WO2019187454A1 - Electric vehicle drive system, semiconductor current reducer, and failure detection method therefor - Google Patents

Electric vehicle drive system, semiconductor current reducer, and failure detection method therefor Download PDF

Info

Publication number
WO2019187454A1
WO2019187454A1 PCT/JP2018/048453 JP2018048453W WO2019187454A1 WO 2019187454 A1 WO2019187454 A1 WO 2019187454A1 JP 2018048453 W JP2018048453 W JP 2018048453W WO 2019187454 A1 WO2019187454 A1 WO 2019187454A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
semiconductor
switch element
semiconductor switch
charging
Prior art date
Application number
PCT/JP2018/048453
Other languages
French (fr)
Japanese (ja)
Inventor
航 成木
正登 安東
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2020509670A priority Critical patent/JP7016949B2/en
Publication of WO2019187454A1 publication Critical patent/WO2019187454A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention generally relates to a semiconductor current reducer for a drive system for an electric vehicle (railway vehicle).
  • a drive circuit for an electric vehicle is generally provided with a current breaker.
  • a current breaker for example, current breakers disclosed in Patent Documents 1 and 2 are known.
  • the inventor of the present application diligently studied the practical application of a drive system for an electric vehicle in which a semiconductor current reducer was adopted as a current breaker and the filter reactor was miniaturized. As a result, the following knowledge was obtained.
  • a drive system for an electric vehicle generally has a filter reactor.
  • the filter reactor plays a role of reducing pulsation of current and voltage generated during traveling and suppressing a large short-circuit current from flowing from the overhead line when a high potential and a low potential are short-circuited in the main circuit.
  • the inductance value necessary for such a role is generally 8 mH to 12 mH, and therefore the volume and mass of the filter reactor are large.
  • the volume and mass of the filter reactor occupy about 1/2 to 1/3 of the entire drive system except for the motor.
  • the filter reactor can be downsized, it contributes to downsizing of the entire drive system.
  • the current breaker installed in the drive system for electric vehicles is required to have high reliability and safety.
  • Patent Documents 1 and 2 disclose a configuration in which a semiconductor current reducer is applied to a drive system for an electric vehicle.
  • Patent Documents 1 and 2 disclose that the size of the filter reactor and the inflow of a large current are suppressed in the practical application of the electric vehicle drive system in which the semiconductor current reducer is adopted as a current breaker and the filter reactor is miniaturized. There is no disclosure or suggestion of a technology that achieves both. Patent Documents 1 and 2 neither disclose nor suggest a technique for maintaining the reliability and safety of a semiconductor current reducer employed as a current breaker.
  • an object of the present invention is to maintain the reliability and safety of the semiconductor current reducer while simultaneously reducing the size of the filter reactor and suppressing the inflow of a large current.
  • the semiconductor switch element in the semiconductor current reducer semiconductor switch element connected in series with the current breaker and the inverter
  • the current is commutated to at least one resistance in the resistance section, and the current that has been commutated and reduced by the at least one resistance is cut off by turning off the current breaker.
  • the electric vehicle drive system includes a second current for detecting a current value flowing through one of the semiconductor switch element and the resistor in the semiconductor current reducer. A detector is provided. If the predetermined value provided for the current value of the current flowing through the resistance portion is satisfied, at least if the current value obtained on the basis of the second current detector is satisfied, the control device breaks down the semiconductor switch element. It is detected that
  • the present invention it is possible to maintain the reliability and safety of the semiconductor current reducer while simultaneously reducing the size of the filter reactor and suppressing the inflow of a large current.
  • FIG. 1 is a configuration diagram of an electric vehicle drive system according to Embodiment 1.
  • FIG. It is a waveform chart which shows the switching operation in the drive system for electric vehicles described in FIG. It is a waveform chart which shows the switching operation in the drive system for electric vehicles described in FIG. It is a waveform chart which shows the switching operation in the drive system for electric vehicles described in FIG. It is a waveform chart which shows the switching operation in the drive system for electric vehicles described in FIG. It is a waveform chart which shows the switching operation in the drive system for electric vehicles described in FIG. It is a waveform chart which shows the switching operation in the drive system for electric vehicles described in FIG.
  • FIG. 6 is a configuration diagram of an electric vehicle drive system according to a second embodiment.
  • FIG. 6 is a configuration diagram of an electric vehicle drive system according to a third embodiment.
  • FIG. 10 is a diagram illustrating an arrangement example of a second current detector in the electric vehicle drive system according to the fourth embodiment. It is a figure which shows the example of arrangement
  • FIG. 1 is a configuration diagram of an electric vehicle drive system according to the first embodiment.
  • an electric vehicle drive system 100 is connected to a pantograph 1 that takes electric power from a DC overhead line to an electric vehicle and an electric motor 11 that drives the electric vehicle.
  • the electric vehicle drive system 100 includes a current breaker 2, 3 and 4 (an example of one or more current breakers), a charging resistor 5 (an example of a first resistor), and a current reducing resistor 6 (a second resistor).
  • An example a power module 7 (a parallel body of a semiconductor switch element and a diode connected in parallel in the direction of flowing regenerative power), an inverter 10, and a pulsation of a voltage generated when the inverter 10 is operated.
  • a parallel body of the current reducing resistor 6 and the power module 7 is a semiconductor current reducer 110.
  • the current values detected by the first current detector 21 and the second current detector 22 are respectively input to the control device 12.
  • the control device 12 controls on and off of the semiconductor switch element in the power module 7. In the present embodiment, the control device 12 can also control ON (closed) and OFF (open) of the current breakers 2 to 4.
  • the current breakers 2 and 3 are connected in series. By connecting a plurality of circuit breakers in series, the breaking current capacity can be increased as compared with the case where one circuit breaker is used alone.
  • the series body of the current breaker 4 and the charging resistor 5 is connected in parallel with the current breaker 3.
  • the first effect is that the resistance values of the charging resistor 5 and the current reducing resistor 6 can be selected to optimum values.
  • the current flowing through the power module 7 is commutated to the current reducing resistor 6. Therefore, the product of the magnitude of the commutated current and the resistance value of the current reducing resistor 6 is a voltage applied to both ends of the power module 7.
  • the value of the current reducing resistor 6 is larger, it is necessary to increase the element withstand voltage of the power module 7, leading to an increase in cost and size of the element. Therefore, it is desirable that the value of the current reducing resistor 6 is small as long as it does not cause a problem in the current reducing operation.
  • the charging resistor 5 that limits the charging current when charging the filter capacitor 9 has a concern that if the resistance value is small, the charging current rises sharply at the start of charging and becomes a noise source that affects signal devices and the like. . This tendency is particularly strong when the capacity of the filter reactor 8 is small. Therefore, it is desirable to set a sufficiently large resistance value so that the value of the charging resistor 5 does not become a noise source. From the above, in one comparative example that does not have the current breaker 4 and the charging resistor 5 and also uses the current reducing resistor as the charging resistor, the optimum resistance values of the current reducing resistor and the charging resistor are different. The value cannot be optimized.
  • the circuit breaker 4 and the charging resistor 5 are provided, a series body of the charging resistor 5 and the current reducing resistor 6 is used as the charging resistor of the filter capacitor 9.
  • the resistance value of the current reducing resistor 6 and the resistance value of the charging resistor 5 of the filter capacitor 9 can be determined individually. Therefore, it is possible to achieve both suppression of an increase in element breakdown voltage required for the power module 7 and suppression of noise generation due to a steep current change when the filter capacitor 9 is charged.
  • the semiconductor switch element may be turned on by the control device 12 when the filter capacitor 9 is charged, and the charging current may flow through the charging resistor 5 and not through the current reducing resistor 6.
  • the second effect is that the safety of the drive system 100 when the filter capacitor 9 is charged can be improved.
  • the breaker 2 and the breaker 4 can be turned on with the breaker 3 turned off.
  • the charging current always passes through the charging resistor 5, so even if the power module 7 has a short-circuit mode failure, a large inrush current does not occur. Adverse effects such as occurrence are suppressed.
  • the positions of the current breaker 4 and the charging resistor 5 may be interchanged.
  • the semiconductor switch element constituting the power module 7 is, for example, an IGBT (Insulated Gate Bipolar Transistor), but may be another power device such as a MOSFET (Metal Oxide Semiconductor Semiconductor Field Field Effect Transistor). When a power device having a body diode such as a MOSFET is used, the diode may be omitted.
  • the second current detector 22 that detects the value of the current flowing through the current reducing resistor 6 may be present on either of the two paths connecting the current reducing resistor 6 and the power module 7.
  • a filter circuit composed of a filter reactor 8 and a filter capacitor 9 is connected to the parallel body of the current reducing resistor 6 and the power module 7, and one end of the filter capacitor 9 is connected to the overhead line return path. Usually the overhead line voltage is charged.
  • An inverter 10 and an electric motor 11 are connected to the filter capacitor 9.
  • the inverter 10 may be a well-known inverter that constitutes a two-level or three-level circuit with semiconductor elements such as IGBT and MOSFET, and converts DC power into a three-phase variable frequency and variable voltage.
  • An electric motor 11 serving as a load of the inverter 10 may also be known.
  • the motor 11 may be a synchronous motor.
  • the inductance of the filter reactor 8 may be a low inductance, for example, about 1/2 to 1/8 of a general inductance value (8 mH to 12 mH), specifically, 1 mH to 4 mH. Thereby, the filter reactor 8 can be reduced in size. Even if the filter reactor 8 does not have a low inductance (for example, the inductance value is general), the failure detection described later, that is, the semiconductor switch element has failed based on the current value of the current flowing through the current reducing resistor 6. Can be detected.
  • the symbols “H” and “L” in the figure indicate the state of the operation command to the circuit breakers 2, 3, 4 and the operation command transmitted from the control device 12 to the gate of the semiconductor switch element constituting the power module 7.
  • “H” represents on and “L” represents off.
  • the control device 12 turning on the semiconductor switch element means that the power module 7 of the semiconductor current reducer 110 receives an on-command for the semiconductor switch element.
  • the fact that the control device 12 turns off the semiconductor switch element means that the power module 7 of the semiconductor current reducer 110 receives an off command for the semiconductor switch element.
  • Ecf in the figure represents the voltage of the filter capacitor 9.
  • I 0 represents the current flowing through the first current detector 21 or its current value.
  • I 1 represents the current flowing through the second current detector 22 or its current value.
  • T represents time.
  • the control device 12 turns on the circuit breaker 4 after turning on the circuit breaker 2 in the state where the circuit breaker 3 and the power module 7 are off (t 21 ).
  • the filter capacitor 9 is charged from the pantograph 1 through the path of the current breaker 2, current breaker 4, charging resistor 5, current reducing resistor 6, and filter reactor 8 (t 21 to t 22 ).
  • the control device 12 turns off the circuit breaker 4 (t 22 ), then turns on the circuit breaker 3 and then turns on the power module 7 (t 23 ). Thereby, the direct current path from the pantograph 1 to the inverter 10 becomes conductive.
  • the inverter 10 operates (t 24 )
  • the electric motor 11 operates and the electric vehicle travels.
  • the control device 12 When the controller 12 detects that the value of the current flowing through the first current detector 21 has exceeded the overcurrent detection threshold Th 0 due to a ground fault (t 25 ) or the like, that is, the overcurrent is detected by the controller 12. When detected (t 26 ), the control device 12 starts a current path blocking operation. Specifically, the control device 12 commutates current to the current reducing resistor 6 by turning off the power module 7. As a result, the current decreases. When the current is reduced to a level that can be interrupted by the series body of the current breaker 2 and the current breaker 3, the control device 12 turns off the current breaker 2 and the current breaker 3 to change the current path (main current). Shut off (t 27 ).
  • the failure detection function of the semiconductor switch element in the semiconductor current reducer is not provided, and when the semiconductor switch element breaks down, there is a risk of causing equipment burnout or the like.
  • a failure detection function of the semiconductor switch element is provided.
  • a second current detector 22 for detecting a current flowing through the current reducing resistor 6 is provided, and the control device 12 causes the semiconductor switch element to fail based on the current value of the current flowing through the current reducing resistor 6. Is detected, and at least the circuit breaker 2 (an example of a circuit breaker that cuts off the main current) of the circuit breakers 2 to 4 is turned off.
  • t 31 is the start of charging of the filter capacitor 9
  • t 32 is the time of shut-off completion.
  • the control device 12 cuts off the current by turning off the current breakers 2 and 4.
  • the first method uses the first current detector 21 and the second current detector 22.
