WO2019187254A1 - Cosmetic additive and cosmetic - Google Patents

Cosmetic additive and cosmetic Download PDF

Info

Publication number
WO2019187254A1
WO2019187254A1 PCT/JP2018/037554 JP2018037554W WO2019187254A1 WO 2019187254 A1 WO2019187254 A1 WO 2019187254A1 JP 2018037554 W JP2018037554 W JP 2018037554W WO 2019187254 A1 WO2019187254 A1 WO 2019187254A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
mass
oligomer
alumina
silica
Prior art date
Application number
PCT/JP2018/037554
Other languages
French (fr)
Japanese (ja)
Inventor
大島 純治
皆川 円
紘一 島野
Original Assignee
大阪ガスケミカル株式会社
水澤化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018102820A external-priority patent/JP7163070B2/en
Application filed by 大阪ガスケミカル株式会社, 水澤化学工業株式会社 filed Critical 大阪ガスケミカル株式会社
Publication of WO2019187254A1 publication Critical patent/WO2019187254A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/26Aluminium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up

Definitions

  • the present invention relates to an alumina-silica-based particle that is suitably used as an additive blended in cosmetics in order to impart a soft focus property and / or a hiding effect. That is, the present invention relates to the use of alumina-silica particles having a soft focus property and / or a hiding effect as a cosmetic additive.
  • Cosmetics such as foundations, base makers, and lipsticks require a property called soft focus.
  • This soft focus property means that, for example, when a cosmetic film is formed by applying cosmetics to the skin, the surface of the skin becomes blurred, so that it is difficult to see skin spots, freckles, pores or wrinkles, etc. This means that the ratio of diffused light without traveling straight through the decorative coating film is large in the light (total irradiated light) hitting the light.
  • Patent Document 1 reports that spherical silica or the like is effective for imparting soft focus properties.
  • Patent Documents 2 and 3 spherical silica particles produced by using polyacrylamide or carboxymethyl cellulose as an aggregating growth agent and neutralizing an alkali silicate with an acid in the presence of the aggregating growth agent are disclosed. It is described that it is used as a filler for cosmetics.
  • Patent Document 4 when silica is produced by reacting an alkali silicate with an acid in the presence of an aggregating growth agent, silica particles are produced by partial neutralization, and then remain in the reaction system.
  • the silica is precipitated on the generated silica particles, thereby providing a circularity of 0, which has a larger primary particle size than conventional spherical silica. It is described that silica particles of .7 to 0.85 can be obtained, and that the silica particles impart excellent soft focus properties to cosmetics and have excellent durability.
  • JP 2001-199839 A Japanese Patent Laid-Open No. 05-193927 JP 07-232911 A JP 2010-184856 A
  • the spherical silica particles described in Patent Documents 1 to 3 have a problem in their sustainability even if they exhibit soft focus properties when blended in cosmetics. Specifically, when it is applied to the skin to form a decorative film, its optical properties change over time, or it drops off from the skin due to sweat, etc. There is a problem of being damaged.
  • the silica particles described in Patent Document 4 are obtained by improving the sustainability problem. Specifically, since the silica particles described in Patent Document 4 have a high oil absorption, they have the property of absorbing sweat and the like, and the degree of circularity is 0.7 to 0.85, which is slightly deformed from a spherical shape. Therefore, it is hard to come off from the surface of the skin. For this reason, it exists stably in a cosmetic coating film, and can provide the outstanding soft focus property continuously.
  • the silica particles described in Patent Documents 1 to 4 are all spherical or have a high circularity, they can impart high slipperiness when blended in cosmetics.
  • high slipperiness tends to stretch when applied to the skin, it also causes upward slipping, resulting in a decrease in familiarity with the skin and a feeling of close contact with the skin, and a decrease in covering power.
  • it is also necessary to stretch evenly on the skin surface while maintaining the covering power on the skin, and to adhere to the skin so that it can be integrated properly. It is required to have the property and retention.
  • the present invention has an alumina-silica system that has particle characteristics different from those of conventionally known silica particles, and can impart an excellent soft focus property, a small hiding effect, and / or a good feeling of use to cosmetics.
  • the purpose of the particles is to provide a new use as a cosmetic additive.
  • the inventors of the present invention have formulated alumina-silica-based cubic particles having specific properties and physical properties prepared by reacting a zeolite produced from sodium silicate and sodium aluminate with an acid into cosmetics.
  • the cosmetic has excellent soft focus properties and exhibits an effect of making small wrinkles and pores inconspicuous.
  • the particles have appropriate slipping properties, and cosmetics formulated with the particles will spread and spread smoothly when applied to the skin. It was confirmed that the (skin adhesiveness) was good, and that it had good usability.
  • Cosmetic additive (I-1) A cosmetic additive having alumina-silica particles, A cosmetic additive, wherein the alumina-silica-based particles have the following characteristics: (1) It consists of cubic primary particles having a side length of 0.3 to 20 ⁇ m as observed with a scanning electron microscope. (2) The refractive index by the immersion method is 1.48 to 1.52. (3) The volume-based average particle size by Coulter counter method is 1 to 20 ⁇ m. (4) Oil absorption according to JIS K5101-13-2 is 10 ml / 100 g or more and less than 50 ml / 100 g.
  • the specific surface area by BET method is 20 m ⁇ 2 > / g or less.
  • the alumina-silica-based particles have a composition in which the molar ratio of SiO 2 / Al 2 O 3 is in the range of 1.8 to 5, and are substantially amorphous in terms of X-ray diffraction.
  • (I-4) A cosmetic additive having hydrophobized alumina-silica particles obtained by hydrophobizing the surface of the alumina-silica particles according to any one of (I-1) to (I-3).
  • (I-5) The surface of the alumina-silica particles according to any one of (I-1) to (I-3) is coated with a cured product of a room temperature-curable silicone composition, wherein the hydrophobized alumina-silica particles are The cosmetic additive as described in (I-4):
  • the room temperature curable silicone composition is A first oligomer containing a dialkylsiloxane unit and an alkoxy group-containing siloxane unit containing an alkoxy group;
  • silicone oil A catalyst, A room temperature curable silicone composition containing an organic solvent, The ratio of the total amount of the first oligomer and
  • the catalyst is at least one selected from the group consisting of metal alkoxides, metal chelate compounds and metal carboxylates;
  • the vapor pressure of the organic solvent at 20 ° C. is 1 kPa or more.
  • (I-8) Any one of (I-1) to (I-7), wherein the alumina-silica-based particle or the hydrophobized alumina-silica-based particle has any one of the following characteristics (a) to (d): Cosmetic additives described in: (A) Average friction coefficient (MIU): 0.3 to 0.7 (B) Hiding power index: 6 or less (c) Haze blurring index: 32 or less (d) Haze: 30-80. (I-9) (I-1) to (I-8), wherein the cosmetic additive is a soft focus property imparting agent, a hiding effect imparting agent (unevenness correcting agent), and / or an extensibility imparting agent. Cosmetic additive described in any one.
  • (II-2) A method for producing alumina-silica particles having a hydrophobic surface, which comprises the following steps (A) and (B): (A) A step of coating the surface of the alumina-silica-based particles described in any one of (I-1) to (I-3) with a room temperature-curable silicone composition:
  • the room temperature curable silicone composition is A first oligomer containing a dialkylsiloxane unit and an alkoxy group-containing siloxane unit containing an alkoxy group;
  • silicone oil A catalyst, Containing an organic solvent,
  • the ratio of the total amount of the first oligomer and the second oligomer in the room temperature curable silicone composition is 20% by mass or more and 50% by mass or less, The ratio of the first oligomer to 1 part by mass of the second oligo
  • the catalyst is at least one selected from the group consisting of metal alkoxides, metal chelate compounds and metal carboxylates;
  • the organic solvent has a vapor pressure at 20 ° C. of 1 kPa or more: and (B) a step of curing the room temperature curable silicone composition coated on the surface of the alumina-silica particles.
  • Alumina-silica particles having a hydrophobic surface are those having any one of the following characteristics (a) to (d): (II-1) or (II-2) Manufacturing method: (a) Average friction coefficient (MIU): 0.3 to 0.6 (B) Hiding property index: 5 or less (c) Haze blurring index: 28 or less (d) Haze: 34-80. (II-4)
  • the hydrophobized alumina-silica-based particles are produced so that the ratio of the alumina-silica-based particles to 90 parts by mass or less with respect to 10 parts by mass of the cured product of the room temperature-curable silicone composition coated on the surface.
  • the cosmetics When the alumina-silica-based particles used in the present invention are blended in cosmetics, the cosmetics have high light properties based on properties such as particle shape, particle size, refractive index, specific surface area and / or moisture adsorption amount. Scatterability can be imparted.
  • the cosmetic containing the particles of the present invention transmits light through the decorative film while multiple scattering of light, and as a result, the proportion of diffused light in the transmitted light increases and gives excellent soft focus properties. can do.
  • alumina-silica-based particles used in the present invention when blended in cosmetics, can be covered with a lid that does not fall into the skin crevice such as small wrinkles, especially based on the particle shape and particle size. It is possible to exert a concealment effect. Similarly, the effect (unevenness correction effect) of covering and covering skin pores well and adjusting the texture of the skin after makeup can be exhibited.
  • the alumina-silica-based particles used in the present invention have a cubical shape due to their cubic shape, and are difficult to physically remove from the skin when blended in cosmetics and applied to the skin, and exhibit a long lasting effect. can do.
  • the surface of the alumina-silica-based particles can be treated with a hydrophobizing agent such as methyl hydrogen silicone oil or a room-temperature curable silicone composition to improve hydrophobicity between the particles. it can.
  • a hydrophobizing agent such as methyl hydrogen silicone oil or a room-temperature curable silicone composition
  • photographed the alumina-silica-type cubic particle 1 (Example 1) of this invention manufactured by the manufacture example 1 with the scanning electron microscope is shown.
  • photographed the alumina-silica-type cubic particle 2 (Example 2) of this invention manufactured by the manufacture example 2 with the scanning electron microscope is shown.
  • photographed the alumina-silica-type cubic particle 3 (Example 3) of this invention manufactured by the manufacture example 3 with the scanning electron microscope is shown.
  • the X-ray diffraction profile of the alumina-silica-based cubic particles 1 of the present invention produced in Production Example 1 (Example 1) is shown.
  • the alumina-silica cubic particles constituting the cosmetic additive of the present invention (hereinafter also simply referred to as “the present particles”) have the following properties and characteristics: Features. (1) It consists of cubic primary particles having a side length of 0.3 to 20 ⁇ m as observed with a scanning electron microscope. (2) The refractive index by the immersion method is 1.48 to 1.52. (3) The volume-based average particle diameter by the Coulter counter method is 1 to 20 ⁇ m. (4) The oil absorption according to JIS K5101-13-2 is 10 ml / 100 g or more and less than 50 ml / 100 g. (5) The specific surface area by BET method is 20 m ⁇ 2 > / g or less.
  • “soft focus” means that when a cosmetic such as a foundation containing the particles of the present invention is applied to the skin, spots, freckles, pores, wrinkles, etc. are blurred by the light scattering effect so as to be inconspicuous. It means the effect of adjusting the appearance of the skin so that it looks smooth.
  • the “soft focus” can be evaluated using a Haze meter as shown in Experimental Example 1 described later.
  • the particles of the present invention are characterized in that the shape of the primary particles is cubic and the length of one side by observation with a scanning electron microscope is 0.3 to 20 ⁇ m.
  • the thickness is preferably 0.5 to 20 ⁇ m, more preferably 1.5 to 12 ⁇ m.
  • images obtained by observing primary particles of the present invention particles (Examples 1 to 3) produced in Production Examples 1 to 3 with a scanning electron microscope are shown in FIGS.
  • the particles of the present invention are primary particles (fine particles) having a cubic shape composed of approximately six faces and eight corners, and the shape and size are almost arranged.
  • the particles of the present invention having such a shape have high light scattering performance (light diffusibility) and can exhibit good soft focus properties.
  • touch and skin slipperiness are also good.
  • smooth skin smoothness does not simply mean that the skin is highly slippery, but when it is applied to the skin, it stays in close contact with the skin and stays on the skin evenly, that is, it is moderately slippery. It means that it has retention.
  • spherical (including true spherical) fine particles are said to have the effect of hiding the wrinkles by falling into the skin crevice such as a small wrinkle and filling it, but in fact, the light along the crevice by light rays There is a problem that the line is raised and the gavel stands out.
  • the particles of the present invention have a cubic shape, so that a plurality of particles are entangled on the surface of the skin, and the skin can be covered so as to cover the skin groove such as a small wrinkle. ing.
  • it is excellent in the effect of concealing pores, and can contribute to the effect of smoothing the unevenness of the skin and adjusting the texture of the skin after makeup.
  • the particles of the present invention have a cubic shape, the planar fixed area is large, and when blended in cosmetics and applied to the skin, the particles of the present invention are difficult to physically remove from the skin and can exhibit a long lasting effect.
  • the particles of the present invention have a refractive index of 1.48 to 1.52.
  • the refractive index can be obtained by an immersion method.
  • solvents having various refractive indexes are prepared using two solvents ( ⁇ -bromonaphthalene and kerosene) having different refractive indexes, and according to Larsen's oil immersion method. It can be determined by immersing the solvent in the particles of the present invention taken on a slide glass and then observing the movement of the Becke line with an optical microscope.
  • the curvature ratio affects the soft focus.
  • the difference in refractive index between the liquid component in the cosmetic and the moisture of sweat is moderate, light is scattered at the interface to exhibit soft focus properties.
  • silica-based particles having a small refractive index difference become transparent when wetted with water such as sweat, and the concealing effect is remarkably reduced.
  • the particles of the present invention that are alumina-silica-based particles are difficult to become transparent even when wetted with water. For this reason, even if it sweats, soft focus property is maintained and moderate concealment property can be exhibited. Therefore, it is desirable that the particles of the present invention have a refractive index of preferably 1.48 to 1.52, more preferably 1.49 to 1.51.
  • volume-based average particle diameter The particles of the present invention have a volume-based average particle diameter of 1 to 20 ⁇ m.
  • the volume-based average particle diameter can be determined by a Coulter counter method. Specifically, as described in the examples described later, a dispersion obtained by dispersing 0.5 g of the present invention particles in 150 ml of deionized water was subjected to a Coulter counter, and a volume-based particle size distribution was measured. By determining the median diameter (D 50 ), the volume-based average particle diameter of the particles can be obtained.
  • the volume standard average diameter is preferably 1 ⁇ m or more.
  • the haze value cloudiness
  • the soft focus property improves as the volume reference average particle size decreases.
  • the volume-based average particle size is preferably 12 ⁇ m or less.
  • the hiding effect improves as the volume-based average particle size increases.
  • the volume-based average particle diameter of the particles of the present invention is preferably 1 to 10 ⁇ m, and more preferably 1.5 from the viewpoint of high soft focus. ⁇ 4 ⁇ m.
  • Oil absorption amount The particles of the present invention have an oil absorption amount in the range of 10 ml / 100 g or more and less than 50 ml / 100 g.
  • the oil absorption is JIS. K. 5101-13-1: 2004 (refined linseed oil method). Specifically, oil can be gradually added to the refined sesame to the particles of the present invention and mixed to obtain a refined sesame oil amount (ml / 100 g) when the paste has an appropriate hardness.
  • porous particles having pores on the surface have a large oil absorption.
  • the liquid surface or sweat in the cosmetics penetrates into the pores of the fine particle surface, resulting in wet particle surfaces.
  • the refractive index is lowered and the soft focus property is lowered.
  • the particles of the present invention as described above, have a small oil absorption, so that the original refractive index of the particles of the present invention is not easily impaired regardless of the presence environment of the particles of the present invention.
  • the oil absorption amount of the particles of the present invention is preferably 10 to 45 ml / 100 g, more preferably 10 to 35 ml / 100 g.
  • the oil absorption amount affects the sebum absorption capacity of the cosmetic when the particles of the present invention are blended in the cosmetic. If the amount of oil absorption is too high, the ability to degrease the sebum from the skin will increase, and there may be a burden on the skin, such as crispiness and itching. Since the oil absorption of the present invention particles is in the above range, degreasing from the skin is moderately suppressed, and the burden on the skin is small.
  • the particles of the present invention are characterized in that the specific surface area by the BET method is 20 m 2 / g or less in relation to having the above-described particle shape and particle size characteristics. Preferably 1 ⁇ 10m 2 / g, more preferably 1 ⁇ 5m 2 / g.
  • porous particles having pores on the surface have a large specific surface area.
  • the liquid component in the cosmetic penetrates into the pores on the surface of the fine particles, or sweat permeates into the pores on the surface of the fine particles after application to the skin, thereby There is a problem that the liquid becomes wet and the original refractive index of the particles is lowered, so that the soft focus property is lowered.
  • the particles of the present invention as described above, have a small specific surface area, so that the original refractive index of the particles is unlikely to be impaired regardless of the presence environment state of the particles of the present invention. It has the feature that it can exhibit high soft focus.
  • the particles of the present invention have some chemical and physical properties in addition to the chemical and physical properties described above.
  • Moisture adsorption amount The particles of the present invention are characterized in that the moisture adsorption amount is 0 to 5%.
  • the moisture adsorption amount can be determined by a gas adsorption method. Specifically, as described in the examples described later, the particles of the present invention are preliminarily left to stand for 2 hours under a vacuum condition of 150 ° C., and then the water vapor partial pressure P T (P / P 0 ) obtains a moisture adsorption isotherm at a range of from 0.001 to 0.9 (equilibration determination time: 300 seconds), the measured value in the water vapor partial pressure P T (P / P 0) 0.75, the present invention particles unit mass It can be calculated in terms of the amount of moisture adsorbed (percent by mass).
  • the moisture adsorption amount affects the moisture retention of the skin when the particles of the present invention are blended in cosmetics. If the amount of moisture adsorption is too high, the ability to remove moisture that moisturizes the skin from the sebum increases, which may put a burden on the skin, for example, it may become thick and itchy.
  • the particles of the present invention have a feature that the moisture retention of the skin is appropriately maintained because the moisture adsorption amount is in the above range. From this viewpoint, the water adsorption amount of the particles of the present invention is preferably 0 to 3%, more preferably 0 to 1%.
  • the particles of the present invention have a composition having a molar ratio of SiO 2 / Al 2 O 3 in the range of 1.8 to 5. Preferably it is 1.85 to 2.5, more preferably 1.9 to 2.1.
  • the particles of the present invention can have a cubic shape having a certain particle size as described above when the SiO 2 / Al 2 O 3 molar ratio is in the above range. That is, the molar ratio is a useful requirement for configuring the shape of the particles of the present invention.
  • the particles of the present invention are substantially amorphous.
  • substantially amorphous means amorphous when measured by X-ray diffraction and no crystallization is observed.
  • the measuring method of the crystallinity degree by X-ray diffraction method is as the description in the Example mentioned later.
  • the particles of the present invention have an apparent specific gravity in the range of 0.5 to 1.1 g / cm 3 .
  • the apparent specific gravity here is JIS. K. 6220-1: 2001, 7.7. Specifically, as shown in the Examples described later, it can be obtained by applying a certain load to the particles of the present invention and measuring the specific gravity at that time.
  • the apparent specific gravity is a parameter linked to the oil absorption amount. For this reason, when the apparent specific gravity is small, the oil absorption amount increases and the ability to degrease from sebum tends to increase. Since the apparent specific gravity is in the above range, the particles of the present invention are characterized in that degreasing from the skin is moderately suppressed and the burden on the skin is small. From this viewpoint, the apparent specific gravity of the particles of the present invention is preferably 0.5 to 1.1 g / cm 3 , more preferably 0.65 to 1.1 g / cm 3 .
  • the particles of the present invention are characterized in that their loss on ignition is in the range of 0 to 6%.
  • the loss on ignition is JIS. K. 0067: It can be determined according to the ignition loss test method described in 1992 4.2. Specifically, as shown in the examples described later, a predetermined amount of the particles of the present invention are placed in an evaporating dish, ignited in an electric furnace at 860 ° C. for 20 minutes, and the mass of the test sample decreased after igniting is measured. Can be obtained.
  • the loss on ignition is a parameter linked to the amount of moisture adsorbed, it affects the moisture retention of the skin when blended into cosmetics. If the loss on ignition is too high, the ability to take away moisture that moisturizes the skin will increase. Since the ignition loss is in the above range, the particles of the present invention have a feature that the moisture retaining property of the skin is appropriately maintained. From this viewpoint, the ignition loss of the particles of the present invention is preferably 0 to 5%, more preferably 0 to 3%.
  • the particles of the present invention are characterized in that the whiteness is in the range of 80 to 100%.
  • the whiteness can be measured based on the Hunter whiteness test method. Specifically, it can be measured using a Hunter reflectometer having a blue filter (effective wavelength 457 nm) as shown in the examples described later.
  • the whiteness of the particles of the present invention is as described above, and has a sufficient whiteness for blending into cosmetics. If the whiteness is lower than 80%, the skin looks dull when blended in cosmetics, which is undesirable. From this viewpoint, the whiteness of the particles of the present invention is preferably 85 to 100%, more preferably 90 to 100%.
  • Haze value soft focus property
  • the particles of the present invention can impart soft focus properties to the cosmetic by blending it in the cosmetic.
  • Such soft focus property can be evaluated as a Haze value.
  • the Haze value is a numerical value indicating the degree of cloudiness (blurring). The higher the numerical value, the higher the soft focus property and the higher the concealing property (covering power).
  • the haze value can be determined by “diffuse transmittance / total light transmittance ⁇ 100”, and can usually be measured with a haze meter.
  • the haze value is obtained by mixing the particles of the present invention and silicone oil in a ratio of 1: 9 (mass ratio) and coating a PET sheet with a thickness of 20 ⁇ m. Can be measured with a Haze meter in accordance with ASTM D1003.
  • the Haze value of the particles of the present invention with visible light is 35% or more. Preferably it is 40% or more, more preferably 50% or more, and particularly preferably 55% or more.
  • the particles of the present invention have a high Haze value and an excellent soft focus property as compared with the spherical silica particles. For this reason, the blurring effect can be provided to cosmetics by mix
  • the particles of the present invention may have an average coefficient of friction of preferably 0.7 or less, more preferably 0.6 or less.
  • the average friction coefficient is a physical property value that serves as an index for evaluating the slipperiness of the particles of the present invention, and the smaller the value, the higher the slipperiness.
  • the friction coefficient of the particles of the present invention can be measured using a friction feeling tester (friction feeling tester KSE-SE: manufactured by Kato Tech Co., Ltd.).
  • the particles of the present invention which is a test sample, are directly applied to artificial skin.
  • the particles of the present invention having the desired average friction coefficient it has an appropriate slip property on the artificial skin and between the particles, and when applied to the skin, it stretches uniformly on the skin and stays moderately stretched. There is an effect.
  • Optical evaluation of hiding property (a) Hiding property index, (b) Haze blurring property index Hiding property is the smaller the hiding effect, which is the ability to hide the substrate when applied to the skin, and The greater the effect of blurring pores and small wrinkles (the wrinkle blurring effect), the better the evaluation.
  • the opacity index and the obscuration index are physical property values that serve as indices for evaluating the obscuration effect and obscuration effect of the particles of the present invention, respectively. It shows that the concealability is exhibited well.
  • the particles of the present invention may have a concealment index of preferably 6 or less, more preferably 5 or less. Although it does not restrict
  • the hiding property index and the blurring property index of the particles of the present invention can be measured by the methods described in Examples described later.
  • the particles of the present invention used in the present invention are crystalline zeolite having a cubic particle morphology, although the crystal structure is substantially destroyed, the particle morphology is substantially It is produced by neutralizing with an acid under conditions that are not impaired, and removing the alkali metal content in the zeolite.
  • crystalline zeolite used as a raw material examples include zeolite A, zeolite X, zeolite Y and the like. Zeolite A is preferred because of the ease of synthesis and availability and the characteristics of the alumina-silica particles after production. be able to. Further, although the raw material zeolite is not limited, it is preferable to use a material having a primary particle size (the length of one side of cubic particles by a scanning electron microscope) in the range of 0.3 to 20 ⁇ m.
  • the alkali content in the alumina-silica particles having a primary particle size of 0.3 to 20 ⁇ m used in the present invention can be reduced within a short time by a relatively mild acid treatment. It can be removed to make it amorphous.
  • the acid used for neutralizing the crystalline zeolite may be either an inorganic acid or an organic acid, but from an economical viewpoint, inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid can be suitably used. Sulfuric acid is preferred. Usually, these acids are diluted with water to 5 to 30% by mass, preferably about 10 to 20% by mass, and used in neutralization reaction with crystalline zeolite in the form of an aqueous solution.
  • inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid
  • Sulfuric acid is preferred.
  • these acids are diluted with water to 5 to 30% by mass, preferably about 10 to 20% by mass, and used in neutralization reaction with crystalline zeolite in the form of an aqueous solution.
  • Amorphous alumina-silica-based cubic particles obtained by acid treatment of crystalline zeolite and elution and removal of alkali are filtered, washed with water if necessary, dried, and then fired.
  • the firing is not limited, but the amorphous alumina-silica-based cubic particles to be prepared have a water adsorption amount of 0 to 5% by the gas adsorption method as described above. It is preferably carried out at 800 ° C. for about 0.5 to 24 hours.
  • hydrophobized Alumina-Silica Cubic Particles and Method for Producing the Same The hydrophobized alumina-silica cubic particles of the present invention are prepared by subjecting the surface of the above-mentioned alumina-silica cubic particles (invention particles) to a hydrophobic treatment (repellency). It can be prepared by water treatment). Such a hydrophobizing treatment is not particularly limited, and a conventionally known method such as a water repellent surface treatment with silicone can be used. As such a silicone treatment, a method in which the particle surface is coated with silicone oil (Japanese Patent Application Laid-Open No.
  • methyl hydrogen silicone (quasi-drug name methyl hydrogen polysiloxane) is coated on the particle surface, and 100 Examples of the heat treatment at ⁇ 180 ° C. (Japanese Patent Laid-Open No. 2005-350588), the method of reacting with hydrogensilane using a fluorine-containing boron catalyst to silylate the surface (WO2015 / 136913), and the like are exemplified without any limitation. can do.
  • the above-mentioned alumina-silica cubic particles (the particles of the present invention) are coated with methyl hydrogen silicone and heat-treated.
  • the heating temperature is not limited, 100 to 180 ° C. can be exemplified as described above.
  • the hydrophobized alumina-silica-based cubic particles are obtained by coating the surface of the above-described particles of the present invention with a cured product of a room temperature curable silicone composition.
  • Room temperature curable silicone composition The room temperature curable silicone composition used for coating alumina-silica cubic particles is a composition that can be cured by forming a film at room temperature.
  • normal temperature is a temperature at which heating (specifically heating at 50 ° C. or higher) is not performed, for example, less than 50 ° C., preferably 40 ° C. or lower, and for example, 0 ° C. or higher, preferably 10 ° C. or higher.
  • room temperature is used synonymously with room temperature.
  • the room temperature curable silicone composition (hereinafter also simply referred to as “silicone composition”) contains a first oligomer, a second oligomer, silicone oil, a catalyst, and an organic solvent.
  • the first oligomer is a non-sticking auxiliary agent that forms a siloxane matrix together with the second oligomer in the coating and assists the non-stickiness and water repellency of the silicone oil in the coating even when the coating is rubbed.
  • the coating can effectively suppress a decrease in non-adhesiveness after a long period of time.
  • the first oligomer contains a dialkylsiloxane unit and an alkoxy group-containing siloxane unit containing an alkoxy group.
  • the first oligomer is a siloxane oligomer represented by the following formula (1).
  • R 1 to R 9 may be the same or different from each other, and at least one monovalent carbon selected from the group consisting of a monovalent saturated hydrocarbon group and a monovalent aromatic hydrocarbon group
  • X represents a siloxane unit
  • a and e may be the same or different from each other, and are 1 or 2.
  • b is an integer of 2 to 20, and C is 2 to 10.
  • Examples of the l-valent saturated hydrocarbon group represented by R 1 to R 9 include methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n- Examples thereof include alkyl groups having 1 to 6 carbon atoms such as pentyl and n-hexyl. A methyl group is preferred.
  • Examples of the l-valent aromatic hydrocarbon group represented by R 1 to R 9 include aryl groups having 6 to 10 carbon atoms such as phenyl and naphthyl. A phenyl group is preferred.
  • R 1 to R 9 are preferably a methyl group and / or a phenyl group, and more preferably a methyl group.
  • unit I is an alkoxy group-containing siloxane unit. That is, the unit I contains an alkoxy group represented by R 2 O.
  • a represents the number of alkoxy groups represented by R 2 O— bonded to a silicon atom in the unit I, and is preferably 2.
  • unit I an oxygen atom in Si—O— is bonded to any silicon atom in units II to IV described below. Thereby, the Si—O— of the unit I forms a siloxane bond in the first oligomer.
  • Unit I is a molecular terminal unit in the first oligomer.
  • Unit II is an alkoxy group-containing siloxane unit. That is, the unit II contains an alkoxy group represented by R 4 O.
  • B means the number of units II. b is preferably an integer of 3 or more, preferably 13 or less.
  • Unit III is a siloxane unit having two oxygen atoms bonded to silicon atoms. Unit III may contain an alkoxy group.
  • siloxane unit represented by X examples include, for example, unit VI alone represented by the following formula (2), a combination of unit II and unit I (when unit I is terminated at unit II), unit II and unit V And a combination of unit II and unit VI (when unit VI is located at the end via unit II).
  • Unit VI includes a cyclic siloxane unit represented by the following formula (2).
  • Z 1 is the above-described l-valent hydrocarbon group or alkoxy group.
  • C means the number of units III. c is preferably an integer of 6 or less.
  • Unit IV is a dialkylsiloxane unit. That is, unit IV contains an alkyl group represented by R 6 and R 7 . d means the number of units IV. d is preferably an integer of 6 or less.
  • Unit V is an alkoxy group-containing siloxane unit. That is, the unit V contains an alkoxy group represented by R 9 O.
  • the silicon atom in the unit V is bonded to any oxygen atom in the units II to IV. Thereby, the silicon atom in the unit V forms a siloxane bond in the first oligomer.
  • Unit V is a molecular terminal unit in the first oligomer.
  • e represents the number of alkoxy groups represented by R 9 O— bonded to the silicon atom in the unit V, and is preferably 2.
  • the first oligomer can be represented by the following average composition formula (A).
  • the monovalent hydrocarbon group is the same as the above-described monovalent hydrocarbon group.
  • R p is the same monovalent hydrocarbon group as R 1 , R 3 , R 5 , R 6 , R 7 , R 8 in the general formula (1).
  • R q include the same monovalent hydrocarbon groups as R 2 , R 4 , and R 9 in the above general formula (1).
  • ⁇ in the average composition formula (A) is such that the ratio of OR q bonded to the silicon atom in the average composition formula (A) is, for example, 10% by mass or more, preferably 20% by mass or more, and for example, 35% by mass. % Or less, preferably 30% by mass or less.
  • the first oligomer includes, for example, a methyl silicone alkoxy oligomer containing a dimethylsiloxane unit and a methoxy group-containing siloxane unit, a methylphenylsiloxane unit, and a siloxane unit containing a methoxy group and a phenoxy group.
  • a methylphenyl silicone alkoxy oligomer preferably a methyl silicone alkoxy oligomer.
  • Methyl silicone alkoxy oligomer For example, it is represented by the following formula (3).
  • Such methyl silicone alkoxy oligomers are produced from, for example, methyltrimethoxysilane and dimethyldimethoxysilane.
  • the molecular weight of the first oligomer is, for example, 500 or more, preferably 1000 or more, and for example, 3000 or less, preferably 2000 or less.
  • a commercially available product is used as the first oligomer.
  • X-40-9250 methyl silicone alkoxy oligomer in which b is 8, c is 4, and d is 4 in formula (3), manufactured by Shin-Etsu Chemical Co., Ltd.
  • X-40-9250 methyl silicone alkoxy oligomer in which b is 8, c is 4, and d is 4 in formula (3), manufactured by Shin-Etsu Chemical Co., Ltd.
  • the proportion of the first oligomer in the silicone composition is, for example, 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, further preferably 5% by mass or more, and particularly preferably 6% by mass or more.
  • it is less than 50% by mass, preferably 45% by mass or less, more preferably 40% by mass or less, further preferably 30% by mass or less, particularly preferably 20% by mass or less, and most preferably 10% by mass or less.
  • the second oligomer forms a siloxane matrix with the first oligomer in the coating.
  • the second oligomer does not contain a dialkylsiloxane unit but contains an alkoxy group-containing siloxane unit.
  • the second oligomer is a siloxane oligomer represented by the following formula (4).
  • R ll ⁇ R 17, which may be different Do or phase to each other, a monovalent saturated hydrocarbon group and a monovalent least one monovalent hydrocarbon selected from the group consisting of an aromatic hydrocarbon group Y represents a siloxane unit, and f and i may be the same or different from each other, and are 1 or 2.
  • g is an integer of 2 to 20, and h is 2 to 18.
  • Examples of the monovalent aromatic hydrocarbon group represented by R 11 to R 17 include aryl groups having 6 to 10 carbon atoms such as phenyl and naphthyl. A phenyl group is preferred.
  • R ll ⁇ R 17 preferably include methyl and / or phenyl group, more preferably a methyl group.
  • the unit XI is an alkoxy group-containing siloxane unit. That is, the unit XI contains an alkoxy group represented by R 12 O.
  • the oxygen atom in the unit XI is bonded to the silicon atom of the unit XII or unit XIII described below. Thereby, the Si—O— of the unit XI forms a siloxane bond in the second oligomer.
  • Unit XI is a molecular terminal unit in the second oligomer.
  • Unit XII is an alkoxy group-containing siloxane unit. That is, the unit XII contains an alkoxy group represented by R 14 O.
  • g means the number of units XII. g is preferably an integer of 3 or more, preferably 17 or less.
  • Unit XIII is a siloxane unit having two oxygen atoms bonded to a silicon atom.
  • Unit XIII may contain an alkoxy group.
  • Examples of the siloxane unit represented by Y include unit XV represented by the following formula (5) alone, a combination of unit XII and unit XI (when unit XI is terminated via unit XII), unit XII and unit XIV Combinations (when unit XIV is terminated via unit XII), units XII and units XV (when unit XV is terminated via unit XII) are included.
  • Unit XV includes a cyclic siloxane unit represented by the following formula (5).
  • Z 2 is the above-described monovalent hydrocarbon group or alkoxy group.
  • H means the number of units XIII. h is preferably an integer of 3 or more, preferably 15 or less.
  • the silicon atom in unit XIV is bonded to the oxygen atom in unit XII or unit XIII. Thereby, the silicon atom in the unit XIV forms a siloxane bond in the second oligomer.
  • Unit XIV is a molecular terminal unit in the second oligomer.
  • i in units XIV, refers to the number of R 17 O-is the alkoxy group bonded to the silicon atom, preferably 2.
  • the second oligomer can also be represented by the following average composition formula (B).
  • R t and R s may be the same or different from each other, and represent a monovalent hydrocarbon group.
  • has an average value in the range of 0.40 to 1.70.
  • represents a value at which the ratio of OR s bonded to silicon atoms in the average composition formula (B) is 5% by mass or more and less than 40% by mass.
  • R t R 11, R 13 , R 15 1 monovalent hydrocarbon group
  • R 16 examples of R s is Examples thereof include the same monovalent hydrocarbon groups as R 12 , R 14 , and R 17 in the general formula (4).
  • the ratio of the OR S is ⁇ in average compositional formula (B) bonded to silicon atoms in the average composition formula (B) is, for example, 10 mass% or more, preferably 20 mass% or more, and is, for example 35 wt%
  • the value is as follows.
  • examples of the second oligomer include a methyl silicone alkoxy oligomer and a methyl phenyl silicone alkoxy oligomer, and a methyl silicone alkoxy oligomer is preferable.
  • methyl silicone alkoxy oligomer examples include a methyl silicone methoxy oligomer produced from methyl trimethoxysilane.
  • the methyl silicone methoxy oligomer is represented by, for example, the following formula (6).
  • Such a methyl silicone alkoxy oligomer is produced from, for example, methyltrimethoxysilane.
  • the molecular weight of the second oligomer is, for example, 500 or more, preferably 1000 or more, and for example, 4000 or less, preferably 3000 or less.
  • a commercially available product is used for the second oligomer.
  • KC-89 manufactured by Shin-Etsu Chemical Co., Ltd.
  • KR-515 manufactured by Shin-Etsu Chemical Co., Ltd.
  • KR-500 in formula (6), methyl-based silicone alkoxy oligomers in which g is 10 and h is 4, Shin-Etsu Chemical Industry Co., Ltd.
  • X-40-9225 Metal silicone alkoxy oligomer having g of 12 and h of 10 in formula (6), manufactured by Shin-Etsu Chemical Co., Ltd.
  • US-SG2403 Toray Dow Corning
  • the proportion of the second oligomer in the silicone composition is, for example, 10% by mass or more, preferably 15% by mass or more, more preferably 20% by mass or more, further preferably 25% by mass or more, and for example, less than 50% by mass, Preferably it is 40 mass% or less, More preferably, it is 35 mass% or less, More preferably, it is 30 mass% or less.
  • the ratio of the first oligomer to the second oligomer is 0.15 or more, preferably 0.16 or more, more preferably 0.18 or more, further preferably 0.20 or more, More preferably, it is 0.22 or more.
  • the ratio of the first oligomer to the second oligomer is 10 or less, preferably 9 or less, more preferably 7 or less, further preferably 5 or less, particularly preferably 2 or less, further 1.0 or less, and further 0.5. It is as follows.
  • the slipperiness and water repellency of the coating are lowered.
  • the coating film can exhibit high slipperiness and water repellency.
  • the ratio of the total amount of the first oligomer and the second oligomer (curing component) in the silicone composition is 20% by mass or more, preferably 25% by mass or more, more preferably 30% by mass or more, and further preferably 35% by mass or more. . If the ratio does not satisfy the above lower limit, the ratio of the first oligomer and the second oligomer (curing component) is excessively small, so that the coating cannot be reliably formed when the curing component is cured at room temperature. In other words, if the ratio of the total amount is equal to or more than the lower limit described above, the ratio of the curing component is not excessively reduced, so that the curing component can be cured at room temperature to reliably form a coating film.
  • the ratio of the total amount of the first oligomer and the second oligomer (curing component) in the silicone composition is 50% by mass or less, preferably 45% by mass or less, more preferably 40% by mass or less.
  • the ratio of the total amount described above exceeds the upper limit described above, the viscosity when the surface treatment is performed using the silicone composition is increased, and therefore the uniformity of the coating is decreased. In other words, if the ratio of the total amount is equal to or less than the above upper limit, the viscosity becomes low enough to coat and uniform surface treatment is possible.
  • Silicone oil is a component that imparts slipperiness and water repellency to the coating.
  • Silicone oil has a linear main chain and has, for example, a polysiloxane repeating structure (-(SiO) n-).
  • the silicone oil include straight silicone oil (unmodified silicone oil) such as polydimethylsiloxane, polymethylphenylsiloxane, and polydiphenylsiloxane.
  • the main chain ends and / or side chains are modified with alkyl groups, alkenyl groups (including vinyl groups), alkynyl groups, phenyl groups, ionic groups, etc.
  • a silicone oil is also mentioned.
  • the ionic group include an anionic group such as a mercapto group, and a cationic group such as an amino group.
  • silicone oil straight silicone oil is preferable, and polydimethylsiloxane is more preferable.
  • a commercially available product is used as the silicone oil.
  • KF-96 series manufactured by Shin-Etsu Chemical Co., Ltd.
  • KF-965 series manufactured by Shin-Etsu Chemical Co., Ltd.
  • SH200 series manufactured by Toray Dow Corning
  • TSF451 series manufactured by Momentive Performance Material Japan
  • YF-33 series made by Momentive Performance Material Japan
  • Kinematic viscosity at 25 ° C. of the silicone oil 100 mm 2 / s or more, preferably 200 mm 2 / s or more, more preferably 500 mm 2 / s or more, most preferably 1000 mm 2 / s or more.
  • the kinematic viscosity at 25 ° C. of the silicone oil is, for example, 1,000,000 mm 2 / s or less, preferably 500,000 mm 2 / s or less, more preferably 100,000 mm 2 / s or less, and still more preferably 10,000 mm 2 / s. s or less.
  • the coating cannot stably exhibit slipperiness and water repellency.
  • the coating film can be stably provided with slipperiness and water repellency.
  • the kinematic viscosity of the silicone oil is less than or equal to the above upper limit, the silicone oil can be easily handled and the silicone composition can be easily prepared.
  • the ratio of the silicone oil in the silicone composition is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1.0% by mass or more, and further preferably 1.5% by mass or more.
  • it is 10 mass% or less, Preferably it is 5 mass% or less, More preferably, it is 2.5 mass% or less.
  • the ratio of the silicone oil to the total amount of the first oligomer and the second oligomer of 100 parts by mass is, for example, 1 part by mass or more, preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and for example, 20 parts by mass or less. , Preferably 10 parts by mass or less, more preferably 7 parts by mass or less.
  • the ratio of the total amount of the first oligomer, the second oligomer and the silicone oil in the silicone composition is, for example, 21% by mass or more, preferably 26% by mass or more, more preferably 31% by mass or more, and further preferably 36% by mass or more. is there. If the ratio of the total amount is equal to or more than the above lower limit, the ratio of the curing component is prevented from being excessively reduced, and the curing component can be cured at room temperature to reliably form a coating film.
  • the ratio of the total amount of the first oligomer, the second oligomer and the silicone oil in the silicone composition is, for example, 51% by mass or less, preferably 46% by mass or less, and more preferably 41% by mass. If the ratio of the total amount is equal to or less than the above upper limit, uniform surface treatment can be performed, and therefore a uniform film can be formed.
