output of the drive motor (38) based on the operation of the acceleration operation means (62R, 100) according to the operation of 102). Drive controller (10).
  8.  請求項7記載の電動車両(12)の駆動制御装置(10)において、
     前記制御手段(60)は、前記運転者による前記駆動力変更手段(68、84、88、102)の操作に応じて、前記駆動モータ(38)の出力をオン又はオフすることを特徴とする電動車両(12)の駆動制御装置(10)。
    In the drive control device (10) of the electric vehicle (12) according to claim 7,
    The control means (60) turns on or off the output of the drive motor (38) according to the operation of the drive force change means (68, 84, 88, 102) by the driver. Drive control device (10) for electric vehicle (12).
  9.  請求項7記載の電動車両(12)の駆動制御装置(10)において、
     前記制御手段(60)は、前記運転者による前記駆動力変更手段(68、84、88、102)の操作量に応じて、前記駆動モータ(38)の出力を変更することを特徴とする電動車両(12)の駆動制御装置(10)。
    In the drive control device (10) of the electric vehicle (12) according to claim 7,
    The control means (60) changes the output of the drive motor (38) according to the amount of operation of the drive force change means (68, 84, 88, 102) by the driver. Drive control device (10) for vehicle (12).
  10.  請求項7記載の電動車両(12)の駆動制御装置(10)において、
     前記制御手段(60)は、前記運転者による前記駆動力変更手段(68、84、88、102)の操作量が100%である場合には、前記駆動モータ(38)に対して、該駆動モータ(38)の回転数に応じたゼロトルク制御を行うことを特徴とする電動車両(12)の駆動制御装置(10)。
    In the drive control device (10) of the electric vehicle (12) according to claim 7,
    When the amount of operation of the driving force changing means (68, 84, 88, 102) by the driver is 100%, the control means (60) drives the driving motor (38) with the driving force. A drive control device (10) for an electric vehicle (12), wherein zero torque control is performed in accordance with the rotational speed of the motor (38).
  11.  請求項7記載の電動車両(12)の駆動制御装置(10)において、
     前記電動車両(12)の車速を検出する車速検出手段(60c)をさらに備え、
     前記制御手段(60)は、
     前記運転者による前記加速操作手段(62R、100)及び前記駆動力変更手段(68、84、88、102)の各操作量と前記車速とに応じた指令値を前記駆動モータ(38)に供給することにより、前記駆動モータ(38)の出力を制御し、
     前記車速が所定車速以下であり、且つ、前記駆動力変更手段(68、84、88、102)の操作量が所定操作量以下である場合には、前記指令値を増幅して前記駆動モータ(38)に供給することを特徴とする電動車両(12)の駆動制御装置(10)。
    In the drive control device (10) of the electric vehicle (12) according to claim 7,
    Vehicle speed detection means (60c) for detecting the vehicle speed of the electric vehicle (12),
    The control means (60)
    Command values corresponding to the operation amounts of the acceleration operation means (62R, 100) and the driving force change means (68, 84, 88, 102) by the driver and the vehicle speed are supplied to the drive motor (38). By controlling the output of the drive motor (38),
    When the vehicle speed is equal to or less than a predetermined vehicle speed and the operation amount of the driving force changing means (68, 84, 88, 102) is equal to or less than a predetermined operation amount, the command value is amplified and the drive motor ( 38), the drive control device (10) for the electric vehicle (12).
PCT/JP2019/001277 2018-03-29 2019-01-17 Driving control device for electrically-propelled vehicle WO2019187518A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020509702A JP6946549B2 (en) 2018-03-29 2019-01-17 Drive control device for electric vehicles
CN201980023894.7A CN111936346B (en) 2018-03-29 2019-01-17 Drive control device for electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-063781 2018-03-29
JP2018063781 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019187518A1 true WO2019187518A1 (en) 2019-10-03

Family

ID=68059667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001277 WO2019187518A1 (en) 2018-03-29 2019-01-17 Driving control device for electrically-propelled vehicle

Country Status (3)