  • the power of the filter capacitor 9 when the power module 7 is normal, no current flows through the power module 7, so that the current passing through the first current detector 21 and the second current detector 22 (mainly The first current value I 0 , which is the current value of the current, and the second current value I 1, which is the current value of the current flowing through the current reducing resistor 6, are equal.
  • the current passing through the power module 7 is the current difference (I 0 ⁇ I 1) between the first current detector 21 and the second current detector 22. ) Is detected.
  • a threshold value of I 0 -I 1 (hereinafter referred to as a first threshold value Th 1 ) is provided.
  • the control device 12 detects that I 0 -I 1 has exceeded Th 1 as a short-circuit mode failure of the power module 7.
  • the second method is a method using the second current detector 22 and not using the first current detector 21 (method using I 1 and not using I 0 ).
  • the control device 12 is configured to charge I 1 less than the second threshold Th 2 and I E ⁇ I 1 greater than the third threshold Th 3 while the filter capacitor 9 is being charged (for example, at the start of charging). It is detected as a short-circuit mode failure of the power module 7 to correspond to at least one of the above.
  • the power module 7 At the start of charging the filter capacitor 9 (t 41 ), the power module 7 is in an off state even when it is normal. For this reason, even when the power module 7 is in the open mode failure state, the path of the charging current does not change, and therefore, the open mode failure cannot be detected. However, there is no danger because the charging current flows through the same path as normal, and there is no problem that the open mode failure of the power module 7 cannot be detected at this time.
  • the open mode failure of the power module 7 can be detected during the operation of the inverter 10 (for example, at the start of the operation), which is the next sequence of charging the filter capacitor 9 (t 41 to t 42 ). If the power module 7 is normal, the power module 7 is turned on by the control device 12 before starting the operation of the inverter 10 (t 43 ), and the drive power of the inverter 10 passes through the power module 7. When the power module 7 has an open mode failure, current flows through the current reducing resistor 6. When the power module 7 is normal, no current flows through the current reducing resistor 6. Therefore, a threshold value (hereinafter referred to as a fourth threshold value Th 4 ) is provided for I 1 detected by the second current detector 22 at the start of the operation of the inverter 10.
  • a threshold value hereinafter referred to as a fourth threshold value Th 4
  • the control device 12 detects that I 1 exceeds Th 4 during the operation of the inverter 10 (for example, at the start of operation) (t 44 ), and detects that the power module 7 is in the open mode failure. When the open mode failure of the power module 7 is detected, the control device 12 turns off the power module 7 after stopping the operation of the inverter 10 and turns off the current breakers 2 and 3 to cut off the current (t 45 ).
  • the failure detection of the power module 7 during the operation of the inverter 10 is as follows.
  • FIG. 5 shows a sequence when the resistance value between both ends of the power module 7 after the failure is sufficiently low and the current flowing through the current reducing resistor 6 does not increase greatly.
  • the controller 12 cannot detect a short-circuit mode failure.
  • there is no problem because the path through which the direct current flows does not change before and after the occurrence of the short-circuit mode failure and there is no danger.
  • the short-circuit mode failure is caused by detecting at least one of I 0 -I 1 > Th 1 , I 1 ⁇ Th 2 , and I E -I 1 > Th 3 when charging the filter capacitor 9 again. Detected.
  • the controller 12 cuts off the current by turning off the circuit breakers 2 and 4 (t 55 ).
  • the resistance value after the failure between both ends of the power module 7 is high, and the current flowing through the current reducing resistor 6 out of the current supplied to the inverter 10 is a value obtained by dividing the ON voltage of the power module 7 by the current reducing resistor 6. If the power module 7 is sufficiently large, a current flowing through the current reducing resistor 6 is generated. Therefore, it can be detected by the same method as described below when the power module 7 fails in the open mode during power running. When this short circuit mode failure is detected, the control device 12 turns off the power module 7 and turns off the current breakers 2 and 3 to cut off the current.
  • the circuit breakers 2 and 4 are connected in series to the charging resistor 5, and the charging current of the filter capacitor 9 always passes through the charging resistor 5. Thereby, even if the power module 7 (semiconductor switch element) has a short-circuit mode failure, a large current surge at the start of charging of the filter capacitor 9 can be suppressed.
  • the operation of the inverter 10 is stopped, for example, at the end of business travel.
  • the short circuit mode failure can be detected during the charging sequence. For this reason, it can be expected to detect a failure of the semiconductor current reducer 110 before starting business travel.
  • Example 2 will be described. At that time, differences from the first embodiment will be mainly described, and description of common points with the first embodiment will be omitted or simplified.
  • FIG. 7 is a configuration diagram of an electric vehicle drive system according to the second embodiment.
  • the difference from the first embodiment is the position of the second current detector 22.
  • the second current detector 22 is connected to the emitter side of the semiconductor switch element (see FIG. 1), but in the second embodiment, the second current detector 22 is a semiconductor switch. It is connected to the collector side of the element (installed on the side close to the overhead line of the current reducing resistor 6). Since the current to be detected is the same between the first and second embodiments, the control sequence does not change.
  • the second current detector 22 can be arranged in consideration of the insulating space or other environmental factors.
  • Example 3 will be described. At that time, differences from the second embodiment will be mainly described, and description of common points with the second embodiment will be omitted or simplified.
  • FIG. 8 is a configuration diagram of an electric vehicle drive system according to the third embodiment.
  • the difference from the second embodiment is that a parallel body (a parallel body composed of a series body of the current breaker 4 and the charging resistor 5 and the current breaker 3).
  • the position of the semiconductor current reducer 110 (parallel body composed of the current reducing resistor 6 and the power module 7) is switched.
  • the semiconductor current reducer 110 is located closer to the overhead wire side, so that the protection range by the semiconductor current reducer 110 can be expanded compared to the second embodiment (and the first embodiment).
  • Example 4 will be described. At that time, differences from the first to third embodiments will be mainly described, and description of common points with the first to third embodiments will be omitted or simplified.
  • FIG. 9 is a diagram illustrating an arrangement example of the second current detector 22 in the electric vehicle drive system according to the fourth embodiment.
  • the semiconductor current reducer 110 includes a current reducing resistor 6 provided in the first branch path in the parallel circuit, and a power module 7 provided in the second branch path in the parallel circuit.
  • I 0 is the first current value
  • I 1 is the second current value.
  • the second current detector 22 is provided in the first branch path. That is, the second current detector 22 detects the I 1.
  • the second current detector 22 may be disposed at either the emitter-side position 90D of the semiconductor switch element or the collector-side position 90C of the semiconductor switch element.
  • the short circuit mode failure and the open mode failure of the semiconductor switch element are as follows. The semiconductor switch element is turned off to charge the filter capacitor 9 and the semiconductor switch element is turned on to start the operation of the inverter 10. In the fourth embodiment, both the short-circuit mode failure and the open-mode failure are the same as those in the first to third embodiments.
  • the second current detector 22 is provided in the first branch path instead of the second branch path. That is, the second current detector 22 detects the I 2.
  • the controller 12 in addition to the I 2, since I 0 to the first current detector 21 detects are inputted, the control unit 12 can calculate the I 1 by subtracting the I 2 from I 0 .
  • the controller 12 can detect both the short-circuit mode failure and the open-mode failure based on the calculated I 1 .
  • Example 5 will be described. At that time, differences from the first to fourth embodiments will be mainly described, and description of common points with the first to fourth embodiments will be omitted or simplified.
  • FIG. 10 is a diagram illustrating a configuration of a semiconductor current reducer and an arrangement example of a second current detector in the electric vehicle drive system according to the fifth embodiment.
  • the resistor provided in the first branch path is the current reducing resistor 6.
  • the resistor is In addition to the current reducing resistor 6, it has a charging resistor 5 connected in parallel to the current reducing resistor 6 (therefore, the charging resistor 5 may not be provided outside the semiconductor current reducer 1010).
  • the resistance unit corresponds to a parallel circuit including a first sub branch path and a second sub branch path. A current reducing resistor 6 is provided in the first sub-branch, and a charging resistor 5 is provided in the second sub-branch.
  • the resistance unit includes a switch that switches connection and disconnection of the current reducing resistor 6.
  • An example of the switch is a current breaker 107 (connected in series with the current reducing resistor 6) provided in the first sub-branch.
  • the current breaker 107 is turned on by the control device 12 when the charging of the filter capacitor 9 is completed, for example, and as a result, the current reducing resistor 6 is connected.
  • the current breaker 107 is turned off by the control device 12 when the filter capacitor 9 is charged. As a result, the current reducing resistor 6 is disconnected.
  • I 0 is divided into I 1 and I 2
  • I 1 is the current I 3 flowing through the first sub-branch when the current breaker 107 is on
  • the second And the current I 4 flowing through the sub-branch The second current detector 22 replaces any of the above-described positions 90A to 90D with the position 90E (the semiconductor switch element of the semiconductor switch element) in the second sub-branch without disconnection among the first and second sub-branches. (Position on the collector side) or position 90F (position on the emitter side of the semiconductor switch element).
  • I 1 is as follows:
  • I 1 is the current value detected by the second current detector 22.
  • I 1 current value detected by the second current detector 22
  • I 4 current value detected by the second current detector 22
  • I 4 ⁇ ⁇ (current reducing resistance 6 + charging resistance 5) / current reducing resistance 6 ⁇ I 1 .
  • Example 6 will be described. At that time, the differences from the first to fifth embodiments will be mainly described, and the description of the common points with the first to fifth embodiments will be omitted or simplified.
  • FIG. 11 is a diagram illustrating a configuration of a semiconductor current reducer and an arrangement example of a second current detector in the electric vehicle drive system according to the sixth embodiment.
  • the power module 7 in the first branch path is a power module for current reduction and is in the second branch path (connected in parallel to the power module 7).
  • the resistor includes a current reducing resistor 6 and a parallel body connected in series to the current reducing resistor 6.
  • the parallel body includes a charging resistor 5 and a charging power module 117 connected to the charging resistor 5 in parallel.
  • Such a semiconductor down stream 1110 may be based on the value of the current I 1 flowing through the second branch passage, for detecting a failure of the power module 7.
  • the semiconductor current reducer including the parallel body of the resistor (one or more resistors including the current reducing resistor 6) and the power module 7 is more pantograph 1 than the filter reactor 8. It is arranged on the side (the overhead line side).
  • the semiconductor current reducer By disposing the semiconductor current reducer at a position close to the pantograph 1, it is possible to widen the possible range of interruption of an accident current due to a ground fault or the like.
  • the first current detector 21 for detecting an accident current is disposed on the pantograph 1 side with respect to the semiconductor current reducer. Since the semiconductor current reducer is disposed on the overhead line side of the filter reactor 8 and the first current detector 21 is disposed on the overhead line side of the semiconductor current reducer, the fault current generation point is higher than that of the semiconductor current reducer. If this occurs on the inverter 10 side, the fault current can be detected. Moreover, since the high speed interruption
  • the reduction in size and weight of the filter reactor 8 and the suppression of the short-circuit current are compatible, and the failure of the semiconductor switch element in the semiconductor current reducer occurs. Can be realized. Therefore, the weight of the vehicle per train can be reduced, contributing to stable energy saving operation of the electric vehicle, and contributing to the reliability and safety of the semiconductor current reducer as a current breaker.
  • the loss of the semiconductor current reducer can be reduced. That is, in the electric vehicle having the filter reactor 8 having a low inductance, it is possible to effectively cut off the short-circuit current that increases when a ground fault occurs, and the influence on the substation can be suppressed with a small additional cost.
  • the present invention can be expected to be applied to all systems (for example, power control systems) including at least one of a reactor (for example, the above-described filter reactor), a capacitor, and a power converter (for example, an inverter). Further, the control device 12 may be included in the semiconductor current reducer of any embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A control device for an electric vehicle drive system, configured so as to: commutate an overcurrent to at least one resistance in a resistance section, by switching off a semiconductor switch element (connected in series to a circuit breaker and an inverter), if an overcurrent is detected; and to cut off the commuted and reduced current by turning off the circuit breaker. The electric vehicle drive system has: a first current detector for detecting overcurrent; and a second current detector for detecting the value of a current that flows through either a semiconductor switch element or the resistance section in a semiconductor current reducer. The control device detects that the semiconductor switch element has failed if a prescribed condition is satisfied that has been applied to a current value, said current value: being the current value obtained by at least the second current detector; and being for the current flowing through the resistance section.