  • the catalyst When the silicone composition is cured at room temperature, the catalyst reacts with moisture in the air to hydrolyze to produce active [metal atom-OH], [metal atom-OH], the first oligomer and the first oligomer. It is a curing catalyst that causes a condensation reaction between two oligomers.
  • the catalyst is at least one selected from the group consisting of metal alkoxides, metal chelate compounds, and metal carboxylates.
  • metal alkoxide examples include titanium alkoxide, aluminum alkoxide, zirconium alkoxide (eg, zirconium tetra n-butoxide, zirconium tetra n-propoxide), germanium alkoxide (eg, germanium tetraethoxide), tin alkoxide (eg, tin tetra n).
  • titanium alkoxide and aluminum alkoxide are used.
  • titanium alkoxide examples include titanium trialkoxide and titanium tetraalkoxide, and preferably titanium tetraalkoxide.
  • titanium tetraalkoxide examples include titanium tetramethoxide, titanium tetraethoxide, titanium tetrapropoxide (eg, titanium tetraisopropoxide, titanium tetra-n-propoxide), titanium tetrabutoxide (eg, titanium tetraisobutoxide). , Titanium tetra n-butoxide, etc.), titanium tetrapentoxide, titanium tetrahexoxide, titanium tetra (2-ethylhexoxide) and the like.
  • Examples of the aluminum alkoxide include aluminum trialkoxide.
  • Examples of the aluminum trialkoxide include aluminum triethoxide, aluminum tripropoxide (eg, aluminum triisopropoxide, aluminum tri-n-propoxide), aluminum tributoxide (eg, aluminum tri-sec-butoxide, aluminum tri-n-oxide). Butoxide) and the like.
  • titanium tetraethoxide, titanium tetraisopropoxide, titanium tetraisobutoxide, and titanium tetra n-butoxide are preferable among titanium alkoxides.
  • aluminum alkoxides aluminum triethoxide, aluminum triisopropoxide, and aluminum trisec-butoxide are preferable.
  • metal alkoxide a commercially available product is used, for example, D-25 (titanium tetra n-butoxide, manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the metal chelate compound examples include a metal chelate compound having ⁇ -diketone, phosphate ester, alkanolamine or the like as a ligand.
  • Examples of ⁇ -diketone include 2,4-pentanedione, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, 1,3-diphenyl-1,3-propanedione, 2,4-hexanedione, 3,5 -Heptanedione, 2,4-octanedione, 2,4-decanedione, 2,4-tridecanedione, 5.5-dimethyl-2,4-hexanedione, 2,2-dimethyl-3,5-nonanedione, Examples include 2,2,6,6-tetramethyl-3,5-heptanedione, 1,3-cyclopentanedione, 1,3-cyclohexanedione, and the like.
  • 2,4-pentanedione is used.
  • octylene glycol examples include 2-ethyl-3-hydroxyhexoxide.
  • Examples of the phosphate ester include 2-ethylhexyl phosphate.
  • alkanolamine examples include monoethanolamine, diethanolamine, and triethanolamine.
  • Preferred examples of the ligand include ⁇ -diketone.
  • the central metal (metal atom) forming the metal chelate compound is not particularly limited.
  • aluminum, titanium, zirconium, niobium, magnesium, calcium, chromium, manganese, iron, cobalt, nickel, steel, zinc, gallium, Palladium, indium, tin, etc. are mentioned.
  • aluminum, titanium, and zirconium are used.
  • examples of the metal chelate compound include an aluminum chelate compound, a titanium chelate compound, a zirconium chelate compound, a magnesium chelate compound (eg, diaquabis (2,4-pentanedionato) magnesium), a calcium chelate compound (eg, Diaquabis (2,4-pentanedionato) calcium), chromium chelate compounds (for example, tris (2,4-pentanedionato) chromium), manganese chelate compounds (for example, diaquabis (2,4-pentanedionato) ) Manganese), iron chelate compounds (eg, tris (2,4-pentanedionato) iron), cobalt chelate compounds (eg, tris (2,4-pentandionato) cobalt), nickel chelate compounds (eg, , (2,4-pentanedionato) nickel), copper chelate (eg, bis (2,4-pentandionato)
  • Preferred examples of the metal chelate compound include an aluminum chelate compound, a titanium chelate compound, and a zirconium chelate compound. More preferred examples of the metal chelate compound include an aluminum chelate compound and a titanium chelate compound from the viewpoint of maintaining excellent fastness (strength) in the coating.
  • Examples of the aluminum chelate compound include tris (2,4-pentanedionato) aluminum, tris (ethylacetoacetate) aluminum, bis (ethylacetoacetate) (2,4-pentanedionato) aluminum, and the like.
  • tris (2,4-pentanedionato) aluminum is used.
  • titanium chelate compound examples include tetrakis (2,4-pentanedionato) titanium, tetrakis (ethyl acetoacetate) titanium, and the like.
  • tetrakis (2,4-pentanedionato) titanium is used.
  • zirconium chelate compound examples include tetrakis (2,4-pentanedionato) zirconium and tetrakis (ethylacetoacetate) zirconium.
  • tetrakis (2,4-pentanedionato) zirconium is used.
  • the metal chelate compound includes an alkoxy group-containing metal chelate compound further containing an alkoxy group in addition to the above-described ligand.
  • the alkoxy group include methoxy, ethoxy, n-propoxy, 2-propoxy, n-butoxy, 2-butoxy and the like.
  • 2-propoxy is preferable.
  • the alkoxy group-containing metal chelate compound includes, for example, an alkoxy group-containing aluminum chelate compound such as aluminum ethyl acetoacetate diisopropylate, such as bis (2,4-pentanedionato) bis (2-propanolate) titanium. And alkoxy group-containing titanium chelate compounds.
  • the metal carboxylate is a metal salt of carboxylic acid.
  • carboxylic acid include linear carboxylic acids such as ethanoic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, and tetradecanoic acid.
  • branched carboxylic acids such as 2-methylbutanoic acid, 2-methylpentanoic acid, 2-ethylhexanoic acid, 2-methylheptanoic acid, 4-methyloctanoic acid, 3,5,5-trimethylhexanoic acid, such as naphthenic acid And cyclic carboxylic acids.
  • branched carboxylic acid is mentioned, More preferably, 2-ethylhexanoic acid is mentioned.
  • the metal that forms the metal salt is not particularly limited, and examples thereof include the same metals as the above-described center metal (center metal that forms the metal chelate compound), preferably zinc, iron, cobalt, and manganese. It is done.
  • metal carboxylates include aluminum carboxylate, titanium carboxylate, zirconium carboxylate, niobium carboxylate, magnesium carboxylate, calcium carboxylate, chromium carboxylate, manganese carboxylate, iron carboxylate Acid salts, cobalt carboxylates, nickel carboxylates, copper carboxylates, zinc carboxylates, gallium carboxylates, palladium carboxylates, indium carboxylates, tin carboxylates, tantalum carboxylates, etc. .
  • Preferred examples of the metal carboxylate include zinc carboxylate, iron carboxylate, cobalt carboxylate and manganese carboxylate.
  • Examples of the zinc carboxylate include bis (2-ethylhexanoic acid) zinc, zinc acetate, and zinc naphthenate.
  • bis (2-ethylhexanoic acid) zinc is used.
  • iron carboxylate examples include bis (2-ethylhexanoic acid) iron, iron acetate, and iron naphthenate.
  • bis (2-ethylhexanoic acid) iron is used.
  • cobalt carboxylate examples include bis (2-ethylhexanoic acid) cobalt, cobalt acetate, and cobalt naphthenate.
  • bis (2-ethylhexanoic acid) cobalt is used.
  • manganese carboxylate examples include bis (2-ethylhexanoic acid) manganese, manganese acetate, manganese naphthenate, and the like.
  • bis (2-ethylhexanoic acid) manganese is used.
  • acids such as phosphoric acid and acetic acid do not generate a metal atom —OH, and therefore OH groups based on the alkoxy groups of the first oligomer and the second oligomer cannot be dehydrated and condensed.
  • the curing reaction of the first oligomer and the second oligomer cannot proceed rapidly at room temperature, and the above-described acid is unsuitable as a catalyst.
  • the catalyst can be used alone or in combination.
  • As the catalyst preferably, each of metal alkoxide, metal chelate compound and metal carboxylate is used alone.
  • the catalyst may be prepared as a catalyst solution dissolved in an organic solvent described later.
  • the ratio of the catalyst in the silicone composition is, for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass or more, and for example, 25% by mass or less, preferably 15% by mass or less. .
  • a ratio of the catalyst with respect to 100 parts by mass of the total amount of the first oligomer and the second oligomer for example, 1 part by mass or more, preferably 2 parts by mass or more, more preferably 5 parts by mass or more, further preferably 10 parts by mass or more, particularly preferably. Is 20 parts by mass or more, and for example 55 parts by mass or less, preferably 50 parts by mass or less, more preferably 40 parts by mass or less.
  • the ratio of the catalyst is not less than the above-described lower limit and not more than the above-described upper limit, the first oligomer and the second oligomer are rapidly cured at room temperature, and a film can be formed at room temperature.
  • Organic solvent is a high vapor pressure solvent that is equal to or higher than the lower limit of the vapor pressure described later.
  • the high vapor pressure solvent is, for example, an alcohol solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol (2-propanol); for example, ethyl acetate, butyl acetate, methoxybutyl acetate, ethyl glycol acetate, amyl acetate, etc.
  • glycol ether solvents such as ethylene glycol dimethyl ether (high vapor pressure glycol ether solvents); for example, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, and acetyl acetone; Paraffinic solvents (high vapor pressure paraffinic solvents) such as n-hebutane, n-octane and isooctane; for example, naphthenic solvents such as cyclopentane and cyclohexane, benzene, toluene, xyle , Aromatic solvents such as trimethylbenzene; for example, benzene, toluene, is selected from an aromatic solvent such as xylene.
  • organic solvents are used alone or in combination of two or more.
  • an alcohol solvent is preferably selected.
  • the vapor pressure of the organic solvent at 20 ° C. is 1 kPa (7.5 mmHg) or more, preferably 2 kPa (15 mmHg) or more, more preferably 3 kPa (22.5 mmHg) or more.
  • the vapor pressure of the organic solvent at 20 ° C. is 100 kPa (750 mmHg) or less, preferably 25 kPa (187 mmHg) or less, more preferably 10 kPa (75 mmHg) or less, more preferably 7 kPa (52 mmHg) or less, particularly preferably. 5 kPa (38 mmHg) or less.
  • the vapor pressure of the organic solvent does not satisfy the above lower limit, when the silicone composition is cured at room temperature, the organic solvent cannot be rapidly removed (evaporated), and thus a film cannot be formed.
  • the organic solvent can be quickly removed (evaporated) when the silicone composition is cured at room temperature, and thus a coating film can be formed.
  • the vapor pressure of the organic solvent is not more than the above upper limit, the organic solvent is prevented from being rapidly removed (distilled off) when coating with the silicone composition, and thus uneven thickness is generated in the coating. Can be suppressed.
  • the organic solvent is a high vapor pressure solvent, but the low vapor pressure solvent lower than the lower limit value of the vapor pressure described above can allow a very small amount of contamination that does not impair the effects of the present invention. For example, mixing of the low vapor pressure solvent contained in the catalyst solution described above is allowed.
  • the vapor pressure at 20 ° C. of the low vapor pressure solvent is, for example, less than 1 kPa.
  • the low vapor pressure solvent include low vapor pressure glycol ether solvents such as diethylene glycol dimethyl ether and diethylene glycol diethyl ether, low vapor pressure paraffin solvents such as mineral terpenes, and petroleum solvents such as mineral spirits. It is done.
  • the mixing ratio of the vapor pressure solvent is, for example, 15 parts by mass or less, preferably 10 parts by mass or less, more preferably 5 parts by mass or less, further preferably 3 parts by mass or less, particularly preferably 100 parts by mass of the high vapor pressure solvent. Is 1 part by mass or less.
  • the mixing ratio of the low vapor pressure solvent in the silicone composition is, for example, less than 10% by mass, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1.0% by mass or less, and particularly preferably 0. 0.5% by mass or less, particularly preferably 0.1% by mass or less.
  • the proportion of the organic solvent (high vapor pressure solvent) in the silicone composition is, for example, 10% by mass or more, preferably 20% by mass or more, more preferably 30% by mass or more, further preferably 40% by mass or more, and particularly preferably 50% by mass. % Or more, for example, 80% by mass or less, preferably 70% by mass or less, more preferably 60% by mass or less.
  • the ratio of the organic solvent to the total amount of 100 parts by mass of the first oligomer, the second oligomer and the silicone oil is, for example, 40 parts by mass or more, preferably 80 parts by mass or more, more preferably 120 parts by mass or more, and further preferably 140 parts by mass. In addition, for example, it is 300 parts by mass or less, preferably 200 parts by mass or less, more preferably 160 parts by mass or less.
  • the ratio of the organic solvent is equal to or more than the lower limit described above, the handling of the silicone composition is excellent, and it is possible to suppress the generation of uneven thickness of the coating resulting from excessively rapid drying after coating. it can. On the other hand, if the ratio of the organic solvent is equal to or less than the above upper limit, an excessive decrease in yield can be suppressed.
  • the silicone composition In order to prepare the silicone composition, first, the first oligomer, the second oligomer, the silicone oil, the organic solvent, and, if necessary, the additive are blended and mixed in the above-described ratio, and the silicone composition is mixed. To prepare. Meanwhile, a catalyst is prepared separately. Thereby, a silicone composition and a catalyst are prepared as a two-component curable composition.
  • the silicone composition and the catalyst are blended in the above-described proportions and mixed to prepare a silicone composition.
  • the catalyst generates a metal-OH group by hydrolysis.
  • the room temperature curable silicone composition used in the present invention contains the first oligomer, the second oligomer, the catalyst and the organic solvent, and the ratio of the total amount of the first oligomer and the second oligomer is 20 mass. %
  • the catalyst is at least one selected from the group consisting of metal alkoxides, metal chelate compounds and metal carboxylates, and the vapor pressure of the organic solvent at 20 ° C. is 1 kPa or more. Therefore, the silicone composition can be cured at room temperature. As a result, this silicone composition is suitably used for surface processing that does not require heat treatment.
  • the silicone composition contains a silicone oil, and the kinematic viscosity at 25 ° C. of the silicone oil is 100 mm 2 / s or more. Therefore, the coating film that is a cured product of the silicone composition is excellent in slipperiness and water repellency.
  • the silicone composition in which the ratio of the first oligomer to the second oligomer is 0.15 or more and 10 or less is excellent in the slipperiness and water repellency of the film.
  • the silicone composition in which the ratio of the total amount of the first oligomer and the second oligomer is 50% by mass or less of the whole is excellent in uniform coverage.
  • the organic solvent is an alcohol solvent
  • the ratio of the organic solvent to the total amount of 100 parts by mass of the first oligomer, the second oligomer and the silicone oil is 40 parts by mass or more and 300 parts by mass or less, the handling property of the silicone composition is improved. In addition to being excellent, it is possible to suppress the occurrence of uneven coating thickness due to excessively rapid drying after coating, and to suppress an excessive decrease in yield.
  • the ratio of the catalyst to the total amount of 100 parts by mass of the first oligomer and the second oligomer is 2 parts by mass or more and 55 parts by mass or less, the first oligomer and the second oligomer are at room temperature. It hardens quickly and can form a film at room temperature.
  • a coating film (cured product) having a hardness corresponding to a pencil hardness of 2H or higher, preferably 4H or higher can be formed.
  • the pencil hardness can be measured, for example, according to the description of JIS K 5600-5-4 (1999) on a JIS H 4000-compliant aluminum plate applied with the silicone composition and cured at room temperature.
  • Such a coating film can be formed by applying the silicone composition to the surface of a test plate for coating such as a test aluminum plate conforming to JIS H 4000 and leaving it at room temperature. The time for leaving is not limited as long as the organic solvent in the silicone composition is distilled off (removed) and the first oligomer and the second oligomer are cured in the presence of the catalyst.
  • the silicone composition is prepared as a two-component curable composition, but for example, the silicone composition can be prepared as a one-component curable composition.
  • the first oligomer, the second oligomer, the silicone oil, the catalyst and the organic solvent are blended in the absence of moisture (humidity) in the air.
  • the above-described components are blended and mixed in an inert gas atmosphere such as nitrogen and sealed in a container. And just before use, the container is opened and the silicone composition is coated on the object. Even with this one-component curable composition, the same effects as the two-component curable composition can be obtained.
  • this silicone composition is a normal temperature curing type, if necessary, it can be heated after room temperature curing (further thermal curing), or can be thermally cured instead of room temperature curing.
  • the heating temperature for example, a known temperature condition such as heating at 50 ° C. or higher is adopted.
  • the hydrophobized particles of the present invention (hereinafter also referred to as “the hydrophobized particles of the present invention”) are described above using the silicone composition prepared by the above method. It can be prepared by subjecting the alumina-silica-based cubic particles (the particles of the present invention) to surface treatment. The surface treatment can be carried out by mixing the particles of the present invention and the silicone composition and then leaving them at room temperature.
  • the mixing of the silicone composition and the particles of the present invention is preferably performed with stirring so that the silicone composition uniformly adheres to the surfaces of the particles of the present invention and uniformly coats the entire surface of the particles of the present invention.
  • the particles of the present invention are agglomerated with each other and are likely to become lumps.
  • the ratio of the silicone composition to 100 parts by mass of the particles of the present invention is not limited, but is usually 1 part by mass or more, preferably 2 parts by mass or more, more preferably 3 parts by mass or more, and usually 30 parts by mass or less. , Preferably 25 parts by mass or less, more preferably 20 parts by mass or less (wet mass ratio).
  • the ratio of the silicone composition is significantly less than 1 part by mass with respect to 100 parts by mass of the present particles, the surface of the present particles cannot be sufficiently covered.
  • the ratio of the silicone composition is significantly increased beyond 30 parts by mass, the silicone compositions on the surface tend to adhere to each other and the hydrophobized particles of the present invention tend to be aggregated or lumped.
  • grains for example, 0.1 mass part or more, Preferably it is 0.2 mass part or more, More preferably, it is 0.5 mass part or more. Moreover, it is 10 mass parts or less normally, Preferably it is 8 mass parts or less, More preferably, 6 mass parts or less can be mentioned (dry mass ratio).
  • the stirring and mixing of the silicone composition and the particles of the present invention can be carried out at room temperature.
  • the surface of the particles of the present invention is coated (coated) with the silicone composition.
  • the particles of the present invention whose surfaces are coated with the silicone composition are allowed to stand at room temperature, whereby the silicone composition is cured on the surfaces of the particles of the present invention, and alumina-silica-based cubic particles having a hydrophobic surface are generated. To do.
  • the time for standing at room temperature is not particularly limited as long as the organic solvent is distilled off (removed) and the first oligomer and the second oligomer can be cured in the presence of the catalyst. Specifically, for example, it is 30 minutes or longer, preferably 1 hour or longer, more preferably 10 hours or longer, further preferably 20 hours or longer, and 50 hours or shorter.
  • an OH group is generated from the alkoxy group in the first oligomer and the second oligomer, and the OH group is dehydrated with [metal atom-OH] based on the catalyst, and the curing reaction proceeds.
  • the alcohol that is a by-product when the OH group is generated from the alkoxy group of the first oligomer and the second oligomer is removed (evaporated) together with the organic solvent.
  • hydrophobized alumina-silica-based cubic particles whose surface is coated with a film made of a cured product of a room temperature curable silicone composition can be prepared.
  • the thickness of the coating can be appropriately adjusted and is not limited, but is, for example, 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, and for example, 0.5 ⁇ m or less, preferably 0.2 ⁇ m or less. be able to.
  • the hydrophobized particles of the present invention may have at least one characteristic selected from the group consisting of the following (a) to (d).
  • the hydrophobic particles of the present invention may have an average friction coefficient of preferably 0.6 or less, more preferably 0.5 or less.
  • the measurement method of the average friction coefficient is as described above, and can be measured by applying the hydrophobized particles as the test sample to the artificial skin as they are.
  • the hydrophobized particles of the present invention having the desired average friction coefficient compared with the hydrophobized untreated particles of the present invention, it has a higher moderate slip on the artificial skin and between the particles, When applied to the skin, it stretches uniformly on the skin and has the effect of staying moderately stretched.
  • Optical evaluation of hiding property (b) Hiding property index, (c) Haze blurring index Hiding property index and haze blurring property index are indexes for evaluating the hiding effect and haze blurring effect of the hydrophobized particles of the present invention, respectively.
  • Each of the physical property values is such that as the numerical value is smaller, the hiding effect is lower and the haze blurring effect is higher, and the hiding effect is better exhibited.
  • the hydrophobized particles of the present invention may preferably have a concealment index of 6 or less, more preferably 5 or less. As a lower limit, although not limited, one or more can be exemplified.
  • the hydrophobized particles of the present invention may have a wrinkle blurring index of preferably 32 or less, more preferably 28 or less. As a lower limit, although not limited, 25 or more, preferably 20 or more can be exemplified.
  • the hiding property index and the blurring property index of the hydrophobized particles of the present invention can be measured by the method described in the examples described later, and are superior in the hiding effect compared to the hydrophobized untreated particles of the present invention. Has an effect.
  • the hydrophobized particles of the present invention may preferably have a Haze value of visible light of 34% or more, more preferably 40% or more. As an upper limit, 90% or less can be mentioned, for example, Preferably it is 80% or less.
  • the hydrophobized particles of the present invention have a high Haze value and excellent soft focusability compared to untreated particles (present particles). For this reason, a high blurring effect can be given to cosmetics by mix
  • alumina-silica-based cubic particles (invention particles) have a cubic shape having six flat surfaces. Moreover, since it has a specific refractive index, a particle size, oil absorption, and a specific surface area, the soft focus property of cosmetics can be improved by mix
  • Such soft focusability of the particles of the present invention can be evaluated by a Haze meter in accordance with ASTM D1003 as shown in the experimental examples described later.
  • the haze (cloudiness) is 34% or higher, preferably 40% or higher, more preferably 50% or higher, and even more preferably 55% or higher. This is useful for increasing the soft focus of the particles. It is shown that.
  • the particles of the present invention have a cubic shape, it is possible to impart an appropriate skin slipping property to the cosmetic by blending it with the cosmetic. Specifically, since the particles of the present invention are in the form of particles, they have high slipperiness compared to a plate-like body and exhibit good extensibility (elongation spreadability). On the other hand, since it is a cubic shape having a flat surface, there is an advantage that it is excellently covered and can be applied to the skin appropriately and has excellent covering power.
  • the particles of the present invention have a flat surface and a large flat surface fixing area, or the particles are entangled with each other, and when spread on the skin surface, skin such as pores and small wrinkles
  • the particles of the present invention have a flat surface and a large flat surface fixing area, or the particles are entangled with each other, and when spread on the skin surface, skin such as pores and small wrinkles
  • it is excellent in the effect of covering pores and small wrinkles (covering power, unevenness correction effect) by covering the flat surface so as to close the skin well without falling into the groove. That is, when the particles of the present invention are blended into cosmetics, they can be spread smoothly on the skin, covered with pores and small wrinkles and smoothed, and the skin surface after makeup is smoothed and integrated with the skin.
  • the cover force can be applied by close contact.
  • the particles of the present invention are blended in cosmetics as a soft focus imparting agent or / and a hiding effect agent (or an unevenness correcting agent), depending on the type of cosmetics to be blended, at least 1 to 50 mass in the cosmetics. By blending in an amount of%, the desired soft focus property can be imparted. From the viewpoint of soft focus properties, skin extensibility, and covering power, the content is preferably 5 to 30% by mass.
  • Cosmetics prepared by blending the particles of the present invention are used in the form of liquids, emulsions, creams, powders, foams, solids, etc.
  • cosmetics particularly soft focus properties
  • the cosmetics requiring soft focus and / or the cosmetics required to prepare the skin texture after makeup are not particularly limited, but foundation, concealer, blusher, white powder (funny, loose powder, pressed powder) ), Makeup cosmetics such as control color, base material, BB cream, eye color, lipstick, etc .; skin care cosmetics such as milky lotion, cream, beauty liquid, day cream, sunscreen, and the like.
  • These cosmetics generally have a water-repellent oil component such as a film-forming polymer, a surfactant, a thickener, water, a moisturizer, a fragrance, a pigment or a dye, or a silicone oil, depending on the application or use form.
  • UV absorbers UV absorbers, astringents, refreshing agents, flame retardants, whitening agents, various extracts, plant and seaweed extract and other cosmetic ingredients in appropriate amounts
  • the soft focus property, the concealment effect, and / or the unevenness correction effect can be enhanced.
  • Refractive index (immersion method) A plurality of solvents having different refractive indices were prepared by mixing two kinds of solvents ( ⁇ -bromonaphthalene and kerosene), and the refractive indices of the prepared solvents were measured with an Abbe refractometer in advance. Next, according to Larsen's oil immersion method, several mg of sample powder is taken on a slide glass, a drop of solvent (refractive index is known) is added, a cover glass is applied, the solvent is immersed, and then the Becke line is observed with an optical microscope. The movement was observed, and the refractive index was obtained from the movement.
  • volume-based average particle size (Coulter counter method) In a 200 ml beaker, 0.5 g of sample powder was weighed, and 150 ml of deionized water was added thereto and dispersed for 3 minutes with stirring. This dispersion was subjected to a Coulter counter (precision particle size distribution measuring device Multiizer 3 manufactured by Beckman Coulter, Inc.) to measure a volume-based particle size distribution, and a volume-based median diameter (D 50 ) was determined.
  • the aperture (pore) tube used for the measurement is 50 ⁇ m in inner diameter for the samples manufactured in Production Examples 1 and 2 (Examples 1 and 2), and 100 ⁇ m in the sample manufactured in Production Example 3 (Example 3). I used one.
  • the comparative example measured by the laser diffraction method using MastersizerS by Malvern.
  • a test sample is placed on a measuring plate, and 4 to 5 drops of oil are gradually added to the refined sesame at a time, and each time, the oil is kneaded into the sample with a pallet knife. This is repeated until dripping is continued until the paste has a smooth hardness. In addition, this paste can be spread without cracking or becoming crumbly, and it should be a thing which only adheres to a measurement board lightly.
  • the amount of oil absorption (ml / 100 g) can be obtained from the final amount (ml) of refined linseed oil according to the following equation.
  • the resulting crystals were collected by filtration using a Nutsche and washed with water to obtain a cake of A-type zeolite (crystalline zeolite) having a volume-based average particle size of 2.3 ⁇ m and 195 g in terms of absolute dry weight at 860 ° C.
  • the obtained amorphous substance was collected by filtration using a Nutsche (Buchner funnel), washed with water, dried, put in a crucible, and placed in a small electric furnace at 450 ° C. Baked for hours. Then, after cooling to room temperature, it was pulverized using a jet mill. The image which observed the obtained ground material with the scanning electron microscope is shown in FIG. As can be seen from FIG. 1, it was confirmed that the pulverized product had a cubic shape in which the sizes of the constituent primary particles were substantially uniform and were well dispersed. This was designated as “alumina-silica cubic particles 1” (hereinafter also simply referred to as “cubic particles 1”) (Example 1), and properties and physical properties were measured according to the various measurement methods described above.
  • alumina-silica cubic particles 1 hereinafter also simply referred to as “cubic particles 1”
  • SiO 2 / Al 2 O 3 molar ratio 2 -Crystallinity by X-ray diffraction method: amorphous (amorphous) (see Fig. 4) ⁇ Shape and particle size observed with a scanning electron microscope: a cube with sides of about 0.5-3 ⁇ m (see Fig.
  • Production Example 2 Production Method of Alumina-Silica Cubic Particles 2 (Example 2) Using raw materials having the same composition as in Production Example 1, 316.8 g of No. 3 sodium silicate and 550.7 g of water were mixed and prepared as Liquid A. As B solution, 298.7 g of sodium aluminate, 104.0 g of 49% sodium hydroxide aqueous solution, and 529.8 g of water were mixed and prepared. In order to obtain the following molar ratio, 795 L of liquid A and liquid B were mixed to prepare a total amount of 1800 g.
  • A-type zeolite (crystalline zeolite) having a volume-based average particle size of 2.9 ⁇ m and 172 g in terms of 860 ° C. absolute dry weight.
  • the pulverized product has a cubic shape in which the sizes of the constituent primary particles are substantially uniform, and it was confirmed that the pulverized product was well dispersed. This was designated as “alumina-silica cubic particles 2” (hereinafter also simply referred to as “cubic particles 2”) (Example 2), and properties and physical properties were measured according to the various measurement methods described above.
  • SiO 2 / Al 2 O 3 molar ratio 2 -Crystallinity by X-ray diffraction method: Amorphous (amorphous) ⁇ Shape and particle size observed with a scanning electron microscope: a cube with sides of about 1 to 3.5 ⁇ m (see Fig.
  • Production Example 3 Production Method of Alumina-Silica Cubic Particles 3 (Example 3) Using raw materials having the same composition as in Production Example 1, 128.0 g of No. 3 sodium silicate and 758.9 g of water were mixed and prepared as Liquid A. As B solution, 120.6 g of sodium aluminate, 42.0 g of 49% aqueous sodium hydroxide solution and 750.5 g of water were mixed and prepared. The liquid A and the liquid B were mixed by 857 L each so that the following molar ratio was obtained, and the total amount was adjusted to 1800 g.
  • A-type zeolite (crystalline zeolite) having a volume-based average particle diameter of 11.6 ⁇ m and an absolute dry weight conversion of 70 g.
  • the pulverized product had a cubic shape in which the sizes of the constituent primary particles were substantially uniform and were well dispersed. This was designated as “alumina-silica cubic particles 3” (hereinafter, also simply referred to as “cubic particles 3”) (Example 3), and properties and physical properties were measured according to the various measurement methods described above.
  • SiO 2 / Al 2 O 3 molar ratio 2 -Crystallinity by X-ray diffraction method: Amorphous (amorphous) ⁇ Shape and particle size observed with a scanning electron microscope: a cube with a side of about 3 to 12 ⁇ m (see FIG.
  • KF-96-1000cs oily polydimethylsiloxane, Kinematic viscosity (25 ° C.): 1,000 mm 2 / s, manufactured by Shin-Etsu Chemical Co., Ltd. • D-25: Titanium (IV) tetra n-butoxide, manufactured by Shin-Etsu Chemical Co., Ltd. • 2-propanol: at 20 ° C. Vapor pressure 4kPa Water: vapor pressure 2.3 kPa at 20 ° C Alumina-silica cubic particles 1 to 3 (Examples 1 to 3)
  • the silicone composition is applied to the surface of a test aluminum plate in accordance with JIS H 4000, the pencil hardness of the coating film after standing at room temperature for 18 hours is 5H, and the pencil hardness of the coating film after standing for 24 hours is also 5H. Met .
  • Each of the cubic particles 1 to 3 prepared in Examples 1 to 3 was surface-treated (hydrophobized) using the room temperature curable silicone composition thus prepared as a surface treatment agent.
  • each of the cubic particles 1 to 3 is charged into a stirrer (Kawata Supermixer Piccolo), and the surface treatment agent (room temperature curable silicone composition) is dropped over 2 minutes while stirring at 1000 rpm. Stirring was continued for 5 minutes and mixed until uniform. After standing at room temperature for 1 day, it was pulverized with a jet mill (AO jet mill manufactured by Seishin Enterprise Co., Ltd.) and hydrophobized alumina-silica cubic particles 1-1 to 3-1 (hereinafter simply referred to as “hydrophobized cubic particles”). 1-1 to 3-1 ”or“ cubic particles 1-1 to 3-1 ”) (Examples 4 to 6).
  • Table 1 shows the amount of the cubic particles 1 to 3, the amount of the room temperature curable silicone composition, and the surface treatment for the hydrophobized alumina-silica cubic particles 1-1 to 3-1 (Examples 4 to 6). The mass% of the silicone composition after curing with respect to the cubic particles is also described.
  • each of the cubic particles 1 to 3 was charged into a stirrer (Kawata Supermixer Piccolo), and the surface treatment agent (KF-9901 diluted solution) was added dropwise over 2 minutes while stirring at 1000 rpm. Stirring was continued for 5 minutes and mixed until uniform.
  • the obtained powder was dried at 50 ° C. for 2 hours and then heat-treated at 180 ° C. for 3 hours.
  • hydrophobized cube particles 1- 2 to 3-2 or“ cubic particles 1-2 to 3-2 ”
  • Table 1 shows the amount of the cubic particles 1 to 3 and the amount of the KF-9901 diluent (silicone composition) for the hydrophobized alumina-silica cubic particles 1-2 to 3-2 (Examples 7 to 9). The mass% of the silicone composition after curing with respect to the cubic particles after the surface treatment is described together.
  • Production Example 6 Production Method of Hydrophobized Alumina-Silica Cubic Particles (Examples 10 to 24)
  • Other than adjusting the blending amount so that the ratio of the normal temperature curable silicone composition after curing to 1 mass part or 2 mass parts (dry mass% of the normal temperature curable silicone composition: 1 mass% or 2 mass%) Were the same methods as in Production Example 4, but hydrophobized alumina-silica cubic particles 1-3 to 3-3 (dry mass%: 1 mass%) (Examples 10 to 12), and hydrophobized alumina-silica system.
  • Cubic particles 1-4 to 3-4 (dry mass%: 2 mass%) (Examples 13 to 15) were prepared.
  • the ratio of the cured silicone composition (methyl hydrogen polysiloxane) to 100 parts by mass of the alumina-silica cubic particles 1 to 3 (Examples 1 to 3) after the surface treatment was 1 part by mass.
  • the hydrophobized alumina-silica-based cubic particles are prepared in the same manner as in Production Example 5 except that the blending amount is adjusted to 2 parts by mass (dry mass% of the silicone composition: 1 mass% or 2 mass%).
  • hydrophobized cubic particles 1-5 to 3-5 (dry mass%: 1 mass%) (Examples 16 to 18), and hydrophobized alumina-silica-based cubic particles 1-6 to 3-6 (dry mass%: 2 mass%) ( Examples 19-21) were prepared.
  • these hydrophobized alumina-silica-based cubic particles are also simply referred to as “hydrophobized cubic particles” or “cubic particles”.
  • a coating film having a thickness of about 20 ⁇ m by using a coater (No.9) To prepare a coating film having a thickness of about 20 ⁇ m by using a coater (No.9).
  • the cubic particles of Examples 1 to 3 were obtained from 0.001% of the nonionic surfactant Emulgen A-500 (manufactured by Kao) before mixing with silicone oil. After being dispersed in water containing water and subjected to ultrasonic waves, the dried particles were used after removing the precipitated particles (waterpox classification).
  • the data shown in Table 3 for the cubic particles of Examples 1 to 3 were used as they were mixed with silicone oil without being subjected to elutriation classification.
  • Soft focus property was evaluated by measuring the haze (cloudiness) of the coating film with a Haze meter (Haze-gard plus (Toyo Seiki Seisakusho) manufactured by BYK Gardner) in accordance with ASTM D1003.
  • Table 1 shows the haze of the coatings prepared using the cubic particles of Examples 1 to 9 and the true spherical silica particles of Comparative Examples 1 to 4 as particles, and the cubic particles of Examples 10 to 21 were used.
  • Table 2 shows the haze of the coating film.
  • Table 2 also shows the haze of the coatings prepared by mixing the cubic particles of Examples 1 to 3 with silicone oil without classifying them (Examples (1) to (3)). .
  • the alumina-silica-based cubic particles 1 to 3 of the present invention having a cubic shape are more than the silica particles having a true spherical shape (Comparative Examples 1 to 4). It can be seen that the Haze value is high and the soft focus property is excellent. Further, it was confirmed that by further hydrophobizing the alumina-silica-based cubic particles 1 to 3 (Examples 1 to 3) of the present invention, the Haze value can be further increased and the soft focus property can be improved ( Examples 4 to 21).
  • Evaluation method i. Cut dry pork skin for handicraft into 3.0 cm x 3.0 cm, and protect one half with cello tape (registered trademark). ii. 0.01 g of various particles (Examples 1 to 3 and Comparative Examples 1 to 4) are applied to one half of one side that is not protected with Cellotape (registered trademark), and are conditioned by reciprocating up and down 30 times with a finger. iii. Attach the pig skin to the center of the slide glass (2.45 cm from each end) with double-sided tape and fix it. iv. While irradiating with a ring light in the dark room, the camera lens position was fixed at a height of 13.5 cm, the white balance was set to 4000K, and the pig skin surface was photographed.
  • (Remarkably effective): The unevenness of the pig skin epidermis is not noticeable
  • Effective: The unevenness of the pig skin epidermis is not conspicuous
  • Smallly effective: Pig skin compared to the surface where the particles are not applied The unevenness of the epidermis is blurred.
  • X no effect: The unevenness of the surface of the pig skin is insufficient as compared with the surface on which no particles are applied.
  • the present invention particles and the true spherical particles 3 are similar in weight-based average particle diameter, specific surface area, moisture adsorption amount, and oil absorption amount.
  • the Haze value of the particles of the present invention is significantly higher, the difference can be attributed to the fact that the particles of the present invention have a high refractive index and are not spherical but cubic.
  • the particles of the present invention (Examples 1 to 3, 4 to 21) having an alumina-silica cubic shape are compared with the silica spherical particles 1 to 4 (Comparative Examples 1 to 4).
  • the weight-based average particle size was almost the same, all had a significantly high concealment effect.
  • the spherical particles 1 to 4 are spherical particles, they are easily filled into the skin crevice such as wrinkles. As a result, the distribution density of wrinkles increases, and the wrinkles are conspicuous.
  • the particles of the present invention that are in the shape of a cube have a large flat surface fixing area, or a plurality of particles are entangled, and when spread on the skin surface, the particles do not fall into the skin grooves such as pores and small wrinkles. It is considered that the unevenness can be satisfactorily covered by covering the skin so as to close the skin and cover the skin without falling into the skin groove. It was recognized that the hiding effect (skin covering effect, unevenness correcting effect) of the particles of the present invention tended to increase as the weight-based average particle size increased.
  • Each particle (Examples 1 to 21 and Comparative Examples 1 to 4) had a good touch and also had good sliding properties on dried pork skin.
  • the particles of the present invention (Examples 1 to 3) and the hydrophobized particles (Examples 4 to 21) having an alumina-silica cubic shape have both appropriate slip properties and retention properties, and are smooth on the skin. It is expected to have excellent adhesion to the skin by being able to spread on the skin and staying moderately.
  • test sample was prepared by the following method.
  • (I) Weigh 5 mg of the test sample.
  • (Ii) Artificial skin with a width of 3 cm on a friction tester (Supplare (registered trademark) manufactured by Idemitsu Techno Fine: Top: 100% polyurethane (containing protein powder), base fabric: 80% rayon, 20% nylon) Put.
  • (Iii) The weighed test sample is dispersed and placed on the artificial skin, and is uniformly applied in a 3 ⁇ 8 cm range with rubber gloves.
  • (Iv) Under the conditions of a load of 25 g and a speed of 1 mm / second, automatic measurement by a friction tester is performed to obtain an average friction coefficient (MIU).
  • MIU average friction coefficient
  • Dried pork skin is composed of an elliptical convex part of 50 to 100 microns with concaves and convexes of several microns on the surface, a concave part (groove) having a width of 5 to 20 ⁇ m and a depth of 5 to 20 ⁇ m, and has a small wrinkle. It is a skin model similar to human skin (skin). In addition, it can be said that it is an outstanding cosmetic raw material, so that a numerical value is small in both the concealment index and the wrinkle blurring index.
  • Each pixel is subjected to SUV conversion, the brightness (V value) is measured for each of the concave and convex portions in each region (coating region, non-coating region), and the average value is calculated.
  • the average value obtained is applied to the following equation to evaluate the hiding property and blurring property. According to the following formula, both the concealment index and the blurring characteristic index show better tendencies as the values are closer to zero.
  • a powder foundation is prepared according to the following formulation.
  • (Powder foundation) Component Blending amount (% by mass) (1) Silicone-treated talc 10.00 (2) Silicone-treated sericite 33.80 (3) Silicone-treated synthetic phlogopite 10.00 (4) Silicone-treated titanium oxide 10.00 (5) Silicone-treated iron oxide 3.00 (6) Silicone-treated zinc oxide 2.00 (7) Polymethyl methacrylate 7.00 (8) Boron nitride 3.00 (9) Methylparaben 0.20 (10) Test particle (Example) 10.00 (11) Methyl polysiloxane 4.90 (12) Dioctyl succinate 4.00 (13) Squalane 2.00 (14) Fragrance 0.10 Total 100.00
  • the above components (1) to (10) are uniformly mixed with a Henschel mixer, the remaining binder components (11) to (14) are added, mixed, and then pulverized again. And passed through the sieve. This is compression molded into a metal pan to obtain a powder foundation.
  • a makeup base is prepared according to the following formulation.
  • (Makeup base) Component Blending amount (% by mass) (1) Methyl glucoside sesquistearate 1.00 (2) Sodium stearoyl lactate 0.20 (3) Hardened rapeseed oil alcohol 3.50 (4) Squalane 6.00 (5) Octyldodecyl myristate 6.00 (6) Methylphenylpolysiloxane 6.00 (7) Macadamia nut oil fatty acid phytosteryl 2.00 (8) Polyglyceryl triisostearate 1.00 (9) Butylparaben 0.10 (10) Purified water 51.94 (11) Synthetic sodium silicate / magnesium 1.00 (12) Hydroxyethane diphosphonic acid 0.06 (13) Xanthan gum 0.20 (14) 1,3-butylene glycol 10.00 (15) Me
  • the water phase components (10) to (13) are stirred and mixed and heated to 85 ° C.
  • Oil phase components (1) to (9) are mixed and dissolved by heating to 80 ° C.
  • the above-mentioned aqueous phase component is added to this oil phase component and preliminarily emulsified, and uniformly emulsified with a homomixer.
  • the homomixer is stopped and stirring is continued, while the components (14) to (14) to (14) are dissolved. Add the mixture up to 17).
  • cooling is started and component (18) is added at about 70 ° C., and further cooled to 35 ° C. to obtain a makeup base.
  • an oily foundation is prepared according to the following formulation.
  • (Oil foundation) Component Blending amount (% by mass) (1) Liquid paraffin 18.00 (2) Isopropyl palmitate 15.00 (3) Liquid lanolin 4.50 (4) Microcrystalline wax 4.50 (5) Ceresin 10.00 (6) Carnavalou 2.00 (7) Sorbitan sesquioleate 1.00 (8) Paraben 0.20 (9) Titanium oxide 14.00 (10) Kaolin 7.50 (11) Talc 11.00 (12) Iron oxide 4.00 (13) Test particle (Example) 8.00 (14) Fragrance 0.30 Total 100.00
  • the components (1) to (8) are melted by heating at 80 ° C., and the mixture of (9) to (12) is added thereto.
  • the mixture is kneaded with a roll mill, heated and melted again, and (13) is added thereto and mixed uniformly. After defoaming this, (14) is added, poured into an inner pan and cooled to obtain an oily foundation.
  • composition Example 4 Using the particles of the present invention (Examples 1 to 3) or the hydrophobized particles of the present invention (Examples 4 to 21) as the test particles below, lipstick is prepared according to the following formulation.
  • (Lipstick prescription) Component Blending amount (% by mass) (1) Ceresin 10.00 (2) Microcrystalline wax 2.00 (3) Carnauba 1.00 (4) Synthetic hydrocarbon wax 2.00 (5) Isopropyl dimer acid 15.00 (6) Tri (capryl / capric acid) glycerin 34.35 (7) Dipentaerythritol fatty acid ester 3.50 (8) Vitamin E 0.10 (9) Polyglyceryl triisostearate 12.00 (10) Coloring 7.00 (11) Synthetic phlogopite 10.00 (12) Test particle (Example) 3.00 (13) Fragrance 0.05 Total 100.00
  • the components (9) to (12) of the above prescription are dispersed with a roller mill. Thereafter, components (1) to (8) are heated and melted, and the mixture of components (9) to (12) and component (13) are added and mixed well. Filter, pour into a mold at high temperature, cool and mold into a container to obtain a lipstick.
  • the obtained lipstick is excellent in soft focus property even if the powder is blended in a state where it is wet with oil, and makes it difficult to see the vertical lines of the lips.
  • the cosmetic additive of the present invention is added to cosmetics.