Country Link
JP (1) JP6946549B2 (en)
CN (1) CN111936346B (en)
WO (1) WO2019187518A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021118569A (en) * 2020-01-23 2021-08-10 トヨタ自動車株式会社 Electric vehicle
JP2022034648A (en) * 2020-08-19 2022-03-04 トヨタ自動車株式会社 Control device of electric vehicle
JP2022036823A (en) * 2020-08-24 2022-03-08 トヨタ自動車株式会社 Electric vehicle
JP7484702B2 (en) 2020-12-25 2024-05-16 スズキ株式会社 Motor Control Device
EP4385871A1 (en) * 2022-12-15 2024-06-19 Yamaha Hatsudoki Kabushiki Kaisha Control system for straddled electric vehicle and straddled electric vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061360A1 (en) * 2011-10-24 2013-05-02 川崎重工業株式会社 Electric vehicle
WO2017056541A1 (en) * 2015-09-28 2017-04-06 ヤマハ発動機株式会社 Electric vehicle
JP2018023223A (en) * 2016-08-03 2018-02-08 ヤマハ発動機株式会社 Electric vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5166192B2 (en) * 2008-09-29 2013-03-21 本田技研工業株式会社 Electric vehicle deceleration control device
CN204692555U (en) * 2015-05-28 2015-10-07 广东戈兰玛汽车系统有限公司 A kind of automatic gear shift apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061360A1 (en) * 2011-10-24 2013-05-02 川崎重工業株式会社 Electric vehicle
WO2017056541A1 (en) * 2015-09-28 2017-04-06 ヤマハ発動機株式会社 Electric vehicle
JP2018023223A (en) * 2016-08-03 2018-02-08 ヤマハ発動機株式会社 Electric vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021118569A (en) * 2020-01-23 2021-08-10 トヨタ自動車株式会社 Electric vehicle
US11554677B2 (en) 2020-01-23 2023-01-17 Toyota Jidosha Kabushiki Kaisha Electric vehicle
JP2022034648A (en) * 2020-08-19 2022-03-04 トヨタ自動車株式会社 Control device of electric vehicle
JP7459721B2 (en) 2020-08-19 2024-04-02 トヨタ自動車株式会社 Electric vehicle control device
JP2022036823A (en) * 2020-08-24 2022-03-08 トヨタ自動車株式会社 Electric vehicle
JP7512766B2 (en) 2020-08-24 2024-07-09 トヨタ自動車株式会社 Electric vehicles
JP7484702B2 (en) 2020-12-25 2024-05-16 スズキ株式会社 Motor Control Device
EP4385871A1 (en) * 2022-12-15 2024-06-19 Yamaha Hatsudoki Kabushiki Kaisha Control system for straddled electric vehicle and straddled electric vehicle

Also Published As

Publication number Publication date
CN111936346A (en) 2020-11-13
JP6946549B2 (en) 2021-10-06
JPWO2019187518A1 (en) 2021-02-12
CN111936346B (en) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2019187518A1 (en) Driving control device for electrically-propelled vehicle
US10035431B2 (en) Electric vehicle
US9457668B2 (en) Regenerative brake control system of electric vehicle
JP5478739B2 (en) Regenerative control system for electric vehicles
CN104718100B (en) The regenerative brake control system of electric vehicle
JP6014159B2 (en) Regenerative brake control system for electric vehicles
JP6273000B2 (en) Saddle riding
JP6185606B2 (en) Saddle riding
JP7269772B2 (en) vehicle
WO2012090250A1 (en) Electric vehicle
JP2018196166A (en) Electric vehicle
JP5478738B2 (en) Electric vehicle acceleration control system
WO2017057515A1 (en) Electric power assisted bicycle
JP2016053323A (en) Traction control system and saddle-riding type vehicle
JP3812686B2 (en) Driving force control device for electric vehicle
JP3638701B2 (en) Auxiliary force control device for electric auxiliary vehicle
US20240198816A1 (en) Control system for straddled electric vehicle and straddled electric vehicle
WO2023190115A1 (en) Electric vehicle
WO2023188743A1 (en) Method for controlling electric two-wheel vehicle
US12024152B2 (en) Motor control device
WO2021095058A1 (en) Starting system of electric vehicle
JP2002369317A (en) Constant speed traveling controller of motor vehicle
JP2023007623A (en) Operation vehicle
JP3927568B2 (en) Brake operation interlocking engine control mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509702

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775624

Country of ref document: EP

Kind code of ref document: A1