Description

電気車用駆動システム、半導体減流器、およびその故障検知方法Electric vehicle drive system, semiconductor current reducer, and failure detection method thereof
 本発明は、概して、電気車(鉄道車両)用の駆動システムの半導体減流器に関する。 The present invention generally relates to a semiconductor current reducer for a drive system for an electric vehicle (railway vehicle).
 電気車用の駆動システムには、一般に、電流遮断器が設けられる。電流遮断器の一例として、例えば、特許文献1~2に開示の電流遮断器が知られている。 A drive circuit for an electric vehicle is generally provided with a current breaker. As an example of a current breaker, for example, current breakers disclosed in Patent Documents 1 and 2 are known.
特開2004-096877号公報JP 2004-096877 A 特開2006-067732号公報JP 2006-067732 JP
 本願発明者が、電流遮断器として半導体減流器を採用してフィルタリアクトルを小型化した電気車用駆動システムの実用化について鋭意検討した結果、次の知見を得るに至った。 The inventor of the present application diligently studied the practical application of a drive system for an electric vehicle in which a semiconductor current reducer was adopted as a current breaker and the filter reactor was miniaturized. As a result, the following knowledge was obtained.
 電気車用の駆動システムは、一般に、フィルタリアクトルを有する。フィルタリアクトルは、走行時に発生する電流及び電圧の脈動の低減や、主回路中で高電位と低電位が短絡した際に大きな短絡電流が架線側から流れるのを抑える役割を担っている。このような役割に必要なインダクタンス値は、一般に、8mH~12mHであり、故に、フィルタリアクトルの体積や質量が大きい。例えば、フィルタリアクトルの体積や質量は、モータを除けば、駆動システム全体の1/2から1/3程度を占める。 A drive system for an electric vehicle generally has a filter reactor. The filter reactor plays a role of reducing pulsation of current and voltage generated during traveling and suppressing a large short-circuit current from flowing from the overhead line when a high potential and a low potential are short-circuited in the main circuit. The inductance value necessary for such a role is generally 8 mH to 12 mH, and therefore the volume and mass of the filter reactor are large. For example, the volume and mass of the filter reactor occupy about 1/2 to 1/3 of the entire drive system except for the motor.
 このため、フィルタリアクトルの小型化が実現できると駆動システム全体の小型化に寄与する。 Therefore, if the filter reactor can be downsized, it contributes to downsizing of the entire drive system.
 フィルタリアクトルを小型化するためには、インダクタンス値を小さく設定することが必要である。しかし、フィルタリアクトルを低インダクタンス化すると、地絡事故等が発生した際の事故電流増加速度が大きくなり、電流遮断器が、一般的な機械式高速度遮断器であると、遮断完了時の電流が大きくなってしまう。これは変電所の遮断器トリップ等、変電所の動作を不安定にする可能性がある。 In order to reduce the size of the filter reactor, it is necessary to set the inductance value small. However, if the inductance of the filter reactor is reduced, the rate of increase in the accident current when a ground fault or the like occurs increases, and if the current breaker is a general mechanical high-speed breaker, Will become bigger. This can make the operation of the substation unstable, such as a tripping breaker in the substation.
 電気車用駆動システムに搭載される電流遮断器は、高い信頼性と安全性が求められる。 The current breaker installed in the drive system for electric vehicles is required to have high reliability and safety.
 特許文献1及び2には、電気車用の駆動システムに半導体減流器を適用した構成が開示されている。 Patent Documents 1 and 2 disclose a configuration in which a semiconductor current reducer is applied to a drive system for an electric vehicle.
 しかし、特許文献1及び2には、電流遮断器として半導体減流器を採用してフィルタリアクトルを小型化した電気車用駆動システムの実用化に際してフィルタリアクトルの小型化と大電流の流入を抑えることとを両立する技術は、開示も示唆もされていない。また、特許文献1及び2には、電流遮断器として採用された半導体減流器の信頼性と安全性を維持するための技術も、開示も示唆もされていない。 However, Patent Documents 1 and 2 disclose that the size of the filter reactor and the inflow of a large current are suppressed in the practical application of the electric vehicle drive system in which the semiconductor current reducer is adopted as a current breaker and the filter reactor is miniaturized. There is no disclosure or suggestion of a technology that achieves both. Patent Documents 1 and 2 neither disclose nor suggest a technique for maintaining the reliability and safety of a semiconductor current reducer employed as a current breaker.
 従って、本発明の目的は、フィルタリアクトルの小型化と大電流の流入を抑えることとを両立しつつ、半導体減流器の信頼性及び安全性を維持することにある。 Therefore, an object of the present invention is to maintain the reliability and safety of the semiconductor current reducer while simultaneously reducing the size of the filter reactor and suppressing the inflow of a large current.
 電気車用駆動システムの制御装置が、過電流を検出した場合に半導体減流器における半導体スイッチ素子(断流器とインバータとに直列に接続された半導体スイッチ素子)をオフにすることで当該過電流を抵抗部における少なくとも1つの抵抗に転流し、転流され当該少なくとも1つの抵抗により減流された電流を、断流器をオフにすることで遮断するようになっている。電気車用駆動システムは、過電流検出用の第1の電流検出器に加えて、半導体減流器における半導体スイッチ素子と抵抗部とのうちのいずれかを流れる電流値を検出する第2の電流検出器を備える。制御装置は、少なくとも第2の電流検出器を基に得られる電流値であって抵抗部を流れる電流の電流値に関して設けられた所定の条件が満たされているならば半導体スイッチ素子が故障していると検知する。 When the control device of the electric vehicle drive system detects an overcurrent, the semiconductor switch element in the semiconductor current reducer (semiconductor switch element connected in series with the current breaker and the inverter) is turned off to turn off the overcurrent. The current is commutated to at least one resistance in the resistance section, and the current that has been commutated and reduced by the at least one resistance is cut off by turning off the current breaker. In addition to the first current detector for overcurrent detection, the electric vehicle drive system includes a second current for detecting a current value flowing through one of the semiconductor switch element and the resistor in the semiconductor current reducer. A detector is provided. If the predetermined value provided for the current value of the current flowing through the resistance portion is satisfied, at least if the current value obtained on the basis of the second current detector is satisfied, the control device breaks down the semiconductor switch element. It is detected that
 本発明によれば、フィルタリアクトルの小型化と大電流の流入を抑えることとを両立しつつ、半導体減流器の信頼性及び安全性を維持することができる。 According to the present invention, it is possible to maintain the reliability and safety of the semiconductor current reducer while simultaneously reducing the size of the filter reactor and suppressing the inflow of a large current.
実施例1に係る電気車用駆動システムの構成図である。1 is a configuration diagram of an electric vehicle drive system according to Embodiment 1. FIG. 図1に記載した電気車用駆動システムにおけるスイッチング動作を示す波形チャートである。It is a waveform chart which shows the switching operation in the drive system for electric vehicles described in FIG. 図1に記載した電気車用駆動システムにおけるスイッチング動作を示す波形チャートである。It is a waveform chart which shows the switching operation in the drive system for electric vehicles described in FIG. 図1に記載した電気車用駆動システムにおけるスイッチング動作を示す波形チャートである。It is a waveform chart which shows the switching operation in the drive system for electric vehicles described in FIG. 図1に記載した電気車用駆動システムにおけるスイッチング動作を示す波形チャートである。It is a waveform chart which shows the switching operation in the drive system for electric vehicles described in FIG. 図1に記載した電気車用駆動システムにおけるスイッチング動作を示す波形チャートである。It is a waveform chart which shows the switching operation in the drive system for electric vehicles described in FIG. 実施例2に係る電気車用駆動システムの構成図である。FIG. 6 is a configuration diagram of an electric vehicle drive system according to a second embodiment. 実施例3に係る電気車用駆動システムの構成図である。FIG. 6 is a configuration diagram of an electric vehicle drive system according to a third embodiment. 実施例4に係る電気車用駆動システムにおける第2の電流検出器の配置例を示す図である。FIG. 10 is a diagram illustrating an arrangement example of a second current detector in the electric vehicle drive system according to the fourth embodiment. 実施例5に係る電気車用駆動システムにおける半導体減流器の構成と第2の電流検出器の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the structure of the semiconductor current reducer in the drive system for electric vehicles which concerns on Example 5, and a 2nd current detector. 実施例6に係る電気車用駆動システムにおける半導体減流器の構成と第2の電流検出器の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the structure of the semiconductor current reducer in the drive system for electric vehicles which concerns on Example 6, and a 2nd current detector.
 以下の説明においては、便宜上その必要があるときは、複数のセクションまたは実施例に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の説明において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合及び原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特性の数以上でも以下でもよい。 In the following description, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or examples, but they are not irrelevant unless otherwise specified, and one is part of the other. Alternatively, all the modifications, details, supplementary explanations, and the like are related. Further, in the following description, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), unless otherwise specified, or in principle limited to a specific number in principle, It is not limited to the specific number, and may be more or less than the number of characteristics.
 さらに、以下の説明において、その構成要素(要素ステップ等も含む)は、特に明示した場合及び原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の説明において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合及び原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値及び範囲についても同様である。 Furthermore, in the following description, it is needless to say that its constituent elements (including element steps and the like) are not necessarily essential unless otherwise specified or apparently essential in principle. . Similarly, in the following description, when referring to the shape and positional relationship of components, etc., the shape or the like of the component is substantially changed unless otherwise specified or apparently not in principle. Approximate or similar. The same applies to the above numerical values and ranges.
 図1は、実施例1に係る電気車用駆動システムの構成図である。 FIG. 1 is a configuration diagram of an electric vehicle drive system according to the first embodiment.
 図1において、電気車用駆動システム100には、直流架線から電気車へ電力をとるパンタグラフ1と、電気車を駆動する電動機11とが接続されている。電気車用駆動システム100は、断流器2、3及び4(1以上の断流器の一例)と、充電抵抗5(第1の抵抗の一例)と、減流抵抗6(第2の抵抗の一例)と、パワーモジュール7(半導体スイッチ素子と、回生電力を通流する方向に並列接続したダイオードとの並列体)と、インバータ10と、インバータ10を動作する際に発生する電圧の脈動を抑えるフィルタリアクトル8及びフィルタコンデンサ9と、半導体スイッチ制御装置(以下、制御装置)12と、直流電流を検出する過電流検出用の第1の電流検出器21と、減流抵抗6を流れる電流を検出する第2の電流検出器22とを有する。断流器2は、減流抵抗6とパワーモジュール7との並列体が、半導体減流器110である。第1の電流検出器21及び第2の電流検出器22で検出された電流値はそれぞれ制御装置12に入力される。制御装置12は、パワーモジュール7における半導体スイッチ素子のオン及びオフを制御する。本実施例では、制御装置12は、更に、断流器2~4のオン(閉成)及びオフ(開放)も制御できる。 1, an electric vehicle drive system 100 is connected to a pantograph 1 that takes electric power from a DC overhead line to an electric vehicle and an electric motor 11 that drives the electric vehicle. The electric vehicle drive system 100 includes a current breaker 2, 3 and 4 (an example of one or more current breakers), a charging resistor 5 (an example of a first resistor), and a current reducing resistor 6 (a second resistor). An example), a power module 7 (a parallel body of a semiconductor switch element and a diode connected in parallel in the direction of flowing regenerative power), an inverter 10, and a pulsation of a voltage generated when the inverter 10 is operated. The filter reactor 8 and the filter capacitor 9 to be suppressed, the semiconductor switch control device (hereinafter referred to as a control device) 12, the first current detector 21 for detecting overcurrent that detects a direct current, and the current flowing through the current reducing resistor 6 And a second current detector 22 for detection. In the current breaker 2, a parallel body of the current reducing resistor 6 and the power module 7 is a semiconductor current reducer 110. The current values detected by the first current detector 21 and the second current detector 22 are respectively input to the control device 12. The control device 12 controls on and off of the semiconductor switch element in the power module 7. In the present embodiment, the control device 12 can also control ON (closed) and OFF (open) of the current breakers 2 to 4.
 断流器2及び3は直列に接続されている。複数の断流器を直列接続することにより、1台の断流器を単体で使用した場合に比べ、遮断電流容量を増加させることができる。 The current breakers 2 and 3 are connected in series. By connecting a plurality of circuit breakers in series, the breaking current capacity can be increased as compared with the case where one circuit breaker is used alone.
 断流器4と充電抵抗5の直列体は、断流器3と並列に接続する。本構成とすることにより、例えば以下2つの効果が得られる。 The series body of the current breaker 4 and the charging resistor 5 is connected in parallel with the current breaker 3. By adopting this configuration, for example, the following two effects can be obtained.