Abstract

Provided is a cosmetic additive containing alumina-silica particles, characterized in that the alumina-silica particles have the following characteristics: (1) the particles comprise cuboid primary particles having a length of one side when measured by scanning electron microscope observation of 0.3 to 20 µm; (2) the refractive index according to the immersion method falls within the range of 1.48-1.52, inclusive; (3) the volume-standard average particle size using the Coulter counter method falls within the range of 1-20 µm, inclusive; (4) oil absorption according to JIS K5101-13-2 is from 10 ml/100g to less than 50 ml/100g; and (5) the specific surface area according to the BET theory does not exceed 20 m2/g.

Description

化粧料添加剤及び化粧料Cosmetic additives and cosmetics
 本発明はソフトフォーカス性または/および皺隠し効果を付与するために化粧料に配合される添加剤として好適に使用されるアルミナ-シリカ系粒子に関する。つまり、本発明はソフトフォーカス性または/および皺隠し効果を有するアルミナ-シリカ系粒子の化粧料添加剤としての用途に関する。 The present invention relates to an alumina-silica-based particle that is suitably used as an additive blended in cosmetics in order to impart a soft focus property and / or a hiding effect. That is, the present invention relates to the use of alumina-silica particles having a soft focus property and / or a hiding effect as a cosmetic additive.
 ファンデーション、ベースメーカー、口紅などの化粧料では、ソフトフォーカス性と呼ばれる性質が要求される。このソフトフォーカス性は、例えば化粧料を肌に塗って化粧膜を形成したとき、肌の表面がぼやけることで、肌のシミ、そばかす、毛穴または小皺などがみえにくくなる性質をいい、化粧塗膜に当った光(全照射光)のうち、化粧塗膜を直進せずに、拡散した光の割合が多いことを意味する。 Cosmetics such as foundations, base makers, and lipsticks require a property called soft focus. This soft focus property means that, for example, when a cosmetic film is formed by applying cosmetics to the skin, the surface of the skin becomes blurred, so that it is difficult to see skin spots, freckles, pores or wrinkles, etc. This means that the ratio of diffused light without traveling straight through the decorative coating film is large in the light (total irradiated light) hitting the light.
 化粧料から形成される化粧塗膜にこのようなソフトフォーカス性を付与するために、従来からシリカ等の無機粉末が使用されている。例えば特許文献1には、球形のシリカ等がソフトフォーカス性を付与するのに有効であることが報告されている。また、特許文献2および3には、ポリアクリルアミドやカルボキシメチルセルロースを凝集成長剤として使用し、この凝集成長剤の存在下でケイ酸アルカリを酸で中和することにより製造された球状のシリカ粒子を化粧料用の填材として使用することが記載されている。さらに、特許文献4には、ケイ酸アルカリを凝集成長剤の存在下で酸と反応させてシリカを製造するに際して、部分中和によりシリカの粒状物を生成し、次いで、反応系中に残存する未中和のケイ酸アルカリを徐々に中和することにより、生成しているシリカの粒状物上にシリカを析出させるという手法により、従来の球状シリカに比して一次粒子径が大きい円形度0.7~0.85のシリカ粒子が得られること、このシリカ粒子は、化粧料に優れたソフトフォーカス性を付与するとともに、その持続性も優れていることが記載されている。 Conventionally, inorganic powders such as silica have been used in order to impart such soft focus to a cosmetic coating film formed from cosmetics. For example, Patent Document 1 reports that spherical silica or the like is effective for imparting soft focus properties. In Patent Documents 2 and 3, spherical silica particles produced by using polyacrylamide or carboxymethyl cellulose as an aggregating growth agent and neutralizing an alkali silicate with an acid in the presence of the aggregating growth agent are disclosed. It is described that it is used as a filler for cosmetics. Furthermore, in Patent Document 4, when silica is produced by reacting an alkali silicate with an acid in the presence of an aggregating growth agent, silica particles are produced by partial neutralization, and then remain in the reaction system. By gradually neutralizing the unneutralized alkali silicate, the silica is precipitated on the generated silica particles, thereby providing a circularity of 0, which has a larger primary particle size than conventional spherical silica. It is described that silica particles of .7 to 0.85 can be obtained, and that the silica particles impart excellent soft focus properties to cosmetics and have excellent durability.
特開2001-199839号公報JP 2001-199839 A 特開平05-193927号公報Japanese Patent Laid-Open No. 05-193927 特開平07-232911号公報JP 07-232911 A 特開2010-184856号公報JP 2010-184856 A
 前記特許文献1~3に記載されている球状のシリカ粒子では、化粧料に配合することでソフトフォーカス性を発揮したとしてもその持続性に問題がある。具体的には、肌に塗布して化粧膜を形成したとき、経時的にその光学的性質が変化したり、汗などにより肌から脱落したりしてしまい、ソフトフォーカス性が短時間で低下もしくは損なわれてしまうという問題がある。特許文献4に記載されているシリカ粒子は、当該持続性の問題を改善したものである。具体的には、特許文献4に記載のシリカ粒子は吸油量が高いため、汗などを速やかに吸収する特性を有し、しかも円形度が0.7~0.85とやや球形から変形しているため、肌の表面から脱落しにくい。このため、化粧塗膜中に安定に存在し、持続して優れたソフトフォーカス性を付与することができる。 The spherical silica particles described in Patent Documents 1 to 3 have a problem in their sustainability even if they exhibit soft focus properties when blended in cosmetics. Specifically, when it is applied to the skin to form a decorative film, its optical properties change over time, or it drops off from the skin due to sweat, etc. There is a problem of being damaged. The silica particles described in Patent Document 4 are obtained by improving the sustainability problem. Specifically, since the silica particles described in Patent Document 4 have a high oil absorption, they have the property of absorbing sweat and the like, and the degree of circularity is 0.7 to 0.85, which is slightly deformed from a spherical shape. Therefore, it is hard to come off from the surface of the skin. For this reason, it exists stably in a cosmetic coating film, and can provide the outstanding soft focus property continuously.
 これらの特許文献1~4に記載のシリカ粒子は、いずれも真球状もしくは円形度の高い球形状であることから、化粧料に配合したときに高い滑り性を付与することができる。しかし、高い滑り性は、肌に塗布したときに伸びやすい反面、上滑りの原因ともなり、肌馴染み感や肌密着感の低下、ひいてはカバー力の低下を招く。特にシミ、そばかす、小皺などをみえにくくするには、肌へのカバー力を保ちながら肌表面に均一に伸び、肌と一体化するように密着することも必要であり、そのためには適度な滑り性と留まり性を有することが求められる。 Since the silica particles described in Patent Documents 1 to 4 are all spherical or have a high circularity, they can impart high slipperiness when blended in cosmetics. However, while high slipperiness tends to stretch when applied to the skin, it also causes upward slipping, resulting in a decrease in familiarity with the skin and a feeling of close contact with the skin, and a decrease in covering power. In order to make it difficult to see stains, freckles, wrinkles, etc., it is also necessary to stretch evenly on the skin surface while maintaining the covering power on the skin, and to adhere to the skin so that it can be integrated properly. It is required to have the property and retention.
 本発明は、従来公知のシリカ粒子とは異なる粒子特性を有しており、化粧料に優れたソフトフォーカス性、小皺隠し効果、または/および良好な使用感を付与することのできるアルミナ-シリカ系粒子について、化粧料添加剤としての新たな用途を提供することを目的とする。 The present invention has an alumina-silica system that has particle characteristics different from those of conventionally known silica particles, and can impart an excellent soft focus property, a small hiding effect, and / or a good feeling of use to cosmetics. The purpose of the particles is to provide a new use as a cosmetic additive.
 本発明者らは、ケイ酸ソーダとアルミン酸ソーダから製造したゼオライトを酸と反応させることで調製される特定の性状および物性を有するアルミナ-シリカ系の立方体形状粒子が、化粧料に配合することにより、当該化粧料に優れたソフトフォーカス性を付与すること、また小皺や毛穴を目立たなくする効果を発揮することを見出した。また当該粒子は適度な滑り特性を有し、当該粒子を配合した化粧料は、肌に塗布した場合にスムーズに伸び広がるとともに、肌に密着することで適度に伸び留まり、伸びの良さと肌馴染み(肌密着性)の良さ、ひいては使用感の良さを備えることが確認された。 The inventors of the present invention have formulated alumina-silica-based cubic particles having specific properties and physical properties prepared by reacting a zeolite produced from sodium silicate and sodium aluminate with an acid into cosmetics. Thus, the present inventors have found that the cosmetic has excellent soft focus properties and exhibits an effect of making small wrinkles and pores inconspicuous. In addition, the particles have appropriate slipping properties, and cosmetics formulated with the particles will spread and spread smoothly when applied to the skin. It was confirmed that the (skin adhesiveness) was good, and that it had good usability.
 さらに研究を重ねたところ、前記アルミナ-シリカ系粒子を常温硬化型シリコーン組成物で表面処理して疎水化することで粒子間の滑り性を向上させることができ、その結果、肌に塗布した場合に適度な留まり性を維持しながらもさらに滑り性を向上させることができ、また皺隠し効果も向上することを見出した。 As a result of further research, it was possible to improve the slipping property between the particles by subjecting the alumina-silica particles to surface treatment with a room temperature curable silicone composition to make them hydrophobic, and as a result, when applied to the skin. In addition, the present inventors have found that the slipperiness can be further improved while maintaining a moderate retention property, and the hiding effect is also improved.
 本発明はかかる知見に基づいて完成したものであり、下記の実施形態を包含するものである。
(I)化粧料添加剤
(I-1)アルミナ-シリカ系粒子を有する化粧料添加剤であって、
当該アルミナ-シリカ系粒子が、下記特性を有するものであることを特徴とする化粧料添加剤:
(1)走査型電子顕微鏡観察による一辺の長さが0.3~20μmの立方体一次粒子からなる、
(2)液浸法による屈折率が1.48~1.52である、
(3)コールターカウンター法による体積基準平均粒径が1~20μmである、
(4)JIS K5101-13-2による吸油量が10ml/100g以上50ml/100g未満である、
(5)BET法による比表面積が20m/g以下である。
(I-2)上記アルミナ-シリカ系粒子のガス吸着法による水分吸着量が0~5%であることを特徴とする、(I-1)記載の化粧料添加剤。
(I-3)上記アルミナ-シリカ系粒子が、SiO/Alのモル比が1.8~5の範囲にある組成を有し、X線回折学的に実質上非晶質なものである、(I-1)または(I-2)記載の化粧料添加剤。
(I-4)(I-1)~(I-3)のいずれかに記載するアルミナ-シリカ系粒子の表面が疎水化処理されてなる疎水化アルミナ-シリカ系粒子を有する化粧料添加剤。
(I-5)前記疎水化アルミナ-シリカ系粒子が(I-1)~(I-3)のいずれかに記載するアルミナ-シリカ系粒子の表面が常温硬化型シリコーン組成物の硬化物で被覆されてなるものである、(I-4)に記載する化粧料添加剤:
 ここで常温硬化型シリコーン組成物は、
ジアルキルシロキサンユニットと、アルコキシ基を含有するアルコキシ基含有シロキサンユニットとを含有する第1オリゴマーと、
ジアルキルシロキサンユニットを含有せず、アルコキシ基を含有するアルコキシ基含有シロキサンユニットを含有する第2オリゴマーと、
シリコーンオイルと、
触媒と、
有機溶剤とを含有する常温硬化型シリコーン組成物であって、
 前記第1オリゴマーと前記第2オリゴマーとの総量の、前記常温硬化型シリコーン組成物における割合が20質量%以上、50質量%以下であり、
前記第1オリゴマーの、前記第2オリゴマー1質量部に対する割合が0.15質量部以上、10質量部以下であり、
前記シリコーンオイルの25℃における動粘度が100mm/s以上であり、
前記触媒が、金属アルコキシド、金属キレート化合物および金属カルボン酸塩からなる群から選択される少なくともlつであり、
 前記有機溶剤の20℃における蒸気圧がlkPa以上であることを特徴とする。
(I-6)前記疎水化アルミナ-シリカ系粒子において、表面に被覆された常温硬化型シリコーン組成物の硬化物10質量部に対するアルミナ-シリカ系粒子の割合が質量比で90質量部以下である、(I-5)に記載の化粧料添加剤。
(I-7)前記疎水化アルミナ-シリカ系粒子が、(I-1)~(I-3)のいずれかに記載するアルミナ-シリカ系粒子の表面がメチルハイドロジェンシリコーンオイルで被覆し、加熱表面処理されてなるものである、(I-4)に記載する化粧料添加剤。
(I-8)前記アルミナ-シリカ系粒子または疎水化アルミナ-シリカ系粒子が下記(a)~(d)のいずれか一つの特性を有する(I-1)~(I-7)のいずれかに記載する化粧料添加剤:
(a)平均摩擦係数(MIU): 0.3~0.7
(b)隠ぺい性指数:6以下
(c)皺ぼかし性指数:32以下
(d)Haze:30~80。
(I-9)前記化粧料添加剤がソフトフォーカス性付与剤、皺隠し効果付与剤(凹凸補正剤)、および/または伸展性付与剤である、(I-1)~(I-8)のいずれかに記載する化粧料添加剤。
(II)疎水化アルミナ-シリカ系粒子の製造方法
(II-1)(I-1)~(I-3)のいずれかに記載するアルミナ-シリカ系粒子をメチルハイドロジェンシリコーンオイルで被覆し、熱処理する工程を有する、表面が疎水化されたアルミナ-シリカ系粒子の製造方法。
(II-2)下記(A)及び(B)の工程を有する、表面が疎水化されたアルミナ-シリカ系粒子の製造方法:
(A)(I-1)~(I-3)のいずれかに記載するアルミナ-シリカ系粒子の表面を常温硬化型シリコーン組成物でコーティングする工程:
 ここで常温硬化型シリコーン組成物は、
ジアルキルシロキサンユニットと、アルコキシ基を含有するアルコキシ基含有シロキサンユニットとを含有する第1オリゴマーと、
ジアルキルシロキサンユニットを含有せず、アルコキシ基を含有するアルコキシ基含有シロキサンユニットを含有する第2オリゴマーと、
シリコーンオイルと、
触媒と、
有機溶剤とを含有し、
 前記第1オリゴマーと前記第2オリゴマーとの総量の、前記常温硬化型シリコーン組成物における割合が20質量%以上、50質量%以下であり、
 前記第1オリゴマーの、前記第2オリゴマー1質量部に対する割合が0.15質量部以上、10質量部以下であり、
 前記シリコーンオイルの25℃における動粘度が100mm/s以上であり、
 前記触媒が、金属アルコキシド、金属キレート化合物および金属カルボン酸塩からなる群から選択される少なくともlつであり、
 前記有機溶剤の20℃における蒸気圧がlkPa以上である:及び
(B)前記アルミナ-シリカ系粒子の表面にコーティングされた常温硬化型シリコーン組成物を硬化する工程。
(II-3)表面が疎水化されたアルミナ-シリカ系粒子が下記(a)~(d)のいずれか一つの特性を有するものである(II-1)または(II-2)に記載する製造方法:(a)平均摩擦係数(MIU): 0.3~0.6
(b)隠ぺい性指数:5以下
(c)皺ぼかし性指数:28以下
(d)Haze:34~80。
(II-4)疎水化アルミナ-シリカ系粒子において、表面に被覆された常温硬化型シリコーン組成物の硬化物10質量部に対するアルミナ-シリカ系粒子の割合が90質量部以下になるように製造する方法である、(II-2)または(II-3)に記載する製造方法。(II-5)前記有機溶剤が、アルコール系溶剤であることを特徴とする、(II-2)~(II-4)のいずれかに記載の製造方法。
(II-6)前記有機溶剤の、前記第1オリゴマーと前記第2オリゴマーと前記シリコーンオイルとの総量100質量部に対する割合が40~300質量部であることを特徴とする、(II-2)~(II-5)のいずれかに記載の製造方法。
(II-7)前記触媒の、前記第1オリゴマーと前記第2オリゴマーとの総量100質量部に対する割合が2~55質量部であることを特徴とする、(II-2)~(II-6)のいずれかに記載の製造方法。
(III)化粧料
(III-1)(I-1)~(I-9)のいずれかに記載する化粧料添加剤を含有することを特徴とする化粧料。
(III-2)上記化粧料添加剤を1~50質量%の割合で含有する(III-1)に記載する化粧料。
(III-3)上記化粧料がメイクアップ化粧料である、(III-1)または(III-2)に記載する化粧料。
The present invention has been completed based on such findings, and includes the following embodiments.
(I) Cosmetic additive (I-1) A cosmetic additive having alumina-silica particles,
A cosmetic additive, wherein the alumina-silica-based particles have the following characteristics:
(1) It consists of cubic primary particles having a side length of 0.3 to 20 μm as observed with a scanning electron microscope.
(2) The refractive index by the immersion method is 1.48 to 1.52.
(3) The volume-based average particle size by Coulter counter method is 1 to 20 μm.
(4) Oil absorption according to JIS K5101-13-2 is 10 ml / 100 g or more and less than 50 ml / 100 g.
(5) The specific surface area by BET method is 20 m < 2 > / g or less.
(I-2) The cosmetic additive according to (I-1), wherein the moisture adsorption amount of the alumina-silica particles by gas adsorption method is 0 to 5%.
(I-3) The alumina-silica-based particles have a composition in which the molar ratio of SiO 2 / Al 2 O 3 is in the range of 1.8 to 5, and are substantially amorphous in terms of X-ray diffraction. A cosmetic additive according to (I-1) or (I-2).
(I-4) A cosmetic additive having hydrophobized alumina-silica particles obtained by hydrophobizing the surface of the alumina-silica particles according to any one of (I-1) to (I-3).
(I-5) The surface of the alumina-silica particles according to any one of (I-1) to (I-3) is coated with a cured product of a room temperature-curable silicone composition, wherein the hydrophobized alumina-silica particles are The cosmetic additive as described in (I-4):
Here, the room temperature curable silicone composition is
A first oligomer containing a dialkylsiloxane unit and an alkoxy group-containing siloxane unit containing an alkoxy group;
A second oligomer containing an alkoxy group-containing siloxane unit that does not contain a dialkylsiloxane unit and contains an alkoxy group;
With silicone oil,
A catalyst,
A room temperature curable silicone composition containing an organic solvent,
The ratio of the total amount of the first oligomer and the second oligomer in the room temperature curable silicone composition is 20% by mass or more and 50% by mass or less,
The ratio of the first oligomer to 1 part by mass of the second oligomer is 0.15 parts by mass or more and 10 parts by mass or less,
The kinematic viscosity at 25 ° C. of the silicone oil is 100 mm 2 / s or more,
The catalyst is at least one selected from the group consisting of metal alkoxides, metal chelate compounds and metal carboxylates;
The vapor pressure of the organic solvent at 20 ° C. is 1 kPa or more.
(I-6) In the hydrophobized alumina-silica particles, the ratio of the alumina-silica particles to 90 parts by mass with respect to 10 parts by mass of the cured product of the room temperature curing silicone composition coated on the surface is 90 parts by mass or less. Cosmetic additives according to (I-5).
(I-7) The surface of the alumina-silica particles described in any one of (I-1) to (I-3) is coated with methyl hydrogen silicone oil and heated. The cosmetic additive according to (I-4), which is surface-treated.
(I-8) Any one of (I-1) to (I-7), wherein the alumina-silica-based particle or the hydrophobized alumina-silica-based particle has any one of the following characteristics (a) to (d): Cosmetic additives described in:
(A) Average friction coefficient (MIU): 0.3 to 0.7
(B) Hiding power index: 6 or less (c) Haze blurring index: 32 or less (d) Haze: 30-80.
(I-9) (I-1) to (I-8), wherein the cosmetic additive is a soft focus property imparting agent, a hiding effect imparting agent (unevenness correcting agent), and / or an extensibility imparting agent. Cosmetic additive described in any one.
(II) Production Method of Hydrophobized Alumina-Silica Particles (II-1) The alumina-silica particles described in any one of (I-1) to (I-3) are coated with methyl hydrogen silicone oil, A method for producing alumina-silica-based particles having a hydrophobic surface, the method comprising a heat treatment step.
(II-2) A method for producing alumina-silica particles having a hydrophobic surface, which comprises the following steps (A) and (B):
(A) A step of coating the surface of the alumina-silica-based particles described in any one of (I-1) to (I-3) with a room temperature-curable silicone composition:
Here, the room temperature curable silicone composition is
A first oligomer containing a dialkylsiloxane unit and an alkoxy group-containing siloxane unit containing an alkoxy group;
A second oligomer containing an alkoxy group-containing siloxane unit that does not contain a dialkylsiloxane unit and contains an alkoxy group;
With silicone oil,
A catalyst,
Containing an organic solvent,
The ratio of the total amount of the first oligomer and the second oligomer in the room temperature curable silicone composition is 20% by mass or more and 50% by mass or less,
The ratio of the first oligomer to 1 part by mass of the second oligomer is 0.15 parts by mass or more and 10 parts by mass or less,
The kinematic viscosity at 25 ° C. of the silicone oil is 100 mm 2 / s or more,
The catalyst is at least one selected from the group consisting of metal alkoxides, metal chelate compounds and metal carboxylates;
The organic solvent has a vapor pressure at 20 ° C. of 1 kPa or more: and (B) a step of curing the room temperature curable silicone composition coated on the surface of the alumina-silica particles.
(II-3) Alumina-silica particles having a hydrophobic surface are those having any one of the following characteristics (a) to (d): (II-1) or (II-2) Manufacturing method: (a) Average friction coefficient (MIU): 0.3 to 0.6
(B) Hiding property index: 5 or less (c) Haze blurring index: 28 or less (d) Haze: 34-80.
(II-4) The hydrophobized alumina-silica-based particles are produced so that the ratio of the alumina-silica-based particles to 90 parts by mass or less with respect to 10 parts by mass of the cured product of the room temperature-curable silicone composition coated on the surface. The production method according to (II-2) or (II-3), which is a method. (II-5) The production method according to any one of (II-2) to (II-4), wherein the organic solvent is an alcohol solvent.
(II-6) The ratio of the organic solvent to the total amount of 100 parts by mass of the first oligomer, the second oligomer and the silicone oil is 40 to 300 parts by mass, (II-2) The production method according to any one of to (II-5).
(II-7) The ratio of the catalyst to the total amount of 100 parts by mass of the first oligomer and the second oligomer is 2 to 55 parts by mass, (II-2) to (II-6) The manufacturing method in any one of).
(III) Cosmetic (III-1) A cosmetic comprising the cosmetic additive according to any one of (I-1) to (I-9).
(III-2) The cosmetic according to (III-1), which contains the cosmetic additive in an amount of 1 to 50% by mass.
(III-3) The cosmetic according to (III-1) or (III-2), wherein the cosmetic is a makeup cosmetic.
 本発明で使用するアルミナ-シリカ系粒子は、化粧料に配合したとき、その粒子形状、粒径、屈折率、比表面積または/および水分吸着量等の特性に基づいて、当該化粧料に高い光散乱性を付与することができる。つまり、本発明粒子を配合した化粧料は、光が多重散乱しながらその化粧膜を透過することとなり、その結果、透過光のうち拡散光が占める割合が多くなり、優れたソフトフォーカス性を付与することができる。 When the alumina-silica-based particles used in the present invention are blended in cosmetics, the cosmetics have high light properties based on properties such as particle shape, particle size, refractive index, specific surface area and / or moisture adsorption amount. Scatterability can be imparted. In other words, the cosmetic containing the particles of the present invention transmits light through the decorative film while multiple scattering of light, and as a result, the proportion of diffused light in the transmitted light increases and gives excellent soft focus properties. can do.
 また本発明で使用するアルミナ-シリカ系粒子は、化粧料に配合したとき、特にその粒子形状および粒径に基づいて、小皺などの肌の皮溝に落ち込まず上手く蓋をして被覆することで皺隠し効果を発揮することができる。同様に、肌の毛穴を良好に被覆カバーし化粧後の肌のキメを整える効果(凹凸補正効果)を発揮することができる。 The alumina-silica-based particles used in the present invention, when blended in cosmetics, can be covered with a lid that does not fall into the skin crevice such as small wrinkles, especially based on the particle shape and particle size. It is possible to exert a concealment effect. Similarly, the effect (unevenness correction effect) of covering and covering skin pores well and adjusting the texture of the skin after makeup can be exhibited.
 さらに本発明で使用するアルミナ-シリカ系粒子は、立方体形状であるため平面固着面積が大きく、化粧料に配合し、肌に塗布した場合に肌から物理的に取れにくく、ロングラスティング効果を発揮することができる。 Furthermore, the alumina-silica-based particles used in the present invention have a cubical shape due to their cubic shape, and are difficult to physically remove from the skin when blended in cosmetics and applied to the skin, and exhibit a long lasting effect. can do.
 また前記アルミナ-シリカ系粒子の表面を、例えばメチルハイドロジェンシリコーンオイルまたは常温硬化型シリコーン組成物等の疎水化処理剤で処理して疎水化することで、粒子間の滑り性を向上させることができる。その結果、肌に塗布した場合に適度な留まり性を維持しながらもさらに滑り性を向上させることができ、また皺隠し効果も向上させることができる。 In addition, the surface of the alumina-silica-based particles can be treated with a hydrophobizing agent such as methyl hydrogen silicone oil or a room-temperature curable silicone composition to improve hydrophobicity between the particles. it can. As a result, when applied to the skin, the slipperiness can be further improved while maintaining an appropriate retention, and the hiding effect can be improved.
製造例1で製造した本発明のアルミナ-シリカ系立方体粒子1(実施例1)を走査型電子顕微鏡で観察し撮影した写真画像を示す。The photographic image which observed and image | photographed the alumina-silica-type cubic particle 1 (Example 1) of this invention manufactured by the manufacture example 1 with the scanning electron microscope is shown. 製造例2で製造した本発明のアルミナ-シリカ系立方体粒子2(実施例2)を走査型電子顕微鏡で観察し撮影した写真画像を示す。The photographic image which observed and image | photographed the alumina-silica-type cubic particle 2 (Example 2) of this invention manufactured by the manufacture example 2 with the scanning electron microscope is shown. 製造例3で製造した本発明のアルミナ-シリカ系立方体粒子3(実施例3)を走査型電子顕微鏡で観察し撮影した写真画像を示す。The photographic image which observed and image | photographed the alumina-silica-type cubic particle 3 (Example 3) of this invention manufactured by the manufacture example 3 with the scanning electron microscope is shown. 製造例1で製造した本発明のアルミナ-シリカ系立方体粒子1(実施例1)のX線回折プロファイルを示す。The X-ray diffraction profile of the alumina-silica-based cubic particles 1 of the present invention produced in Production Example 1 (Example 1) is shown.
(I)アルミナ-シリカ系立方体粒子
 本発明の化粧料添加剤を構成するアルミナ-シリカ系立方体粒子(以下、単に「本発明粒子」とも称する)は、下記の性状および特性を備えていることを特徴とする。
(1)走査型電子顕微鏡観察による一辺の長さが0.3~20μmの立方体一次粒子からなる。
(2)液浸法による屈折率が1.48~1.52である。
(3)コールターカウンター法による体積基準平均粒径が1~20μmである。
(4)JIS K5101-13-2による吸油量が10ml/100g以上50ml/100g未満である。
(5)BET法による比表面積が20m/g以下である。
(I) Alumina-silica cubic particles The alumina-silica cubic particles constituting the cosmetic additive of the present invention (hereinafter also simply referred to as “the present particles”) have the following properties and characteristics: Features.
(1) It consists of cubic primary particles having a side length of 0.3 to 20 μm as observed with a scanning electron microscope.
(2) The refractive index by the immersion method is 1.48 to 1.52.
(3) The volume-based average particle diameter by the Coulter counter method is 1 to 20 μm.
(4) The oil absorption according to JIS K5101-13-2 is 10 ml / 100 g or more and less than 50 ml / 100 g.
(5) The specific surface area by BET method is 20 m < 2 > / g or less.
 以下、本発明粒子のこれらの特徴についてそれぞれ説明する。 Hereinafter, each of these characteristics of the particles of the present invention will be described.
 なお、本発明において「ソフトフォーカス性」とは、本発明粒子を配合したファンデーション等の化粧料を肌に塗った際に、光散乱効果によってシミ、ソバカス、毛穴、および小皺等をぼかして目立たなくし、なめらかな肌にみえるように、肌の見え方を調節する作用をいう。当該「ソフトフォーカス性」は後述する実験例1に示すように、Hazeメーターを用いて評価することができる。 In the present invention, “soft focus” means that when a cosmetic such as a foundation containing the particles of the present invention is applied to the skin, spots, freckles, pores, wrinkles, etc. are blurred by the light scattering effect so as to be inconspicuous. It means the effect of adjusting the appearance of the skin so that it looks smooth. The “soft focus” can be evaluated using a Haze meter as shown in Experimental Example 1 described later.
 (1)形状および粒径
 本発明粒子は、一次粒子の形状が立方体であり、走査型電子顕微鏡観察による一辺の長さが0.3~20μmであることを特徴とする。好ましくは0.5~20μmであり、よりこの好ましくは1.5~12μmである。一例として製造例1~3で製造した本発明粒子(実施例1~3)の一次粒子を走査型電子顕微鏡で観察した画像を図1~3に示す。これらの図に示すように、本発明粒子は大略6面と8つの角(かど)からなる立方体形状を有し、形状および大きさがほぼ整った一次粒子(微粒子)である。こうした形状を有する本発明粒子は、光散乱性能(光拡散能)が高く、良好なソフトフォーカス性を発揮することができる。また肌触りおよび肌すべり性も良好である。ここで肌すべり性が良好とは、単に高い肌すべり性を有するというのではなく、肌に塗布したときに適度に肌に密着して留まりながら肌表面に均一に伸びること、つまり適度なすべり性と留まり性を有することを意味する。
(1) Shape and Particle Size The particles of the present invention are characterized in that the shape of the primary particles is cubic and the length of one side by observation with a scanning electron microscope is 0.3 to 20 μm. The thickness is preferably 0.5 to 20 μm, more preferably 1.5 to 12 μm. As an example, images obtained by observing primary particles of the present invention particles (Examples 1 to 3) produced in Production Examples 1 to 3 with a scanning electron microscope are shown in FIGS. As shown in these figures, the particles of the present invention are primary particles (fine particles) having a cubic shape composed of approximately six faces and eight corners, and the shape and size are almost arranged. The particles of the present invention having such a shape have high light scattering performance (light diffusibility) and can exhibit good soft focus properties. Moreover, the touch and skin slipperiness are also good. Here, “smooth skin smoothness” does not simply mean that the skin is highly slippery, but when it is applied to the skin, it stays in close contact with the skin and stays on the skin evenly, that is, it is moderately slippery. It means that it has retention.
 一般に、球状(真球状を含む)の微粒子は、小皺等の肌の皮溝に落ちて充填することで小皺を隠す効果があると言われているが、実際には光線により皮溝に沿った線が浮き出て、却って小皺が目立つという問題がある。これに対して、本発明粒子は、立方体形状を有するため、肌表面で複数の粒子が絡み合い、小皺等の皮溝に蓋をするように肌を被覆することができるため小皺を隠す効果に優れている。同様の理由で毛穴を隠す効果にも優れ、肌の凹凸をなめらかにして化粧後の肌のキメを整える効果に貢献することができる。さらに本発明粒子は、立方体形状であるため平面固着面積が大きく、化粧料に配合し、肌に塗布した場合に肌から物理的に取れにくく、ロングラスティング効果を発揮することができる。 In general, spherical (including true spherical) fine particles are said to have the effect of hiding the wrinkles by falling into the skin crevice such as a small wrinkle and filling it, but in fact, the light along the crevice by light rays There is a problem that the line is raised and the gavel stands out. In contrast, the particles of the present invention have a cubic shape, so that a plurality of particles are entangled on the surface of the skin, and the skin can be covered so as to cover the skin groove such as a small wrinkle. ing. For the same reason, it is excellent in the effect of concealing pores, and can contribute to the effect of smoothing the unevenness of the skin and adjusting the texture of the skin after makeup. Furthermore, since the particles of the present invention have a cubic shape, the planar fixed area is large, and when blended in cosmetics and applied to the skin, the particles of the present invention are difficult to physically remove from the skin and can exhibit a long lasting effect.
 (2)屈折率
 本発明粒子は、屈折率が1.48~1.52であることを特徴とする。
(2) Refractive index The particles of the present invention have a refractive index of 1.48 to 1.52.
 ここで屈折率は、液浸法によって求めることができる。具体的には、後述する実施例に記載するように、屈折率が異なる2つの溶媒(α-ブロムナフタレンとケロシン)を用いて様々な屈折率を有する溶媒を調製し、Larsenの油浸法に従って、スライドガラス上に採った本発明粒子に上記溶媒を浸漬させた後に、光学顕微鏡でベッケ線の移動を観察することで求めることができる。 Here, the refractive index can be obtained by an immersion method. Specifically, as described in the examples described later, solvents having various refractive indexes are prepared using two solvents (α-bromonaphthalene and kerosene) having different refractive indexes, and according to Larsen's oil immersion method. It can be determined by immersing the solvent in the particles of the present invention taken on a slide glass and then observing the movement of the Becke line with an optical microscope.
 当該屈性率はソフトフォーカス性に影響する。化粧料に配合した場合に、当該化粧料中の液体成分や汗の水分との屈折率差が適度にあるとその界面で光が散乱することによりソフトフォーカス性を発揮する。一般に屈折率差の小さいシリカ系粒子は汗などの水に濡れると透明になり、隠蔽効果が著しく低下するが、アルミナ-シリカ系粒子である本発明粒子は水に濡れても透明になりにくい。このため、汗をかいてもソフトフォーカス性が維持されて適度な隠蔽性を発揮することができる。そのために、本発明粒子は、屈折率として、好ましくは1.48~1.52,より好ましくは1.49~1.51を有することが望ましい。 ) The curvature ratio affects the soft focus. When blended in a cosmetic, if the difference in refractive index between the liquid component in the cosmetic and the moisture of sweat is moderate, light is scattered at the interface to exhibit soft focus properties. In general, silica-based particles having a small refractive index difference become transparent when wetted with water such as sweat, and the concealing effect is remarkably reduced. However, the particles of the present invention that are alumina-silica-based particles are difficult to become transparent even when wetted with water. For this reason, even if it sweats, soft focus property is maintained and moderate concealment property can be exhibited. Therefore, it is desirable that the particles of the present invention have a refractive index of preferably 1.48 to 1.52, more preferably 1.49 to 1.51.
 (3)体積基準平均粒径
 本発明粒子は、体積基準平均粒径が1~20μmであることを特徴とする。
(3) Volume-based average particle diameter The particles of the present invention have a volume-based average particle diameter of 1 to 20 μm.
 ここで体積基準平均粒径は、コールターカウンター法によって求めることができる。具体的には、後述する実施例に記載するように、本発明粒子0.5gを脱イオン水150mlに分散させた分散液をコールターカウンターに供して、体積基準粒度分布を測定し、体積基準の中位径(D50)を求めることで、当該粒子の体積基準平均粒径を得ることができる。 Here, the volume-based average particle diameter can be determined by a Coulter counter method. Specifically, as described in the examples described later, a dispersion obtained by dispersing 0.5 g of the present invention particles in 150 ml of deionized water was subjected to a Coulter counter, and a volume-based particle size distribution was measured. By determining the median diameter (D 50 ), the volume-based average particle diameter of the particles can be obtained.
 光の波長より粒子径が大きいと光散乱効果が生じるため体積基準平均径は1μm以上であることが好ましい。実験例1(表1)に示すように、本発明粒子の場合、体積基準平均粒径が小さくなるにつれて、Haze値(曇度)は上昇し、ソフトフォーカス性が向上する。理論に拘束されないものの、これは、化粧料への重量ベースでの添加量が同じ場合、体積基準平均粒径が小さい粒子のほうが多くの粒子を配合することができるため、光散乱効果が高くなることによるものと考えられる。ソフトフォーカス性の観点から、体積基準平均粒径は12μm以下であることが好ましい。一方、本発明粒子の場合、体積基準平均粒径が大きくなるにつれて、皺隠し効果が向上する。これも理論に拘束されないものの、体積基準平均粒径がある程度大きいほうが皮溝への被覆効果が高くなることによるものと考えられる。ソフトフォーカス性と皺隠し効果(凹凸補正効果)の両面から、本発明粒子の体積基準平均粒径として、好ましくは1~10μmであり、なかでも高いソフトフォーカス性の観点からより好ましくは1.5~4μmである。 When the particle diameter is larger than the wavelength of light, a light scattering effect is produced, so that the volume standard average diameter is preferably 1 μm or more. As shown in Experimental Example 1 (Table 1), in the case of the particles of the present invention, the haze value (cloudiness) increases and the soft focus property improves as the volume reference average particle size decreases. Although not bound by theory, this means that if the amount added to the cosmetic on a weight basis is the same, particles with a smaller volume-based average particle size can contain more particles, so the light scattering effect is higher. This is probably due to this. From the viewpoint of soft focus properties, the volume-based average particle size is preferably 12 μm or less. On the other hand, in the case of the particles of the present invention, the hiding effect improves as the volume-based average particle size increases. Although this is not bound by theory, it is considered that the larger the volume-based average particle diameter is, the higher the covering effect on the skin groove is. From both aspects of soft focus and hiding effect (unevenness correction effect), the volume-based average particle diameter of the particles of the present invention is preferably 1 to 10 μm, and more preferably 1.5 from the viewpoint of high soft focus. ~ 4 μm.
 (4)吸油量
 本発明粒子は、その吸油量が10ml/100g以上50ml/100g未満の範囲にあることを特徴とする。
(4) Oil absorption amount The particles of the present invention have an oil absorption amount in the range of 10 ml / 100 g or more and less than 50 ml / 100 g.
 ここで吸油量はJIS.K.5101-13-1:2004(精製あまに油法)に準拠して求めることができる。具体的には、本発明粒子に精製あまに油を徐々に加えて混合し、適度な硬さのペーストになった時点の精製あまに油量(ml/100g)から求めることができる。 (The oil absorption is JIS. K. 5101-13-1: 2004 (refined linseed oil method). Specifically, oil can be gradually added to the refined sesame to the particles of the present invention and mixed to obtain a refined sesame oil amount (ml / 100 g) when the paste has an appropriate hardness.
 一般に、表面に細孔を有する多孔質粒子は吸油量も大きい。しかし、比表面積や水分吸着量と同様に、化粧料に配合したりそれを肌に塗布した場合、化粧料中の液体成分や汗が微粒子表面の細孔に浸透することで、粒子表面が濡れた状態となり、屈折率が低下してソフトフォーカス性が低下してしまう問題がある。これに対して、本発明粒子は、上記の通り、吸油量が小さいことから、本発明粒子の存在環境状態にかかわらず、当該粒子本来の屈折率が損なわれ難く、本来の屈折率等に応じて高いソフトフォーカス性を発揮することができる。この観点から、本発明粒子の吸油量は、好ましくは10~45ml/100g、より好ましくは10~35ml/100gであることが望ましい。 Generally, porous particles having pores on the surface have a large oil absorption. However, as with the specific surface area and moisture absorption, when blended into cosmetics or applied to the skin, the liquid surface or sweat in the cosmetics penetrates into the pores of the fine particle surface, resulting in wet particle surfaces. There is a problem that the refractive index is lowered and the soft focus property is lowered. In contrast, the particles of the present invention, as described above, have a small oil absorption, so that the original refractive index of the particles of the present invention is not easily impaired regardless of the presence environment of the particles of the present invention. High soft focus. From this viewpoint, the oil absorption amount of the particles of the present invention is preferably 10 to 45 ml / 100 g, more preferably 10 to 35 ml / 100 g.
 また当該吸油量は、本発明粒子を化粧料に配合した場合に当該化粧料の皮脂吸収能に影響する。吸油量が高すぎる場合は肌から皮脂を脱脂する能力が高くなり、ぱさつきや痒みなどが生じるなど、肌に負担をかける場合がある。本発明粒子は、吸油量が上記範囲にあることから、肌からの脱脂が適度に抑えられており、肌への負担が少ないという特徴を有する。 Also, the oil absorption amount affects the sebum absorption capacity of the cosmetic when the particles of the present invention are blended in the cosmetic. If the amount of oil absorption is too high, the ability to degrease the sebum from the skin will increase, and there may be a burden on the skin, such as crispiness and itching. Since the oil absorption of the present invention particles is in the above range, degreasing from the skin is moderately suppressed, and the burden on the skin is small.
 (5)比表面積
 本発明粒子は、前述する粒子形状および粒度特性を有することに関連して、BET法による比表面積が20m/g以下であることを特徴とする。好ましくは1~10m/g、より好ましくは1~5m/gである。
(5) Specific surface area The particles of the present invention are characterized in that the specific surface area by the BET method is 20 m 2 / g or less in relation to having the above-described particle shape and particle size characteristics. Preferably 1 ~ 10m 2 / g, more preferably 1 ~ 5m 2 / g.
 一般に、表面に細孔を有する多孔質粒子は比表面積が大きい。しかし、この場合、化粧料に配合した場合に当該化粧料中の液体成分が微粒子表面の細孔に浸透したり、また肌塗布後に汗が微粒子表面の細孔に浸透することで、粒子表面が液体に濡れた状態となり、当該粒子本来の屈折率が低下してソフトフォーカス性が低下するという問題がある。これに対して、本発明粒子は、上記の通り、比表面積が小さいことから、本発明粒子の存在環境状態にかかわらず、当該粒子本来の屈折率が損なわれ難く、本来の屈折率等に応じて高いソフトフォーカス性を発揮することができるという特徴を備える。 Generally, porous particles having pores on the surface have a large specific surface area. However, in this case, when blended in a cosmetic, the liquid component in the cosmetic penetrates into the pores on the surface of the fine particles, or sweat permeates into the pores on the surface of the fine particles after application to the skin, thereby There is a problem that the liquid becomes wet and the original refractive index of the particles is lowered, so that the soft focus property is lowered. In contrast, the particles of the present invention, as described above, have a small specific surface area, so that the original refractive index of the particles is unlikely to be impaired regardless of the presence environment state of the particles of the present invention. It has the feature that it can exhibit high soft focus.
 本発明粒子は、上述した化学的および物理的性質に加えて、さらに幾つかの化学的および物理的性質を有する。 The particles of the present invention have some chemical and physical properties in addition to the chemical and physical properties described above.
 (6)水分吸着量
 本発明粒子は、水分吸着量が0~5%であることを特徴とする。
(6) Moisture adsorption amount The particles of the present invention are characterized in that the moisture adsorption amount is 0 to 5%.
 ここで水分吸着量はガス吸着法によって求めることができる。具体的には、後述する実施例に記載するように、予め本発明粒子を150℃の真空条件下に2時間放置して前処理した後に、当該粒子について水蒸気分圧P(P/P)0.001~0.9の範囲における水分吸着等温線を求め(平衡判定時間:300秒)、水蒸気分圧P(P/P)0.75における測定値を、本発明粒子単位質量あたりの水分吸着量(質量%)に換算して求めることができる。 Here, the moisture adsorption amount can be determined by a gas adsorption method. Specifically, as described in the examples described later, the particles of the present invention are preliminarily left to stand for 2 hours under a vacuum condition of 150 ° C., and then the water vapor partial pressure P T (P / P 0 ) obtains a moisture adsorption isotherm at a range of from 0.001 to 0.9 (equilibration determination time: 300 seconds), the measured value in the water vapor partial pressure P T (P / P 0) 0.75, the present invention particles unit mass It can be calculated in terms of the amount of moisture adsorbed (percent by mass).
 当該水分吸着量は、本発明粒子を化粧料に配合した場合に肌の保湿性に影響する。水分吸着量が高すぎる場合は肌の潤いを与える水分を皮脂から奪う力が高くなり、かさつきや痒みなどが生じるなど、肌に負担をかける場合がある。本発明粒子は、水分吸着量が上記範囲にあることから、肌の保湿性が適度に維持されるという特徴を有する。この観点から、本発明粒子の水分吸着量は、好ましくは0~3%、より好ましくは0~1%であることが望ましい。 The moisture adsorption amount affects the moisture retention of the skin when the particles of the present invention are blended in cosmetics. If the amount of moisture adsorption is too high, the ability to remove moisture that moisturizes the skin from the sebum increases, which may put a burden on the skin, for example, it may become thick and itchy. The particles of the present invention have a feature that the moisture retention of the skin is appropriately maintained because the moisture adsorption amount is in the above range. From this viewpoint, the water adsorption amount of the particles of the present invention is preferably 0 to 3%, more preferably 0 to 1%.
 (7)SiO/Alのモル比
 本発明粒子は、SiO/Alのモル比が1.8~5の範囲にある組成を有することを特徴とする。好ましくは1.85~2.5、より好ましくは1.9~2.1である。
(7) Molar ratio of SiO 2 / Al 2 O 3 The particles of the present invention have a composition having a molar ratio of SiO 2 / Al 2 O 3 in the range of 1.8 to 5. Preferably it is 1.85 to 2.5, more preferably 1.9 to 2.1.
 本発明粒子は、SiO/Alのモル比が上記範囲にあることで、前述するような一定の粒度を有する立方体形状を有することができる。つまり、当該モル比は本発明粒子の形状を構成するうえで有用な要件である。 The particles of the present invention can have a cubic shape having a certain particle size as described above when the SiO 2 / Al 2 O 3 molar ratio is in the above range. That is, the molar ratio is a useful requirement for configuring the shape of the particles of the present invention.
 (8)非晶質性
 本発明粒子は実質的に非晶質であることを特徴とする。ここで「実質的に非晶質」とはX線回折法で測定した場合に無定形であり結晶化が認められないことを意味する。なお、X線回折法による結晶化度の測定方法は、後述する実施例に記載の通りである。
(8) Amorphous The particles of the present invention are substantially amorphous. Here, “substantially amorphous” means amorphous when measured by X-ray diffraction and no crystallization is observed. In addition, the measuring method of the crystallinity degree by X-ray diffraction method is as the description in the Example mentioned later.
 (9)見掛比重
 本発明粒子は、その見掛比重が0.5~1.1g/cmの範囲にあることを特徴とする。
(9) Apparent specific gravity The particles of the present invention have an apparent specific gravity in the range of 0.5 to 1.1 g / cm 3 .