 第1の効果は、充電抵抗5と減流抵抗6の抵抗値を最適な値に選択できる点である。減流動作時には、パワーモジュール7を流れていた電流が減流抵抗6に転流する。ゆえに転流した電流の大きさと減流抵抗6の抵抗値の積が、パワーモジュール7の両端に印加される電圧となる。減流抵抗6の値が大きいほど、パワーモジュール7の素子耐圧を高くする必要があり、素子の高価格化及び大型化を招く。よって減流抵抗6の値は減流動作に問題を与えない範囲で小さいことが望ましい。一方で、フィルタコンデンサ9の充電時の充電電流を制限する充電抵抗5は、その抵抗値が小さいと充電電流が充電開始時に急峻に立ち上がり、信号機器等に影響を与えるノイズ源となる懸念がある。特にフィルタリアクトル8の容量が小さい場合はその傾向が強い。よって充電抵抗5の値は、ノイズ源とならないように十分大きい抵抗値を設定することが望ましい。以上より、断流器4と充電抵抗5を有さず減流抵抗を充電抵抗としても利用した一比較例では、減流抵抗と充電抵抗それぞれの最適抵抗値が異なるために、減流抵抗の値を最適化することができない。本実施例では、断流器4と充電抵抗5があることで、充電抵抗5と減流抵抗6の直列体を、フィルタコンデンサ9の充電抵抗として利用する。これにより、減流抵抗6の抵抗値とフィルタコンデンサ9の充電抵抗5の抵抗値を個別に決定することが可能である。ゆえに、パワーモジュール7に要求される素子耐圧が高くなることの抑制と、フィルタコンデンサ9の充電時の急峻な電流変化を要因とするノイズの発生抑制を両立することができる。なお、フィルタコンデンサ9の充電の際に半導体スイッチ素子が制御装置12によりオンにされて、充電電流が充電抵抗5を流れ減流抵抗6を流れないでもよい。 The first effect is that the resistance values of the charging resistor 5 and the current reducing resistor 6 can be selected to optimum values. During the current reducing operation, the current flowing through the power module 7 is commutated to the current reducing resistor 6. Therefore, the product of the magnitude of the commutated current and the resistance value of the current reducing resistor 6 is a voltage applied to both ends of the power module 7. As the value of the current reducing resistor 6 is larger, it is necessary to increase the element withstand voltage of the power module 7, leading to an increase in cost and size of the element. Therefore, it is desirable that the value of the current reducing resistor 6 is small as long as it does not cause a problem in the current reducing operation. On the other hand, the charging resistor 5 that limits the charging current when charging the filter capacitor 9 has a concern that if the resistance value is small, the charging current rises sharply at the start of charging and becomes a noise source that affects signal devices and the like. . This tendency is particularly strong when the capacity of the filter reactor 8 is small. Therefore, it is desirable to set a sufficiently large resistance value so that the value of the charging resistor 5 does not become a noise source. From the above, in one comparative example that does not have the current breaker 4 and the charging resistor 5 and also uses the current reducing resistor as the charging resistor, the optimum resistance values of the current reducing resistor and the charging resistor are different. The value cannot be optimized. In the present embodiment, since the circuit breaker 4 and the charging resistor 5 are provided, a series body of the charging resistor 5 and the current reducing resistor 6 is used as the charging resistor of the filter capacitor 9. Thereby, the resistance value of the current reducing resistor 6 and the resistance value of the charging resistor 5 of the filter capacitor 9 can be determined individually. Therefore, it is possible to achieve both suppression of an increase in element breakdown voltage required for the power module 7 and suppression of noise generation due to a steep current change when the filter capacitor 9 is charged. Note that the semiconductor switch element may be turned on by the control device 12 when the filter capacitor 9 is charged, and the charging current may flow through the charging resistor 5 and not through the current reducing resistor 6.
 第2の効果は、フィルタコンデンサ9の充電時における本駆動システム100の安全性を向上できる点である。フィルタコンデンサ9の充電シーケンスでは、断流器3をオフにした状態で、断流器2及び断流器4をオンにすることができる。充電シーケンスでは、充電電流が必ず充電抵抗5を経由するため、万一パワーモジュール7が短絡モード故障であった場合でも、大きな突入電流が発生せず、突入電流による変電所の遮断器トリップやノイズ発生等の悪影響が抑えられる。 The second effect is that the safety of the drive system 100 when the filter capacitor 9 is charged can be improved. In the charging sequence of the filter capacitor 9, the breaker 2 and the breaker 4 can be turned on with the breaker 3 turned off. In the charging sequence, the charging current always passes through the charging resistor 5, so even if the power module 7 has a short-circuit mode failure, a large inrush current does not occur. Adverse effects such as occurrence are suppressed.
 断流器4と充電抵抗5の位置は入れ替えられてもよい。パワーモジュール7を構成する半導体スイッチ素子は、例えばIGBT(Insulated Gate Bipolar Transistor)であるが、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等他のパワーデバイスとしてもよい。MOSFET等のボディーダイオードを有するパワーデバイスが用いられる場合には、ダイオードは省略されてもよい。 The positions of the current breaker 4 and the charging resistor 5 may be interchanged. The semiconductor switch element constituting the power module 7 is, for example, an IGBT (Insulated Gate Bipolar Transistor), but may be another power device such as a MOSFET (Metal Oxide Semiconductor Semiconductor Field Field Effect Transistor). When a power device having a body diode such as a MOSFET is used, the diode may be omitted.
 減流抵抗6を流れる電流の値を検出する第2の電流検出器22は、減流抵抗6とパワーモジュール7を接続する2本の経路のどちらに存在してもよい。 The second current detector 22 that detects the value of the current flowing through the current reducing resistor 6 may be present on either of the two paths connecting the current reducing resistor 6 and the power module 7.
 減流抵抗6とパワーモジュール7の並列体には、フィルタリアクトル8とフィルタコンデンサ9から構成されるフィルタ回路が接続され、フィルタコンデンサ9の一端は架線帰路に接続されるので、フィルタコンデンサ9には通常架線電圧が充電される。フィルタコンデンサ9には、インバータ10と、電動機11が接続される。 A filter circuit composed of a filter reactor 8 and a filter capacitor 9 is connected to the parallel body of the current reducing resistor 6 and the power module 7, and one end of the filter capacitor 9 is connected to the overhead line return path. Usually the overhead line voltage is charged. An inverter 10 and an electric motor 11 are connected to the filter capacitor 9.
 インバータ10は、IGBTやMOSFET等の半導体素子で2レベルあるいは3レベル回路を構成し、直流電力を三相の可変周波数及び可変電圧に変換する既に周知のインバータでよいから、その詳細は省略する。インバータ10の負荷となる電動機11も公知でよい。なお、この電動機11は同期電動機としてもよい。 The inverter 10 may be a well-known inverter that constitutes a two-level or three-level circuit with semiconductor elements such as IGBT and MOSFET, and converts DC power into a three-phase variable frequency and variable voltage. An electric motor 11 serving as a load of the inverter 10 may also be known. The motor 11 may be a synchronous motor.
 フィルタリアクトル8のインダクタンスは、低インダクタンス、例えば、一般的なインダクタンス値(8mH~12mH)の1/2~1/8程度、具体的には、1mH以上4mH以下でよい。これにより、フィルタリアクトル8を小型化できる。フィルタリアクトル8が低インダクタンスでなくても(例えばインダクタンス値が一般的でも)、後述の故障検知、すなわち、減流抵抗6を流れる電流の電流値を基に半導体スイッチ素子が故障していることを検知できる。 The inductance of the filter reactor 8 may be a low inductance, for example, about 1/2 to 1/8 of a general inductance value (8 mH to 12 mH), specifically, 1 mH to 4 mH. Thereby, the filter reactor 8 can be reduced in size. Even if the filter reactor 8 does not have a low inductance (for example, the inductance value is general), the failure detection described later, that is, the semiconductor switch element has failed based on the current value of the current flowing through the current reducing resistor 6. Can be detected.
 次に、図2~図6を参照して、本駆動システム100の動作シーケンスについて述べる。なお、以下の説明において、フィルタコンデンサ9の「充電中」とは、充電開始時~充電終了時のうちのいずれかの時である(従って、「充電中」は、「充電開始時」であってもよい)。同様に、インバータ10の「動作中」とは、動作開始時~動作終了時のうちのいずれかの時である(従って、「動作中」は、「動作開始時」であってもよい)。 Next, the operation sequence of the drive system 100 will be described with reference to FIGS. In the following description, “charging” of the filter capacitor 9 is any time from the start of charging to the end of charging (thus, “charging” means “at the start of charging”). May be) Similarly, “in operation” of the inverter 10 is any time from the start of operation to the end of operation (thus, “in operation” may be “at the start of operation”).
 以下、図内の記号「H」及び「L」は断流器2、3、4への動作指令及び、制御装置12がパワーモジュール7を構成する半導体スイッチ素子のゲートへ伝達する動作指令の状態を示す。「H」はオン、「L」はオフを表す。言い換えれば、制御装置12が半導体スイッチ素子をオンするとは、半導体減流器110のパワーモジュール7が、半導体スイッチ素子のオン指令を受信することである。制御装置12が半導体スイッチ素子をオフするとは、半導体減流器110のパワーモジュール7が、半導体スイッチ素子のオフ指令を受信することである。また、図内のEcfは、フィルタコンデンサ9の電圧を表す。Iは、第1の電流検出器21を流れる電流又はその電流値を表す。Iは、第2の電流検出器22を流れる電流又はその電流値を表す。また、tは、時刻を表す。 In the following, the symbols “H” and “L” in the figure indicate the state of the operation command to the circuit breakers 2, 3, 4 and the operation command transmitted from the control device 12 to the gate of the semiconductor switch element constituting the power module 7. Indicates. “H” represents on and “L” represents off. In other words, the control device 12 turning on the semiconductor switch element means that the power module 7 of the semiconductor current reducer 110 receives an on-command for the semiconductor switch element. The fact that the control device 12 turns off the semiconductor switch element means that the power module 7 of the semiconductor current reducer 110 receives an off command for the semiconductor switch element. Ecf in the figure represents the voltage of the filter capacitor 9. I 0 represents the current flowing through the first current detector 21 or its current value. I 1 represents the current flowing through the second current detector 22 or its current value. T represents time.
 最初に、パワーモジュール7が正常状態である場合のシステム100における制御シーケンスを説明する。電気車を起動し、インバータ10を起動するために必要な初期シーケンスを経た後、インバータ10の動作中に地絡事故が発生し、半導体減流器110で事故電流を遮断するまでのシーケンスを、図2を用いて説明する。 First, a control sequence in the system 100 when the power module 7 is in a normal state will be described. After starting the electric car and passing through the initial sequence necessary for starting the inverter 10, a sequence until a ground fault occurs during the operation of the inverter 10 and the fault current is interrupted by the semiconductor current reducer 110, This will be described with reference to FIG.
 電気車のインバータ10を起動するにあたり、最初にフィルタコンデンサ9を充電する必要がある。制御装置12は、断流器3及びパワーモジュール7がオフの状態で断流器2をオン後、断流器4をオンする(t21)。パンタグラフ1から断流器2、断流器4、充電抵抗5、減流抵抗6及びフィルタリアクトル8の経路でフィルタコンデンサ9が充電される(t21~t22)。フィルタコンデンサ9の充電完了後、制御装置12は、断流器4をオフ(t22)、次に断流器3をオン、続いてパワーモジュール7をオンする(t23)。これにより、パンタグラフ1からインバータ10に至る直流電流経路が導通する。インバータ10が動作すると(t24)、電動機11が動作し、電気車は走行する。 In starting the inverter 10 of the electric vehicle, it is necessary to charge the filter capacitor 9 first. The control device 12 turns on the circuit breaker 4 after turning on the circuit breaker 2 in the state where the circuit breaker 3 and the power module 7 are off (t 21 ). The filter capacitor 9 is charged from the pantograph 1 through the path of the current breaker 2, current breaker 4, charging resistor 5, current reducing resistor 6, and filter reactor 8 (t 21 to t 22 ). After the charging of the filter capacitor 9 is completed, the control device 12 turns off the circuit breaker 4 (t 22 ), then turns on the circuit breaker 3 and then turns on the power module 7 (t 23 ). Thereby, the direct current path from the pantograph 1 to the inverter 10 becomes conductive. When the inverter 10 operates (t 24 ), the electric motor 11 operates and the electric vehicle travels.
 地絡事故(t25)等により第1の電流検出器21を流れる電流の値が過電流検出閾値Thを超過したことを制御装置12により検出された時、つまり過電流が制御装置12により検出された時(t26)、制御装置12は、電流経路の遮断動作を開始する。具体的には、制御装置12は、パワーモジュール7をオフすることで電流を減流抵抗6に転流する。結果、電流が減流する。電流が断流器2及び断流器3の直列体で遮断可能なレベルまで減流したら、制御装置12は、断流器2及び断流器3をオフすることで電流経路(主電流)を遮断する(t27)。 When the controller 12 detects that the value of the current flowing through the first current detector 21 has exceeded the overcurrent detection threshold Th 0 due to a ground fault (t 25 ) or the like, that is, the overcurrent is detected by the controller 12. When detected (t 26 ), the control device 12 starts a current path blocking operation. Specifically, the control device 12 commutates current to the current reducing resistor 6 by turning off the power module 7. As a result, the current decreases. When the current is reduced to a level that can be interrupted by the series body of the current breaker 2 and the current breaker 3, the control device 12 turns off the current breaker 2 and the current breaker 3 to change the current path (main current). Shut off (t 27 ).
 一般的な機械式高速遮断器では、事故電流の遮断に10ms程度の時間を要するのに対し、パワーモジュール7は数μsの短時間でオフし、減流動作に移行することができる。このため、フィルタリアクトル8を低インダクタンス化することで事故時の電流増加速度が増加しても、変電所の動作に影響を与えない、低い電流値で遮断完了することができる。 In a general mechanical high-speed circuit breaker, it takes about 10 ms to cut off the fault current, whereas the power module 7 can be turned off in a short time of several μs and can be shifted to a current reducing operation. For this reason, even if the current increase speed at the time of an accident increases by reducing the inductance of the filter reactor 8, the interruption can be completed with a low current value that does not affect the operation of the substation.
 なお、一比較例では、半導体減流器における半導体スイッチ素子の故障検知機能が備わっておらず、半導体スイッチ素子が故障した場合には、機器の焼損等を引き起こす恐れがある。 In addition, in one comparative example, the failure detection function of the semiconductor switch element in the semiconductor current reducer is not provided, and when the semiconductor switch element breaks down, there is a risk of causing equipment burnout or the like.
 一方、本実施例では、半導体スイッチ素子の故障検知機能が備えられる。具体的には、減流抵抗6を流れる電流を検出する第2の電流検出器22が設けられ、制御装置12は、減流抵抗6を流れる電流の電流値を基に半導体スイッチ素子が故障していることを検知し、断流器2~4のうち少なくとも断流器2(主電流を遮断する断流器の一例)をオフする。 On the other hand, in this embodiment, a failure detection function of the semiconductor switch element is provided. Specifically, a second current detector 22 for detecting a current flowing through the current reducing resistor 6 is provided, and the control device 12 causes the semiconductor switch element to fail based on the current value of the current flowing through the current reducing resistor 6. Is detected, and at least the circuit breaker 2 (an example of a circuit breaker that cuts off the main current) of the circuit breakers 2 to 4 is turned off.
 次に、半導体減流器110を構成するパワーモジュール7が故障した場合の保護シーケンスについて述べる。フィルタコンデンサ9の充電時及びインバータ10の動作時のそれぞれの状況下において、パワーモジュール7が短絡モード故障及び開放モード故障となった場合についてそれぞれ述べる。 Next, a protection sequence when the power module 7 constituting the semiconductor current reducer 110 fails will be described. The case where the power module 7 has a short-circuit mode failure and an open-mode failure under the respective conditions of charging the filter capacitor 9 and operating the inverter 10 will be described.
 まず、フィルタコンデンサ9の充電時にパワーモジュール7が短絡モード故障であった場合について図3を用いて述べる。パワーモジュール7の短絡故障を、インバータ10動作前に検知可能である。なお、t31は、フィルタコンデンサ9の充電開始時であり、t32は、遮断完了時である。 First, the case where the power module 7 has a short-circuit mode failure when the filter capacitor 9 is charged will be described with reference to FIG. A short circuit failure of the power module 7 can be detected before the inverter 10 operates. Incidentally, t 31 is the start of charging of the filter capacitor 9, t 32 is the time of shut-off completion.
 フィルタコンデンサ9の充電時にパワーモジュール7が短絡モード故障であることは、次の2つの方法のうちの少なくとも1つの方法で検知可能である。パワーモジュール7の短絡モード故障を検知したら、制御装置12は、断流器2及び4をオフすることで、電流を遮断する。 It can be detected by at least one of the following two methods that the power module 7 is in the short-circuit mode failure when the filter capacitor 9 is charged. When the short circuit mode failure of the power module 7 is detected, the control device 12 cuts off the current by turning off the current breakers 2 and 4.
 第1の方法は、第1の電流検出器21及び第2の電流検出器22を使用した方法である。フィルタコンデンサ9の充電開始時において、パワーモジュール7が正常である時は、パワーモジュール7を電流が流れないため、第1の電流検出器21と第2の電流検出器22を通過する電流(主電流の電流値である第1の電流値Iと減流抵抗6を流れる電流の電流値である第2の電流値I)が等しい。一方で、パワーモジュール7が短絡モード故障している場合には、パワーモジュール7を通過する電流が、第1の電流検出器21及び第2の電流検出器22の電流差(I-I)として検出される。I-Iの閾値(以下、第1の閾値Th)が設けられる。フィルタコンデンサ9の充電中(例えば充電開始時)に、I-IがThを超過したことを、制御装置12は、パワーモジュール7の短絡モード故障として検知する。 The first method uses the first current detector 21 and the second current detector 22. When the power of the filter capacitor 9 is normal, when the power module 7 is normal, no current flows through the power module 7, so that the current passing through the first current detector 21 and the second current detector 22 (mainly The first current value I 0 , which is the current value of the current, and the second current value I 1, which is the current value of the current flowing through the current reducing resistor 6, are equal. On the other hand, when the power module 7 has failed in the short-circuit mode, the current passing through the power module 7 is the current difference (I 0 −I 1) between the first current detector 21 and the second current detector 22. ) Is detected. A threshold value of I 0 -I 1 (hereinafter referred to as a first threshold value Th 1 ) is provided. During charging of the filter capacitor 9 (for example, at the start of charging), the control device 12 detects that I 0 -I 1 has exceeded Th 1 as a short-circuit mode failure of the power module 7.
 第2の方法は、第2の電流検出器22を使用し第1の電流検出器21を使用しない方法(Iを使用しIを使用しない方法)である。パワーモジュール7が短絡モード故障であるとき、フィルタコンデンサ9を充電開始しても、第2の電流検出器22でIの立ち上がりが検出されない、及び、Iは、架線電圧Esとフィルタコンデンサ9の電圧Ecfとの差から想定される通常の充電電流値Iよりも低い電流値となる、のうちの少なくとも1つが生じる。よって、制御装置12は、フィルタコンデンサ9の充電中(例えば充電開始時)に、Iが第2の閾値Th未満、及び、I-Iが第3の閾値Thよりも大きい、のうちの少なくとも1つに該当することを、パワーモジュール7の短絡モード故障として検知する。 The second method is a method using the second current detector 22 and not using the first current detector 21 (method using I 1 and not using I 0 ). When the power module 7 is in short mode failure, even if the charging start the filter capacitor 9, the rise of I 1 is not detected by the second current detector 22, and, I 1 is trolley voltage Es and filter capacitor 9 At least one of the current values lower than the normal charging current value IE estimated from the difference from the voltage Ecf. Therefore, the control device 12 is configured to charge I 1 less than the second threshold Th 2 and I E −I 1 greater than the third threshold Th 3 while the filter capacitor 9 is being charged (for example, at the start of charging). It is detected as a short-circuit mode failure of the power module 7 to correspond to at least one of the above.
 次に、フィルタコンデンサ9の充電中にパワーモジュール7が開放モード故障であった場合について図4を用いて述べる。 Next, a case where the power module 7 has an open mode failure while the filter capacitor 9 is being charged will be described with reference to FIG.
 フィルタコンデンサ9の充電開始時(t41)には、パワーモジュール7は正常時でもオフ状態である。そのため、パワーモジュール7が開放モード故障状態であっても充電電流の経路は変化せず、故に、開放モード故障を検知することができない。しかしながら、充電電流は正常時と同じ経路を流れるため危険は無く、この時点でパワーモジュール7の開放モード故障を検知できないことは問題無い。 At the start of charging the filter capacitor 9 (t 41 ), the power module 7 is in an off state even when it is normal. For this reason, even when the power module 7 is in the open mode failure state, the path of the charging current does not change, and therefore, the open mode failure cannot be detected. However, there is no danger because the charging current flows through the same path as normal, and there is no problem that the open mode failure of the power module 7 cannot be detected at this time.
 パワーモジュール7の開放モード故障は、フィルタコンデンサ9の充電(t41~t42)の次のシーケンスである、インバータ10の動作中(例えば動作開始時)に検出可能である。パワーモジュール7が正常ならば、インバータ10の動作開始前にパワーモジュール7が制御装置12によりオンし(t43)、インバータ10の駆動電力はパワーモジュール7を通過する。パワーモジュール7が開放モード故障であった場合、電流は減流抵抗6を流れる。パワーモジュール7が正常な場合は減流抵抗6に電流が流れない。そのため、インバータ10の動作開始時において第2の電流検出器22で検出されるIに閾値(以下、第4の閾値Th)が設けられる。制御装置12は、インバータ10の動作中(例えば動作開始時)にIがThを超過したことを(t44)、パワーモジュール7の開放モード故障であると検知する。パワーモジュール7の開放モード故障を検知したら、制御装置12は、インバータ10の動作を停止した後にパワーモジュール7をオフし、断流器2及び3をオフすることで、電流遮断を行う(t45)。 The open mode failure of the power module 7 can be detected during the operation of the inverter 10 (for example, at the start of the operation), which is the next sequence of charging the filter capacitor 9 (t 41 to t 42 ). If the power module 7 is normal, the power module 7 is turned on by the control device 12 before starting the operation of the inverter 10 (t 43 ), and the drive power of the inverter 10 passes through the power module 7. When the power module 7 has an open mode failure, current flows through the current reducing resistor 6. When the power module 7 is normal, no current flows through the current reducing resistor 6. Therefore, a threshold value (hereinafter referred to as a fourth threshold value Th 4 ) is provided for I 1 detected by the second current detector 22 at the start of the operation of the inverter 10. The control device 12 detects that I 1 exceeds Th 4 during the operation of the inverter 10 (for example, at the start of operation) (t 44 ), and detects that the power module 7 is in the open mode failure. When the open mode failure of the power module 7 is detected, the control device 12 turns off the power module 7 after stopping the operation of the inverter 10 and turns off the current breakers 2 and 3 to cut off the current (t 45 ).
 インバータ10の動作中におけるパワーモジュール7の故障検知については、例えば次の通りである。 For example, the failure detection of the power module 7 during the operation of the inverter 10 is as follows.
 電気車の力行中にパワーモジュール7が短絡モード故障した場合は、短絡モード故障後のパワーモジュール7両端間の抵抗値ごとに、以下のシーケンスとなる。 When the power module 7 has failed in the short circuit mode during power running of the electric vehicle, the following sequence is performed for each resistance value between both ends of the power module 7 after the short circuit mode failure.
 故障後のパワーモジュール7両端間の抵抗値が十分低く、減流抵抗6を経由して流れる電流が大きく増加しない場合のシーケンスを図5に示す。この場合には、t51で動作開始したインバータ10の動作を停止し(t52)、断流器2及び3とパワーモジュール7とをオフし(t53)、再びフィルタコンデンサ9の充電が行われるまで(t54)、制御装置12は短絡モード故障を検知できない。しかしながら、前記の状況において、直流電流が流れる経路は短絡モード故障の発生前後で変化せず、危険性は無いため、問題無い。 FIG. 5 shows a sequence when the resistance value between both ends of the power module 7 after the failure is sufficiently low and the current flowing through the current reducing resistor 6 does not increase greatly. In this case, to stop the operation of the inverter 10 starts operation on t 51 (t 52), turns off the line breaker 2 and 3 and the power module 7 (t 53), the charging of the filter capacitor 9 rows again Until it is (t 54 ), the controller 12 cannot detect a short-circuit mode failure. However, in the above situation, there is no problem because the path through which the direct current flows does not change before and after the occurrence of the short-circuit mode failure and there is no danger.
 短絡モード故障は、再びフィルタコンデンサ9を充電する時に、I-I>Th、I<Th、及び、I-I>Th、の少なくとも1つが検知されたことで、検知される。本短絡モード故障を検知した場合、制御装置12は、断流器2及び4をオフすることで、電流遮断を行う(t55)。 The short-circuit mode failure is caused by detecting at least one of I 0 -I 1 > Th 1 , I 1 <Th 2 , and I E -I 1 > Th 3 when charging the filter capacitor 9 again. Detected. When this short circuit mode failure is detected, the controller 12 cuts off the current by turning off the circuit breakers 2 and 4 (t 55 ).
 一方、パワーモジュール7両端間の故障後における抵抗値が高く、インバータ10へ供給される電流のうち減流抵抗6に流れる電流が、パワーモジュール7のオン電圧を減流抵抗6で割った値に比べて十分大きい場合には、減流抵抗6に流れる電流が生じるため、次に説明する、力行中にパワーモジュール7が開放モード故障した場合と同様の方法で検知することができる。本短絡モード故障を検知した場合、制御装置12は、パワーモジュール7をオフし、断流器2及び3をオフすることで電流遮断を行う。 On the other hand, the resistance value after the failure between both ends of the power module 7 is high, and the current flowing through the current reducing resistor 6 out of the current supplied to the inverter 10 is a value obtained by dividing the ON voltage of the power module 7 by the current reducing resistor 6. If the power module 7 is sufficiently large, a current flowing through the current reducing resistor 6 is generated. Therefore, it can be detected by the same method as described below when the power module 7 fails in the open mode during power running. When this short circuit mode failure is detected, the control device 12 turns off the power module 7 and turns off the current breakers 2 and 3 to cut off the current.
 充電抵抗5に断流器2及び4が直列に接続されており、フィルタコンデンサ9の充電電流が必ず充電抵抗5を経由する。これにより、パワーモジュール7(半導体スイッチ素子)が短絡モード故障であっても、フィルタコンデンサ9の充電開始時における大電流サージを抑制することができる。 The circuit breakers 2 and 4 are connected in series to the charging resistor 5, and the charging current of the filter capacitor 9 always passes through the charging resistor 5. Thereby, even if the power module 7 (semiconductor switch element) has a short-circuit mode failure, a large current surge at the start of charging of the filter capacitor 9 can be suppressed.
 また、インバータ10の動作の停止は、例えば営業走行終了の際に行われる。インバータ10の動作の停止後に充電シーケンスが発生し、短絡モード故障がある場合、この充電シーケンス中にその短絡モード故障を検知できる。このため、営業走行を開始する前に半導体減流器110の故障を検知することが期待できる。 Also, the operation of the inverter 10 is stopped, for example, at the end of business travel. When a charging sequence occurs after the operation of the inverter 10 stops and there is a short circuit mode failure, the short circuit mode failure can be detected during the charging sequence. For this reason, it can be expected to detect a failure of the semiconductor current reducer 110 before starting business travel.
 力行中にパワーモジュール7が開放モード故障した場合のシーケンスを、図6を用いて説明する。 The sequence when the power module 7 fails in the open mode during power running will be described with reference to FIG.
 t61で動作開始したインバータ10の動作中にパワーモジュール7が開放モード故障した時(t62)、パワーモジュール7のオン電圧を減流抵抗6で割った値よりもはるかに大きい電流が、第2の電流検出器22で検出される。第2の電流検出器22で検出されたIは、第4の閾値Thを超過する。制御装置12は、インバータ10の動作中において、パワーモジュール7がオン状態でありI>Thを検知したら、パワーモジュール7が開放モード故障であると検知する。パワーモジュール7の開放モード故障を検知したら、制御装置12は、パワーモジュール7をオフし、断流器2及び3をオフすることで、電流遮断を行う(t63)。 When the power module 7 breaks down in the open mode during the operation of the inverter 10 started at t 61 (t 62 ), a current much larger than the value obtained by dividing the ON voltage of the power module 7 by the current reducing resistor 6 is Two current detectors 22 detect the current. I 1 detected by the second current detector 22 exceeds the fourth threshold Th 4 . When the power module 7 is in the ON state and I 1 > Th 4 is detected during the operation of the inverter 10, the control device 12 detects that the power module 7 is in the open mode failure. If the open mode failure of the power module 7 is detected, the control device 12 turns off the power module 7 and turns off the circuit breakers 2 and 3 to cut off the current (t 63 ).
 実施例2を説明する。その際、実施例1との相違点を主に説明し、実施例1との共通点については説明を省略又は簡略する。 Example 2 will be described. At that time, differences from the first embodiment will be mainly described, and description of common points with the first embodiment will be omitted or simplified.
 図7は、実施例2に係る電気車用駆動システムの構成図である。 FIG. 7 is a configuration diagram of an electric vehicle drive system according to the second embodiment.
 実施例2に係る電気車用駆動システム700において、実施例1と異なる点は、第2の電流検出器22の位置である。 In the electric vehicle drive system 700 according to the second embodiment, the difference from the first embodiment is the position of the second current detector 22.
 すなわち、実施例1では、第2の電流検出器22は、半導体スイッチ素子のエミッタ側と接続されているが(図1参照)、実施例2では、第2の電流検出器22は、半導体スイッチ素子のコレクタ側と接続されている(減流抵抗6の架線に近い側に設置されている)。検出対象の電流は実施例1と2で同一であるため、制御シーケンスに変更は起こらない。 That is, in the first embodiment, the second current detector 22 is connected to the emitter side of the semiconductor switch element (see FIG. 1), but in the second embodiment, the second current detector 22 is a semiconductor switch. It is connected to the collector side of the element (installed on the side close to the overhead line of the current reducing resistor 6). Since the current to be detected is the same between the first and second embodiments, the control sequence does not change.
 実施例1及び2によれば、第2の電流検出器22を、絶縁空間又はその他の環境要素を考慮して配置することが可能である。 According to the first and second embodiments, the second current detector 22 can be arranged in consideration of the insulating space or other environmental factors.
 実施例3を説明する。その際、実施例2との相違点を主に説明し、実施例2との共通点については説明を省略又は簡略する。 Example 3 will be described. At that time, differences from the second embodiment will be mainly described, and description of common points with the second embodiment will be omitted or simplified.
 図8は、実施例3に係る電気車用駆動システムの構成図である。 FIG. 8 is a configuration diagram of an electric vehicle drive system according to the third embodiment.
 実施例3に係る電気車用駆動システム800において、実施例2と異なる点は、並列体(断流器4及び充電抵抗5の直列体と、断流器3とから構成された並列体)と、半導体減流器110(減流抵抗6とパワーモジュール7とから構成された並列体)の位置が入れ替わっている点である。本構成とすることで、半導体減流器110がより架線側に位置するため、実施例2(及び実施例1)に比べて半導体減流器110による保護範囲を拡大することができる。 In the electric vehicle drive system 800 according to the third embodiment, the difference from the second embodiment is that a parallel body (a parallel body composed of a series body of the current breaker 4 and the charging resistor 5 and the current breaker 3). The position of the semiconductor current reducer 110 (parallel body composed of the current reducing resistor 6 and the power module 7) is switched. By adopting this configuration, the semiconductor current reducer 110 is located closer to the overhead wire side, so that the protection range by the semiconductor current reducer 110 can be expanded compared to the second embodiment (and the first embodiment).
 実施例4を説明する。その際、実施例1~3との相違点を主に説明し、実施例1~3との共通点については説明を省略又は簡略する。 Example 4 will be described. At that time, differences from the first to third embodiments will be mainly described, and description of common points with the first to third embodiments will be omitted or simplified.
 図9は、実施例4に係る電気車用駆動システムにおける第2の電流検出器22の配置例を示す図である。 FIG. 9 is a diagram illustrating an arrangement example of the second current detector 22 in the electric vehicle drive system according to the fourth embodiment.