 ここで見掛比重はJIS.K.6220-1:2001 7.7に記載する方法に準拠して求めることができる。具体的には、後述する実施例に示すように、本発明粒子に一定の荷重をかけてそのときの比重を測定することで求めることができる。 The apparent specific gravity here is JIS. K. 6220-1: 2001, 7.7. Specifically, as shown in the Examples described later, it can be obtained by applying a certain load to the particles of the present invention and measuring the specific gravity at that time.
 当該見掛比重は吸油量と連動するパラメータである。このため、見掛比重が小さいと吸油量が高くなり、皮脂から脱脂する能力が高くなる傾向がある。本発明粒子は、見掛比重が上記範囲にあることから、肌からの脱脂が適度に抑えられており、肌への負担が少ないという特徴を有する。この観点から本発明粒子の見掛比重は、好ましくは0.5~1.1g/cm、より好ましくは0.65~1.1g/cmであることが望ましい。 The apparent specific gravity is a parameter linked to the oil absorption amount. For this reason, when the apparent specific gravity is small, the oil absorption amount increases and the ability to degrease from sebum tends to increase. Since the apparent specific gravity is in the above range, the particles of the present invention are characterized in that degreasing from the skin is moderately suppressed and the burden on the skin is small. From this viewpoint, the apparent specific gravity of the particles of the present invention is preferably 0.5 to 1.1 g / cm 3 , more preferably 0.65 to 1.1 g / cm 3 .
 (10)強熱減量
 本発明粒子は、その強熱減量が0~6%の範囲にあることを特徴とする。
(10) Loss on ignition The particles of the present invention are characterized in that their loss on ignition is in the range of 0 to 6%.
 ここで強熱減量はJIS.K.0067:1992 4.2に記載する強熱減量試験方法に準拠して求めることができる。具体的には、後述する実施例に示すように、本発明粒子を所定量蒸発皿に入れて電気炉にて860℃で20分間強熱し、強熱後によって減少した被験試料の質量を測定することで求めることができる。 Here, the loss on ignition is JIS. K. 0067: It can be determined according to the ignition loss test method described in 1992 4.2. Specifically, as shown in the examples described later, a predetermined amount of the particles of the present invention are placed in an evaporating dish, ignited in an electric furnace at 860 ° C. for 20 minutes, and the mass of the test sample decreased after igniting is measured. Can be obtained.
 強熱減量は水分吸着量と連動するパラメータであるため、化粧料に配合した場合に肌の保湿性に影響する。強熱減量が高すぎる場合は肌の潤いを与える水分を奪う力が高くなる。本発明粒子は、強熱減量が上記範囲にあることから、肌の保湿性が適度に維持されるという特徴を有する。この観点から本発明粒子の強熱減量は、好ましくは0~5%、より好ましくは0~3%であることが望ましい。 Since the loss on ignition is a parameter linked to the amount of moisture adsorbed, it affects the moisture retention of the skin when blended into cosmetics. If the loss on ignition is too high, the ability to take away moisture that moisturizes the skin will increase. Since the ignition loss is in the above range, the particles of the present invention have a feature that the moisture retaining property of the skin is appropriately maintained. From this viewpoint, the ignition loss of the particles of the present invention is preferably 0 to 5%, more preferably 0 to 3%.
 (11)ハンター白色度
 本発明粒子は、その白色度が80~100%の範囲にあることを特徴とする。当該白色度はハンター白色度試験法に基づいて測定することができる。具体的には、後述する実施例に示すように、青色フィルター(実効波長457nm)を有するハンター反射率計を用いて測定することができる。
(11) Hunter Whiteness The particles of the present invention are characterized in that the whiteness is in the range of 80 to 100%. The whiteness can be measured based on the Hunter whiteness test method. Specifically, it can be measured using a Hunter reflectometer having a blue filter (effective wavelength 457 nm) as shown in the examples described later.
 本発明粒子の白色度は上記の通りであり、化粧料に配合するには十分な白色度を有している。白色度が80%より低いと化粧料に配合したとき肌がくすんで見えることから望ましくない。この観点から、本発明粒子の白色度は、好ましくは85~100%、より好ましくは90~100%であることが望ましい。 The whiteness of the particles of the present invention is as described above, and has a sufficient whiteness for blending into cosmetics. If the whiteness is lower than 80%, the skin looks dull when blended in cosmetics, which is undesirable. From this viewpoint, the whiteness of the particles of the present invention is preferably 85 to 100%, more preferably 90 to 100%.
 (12)Haze値(ソフトフォーカス性)
 前述するように本発明粒子は、化粧料に配合することで当該化粧料にソフトフォーカス性を付与することができる。かかるソフトフォーカス性はHaze値として評価することができる。なお、Haze値は曇り(ぼかし)の度合いを示す数値であり、数値が高いほど、ソフトフォーカス性が高いことに加えて、隠蔽性(カバー力)が高いことを示す。Haze値は、「拡散透過率/全光線透過率×100」で求めることができ、通常、Hazeメーターで測定することができる。
(12) Haze value (soft focus property)
As described above, the particles of the present invention can impart soft focus properties to the cosmetic by blending it in the cosmetic. Such soft focus property can be evaluated as a Haze value. The Haze value is a numerical value indicating the degree of cloudiness (blurring). The higher the numerical value, the higher the soft focus property and the higher the concealing property (covering power). The haze value can be determined by “diffuse transmittance / total light transmittance × 100”, and can usually be measured with a haze meter.
 Haze値は、具体的には、後述する実施例に記載するように、本発明粒子とシリコーンオイルとを1:9(質量比)の割合で混合し、PETシート上に厚さ20μmの塗膜を作製し、ASTM D1003に準拠してHazeメーターで測定することができる。本発明粒子の可視光線でのHaze値は35%以上である。好ましくは40%以上、より好ましくは50%以上、特に好ましくは55%以上である。表1に示すように、本発明粒子は、真球状のシリカ粒子と比較して、Haze値が高く、ソフトフォーカス性に優れている。このため、これを化粧料添加剤として化粧料に配合することで、化粧料にぼかし効果を付与することができる。 Specifically, as described in the examples described later, the haze value is obtained by mixing the particles of the present invention and silicone oil in a ratio of 1: 9 (mass ratio) and coating a PET sheet with a thickness of 20 μm. Can be measured with a Haze meter in accordance with ASTM D1003. The Haze value of the particles of the present invention with visible light is 35% or more. Preferably it is 40% or more, more preferably 50% or more, and particularly preferably 55% or more. As shown in Table 1, the particles of the present invention have a high Haze value and an excellent soft focus property as compared with the spherical silica particles. For this reason, the blurring effect can be provided to cosmetics by mix | blending this with cosmetics as a cosmetics additive.
 (13)平均摩擦係数(滑り性)
 本発明粒子は、平均摩擦係数が好ましくは0.7以下であってもよく、より好ましくは0.6以下である。平均摩擦係数は低いほど伸展性がよく、好ましいものの、肌への付着性やカバー力の点からは適度に伸び留まることも有用である。その観点から下限値としては、例えば0.3以上を挙げることができる。
(13) Average friction coefficient (sliding property)
The particles of the present invention may have an average coefficient of friction of preferably 0.7 or less, more preferably 0.6 or less. The lower the average friction coefficient, the better the extensibility and the better, but it is also useful that the average friction coefficient stays moderately from the viewpoint of adhesion to the skin and covering power. From that viewpoint, the lower limit value may be 0.3 or more, for example.
 平均摩擦係数は、本発明粒子の滑り性を評価する指標となる物性値であり、数値が小さくなるほど滑り性が高いことを意味する。本発明粒子の摩擦係数は、摩擦感テスター(摩擦感テスターKSE-SE:カトーテック社製)を用いて測定することができる。測定に際して、被験試料である本発明粒子をそのまま、人工皮膚に塗布することで測定される。前記所望の平均摩擦係数を有する本発明粒子によれば、人工皮膚上及び粒子間で適度な滑り性を有しており、肌に塗布したときに肌に均一に伸びるとともに、適度に伸び留まるという効果を奏する。 The average friction coefficient is a physical property value that serves as an index for evaluating the slipperiness of the particles of the present invention, and the smaller the value, the higher the slipperiness. The friction coefficient of the particles of the present invention can be measured using a friction feeling tester (friction feeling tester KSE-SE: manufactured by Kato Tech Co., Ltd.). In the measurement, the particles of the present invention, which is a test sample, are directly applied to artificial skin. According to the particles of the present invention having the desired average friction coefficient, it has an appropriate slip property on the artificial skin and between the particles, and when applied to the skin, it stretches uniformly on the skin and stays moderately stretched. There is an effect.
 (14)皺隠し性の光学的評価:(a)隠ぺい性指数、(b)皺ぼかし性指数
 皺隠し性は、皮膚に塗った時に、素地を隠す能力である隠ぺい効果が小さい程、そして、毛穴や小皺をぼかす効果(皺ぼかし効果)が大きい程、優れた評価となる。隠ぺい性指数及び皺ぼかし性指数は、それぞれ本発明粒子の隠ぺい効果及び皺ぼかし効果を評価する指標となる物性値であり、いずれも数値が小さくなるほど隠ぺい効果は低くて皺ぼかし効果は高く、皺隠し性が良好に発揮されることを示す。本発明粒子は、隠ぺい性指数が好ましくは6以下であってもよく、より好ましくは5以下である。下限値としては、制限されないものの、1以上を例示することができる。また本発明粒子は、皺ぼかし性指数が好ましくは32以下であってもよく、より好ましくは28以下である。下限値としては、制限されないものの、20以上、好ましくは25以上を例示することができる。
(14) Optical evaluation of hiding property: (a) Hiding property index, (b) Haze blurring property index Hiding property is the smaller the hiding effect, which is the ability to hide the substrate when applied to the skin, and The greater the effect of blurring pores and small wrinkles (the wrinkle blurring effect), the better the evaluation. The opacity index and the obscuration index are physical property values that serve as indices for evaluating the obscuration effect and obscuration effect of the particles of the present invention, respectively. It shows that the concealability is exhibited well. The particles of the present invention may have a concealment index of preferably 6 or less, more preferably 5 or less. Although it does not restrict | limit as a lower limit, 1 or more can be illustrated. In addition, the particles of the present invention may have a blurring property index of preferably 32 or less, more preferably 28 or less. Although it does not restrict | limit as a lower limit, 20 or more, Preferably 25 or more can be illustrated.
 本発明粒子の隠ぺい性指数、及び皺ぼかし性指数は、後述する実施例において説明する方法で測定することができる。 The hiding property index and the blurring property index of the particles of the present invention can be measured by the methods described in Examples described later.
 (II)アルミナ-シリカ系立方体粒子の製造方法
 本発明で使用される本発明粒子は、立方体の粒子形態を有する結晶性ゼオライトを、結晶構造は実質的に破壊されるものの、その粒子形態は実質的に損なわれない条件下で酸で中和して、当該ゼオライト中のアルカリ金属分を除去することで製造される。
(II) Method for Producing Alumina-Silica-Based Cubic Particles The particles of the present invention used in the present invention are crystalline zeolite having a cubic particle morphology, although the crystal structure is substantially destroyed, the particle morphology is substantially It is produced by neutralizing with an acid under conditions that are not impaired, and removing the alkali metal content in the zeolite.
 原料として使用する結晶性ゼオライトとしては、ゼオライトA、ゼオライトX、ゼオライトY等が挙げられるが、合成および入手の容易さ、並びに製造後のアルミナ-シリカ系粒子の特性から、好ましくはゼオライトAを挙げることができる。また、原料ゼオライトとして、制限されないものの、一次粒径(走査型電子顕微鏡による立方体粒子の一辺の長さ)が0.3~20μmの範囲にあるものを用いることが好ましい。この粒径範囲にある結晶性ゼオライトによれば、本発明で使用する一次粒径が0.3~20μmのアルミナ-シリカ系粒子を比較的温和な酸処理で、短時間のうちにアルカリ分を除去して非晶質化することができる。 Examples of the crystalline zeolite used as a raw material include zeolite A, zeolite X, zeolite Y and the like. Zeolite A is preferred because of the ease of synthesis and availability and the characteristics of the alumina-silica particles after production. be able to. Further, although the raw material zeolite is not limited, it is preferable to use a material having a primary particle size (the length of one side of cubic particles by a scanning electron microscope) in the range of 0.3 to 20 μm. According to the crystalline zeolite in this particle size range, the alkali content in the alumina-silica particles having a primary particle size of 0.3 to 20 μm used in the present invention can be reduced within a short time by a relatively mild acid treatment. It can be removed to make it amorphous.
 結晶性ゼオライトの中和に使用する酸は、無機酸および有機酸のいずれでもよいが、経済的には硫酸、塩酸、硝酸、およびリン酸等の無機酸を好適に使用することができる。好ましくは硫酸である。通常これらの酸は、水で5~30質量%、好ましくは10~20質量%程度に希釈して水溶液の状態で結晶性ゼオライトとの中和反応に使用される。 The acid used for neutralizing the crystalline zeolite may be either an inorganic acid or an organic acid, but from an economical viewpoint, inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid can be suitably used. Sulfuric acid is preferred. Usually, these acids are diluted with water to 5 to 30% by mass, preferably about 10 to 20% by mass, and used in neutralization reaction with crystalline zeolite in the form of an aqueous solution.
 結晶性ゼオライトの水性スラリーに酸を添加すると、酸の添加に伴いスラリーのpHは酸性側に移行するが、酸添加終了後、液のpHは再びアルカリ側に移行し、一定のpH値に留まる傾向がある。結晶性ゼオライト中のアルカリ金属分を除去して、安定な非晶質化物を形成するためには、この安定時のpHが3~7、好ましくはpH4~6.5になるように酸を添加することが望ましい。 When an acid is added to an aqueous slurry of crystalline zeolite, the pH of the slurry shifts to the acidic side with the addition of the acid, but after the addition of the acid, the pH of the liquid shifts to the alkaline side again and remains at a constant pH value. Tend. In order to remove the alkali metal content in the crystalline zeolite and form a stable amorphous product, an acid is added so that the stable pH is 3 to 7, preferably 4 to 6.5. It is desirable to do.
 結晶性ゼオライトを酸処理しアルカリ分が溶出除去されることで得られる非晶質アルミナーシリカ系立方体粒子は、濾過し、必要により水洗し、乾燥した後、焼成することで製造される。焼成は、制限はされないものの、調製される非晶質アルミナ-シリカ系立方体粒子のガス吸着法による水分吸着量が前述するように0~5%になるように、例えば電気炉を用いて300~800℃で0.5~24時間程度行われることが好ましい。 Amorphous alumina-silica-based cubic particles obtained by acid treatment of crystalline zeolite and elution and removal of alkali are filtered, washed with water if necessary, dried, and then fired. The firing is not limited, but the amorphous alumina-silica-based cubic particles to be prepared have a water adsorption amount of 0 to 5% by the gas adsorption method as described above. It is preferably carried out at 800 ° C. for about 0.5 to 24 hours.
 (III)疎水化アルミナ-シリカ系立方体粒子、及びその製造方法
 本発明の疎水化アルミナ-シリカ系立方体粒子は、前述するアルミナ-シリカ系立方体粒子(本発明粒子)の表面を疎水化処理(撥水処理)することで調製することができる。かかる疎水化処理は、特に制限されず、例えばシリコーンによる撥水表面処理などの従来公知の方法を用いることができる。かかるシリコーン処理としては、粒子表面をシリコーンオイルで塗布する方法(特開2007-176738号公報等)、粒子表面をメチルハイドロジェンシリコーン(医薬部外品名称メチルハイドロジェンポリシロキサン)を塗布して100~180℃で熱処理する方法(特開2005-350588号公報)、フッ素を含むホウ素系触媒を用いてハイドロジェンシランと反応させて表面をシリル化する方法(WO2015/136913号)などを制限なく例示することができる。好ましくは、前述するアルミナ-シリカ系立方体粒子(本発明粒子)の表面をメチルハイドロジェンシリコーンで被覆して、加熱処理する方法である。加熱温度は、制限されないものの、上記するように100~180℃を例示することができる。
(III) Hydrophobized Alumina-Silica Cubic Particles and Method for Producing the Same The hydrophobized alumina-silica cubic particles of the present invention are prepared by subjecting the surface of the above-mentioned alumina-silica cubic particles (invention particles) to a hydrophobic treatment (repellency). It can be prepared by water treatment). Such a hydrophobizing treatment is not particularly limited, and a conventionally known method such as a water repellent surface treatment with silicone can be used. As such a silicone treatment, a method in which the particle surface is coated with silicone oil (Japanese Patent Application Laid-Open No. 2007-176738, etc.), methyl hydrogen silicone (quasi-drug name methyl hydrogen polysiloxane) is coated on the particle surface, and 100 Examples of the heat treatment at ˜180 ° C. (Japanese Patent Laid-Open No. 2005-350588), the method of reacting with hydrogensilane using a fluorine-containing boron catalyst to silylate the surface (WO2015 / 136913), and the like are exemplified without any limitation. can do. Preferably, the above-mentioned alumina-silica cubic particles (the particles of the present invention) are coated with methyl hydrogen silicone and heat-treated. Although the heating temperature is not limited, 100 to 180 ° C. can be exemplified as described above.
 他の方法として、前述するアルミナ-シリカ系立方体粒子(本発明粒子)の表面を常温硬化型シリコーン組成物で被覆することで調製することもできる。つまり、当該疎水化アルミナ-シリカ系立方体粒子は、前述する本発明粒子の表面が常温硬化型シリコーン組成物の硬化物で被覆されてなるものである。
(1)常温硬化型シリコーン組成物
 アルミナ-シリカ系立方体粒子のコーティングに使用される常温硬化型シリコーン組成物は、常温で被膜を形成して硬化することができる組成物である。ここで、常温とは加熱(具体的には50℃以上の加熱)をしない温度であり、例えば50℃未満、好ましくは40℃以下であり、また例えば0℃以上、好ましくは10℃以上である。当該常温という用語は室温と同義に使用される。
As another method, it can also be prepared by coating the surface of the aforementioned alumina-silica-based cubic particles (particles of the present invention) with a room temperature curable silicone composition. That is, the hydrophobized alumina-silica-based cubic particles are obtained by coating the surface of the above-described particles of the present invention with a cured product of a room temperature curable silicone composition.
(1) Room temperature curable silicone composition The room temperature curable silicone composition used for coating alumina-silica cubic particles is a composition that can be cured by forming a film at room temperature. Here, normal temperature is a temperature at which heating (specifically heating at 50 ° C. or higher) is not performed, for example, less than 50 ° C., preferably 40 ° C. or lower, and for example, 0 ° C. or higher, preferably 10 ° C. or higher. . The term room temperature is used synonymously with room temperature.
 常温硬化型シリコーン組成物(以下、単に「シリコーン組成物」とも称する)は、第1オリゴマーと、第2オリゴマーと、シリコーンオイルと、触媒と、有機溶剤とを含有する。 The room temperature curable silicone composition (hereinafter also simply referred to as “silicone composition”) contains a first oligomer, a second oligomer, silicone oil, a catalyst, and an organic solvent.
 第1オリゴマーは、被膜において、第2オリゴマーとともにシロキサンマトリックスを形成するとともに、被膜が摺擦されても、被膜におけるシリコーンオイルの非粘着性および撥水性を補助する非粘着補助剤である。これによって、被膜は、長期間経過後の非粘着性の低下を有効に抑制することができる。 The first oligomer is a non-sticking auxiliary agent that forms a siloxane matrix together with the second oligomer in the coating and assists the non-stickiness and water repellency of the silicone oil in the coating even when the coating is rubbed. As a result, the coating can effectively suppress a decrease in non-adhesiveness after a long period of time.
 第1オリゴマーは、ジアルキルシロキサンユニットと、アルコキシ基を含有するアルコキシ基含有シロキサンユニットとを含有する。具体的には、第1オリゴマーは、下記式(1)で示されるシロキサンオリゴマーである。 The first oligomer contains a dialkylsiloxane unit and an alkoxy group-containing siloxane unit containing an alkoxy group. Specifically, the first oligomer is a siloxane oligomer represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、R~Rは、互いに同ーまたは相異なってもよく、1価の飽和炭化水素基および1価の芳香族炭化水素基からなる群から選ばれる少なくとも1つの1価の炭化水素基を示す。Xは、シロキサンユニットである。aおよびeは、互いに同ーまたは相異なってもよく、1または2である。bは2~20の整数であり、Cは2~10の整数であり、dは2~20の整数である。)
 R~Rで示されるl価の飽和炭化水素基としては、例えば、メチル、エチル、n‐プロピル、iso‐プロピル、n‐ブチル、sec‐ブチル、iso‐ブチル、tert‐ブチル、n‐ペンチル、n‐ヘキシルなどの炭素数1~6のアルキル基が挙げられる。好ましくはメチル基である。
(Wherein R 1 to R 9 may be the same or different from each other, and at least one monovalent carbon selected from the group consisting of a monovalent saturated hydrocarbon group and a monovalent aromatic hydrocarbon group) X represents a siloxane unit, a and e may be the same or different from each other, and are 1 or 2. b is an integer of 2 to 20, and C is 2 to 10. (It is an integer, and d is an integer of 2 to 20.)
Examples of the l-valent saturated hydrocarbon group represented by R 1 to R 9 include methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n- Examples thereof include alkyl groups having 1 to 6 carbon atoms such as pentyl and n-hexyl. A methyl group is preferred.
 R~Rで示されるl価の芳香族炭化水素基としては、例えば、フェニル、ナフチルなどの炭素数6~10のアリール基が挙げられる。好ましくはフェニル基である。 Examples of the l-valent aromatic hydrocarbon group represented by R 1 to R 9 include aryl groups having 6 to 10 carbon atoms such as phenyl and naphthyl. A phenyl group is preferred.
 R~Rとして、好ましくはメチル基および/またはフェニル基が挙げられ、より好ましくはメチル基である。 R 1 to R 9 are preferably a methyl group and / or a phenyl group, and more preferably a methyl group.
 第1オリゴマーにおいて、ユニットIはアルコキシ基含有シロキサンユニットである。つまり、ユニットIは、ROで示されるアルコキシ基を含有する。 In the first oligomer, unit I is an alkoxy group-containing siloxane unit. That is, the unit I contains an alkoxy group represented by R 2 O.
 aは、ユニットIにおいて、ケイ素原子に結合するRO-で示されるアルコキシ基の数を意味し、好ましくは2である。その場合には、ユニットIにおいて、ケイ素原子に結合するRで示される1価の炭化水素基の数(3-a)は、好ましくは1(=3-2)である。 a represents the number of alkoxy groups represented by R 2 O— bonded to a silicon atom in the unit I, and is preferably 2. In that case, in the unit I, the number (3-a) of monovalent hydrocarbon groups represented by R 1 bonded to a silicon atom is preferably 1 (= 3-2).
 ユニットIにおいて、Si-O-における酸素原子は、次に説明するユニットII~ユニットIVのうち、いずれかのケイ素原子に結合している。これにより、このユニットIのSi-O-は、第1オリゴマーにおいて、シロキサン結合を構成する。 In unit I, an oxygen atom in Si—O— is bonded to any silicon atom in units II to IV described below. Thereby, the Si—O— of the unit I forms a siloxane bond in the first oligomer.
 また、ユニットIは第1オリゴマーにおける分子末端ユニットである。 Unit I is a molecular terminal unit in the first oligomer.
 ユニットIIは、アルコキシ基含有シロキサンユニットである。つまり、ユニットIIは、ROで示されるアルコキシ基を含有する。 Unit II is an alkoxy group-containing siloxane unit. That is, the unit II contains an alkoxy group represented by R 4 O.
 bはユニットIIの数を意味する。bは、好ましくは3以上、好ましくは13以下の整数である。 B means the number of units II. b is preferably an integer of 3 or more, preferably 13 or less.
 ユニットIIIは、ケイ素原子に結合する2つの酸素原子を有するシロキサンユニットである。また、ユニットIIIはアルコキシ基を含有してもよい。 Unit III is a siloxane unit having two oxygen atoms bonded to silicon atoms. Unit III may contain an alkoxy group.
 Xで示されるシロキサンユニットとしては、例えば、下式(2)で示されるユニットVI単独、ユニットIIおよびユニットIの組合せ(ユニットIIを介して末端にユニットIを有する場合)、ユニットIIおよびユニットVの組合せ(ユニットIIを介して末端にユニットVを有する場合)、ユニットIIおよびユニットVI(ユニットIIを介して末端にユニットVIを有する場合)の組合せが挙げられる。 Examples of the siloxane unit represented by X include, for example, unit VI alone represented by the following formula (2), a combination of unit II and unit I (when unit I is terminated at unit II), unit II and unit V And a combination of unit II and unit VI (when unit VI is located at the end via unit II).
 ユニットVIとしては、下記式(2)で示される環状シロキサンユニットが挙げられる。 Unit VI includes a cyclic siloxane unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、mは2以上の整数である。Zは、上記したl価の炭化水素基またはアルコキシ基である。)
 Zで示される1価の炭化水素基としては、好ましくはメチル基が挙げられ、Zで示される1価のアルコキシ基としては、好ましくはメトキシ基が挙げられる。
(In the formula, m is an integer of 2 or more. Z 1 is the above-described l-valent hydrocarbon group or alkoxy group.)
Examples of the monovalent hydrocarbon group represented by Z 1, preferably include a methyl group, the monovalent alkoxy groups represented by Z 1, with preference given to methoxy.
 cは、ユニットIIIの数を意味する。cは、好ましくは6以下の整数である。 C means the number of units III. c is preferably an integer of 6 or less.
 ユニットIVは、ジアルキルシロキサンユニットである。つまり、ユニットIVは、RおよびRで示されるアルキル基を含有する。dは、ユニットIVの数を意味する。dは、好ましくは6以下の整数である。 Unit IV is a dialkylsiloxane unit. That is, unit IV contains an alkyl group represented by R 6 and R 7 . d means the number of units IV. d is preferably an integer of 6 or less.
 ユニットVは、アルコキシ基含有シロキサンユニットである。つまり、ユニットVはROで示されるアルコキシ基を含有する。ユニットVにおけるケイ素原子は、ユニットII~ユニットIVのうち、いずれかの酸素原子に結合する。これにより、ユニットVにおけるケイ素原子は、第1オリゴマーにおいてシロキサン結合を構成する。また、ユニットVは、第1オリゴマーにおける分子末端ユニットである。 Unit V is an alkoxy group-containing siloxane unit. That is, the unit V contains an alkoxy group represented by R 9 O. The silicon atom in the unit V is bonded to any oxygen atom in the units II to IV. Thereby, the silicon atom in the unit V forms a siloxane bond in the first oligomer. Unit V is a molecular terminal unit in the first oligomer.
 eは、ユニットVにおいて、ケイ素原子に結合するRO-で示されるアルコキシ基の数を意味し、好ましくは2である。その場合には、ユニットVにおいてケイ素原子に結合するRで示されるl価の炭化水素基の数(3-e)は、好ましくは1(=3-2)である。 e represents the number of alkoxy groups represented by R 9 O— bonded to the silicon atom in the unit V, and is preferably 2. In that case, the number (3-e) of 1-valent hydrocarbon groups represented by R 8 bonded to the silicon atom in the unit V is preferably 1 (= 3-2).
 上記した各ユニットおよびその数は、H-NMRおよび29Si-NMRによって特定される。 Each of the above units and their number is specified by 1 H-NMR and 29 Si-NMR.
 また、第1オリゴマーを、下記の平均組成式(A)で示すこともできる。 Also, the first oligomer can be represented by the following average composition formula (A).
 平均組成式(A):
 R αSi(ORβ(4‐α‐β)         (A)
(式中、RおよびRは、互いに同ーまたは相異なっていてもよく、1価の炭化水素基を示す。αは、その平均値が0.40-1.70の範囲内にある値を示す。βは、平均組成式(A)中におけるケイ素原子に結合したORの比率が5質量%以上40質量%未満になる値を示す。)
 1価の炭化水素基は、上記した1価の炭化水素基と同一である。
Average composition formula (A):
R P α Si (OR q ) β O (4-α-β) (A)
(In the formula, R P and R q may be the same or different from each other, and represent a monovalent hydrocarbon group. Α has an average value in the range of 0.40 to 1.70. Β represents a value at which the ratio of OR q bonded to the silicon atom in the average composition formula (A) is 5% by mass or more and less than 40% by mass.)
The monovalent hydrocarbon group is the same as the above-described monovalent hydrocarbon group.
 平均組成式(A)中、Rとしては、上記した一般式(1)中の、R、R、R、R、R、Rと同様の1価の炭化水素基が挙げられ、Rとしては、上記した一般式(1)中のR、R、Rと同様の1価の炭化水素基が挙げられる。 In the average composition formula (A), R p is the same monovalent hydrocarbon group as R 1 , R 3 , R 5 , R 6 , R 7 , R 8 in the general formula (1). Examples of R q include the same monovalent hydrocarbon groups as R 2 , R 4 , and R 9 in the above general formula (1).
 また、平均組成式(A)中のβは、平均組成式(A)中におけるケイ素原子に結合したORの比率が、例えば10質量%以上、好ましくは20質量%以上、また、例えば35質量%以下、好ましくは30質量%以下になる値である。 Further, β in the average composition formula (A) is such that the ratio of OR q bonded to the silicon atom in the average composition formula (A) is, for example, 10% by mass or more, preferably 20% by mass or more, and for example, 35% by mass. % Or less, preferably 30% by mass or less.
 具体的には、第1オリゴマーは、例えば、ジメチルシロキサンユニットとメトキシ基含有シロキサンユニットとを含有するメチル系シリコーンアルコキシオリゴマ一、メチルフェニルシロキサンユニットと、メトキシ基およびフエノキシ基を含有するシロキサンユニットとを含有するメチルフェニル系シリコーンアルコキシオリゴマーなどが挙げられ、好ましくは、メチル系シリコーンアルコキシオリゴマーが挙げられる。 Specifically, the first oligomer includes, for example, a methyl silicone alkoxy oligomer containing a dimethylsiloxane unit and a methoxy group-containing siloxane unit, a methylphenylsiloxane unit, and a siloxane unit containing a methoxy group and a phenoxy group. Examples thereof include a methylphenyl silicone alkoxy oligomer, preferably a methyl silicone alkoxy oligomer.
 メチル系シリコーンアルコキシオリゴマーは、
例えば、下記式(3)で示される。
Methyl silicone alkoxy oligomer
For example, it is represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、b~dおよびXは、式(1)におけるb~dおよびXと同一である。)
 そのようなメチル系シリコーンアルコキシオリゴマーは、例えばメチルトリメトキシシランおよびジメチルジメトキシシランから生成される。
(Wherein b to d and X are the same as b to d and X in formula (1)).
Such methyl silicone alkoxy oligomers are produced from, for example, methyltrimethoxysilane and dimethyldimethoxysilane.
 第1オリゴマーの分子量は、例えば500以上、好ましくは1000以上であり、また例えば3000以下、好ましくは2000以下である。 The molecular weight of the first oligomer is, for example, 500 or more, preferably 1000 or more, and for example, 3000 or less, preferably 2000 or less.
 第1オリゴマーは、市販品が用いられる。例えば、X-40-9250(式(3)中、bが8、cが4、dが4であるメチル系シリコーンアルコキシオリゴマ一、信越化学工業社製)などが例示される。 A commercially available product is used as the first oligomer. For example, X-40-9250 (methyl silicone alkoxy oligomer in which b is 8, c is 4, and d is 4 in formula (3), manufactured by Shin-Etsu Chemical Co., Ltd.) is exemplified.
 シリコーン組成物における第1オリゴマーの割合は、例えば1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上、とりわけ好ましくは6質量%以上であり、また、例えば50質量%未満、好ましくは45質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下、とりわけ好ましくは20質量%以下、もっとも好ましくは10質量%以下である。 The proportion of the first oligomer in the silicone composition is, for example, 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, further preferably 5% by mass or more, and particularly preferably 6% by mass or more. For example, it is less than 50% by mass, preferably 45% by mass or less, more preferably 40% by mass or less, further preferably 30% by mass or less, particularly preferably 20% by mass or less, and most preferably 10% by mass or less.
 第2オリゴマーは、被膜において、第1オリゴマーとともにシロキサンマトリックスを形成する。第2オリゴマーは、ジアルキルシロキサンユニットを含有せず、アルコキシ基含有シロキサンユニットを含有する。具体的には、第2オリゴマーは、下記式(4)で示されるシロキサンオリゴマーである。 The second oligomer forms a siloxane matrix with the first oligomer in the coating. The second oligomer does not contain a dialkylsiloxane unit but contains an alkoxy group-containing siloxane unit. Specifically, the second oligomer is a siloxane oligomer represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、Rll~R17は、互いに同ーまたは相異なってもよく、1価の飽和炭化水素基および1価の芳香族炭化水素基からなる群から選ばれる少なくとも1つの1価の炭化水素基を示す。Yは、シロキサンユニットである。fおよびiは、互いに同ーまたは相異なってもよく、1または2である。gは2~20の整数であり、hは2~18の整数である。)
 Rll~R17で示される1価の飽和炭化水素基としては、例えばメチル、エチル、n‐プロピル、iso‐プロピル、n‐ブチル、sec‐ブチル、iso‐ブチル、tert‐ブチル、n‐ペンチル、n‐ヘキシルなどの炭素数1~6のアルキル基が挙げられる。好ましくはメチル基である。
(Wherein, R ll ~ R 17, which may be different Do or phase to each other, a monovalent saturated hydrocarbon group and a monovalent least one monovalent hydrocarbon selected from the group consisting of an aromatic hydrocarbon group Y represents a siloxane unit, and f and i may be the same or different from each other, and are 1 or 2. g is an integer of 2 to 20, and h is 2 to 18. (It is an integer.)
The monovalent saturated hydrocarbon group represented by R ll ~ R 17, for example, methyl, ethyl, n- propyl, iso- propyl, n- butyl, sec- butyl, iso- butyl, tert- butyl, n- pentyl And alkyl groups having 1 to 6 carbon atoms such as n-hexyl. A methyl group is preferred.
 R11~R17で示される1価の芳香族炭化水素基としては、例えばフェニル、ナフチルなどの炭素数6~10のアリール基が挙げられる。好ましくはフェニル基である。 Examples of the monovalent aromatic hydrocarbon group represented by R 11 to R 17 include aryl groups having 6 to 10 carbon atoms such as phenyl and naphthyl. A phenyl group is preferred.
 Rll~R17として、好ましくはメチル基および/またはフェニル基が挙げられ、より好ましくはメチル基である。 As R ll ~ R 17, preferably include methyl and / or phenyl group, more preferably a methyl group.
 第2オリゴマーにおいて、ユニットXIは、アルコキシ基含有シロキサンユニットである。つまり、ユニットXIはR12Oで示されるアルコキシ基を含有する。 In the second oligomer, the unit XI is an alkoxy group-containing siloxane unit. That is, the unit XI contains an alkoxy group represented by R 12 O.
 fは、ユニットXIにおいてケイ素原子に結合するR12O‐で示されるアルコキシ基の数を意味し、好ましくは2である。その場合には、ユニットXIにおいてケイ素原子に結合するRllで示される1価の炭化水素基の数(3-f)は、好ましくは1(=3-2)である。 f means the number of alkoxy groups represented by R 12 O— bonded to the silicon atom in the unit XI, and is preferably 2. In that case, the number (3-f) of monovalent hydrocarbon groups represented by R ll bonded to a silicon atom in the unit XI is preferably 1 (= 3-2).
 ユニットXIにおける酸素原子は、次に説明するユニットXIIまたはユニットXIIIのケイ素原子に結合している。これにより、このユニットXIのSi-O-は、第2オリゴマーにおいて、シロキサン結合を構成する。 The oxygen atom in the unit XI is bonded to the silicon atom of the unit XII or unit XIII described below. Thereby, the Si—O— of the unit XI forms a siloxane bond in the second oligomer.
 また、ユニットXIは、第2オリゴマーにおける分子末端ユニットである。 Unit XI is a molecular terminal unit in the second oligomer.
 ユニットXIIは、アルコキシ基含有シロキサンユニットである。つまり、ユニットXIIは、R14Oで示されるアルコキシ基を含有する。gは、ユニットXIIの数を意味する。gは、好ましくは3以上、好ましくは17以下の整数である。 Unit XII is an alkoxy group-containing siloxane unit. That is, the unit XII contains an alkoxy group represented by R 14 O. g means the number of units XII. g is preferably an integer of 3 or more, preferably 17 or less.
 ユニットXIIIは、ケイ素原子に結合する2つの酸素原子を有するシロキサンユニットである。また、ユニットXIIIはアルコキシ基を含有してもよい。 Unit XIII is a siloxane unit having two oxygen atoms bonded to a silicon atom. Unit XIII may contain an alkoxy group.
 Yで示されるシロキサンユニットとしては、例えば下式(5)で示されるユニットXV単独、ユニットXIIおよびユニットXIの組合せ(ユニットXIIを介して末端にユニットXIを有する場合)、ユニットXIIおよびユニットXIVの組合せ(ユニットXIIを介して末端にユニットXIVを有する場合)、ユニットXIIおよびユニットXV(ユニットXIIを介して末端にユニットXVを有する場合)の組合せが挙げられる。 Examples of the siloxane unit represented by Y include unit XV represented by the following formula (5) alone, a combination of unit XII and unit XI (when unit XI is terminated via unit XII), unit XII and unit XIV Combinations (when unit XIV is terminated via unit XII), units XII and units XV (when unit XV is terminated via unit XII) are included.
 ユニットXVとしては、下記式(5)で示される環状シロキサンユニットが挙げられる。 Unit XV includes a cyclic siloxane unit represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、jは、2以上の整数である。Zは、上記した1価の炭化水素基またはアルコキシ基である。)
 Zで示される1価の炭化水素基としては、好ましくはメチル基が挙げられ、Zで示される1価のアルコキシ基としては、好ましくはメトキシ基が挙げられる。
(In the formula, j is an integer of 2 or more. Z 2 is the above-described monovalent hydrocarbon group or alkoxy group.)
Examples of the monovalent hydrocarbon group represented by Z 2, preferably include a methyl group, the monovalent alkoxy groups represented by Z 2, with preference given to methoxy.
 hは、ユニットXIIIの数を意味する。hは、好ましくは3以上、好ましくは15以下の整数である。 H means the number of units XIII. h is preferably an integer of 3 or more, preferably 15 or less.
 ユニットXIVにおけるケイ素原子は、ユニットXIIまたはユニットXIIIにおける酸素原子に結合する。これにより、ユニットXIVにおけるケイ素原子は第2オリゴマーにおいて、シロキサン結合を構成する。また、ユニットXIVは第2オリゴマーにおける分子末端ユニットである。 The silicon atom in unit XIV is bonded to the oxygen atom in unit XII or unit XIII. Thereby, the silicon atom in the unit XIV forms a siloxane bond in the second oligomer. Unit XIV is a molecular terminal unit in the second oligomer.
 iは、ユニットXIVにおいて、ケイ素原子に結合するR17O-されるアルコキシ基の数を意味し、好ましくは2である。その場合には、ユニットXIVにおいて、ケイ素原子に結合するR16で示される1価の炭化水素基の数(3―i)は、好ましくは1(=3-2)である。 i, in units XIV, refers to the number of R 17 O-is the alkoxy group bonded to the silicon atom, preferably 2. In that case, in the unit XIV, the number (3-i) of monovalent hydrocarbon groups represented by R 16 bonded to the silicon atom is preferably 1 (= 3-2).
 上記した各ユニットおよびその数は、H‐NMRおよび29Si‐NMRによって、特定される。 Each unit described above and its number are identified by 1 H-NMR and 29 Si-NMR.
 また、第2オリゴマーを、下記の平均組成式(B)で示すこともできる。 The second oligomer can also be represented by the following average composition formula (B).
 平均組成式(B):
 RγSi(ORδ(4-γ-δ)            (B)
(式中、RおよびRは、互いに同ーまたは相異なっていてもよく、1価の炭化水素基を示す。γは、その平均値が0.40~1.70の範囲内にある値を示す。δは、平均組成式(B)中におけるケイ素原子に結合したORの比率が5質量%以上40質量%未満になる値を示す。)
 平均組成式(B)中、Rとしては、上記した一般式(4)中のR11、R13、R15、R16と同一の1価の炭化水素基が挙げられ、Rとしては上記した一般式(4)中の、R12、R14、R17と同一の1価の炭化水素基が挙げられる。
Average composition formula (B):
R t γSi (OR s ) δ O (4-γ-δ) (B)
(In the formula, R t and R s may be the same or different from each other, and represent a monovalent hydrocarbon group. Γ has an average value in the range of 0.40 to 1.70. Δ represents a value at which the ratio of OR s bonded to silicon atoms in the average composition formula (B) is 5% by mass or more and less than 40% by mass.)
In the average composition formula (B), as the R t, R 11, R 13 , R 15 1 monovalent hydrocarbon group, the same as R 16 in the general formula (4). Examples of R s is Examples thereof include the same monovalent hydrocarbon groups as R 12 , R 14 , and R 17 in the general formula (4).
 また、平均組成式(B)中のδは平均組成式(B)中におけるケイ素原子に結合したORの比率が、例えば10質量%以上、好ましくは20質量%以上、また、例えば35質量%以下になる値である。 The ratio of the OR S is δ in average compositional formula (B) bonded to silicon atoms in the average composition formula (B) is, for example, 10 mass% or more, preferably 20 mass% or more, and is, for example 35 wt% The value is as follows.
 具体的には、第2オリゴマーは、例えばメチル系シリコーンアルコキシオリゴマー、メチルフェニル系シリコーンアルコキシオリゴマーなどが挙げられ、好ましくは、メチル系シリコーンアルコキシオリゴマーが挙げられる。 Specifically, examples of the second oligomer include a methyl silicone alkoxy oligomer and a methyl phenyl silicone alkoxy oligomer, and a methyl silicone alkoxy oligomer is preferable.
 メチル系シリコーンアルコキシオリゴマーとして、例えばメチルトリメトキシシランから生成されるメチル系シリコーンメトキシオリゴマーが挙げられる。 Examples of the methyl silicone alkoxy oligomer include a methyl silicone methoxy oligomer produced from methyl trimethoxysilane.
 メチル系シリコーンメトキシオリゴマーは、例えば、下記式(6)で示される。 The methyl silicone methoxy oligomer is represented by, for example, the following formula (6).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、g、hおよびYは、式(5)におけるg、hおよびYと同一である。)
 そのようなメチル系シリコーンアルコキシオリゴマーは、例えばメチルトリメトキシシランから生成される。
(In the formula, g, h and Y are the same as g, h and Y in formula (5).)
Such a methyl silicone alkoxy oligomer is produced from, for example, methyltrimethoxysilane.
 第2オリゴマーの分子量は、例えば500以上、好ましくは1000以上であり、また、例えば4000以下、好ましくは3000以下である。 The molecular weight of the second oligomer is, for example, 500 or more, preferably 1000 or more, and for example, 4000 or less, preferably 3000 or less.
 第2オリゴマーは市販品が用いられる。例えばKC-89(信越化学工業社製)、KR-515(信越化学工業社製)、KR-500(式(6)中、gが10、hが4であるメチル系シリコーンアルコキシオリゴマ一、信越化学工業社製)、X-40-9225(式(6)中、gが12、hが10であるメチル系シリコーンアルコキシオリゴマ一、信越化学工業社製)、US-SG2403(東レ・ダウコーニング社製)などが例示できる。 A commercially available product is used for the second oligomer. For example, KC-89 (manufactured by Shin-Etsu Chemical Co., Ltd.), KR-515 (manufactured by Shin-Etsu Chemical Co., Ltd.), KR-500 (in formula (6), methyl-based silicone alkoxy oligomers in which g is 10 and h is 4, Shin-Etsu Chemical Industry Co., Ltd.), X-40-9225 (Methyl silicone alkoxy oligomer having g of 12 and h of 10 in formula (6), manufactured by Shin-Etsu Chemical Co., Ltd.), US-SG2403 (Toray Dow Corning) Manufactured) and the like.
 シリコーン組成物における第2オリゴマーの割合は、例えば10質量%以上、好ましくは15質量%以上、より好ましくは20質量%以上、さらに好ましくは25質量%以上であり、また、例えば50質量%未満、好ましくは40質量%以下、より好ましくは35質量%以下、さらに好ましくは30質量%以下である。 The proportion of the second oligomer in the silicone composition is, for example, 10% by mass or more, preferably 15% by mass or more, more preferably 20% by mass or more, further preferably 25% by mass or more, and for example, less than 50% by mass, Preferably it is 40 mass% or less, More preferably, it is 35 mass% or less, More preferably, it is 30 mass% or less.
 第1オリゴマーの第2オリゴマーに対する割合(第1オリゴマー/第2オリゴマー:質量比)は0.15以上、好ましくは0.16以上、より好ましくは0.18以上、さらに好ましくは0.20以上、より好ましくは0.22以上である。また、第1オリゴマーの第2オリゴマーに対する割合は10以下、好ましくは9以下、より好ましくは7以下、さらに好ましくは5以下、とりわけ好ましくは2以下、さらには1.0以下、さらには0.5以下である。 The ratio of the first oligomer to the second oligomer (first oligomer / second oligomer: mass ratio) is 0.15 or more, preferably 0.16 or more, more preferably 0.18 or more, further preferably 0.20 or more, More preferably, it is 0.22 or more. The ratio of the first oligomer to the second oligomer is 10 or less, preferably 9 or less, more preferably 7 or less, further preferably 5 or less, particularly preferably 2 or less, further 1.0 or less, and further 0.5. It is as follows.
 第1オリゴマーの第2オリゴマーに対する割合が上記の下限を下回る場合、または、上記の上限を上回る場合、被膜の滑り性、撥水性が低下する。換言すれば、上記の割合が上記下限以上で上記上限以下であれば、被膜は高い滑り性、撥水性を発現することができる。 When the ratio of the first oligomer to the second oligomer is less than the above lower limit or exceeds the above upper limit, the slipperiness and water repellency of the coating are lowered. In other words, if the above ratio is not less than the above lower limit and not more than the above upper limit, the coating film can exhibit high slipperiness and water repellency.
 シリコーン組成物における第1オリゴマーおよび第2オリゴマー(硬化成分)の総量の割合は、20質量%以上、好ましくは25質量%以上、より好ましくは30質量%以上、さらに好ましくは35質量%以上である。当該割合が上記した下限に満たなければ、第1オリゴマーおよび第2オリゴマー(硬化成分)の割合が過度に少ないため、硬化成分を常温硬化させるときに被膜を確実に形成することができない。換言すれば、上記した総量の割合が上記した下限以上であれば、硬化成分の割合が過度に少なくなることがないので、硬化成分を常温硬化させて、被膜を確実に形成することができる。 The ratio of the total amount of the first oligomer and the second oligomer (curing component) in the silicone composition is 20% by mass or more, preferably 25% by mass or more, more preferably 30% by mass or more, and further preferably 35% by mass or more. . If the ratio does not satisfy the above lower limit, the ratio of the first oligomer and the second oligomer (curing component) is excessively small, so that the coating cannot be reliably formed when the curing component is cured at room temperature. In other words, if the ratio of the total amount is equal to or more than the lower limit described above, the ratio of the curing component is not excessively reduced, so that the curing component can be cured at room temperature to reliably form a coating film.
 シリコーン組成物における第1オリゴマーおよび第2オリゴマー(硬化成分)の総量の割合は、50質量%以下、好ましくは45質量%以下、より好ましくは40質量%以下である。上記した総量の割合が上記した上限を超えると、シリコーン組成物を用いて表面処理するときの粘度が高くなり、そのため、被膜の均一性が低下する。換言すれば、上記した総量の割合が上記した上限以下であれば、被覆するのに十分な低粘度となり、均一な表面処理が可能となる。 The ratio of the total amount of the first oligomer and the second oligomer (curing component) in the silicone composition is 50% by mass or less, preferably 45% by mass or less, more preferably 40% by mass or less. When the ratio of the total amount described above exceeds the upper limit described above, the viscosity when the surface treatment is performed using the silicone composition is increased, and therefore the uniformity of the coating is decreased. In other words, if the ratio of the total amount is equal to or less than the above upper limit, the viscosity becomes low enough to coat and uniform surface treatment is possible.
 シリコーンオイルは、被膜に滑り性および撥水性を付与する成分である。シリコーンオイルは、直鎖状の主鎖を有し、例えばポリシロキサンの繰り返し構造(-(SiO)n-)を有する。シリコーンオイルとしては、例えばポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサンなどのストレートシリコーンオイル(未変性シリコーンオイル)などが挙げられる。また、シリコーンオイルとしては、ストレートシリコーンオイル以外に、主鎖の末端および/または側鎖がアルキル基、アルケニル基(ビニル基を含む)、アルキニル基、フェニル基、イオン性基などで変性された変性シリコーンオイルも挙げられる。イオン性基としては、例えば、メルカプト基などのアニオン性基、例えばアミノ基などのカチオン性基などが挙げられる。これらシリコーンオイルは、単独使用または2種以上併用することができる。 Silicone oil is a component that imparts slipperiness and water repellency to the coating. Silicone oil has a linear main chain and has, for example, a polysiloxane repeating structure (-(SiO) n-). Examples of the silicone oil include straight silicone oil (unmodified silicone oil) such as polydimethylsiloxane, polymethylphenylsiloxane, and polydiphenylsiloxane. As silicone oil, in addition to straight silicone oil, the main chain ends and / or side chains are modified with alkyl groups, alkenyl groups (including vinyl groups), alkynyl groups, phenyl groups, ionic groups, etc. A silicone oil is also mentioned. Examples of the ionic group include an anionic group such as a mercapto group, and a cationic group such as an amino group. These silicone oils can be used alone or in combination of two or more.
 シリコーンオイルとして、好ましくは、ストレートシリコーンオイル、より好ましくは、ポリジメチルシロキサンが挙げられる。 As the silicone oil, straight silicone oil is preferable, and polydimethylsiloxane is more preferable.
 シリコーンオイルとしては、市販品が用いられる。例えば、KF-96シリーズ(信越化学工業社製)、KF-965シリーズ(信越化学工業社製)、SH200シリーズ(東レ・ダウコーニング社製)、TSF451シリーズ(モメンティブ・パフォーマンス・マテリアル・ジャパン社製)、YF-33シリーズ(モメンティブ・パフォーマンス・マテリアル・ジャパン社製)などが例示される。 A commercially available product is used as the silicone oil. For example, KF-96 series (manufactured by Shin-Etsu Chemical Co., Ltd.), KF-965 series (manufactured by Shin-Etsu Chemical Co., Ltd.), SH200 series (manufactured by Toray Dow Corning), TSF451 series (manufactured by Momentive Performance Material Japan) YF-33 series (made by Momentive Performance Material Japan) and the like.
 シリコーンオイルの25℃における動粘度は100mm/s以上、好ましくは200mm/s以上、より好ましくは500mm/s以上、最も好ましくは1000mm/s以上である。また、シリコーンオイルの25℃における動粘度は、例えば100万mm/s以下、好ましくは50万mm/s以下、より好ましくは10万mm/s以下、さらに好ましくは1万mm/s以下である。 Kinematic viscosity at 25 ° C. of the silicone oil 100 mm 2 / s or more, preferably 200 mm 2 / s or more, more preferably 500 mm 2 / s or more, most preferably 1000 mm 2 / s or more. The kinematic viscosity at 25 ° C. of the silicone oil is, for example, 1,000,000 mm 2 / s or less, preferably 500,000 mm 2 / s or less, more preferably 100,000 mm 2 / s or less, and still more preferably 10,000 mm 2 / s. s or less.
 シリコーンオイルの動粘度が上記した下限を下回れば、被膜に安定的に滑り性、撥水性を発現させることができない。換言すれば、シリコーンオイルの動粘度が上記した下限以上であれば、被膜に安定的に滑り性、撥水性を付与させることができる。一方、シリコーンオイルの動粘度が上記した上限以下であれば、シリコーンオイルを簡便に取り扱って、シリコーン組成物を簡便に調製することができる。 If the kinematic viscosity of the silicone oil is below the lower limit described above, the coating cannot stably exhibit slipperiness and water repellency. In other words, if the kinematic viscosity of the silicone oil is equal to or higher than the lower limit described above, the coating film can be stably provided with slipperiness and water repellency. On the other hand, if the kinematic viscosity of the silicone oil is less than or equal to the above upper limit, the silicone oil can be easily handled and the silicone composition can be easily prepared.
 シリコーン組成物におけるシリコーンオイルの割合は、例えば0.1質量%以上、好ましくは0.5質量%以上、より好ましくは1.0質量%以上、さらに好ましくは1.5質量%以上であり、また、例えば10質量%以下、好ましくは5質量%以下、より好ましくは2.5質量%以下である。 The ratio of the silicone oil in the silicone composition is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1.0% by mass or more, and further preferably 1.5% by mass or more. For example, it is 10 mass% or less, Preferably it is 5 mass% or less, More preferably, it is 2.5 mass% or less.
 シリコーンオイルの、第1オリゴマーおよび第2オリゴマーの総量100質量部に対する割合は、例えばl質量部以上、好ましくは3質量部以上、より好ましくは5質量部以上であり、また、例えば20質量部以下、好ましくは10質量部以下、より好ましくは7質量部以下である。 The ratio of the silicone oil to the total amount of the first oligomer and the second oligomer of 100 parts by mass is, for example, 1 part by mass or more, preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and for example, 20 parts by mass or less. , Preferably 10 parts by mass or less, more preferably 7 parts by mass or less.
 シリコーン組成物における第1オリゴマーと第2オリゴマーとシリコーンオイルとの総量の割合は、例えば21質量%以上、好ましくは26質量%以上、より好ましくは31質量%以上、さらに好ましくは36質量%以上である。上記した総量の割合が上記した下限以上であれば、硬化成分の割合が過度に少なくなることが防止されて、硬化成分を常温硬化させて、被膜を確実に形成することができる。 The ratio of the total amount of the first oligomer, the second oligomer and the silicone oil in the silicone composition is, for example, 21% by mass or more, preferably 26% by mass or more, more preferably 31% by mass or more, and further preferably 36% by mass or more. is there. If the ratio of the total amount is equal to or more than the above lower limit, the ratio of the curing component is prevented from being excessively reduced, and the curing component can be cured at room temperature to reliably form a coating film.
 シリコーン組成物における第1オリゴマーと第2オリゴマーとシリコーンオイルとの総量の割合は、例えば51質量%以下、好ましくは46質量%以下、より好ましくは41質量%である。上記した総量の割合が上記した上限以下であれば、均質な表面処理ができ、、そのため、均一な被膜を形成することができる。 The ratio of the total amount of the first oligomer, the second oligomer and the silicone oil in the silicone composition is, for example, 51% by mass or less, preferably 46% by mass or less, and more preferably 41% by mass. If the ratio of the total amount is equal to or less than the above upper limit, uniform surface treatment can be performed, and therefore a uniform film can be formed.
 触媒は、シリコーン組成物を常温硬化するときに、空気中の水分と反応して加水分解し、活性な[金属原子-OH]を生成し、[金属原子-OH]と、第lオリゴマーおよび第2オリゴマーとを縮合反応させる硬化触媒である。 When the silicone composition is cured at room temperature, the catalyst reacts with moisture in the air to hydrolyze to produce active [metal atom-OH], [metal atom-OH], the first oligomer and the first oligomer. It is a curing catalyst that causes a condensation reaction between two oligomers.
 触媒は、金属アルコキシド、金属キレート化合物および金属カルボン酸塩からなる群から選択される少なくとも1つである。 The catalyst is at least one selected from the group consisting of metal alkoxides, metal chelate compounds, and metal carboxylates.
 金属アルコキシドとしては、例えば、チタンアルコキシド、アルミニウムアルコキシド、ジルコニウムアルコキシド(例えば、ジルコニウムテトラn‐ブトキシド、ジルコニウムテトラn‐プロポキシド)、ゲルマニウムアルコキシド(例えば、ゲルマニウムテトラエトキシド)、スズアルコキシド(例えば、スズテトラn‐ブトキシド、スズテトラtert‐ブトキシド)、ハフニウムアルコキシド(例えば、ハフニウムテトラ2‐プロポキシド、ハフニウムテトラtert-ブトキシド)、ニオブアルコキシド(例えば、ニオブペンタエトキシド)、タンタルアルコキシド(例えば、タンタルペンタn‐ブトキシド、タンタルペンタエトキシド)などが挙げられる。好ましくは、チタンアルコキシド、アルミニウムアルコキシドが挙げられる。 Examples of the metal alkoxide include titanium alkoxide, aluminum alkoxide, zirconium alkoxide (eg, zirconium tetra n-butoxide, zirconium tetra n-propoxide), germanium alkoxide (eg, germanium tetraethoxide), tin alkoxide (eg, tin tetra n). -Butoxide, tin tetra-tert-butoxide), hafnium alkoxide (eg, hafnium tetra-2-propoxide, hafnium tetra-tert-butoxide), niobium alkoxide (eg, niobium pentaethoxide), tantalum alkoxide (eg, tantalum penta n-butoxide, Tantalum pentaethoxide). Preferably, titanium alkoxide and aluminum alkoxide are used.
 チタンアルコキシドとしては、例えば、チタントリアルコキシド、チタンテトラアルコキシドなどが挙げられ、好ましくは、チタンテトラアルコキシドが挙げられる。チタンテトラアルコキシドとしては、例えば、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラプロポキシド(例えば、チタンテトライソプロポキシド、チタンテトラn-プロポキシドなど)、チタンテトラブトキシド(例えば、チタンテトライソブトキシド、チタンテトラn‐ブトキシドなど)、チタンテトラペントキシド、チタンテトラヘキソキシド、チタンテトラ(2‐エチルヘキソキシド)などが挙げられる。 Examples of the titanium alkoxide include titanium trialkoxide and titanium tetraalkoxide, and preferably titanium tetraalkoxide. Examples of the titanium tetraalkoxide include titanium tetramethoxide, titanium tetraethoxide, titanium tetrapropoxide (eg, titanium tetraisopropoxide, titanium tetra-n-propoxide), titanium tetrabutoxide (eg, titanium tetraisobutoxide). , Titanium tetra n-butoxide, etc.), titanium tetrapentoxide, titanium tetrahexoxide, titanium tetra (2-ethylhexoxide) and the like.
 アルミニウムアルコキシドとしては、例えば、アルミニウムトリアルコキシドが挙げられる。アルミニウムトリアルコキシドとしては、例えば、アルミニウムトリエトキシド、アルミニウムトリプロポキシド(例えば、アルミニウムトリイソプロポキシド、アルミニウムトリn‐プロポキシド)、アルミニウムトリブトキシド(例えば、アルミニウムトリsec‐ブトキシド、アルミニウムトリn‐ブトキシド)などが挙げられる。 Examples of the aluminum alkoxide include aluminum trialkoxide. Examples of the aluminum trialkoxide include aluminum triethoxide, aluminum tripropoxide (eg, aluminum triisopropoxide, aluminum tri-n-propoxide), aluminum tributoxide (eg, aluminum tri-sec-butoxide, aluminum tri-n-oxide). Butoxide) and the like.
 なお、金属アルコキシドにおける3つまたは4つのアルコキシ基のそれぞれは、その炭素数や分岐の有無により反応性が異なる。一方、加水分解が過度に早く進行すると、取扱性(安定性)が低下することがある。そのため、反応性および安定性を考慮すれば、チタンアルコキシドのうち、好ましくは、チタンテトラエトキシド、チタンテトライソプロポキシド、チタンテトライソブトキシド、チタンテトラn‐ブトキシドが挙げられる。また、アルミニウムアルコキシドのうち、好ましくは、アルミニウムトリエトキシド、アルミニウムトリイソプロポキシド、アルミニウムトリsec‐ブトキシドが挙げられる。 Note that the reactivity of each of the three or four alkoxy groups in the metal alkoxide differs depending on the number of carbon atoms and the presence or absence of branching. On the other hand, if the hydrolysis proceeds too quickly, the handleability (stability) may decrease. Therefore, considering reactivity and stability, titanium tetraethoxide, titanium tetraisopropoxide, titanium tetraisobutoxide, and titanium tetra n-butoxide are preferable among titanium alkoxides. Of the aluminum alkoxides, aluminum triethoxide, aluminum triisopropoxide, and aluminum trisec-butoxide are preferable.
 金属アルコキシドは、市販品が用いられ、例えば、D-25(チタンテトラn-ブトキシド、信越化学工業社製)などが用いられる。 As the metal alkoxide, a commercially available product is used, for example, D-25 (titanium tetra n-butoxide, manufactured by Shin-Etsu Chemical Co., Ltd.).
 金属キレート化合物は、例えば、β-ジケトン、リン酸エステル、アルカノールアミンなどを配位子として有する金属キレート化合物が挙げられる。 Examples of the metal chelate compound include a metal chelate compound having β-diketone, phosphate ester, alkanolamine or the like as a ligand.
  β-ジケトンとしては、例えば、2,4-ペンタンジオン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、1,3-ジフェニル-1,3-プロパンジオン、2,4-ヘキサンジオン、3,5-ヘプタンジオン、2,4-オクタンジオン、2,4-デカンジオン、2,4-トリデカンジオン、5.5-ジメチル-2.4-ヘキサンジオン、2,2-ジメチル-3,5-ノナンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、1,3-シクロペンタンジオン、1,3-シクロヘキサンジオンなどが挙げられる。好ましくは、2,4-ペンタンジオンが挙げられる。 Examples of β-diketone include 2,4-pentanedione, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, 1,3-diphenyl-1,3-propanedione, 2,4-hexanedione, 3,5 -Heptanedione, 2,4-octanedione, 2,4-decanedione, 2,4-tridecanedione, 5.5-dimethyl-2,4-hexanedione, 2,2-dimethyl-3,5-nonanedione, Examples include 2,2,6,6-tetramethyl-3,5-heptanedione, 1,3-cyclopentanedione, 1,3-cyclohexanedione, and the like. Preferably, 2,4-pentanedione is used.
 オクチレングリコールとしては、例えば、2-エチル-3-ヒドロキシヘキソキシドなどが挙げられる。 Examples of octylene glycol include 2-ethyl-3-hydroxyhexoxide.
 リン酸エステルとしては、例えば、リン酸2-エチルヘキシルなどが挙げられる。 Examples of the phosphate ester include 2-ethylhexyl phosphate.
 アルカノールアミンとしては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどが挙げられる。 Examples of the alkanolamine include monoethanolamine, diethanolamine, and triethanolamine.
 配位子として、好ましくは、β-ジケトンが挙げられる。 Preferred examples of the ligand include β-diketone.
 金属キレート化合物を形成する中心金属(金属原子)としては、特に限定されず、例えば、アルミニウム、チタン、ジルコニウム、ニオブ、マグネシウム、カルシウム、クロム、マンガン、鉄、コバルト、ニッケル、鋼、亜鉛、ガリウム、パラジウム、インジウム、スズなどが挙げられる。好ましくは、アルミニウム、チタン、ジルコニウムが挙げられる。 The central metal (metal atom) forming the metal chelate compound is not particularly limited. For example, aluminum, titanium, zirconium, niobium, magnesium, calcium, chromium, manganese, iron, cobalt, nickel, steel, zinc, gallium, Palladium, indium, tin, etc. are mentioned. Preferably, aluminum, titanium, and zirconium are used.
 具体的には、金属キレート化合物としては、例えば、アルミニウムキレート化合物、チタンキレート化合物、ジルコニウムキレート化合物、マグネシウムキレート化合物(例えば、ジアクアビス(2,4-ペンタンジオナト)マグネシウムなど)、カルシウムキレート化合物(例えば、ジアクアビス(2,4-ペンタンジオナト)カルシウムなど)、クロムキレート化合物(例えば、トリス(2,4-ペンタンジオナト)クロムなど)、マンガンキレート化合物(例えば、ジアクアビス(2,4-ペンタンジオナト)マンガンなど)、鉄キレート化合物(例えば、トリス(2,4-ペンタンジオナト)鉄など)、コバルトキレート化合物(例えば、トリス(2,4-ペンタンジオナト)コバルトなど)、ニッケルキレート化合物(例えば、ビス(2,4-ペンタンジオナト)ニッケルなど)、銅キレート化合物(例えば、ビス(2,4-ペンタンジオナト)銅など)、亜鉛キレート化合物(例えば、ビス(2,4-ペンタンジオナト)亜鉛など)、トリス(2,4-ペンタンジオナト)ガリウムなど)、ニオブキレート化合物(例えば、テトラキス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナトニオブ(IV)など)、パラジウムキレート化合物(例えば、ビス(2,4-ペンタンジオナト)パラジウムなど)、インジウムキレート化合物(例えば、トリス(2,4-ペンタンジオナト)インジウムなど)、スズキレート化合物(例えば、ビス(2,4-ペンタンジオナト)スズなど)などが挙げられる。 Specifically, examples of the metal chelate compound include an aluminum chelate compound, a titanium chelate compound, a zirconium chelate compound, a magnesium chelate compound (eg, diaquabis (2,4-pentanedionato) magnesium), a calcium chelate compound (eg, Diaquabis (2,4-pentanedionato) calcium), chromium chelate compounds (for example, tris (2,4-pentanedionato) chromium), manganese chelate compounds (for example, diaquabis (2,4-pentanedionato) ) Manganese), iron chelate compounds (eg, tris (2,4-pentanedionato) iron), cobalt chelate compounds (eg, tris (2,4-pentandionato) cobalt), nickel chelate compounds (eg, , (2,4-pentanedionato) nickel), copper chelate (eg, bis (2,4-pentandionato) copper), zinc chelate (eg, bis (2,4-pentanedionato) Zinc, etc.), tris (2,4-pentanedionato) gallium, etc.), niobium chelate compounds (eg, tetrakis (2,2,6,6-tetramethyl-3,5-heptaneedionatoniobium (IV), etc.) Palladium chelate compounds (eg, bis (2,4-pentanedionato) palladium), indium chelate compounds (eg, tris (2,4-pentanedionato) indium), tin chelate compounds (eg, bis (2 , 4-pentandionato) tin, etc.).
 金属キレート化合物として、好ましくは、アルミニウムキレート化合物、チタンキレート化合物、ジルコニウムキレート化合物が挙げられる。金属キレート化合物として、より好ましくは、被膜における優れた堅牢性(強度)を維持する観点から、アルミニウムキレート化合物、チタンキレート化合物が挙げられる。 Preferred examples of the metal chelate compound include an aluminum chelate compound, a titanium chelate compound, and a zirconium chelate compound. More preferred examples of the metal chelate compound include an aluminum chelate compound and a titanium chelate compound from the viewpoint of maintaining excellent fastness (strength) in the coating.
 アルミニウムキレート化合物としては、例えば、トリス(2,4-ペンタンジオナト)アルミニウム、トリス(エチルアセトアセテート)アルミニウム、ビス(エチルアセトアセテート)(2,4-ペンタンジオナト)アルミニウムなどが挙げられる。好ましくは、トリス(2,4-ペンタンジオナト)アルミニウムが挙げられる。 Examples of the aluminum chelate compound include tris (2,4-pentanedionato) aluminum, tris (ethylacetoacetate) aluminum, bis (ethylacetoacetate) (2,4-pentanedionato) aluminum, and the like. Preferably, tris (2,4-pentanedionato) aluminum is used.
 チタンキレート化合物としては、例えば、テトラキス(2,4-ペンタンジオナト)チタン、テトラキス(エチルアセトアセテート)チタンなどが挙げられる。好ましくは、テトラキス(2,4-ペンタンジオナト)チタンが挙げられる。 Examples of the titanium chelate compound include tetrakis (2,4-pentanedionato) titanium, tetrakis (ethyl acetoacetate) titanium, and the like. Preferably, tetrakis (2,4-pentanedionato) titanium is used.
 ジルコニウムキレート化合物としては、例えば、テトラキス(2,4-ペンタンジオナト)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウムなどが挙げられる。好ましくは、テトラキス(2,4-ペンタンジオナト)ジルコニウムが挙げられる。 Examples of the zirconium chelate compound include tetrakis (2,4-pentanedionato) zirconium and tetrakis (ethylacetoacetate) zirconium. Preferably, tetrakis (2,4-pentanedionato) zirconium is used.
 また、金属キレート化合物は、上記した配位子に加え、アルコキシ基をさらに含有するアルコキシ基含有金属キレート化合物を含む。アルコキシ基としては、例えば、メトキシ、エトキシ、n‐プロポキシ、2‐プロポキシ、n‐ブトキシ、2‐ブトキシなどが挙げられる。アルコキシ基として、好ましくは、2‐プロポキシが挙げられる。具体的には、アルコキシ基含有金属キレート化合物としては、例えば、アルミニウムエチルアセトアセテートジイソプロピレートなどのアルコキシ基含有アルミニウムキレート化合物、例えばビス(2,4-ペンタンジオナト)ビス(2-プロパノラト)チタンなどのアルコキシ基含有チタンキレート化合物などが挙げられる。 Further, the metal chelate compound includes an alkoxy group-containing metal chelate compound further containing an alkoxy group in addition to the above-described ligand. Examples of the alkoxy group include methoxy, ethoxy, n-propoxy, 2-propoxy, n-butoxy, 2-butoxy and the like. As the alkoxy group, 2-propoxy is preferable. Specifically, the alkoxy group-containing metal chelate compound includes, for example, an alkoxy group-containing aluminum chelate compound such as aluminum ethyl acetoacetate diisopropylate, such as bis (2,4-pentanedionato) bis (2-propanolate) titanium. And alkoxy group-containing titanium chelate compounds.
 金属カルボン酸塩は、カルボン酸の金属塩である。カルボン酸としては、例えば、エタン酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、テトラデカン酸などの直鎖状カルボン酸、例えば、2‐メチルブタン酸、2‐メチルペンタン酸、2‐エチルヘキサン酸、2‐メチルヘプタン酸、4‐メチルオクタン酸、3,5,5‐トリメチルヘキサン酸などの分枝状カルボン酸、例えば、ナフテン酸などの環状カルボン酸などが挙げられる。好ましくは、分枝状カルボン酸が挙げられ、より好ましくは、2‐エチルヘキサン酸が挙げられる。 The metal carboxylate is a metal salt of carboxylic acid. Examples of the carboxylic acid include linear carboxylic acids such as ethanoic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, and tetradecanoic acid. -Branched carboxylic acids such as 2-methylbutanoic acid, 2-methylpentanoic acid, 2-ethylhexanoic acid, 2-methylheptanoic acid, 4-methyloctanoic acid, 3,5,5-trimethylhexanoic acid, such as naphthenic acid And cyclic carboxylic acids. Preferably, branched carboxylic acid is mentioned, More preferably, 2-ethylhexanoic acid is mentioned.
 金属塩を形成する金属としては、特に限定されず、例えば、上記した中心金属(金属キレート化合物を形成する中心金属)と同様の金属が挙げられ、好ましくは、亜鉛、鉄、コバルト、マンガンが挙げられる。 The metal that forms the metal salt is not particularly limited, and examples thereof include the same metals as the above-described center metal (center metal that forms the metal chelate compound), preferably zinc, iron, cobalt, and manganese. It is done.
 金属カルボン酸塩として、例えば、アルミニウムカルボン酸塩、チタンカルボン酸塩、ジルコニウムカルボン酸塩、ニオブカルボン酸塩、マグネシウムカルボン酸塩、カルシウムカルボン酸塩、クロムカルボン酸塩、マンガンカルボン酸塩、鉄カルボン酸塩、コバルトカルボン酸塩、ニッケルカルボン酸塩、銅カルボン酸塩、亜鉛カルボン酸塩、ガリウムカルボン酸塩、パラジウムカルボン酸塩、インジウムカルボン酸塩、スズカルボン酸塩、タンタルカルボン酸塩などが挙げられる。金属カルボン酸塩として、好ましくは、亜鉛カルボン酸塩、鉄カルボン酸塩、コバルトカルボン酸塩、マンガンカルボン酸塩が挙げられる。 Examples of metal carboxylates include aluminum carboxylate, titanium carboxylate, zirconium carboxylate, niobium carboxylate, magnesium carboxylate, calcium carboxylate, chromium carboxylate, manganese carboxylate, iron carboxylate Acid salts, cobalt carboxylates, nickel carboxylates, copper carboxylates, zinc carboxylates, gallium carboxylates, palladium carboxylates, indium carboxylates, tin carboxylates, tantalum carboxylates, etc. . Preferred examples of the metal carboxylate include zinc carboxylate, iron carboxylate, cobalt carboxylate and manganese carboxylate.
 亜鉛カルボン酸塩としては、例えば、ビス(2‐エチルヘキサン酸)亜鉛、酢酸亜鉛、ナフテン酸亜鉛などが挙げられる。好ましくは、ビス(2‐エチルヘキサン酸)亜鉛が挙げられる。 Examples of the zinc carboxylate include bis (2-ethylhexanoic acid) zinc, zinc acetate, and zinc naphthenate. Preferably, bis (2-ethylhexanoic acid) zinc is used.
 鉄カルボン酸塩としては、例えば、ビス(2‐エチルヘキサン酸)鉄、酢酸鉄、ナフテン酸鉄などが挙げられる。好ましくは、ビス(2‐エチルヘキサン酸)鉄が挙げられる。 Examples of the iron carboxylate include bis (2-ethylhexanoic acid) iron, iron acetate, and iron naphthenate. Preferably, bis (2-ethylhexanoic acid) iron is used.
 コバルトカルボン酸塩としては、例えば、ビス(2‐エチルヘキサン酸)コバルト、酢酸コバルト、ナフテン酸コバルトなどが挙げられる。好ましくは、ビス(2‐エチルヘキサン酸)コバルトが挙げられる。 Examples of the cobalt carboxylate include bis (2-ethylhexanoic acid) cobalt, cobalt acetate, and cobalt naphthenate. Preferably, bis (2-ethylhexanoic acid) cobalt is used.
 マンガンカルボン酸塩としては、例えば、ビス(2‐エチルヘキサン酸)マンガン、酢酸マンガン、ナフテン酸マンガンなどが挙げられる。好ましくは、ビス(2‐エチルヘキサン酸)マンガンが挙げられる。 Examples of manganese carboxylate include bis (2-ethylhexanoic acid) manganese, manganese acetate, manganese naphthenate, and the like. Preferably, bis (2-ethylhexanoic acid) manganese is used.
 なお、触媒として、リン酸、酢酸などの酸は、金属原子-OHを生成せず、そのため、第1オリゴマーおよび第2オリゴマーのアルコキシ基に基づくOH基を脱水縮合させることができない。その結果、第1オリゴマーおよび第2オリゴマーの硬化反応を常温で迅速に進行させることができず、上記した酸は、触媒として不適である。 Note that, as a catalyst, acids such as phosphoric acid and acetic acid do not generate a metal atom —OH, and therefore OH groups based on the alkoxy groups of the first oligomer and the second oligomer cannot be dehydrated and condensed. As a result, the curing reaction of the first oligomer and the second oligomer cannot proceed rapidly at room temperature, and the above-described acid is unsuitable as a catalyst.
 触媒としては、単独使用または併用することができる。触媒として、好ましくは、金属アルコキシド、金属キレート化合物および金属カルボン酸塩のそれぞれの単独使用が挙げられる。
なお、触媒は、後述する有機溶剤に溶解した触媒溶液として調製されていてもよい。
The catalyst can be used alone or in combination. As the catalyst, preferably, each of metal alkoxide, metal chelate compound and metal carboxylate is used alone.
The catalyst may be prepared as a catalyst solution dissolved in an organic solvent described later.
 シリコーン組成物における触媒の割合は、例えば0.1質量%以上、好ましくは1質量%以上、より好ましくは5質量%以上であり、また、例えば25質量%以下、好ましくは15質量%以下である。 The ratio of the catalyst in the silicone composition is, for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass or more, and for example, 25% by mass or less, preferably 15% by mass or less. .
 第1オリゴマーおよび第2オリゴマーの総量100質量部に対する触媒の割合としては、例えば1質量部以上、好ましくは2質量部以上、より好ましくは5質量部以上、さらに好ましくは10質量部以上、とりわけ好ましくは20質量部以上であり、また、例えば55質量部以下、好ましくは50質量部以下、より好ましくは40質量部以下である。 As a ratio of the catalyst with respect to 100 parts by mass of the total amount of the first oligomer and the second oligomer, for example, 1 part by mass or more, preferably 2 parts by mass or more, more preferably 5 parts by mass or more, further preferably 10 parts by mass or more, particularly preferably. Is 20 parts by mass or more, and for example 55 parts by mass or less, preferably 50 parts by mass or less, more preferably 40 parts by mass or less.
 触媒の割合が上記した下限以上、上記した上限以下であれば、第1オリゴマーおよび第2オリゴマーが常温で迅速に硬化して、被膜を常温で形成することができる。 If the ratio of the catalyst is not less than the above-described lower limit and not more than the above-described upper limit, the first oligomer and the second oligomer are rapidly cured at room temperature, and a film can be formed at room temperature.
 有機溶剤は、後述する蒸気圧の下限値以上である高蒸気圧溶剤である。具体的には、高蒸気圧溶剤は、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール(2-プロパノール)などのアルコール系溶剤;例えば、酢酸エチル、酢酸ブチル、酢酸メトキシブチル、エチルグリコールアセテート、酢酸アミルなどのエステル系溶剤;例えば、エチレングリコールジメチルエーテルなどのグリコールエーテル系溶剤(高蒸気圧グリコールエーテル系溶剤);例えば、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、アセチルアセトンなどのケトン系溶剤;例えば、n‐ヘキサン、n‐ヘブタン、n‐オクタン、イソオクタンなどのパラフィン系溶剤(高蒸気圧パラフィン系溶剤);例えば、シクロペンタン、シクロヘキサンなどのナフテン系溶剤、ベンゼン、トルエン、キシレン、トリメチルベンゼンなどの芳香族系溶剤;例えば、ベンゼン、トルエン、キシレンなどの芳香族系溶剤などから選択される。これらの有機溶剤は、単独または2種以上が任意に選択されて使用される。有機溶剤として、好ましくは、アルコール系溶剤が選択される。 Organic solvent is a high vapor pressure solvent that is equal to or higher than the lower limit of the vapor pressure described later. Specifically, the high vapor pressure solvent is, for example, an alcohol solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol (2-propanol); for example, ethyl acetate, butyl acetate, methoxybutyl acetate, ethyl glycol acetate, amyl acetate, etc. For example, glycol ether solvents such as ethylene glycol dimethyl ether (high vapor pressure glycol ether solvents); for example, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, and acetyl acetone; Paraffinic solvents (high vapor pressure paraffinic solvents) such as n-hebutane, n-octane and isooctane; for example, naphthenic solvents such as cyclopentane and cyclohexane, benzene, toluene, xyle , Aromatic solvents such as trimethylbenzene; for example, benzene, toluene, is selected from an aromatic solvent such as xylene. These organic solvents are used alone or in combination of two or more. As the organic solvent, an alcohol solvent is preferably selected.
 有機溶剤の20℃における蒸気圧は、1kPa(7.5mmHg)以上、好ましくは、2kPa(15mmHg)以上、より好ましくは、3kPa(22.5mmHg)以上である。また、有機溶剤の20℃における蒸気圧は、100kPa(750mmHg)以下、好ましくは、25kPa(187mmHg)以下、より好ましくは、10kPa(75mmHg)以下、さらに好ましくは、7kPa(52mmHg)以下、とりわけ好ましくは、5kPa(38mmHg)以下である。 The vapor pressure of the organic solvent at 20 ° C. is 1 kPa (7.5 mmHg) or more, preferably 2 kPa (15 mmHg) or more, more preferably 3 kPa (22.5 mmHg) or more. The vapor pressure of the organic solvent at 20 ° C. is 100 kPa (750 mmHg) or less, preferably 25 kPa (187 mmHg) or less, more preferably 10 kPa (75 mmHg) or less, more preferably 7 kPa (52 mmHg) or less, particularly preferably. 5 kPa (38 mmHg) or less.
 有機溶剤の蒸気圧が上記した下限に満たなければ、シリコーン組成物を常温硬化するときに、有機溶剤を迅速に除去(留去)できず、そのため、被膜を形成することができない。換言すれば、有機溶剤の蒸気圧が上記した下限以上であれば、シリコーン組成物を常温硬化するときに、有機溶剤を迅速に除去(留去)でき、そのため、被膜を形成することができる。一方、有機溶剤の蒸気圧が上記した上限以下であれば、シリコーン組成物で被覆するときに、有機溶剤が迅速に除去(留去)されることが抑制され、そのため、被膜に厚みムラが生成することを抑制することができる。 If the vapor pressure of the organic solvent does not satisfy the above lower limit, when the silicone composition is cured at room temperature, the organic solvent cannot be rapidly removed (evaporated), and thus a film cannot be formed. In other words, when the vapor pressure of the organic solvent is equal to or higher than the lower limit described above, the organic solvent can be quickly removed (evaporated) when the silicone composition is cured at room temperature, and thus a coating film can be formed. On the other hand, if the vapor pressure of the organic solvent is not more than the above upper limit, the organic solvent is prevented from being rapidly removed (distilled off) when coating with the silicone composition, and thus uneven thickness is generated in the coating. Can be suppressed.
 他方、有機溶剤は、高蒸気圧溶剤であるが、上記した蒸気圧の下限値を下回る低蒸気圧溶剤を、本発明の効果を阻害しない程度の微量の混入を許容することができる。例えば、上記した触媒溶液に含有される低蒸気圧溶剤の混入が許容される。 On the other hand, the organic solvent is a high vapor pressure solvent, but the low vapor pressure solvent lower than the lower limit value of the vapor pressure described above can allow a very small amount of contamination that does not impair the effects of the present invention. For example, mixing of the low vapor pressure solvent contained in the catalyst solution described above is allowed.
 低蒸気圧溶剤の20℃における蒸気圧は、例えば1kPa未満である。低蒸気圧溶剤としては、例えば、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルなどの低蒸気圧グリコールエーテル系溶剤、例えば、ミネラルターペンなどの低蒸気圧パラフィン系溶剤、例えば、ミネラルスピリットなどの石油系溶剤などが挙げられる。 The vapor pressure at 20 ° C. of the low vapor pressure solvent is, for example, less than 1 kPa. Examples of the low vapor pressure solvent include low vapor pressure glycol ether solvents such as diethylene glycol dimethyl ether and diethylene glycol diethyl ether, low vapor pressure paraffin solvents such as mineral terpenes, and petroleum solvents such as mineral spirits. It is done.
 蒸気圧溶剤の混入割合は、高蒸気圧溶剤100質量部に対して、例えば15質量部以下、好ましくは10質量部以下、より好ましくは5質量部以下、さらに好ましくは3質量部以下、とりわけ好ましくはl質量部以下である。また、シリコーン組成物における低蒸気圧溶剤の混入割合は、例えば10質量%未満、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1.0質量%以下、とりわけ好ましくは0.5質量%以下、特に好ましくは0.1質量%以下である。 The mixing ratio of the vapor pressure solvent is, for example, 15 parts by mass or less, preferably 10 parts by mass or less, more preferably 5 parts by mass or less, further preferably 3 parts by mass or less, particularly preferably 100 parts by mass of the high vapor pressure solvent. Is 1 part by mass or less. The mixing ratio of the low vapor pressure solvent in the silicone composition is, for example, less than 10% by mass, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1.0% by mass or less, and particularly preferably 0. 0.5% by mass or less, particularly preferably 0.1% by mass or less.
 なお、水は有機溶剤ではないが、第1オリゴマーおよび第2オリゴマーの硬化反応が速すぎることから、シリコーン組成物には不適な水性溶媒である。 In addition, although water is not an organic solvent, since the curing reaction of the first oligomer and the second oligomer is too fast, it is an unsuitable aqueous solvent for the silicone composition.
 シリコーン組成物における有機溶剤(高蒸気圧溶剤)の割合は、例えば10質量%以上、好ましくは20質量%以上、より好ましくは30質量%以上、さらに好ましくは40質量%以上、とりわけ好ましくは50質量%以上であり、また、例えば80質量%以下、好ましくは70質量%以下、より好ましくは60質量%以下である。 The proportion of the organic solvent (high vapor pressure solvent) in the silicone composition is, for example, 10% by mass or more, preferably 20% by mass or more, more preferably 30% by mass or more, further preferably 40% by mass or more, and particularly preferably 50% by mass. % Or more, for example, 80% by mass or less, preferably 70% by mass or less, more preferably 60% by mass or less.
 第1オリゴマーと第2オリゴマーとシリコーンオイルとの総量100質量部に対する有機溶剤の割合は、例えば40質量部以上、好ましくは80質量部以上、より好ましくは120質量部以上、さらに好ましくは140質量部以上、また、例えば300質量部以下、好ましくは200質量部以下、より好ましくは160質量部以下である。 The ratio of the organic solvent to the total amount of 100 parts by mass of the first oligomer, the second oligomer and the silicone oil is, for example, 40 parts by mass or more, preferably 80 parts by mass or more, more preferably 120 parts by mass or more, and further preferably 140 parts by mass. In addition, for example, it is 300 parts by mass or less, preferably 200 parts by mass or less, more preferably 160 parts by mass or less.
 有機溶剤の割合が上記した下限以上であれば、シリコーン組成物の取扱性に優れるとともに、被覆後に過度に急速に乾燥が進行することに起因する被膜の厚みムラが生成することを抑制することができる。一方、有機溶剤の割合が上記した上限以下であれば、歩留まりの過度の低下を抑制することができる。 If the ratio of the organic solvent is equal to or more than the lower limit described above, the handling of the silicone composition is excellent, and it is possible to suppress the generation of uneven thickness of the coating resulting from excessively rapid drying after coating. it can. On the other hand, if the ratio of the organic solvent is equal to or less than the above upper limit, an excessive decrease in yield can be suppressed.
 次に、シリコーン組成物の調製について説明する。 Next, preparation of the silicone composition will be described.
 シリコーン組成物を調製するには、まず、第1オリゴマーと、第2オリゴマーと、シリコーンオイルと、有機溶剤と、必要により添加剤とを、上記した割合で配合して混合して、シリコーン組成物を調製する。一方、触媒を別途準備する。これによって、シリコーン組成物と触媒とを2液型硬化性組成物として準備する。 In order to prepare the silicone composition, first, the first oligomer, the second oligomer, the silicone oil, the organic solvent, and, if necessary, the additive are blended and mixed in the above-described ratio, and the silicone composition is mixed. To prepare. Meanwhile, a catalyst is prepared separately. Thereby, a silicone composition and a catalyst are prepared as a two-component curable composition.
 続いて、シリコーン組成物と触媒とを上記した割合で配合して、それらを混合してシリコーン組成物を調製する。なお、このシリコーン組成物の調製において、触媒は、その加水分解によって金属-OH基を生成する。 Subsequently, the silicone composition and the catalyst are blended in the above-described proportions and mixed to prepare a silicone composition. In the preparation of the silicone composition, the catalyst generates a metal-OH group by hydrolysis.
 以上まとめると、本発明で用いられる常温硬化型シリコーン組成物は、第1オリゴマ一、第2オリゴマ一、触媒および有機溶剤を含有し、第1オリゴマーと第2オリゴマーとの総量の割合が20質量%以上であり、触媒が、金属アルコキシド、金属キレート化合物および金属カルボン酸塩からなる群から選択される少なくとも1つであり、有機溶剤の20℃における蒸気圧が、1kPa以上である。そのため、当該シリコーン組成物は、常温硬化することができる。その結果、このシリコーン組成物は、熱処理が不要な表面加工処理に好適に用いられる。 In summary, the room temperature curable silicone composition used in the present invention contains the first oligomer, the second oligomer, the catalyst and the organic solvent, and the ratio of the total amount of the first oligomer and the second oligomer is 20 mass. %, The catalyst is at least one selected from the group consisting of metal alkoxides, metal chelate compounds and metal carboxylates, and the vapor pressure of the organic solvent at 20 ° C. is 1 kPa or more. Therefore, the silicone composition can be cured at room temperature. As a result, this silicone composition is suitably used for surface processing that does not require heat treatment.
 また、当該シリコーン組成物はシリコーンオイルを含有し、かかるシリコーンオイルの25℃における動粘度は100mm/s以上である。そのため、シリコーン組成物の硬化物である被膜は、滑り性、及び撥水性に優れる。 The silicone composition contains a silicone oil, and the kinematic viscosity at 25 ° C. of the silicone oil is 100 mm 2 / s or more. Therefore, the coating film that is a cured product of the silicone composition is excellent in slipperiness and water repellency.
 さらに、第1オリゴマーの第2オリゴマーに対する割合が0.15以上、10以下であるシリコーン組成物は、被膜の滑り性、及び撥水性に優れる。 Furthermore, the silicone composition in which the ratio of the first oligomer to the second oligomer is 0.15 or more and 10 or less is excellent in the slipperiness and water repellency of the film.
 また、第1オリゴマーと第2オリゴマーとの総量の割合が全体の50質量%以下であるシリコーン組成物は、均一な被覆性に優れる。 Moreover, the silicone composition in which the ratio of the total amount of the first oligomer and the second oligomer is 50% by mass or less of the whole is excellent in uniform coverage.
 また、有機溶剤が、アルコール系溶剤であれば、第1オリゴマーおよび第2オリゴマーが縮合反応してアルコールを生成することを抑制することができる。つまり、シリコーン組成物(とりわけ、2液型硬化性組成物におけるシリコーン組成物)の貯蔵時における第1オリゴマーおよび第2オリゴマーの反応を抑制することができる。そのため、このシリコーン組成物は、貯蔵安定性に優れる。 Further, when the organic solvent is an alcohol solvent, it is possible to suppress the first oligomer and the second oligomer from undergoing a condensation reaction to produce an alcohol. That is, the reaction of the first oligomer and the second oligomer during storage of the silicone composition (in particular, the silicone composition in the two-component curable composition) can be suppressed. Therefore, this silicone composition is excellent in storage stability.
 また、有機溶剤の、第lオリゴマーと第2オリゴマーとシリコーンオイルとの総量100質量部に対する割合が40質量部以上、300質量部以下であるシリコーン組成物であれば、シリコーン組成物の取扱性に優れるとともに、被覆後に過度に急速に乾燥が進行することに起因して被膜の厚みムラが発生することを抑制することができ、歩留まりの過度の低下を抑制することができる。 Moreover, if the ratio of the organic solvent to the total amount of 100 parts by mass of the first oligomer, the second oligomer and the silicone oil is 40 parts by mass or more and 300 parts by mass or less, the handling property of the silicone composition is improved. In addition to being excellent, it is possible to suppress the occurrence of uneven coating thickness due to excessively rapid drying after coating, and to suppress an excessive decrease in yield.
 また、触媒の、第1オリゴマーと第2オリゴマーとの総量100質量部に対する割合が、2質量部以上、55質量部以下であるシリコーン組成物であれば、第1オリゴマーおよび第2オリゴマーが常温で迅速に硬化して、被膜を常温で形成することができる。 Moreover, if the ratio of the catalyst to the total amount of 100 parts by mass of the first oligomer and the second oligomer is 2 parts by mass or more and 55 parts by mass or less, the first oligomer and the second oligomer are at room temperature. It hardens quickly and can form a film at room temperature.
 斯くして調製されるシリコーン組成物によれば、2H以上、好ましくは4H以上の鉛筆硬度に相当する硬度を有する塗膜(硬化物)を形成することができる。鉛筆硬度は、例えば、当該シリコーン組成物を塗布し、常温硬化させたJIS H 4000準拠の塗料試験用アルミニウム板をJIS K 5600-5-4(1999)の記載に従って測定することができる。こうした塗膜は、前記シリコーン組成物を、例えば、JIS H 4000準拠の試験用アルミニウム板などの塗装用試験板の表面に塗布し、常温で放置することで形成することができる。放置する時間は、シリコーン組成物中の有機溶剤が留去(除去)するとともに、第1オリゴマーおよび第2オリゴマーが触媒の存在下で硬化する時間であればよく、制限されないものの、30分以上50時間以下を例示することができる。こうすることで、第1オリゴマー及び第2オリゴマーにおけるアルコキシ基からOH基が生成され、それが触媒に基づく[金属原子-OH]と脱水反応して硬化反応が進行する。続いて、上記反応の副生成物であるアルコールが有機溶剤とともに留去(除去)される。斯くしてシリコーン組成物は硬化して塗膜を形成する。
[変形例]
 シリコーン組成物として、下記の変形例を使用することもできる。
According to the silicone composition thus prepared, a coating film (cured product) having a hardness corresponding to a pencil hardness of 2H or higher, preferably 4H or higher can be formed. The pencil hardness can be measured, for example, according to the description of JIS K 5600-5-4 (1999) on a JIS H 4000-compliant aluminum plate applied with the silicone composition and cured at room temperature. Such a coating film can be formed by applying the silicone composition to the surface of a test plate for coating such as a test aluminum plate conforming to JIS H 4000 and leaving it at room temperature. The time for leaving is not limited as long as the organic solvent in the silicone composition is distilled off (removed) and the first oligomer and the second oligomer are cured in the presence of the catalyst. The following can be exemplified. By doing so, an OH group is generated from the alkoxy group in the first oligomer and the second oligomer, and the OH group is dehydrated with [metal atom-OH] based on the catalyst, and the curing reaction proceeds. Subsequently, alcohol as a by-product of the above reaction is distilled off (removed) together with the organic solvent. Thus, the silicone composition cures to form a coating film.
[Modification]
The following modifications can also be used as the silicone composition.
 上記した説明では、シリコーン組成物を2液型硬化性組成物として準備しているが、例えば、シリコーン組成物を1液型硬化性組成物として準備することもできる。 In the above description, the silicone composition is prepared as a two-component curable composition, but for example, the silicone composition can be prepared as a one-component curable composition.
 具体的には、第1オリゴマ一、第2オリゴマ一、シリコーンオイル、触媒および有機溶剤を、空気中の水分(湿気)がない状態で、配合する。具体的には、上記した各成分を、窒素などの不活性ガス雰囲気状態で、配合して混合し、それらを容器に密封する。そして、使用の直前に、容器を開栓して、シリコーン組成物を対象物に被覆する。この1液型硬化性組成物によっても、2液型硬化性組成物と同様の効果を奏することができる。 Specifically, the first oligomer, the second oligomer, the silicone oil, the catalyst and the organic solvent are blended in the absence of moisture (humidity) in the air. Specifically, the above-described components are blended and mixed in an inert gas atmosphere such as nitrogen and sealed in a container. And just before use, the container is opened and the silicone composition is coated on the object. Even with this one-component curable composition, the same effects as the two-component curable composition can be obtained.
 また、このシリコーン組成物は常温硬化型であるが、必要により、常温硬化後に加熱(さらなる熱硬化)、または、常温硬化に代えて熱硬化することもできる。加熱温度は、例えば、50℃以上の加熱など、公知の温度条件が採用される。
(2)疎水化アルミナ-シリカ系立方体粒子
 本発明の疎水化アルミナ-シリカ系立方体粒子(以下、「本発明疎水化粒子」とも称する)は、前記方法で調製されるシリコーン組成物を用いて前述するアルミナ-シリカ系立方体粒子(本発明粒子)を表面処理加工することで調製することができる。表面処理加工は、本発明粒子とシリコーン組成物とを混合し、次いで常温で放置することで実施することができる。
Moreover, although this silicone composition is a normal temperature curing type, if necessary, it can be heated after room temperature curing (further thermal curing), or can be thermally cured instead of room temperature curing. As the heating temperature, for example, a known temperature condition such as heating at 50 ° C. or higher is adopted.
(2) Hydrophobized alumina-silica-based cubic particles The hydrophobized alumina-silica-based cubic particles of the present invention (hereinafter also referred to as “the hydrophobized particles of the present invention”) are described above using the silicone composition prepared by the above method. It can be prepared by subjecting the alumina-silica-based cubic particles (the particles of the present invention) to surface treatment. The surface treatment can be carried out by mixing the particles of the present invention and the silicone composition and then leaving them at room temperature.
 シリコーン組成物と本発明粒子との混合は、本発明粒子の表面にシリコーン組成物が均一に付着し、本発明粒子の表面全体を均質に被覆するように撹拌しながら行うことが好ましい。この際に、過度量のシリコーン組成物が本発明粒子と混合されると、本発明粒子同士の凝集を生起し、ダマとなりやすい。従って、本発明粒子100質量部に対するシリコーン組成物の割合として、制限されないものの、通常1質量部以上、好ましくは2質量部以上、より好ましくは3質量部以上であり、また、通常30質量部以下、好ましくは25質量部以下、より好ましくは20質量部以下を挙げることができる(wet質量比)。 The mixing of the silicone composition and the particles of the present invention is preferably performed with stirring so that the silicone composition uniformly adheres to the surfaces of the particles of the present invention and uniformly coats the entire surface of the particles of the present invention. At this time, if an excessive amount of the silicone composition is mixed with the particles of the present invention, the particles of the present invention are agglomerated with each other and are likely to become lumps. Accordingly, the ratio of the silicone composition to 100 parts by mass of the particles of the present invention is not limited, but is usually 1 part by mass or more, preferably 2 parts by mass or more, more preferably 3 parts by mass or more, and usually 30 parts by mass or less. , Preferably 25 parts by mass or less, more preferably 20 parts by mass or less (wet mass ratio).