 半導体減流器110は、並列回路における第1の分岐路に設けられた減流抵抗6と、当該並列回路における第2の分岐路に設けられたパワーモジュール7とを有する。半導体減流器110を構成する並列回路に入る電流Iは、パワーモジュール7がオンの場合、第1の分岐路を流れる電流Iと、第2の分岐路を流れる電流Iとに分かれる(つまり、I=I+I)。実施例1~3によれば、Iが第1の電流値であり、Iが第2の電流値である。第2の電流検出器22は、第1の分岐路に設けられる。つまり、第2の電流検出器22は、Iを検出する。第2の電流検出器22は、半導体スイッチ素子のエミッタ側の位置90Dと、半導体スイッチ素子のコレクタ側の位置90Cとのいずれに配置されてもよい。そして、半導体スイッチ素子の短絡モード故障と開放モード故障は、それぞれ下記である。なお、フィルタコンデンサ9の充電のために半導体スイッチ素子はオフとされ、インバータ10の動作を開始するために半導体スイッチ素子はオンとされる。実施例4において、短絡モード故障及び開放モード故障は、いずれも、実施例1~3と同じである。 The semiconductor current reducer 110 includes a current reducing resistor 6 provided in the first branch path in the parallel circuit, and a power module 7 provided in the second branch path in the parallel circuit. When the power module 7 is on, the current I 0 entering the parallel circuit constituting the semiconductor current reducer 110 is divided into a current I 1 flowing through the first branch path and a current I 2 flowing through the second branch path. (That is, I 0 = I 1 + I 2 ). According to Examples 1 to 3, I 0 is the first current value, and I 1 is the second current value. The second current detector 22 is provided in the first branch path. That is, the second current detector 22 detects the I 1. The second current detector 22 may be disposed at either the emitter-side position 90D of the semiconductor switch element or the collector-side position 90C of the semiconductor switch element. The short circuit mode failure and the open mode failure of the semiconductor switch element are as follows. The semiconductor switch element is turned off to charge the filter capacitor 9 and the semiconductor switch element is turned on to start the operation of the inverter 10. In the fourth embodiment, both the short-circuit mode failure and the open-mode failure are the same as those in the first to third embodiments.
 実施例4では、第2の電流検出器22が、第2の分岐路に代えて、第1の分岐路に設けられる。つまり、第2の電流検出器22は、Iを検出する。制御装置12には、Iの他に、第1の電流検出器21が検出したIが入力されるので、制御装置12は、IからIを減算することによりIを算出できる。制御装置12は、算出されたIを基に、短絡モード故障及び開放モード故障のいずれも検知できる。 In the fourth embodiment, the second current detector 22 is provided in the first branch path instead of the second branch path. That is, the second current detector 22 detects the I 2. The controller 12, in addition to the I 2, since I 0 to the first current detector 21 detects are inputted, the control unit 12 can calculate the I 1 by subtracting the I 2 from I 0 . The controller 12 can detect both the short-circuit mode failure and the open-mode failure based on the calculated I 1 .
 実施例5を説明する。その際、実施例1~4との相違点を主に説明し、実施例1~4との共通点については説明を省略又は簡略する。 Example 5 will be described. At that time, differences from the first to fourth embodiments will be mainly described, and description of common points with the first to fourth embodiments will be omitted or simplified.
 図10は、実施例5に係る電気車用駆動システムにおける半導体減流器の構成と第2の電流検出器の配置例を示す図である。 FIG. 10 is a diagram illustrating a configuration of a semiconductor current reducer and an arrangement example of a second current detector in the electric vehicle drive system according to the fifth embodiment.
 実施例1~4では、半導体減流器110において、第1の分岐路に設けられた抵抗部が、減流抵抗6であるが、実施例5に係る半導体減流器1010では、抵抗部は、減流抵抗6の他に、減流抵抗6に並列に接続された充電抵抗5を有する(このため、半導体減流器1010の外部に充電抵抗5は無くてよい)。具体的には、抵抗部は、第1のサブ分岐路と第2のサブ分岐路で構成された並列回路に相当する。第1のサブ分岐路に、減流抵抗6が設けられ、第2のサブ分岐路に、充電抵抗5が設けられる。また、抵抗部は、減流抵抗6の接続と切断を切り替えるスイッチを有する。当該スイッチの一例が、第1のサブ分岐路に設けられた(減流抵抗6と直列に接続された)断流器107である。断流器107は、例えば、フィルタコンデンサ9の充電が完了したときに制御装置12によってオンにされ、結果、減流抵抗6の接続となる。断流器107は、フィルタコンデンサ9の充電のときに制御装置12によってオフにされ、結果、減流抵抗6の切断となる。 In the first to fourth embodiments, in the semiconductor current reducer 110, the resistor provided in the first branch path is the current reducing resistor 6. In the semiconductor current reducer 1010 according to the fifth embodiment, the resistor is In addition to the current reducing resistor 6, it has a charging resistor 5 connected in parallel to the current reducing resistor 6 (therefore, the charging resistor 5 may not be provided outside the semiconductor current reducer 1010). Specifically, the resistance unit corresponds to a parallel circuit including a first sub branch path and a second sub branch path. A current reducing resistor 6 is provided in the first sub-branch, and a charging resistor 5 is provided in the second sub-branch. In addition, the resistance unit includes a switch that switches connection and disconnection of the current reducing resistor 6. An example of the switch is a current breaker 107 (connected in series with the current reducing resistor 6) provided in the first sub-branch. The current breaker 107 is turned on by the control device 12 when the charging of the filter capacitor 9 is completed, for example, and as a result, the current reducing resistor 6 is connected. The current breaker 107 is turned off by the control device 12 when the filter capacitor 9 is charged. As a result, the current reducing resistor 6 is disconnected.
 このような半導体減流器1010では、Iが、IとIに分かれ、Iが、断流器107がオンのとき、第1のサブ分岐路を流れる電流Iと、第2のサブ分岐路を流れる電流Iとに分かれる。第2の電流検出器22は、上述した位置90A~90Dのいずれかに代えて、第1及び第2のサブ分岐路のうち切断の無い第2のサブ分岐路における位置90E(半導体スイッチ素子のコレクタ側の位置)又は位置90F(半導体スイッチ素子のエミッタ側の位置)に配置されてよい。 In such a semiconductor current reducer 1010, I 0 is divided into I 1 and I 2 , I 1 is the current I 3 flowing through the first sub-branch when the current breaker 107 is on, and the second And the current I 4 flowing through the sub-branch. The second current detector 22 replaces any of the above-described positions 90A to 90D with the position 90E (the semiconductor switch element of the semiconductor switch element) in the second sub-branch without disconnection among the first and second sub-branches. (Position on the collector side) or position 90F (position on the emitter side of the semiconductor switch element).
 位置90A~90Eの各々について、Iは、下記の通りである。 For each of positions 90A-90E, I 1 is as follows:
 すなわち、第2の電流検出器22が位置90C又は90Dに配置されている場合、制御装置12において、Iは、第2の電流検出器22により検出された電流値である。 That is, when the second current detector 22 is disposed at a position 90C or 90D, the controller 12, I 1 is the current value detected by the second current detector 22.
 第2の電流検出器22が位置90A又は90Bに配置されている場合、I-I(第2の電流検出器22により検出された電流値)=Iである。 When the second current detector 22 is arranged at the position 90A or 90B, I 0 −I 2 (current value detected by the second current detector 22) = I 1 .
 第2の電流検出器22が位置90E又は90Fに配置されている場合、断流器107がオンであるかオフであるかによって、分流比が異なるため、Iの定義が異なる。断流器107がオフの場合、I(第2の電流検出器22により検出された電流値)=Iである。断流器107がオンの場合、I×{(減流抵抗6+充電抵抗5)/減流抵抗6}=Iである。 If the second current detector 22 is disposed in a position 90E or 90F, depending on whether breaker 107 is on or off, since the flow ratio is different, the definition of I 1 is different. When the current breaker 107 is off, I 4 (current value detected by the second current detector 22) = I 1 . When the current breaker 107 is on, I 4 × {(current reducing resistance 6 + charging resistance 5) / current reducing resistance 6} = I 1 .
 実施例6を説明する。その際、実施例1~5との相違点を主に説明し、実施例1~5との共通点については説明を省略又は簡略する。 Example 6 will be described. At that time, the differences from the first to fifth embodiments will be mainly described, and the description of the common points with the first to fifth embodiments will be omitted or simplified.
 図11は、実施例6に係る電気車用駆動システムにおける半導体減流器の構成と第2の電流検出器の配置例を示す図である。 FIG. 11 is a diagram illustrating a configuration of a semiconductor current reducer and an arrangement example of a second current detector in the electric vehicle drive system according to the sixth embodiment.
 実施例6に係る半導体減流器1110において、第1の分岐路にあるパワーモジュール7は、減流用のパワーモジュールであり、第2の分岐路にある(パワーモジュール7に並列に接続された)抵抗体は、減流抵抗6と、減流抵抗6に直列に接続された並列体とを有する。並列体は、充電抵抗5と、充電抵抗5に並列に接続された充電用のパワーモジュール117とを有する。過電流が検出されたときに、制御装置12によりパワーモジュール117がオン、パワーモジュール7がオフとされ、結果、転流された電流は、減流抵抗6を流れる。フィルタコンデンサ9の充電のときに、パワーモジュール7およびパワーモジュール117が制御装置12によりオフとされ、充電電流が、減流抵抗6と充電抵抗5を経由する。 In the semiconductor current reducer 1110 according to the sixth embodiment, the power module 7 in the first branch path is a power module for current reduction and is in the second branch path (connected in parallel to the power module 7). The resistor includes a current reducing resistor 6 and a parallel body connected in series to the current reducing resistor 6. The parallel body includes a charging resistor 5 and a charging power module 117 connected to the charging resistor 5 in parallel. When an overcurrent is detected, the power module 117 is turned on and the power module 7 is turned off by the control device 12. As a result, the commutated current flows through the current reducing resistor 6. When the filter capacitor 9 is charged, the power module 7 and the power module 117 are turned off by the control device 12, and the charging current passes through the current reducing resistor 6 and the charging resistor 5.
 このような半導体減流器1110においても、第2の分岐路を流れる電流Iの値を基に、パワーモジュール7の故障を検知することができる。 In such a semiconductor down stream 1110 may be based on the value of the current I 1 flowing through the second branch passage, for detecting a failure of the power module 7.
 以上、実施例1~6で説明したように、抵抗体(減流抵抗6を含んだ1以上の抵抗)とパワーモジュール7の並列体からなる半導体減流器は、フィルタリアクトル8よりもパンタグラフ1側(架線側)に配置される。パンタグラフ1に近い位置に半導体減流器を配置することで、地絡等による事故電流の遮断可能範囲を広げることができる。言い換えれば、実施例1~6によれば、フィルタリアクトル8よりも電動機11側で発生した事故電流の遮断が可能となり、駆動システムの高信頼化が可能となる。 As described above, in the first to sixth embodiments, the semiconductor current reducer including the parallel body of the resistor (one or more resistors including the current reducing resistor 6) and the power module 7 is more pantograph 1 than the filter reactor 8. It is arranged on the side (the overhead line side). By disposing the semiconductor current reducer at a position close to the pantograph 1, it is possible to widen the possible range of interruption of an accident current due to a ground fault or the like. In other words, according to the first to sixth embodiments, it is possible to cut off an accident current generated on the side of the electric motor 11 with respect to the filter reactor 8, so that the drive system can be highly reliable.
 また、実施例1~6においては、事故電流(過電流)を検出する第1の電流検出器21は、半導体減流器よりもパンタグラフ1側に配置することが望ましい。フィルタリアクトル8よりも架線側に半導体減流器が配置され、さらに第1の電流検出器21が半導体減流器よりも架線側に配置されることから、事故電流発生ポイントが半導体減流器よりもインバータ10側で発生した場合は、その事故電流を検知することができる。また、半導体減流器による高速遮断が可能であるため、事故電流を高速に遮断できる。 In the first to sixth embodiments, it is desirable that the first current detector 21 for detecting an accident current (overcurrent) is disposed on the pantograph 1 side with respect to the semiconductor current reducer. Since the semiconductor current reducer is disposed on the overhead line side of the filter reactor 8 and the first current detector 21 is disposed on the overhead line side of the semiconductor current reducer, the fault current generation point is higher than that of the semiconductor current reducer. If this occurs on the inverter 10 side, the fault current can be detected. Moreover, since the high speed interruption | blocking by a semiconductor current reducer is possible, an accident electric current can be interrupted at high speed.
 このように、実施例1~6に係る駆動システムは、フィルタリアクトル8の小型軽量化と短絡電流の抑制との両立と、半導体減流器における半導体スイッチ素子が故障している場合にはその故障の検知とを実現することができる。そのため、1編成あたりの車両重量の軽量化が図れ、電気車の安定した省エネ運転に寄与できると共に、電流遮断器としての半導体減流器の信頼性と安全性に寄与することができる。 As described above, in the drive systems according to the first to sixth embodiments, the reduction in size and weight of the filter reactor 8 and the suppression of the short-circuit current are compatible, and the failure of the semiconductor switch element in the semiconductor current reducer occurs. Can be realized. Therefore, the weight of the vehicle per train can be reduced, contributing to stable energy saving operation of the electric vehicle, and contributing to the reliability and safety of the semiconductor current reducer as a current breaker.
 以上説明したように、実施例1~6によれば、半導体減流器の低損失化が可能となる。すなわち、フィルタリアクトル8を低インダクタンス化した電気車において、地絡発生時に増加する短絡電流を効果的に遮断可能となり、変電所に与える影響を小さい追加コストで抑えることができる。 As described above, according to the first to sixth embodiments, the loss of the semiconductor current reducer can be reduced. That is, in the electric vehicle having the filter reactor 8 having a low inductance, it is possible to effectively cut off the short-circuit current that increases when a ground fault occurs, and the influence on the substation can be suppressed with a small additional cost.
 以上、幾つかの実施例を説明したが、本発明はこれらの実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。上記した実施例は、本発明を分かり易く説明するために詳細に例示的に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明が限定されるものではない。また、実施例の構成の一部について、他の構成の追加、削除及び置換のうちの少なくとも1つをすることが可能である。例えば、本発明は、リアクトル(例えば上述したフィルタリアクトル)、コンデンサ及び電力変換器(例えばインバータ)のうちの少なくとも1つを含むシステム(例えば電力制御システム)全般に適用することが期待できる。また、制御装置12が、いずれの実施例の半導体減流器に含まれていてもよい。 As mentioned above, although several examples were described, it cannot be overemphasized that this invention is not limited to these Examples, and can be variously changed in the range which does not deviate from the summary. The above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to those having all the configurations described. Moreover, it is possible to add at least one of addition, deletion, and replacement of another configuration for a part of the configuration of the embodiment. For example, the present invention can be expected to be applied to all systems (for example, power control systems) including at least one of a reactor (for example, the above-described filter reactor), a capacitor, and a power converter (for example, an inverter). Further, the control device 12 may be included in the semiconductor current reducer of any embodiment.
2、3、4…断流器、5、6…抵抗器、7…パワーモジュール、8…フィルタリアクトル、9…フィルタコンデンサ、10…インバータ、12…半導体スイッチ制御装置、21、22…電流検出器、110、1010、1110…半導体減流器 2, 3, 4 ... Circuit breaker, 5, 6 ... Resistor, 7 ... Power module, 8 ... Filter reactor, 9 ... Filter capacitor, 10 ... Inverter, 12 ... Semiconductor switch controller, 21, 22 ... Current detector , 110, 1010, 1110 ... Semiconductor current reducer