 本発明粒子100質量部に対して、シリコーン組成物の割合が1質量部よりも著しく少なくなると本発明粒子の表面が十分に被覆することができない。一方、シリコーン組成物の割合が30質量部を超えて著しく多くなると、表面のシリコーン組成物同士が付着して本発明疎水化粒子が凝集またはダマになりやすい傾向がある。なお、本発明粒子100質量部に対する硬化後のシリコーン組成物の割合としては、制限されないものの、例えば0.1質量部以上、好ましくは0.2質量部以上、より好ましくは0.5質量部以上であり、また、通常10質量部以下、好ましくは8質量部以下、より好ましくは6質量部以下を挙げることができる(dry質量比)。 When the ratio of the silicone composition is significantly less than 1 part by mass with respect to 100 parts by mass of the present particles, the surface of the present particles cannot be sufficiently covered. On the other hand, when the ratio of the silicone composition is significantly increased beyond 30 parts by mass, the silicone compositions on the surface tend to adhere to each other and the hydrophobized particles of the present invention tend to be aggregated or lumped. In addition, although it does not restrict | limit as a ratio of the silicone composition after hardening with respect to 100 mass parts of this invention particle | grains, For example, 0.1 mass part or more, Preferably it is 0.2 mass part or more, More preferably, it is 0.5 mass part or more. Moreover, it is 10 mass parts or less normally, Preferably it is 8 mass parts or less, More preferably, 6 mass parts or less can be mentioned (dry mass ratio).
 シリコーン組成物と本発明粒子との撹拌混合は常温で実施することができる。斯くして、本発明粒子の表面がシリコーン組成物で被覆(コーティング)される。次いで、シリコーン組成物で表面が被覆された本発明粒子を常温で放置することで、本発明粒子の表面でシリコーン組成物が硬化して、表面が疎水化されたアルミナ-シリカ系立方体粒子が生成する。 The stirring and mixing of the silicone composition and the particles of the present invention can be carried out at room temperature. Thus, the surface of the particles of the present invention is coated (coated) with the silicone composition. Next, the particles of the present invention whose surfaces are coated with the silicone composition are allowed to stand at room temperature, whereby the silicone composition is cured on the surfaces of the particles of the present invention, and alumina-silica-based cubic particles having a hydrophobic surface are generated. To do.
 ここで常温で放置する時間は、有機溶剤が留去(除去)されるとともに、第1オリゴマーおよび第2オリゴマーが触媒の存在下で硬化できる時間であれば特に制限されない。具体的には、例えば、30分以上、好ましくは1時間以上、より好ましくは10時間以上、さらに好ましくは20時間以上であり、また50時間以下である。これによって、第1オリゴマーおよび第2オリゴマーにおけるアルコキシ基からOH基が生成され、それが、触媒に基づく[金属原子-OH]と脱水反応して、硬化反応が進行する。続いて、第1オリゴマーおよび第2オリゴマーのアルコキシ基からOH基を生じる際の副生成物であるアルコールは、有機溶剤とともに除去(留去)される。 Here, the time for standing at room temperature is not particularly limited as long as the organic solvent is distilled off (removed) and the first oligomer and the second oligomer can be cured in the presence of the catalyst. Specifically, for example, it is 30 minutes or longer, preferably 1 hour or longer, more preferably 10 hours or longer, further preferably 20 hours or longer, and 50 hours or shorter. As a result, an OH group is generated from the alkoxy group in the first oligomer and the second oligomer, and the OH group is dehydrated with [metal atom-OH] based on the catalyst, and the curing reaction proceeds. Subsequently, the alcohol that is a by-product when the OH group is generated from the alkoxy group of the first oligomer and the second oligomer is removed (evaporated) together with the organic solvent.
 これにより、表面が常温硬化型シリコーン組成物の硬化物からなる被膜で被覆されてなる疎水化アルミナ-シリカ系立方体粒子を調製することができる。なお、被膜の厚みは、適宜調製することができ、制限されないが、例えば0.01μm以上、好ましくは0.05μm以上であり、また、例えば0.5μm以下、好ましくは0.2μm以下を例示することができる。 Thereby, hydrophobized alumina-silica-based cubic particles whose surface is coated with a film made of a cured product of a room temperature curable silicone composition can be prepared. The thickness of the coating can be appropriately adjusted and is not limited, but is, for example, 0.01 μm or more, preferably 0.05 μm or more, and for example, 0.5 μm or less, preferably 0.2 μm or less. be able to.
 本発明疎水化粒子は、下記(a)~(d)からなる群より選択される少なくとも1つの特性を有するものであってもよい。
(a)平均摩擦係数(MIU): 0.3~0.6
(b)隠ぺい性指数:5以下
(c)皺ぼかし性指数:28以下
(d)Haze:34~80。
The hydrophobized particles of the present invention may have at least one characteristic selected from the group consisting of the following (a) to (d).
(A) Average friction coefficient (MIU): 0.3 to 0.6
(B) Hiding property index: 5 or less (c) Haze blurring index: 28 or less (d) Haze: 34-80.
 (a)平均摩擦係数(滑り性)
 本発明の疎水化粒子は、平均摩擦係数が好ましくは0.6以下であってもよく、より好ましくは0.5以下である。平均摩擦係数は低いほど伸展性がよく、好ましいものの、肌への付着性やカバー力の点からは適度に伸び留まることも有用である。その観点から下限値としては、例えば0.3以上である。
(A) Average friction coefficient (sliding property)
The hydrophobic particles of the present invention may have an average friction coefficient of preferably 0.6 or less, more preferably 0.5 or less. The lower the average friction coefficient, the better the extensibility and the better, but it is also useful that the average friction coefficient stays moderately from the viewpoint of adhesion to the skin and covering power. From that viewpoint, the lower limit is, for example, 0.3 or more.
 平均摩擦係数の測定方法は、前述した通りであり、測定に際して、被験試料である疎水化粒子をそのまま、人工皮膚に塗布することで測定することができる。前記所望の平均摩擦係数を有する本発明の疎水化粒子によれば、疎水化未処理の本発明粒子と比較して、人工皮膚上及び粒子間でより高い適度な滑り性を有しており、肌に塗布したときに肌に均一に伸びるとともに、適度に伸び留まるという効果を奏する。 The measurement method of the average friction coefficient is as described above, and can be measured by applying the hydrophobized particles as the test sample to the artificial skin as they are. According to the hydrophobized particles of the present invention having the desired average friction coefficient, compared with the hydrophobized untreated particles of the present invention, it has a higher moderate slip on the artificial skin and between the particles, When applied to the skin, it stretches uniformly on the skin and has the effect of staying moderately stretched.
 皺隠し性の光学的評価:(b)隠ぺい性指数、(c)皺ぼかし性指数
 隠ぺい性指数及び皺ぼかし性指数は、それぞれ本発明の疎水化粒子の隠ぺい効果及び皺ぼかし効果を評価する指標となる物性値であり、いずれも数値が小さくなるほど隠ぺい効果は低くて皺ぼかし効果は高く、皺隠し性を良好に発揮することを示す。本発明疎水化粒子は、隠ぺい性指数が好ましくは6以下であってもよく、より好ましくは5以下である。下限値としては、制限されないものの、1以上、を例示することができる。また本発明疎水化粒子は、皺ぼかし性指数が好ましくは32以下であってもよく、より好ましくは28以下である。下限値としては、制限されないものの25以上、好ましくは20以上を例示することができる。
Optical evaluation of hiding property: (b) Hiding property index, (c) Haze blurring index Hiding property index and haze blurring property index are indexes for evaluating the hiding effect and haze blurring effect of the hydrophobized particles of the present invention, respectively. Each of the physical property values is such that as the numerical value is smaller, the hiding effect is lower and the haze blurring effect is higher, and the hiding effect is better exhibited. The hydrophobized particles of the present invention may preferably have a concealment index of 6 or less, more preferably 5 or less. As a lower limit, although not limited, one or more can be exemplified. The hydrophobized particles of the present invention may have a wrinkle blurring index of preferably 32 or less, more preferably 28 or less. As a lower limit, although not limited, 25 or more, preferably 20 or more can be exemplified.
 本発明疎水化粒子の隠ぺい性指数及び皺ぼかし性指数は、後述する実施例において説明する方法で測定することができ、疎水化未処理の本発明粒子と比較して、皺隠し効果に優れるという効果を有する。 The hiding property index and the blurring property index of the hydrophobized particles of the present invention can be measured by the method described in the examples described later, and are superior in the hiding effect compared to the hydrophobized untreated particles of the present invention. Has an effect.
 (d)Haze値(ソフトフォーカス性)
 本発明の疎水化粒子は、可視光線でのHaze値が好ましくは34%以上であってもよく、より好ましくは40%以上である。上限値としては、例えば90%以下を挙げることができ、好ましくは80%以下である。本発明の疎水化粒子は、未処理の粒子(本発明粒子)と比較して、Haze値が高く、ソフトフォーカス性に優れている。このため、これを化粧料添加剤として化粧料に配合することで、化粧料により高いぼかし効果を付与することができる。
(D) Haze value (soft focus property)
The hydrophobized particles of the present invention may preferably have a Haze value of visible light of 34% or more, more preferably 40% or more. As an upper limit, 90% or less can be mentioned, for example, Preferably it is 80% or less. The hydrophobized particles of the present invention have a high Haze value and excellent soft focusability compared to untreated particles (present particles). For this reason, a high blurring effect can be given to cosmetics by mix | blending this with cosmetics as a cosmetics additive.
 (IV)化粧料添加剤としての用途、およびそれを含む化粧料
 前述するアルミナ-シリカ系立方体粒子(本発明粒子)は、6つの平らな面を持つ立方体形状である。また特定の屈折率、粒径、吸油性、および比表面積を有することから、ソフトフォーカス付与剤として、各種の化粧料に配合することで化粧料のソフトフォーカス性を高めることができる。即ち、化粧料に配合したとき、所定面積内に多数の粒子が存在する結果、光が多重散乱しながら化粧膜を透過することとなり、従って、透過光のうち拡散光が占める割合が多くなり、優れたソフトフォーカス性を付与することができる。
(IV) Use as a cosmetic additive and cosmetics containing the same The above-mentioned alumina-silica-based cubic particles (invention particles) have a cubic shape having six flat surfaces. Moreover, since it has a specific refractive index, a particle size, oil absorption, and a specific surface area, the soft focus property of cosmetics can be improved by mix | blending with various cosmetics as a soft focus provision agent. That is, when blended in cosmetics, as a result of the presence of a large number of particles within a predetermined area, light will be transmitted through the cosmetic film while being scattered multiple times, and therefore the proportion of diffused light in the transmitted light is increased, Excellent soft focus can be imparted.
 このような本発明粒子のソフトフォーカス性は、後述する実験例に示すように、ASTM D1003に準拠し、Hazeメーターにより評価することができる。具体的には、前述の通り、本発明粒子をシリコーンオイルに1:9(質量比)の割合で混合した溶液をPETシート上に厚さ約20μmになるように塗布して形成した塗膜のHaze(曇度)は34%以上、好ましくは40%以上、より好ましくは50%以上と高く、さらに好ましくは55%以上と高く、これは、当該粒子がソフトフォーカス性を高める上で有用であることを示している。 Such soft focusability of the particles of the present invention can be evaluated by a Haze meter in accordance with ASTM D1003 as shown in the experimental examples described later. Specifically, as described above, a coating film formed by applying a solution in which the particles of the present invention are mixed with silicone oil at a ratio of 1: 9 (mass ratio) to a thickness of about 20 μm on a PET sheet. The haze (cloudiness) is 34% or higher, preferably 40% or higher, more preferably 50% or higher, and even more preferably 55% or higher. This is useful for increasing the soft focus of the particles. It is shown that.
 また本発明粒子は、立方体形状を有することから、化粧料に配合することで化粧料に適度な肌すべり性を付与することができる。具体的には、本発明粒子は、粒子状を呈しているため板状体と比較して滑り性が高く、良好な伸展性(伸び広がり性)を示す。一方、平面を有する立方体形状であるため、適度に塗り留まり、肌に密着することでカバー力に優れるという利点がある。 Further, since the particles of the present invention have a cubic shape, it is possible to impart an appropriate skin slipping property to the cosmetic by blending it with the cosmetic. Specifically, since the particles of the present invention are in the form of particles, they have high slipperiness compared to a plate-like body and exhibit good extensibility (elongation spreadability). On the other hand, since it is a cubic shape having a flat surface, there is an advantage that it is excellently covered and can be applied to the skin appropriately and has excellent covering power.
 さらに、本発明粒子は、球状粒子(真球状粒子を含む)とは異なり、平面を有するため平面固着面積が大きいためか粒子同士が絡み合い、肌表面に塗り広げたときに毛穴や小皺等の皮溝の中に落ち込むことなく、平面が肌に密着して上手く蓋をするように被覆して、毛穴や小皺を隠す効果(カバー力、凹凸補正効果)に優れるという利点もある。すなわち、本発明粒子を化粧料に配合すると、肌にスムーズに伸び広げることができるとともに、毛穴や小皺を被覆して平坦化し、化粧後の肌表面をなめらかに整え、肌と一体化するように密着してカバー力を付与することができる。 Furthermore, unlike the spherical particles (including true spherical particles), the particles of the present invention have a flat surface and a large flat surface fixing area, or the particles are entangled with each other, and when spread on the skin surface, skin such as pores and small wrinkles There is also an advantage that it is excellent in the effect of covering pores and small wrinkles (covering power, unevenness correction effect) by covering the flat surface so as to close the skin well without falling into the groove. That is, when the particles of the present invention are blended into cosmetics, they can be spread smoothly on the skin, covered with pores and small wrinkles and smoothed, and the skin surface after makeup is smoothed and integrated with the skin. The cover force can be applied by close contact.
 本発明粒子をソフトフォーカス性付与剤または/および皺隠し効果剤(または凹凸補正剤)として化粧料に配合するときには、配合する化粧料の種類によっても異なるが、化粧料中に少なくとも1~50質量%の量で配合することにより、目的とするソフトフォーカス性を付与することができる。ソフトフォーカス性、肌への伸展性、およびカバー力の観点から、好ましくは5~30質量%である。 When the particles of the present invention are blended in cosmetics as a soft focus imparting agent or / and a hiding effect agent (or an unevenness correcting agent), depending on the type of cosmetics to be blended, at least 1 to 50 mass in the cosmetics. By blending in an amount of%, the desired soft focus property can be imparted. From the viewpoint of soft focus properties, skin extensibility, and covering power, the content is preferably 5 to 30% by mass.
 本発明粒子を配合して調製される化粧料は、液体、乳液、クリーム、パウダー、フォーム、または固形物などの形態で使用されるものであり、このような化粧料の中でも、特にソフトフォーカス性が要求される化粧料にはソフトフォーカス性付与剤として、または/および、毛穴や小皺などの肌の凹凸を補正し、化粧後の肌のキメを整えることが要求される化粧料には皺隠し効果付与剤若しくは凹凸補正剤として配合される。ソフトフォーカス性が要求される化粧料または/および化粧後の肌のキメを整えることが要求される化粧料としては、特に制限されないものの、ファンデーション、コンシーラー、頬紅、白粉(おしろい、ルースパウダー、プレストパウダー)、コントロールカラー、下地料、BBクリーム、アイカラー、口紅等のメイクアップ化粧料;乳液、クリーム、美容液、デイクリーム、日焼け止め等のスキンケア化粧料などを例示することができる。これらの化粧料は、一般に、その用途あるいは使用形態に応じて、膜形成用のポリマー、界面活性剤、増粘剤、水、保湿剤、香料、顔料または染料、シリコーンオイルなどの撥水性オイル成分、紫外線吸収剤、収斂剤、清涼剤、消炎剤、美白剤、各種抽出物、植物・海藻エキスなどの化粧成分を適宜の量で含有しており、上記のような量で本発明粒子を配合することで、そのソフトフォーカス性、皺隠し効果または/および凹凸補正効果を高めることができる。 Cosmetics prepared by blending the particles of the present invention are used in the form of liquids, emulsions, creams, powders, foams, solids, etc. Among such cosmetics, particularly soft focus properties As a soft focus imparting agent for cosmetics that require skin care, and / or for masking cosmetics that require skin irregularities such as pores and wrinkles to correct the skin texture after makeup. It is blended as an effect imparting agent or an unevenness correcting agent. The cosmetics requiring soft focus and / or the cosmetics required to prepare the skin texture after makeup are not particularly limited, but foundation, concealer, blusher, white powder (funny, loose powder, pressed powder) ), Makeup cosmetics such as control color, base material, BB cream, eye color, lipstick, etc .; skin care cosmetics such as milky lotion, cream, beauty liquid, day cream, sunscreen, and the like. These cosmetics generally have a water-repellent oil component such as a film-forming polymer, a surfactant, a thickener, water, a moisturizer, a fragrance, a pigment or a dye, or a silicone oil, depending on the application or use form. , UV absorbers, astringents, refreshing agents, flame retardants, whitening agents, various extracts, plant and seaweed extract and other cosmetic ingredients in appropriate amounts By doing so, the soft focus property, the concealment effect, and / or the unevenness correction effect can be enhanced.
 以下、製造例および実験例に基づいて本発明を説明する。但し、当該製造例および実験例は、本発明の理解を容易にするための例示であり、本発明はこれらに何ら限定されるものではない。また以下の製造例および実験例において、特に言及しない限り、「%」は「質量%」を意味するものとする。また、特に言及しないかぎり、下記の実験は常温(25±5℃)、及び大気圧条件下で実施した。 Hereinafter, the present invention will be described based on manufacturing examples and experimental examples. However, the said manufacture example and experiment example are the illustrations for making an understanding of this invention easy, and this invention is not limited to these at all. In the following production examples and experimental examples, “%” means “% by mass” unless otherwise specified. In addition, unless otherwise specified, the following experiments were performed under normal temperature (25 ± 5 ° C.) and atmospheric pressure conditions.
 下記製造例および実験例で使用した各種測定の方法およびその条件は下記の通りである。
[測定方法]
 (1)蛍光X線(SiO/Alのモル比)
 酸化物換算でのアルカリ金属含有量およびSiO/Alのモル比の算出に必要な元素分析については、(株)リガク製Rigaku ZSX primus IIを用い、ターゲットはRh、分析線はKαで、その他は以下の条件で測定を行った。
〈Si〉管電圧:30kV、管電流:100mA、検出器:PC、分光結晶:PET
〈Al〉管電圧:30kV、管電流:100mA、検出器:PC、分光結晶:PET
 なお、試料は110℃で2時間乾燥した物を基準とした。
Various measurement methods and conditions used in the following production examples and experimental examples are as follows.
[Measuring method]
(1) Fluorescent X-ray (SiO 2 / Al 2 O 3 molar ratio)
For the elemental analysis necessary for calculating the alkali metal content in terms of oxide and the molar ratio of SiO 2 / Al 2 O 3 , Rigaku ZSX primus II manufactured by Rigaku Corporation was used, the target was Rh, and the analytical line was Kα The others were measured under the following conditions.
<Si> Tube voltage: 30 kV, tube current: 100 mA, detector: PC, spectral crystal: PET
<Al> Tube voltage: 30 kV, tube current: 100 mA, detector: PC, spectral crystal: PET
The sample was based on a product dried at 110 ° C. for 2 hours.
 (2)X線回折法による結晶性の評価
 X線回折法による試料粉末の結晶性解析は、(株)リガク製の「試料水平型多目的X線回折装置 Ultima IV」を下記条件で用いて実施した。
X線源:Cu Kα線
ターゲット:Cu
フィルター:湾曲結晶グラファイトモノクロメーター
検出器:シンチレーション検出器
電圧:40kV
電流:40mA
ステップサイズ:0.02°
計数時間:0.6sec/step
スリット:発散スリット2/3° 受光スリット0.3mm SS2/3°。
(2) Evaluation of crystallinity by X-ray diffraction method The crystallinity analysis of the sample powder by X-ray diffraction method was carried out using “Sample horizontal multi-purpose X-ray diffractometer Ultima IV” manufactured by Rigaku Corporation under the following conditions. did.
X-ray source: Cu Kα-ray target: Cu
Filter: Curved crystal graphite monochromator Detector: Scintillation detector Voltage: 40 kV
Current: 40 mA
Step size: 0.02 °
Counting time: 0.6 sec / step
Slit: Divergent slit 2/3 ° Light receiving slit 0.3 mm SS2 / 3 °.
 (3)走査型電子顕微鏡観察による形状と粒径の測定
 走査型電子顕微鏡(JEOL日本電子株式会社製 JSM-6510LA)で試料(乾燥粉末)の写真を撮影し、得られた二次元の写真画像から、試料粉末の粒子形状およびその粒径(一辺の長さ)を測定した。
(3) Measurement of shape and particle size by observation with a scanning electron microscope Taking a photograph of a sample (dry powder) with a scanning electron microscope (JSM-6510LA, manufactured by JEOL JEOL Ltd.), the obtained two-dimensional photographic image From this, the particle shape of the sample powder and its particle size (length of one side) were measured.
 (4)屈折率(液浸法)
 2種の溶媒(α-ブロムナフタレンとケロシン)を混合することで屈折率の異なる複数の溶媒を調製し、調製した各溶媒の屈折率を予めアッベ屈折計で測定しておいた。次いでLarsenの油浸法に従って、試料粉末数mgをスライドガラスの上に採り、溶媒(屈折率既知)を1滴加えて、カバーガラスをかけ、溶媒を浸漬させた後、光学顕微鏡でベッケ線の移動を観察し、その移動から屈折率を求めた。
(4) Refractive index (immersion method)
A plurality of solvents having different refractive indices were prepared by mixing two kinds of solvents (α-bromonaphthalene and kerosene), and the refractive indices of the prepared solvents were measured with an Abbe refractometer in advance. Next, according to Larsen's oil immersion method, several mg of sample powder is taken on a slide glass, a drop of solvent (refractive index is known) is added, a cover glass is applied, the solvent is immersed, and then the Becke line is observed with an optical microscope. The movement was observed, and the refractive index was obtained from the movement.
 (5)体積基準平均粒径(コールターカウンター法)
 200ml容量のビーカーに試料粉末0.5gを計り取り、これに脱イオン水150mlを加えて攪拌下3分間分散させた。この分散液をコールターカウンター(ベックマンコールター社製 精密粒度分布測定装置Multiizer3)に供して、体積基準粒度分布を測定し、体積基準の中位径(D50)を求めた。なお、測定に使用したアパチャー(細孔)チューブは、製造例1及び2で製造した試料(実施例1及び2)については内径50μm、製造例3で製造した試料(実施例3)は内径100μmのものを使用した。なお、比較例はマルバーン社製MastersizerSを用いてレーザー回折法で測定した。
(5) Volume-based average particle size (Coulter counter method)
In a 200 ml beaker, 0.5 g of sample powder was weighed, and 150 ml of deionized water was added thereto and dispersed for 3 minutes with stirring. This dispersion was subjected to a Coulter counter (precision particle size distribution measuring device Multiizer 3 manufactured by Beckman Coulter, Inc.) to measure a volume-based particle size distribution, and a volume-based median diameter (D 50 ) was determined. In addition, the aperture (pore) tube used for the measurement is 50 μm in inner diameter for the samples manufactured in Production Examples 1 and 2 (Examples 1 and 2), and 100 μm in the sample manufactured in Production Example 3 (Example 3). I used one. In addition, the comparative example measured by the laser diffraction method using MastersizerS by Malvern.
 (6)吸油量(JIS K5101-13-2)
 JIS.K.5101-13-1:2004(精製あまに油法)に準拠して測定した。
(6) Oil absorption (JIS K5101-13-2)
JIS. K. Measured according to 5101-13-1: 2004 (refined linseed oil method).
 具体的には、被験試料を測定板の上におき、これに精製あまに油を1回に4~5滴ずつ徐々に加え、その都度、パレットナイフで精製あまに油を試料に練り込む。これを繰り返して塊ができるまで滴下を続け、ペーストが滑らかな硬さになった時点で終りとする。なお、このペーストは、割れたりぼろぼろになったりせずに広げることが可能であり、測定板に軽く付着する程度のものとする。精製あまに油の最終使用量(ml)から下式により、吸油量(ml/100g)を求めることができる。
[数1]
  吸油量(ml/100g)=(100×V)/m
   V:消費したあまに油の容量(ml)
   m:被験試料の質量(g)
 (7)比表面積(BET法)
 Micromeritics社製TriStar3000を使用し、窒素吸着等温線を測定した。比圧0.2以下の窒素吸着等温線からBET法で求めた。
Specifically, a test sample is placed on a measuring plate, and 4 to 5 drops of oil are gradually added to the refined sesame at a time, and each time, the oil is kneaded into the sample with a pallet knife. This is repeated until dripping is continued until the paste has a smooth hardness. In addition, this paste can be spread without cracking or becoming crumbly, and it should be a thing which only adheres to a measurement board lightly. The amount of oil absorption (ml / 100 g) can be obtained from the final amount (ml) of refined linseed oil according to the following equation.
[Equation 1]
Oil absorption (ml / 100g) = (100 × V) / m
V: Volume of oil consumed (ml)
m: Mass of the test sample (g)
(7) Specific surface area (BET method)
Using a TriStar 3000 manufactured by Micromeritics, nitrogen adsorption isotherms were measured. It was determined by the BET method from a nitrogen adsorption isotherm with a specific pressure of 0.2 or less.
 (8)水分吸着量(ガス吸着法)
 日本ベル社製のBelsorp Maxを用い、水蒸気分圧P(P/P)が0.001~0.9の範囲における水分吸着等温線を求めた。前処理は、真空条件下で150℃、2時間の条件で行った。平衡判定時間は300秒とした。水蒸気分圧P(P/P)が0.75における測定値を基材単位質量あたりの吸着量に換算し、水分吸着量(質量%)とした。
(8) Moisture adsorption (gas adsorption method)
Using a Belsorb Max manufactured by Nippon Bell Co., Ltd., a water adsorption isotherm in the range of the water vapor partial pressure P T (P / P 0 ) in the range of 0.001 to 0.9 was determined. The pretreatment was performed under vacuum conditions at 150 ° C. for 2 hours. The equilibrium judgment time was 300 seconds. A measured value at a water vapor partial pressure P T (P / P 0 ) of 0.75 was converted to an adsorption amount per unit mass of the substrate, and was defined as a moisture adsorption amount (% by mass).
 (9)見掛比重(JIS K-6220-1 7.7)
 JIS.K.6220-1 7.7:2001に準拠して、下記の方法に従って測定した。
1)シリンダ(内径22.00±0.05mm、内深100mm)にピストン(外径21.80±0.05mm、長さ115mm、質量190g)を入れて自然に落下させて上部の突出部寸法を0.01mmまで測定する。
2)ピストンを抜き出し、シリンダに被験試料1~5gを、0.01gまで正しくはかり採って注ぎ込み、シリンダの側面に付着した試料を落とすとともに内容物の上面が平らになるようにする。
3)ピストンをシリンダの上部から穏やかに落とし込み、試料面に達した時点でピストンを軽く1回転させてピストンをよく馴染ませる。
4)下記式に従って、見掛比重(g/cm)を算出する。
[数2]
  見掛比重(g/cm)=[m]/(0.7854×d×[h-h])
   m:被験試料の質量(g)
   d :シリンダの直径(cm)
   h:被験試料が存在するときのピストンとシリンダとの高さの差(cm)
   h:被験試料が存在しないときのピストンとシリンダとの高さの差(cm)
(9) Apparent specific gravity (JIS K-6220-1 7.7)
JIS. K. Measurement was performed according to the following method according to 6220-1 7.7: 2001.
1) Put the piston (outer diameter 21.80 ± 0.05mm, length 115mm, mass 190g) into the cylinder (inner diameter 22.00 ± 0.05mm, inner depth 100mm) and let it drop naturally, then the upper protrusion dimension Is measured to 0.01 mm.
2) Pull out the piston, weigh and pour the test sample 1-5g into the cylinder correctly to 0.01g, drop the sample adhering to the side of the cylinder and make the upper surface of the contents flat.
3) Gently drop the piston from the top of the cylinder, and when it reaches the sample surface, lightly rotate the piston once to familiarize it well.
4) The apparent specific gravity (g / cm 3 ) is calculated according to the following formula.
[Equation 2]
Apparent specific gravity (g / cm 3 ) = [m 0 ] / (0.7854 × d 2 × [h 2 −h 1 ])
m 0 : Mass of the test sample (g)
d: Diameter of the cylinder (cm)
h 2 : height difference (cm) between piston and cylinder when test sample is present
h 1 : height difference (cm) between piston and cylinder when no test sample is present
 (10)強熱減量(Ig-loss)(JIS K-0067 4.2)(860℃×20min) JIS.K.0067 4.2:1992に準拠して、下記の方法に従って測定した。ただし860℃×20分の強熱条件を採用した。
1)被験試料を蒸発皿に入れて、その質量を0.1mgの桁まで測定する。
2)試料を入れた蒸発皿を電気炉にいれて、徐々に温度を挙げて860℃で強熱する。3)860℃で20分間強熱した後、蒸発皿を速やかにデシケーターに移して放冷し、放冷後、その質量を0.1mgの桁まで測定する。
4)質量が一定になるまで(恒量)上記3を繰り返し、最終の質量から下記式に従って、見掛比重(g/cm)を算出する。
[数3]
  強熱減量(%)=([W-W]/[W-W])×100
   W:強熱前の被験試料と蒸発皿の質量(g)
   W:強熱後の被験試料と蒸発皿の質量(g)
   W:蒸発皿の質量(g)
(10) Loss on ignition (Ig-loss) (JIS K-0067 4.2) (860 ° C. × 20 min) JIS. K. Measured according to the following method in accordance with 4.2: 1992. However, ignited conditions of 860 ° C. × 20 minutes were adopted.
1) Put a test sample in an evaporating dish and measure its mass to the order of 0.1 mg.
2) Put the evaporating dish containing the sample in an electric furnace, gradually raise the temperature and ignite at 860 ° C. 3) After igniting at 860 ° C. for 20 minutes, the evaporating dish is quickly transferred to a desiccator and allowed to cool, and after standing to cool, its mass is measured to the order of 0.1 mg.
4) The above 3 is repeated until the mass becomes constant (constant weight), and the apparent specific gravity (g / cm 3 ) is calculated from the final mass according to the following formula.
[Equation 3]
Loss on ignition (%) = ([W 1 −W 2 ] / [W 1 −W 3 ]) × 100
W 1 : Mass of test sample and evaporating dish before ignition (g)
W 2 : Mass of test sample and evaporating dish after ignition (g)
W 3 : Mass of evaporating dish (g)
 (11)ハンター白色度(JIS P-8123)
 東京電色製ハンター自動反射率計TR-600 OPTICAL UNITを用いて測定した。
(11) Hunter whiteness (JIS P-8123)
Measurements were made using a Tokyo Denshoku Hunter automatic reflectometer TR-600 OPTICAL UNIT.
 製造例1 アルミナ-シリカ系立方体粒子1(実施例1)の製造方法
 A液として3号ケイ酸ソーダ(SiO=23重量%、NaO=7.4重量%)358.6gと水504.7gを混合調製し、B液としてアルミン酸ソーダ(Al=23重量%、NaO=19.2重量%)338.1g、49重量%苛性ソーダ水溶液117.7g、水480.9gを混合調製した。下記のモル比になるように、A液とB液をそれぞれ781Lずつ混合し、総量1800gに調製した。
[配合条件(モル比)]
  NaO/SiO=1.6
  SiO/Al=1.8
  HO/NaO=38
 具体的には、調製したA液を2L容量のステンレス製容器に入れ、これを60℃に加温しながら攪拌し、攪拌条件下でこれにB液をゆっくり添加混合し、全体が均一なアルミノケイ酸アルカリゲルとした。これを60℃攪拌条件下で3時間熟成した後、さらに攪拌しながら90℃まで昇温し、同条件で2時間反応させて結晶化を行なった。次いで生じた結晶をヌッチェを用いて濾過回収し、水洗して体積基準平均粒径2.3μm、860℃絶乾重量換算195gのA型ゼオライト(結晶性ゼオライト)のケーキを得た。
Production Example 1 Production Method of Alumina-Silica-Based Cubic Particles 1 (Example 1) 358.6 g of No. 3 sodium silicate (SiO 2 = 23 wt%, Na 2 O = 7.4 wt%) as a liquid A and water 504 7 g was mixed and prepared as liquid B, sodium aluminate (Al 2 O 3 = 23 wt%, Na 2 O = 19.2 wt%) 338.1 g, 49 wt% caustic soda aqueous solution 117.7 g, water 480.9 g Were mixed and prepared. Liquid A and Liquid B were mixed by 781 L each so that the following molar ratio was obtained, to prepare a total amount of 1800 g.
[Mixing conditions (molar ratio)]
Na 2 O / SiO 2 = 1.6
SiO 2 / Al 2 O 3 = 1.8
H 2 O / Na 2 O = 38
Specifically, the prepared liquid A is put into a 2 L stainless steel container, and this is stirred while being heated to 60 ° C., and liquid B is slowly added to and mixed with the mixture under the stirring conditions. An acid-alkali gel was used. This was aged for 3 hours under stirring at 60 ° C., then heated to 90 ° C. with further stirring, and allowed to react for 2 hours under the same conditions for crystallization. The resulting crystals were collected by filtration using a Nutsche and washed with water to obtain a cake of A-type zeolite (crystalline zeolite) having a volume-based average particle size of 2.3 μm and 195 g in terms of absolute dry weight at 860 ° C.
 次いでこのA型ゼオライトのケーキから860℃絶乾重量換算150gを分取し、水に分散して25%のA型ゼオライトを含むスラリーを調製した。これに、A型ゼオライト中のNaOに対しHSOのモル比が0.85となる量の14%硫酸水溶液を、攪拌下15時間かけて室温条件下にてゆっくり注加したところpHは4となった。かかる酸処理により、結晶性ゼオライトからアルカリ分が溶出除去されて非晶質化物になる。なお、上記硫酸添加によりスラリーのpHは酸性側に移行するが、効率的に非晶質化するためには、スラリーのpHが4~7の範囲になるように調節することが好ましい。 Next, 150 g of an 860 ° C. absolute dry weight equivalent was separated from this A-type zeolite cake and dispersed in water to prepare a slurry containing 25% A-type zeolite. A 14% sulfuric acid aqueous solution in which the molar ratio of H 2 SO 4 to Na 2 O in the A-type zeolite was 0.85 was slowly added under stirring at room temperature over 15 hours. The pH was 4. By such acid treatment, the alkali component is eluted and removed from the crystalline zeolite to become an amorphous product. Although the pH of the slurry shifts to the acidic side by the addition of sulfuric acid, it is preferable to adjust the pH of the slurry to be in the range of 4 to 7 in order to make it amorphous efficiently.
 硫酸水溶液の注加終了から1時間経過後、得られた非晶質物をヌッチェ(ブフナー漏斗)を用いて濾過回収し、水洗、乾燥した後、坩堝に入れて小型電気炉にて450℃で1時間焼成した。次いでこれを室温まで冷却した後、ジェットミルを用いて粉砕した。得られた粉砕物を走査型電子顕微鏡で観察した画像を図1に示す。図1からわかるように、粉砕物は構成一次粒子のサイズがほぼ揃った立方体の形状を有しており、良好に分散していることが確認された。これを「アルミナ-シリカ系立方体粒子1」(以下、単に「立方体粒子1」ともいう)(実施例1)とし、前述する各種の測定方法に従って、性状および物性を測定した。 After 1 hour from the end of the addition of the aqueous sulfuric acid solution, the obtained amorphous substance was collected by filtration using a Nutsche (Buchner funnel), washed with water, dried, put in a crucible, and placed in a small electric furnace at 450 ° C. Baked for hours. Then, after cooling to room temperature, it was pulverized using a jet mill. The image which observed the obtained ground material with the scanning electron microscope is shown in FIG. As can be seen from FIG. 1, it was confirmed that the pulverized product had a cubic shape in which the sizes of the constituent primary particles were substantially uniform and were well dispersed. This was designated as “alumina-silica cubic particles 1” (hereinafter also simply referred to as “cubic particles 1”) (Example 1), and properties and physical properties were measured according to the various measurement methods described above.
 調製したアルミナーシリカ系立方体粒子1の性状および物性を下記に示す。 The properties and physical properties of the prepared alumina-silica cubic particles 1 are shown below.
 ・SiO/Alのモル比=2
 ・X線回折法による結晶化度:無定形(非晶質)(図4参照)
 ・走査型電子顕微鏡観察による形状と粒径:一辺約0.5~3μmの立方体(図1参照)
 ・浸漬法による屈折率:1.50
 ・コールカウンター法による体積基準平均粒子径:1.8μm
 ・JIS K5101-13-2による吸油量:31ml/100g
 ・BET法による比表面積:4m/g
 ・ガス吸着法による水分吸着量:0.6%
 ・見掛比重:0.63g/ml
 ・強熱減量(Ig-loss):2.7%
 ・ハンター白色度:95%
SiO 2 / Al 2 O 3 molar ratio = 2
-Crystallinity by X-ray diffraction method: amorphous (amorphous) (see Fig. 4)
・ Shape and particle size observed with a scanning electron microscope: a cube with sides of about 0.5-3μm (see Fig. 1)
-Refractive index by immersion method: 1.50
-Volume-based average particle diameter by the Cole counter method: 1.8 μm
-Oil absorption according to JIS K5101-13-2: 31ml / 100g
・ Specific surface area by BET method: 4 m 2 / g
・ Moisture adsorption by gas adsorption method: 0.6%
-Apparent specific gravity: 0.63 g / ml
・ Ignition loss (Ig-loss): 2.7%
・ Hunter whiteness: 95%
 製造例2 アルミナ-シリカ系立方体粒子2(実施例2)の製造方法
 製造例1と同じ組成の原料を用いて、A液として3号ケイ酸ソーダ316.8gと水550.7gを混合調製し、B液としてアルミン酸ソーダ298.7g、49%苛性ソーダ水溶液104.0g、水529.8gを混合調製した。下記のモル比になるように、A液とB液をそれぞれ795Lずつ混合し、総量1800gに調製した。
[配合条件(モル比)]
  NaO/SiO=1.6
  SiO/Al=1.8
  HO/NaO=44
 具体的には、調製したA液を2L容量のステンレス製容器に入れ、これを70℃に加温しながら攪拌し、攪拌条件下でこれにB液をゆっくり添加混合し、全体が均一なアルミノケイ酸アルカリゲルとした。これを70℃攪拌条件下で2時間熟成した後、このアルミノケイ酸アルカリゲルを攪拌しながら90℃まで昇温し、同条件で2時間反応させて結晶化を行なった。次いで生じた結晶をヌッチェを用いて濾過回収し、水洗して体積基準平均粒径2.9μm,860℃絶乾重量換算172gのA型ゼオライト(結晶性ゼオライト)のケーキを得た。
Production Example 2 Production Method of Alumina-Silica Cubic Particles 2 (Example 2) Using raw materials having the same composition as in Production Example 1, 316.8 g of No. 3 sodium silicate and 550.7 g of water were mixed and prepared as Liquid A. As B solution, 298.7 g of sodium aluminate, 104.0 g of 49% sodium hydroxide aqueous solution, and 529.8 g of water were mixed and prepared. In order to obtain the following molar ratio, 795 L of liquid A and liquid B were mixed to prepare a total amount of 1800 g.
[Mixing conditions (molar ratio)]
Na 2 O / SiO 2 = 1.6
SiO 2 / Al 2 O 3 = 1.8
H 2 O / Na 2 O = 44
Specifically, the prepared solution A is placed in a 2 L stainless steel container and stirred while heating to 70 ° C., and solution B is slowly added to and mixed with the solution under stirring conditions. An acid-alkali gel was used. This was aged under stirring at 70 ° C. for 2 hours, and then the alkali aluminosilicate gel was heated to 90 ° C. with stirring and reacted for 2 hours under the same conditions for crystallization. Next, the resulting crystals were collected by filtration using a Nutsche and washed with water to obtain a cake of A-type zeolite (crystalline zeolite) having a volume-based average particle size of 2.9 μm and 172 g in terms of 860 ° C. absolute dry weight.
 次いで、上記ケーキから絶乾重量換算150gを分取し、製造例1と同様に25%のスラリーを調製した。これにA型ゼオライト中のNaOに対するHSOのモル比が0.82となる量の14%硫酸水溶液を注加して酸処理することで非晶質化し、これを濾過、水洗、および乾燥した。さらに、製造例1と同様に、これを坩堝に入れて小型電気炉にて450℃で1時間焼成し、これを室温まで冷却した後、ジェットミルを用いて粉砕した。得られた粉砕物を走査型電子顕微鏡で観察した画像を図2に示す。図2からわかるように、粉砕物は構成一次粒子のサイズがほぼ揃った立方体の形状を有しており、良好に分散していることが確認された。これを「アルミナ-シリカ系立方体粒子2」(以下、単に「立方体粒子2」ともいう)(実施例2)とし、前述する各種の測定方法に従って、性状および物性を測定した。 Next, 150 g of an absolute dry weight equivalent was fractionated from the cake, and a 25% slurry was prepared in the same manner as in Production Example 1. A 14% sulfuric acid aqueous solution having an amount of 0.82 to the molar ratio of H 2 SO 4 to Na 2 O in the A-type zeolite was added to this to make it amorphous, which was filtered and washed with water. And dried. Further, in the same manner as in Production Example 1, this was put in a crucible and fired at 450 ° C. for 1 hour in a small electric furnace, cooled to room temperature, and then pulverized using a jet mill. The image which observed the obtained ground material with the scanning electron microscope is shown in FIG. As can be seen from FIG. 2, the pulverized product has a cubic shape in which the sizes of the constituent primary particles are substantially uniform, and it was confirmed that the pulverized product was well dispersed. This was designated as “alumina-silica cubic particles 2” (hereinafter also simply referred to as “cubic particles 2”) (Example 2), and properties and physical properties were measured according to the various measurement methods described above.
 調製したアルミナーシリカ系立方体粒子2の性状および物性を下記に示す。 The properties and physical properties of the prepared alumina-silica cubic particles 2 are shown below.
 ・SiO/Alのモル比=2
 ・X線回折法による結晶化度:無定形(非晶質)
 ・走査型電子顕微鏡観察による形状と粒径:一辺約1~3.5μmの立方体(図2参照)
 ・浸漬法による屈折率:1.50
 ・コールカウンター法による体積基準平均粒子径:2.5μm
 ・JIS K5101-13-2による吸油量:33ml/100g
 ・BET法による比表面積:3m/g
 ・ガス吸着法による水分吸着量:0.4%
 ・見掛比重:0.73g/ml
 ・強熱減量(Ig-loss):3.2%
 ・ハンター白色度:93%
SiO 2 / Al 2 O 3 molar ratio = 2
-Crystallinity by X-ray diffraction method: Amorphous (amorphous)
・ Shape and particle size observed with a scanning electron microscope: a cube with sides of about 1 to 3.5 μm (see Fig. 2)
-Refractive index by immersion method: 1.50
-Volume-based average particle diameter by the call counter method: 2.5 μm
・ Oil absorption according to JIS K5101-13-2: 33 ml / 100 g
-Specific surface area by BET method: 3 m 2 / g
・ Moisture adsorption by gas adsorption method: 0.4%
-Apparent specific gravity: 0.73 g / ml
・ Ignition loss (Ig-loss): 3.2%
・ Hunter whiteness: 93%
 製造例3 アルミナ-シリカ系立方体粒子3(実施例3)の製造方法
 製造例1と同じ組成の原料を用いて、A液として3号ケイ酸ソーダ128.0gと水758.9gを混合調製し、B液としてアルミン酸ソーダ120.6g、49%苛性ソーダ水溶液42.0g、水750.5gを混合調製した。下記のモル比になるように、A液とB液をそれぞれ857Lずつ混合し、総量1800gに調製した。
[配合条件(モル比)]
  NaO/SiO=1.6
  SiO/Al=1.8
  HO/NaO=120
 具体的には、調製したA液を2L容量のステンレス製容器に入れ、これを70℃に加温しながら攪拌し、攪拌条件下でこれにB液をゆっくり添加混合し、全体が均一なアルミノケイ酸アルカリゲルとした。70℃攪拌下1時間熟成した後、このアルミノケイ酸アルカリゲルを攪拌しながら95℃まで昇温し、同条件で24時間反応させて結晶化を行なった。次いで生じた結晶を濾過回収し、水洗して体積基準平均粒子径11.6μm,絶乾重量換算70gのA型ゼオライト(結晶性ゼオライト)のケーキを得た。
Production Example 3 Production Method of Alumina-Silica Cubic Particles 3 (Example 3) Using raw materials having the same composition as in Production Example 1, 128.0 g of No. 3 sodium silicate and 758.9 g of water were mixed and prepared as Liquid A. As B solution, 120.6 g of sodium aluminate, 42.0 g of 49% aqueous sodium hydroxide solution and 750.5 g of water were mixed and prepared. The liquid A and the liquid B were mixed by 857 L each so that the following molar ratio was obtained, and the total amount was adjusted to 1800 g.
[Mixing conditions (molar ratio)]
Na 2 O / SiO 2 = 1.6
SiO 2 / Al 2 O 3 = 1.8
H 2 O / Na 2 O = 120
Specifically, the prepared solution A is placed in a 2 L stainless steel container and stirred while heating to 70 ° C., and solution B is slowly added to and mixed with the solution under stirring conditions. An acid-alkali gel was used. After aging for 1 hour with stirring at 70 ° C., this aluminosilicate alkali gel was heated to 95 ° C. with stirring and reacted for 24 hours under the same conditions for crystallization. Next, the resulting crystals were collected by filtration and washed with water to obtain a cake of A-type zeolite (crystalline zeolite) having a volume-based average particle diameter of 11.6 μm and an absolute dry weight conversion of 70 g.
 次いで、上記ケーキから絶乾重量換算65gを分取し、製造例1と同様に25%のスラリーを調製した。これにA型ゼオライト中のNaOに対するHSOのモル比が0.95となる量の14%硫酸水溶液を注加して酸処理することで非晶質化し、これを濾過、水洗、および乾燥した。さらに、製造例1と同様に、これを坩堝に入れて小型電気炉にて450℃で1時間焼成し、これを室温まで冷却した後、ジェットミルを用いて粉砕した。得られた粉砕物を走査型電子顕微鏡で観察した画像を図3に示す。図3からわかるように、粉砕物は構成一次粒子のサイズがほぼ揃った立方体の形状を有しており、良好に分散していることが確認された。これを「アルミナ-シリカ系立方体粒子3」(以下、単に「立方体粒子3」ともいう)(実施例3)とし、前述する各種の測定方法に従って、性状および物性を測定した。 Next, 65 g of an absolute dry weight equivalent was separated from the cake, and a 25% slurry was prepared in the same manner as in Production Example 1. A 14% sulfuric acid aqueous solution in such an amount that the molar ratio of H 2 SO 4 to Na 2 O in the A-type zeolite was 0.95 was poured into the solution to make it amorphous, which was filtered and washed with water. And dried. Further, in the same manner as in Production Example 1, this was put in a crucible and fired at 450 ° C. for 1 hour in a small electric furnace, cooled to room temperature, and then pulverized using a jet mill. The image which observed the obtained ground material with the scanning electron microscope is shown in FIG. As can be seen from FIG. 3, it was confirmed that the pulverized product had a cubic shape in which the sizes of the constituent primary particles were substantially uniform and were well dispersed. This was designated as “alumina-silica cubic particles 3” (hereinafter, also simply referred to as “cubic particles 3”) (Example 3), and properties and physical properties were measured according to the various measurement methods described above.
 調製したアルミナ-シリカ系立方体粒子3の性状および物性を下記に示す。 The properties and physical properties of the prepared alumina-silica cubic particles 3 are shown below.
 ・SiO/Alのモル比=2
 ・X線回折法による結晶化度:無定形(非晶質)
 ・走査型電子顕微鏡観察による形状と粒径:一辺約3~12μmの立方体(図3参照) ・浸漬法による屈折率:1.50
 ・コールカウンター法による体積基準平均粒子径:10.3μm
 ・JIS K5101-13-2による吸油量:30ml/100g
 ・BET法による比表面積:4m/g
 ・ガス吸着法による水分吸着量:0.7%
 ・見掛比重:1.01g/ml
 ・強熱減量(Ig-loss):2.6%
 ・ハンター白色度:85%。
SiO 2 / Al 2 O 3 molar ratio = 2
-Crystallinity by X-ray diffraction method: Amorphous (amorphous)
・ Shape and particle size observed with a scanning electron microscope: a cube with a side of about 3 to 12 μm (see FIG. 3) ・ Refractive index by immersion method: 1.50
・ Volume-based average particle diameter by the Cole Counter method: 10.3 μm
-Oil absorption according to JIS K5101-13-2: 30ml / 100g
・ Specific surface area by BET method: 4 m 2 / g
・ Moisture adsorption by gas adsorption method: 0.7%
-Apparent specific gravity: 1.01 g / ml
・ Ignition loss (Ig-loss): 2.6%
Hunter whiteness: 85%.
 製造例4 疎水化アルミナ-シリカ系立方体粒子1-1~3-1(実施例4~6)の製造方法
 疎水化アルミナ-シリカ系立方体粒子1-1~3-1(実施例4~6)の製造に用いた各成分を以下に記載する。
・X-40-9250:前述する式(3)中、bが8、cが4、dが4であるメチル系シリコーンアルコキシオリゴマー(第lオリゴマー)、信越化学工業(株)製
・KR-500:前述する式(6)中、gが10、hが4であるメチル系シリコーンメトキシオリゴマー(第2オリゴマー)、信越化学工業(株)製
・KF-96-1000cs:オイル状のポリジメチルシロキサン、動粘度(25℃):1,000mm/s、信越化学工業(株)製
・D-25:チタン(IV)テトラn‐ブトキシド、信越化学工業(株)製
・2-プロパノール:20℃における蒸気圧4kPa
・水:20℃における蒸気圧2.3kPa
・アルミナ-シリカ系立方体粒子1~3(実施例1~3)
Production Example 4 Production Method of Hydrophobized Alumina-Silica Cubic Particles 1-1 to 3-1 (Examples 4 to 6) Hydrophobized Alumina-Silica Cubic Particles 1-1 to 3-1 (Examples 4 to 6) Each component used for manufacture of is described below.
X-40-9250: a methyl silicone alkoxy oligomer (first oligomer) in which b is 8, c is 4, and d is 4 in the above formula (3), manufactured by Shin-Etsu Chemical Co., Ltd. KR-500 Methyl silicone methoxy oligomer (second oligomer) in which g is 10 and h is 4 in the above formula (6), Shin-Etsu Chemical Co., Ltd. KF-96-1000cs: oily polydimethylsiloxane, Kinematic viscosity (25 ° C.): 1,000 mm 2 / s, manufactured by Shin-Etsu Chemical Co., Ltd. • D-25: Titanium (IV) tetra n-butoxide, manufactured by Shin-Etsu Chemical Co., Ltd. • 2-propanol: at 20 ° C. Vapor pressure 4kPa
Water: vapor pressure 2.3 kPa at 20 ° C
Alumina-silica cubic particles 1 to 3 (Examples 1 to 3)
(1)常温硬化型シリコーン組成物の調製
 500mlガラス容器に、X-40-9250を6.8部、KR-500を27.4部、KF-96-1000csを1.8部、2‐プロパノールを54.0部、D‐25を10.0部の割合で配合し、マグネチックスターラーを用いて、常温で20分間撹拌して、シリコーン組成物(1液型硬化性シリコーン組成物)(密度:0.90g/cm)を300g調製した。当該シリコーン組成物の硬化時の質量減少率は69.5%である(硬化後の質量が硬化前の液質量の30.5%になる)。当該シリコーン組成物を、JIS H 4000準拠の試験用アルミニウム板の表面に塗布し、常温で18時間静置後の塗膜の鉛筆硬度は5H、24時間静置後の塗膜の鉛筆硬度も5Hであった 。
(1) Preparation of room temperature curable silicone composition In a 500 ml glass container, 6.8 parts of X-40-9250, 27.4 parts of KR-500, 1.8 parts of KF-96-1000cs, 2-propanol 54.0 parts, D-25 in a proportion of 10.0 parts, and stirred for 20 minutes at room temperature using a magnetic stirrer, silicone composition (one-part curable silicone composition) (density) : 0.90 g / cm 3 ) was prepared in an amount of 300 g. The mass reduction rate of the silicone composition upon curing is 69.5% (the mass after curing is 30.5% of the liquid mass before curing). The silicone composition is applied to the surface of a test aluminum plate in accordance with JIS H 4000, the pencil hardness of the coating film after standing at room temperature for 18 hours is 5H, and the pencil hardness of the coating film after standing for 24 hours is also 5H. Met .
 斯くして調製した常温硬化型シリコーン組成物を表面処理剤として用いて、実施例1~3で調製した立方体粒子1~3の各々を表面加工処理(疎水化処理)した。 Each of the cubic particles 1 to 3 prepared in Examples 1 to 3 was surface-treated (hydrophobized) using the room temperature curable silicone composition thus prepared as a surface treatment agent.
(2)立方体粒子1~3の表面加工処理(実施例4~6)
 各立方体粒子1~3(実施例1~3)200gと上記(1)で調製した表面処理剤(常温硬化型シリコーン組成物)40gとを混合して、各立方体粒子1~3の表面を疎水化処理した。当該処理は常温で行った。
(2) Surface processing of cubic particles 1 to 3 (Examples 4 to 6)
200 g of each cubic particle 1 to 3 (Examples 1 to 3) and 40 g of the surface treatment agent (room temperature curable silicone composition) prepared in the above (1) were mixed to make the surfaces of the cubic particles 1 to 3 hydrophobic. Processed. The treatment was performed at room temperature.
 具体的には、各立方体粒子1~3を撹拌機(カワタ社製スーパーミキサー・ピッコロ)に仕込み、1000rpmで撹拌しながら、表面処理剤(常温硬化型シリコーン組成物)を2分かけて滴下し、5分間撹拌を継続して均一になるまで混合した。常温で1日静置後、ジェットミル(セイシン企業社製A-Oジェットミル)で解砕し、疎水化アルミナ-シリカ系立方体粒子1―1~3-1(以下、単に「疎水化立方体粒子1-1~3-1」または「立方体粒子1-1~3-1」ともいう)(実施例4~6)を得た。 Specifically, each of the cubic particles 1 to 3 is charged into a stirrer (Kawata Supermixer Piccolo), and the surface treatment agent (room temperature curable silicone composition) is dropped over 2 minutes while stirring at 1000 rpm. Stirring was continued for 5 minutes and mixed until uniform. After standing at room temperature for 1 day, it was pulverized with a jet mill (AO jet mill manufactured by Seishin Enterprise Co., Ltd.) and hydrophobized alumina-silica cubic particles 1-1 to 3-1 (hereinafter simply referred to as “hydrophobized cubic particles”). 1-1 to 3-1 ”or“ cubic particles 1-1 to 3-1 ”) (Examples 4 to 6).
 表1に、疎水化アルミナ-シリカ系立方体粒子1-1~3-1(実施例4~6)について、立方体粒子1~3の配合量、常温硬化型シリコーン組成物の配合量、表面処理後の立方体粒子に対する硬化後のシリコーン組成物の質量%を合わせて記載する。 Table 1 shows the amount of the cubic particles 1 to 3, the amount of the room temperature curable silicone composition, and the surface treatment for the hydrophobized alumina-silica cubic particles 1-1 to 3-1 (Examples 4 to 6). The mass% of the silicone composition after curing with respect to the cubic particles is also described.
 製造例5 疎水化アルミナ-シリカ系立方体粒子1-2~3-2(実施例7~9)の製造方法
 疎水化アルミナ-シリカ系立方体粒子1-2~3-2(実施例7~9)の製造に用いた各成分を以下に記載する。
・KF-9901:メチルハイドロジェンポリシロキサン溶液(信越化学工業(株)製)・アルミナ-シリカ系立方体粒子1~3(実施例1~3)
Production Example 5 Production Method of Hydrophobized Alumina-Silica Cubic Particles 1-2 to 3-2 (Examples 7 to 9) Hydrophobized Alumina-Silica Cubic Particles 1-2 to 3-2 (Examples 7 to 9) Each component used for manufacture of is described below.
KF-9901: Methyl hydrogen polysiloxane solution (manufactured by Shin-Etsu Chemical Co., Ltd.) Alumina-silica cubic particles 1 to 3 (Examples 1 to 3)
(1)立方体粒子1~3の表面加工処理(実施例7~9)
500mlガラス容器に、KF-9901を30部、2‐プロパノールを70部を配合し、マグネチックスターラーを用いて、常温で20分間撹拌して、KF-9901希釈液を300g調製した。当該希釈液の表面処理後の質量減少率は70%である(表面処理後の質量が希釈液質量の30%になる)。各立方体粒子1~3(実施例1~3)200gと上記(1)で調製した表面処理剤(KF-9901希釈液)40gとを混合して、各立方体粒子1~3の表面を疎水化処理した。当該処理は常温で行った。
(1) Surface processing of cubic particles 1 to 3 (Examples 7 to 9)
In a 500 ml glass container, 30 parts of KF-9901 and 70 parts of 2-propanol were blended and stirred for 20 minutes at room temperature using a magnetic stirrer to prepare 300 g of a KF-9901 diluted solution. The mass reduction rate after the surface treatment of the diluted solution is 70% (the mass after the surface treatment is 30% of the diluted solution mass). 200 g of each cubic particle 1 to 3 (Examples 1 to 3) and 40 g of the surface treatment agent (KF-9901 diluted solution) prepared in the above (1) were mixed to hydrophobize the surface of each cubic particle 1 to 3 Processed. The treatment was performed at room temperature.
 具体的には、各立方体粒子1~3を撹拌機(カワタ社製スーパーミキサー・ピッコロ)に仕込み、1000rpmで撹拌しながら、表面処理剤(KF-9901希釈液)を2分かけて滴下し、5分間撹拌を継続して均一になるまで混合した。得られた粉体を50℃で2時間乾燥後、180℃3時間熱処理を行った。さらに、ジェットミル(セイシン企業社製A-Oジェットミル)で解砕し、疎水化アルミナ-シリカ系立方体粒子1―2、2-2、3-2(以下、単に「疎水化立方体粒子1-2~3-2」または「立方体粒子1-2~3-2」ともいう)(実施例7~9)を得た。 Specifically, each of the cubic particles 1 to 3 was charged into a stirrer (Kawata Supermixer Piccolo), and the surface treatment agent (KF-9901 diluted solution) was added dropwise over 2 minutes while stirring at 1000 rpm. Stirring was continued for 5 minutes and mixed until uniform. The obtained powder was dried at 50 ° C. for 2 hours and then heat-treated at 180 ° C. for 3 hours. Further, it was pulverized by a jet mill (AO jet mill manufactured by Seishin Enterprise Co., Ltd.), and hydrophobized alumina-silica cubic particles 1-2, 2-2, 3-2 (hereinafter simply referred to as “hydrophobized cube particles 1- 2 to 3-2 ”or“ cubic particles 1-2 to 3-2 ”) (Examples 7 to 9).
 表1に、疎水化アルミナ-シリカ系立方体粒子1-2~3-2(実施例7~9)について、立方体粒子1~3の配合量、KF-9901希釈液(シリコーン組成物)の配合量、表面処理後の立方体粒子に対する硬化後のシリコーン組成物の質量%を合わせて記載する。 Table 1 shows the amount of the cubic particles 1 to 3 and the amount of the KF-9901 diluent (silicone composition) for the hydrophobized alumina-silica cubic particles 1-2 to 3-2 (Examples 7 to 9). The mass% of the silicone composition after curing with respect to the cubic particles after the surface treatment is described together.
 製造例6 疎水化アルミナ-シリカ系立方体粒子(実施例10~24)の製造方法
 前記製造例4において、表面処理後のアルミナ-シリカ系立方体粒子1~3(実施例1~3)100質量部に対する硬化後の常温硬化型シリコーン組成物の割合が1質量部または2質量部(常温硬化型シリコーン組成物のdry質量%:1質量%または2質量%)になるように配合量を調整する以外は、製造例4と同様の方法で、疎水化アルミナ-シリカ系立方体粒子1-3~3-3(dry質量%:1質量%)(実施例10~12)、及び疎水化アルミナ-シリカ系立方体粒子1-4~3-4(dry質量%:2質量%)(実施例13~15)を調製した。また前記製造例5において、表面処理後のアルミナ-シリカ系立方体粒子1~3(実施例1~3)100質量部に対する硬化後のシリコーン組成物(メチルハイドロジェンポリシロキサン)の割合が1質量部または2質量部(シリコーン組成物のdry質量%:1質量%または2質量%)になるように配合量を調整する以外は、製造例5と同様の方法で、疎水化アルミナ-シリカ系立方体粒子1-5~3-5(dry質量%:1質量%)(実施例16~18)、及び疎水化アルミナ-シリカ系立方体粒子1-6~3-6(dry質量%:2質量%)(実施例19~21)を調製した。なお、これらの疎水化アルミナ-シリカ系立方体粒子は、以下、単に「疎水化立方体粒子」または「立方体粒子」ともいう。
Production Example 6 Production Method of Hydrophobized Alumina-Silica Cubic Particles (Examples 10 to 24) In Production Example 4, 100 parts by mass of alumina-silica cubic particles 1 to 3 (Examples 1 to 3) after surface treatment Other than adjusting the blending amount so that the ratio of the normal temperature curable silicone composition after curing to 1 mass part or 2 mass parts (dry mass% of the normal temperature curable silicone composition: 1 mass% or 2 mass%) Were the same methods as in Production Example 4, but hydrophobized alumina-silica cubic particles 1-3 to 3-3 (dry mass%: 1 mass%) (Examples 10 to 12), and hydrophobized alumina-silica system. Cubic particles 1-4 to 3-4 (dry mass%: 2 mass%) (Examples 13 to 15) were prepared. In addition, in Production Example 5, the ratio of the cured silicone composition (methyl hydrogen polysiloxane) to 100 parts by mass of the alumina-silica cubic particles 1 to 3 (Examples 1 to 3) after the surface treatment was 1 part by mass. Alternatively, the hydrophobized alumina-silica-based cubic particles are prepared in the same manner as in Production Example 5 except that the blending amount is adjusted to 2 parts by mass (dry mass% of the silicone composition: 1 mass% or 2 mass%). 1-5 to 3-5 (dry mass%: 1 mass%) (Examples 16 to 18), and hydrophobized alumina-silica-based cubic particles 1-6 to 3-6 (dry mass%: 2 mass%) ( Examples 19-21) were prepared. Hereinafter, these hydrophobized alumina-silica-based cubic particles are also simply referred to as “hydrophobized cubic particles” or “cubic particles”.
 実験例1 ソフトフォーカス性能の評価
 前記製造例1~3で製造した立方体粒子1~3(実施例1~3)、製造例4で疎水化処理された立方体粒子1-1~3-1(実施例4~6)、製造例5で疎水化処理された立方体粒子1-2~3-2(実施例7~9)、製造例6で疎水化処理された立方体粒子1-3~3-3(実施例10~12)、立方体粒子1-4~3-4(実施例13~15)、立方体粒子1-5~3-5(実施例16~18)、及び立方体粒子1-6~3-6(実施例19~21)、並びに市販の真球状シリカ粒子1~4(以下、単に「真球状粒子1~4」という)(比較例1~4)をそれぞれシリコーンオイル(信越化学製KF-96-1000CS、屈折率1.40)と質量比1:9の割合で混合し、PETシート上に,バーコーター(No.9)を用いて厚さ約20μmの塗膜を作製した。なお、塗膜作製に際して、実施例1~3の立方体粒子は、表1記載のデータについては、シリコーンオイルと混合する前に、ノニオン性界面活性剤エマルゲンA-500(花王製)0.001%を含む水中に分散させて、超音波をかけた後、沈降粒子を除いて乾燥したものを使用した(水簸分級)。一方、実施例1~3の立方体粒子の表3記載のデータについては、、水簸分級をすることなくそのままシリコーンオイルと混合して使用した。
Experimental Example 1 Evaluation of Soft Focus Performance Cube Particles 1 to 3 Produced in Production Examples 1 to 3 (Examples 1 to 3), Cubic Particles 1-1 to 3-1 Hydrophobized in Production Example 4 (Execution Example) Examples 4 to 6), cubic particles 1-2 to 3-2 hydrophobized in Production Example 5 (Examples 7 to 9), and cubic particles 1-3 to 3-3 hydrophobized in Production Example 6 (Examples 10 to 12), cubic particles 1-4 to 3-4 (Examples 13 to 15), cubic particles 1-5 to 3-5 (Examples 16 to 18), and cubic particles 1-6 to 3 -6 (Examples 19 to 21) and commercially available true spherical silica particles 1 to 4 (hereinafter, simply referred to as “true spherical particles 1 to 4”) (Comparative Examples 1 to 4) were each made of silicone oil (KF manufactured by Shin-Etsu Chemical). -96-1000CS, with a refractive index of 1.40) and a mass ratio of 1: 9. To prepare a coating film having a thickness of about 20μm by using a coater (No.9). In preparing the coating film, the cubic particles of Examples 1 to 3 were obtained from 0.001% of the nonionic surfactant Emulgen A-500 (manufactured by Kao) before mixing with silicone oil. After being dispersed in water containing water and subjected to ultrasonic waves, the dried particles were used after removing the precipitated particles (waterpox classification). On the other hand, the data shown in Table 3 for the cubic particles of Examples 1 to 3 were used as they were mixed with silicone oil without being subjected to elutriation classification.
 ソフトフォーカス性は、ASTM D1003に準拠し、Hazeメーター(BYKガードナー社製 Haze-gard plus(東洋精機製作所))で塗膜のHaze(曇度)を測定することにより評価した。粒子として、実施例1~9の立方体粒子、及び比較例1~4の真球状シリカ粒子を用いて作製した塗膜のHazeを表1に、実施例10~21の立方体粒子を用いて作製した塗膜のHazeを表2に示す。なお、表2には、実施例1~3の立方体粒子を水簸分級をすることなくシリコーンオイルと混合して作製した塗膜のHazeも併せて示す(実施例(1)~(3))。 Soft focus property was evaluated by measuring the haze (cloudiness) of the coating film with a Haze meter (Haze-gard plus (Toyo Seiki Seisakusho) manufactured by BYK Gardner) in accordance with ASTM D1003. Table 1 shows the haze of the coatings prepared using the cubic particles of Examples 1 to 9 and the true spherical silica particles of Comparative Examples 1 to 4 as particles, and the cubic particles of Examples 10 to 21 were used. Table 2 shows the haze of the coating film. Table 2 also shows the haze of the coatings prepared by mixing the cubic particles of Examples 1 to 3 with silicone oil without classifying them (Examples (1) to (3)). .
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1及び2に示すように、立方体形状を有する本発明のアルミナ-シリカ系立方体粒子1~3(実施例1~3)は、真球形状を有するシリカ粒子(比較例1~4)よりもHaze値が高く、ソフトフォーカス性に優れていることがわかる。また本発明のアルミナ-シリカ系立方体粒子1~3(実施例1~3)をさらに疎水化処理することで、さらにHaze値を高くし、ソフトフォーカス性を向上させることができることが確認された(実施例4~21)。 As shown in Tables 1 and 2, the alumina-silica-based cubic particles 1 to 3 of the present invention having a cubic shape (Examples 1 to 3) are more than the silica particles having a true spherical shape (Comparative Examples 1 to 4). It can be seen that the Haze value is high and the soft focus property is excellent. Further, it was confirmed that by further hydrophobizing the alumina-silica-based cubic particles 1 to 3 (Examples 1 to 3) of the present invention, the Haze value can be further increased and the soft focus property can be improved ( Examples 4 to 21).
 参考のため、立方体粒子1~3(実施例1~3)と真球状粒子1~4(比較例1~4)の物性値(屈折率、体積基準平均粒子径、吸油量、比表面積、水分吸着量)を対比した表を表3に示す。 For reference, the physical properties (refractive index, volume-based average particle diameter, oil absorption, specific surface area, moisture content) of the cubic particles 1 to 3 (Examples 1 to 3) and the spherical particles 1 to 4 (Comparative Examples 1 to 4) A table comparing the amount of adsorption) is shown in Table 3.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実験例2 皺隠し効果の評価
 前記製造例1~3で製造した立方体粒子1~3(実施例1~3)、および市販の真球状粒子1~4(比較例1~4)のそれぞれについて、下記の方法により皺隠し効果を評価した。
Experimental Example 2 Evaluation of hiding effect For each of the cubic particles 1 to 3 (Examples 1 to 3) produced in Production Examples 1 to 3 and commercially available spherical particles 1 to 4 (Comparative Examples 1 to 4), The hiding effect was evaluated by the following method.
 (1)評価方法
i.手芸用乾燥豚皮を3.0cm×3.0cmに切り出し、片側半分をセロテープ(登録商標)で保護する。
ii.セロテープ(登録商標)で保護していない片側半分に各種の粒子(実施例1~3、比較例1~4)を0.01g塗布し、指で上下に30往復して馴染ませる。
iii.スライドグラスの中央(各端から2.45cm)に両面テープで豚皮を貼り付け、固定する。
iv.暗室でリングライトで照射しながら、カメラレンズ位置を13.5cmの高さに三脚を固定、ホワイトバランスを4000Kに設定し、豚皮表面を撮影した。
(1) Evaluation method i. Cut dry pork skin for handicraft into 3.0 cm x 3.0 cm, and protect one half with cello tape (registered trademark).
ii. 0.01 g of various particles (Examples 1 to 3 and Comparative Examples 1 to 4) are applied to one half of one side that is not protected with Cellotape (registered trademark), and are conditioned by reciprocating up and down 30 times with a finger.
iii. Attach the pig skin to the center of the slide glass (2.45 cm from each end) with double-sided tape and fix it.
iv. While irradiating with a ring light in the dark room, the camera lens position was fixed at a height of 13.5 cm, the white balance was set to 4000K, and the pig skin surface was photographed.
 カメラ:OLYMPUS PEN E-PL8
 レンズ:M.ZUIKO DIGITAL ED 30mm f3.5 Marco 絞り値 F4.0
 シャッタースピード 1/125秒。
v.撮影した写真を目視で観察して、皺隠しの効果を下記の基準に基づいて評価する。
Camera: OLYMPUS PEN E-PL8
Lens: M.M. ZUIKO DIGITAL ED 30mm f3.5 Marco Aperture value F4.0
Shutter speed 1/125 seconds.
v. The photograph taken is visually observed, and the effect of concealment is evaluated based on the following criteria.
 ◎(著しく効果あり):豚皮表皮の凹凸が著しく目立たない
 ○(効果あり):豚皮表皮の凹凸が目立たない
 △(効果ややあり):粒子を塗布していない表面に比較して豚皮表皮の凹凸がぼけている。
 ×(効果なし):粒子を塗布していない表面に比較して豚皮表皮の凹凸のぼかしが不十分である。
◎ (Remarkably effective): The unevenness of the pig skin epidermis is not noticeable ○ (Effective): The unevenness of the pig skin epidermis is not conspicuous △ (Slightly effective): Pig skin compared to the surface where the particles are not applied The unevenness of the epidermis is blurred.
X (no effect): The unevenness of the surface of the pig skin is insufficient as compared with the surface on which no particles are applied.
 (2)評価結果
 結果を、前述する表3に纏めて示す。
(2) Evaluation results The results are summarized in Table 3 described above.
 表1および表2の結果から、立方体形状からなる本発明粒子(実施例1~3、4~21)は、真球状粒子1~4(比較例1~4)と比較して、屈折率および体重基準平均粒径はほぼ同じにも関わらず、いずれもHaze値が有意に高く、ソフトフォーカス性が高いことが確認された。その理由として、屈折率が高いこと、本発明粒子が立方体形状であることを挙げることができる。一般に、多孔質粒子は光分散性が高くソフトフォーカス性が高いと言われるが、本発明粒子は、その比表面積、水分吸着量および吸油量から多孔質とは言い難い。また本発明粒子と真球状粒子3(比較例3)とは、体重基準平均粒径、比表面積、水分吸着量および吸油量がいずれも類似する。しかし、本発明粒子のほうがHaze値は有意に高いことから、その違いは、本発明粒子が屈折率が高いこと、および球形ではなく、立方体形状であることに依るものと考えることができる。なお、本発明粒子の結果ではないものの、真球状粒子1(比較例1)と真球状粒子3(比較例3)との比較、真球状粒子2(比較例2)と真球状粒子4(比較例4)との比較から、Haze値(ソフトフォーカス性)は、吸油性、比表面積、および水分吸着量が低い粒子、つまり多孔質とは言い難い粒子(非多孔質を含む)のほうが高くなる傾向が認められた。このことからも多孔質粒子はその細孔に溶媒のオイルが浸透し濡れることにより、空気とシリカの屈折率差よりオイルとシリカの屈折率差が小さくなることから、界面の光散乱効果が少なくなりHaze値(ソフトフォーカス性)が低くなったと思われる。表1及び表2の結果から、立方体形状からなる本発明粒子でも、表面を疎水化処理することでHaze値は高くなり、ソフトフォーカス性が向上することが確認された。その効果は、常温硬化シリコーン処理により良好に認められた。また疎水化の表面処理量が多くなるほどHaze値も高くなる傾向が認められた。 From the results of Tables 1 and 2, the particles of the present invention having a cubic shape (Examples 1 to 3, 4 to 21) are compared with the spherical particles 1 to 4 (Comparative Examples 1 to 4). Although the weight-based average particle diameter is almost the same, it was confirmed that all have significantly high Haze values and high soft focus properties. The reason is that the refractive index is high and the particles of the present invention are in a cubic shape. In general, porous particles are said to have high light dispersibility and high soft focus, but the particles of the present invention are hardly porous due to their specific surface area, moisture adsorption amount and oil absorption amount. In addition, the present invention particles and the true spherical particles 3 (Comparative Example 3) are similar in weight-based average particle diameter, specific surface area, moisture adsorption amount, and oil absorption amount. However, since the Haze value of the particles of the present invention is significantly higher, the difference can be attributed to the fact that the particles of the present invention have a high refractive index and are not spherical but cubic. In addition, although it is not a result of this invention particle | grains, the comparison of the spherical particle 1 (comparative example 1) and the spherical particle 3 (comparative example 3), the spherical particle 2 (comparative example 2), and the spherical particle 4 (comparison) From the comparison with Example 4), the Haze value (soft focus property) is higher for particles with low oil absorption, specific surface area, and moisture adsorption, that is, particles that are difficult to say porous (including non-porous). A trend was observed. This also indicates that the porous particle has less oil scattering effect at the interface because the solvent oil penetrates into the pores and gets wet, so the difference in refractive index between the oil and silica is smaller than the difference in refractive index between air and silica. It seems that the haze value (soft focus property) has become low. From the results in Tables 1 and 2, it was confirmed that even in the present invention particles having a cubic shape, the Haze value is increased and the soft focus property is improved by hydrophobizing the surface. The effect was well recognized by room temperature curing silicone treatment. Further, it was recognized that as the surface treatment amount for hydrophobization increases, the Haze value tends to increase.
 また表3の結果から、アルミナ-シリカ系立方体形状からなる本発明粒子(実施例1~3、4~21)は、シリカ真球状粒子1~4(比較例1~4)と比較して、体重基準平均粒径はほぼ同じにも関わらず、いずれも皺隠し効果が有意に高かった。これは真球状粒子1~4は、真球状の微粒子であることから皺等の肌の皮溝の中に落ち込み易く充填されてしまう結果、皺部分の分布密度が高くなり、却って皺が目立ちやすくなるのに対して、立方体形状である本発明粒子は、平面固着面積が大きいためか複数粒子が絡み合い、肌表面に塗り広げたときに毛穴や小皺等の皮溝の中に落ち込むことなく、平面が肌に密着して皮溝に落ちずに蓋をするように皮膚を被覆することで、凹凸を上手くカバーすることができることによるものと考えられる。こうした本発明粒子の皺隠し効果(皮膚被覆効果、凹凸補正効果)は、体重基準平均粒径が大きいほど高くなる傾向が認められた。 Further, from the results in Table 3, the particles of the present invention (Examples 1 to 3, 4 to 21) having an alumina-silica cubic shape are compared with the silica spherical particles 1 to 4 (Comparative Examples 1 to 4). Although the weight-based average particle size was almost the same, all had a significantly high concealment effect. Since the spherical particles 1 to 4 are spherical particles, they are easily filled into the skin crevice such as wrinkles. As a result, the distribution density of wrinkles increases, and the wrinkles are conspicuous. On the other hand, the particles of the present invention that are in the shape of a cube have a large flat surface fixing area, or a plurality of particles are entangled, and when spread on the skin surface, the particles do not fall into the skin grooves such as pores and small wrinkles. It is considered that the unevenness can be satisfactorily covered by covering the skin so as to close the skin and cover the skin without falling into the skin groove. It was recognized that the hiding effect (skin covering effect, unevenness correcting effect) of the particles of the present invention tended to increase as the weight-based average particle size increased.
 なお、各粒子(実施例1~21、比較例1~4)はいずれも肌触りが良好であり、また乾燥豚皮上でのすべり性も良好であった。特にアルミナ-シリカ系立方体形状からなる本発明粒子(実施例1~3)及びその疎水化粒子(実施例4~21)は、適度なすべり性と留まり性の両方を備えており、肌になめらかに塗り広げることができるとともに適度に留まることで、肌への密着性にも優れることが期待される。 Each particle (Examples 1 to 21 and Comparative Examples 1 to 4) had a good touch and also had good sliding properties on dried pork skin. In particular, the particles of the present invention (Examples 1 to 3) and the hydrophobized particles (Examples 4 to 21) having an alumina-silica cubic shape have both appropriate slip properties and retention properties, and are smooth on the skin. It is expected to have excellent adhesion to the skin by being able to spread on the skin and staying moderately.
 実験例3 滑り性の評価(摩擦係数)
 前記製造例1~3で製造した立方体粒子1~3(実施例1~3)、製造例4で疎水化処理された立方体粒子1-1~3-1(実施例4~6)、製造例5で疎水化処理された立方体粒子1-2~3-2(実施例7~9)のそれぞれについて、下記の方法により滑り性を評価した。具体的には、各被験試料の滑り性は、摩擦感テスター(摩擦感テスターKSE-SE:カトーテック社製)を用いて得た摩擦係数により評価した。
Experimental Example 3 Evaluation of slipperiness (friction coefficient)
Cubic particles 1 to 3 produced in Production Examples 1 to 3 (Examples 1 to 3), Cubic particles 1-1 to 3-1 (Examples 4 to 6) hydrophobized in Production Example 4 and Production Examples Each of the cubic particles 1-2 to 3-2 (Examples 7 to 9) hydrophobized in Step 5 was evaluated for the slip property by the following method. Specifically, the slipperiness of each test sample was evaluated by a friction coefficient obtained using a friction feeling tester (friction feeling tester KSE-SE: manufactured by Kato Tech Co., Ltd.).
 なお、摩擦感テスターに供するために、被験試料は下記方法によって調製した。
(i)被験試料5mgを秤りとる。
(ii)摩擦感テスター上に、幅3cmの人工皮膚(出光テクノファイン社製のサプラーレ(登録商標):トップ:ポリウレタン(プロテインパウダー配合)100%、ベース基布:レーヨン80%、ナイロン20%)を置く。
(iii)秤り取った被験試料を上記人工皮膚の上に分散して置き、ゴム手袋で3×8cmの範囲に均一に塗布する。
(iv)荷重25g、速度1mm/秒の条件で、摩擦感テスターによる自動測定を行い平均摩擦係数(MIU)を得る。
(v)この操作を3回行い、平均値を平均摩擦係数とする。
In addition, in order to use for a friction tester, the test sample was prepared by the following method.
(I) Weigh 5 mg of the test sample.
(Ii) Artificial skin with a width of 3 cm on a friction tester (Supplare (registered trademark) manufactured by Idemitsu Techno Fine: Top: 100% polyurethane (containing protein powder), base fabric: 80% rayon, 20% nylon) Put.
(Iii) The weighed test sample is dispersed and placed on the artificial skin, and is uniformly applied in a 3 × 8 cm range with rubber gloves.
(Iv) Under the conditions of a load of 25 g and a speed of 1 mm / second, automatic measurement by a friction tester is performed to obtain an average friction coefficient (MIU).
(V) This operation is performed three times, and the average value is defined as the average friction coefficient.
 測定結果を表3に示す。 Table 3 shows the measurement results.
 実験例4 隠ぺい効果および皺ぼかし効果の評価(光学的評価)
 前記立方体粒子1~3(実施例1~3)、疎水化処理された立方体粒子1-1~3-1(実施例4~6)立方体粒子1-2~3-2(実施例7~9)、立方体粒子1-3~3-3(実施例10~12)、立方体粒子1-4~3-4(実施例13~15)、立方体粒子1-5~3-5(実施例16~18)及び立方体粒子1-6~3-6(実施例19~21)のそれぞれについて、下記の方法により皺隠し作用を評価した。具体的には、乾燥豚皮に各被験試料を塗布し、素地に対する隠ぺい効果と皺ぼかし効果を光学的に評価した。乾燥豚皮は、表面に数ミクロンの凹凸がある、50~100ミクロンの楕円形の凸部と、幅5~20μm、深さ5~20μmの凹部(溝)から形成されており、小皺を有する人の肌(皮膚)に類似した皮膚モデルである。なお、隠ぺい性指数、皺ぼかし性指数ともに数値が小さいほど、優れた化粧品原料であるといえる。
Experimental Example 4 Evaluation of hiding effect and blurring effect (optical evaluation)
Cubic particles 1 to 3 (Examples 1 to 3), hydrophobized cubic particles 1-1 to 3-1 (Examples 4 to 6), cubic particles 1-2 to 3-2 (Examples 7 to 9) ), Cubic particles 1-3 to 3-3 (Examples 10 to 12), cubic particles 1-4 to 3-4 (Examples 13 to 15), cubic particles 1-5 to 3-5 (Examples 16 to 18) and cubic particles 1-6 to 3-6 (Examples 19 to 21) were evaluated for the hiding effect by the following method. Specifically, each test sample was applied to dried pork skin, and the concealing effect and the blurring effect on the substrate were optically evaluated. Dried pork skin is composed of an elliptical convex part of 50 to 100 microns with concaves and convexes of several microns on the surface, a concave part (groove) having a width of 5 to 20 μm and a depth of 5 to 20 μm, and has a small wrinkle. It is a skin model similar to human skin (skin). In addition, it can be said that it is an outstanding cosmetic raw material, so that a numerical value is small in both the concealment index and the wrinkle blurring index.
[隠ぺい性指数と皺ぼかし性指数の評価手順]
(1)3cm×3cm手芸用乾燥豚皮の半分に被験試料0.1gを塗布する。
(2)この豚皮をスライドグラス(幅7.9cm)の両端から2.45cm離れた領域内に貼り付ける。(3)光を遮断した暗室の中で、リングライト(アームシステム社製実体顕微鏡用LEDリング照明LED-R72、強さ2.0)で照射しながら、レンズ(オリンパス(株)製M.ZUIKO DIGTAL ED 30mm f3.5 Macro )を装着したカメラ(オリンパス(株)製OLYMPUS PEN E-PL8)を、レンズとスライドガラス(被験試料)との距離が13.3cmになるように調整固定して撮影する(撮影条件:マニュアルモードでホワイトバランス4000K、絞り値F5.6、シャッタースピード1/125秒、ISO感度1250)。
(4)画像編集による明度の算出:
 加工ソフト(ex.フリーソフトGimp)をインストールしたPCに撮影した画像を取り込み、被験試料を塗布していない乾燥豚皮領域(塗布領域)と被験試料を塗布した乾燥豚皮領域(非塗布領域)のそれぞれについて、凹凸部のピクセルを無作為に50点選ぶ。
(5)各ピクセルをSUV変換し、各領域(塗布領域、非塗布領域)の凹部と凸部の各々について明度(V値)を測定し、その平均値を算出する。
(6)得られた平均値を、下式に当てはめて隠ぺい性と皺ぼかし性を評価する。下式によれば、隠ぺい性指数、皺ぼかし性指数ともに値が0に近いほど良好な傾向を示す。
[Evaluation procedure for concealment index and blurring index]
(1) Apply 0.1 g of the test sample to half of 3 cm × 3 cm dry pork skin for handicrafts.
(2) The pig skin is pasted in an area 2.45 cm away from both ends of a slide glass (width 7.9 cm). (3) A lens (M.ZUIKO DIGTAL manufactured by Olympus Co., Ltd.) is irradiated with a ring light (LED ring illumination LED-R72 for stereo microscopes manufactured by Arm Systems Co., Ltd., intensity 2.0) in a dark room where light is blocked. ED 30mm f3.5 Macro) (OLYMPUS PEN E-PL8 manufactured by Olympus Co., Ltd.) is adjusted and fixed so that the distance between the lens and the slide glass (test sample) is 13.3 cm. (Shooting conditions: white balance 4000K, aperture value F5.6, shutter speed 1/125 sec, ISO sensitivity 1250 in manual mode).
(4) Calculation of brightness by image editing:
Captured images are taken on a PC installed with processing software (ex. Free software Gimp), and a dry pig skin area where the test sample is not applied (application area) and a dry pig skin area where the test sample is applied (non-application area) For each of the above, randomly select 50 pixels on the uneven part.
(5) Each pixel is subjected to SUV conversion, the brightness (V value) is measured for each of the concave and convex portions in each region (coating region, non-coating region), and the average value is calculated.
(6) The average value obtained is applied to the following equation to evaluate the hiding property and blurring property. According to the following formula, both the concealment index and the blurring characteristic index show better tendencies as the values are closer to zero.
 [数4]
   隠ぺい性指数=V’凸-V凸
   皺ぼかし性指数=V’凸-V’凹
     V凸 :被験試料を塗布していない乾燥豚皮の凸部の明度平均値
     V’凸:被験試料を塗布した乾燥豚皮の凸部の明度平均値
     V’凹:被験試料を塗布した乾燥豚皮の凹部の明度平均値
 測定結果を表4に併せて示す。
[Equation 4]
Concealment index = V'convex-V convex 皺 Blurability index = V'convex-V 'concave V convex: Average brightness value of the convex part of the dried pig skin not coated with the test sample V' convex: Test sample applied Brightness average value of convex part of dried pork skin V ′ concave: Brightness average value of concave part of dry pig skin coated with test sample Table 4 also shows the measurement results.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表4の結果から、平均摩擦係数は、常温硬化シリコーンによる疎水化粒子については、その表面処理量(疎水被膜量)が多くなると低くなる傾向が認められた。但し、粒子径が大きい10μの粒子では、常温硬化シリコーンによる被膜量が6wt%では、逆に平均摩擦係数が大きくなる傾向があった。メチルハイドロジェンポリシロキサン(KF-9901)による疎水化粒子も、上記と同様に、表面処理量(疎水被膜量)が多くなると、平均摩擦係数が低くなる傾向が認められたものの、その低下の程度は常温硬化シリコーンよりも少なかった。特に粒子径が大きい10μでは、6wt%処理ではKF-9901が余剰で残るため摩擦係数は大きくなる。このことから、シリコーン組成物による疎水化表面処理は、シリコーン組成物を少量用いても大きな効果が得られることが確認された。一方、必要以上にシリコーン組成物の量が多いと、効果が低下するだけでなく、混合作業性も悪くなり、また余剰のシリコーン組成物の存在により、粒子表面が濡れた状態になり解砕作業性も低下する傾向が認められた。 From the results shown in Table 4, it was recognized that the average friction coefficient of the hydrophobic particles made from room temperature-curing silicone tended to decrease as the surface treatment amount (hydrophobic coating amount) increased. However, in the case of 10 μm particles having a large particle size, the average friction coefficient tended to increase conversely when the coating amount of the room temperature curing silicone was 6 wt%. In the same way as above, hydrophobized particles with methyl hydrogen polysiloxane (KF-9901) showed a tendency that the average friction coefficient decreased as the surface treatment amount (hydrophobic coating amount) increased. Was less than room temperature cured silicone. In particular, when the particle diameter is 10 μm, KF-9901 remains excessively in the 6 wt% treatment, so that the friction coefficient increases. From this, it was confirmed that the hydrophobized surface treatment with the silicone composition can achieve a great effect even when a small amount of the silicone composition is used. On the other hand, if the amount of the silicone composition is larger than necessary, not only the effect is reduced, but also the mixing workability is deteriorated, and the presence of the excess silicone composition makes the particle surface wet and crushing work. There was a tendency for the sex to decline.
 処方例1
 下記被験粒子として本発明粒子(実施例1~3)または本発明疎水化粒子(実施例4~21)を使用し、下記の処方によりパウダーファンデーションを調製する。
(パウダーファンデーション)
 成  分                  配合量(質量%)
(1)シリコーン処理タルク          10.00
(2)シリコーン処理セリサイト        33.80
(3)シリコーン処理合成金雲母        10.00
(4)シリコーン処理酸化チタン        10.00
(5)シリコーン処理酸化鉄           3.00
(6)シリコーン処理酸化亜鉛          2.00
(7)ポリメタクリル酸メチル          7.00
(8)窒化ホウ素                3.00
(9)メチルパラベン              0.20
(10)被験粒子(実施例)          10.00
(11)メチルポリシロキサン          4.90
(12)コハク酸ジオクチル           4.00
(13)スクワラン               2.00
(14)香料                  0.10
 合  計                 100.00
Formulation Example 1
Using the particles of the present invention (Examples 1 to 3) or the hydrophobized particles of the present invention (Examples 4 to 21) as the following test particles, a powder foundation is prepared according to the following formulation.
(Powder foundation)
Component Blending amount (% by mass)
(1) Silicone-treated talc 10.00
(2) Silicone-treated sericite 33.80
(3) Silicone-treated synthetic phlogopite 10.00
(4) Silicone-treated titanium oxide 10.00
(5) Silicone-treated iron oxide 3.00
(6) Silicone-treated zinc oxide 2.00
(7) Polymethyl methacrylate 7.00
(8) Boron nitride 3.00
(9) Methylparaben 0.20
(10) Test particle (Example) 10.00
(11) Methyl polysiloxane 4.90
(12) Dioctyl succinate 4.00
(13) Squalane 2.00
(14) Fragrance 0.10
Total 100.00
 具体的には、上記の成分(1)~(10)をヘンシェル型ミキサーにて均一に混合し、残りのバインダー成分(11)~(14)を混合したものを添加、混合した後、再び粉砕してふるいに通した。これを金皿に圧縮成型して、パウダーファンデーションを得る。 Specifically, the above components (1) to (10) are uniformly mixed with a Henschel mixer, the remaining binder components (11) to (14) are added, mixed, and then pulverized again. And passed through the sieve. This is compression molded into a metal pan to obtain a powder foundation.
 処方例2
 下記被験粒子として本発明粒子(実施例1~3)または本発明疎水化粒子(実施例4~21)を使用し、下記の処方により化粧下地を調製する。
(化粧下地)
 成  分                     配合量(質量%)
(1)セスキステアリン酸メチルグルコシド      1.00
(2)ステアロイル乳酸ナトリウム          0.20
(3)硬化ナタネ油アルコール            3.50
(4)スクワラン                  6.00
(5)ミリスチン酸オクチルドデシル         6.00
(6)メチルフェニルポリシロキサン         6.00
(7)マカデミアナッツ油脂肪酸フィトステリル    2.00
(8)トリイソステアリン酸ポリグリセリル      1.00
(9)ブチルパラベン                0.10
(10)精製水                  51.94
(11)合成ケイ酸ナトリウム・マグネシウム     1.00
(12)ヒドロキシエタンジホスホン酸        0.06
(13)キサンタンガム               0.20
(14)1,3-ブチレングリコール        10.00
(15)メチルパラベン               0.20
(16)ジグリセリン                5.00
(17)被験粒子(実施例)             5.00
(18)メチルポリシロキサン            0.50
 合  計                   100.00
Formulation example 2
Using the particles of the present invention (Examples 1 to 3) or the hydrophobized particles of the present invention (Examples 4 to 21) as the following test particles, a makeup base is prepared according to the following formulation.
(Makeup base)
Component Blending amount (% by mass)
(1) Methyl glucoside sesquistearate 1.00
(2) Sodium stearoyl lactate 0.20
(3) Hardened rapeseed oil alcohol 3.50
(4) Squalane 6.00
(5) Octyldodecyl myristate 6.00
(6) Methylphenylpolysiloxane 6.00
(7) Macadamia nut oil fatty acid phytosteryl 2.00
(8) Polyglyceryl triisostearate 1.00
(9) Butylparaben 0.10
(10) Purified water 51.94
(11) Synthetic sodium silicate / magnesium 1.00
(12) Hydroxyethane diphosphonic acid 0.06
(13) Xanthan gum 0.20
(14) 1,3-butylene glycol 10.00
(15) Methylparaben 0.20
(16) Diglycerin 5.00
(17) Test particle (Example) 5.00
(18) Methyl polysiloxane 0.50
Total 100.00
 具体的には、上記の処方において、水相成分(10)~(13)を撹拌混合し、加熱して85℃に保つ。油相成分(1)~(9)を混合し、加熱溶解して80℃とする。その後、この油相成分に前述の水相成分を加えて予備乳化し、ホモミキサーで均一に乳化した後、ホモミキサーを止め撹拌を続けながら、成分(15)を溶解した成分(14)~(17)までの混合物を添加する。続いて、冷却を開始して約70℃で成分(18)を加え、さらに35℃まで冷却して化粧下地を得る。 Specifically, in the above formulation, the water phase components (10) to (13) are stirred and mixed and heated to 85 ° C. Oil phase components (1) to (9) are mixed and dissolved by heating to 80 ° C. Thereafter, the above-mentioned aqueous phase component is added to this oil phase component and preliminarily emulsified, and uniformly emulsified with a homomixer. Then, the homomixer is stopped and stirring is continued, while the components (14) to (14) to (14) are dissolved. Add the mixture up to 17). Subsequently, cooling is started and component (18) is added at about 70 ° C., and further cooled to 35 ° C. to obtain a makeup base.
 処方例3
 下記被験粒子として本発明粒子(実施例1~3)または本発明疎水化粒子(実施例4~21)を使用し、下記の処方により油性ファンデーションを調製する。
(油性ファンデーション)
 成 分                      配合量(質量%)
(1) 流動パラフィン               18.00
(2) パルミチン酸イソプロピル          15.00
(3) 液状ラノリン                 4.50
(4) マイクロクリスタリンワックス         4.50
(5) セレシン                  10.00
(6) カルナバロウ                 2.00
(7) セスキオレイン酸ソルビタン          1.00
(8) パラベン                   0.20
(9) 酸化チタン                 14.00
(10)カオリン                   7.50
(11)タルク                   11.00
(12)酸化鉄                    4.00
(13)被験粒子(実施例)              8.00
(14)香料                     0.30
 合計                      100.00
Formulation Example 3
Using the particles of the present invention (Examples 1 to 3) or the hydrophobized particles of the present invention (Examples 4 to 21) as the following test particles, an oily foundation is prepared according to the following formulation.
(Oil foundation)
Component Blending amount (% by mass)
(1) Liquid paraffin 18.00
(2) Isopropyl palmitate 15.00
(3) Liquid lanolin 4.50
(4) Microcrystalline wax 4.50
(5) Ceresin 10.00
(6) Carnavalou 2.00
(7) Sorbitan sesquioleate 1.00
(8) Paraben 0.20
(9) Titanium oxide 14.00
(10) Kaolin 7.50
(11) Talc 11.00
(12) Iron oxide 4.00
(13) Test particle (Example) 8.00
(14) Fragrance 0.30
Total 100.00
 具体的には、上記処方において、成分(1)~(8)を80℃で加熱融解し、これに(9)~(12)を混合したものを加える。混合物をロールミルで練り、再度加熱融解し、これに(13)を加え、均一に混合する。これを脱泡した後、(14)を加え、中皿に流し込み冷却し、油性ファンデーションを得る。 Specifically, in the above formulation, the components (1) to (8) are melted by heating at 80 ° C., and the mixture of (9) to (12) is added thereto. The mixture is kneaded with a roll mill, heated and melted again, and (13) is added thereto and mixed uniformly. After defoaming this, (14) is added, poured into an inner pan and cooled to obtain an oily foundation.
 処方例4
 下記被験粒子として本発明粒子(実施例1~3)または本発明疎水化粒子(実施例4~21)を使用し、下記の処方により口紅を調製する。
(口紅処方)
 成 分                        配合量(質量%)
(1) セレシン                    10.00
(2) マイクロクリスタリンワックス           2.00
(3) カルナウバロウ                  1.00
(4) 合成炭化水素ワックス               2.00
(5) ダイマー酸イソプロピル             15.00
(6) トリ(カプリル・カプリン酸)グリセリン     34.35
(7) ジペンタエリトリット脂肪酸エステル        3.50
(8) ビタミンE                    0.10
(9) トリイソステアリン酸ポリグリセリル       12.00
(10) 着色料                     7.00
(11) 合成金雲母                  10.00
(12) 被験粒子(実施例)               3.00
(13) 香料                      0.05
 合計                        100.00
Formulation Example 4
Using the particles of the present invention (Examples 1 to 3) or the hydrophobized particles of the present invention (Examples 4 to 21) as the test particles below, lipstick is prepared according to the following formulation.
(Lipstick prescription)
Component Blending amount (% by mass)
(1) Ceresin 10.00
(2) Microcrystalline wax 2.00
(3) Carnauba 1.00
(4) Synthetic hydrocarbon wax 2.00
(5) Isopropyl dimer acid 15.00
(6) Tri (capryl / capric acid) glycerin 34.35
(7) Dipentaerythritol fatty acid ester 3.50
(8) Vitamin E 0.10
(9) Polyglyceryl triisostearate 12.00
(10) Coloring 7.00
(11) Synthetic phlogopite 10.00
(12) Test particle (Example) 3.00
(13) Fragrance 0.05
Total 100.00
 具体的には、上記処方の成分(9)~(12)をローラーミルにて分散させる。その後、成分(1)~(8)を加温融解して、成分(9)~(12)の混合物と成分(13)を加え、よく混合する。ろ過し、高温で型に流し込み、冷却して成型したものを容器に充填して口紅を得る。得られた口紅は、油分に濡れた状態で粉体が配合されていてもソフトフォーカス性に優れ、唇の縦じわを見えにくくするものである。 Specifically, the components (9) to (12) of the above prescription are dispersed with a roller mill. Thereafter, components (1) to (8) are heated and melted, and the mixture of components (9) to (12) and component (13) are added and mixed well. Filter, pour into a mold at high temperature, cool and mold into a container to obtain a lipstick. The obtained lipstick is excellent in soft focus property even if the powder is blended in a state where it is wet with oil, and makes it difficult to see the vertical lines of the lips.
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれるものである。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Modifications of the present invention apparent to those skilled in the art are intended to be included within the scope of the following claims.
 本発明の化粧料添加剤は、化粧料に添加される。
 