Claims (17)

  1.  架線からの直流電力を遮断する断流器と、直流電力を交流電力に変換するインバータと、前記断流器と前記インバータとの間に介在し前記インバータを動作する際に発生する電圧の脈動を抑えるフィルタリアクトル及びフィルタコンデンサと、過電流検出用の電流検出器であり第1の電流値を検出する第1の電流検出器とを有する電気車用駆動システムにおいて、
     前記断流器と前記インバータとに直列に接続された半導体スイッチ素子と、前記半導体スイッチ素子に並列に接続され1以上の抵抗を含む抵抗部とを有する半導体減流器と、
     前記半導体スイッチ素子と前記抵抗部とのうちのいずれかを流れる電流を検出する第2の電流検出器と、
     過電流を検出した場合に前記半導体スイッチ素子をオフにすることで当該過電流を前記抵抗部における少なくとも1つの抵抗に転流し、転流され当該少なくとも1つの抵抗により減流された電流を、前記断流器をオフにすることで遮断するようになっており、前記第1の電流検出器及び前記第2の電流検出器のうちの少なくとも前記第2の電流検出器を基に得られる電流値であって前記抵抗部を流れる電流の電流値である第2の電流値に関して設けられた所定の条件が満たされているならば前記半導体スイッチ素子が故障していると検知する制御装置と
    を有する
    ことを特徴とする電気車用駆動システム。
    A circuit breaker that cuts off DC power from the overhead line, an inverter that converts DC power to AC power, and a voltage pulsation that is generated when the inverter is operated between the circuit breaker and the inverter. In an electric vehicle drive system having a filter reactor and a filter capacitor to be suppressed, and a first current detector that is a current detector for detecting overcurrent and detects a first current value,
    A semiconductor current reducer having a semiconductor switch element connected in series to the current breaker and the inverter; and a resistance part connected in parallel to the semiconductor switch element and including one or more resistors;
    A second current detector for detecting a current flowing through any of the semiconductor switch element and the resistance unit;
    When the overcurrent is detected, the semiconductor switch element is turned off to commutate the overcurrent to at least one resistor in the resistance unit, and the current commutated and reduced by the at least one resistor is The current value obtained based on at least the second current detector of the first current detector and the second current detector is cut off by turning off the current breaker. And a control device that detects that the semiconductor switch element has failed if a predetermined condition provided for a second current value that is a current value of the current flowing through the resistance portion is satisfied. An electric vehicle drive system.
  2.  前記制御装置は、前記半導体スイッチ素子が故障していることを検知した場合、前記主電流を遮断する断流器をオフにする
    ことを特徴とする請求項1に記載の電気車用駆動システム。
    2. The electric vehicle drive system according to claim 1, wherein when the control device detects that the semiconductor switch element has failed, the control device turns off a circuit breaker that cuts off the main current. 3.
  3.  前記制御装置は、前記フィルタコンデンサの充電中には前記半導体スイッチ素子をオフ状態とし、
     前記所定の条件は、前記フィルタコンデンサの充電中に、前記第1の電流値と前記第2の電流値との差が第1閾値を超えていることである
    ことを特徴とする請求項1に記載の電気車用駆動システム。
    The control device turns off the semiconductor switch element during charging of the filter capacitor,
    2. The predetermined condition is that the difference between the first current value and the second current value exceeds a first threshold during charging of the filter capacitor. The drive system for electric vehicles as described.
  4.  前記制御装置は、前記フィルタコンデンサの充電中には前記半導体スイッチ素子をオフ状態とし、
     前記所定の条件は、
      前記フィルタコンデンサの充電中に、前記第2の電流値が第2の閾値よりも低いことと、
      前記フィルタコンデンサの充電中に、架線電圧と前記フィルタコンデンサの電圧との差から想定される正常時の充電電流値と前記第2の電流値との差が第3の閾値よりも大きいこと
    とのうちの少なくとも1つである
    ことを特徴とする請求項1に記載の電気車用駆動システム。
    The control device turns off the semiconductor switch element during charging of the filter capacitor,
    The predetermined condition is:
    During the charging of the filter capacitor, the second current value is lower than a second threshold;
    During the charging of the filter capacitor, the difference between the normal charging current value assumed from the difference between the overhead line voltage and the voltage of the filter capacitor and the second current value is greater than a third threshold value. The drive system for an electric vehicle according to claim 1, wherein the drive system is at least one of them.
  5.  前記制御装置は、前記インバータの動作中には前記半導体スイッチ素子をオン状態とし、
     前記所定の条件は、前記インバータの動作中に、前記第2の電流値が第4の閾値よりも高いことである
    ことを特徴とする請求項1に記載の電気車用駆動システム。
    The control device turns on the semiconductor switch element during the operation of the inverter,
    2. The electric vehicle drive system according to claim 1, wherein the predetermined condition is that the second current value is higher than a fourth threshold value during operation of the inverter.
  6.  前記半導体減流器を前記フィルタリアクトルよりも前記架線側に有する
    ことを特徴とする請求項1に記載の電気車用駆動システム。
    The electric vehicle drive system according to claim 1, wherein the semiconductor current reducer is provided closer to the overhead wire than the filter reactor.
  7.  前記フィルタコンデンサへの充電電流が流れる経路に設けられた第1の抵抗を更に有し、
     前記半導体減流器における前記抵抗部は、
      前記第1の抵抗と、
      前記転流された電流が流れる経路に設けられ前記第1の抵抗に並列に接続された第2の抵抗と
    を有する
    ことを特徴とする請求項1に記載の電気車用駆動システム。
    A first resistor provided in a path through which a charging current to the filter capacitor flows;
    The resistor in the semiconductor current reducer is
    The first resistor;
    The electric vehicle drive system according to claim 1, further comprising: a second resistor provided in a path through which the commutated current flows and connected in parallel to the first resistor.
  8.  前記フィルタコンデンサへの充電電流が流れる経路に設けられた第1の抵抗を、前記抵抗部の中又は外に有し、
     前記半導体減流器における前記抵抗部は、前記転流された電流が流れる経路に設けられ前記第1の抵抗に直列に接続された第2の抵抗を有する
    ことを特徴とする請求項1に記載の電気車用駆動システム。
    A first resistor provided in a path through which a charging current to the filter capacitor flows, inside or outside the resistor unit;
    The said resistance part in the said semiconductor current reducer has the 2nd resistance provided in the path | route through which the said commutated electric current flows, and was connected in series with the said 1st resistance. Electric vehicle drive system.
  9.  断流器とインバータとに直列に接続されたれた半導体スイッチ素子に並列に接続された1以上の抵抗を含む抵抗部を流れる電流の電流値を制御装置が取得し、
     前記制御装置は、取得した前記電流値が、前記抵抗部を流れる電流値に関して設けられた所定の条件を満たしているならば、前記半導体スイッチ素子が故障していると検知する
    ことを特徴とする半導体減流器の故障検知方法。
    The control device obtains the current value of the current flowing through the resistance unit including one or more resistors connected in parallel to the semiconductor switch element connected in series with the circuit breaker and the inverter,
    The control device detects that the semiconductor switch element is faulty if the acquired current value satisfies a predetermined condition with respect to a current value flowing through the resistance unit. A fault detection method for semiconductor current reducers.
  10.  前記半導体スイッチ素子が故障していることを検知した場合、主電流を遮断する
    ことを特徴とする請求項9に記載の半導体減流器の故障検知方法。
    10. The semiconductor current reducer failure detection method according to claim 9, wherein when a failure of the semiconductor switch element is detected, the main current is cut off.
  11.  前記所定の条件は、前記半導体スイッチ素子がオフ状態であるコンデンサ充電中に、過電流検出用の電流検出器が検出する電流値と、前記抵抗部を流れる電流値との差が第1閾値を超えていることである
    ことを特徴とする請求項9に記載の半導体減流器の故障検知方法。
    The predetermined condition is that a difference between a current value detected by a current detector for overcurrent detection and a current value flowing through the resistor section during a capacitor charging in which the semiconductor switch element is in an off state is a first threshold value. The fault detection method for a semiconductor current reducer according to claim 9, wherein the fault is exceeded.
  12.  前記所定の条件は、
      前記半導体スイッチ素子がオフ状態であるコンデンサ充電中に、前記抵抗部を流れる電流値が第2の閾値よりも低いことと、
      前記コンデンサ充電中に、想定される正常時の充電電流値と、前記抵抗部を流れる電流値との差が第3の閾値よりも大きいこと
    とのうちの少なくとも1つである
    ことを特徴とする請求項9に記載の半導体減流器の故障検知方法。
    The predetermined condition is:
    A value of a current flowing through the resistor is lower than a second threshold value during capacitor charging when the semiconductor switch element is in an off state;
    During the capacitor charging, at least one of a difference between an assumed normal charging current value and a current value flowing through the resistance unit is greater than a third threshold value. The fault detection method of the semiconductor current reducer according to claim 9.
  13.  前記所定の条件は、前記半導体スイッチ素子がオン状態である電力変換器動作中に、前記抵抗部を流れる電流値が第4の閾値よりも高いことである
    ことを特徴とする請求項9に記載の半導体減流器の故障検知方法。
    The predetermined condition is that a value of a current flowing through the resistance unit is higher than a fourth threshold value during operation of a power converter in which the semiconductor switch element is in an on state. Fault detection method for semiconductor current reducer.
  14.  断流器とインバータとの間に直列に接続される半導体スイッチ素子と、前記半導体スイッチ素子に並列に接続され1以上の抵抗を含む抵抗部とを有する半導体減流器において、
     前記半導体スイッチ素子と前記抵抗部とのうちのいずれかを流れる電流の電流値を検出し、前記抵抗部を流れる電流の電流値に関して設けられた所定の条件が満たされていれば前記半導体スイッチ素子が故障していると検知する制御装置に、検出された前記電流値を出力できる電流検出器を備える
    ことを特徴とする半導体減流器。
    In a semiconductor current reducer having a semiconductor switch element connected in series between a current breaker and an inverter, and a resistance part connected in parallel to the semiconductor switch element and including one or more resistors,
    A current value of a current flowing through one of the semiconductor switch element and the resistance portion is detected, and the semiconductor switch element is satisfied if a predetermined condition regarding the current value of the current flowing through the resistance portion is satisfied A semiconductor current reducer comprising a current detector capable of outputting the detected current value in a control device that detects that a fault has occurred.
  15.  コンデンサ充電中には前記パワーモジュールが前記半導体スイッチ素子のオフ指令を受信し、
     前記所定の条件は、前記コンデンサ充電中に、過電流を検出する別の電流検出器が検出した電流値と、前記抵抗部を流れる電流値との差が、第1閾値を超えていることである
    ことを特徴とする請求項14に記載の半導体減流器。
    During capacitor charging, the power module receives an off command of the semiconductor switch element,
    The predetermined condition is that, during charging of the capacitor, a difference between a current value detected by another current detector that detects an overcurrent and a current value flowing through the resistance unit exceeds a first threshold value. The semiconductor current reducer according to claim 14, wherein the semiconductor current reducer is present.
  16.  コンデンサ充電中には前記パワーモジュールが前記半導体スイッチ素子のオフ指令を受信し、
     前記所定の条件は、
      前記コンデンサ充電中に、前記抵抗部を流れる電流値が第2の閾値よりも低いことと、
      前記コンデンサ充電中に、想定される正常時の充電電流値と前記抵抗部を流れる電流値との差が第3の閾値よりも大きいこと
    とのうちの少なくとも1つである
    ことを特徴とする請求項14に記載の半導体減流器。
    During capacitor charging, the power module receives an off command of the semiconductor switch element,
    The predetermined condition is:
    A value of a current flowing through the resistance unit during charging of the capacitor is lower than a second threshold;
    The difference between an assumed normal charging current value and a current value flowing through the resistor during charging of the capacitor is at least one of being greater than a third threshold value. Item 15. A semiconductor current reducer according to Item 14.
  17.  電力変換器動作中には前記パワーモジュールが前記半導体スイッチ素子のオン指令を受信し、
     前記所定の条件は、前記電力変換器動作中に、前記抵抗部を流れる電流値が第4の閾値よりも高いことである
    ことを特徴とする請求項14に記載の半導体減流器。
    During operation of the power converter, the power module receives an on command of the semiconductor switch element,
    15. The semiconductor current reducer according to claim 14, wherein the predetermined condition is that a value of a current flowing through the resistance unit is higher than a fourth threshold value during the operation of the power converter.
PCT/JP2018/048453 2018-03-27 2018-12-28 Electric vehicle drive system, semiconductor current reducer, and failure detection method therefor WO2019187454A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509670A JP7016949B2 (en) 2018-03-27 2018-12-28 Drive systems for electric vehicles, semiconductor current reducers, and their failure detection methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-060169 2018-03-27
JP2018060169 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019187454A1 true WO2019187454A1 (en) 2019-10-03

Family

ID=68057994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048453 WO2019187454A1 (en) 2018-03-27 2018-12-28 Electric vehicle drive system, semiconductor current reducer, and failure detection method therefor

Country Status (2)

Country Link
JP (1) JP7016949B2 (en)
WO (1) WO2019187454A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257401A (en) * 1987-04-15 1988-10-25 Toshiba Corp Controller for electric rolling stock
JPH04322101A (en) * 1991-04-22 1992-11-12 Hitachi Ltd Interrupting system for dc electric vehicle
JPH0662502A (en) * 1992-06-09 1994-03-04 Mitsubishi Electric Corp Overcurrent protective device
JP2001245401A (en) * 2000-02-28 2001-09-07 Toshiba Corp Power converting device for electric car
JP2012217253A (en) * 2011-03-31 2012-11-08 Toshiba Corp Electric vehicle control device
JP2015057032A (en) * 2013-09-13 2015-03-23 トヨタ自動車株式会社 Power storage system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3895239B2 (en) 2002-08-30 2007-03-22 株式会社東芝 Electric vehicle power supply
JP2006067732A (en) 2004-08-27 2006-03-09 Toshiba Corp Electric vehicle controlling device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257401A (en) * 1987-04-15 1988-10-25 Toshiba Corp Controller for electric rolling stock
JPH04322101A (en) * 1991-04-22 1992-11-12 Hitachi Ltd Interrupting system for dc electric vehicle
JPH0662502A (en) * 1992-06-09 1994-03-04 Mitsubishi Electric Corp Overcurrent protective device
JP2001245401A (en) * 2000-02-28 2001-09-07 Toshiba Corp Power converting device for electric car
JP2012217253A (en) * 2011-03-31 2012-11-08 Toshiba Corp Electric vehicle control device
JP2015057032A (en) * 2013-09-13 2015-03-23 トヨタ自動車株式会社 Power storage system

Also Published As

Publication number Publication date
JPWO2019187454A1 (en) 2021-04-08
JP7016949B2 (en) 2022-02-07

Similar Documents

Publication Publication Date Title
KR101066700B1 (en) Power converter
CN100456592C (en) Method for error handling in a converter circuit for wiring of three voltage levels
WO2015121983A1 (en) Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method
US9787214B2 (en) Power conversion device with overvoltage suppression
EP3413330B1 (en) Direct current circuit breaker
US10622933B2 (en) Inverter device that reduces a loss caused by switching elements
CN102754346A (en) Switch load shedding device for a disconnect switch
EP3514933B1 (en) Power conversion device
US9837894B2 (en) Chopper device
EP3514934B1 (en) Power conversion device
WO2011080823A1 (en) Drive control device of alternating-current motor
JP6439310B2 (en) Electric compressor for vehicles
JP7502016B2 (en) POWER CONVERSION DEVICE AND CURRENT CONTROL METHOD THEREFOR
JP6157982B2 (en) Electric vehicle power converter
JPH06233454A (en) Overvoltage protective circuit for power converter
CN114128067B (en) DC distribution board
Hammes et al. High-inductive short-circuit Type IV in multi-level converter protection schemes
WO2019187454A1 (en) Electric vehicle drive system, semiconductor current reducer, and failure detection method therefor
JP2001037004A (en) Inverter type electric rolling stock controller
JP5481088B2 (en) Railway vehicle drive control device
JP2020005424A (en) Driving system for railroad vehicle, active filter device in the system, and driving method for railroad vehicle
JP2006067732A (en) Electric vehicle controlling device
JP7098727B2 (en) Railroad vehicle drive system and railroad vehicle drive method
JP2008306780A (en) Railway vehicle drive controller
CN107431365B (en) Electricity storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911449

Country of ref document: EP

Kind code of ref document: A1