The cosmetic additive of the present invention is added to cosmetics.

Claims (11)

  1. アルミナ-シリカ系粒子を有し、
    当該アルミナ-シリカ系粒子が、下記特性を有するものであることを特徴とする化粧料添加剤:
    (1)走査型電子顕微鏡観察による一辺の長さが0.3~20μmの立方体一次粒子からなる、
    (2)液浸法による屈折率が1.48~1.52である、
    (3)コールターカウンター法による体積基準平均粒径が1~20μmである、
    (4)JIS K5101-13-2による吸油量が10ml/100g以上50ml/100g未満である、
    (5)BET法による比表面積が20m/g以下である。
    Having alumina-silica particles,
    A cosmetic additive, wherein the alumina-silica-based particles have the following characteristics:
    (1) It consists of cubic primary particles having a side length of 0.3 to 20 μm as observed with a scanning electron microscope.
    (2) The refractive index by the immersion method is 1.48 to 1.52.
    (3) The volume-based average particle size by Coulter counter method is 1 to 20 μm.
    (4) Oil absorption according to JIS K5101-13-2 is 10 ml / 100 g or more and less than 50 ml / 100 g.
    (5) The specific surface area by BET method is 20 m < 2 > / g or less.
  2.  前記アルミナ-シリカ系粒子がさらに下記の特性を有するものである請求項1に記載の化粧料添加剤:
    (6)ガス吸着法による水分吸着量が0~5%である。
    The cosmetic additive according to claim 1, wherein the alumina-silica-based particles further have the following characteristics:
    (6) The moisture adsorption amount by the gas adsorption method is 0 to 5%.
  3.  前記アルミナ-シリカ系粒子が、SiO/Alのモル比が1.8~5の範囲にある組成を有し、X線回折学的に実質上非晶質であることを特徴とする、請求項1に記載する化粧料添加剤。 The alumina - silica based particles, and wherein the molar ratio of SiO 2 / Al 2 O 3 has a composition in the range of 1.8 to 5, X-ray diffraction studies to substantially amorphous The cosmetic additive according to claim 1.
  4.  請求項1に記載するアルミナ-シリカ系粒子の表面が疎水化処理されてなる疎水化アルミナ-シリカ系粒子を有する化粧料添加剤。 A cosmetic additive comprising hydrophobized alumina-silica particles obtained by hydrophobizing the surface of the alumina-silica particles according to claim 1.
  5.  前記疎水化アルミナ-シリカ系粒子が、前記アルミナ-シリカ系粒子の表面が下記の常温硬化型シリコーン組成物の硬化物で被覆されてなるものである、請求項4に記載する化粧料添加剤:
     前記常温硬化型シリコーン組成物は、
    ジアルキルシロキサンユニットと、アルコキシ基を含有するアルコキシ基含有シロキサンユニットとを含有する第1オリゴマーと、
    ジアルキルシロキサンユニットを含有せず、アルコキシ基を含有するアルコキシ基含有シロキサンユニットを含有する第2オリゴマーと、
    シリコーンオイルと、
    触媒と、
    有機溶剤とを含有し、
     前記第1オリゴマーと前記第2オリゴマーとの総量の、前記常温硬化型シリコーン組成物における割合が20質量%以上、50質量%以下であり、
    前記第1オリゴマーの、前記第2オリゴマー1質量部に対する割合が0.15質量部以上、10質量部以下であり、
    前記シリコーンオイルの25℃における動粘度が100mm/s以上であり、
    前記触媒が、金属アルコキシド、金属キレート化合物および金属カルボン酸塩からなる群から選択される少なくともlつであり、
     前記有機溶剤の20℃における蒸気圧がlkPa以上であることを特徴とする。
    The cosmetic additive according to claim 4, wherein the hydrophobized alumina-silica-based particles are obtained by coating the surface of the alumina-silica-based particles with a cured product of the following normal temperature curable silicone composition.
    The room temperature curable silicone composition is
    A first oligomer containing a dialkylsiloxane unit and an alkoxy group-containing siloxane unit containing an alkoxy group;
    A second oligomer containing an alkoxy group-containing siloxane unit that does not contain a dialkylsiloxane unit and contains an alkoxy group;
    With silicone oil,
    A catalyst,
    Containing an organic solvent,
    The ratio of the total amount of the first oligomer and the second oligomer in the room temperature curable silicone composition is 20% by mass or more and 50% by mass or less,
    The ratio of the first oligomer to 1 part by mass of the second oligomer is 0.15 parts by mass or more and 10 parts by mass or less,
    The kinematic viscosity at 25 ° C. of the silicone oil is 100 mm 2 / s or more,
    The catalyst is at least one selected from the group consisting of metal alkoxides, metal chelate compounds and metal carboxylates;
    The vapor pressure of the organic solvent at 20 ° C. is 1 kPa or more.
  6.  前記疎水化アルミナ-シリカ系粒子が、前記アルミナ-シリカ系粒子の表面がメチルハイドロジェンシリコーンオイルで被覆し、加熱表面処理されてなるものである、請求項4に記載する化粧料添加剤。 The cosmetic additive according to claim 4, wherein the hydrophobized alumina-silica particles are obtained by coating the surfaces of the alumina-silica particles with methyl hydrogen silicone oil and subjecting them to a heating surface treatment.
  7.  前記化粧料添加剤がソフトフォーカス性付与剤、皺隠し効果付与剤(凹凸補正剤)、または/および伸展性付与剤である、請求項1に記載する化粧料添加剤。 The cosmetic additive according to claim 1, wherein the cosmetic additive is a soft focus property imparting agent, a hiding effect imparting agent (concave / convex correction agent), and / or an extensibility imparting agent.
  8.  下記(A)及び(B)、または(C)の工程を有する、表面が疎水化されたアルミナ-シリカ系粒子の製造方法:
    (A)前記アルミナ-シリカ系粒子の表面を常温硬化型シリコーン組成物でコーティングする工程:
     ここで常温硬化型シリコーン組成物は、
    ジアルキルシロキサンユニットと、アルコキシ基を含有するアルコキシ基含有シロキサンユニットとを含有する第1オリゴマーと、
    ジアルキルシロキサンユニットを含有せず、アルコキシ基を含有するアルコキシ基含有シロキサンユニットを含有する第2オリゴマーと、
    シリコーンオイルと、
    触媒と、
    有機溶剤とを含有し、
     前記第1オリゴマーと前記第2オリゴマーとの総量の、前記常温硬化型シリコーン組成物における割合が20質量%以上、50質量%以下であり、
     前記第1オリゴマーの、前記第2オリゴマー1質量部に対する割合が0.15質量部以上、10質量部以下であり、
     前記シリコーンオイルの25℃における動粘度が100mm/s以上であり、
     前記触媒が、金属アルコキシド、金属キレート化合物および金属カルボン酸塩からなる群から選択される少なくともlつであり、
     前記有機溶剤の20℃における蒸気圧がlkPa以上であり、及び
    (B)前記アルミナ-シリカ系粒子の表面にコーティングされた常温硬化型シリコーン組成物を硬化する工程;または
    (C)前記アルミナ-シリカ系粒子の表面をメチルハイドロジェンシリコーンオイルで被覆した後、熱処理する工程。
    A method for producing alumina-silica-based particles having a hydrophobic surface, comprising the following steps (A) and (B) or (C):
    (A) Step of coating the surface of the alumina-silica-based particles with a room temperature curable silicone composition:
    Here, the room temperature curable silicone composition is
    A first oligomer containing a dialkylsiloxane unit and an alkoxy group-containing siloxane unit containing an alkoxy group;
    A second oligomer containing an alkoxy group-containing siloxane unit that does not contain a dialkylsiloxane unit and contains an alkoxy group;
    With silicone oil,
    A catalyst,
    Containing an organic solvent,
    The ratio of the total amount of the first oligomer and the second oligomer in the room temperature curable silicone composition is 20% by mass or more and 50% by mass or less,
    The ratio of the first oligomer to 1 part by mass of the second oligomer is 0.15 parts by mass or more and 10 parts by mass or less,
    The kinematic viscosity at 25 ° C. of the silicone oil is 100 mm 2 / s or more,
    The catalyst is at least one selected from the group consisting of metal alkoxides, metal chelate compounds and metal carboxylates;
    A vapor pressure of the organic solvent at 20 ° C. of 1 kPa or more, and (B) a step of curing the room temperature curable silicone composition coated on the surface of the alumina-silica particles; or (C) the alumina-silica A process in which the surfaces of the system particles are coated with methyl hydrogen silicone oil and then heat-treated.
  9.  請求項1に記載する化粧料添加剤を含有することを特徴とする化粧料。 A cosmetic comprising the cosmetic additive according to claim 1.
  10.  前記化粧料添加剤を1~50質量%の割合で含有する請求項9に記載する化粧料。 10. The cosmetic according to claim 9, containing the cosmetic additive in a proportion of 1 to 50% by mass.
  11.  メイクアップ化粧料である、請求項10に記載する化粧料。 The cosmetic according to claim 10, which is a makeup cosmetic.
PCT/JP2018/037554 2018-03-29 2018-10-09 Cosmetic additive and cosmetic WO2019187254A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-066200 2018-03-29
JP2018066200 2018-03-29
JP2018-102820 2018-05-29
JP2018102820A JP7163070B2 (en) 2017-05-30 2018-05-29 Cosmetic additives and cosmetics containing the same

Publications (1)

Publication Number Publication Date
WO2019187254A1 true WO2019187254A1 (en) 2019-10-03

Family

ID=68058714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037554 WO2019187254A1 (en) 2018-03-29 2018-10-09 Cosmetic additive and cosmetic

Country Status (1)

Country Link
WO (1) WO2019187254A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136866B2 (en) * 1982-06-07 1986-08-20 Mizusawa Industrial Chem
JPH02225314A (en) * 1989-02-28 1990-09-07 Mizusawa Ind Chem Ltd Amorphous silica-alumina spherical particle and production thereof
JPH04220447A (en) * 1990-12-21 1992-08-11 Mizusawa Ind Chem Ltd Nucleator and resin composition
JPH1067882A (en) * 1996-05-24 1998-03-10 Mizusawa Ind Chem Ltd Compounding ingredient for resin, production thereof, and olefin resin composition containing the same
JPH11193358A (en) * 1997-10-17 1999-07-21 Mizusawa Ind Chem Ltd Inorganic antimicrobial agent excellent in discoloration resistance and production thereof
JP2000229809A (en) * 1999-02-10 2000-08-22 Nippon Shikizai Kogyo Kenkyusho:Kk Cosmetic
JP2002362925A (en) * 2001-06-06 2002-12-18 Sumitomo Osaka Cement Co Ltd Fine powder of surface coated zinc oxide and cosmetic material containing the dame
JP2010184856A (en) * 2009-01-15 2010-08-26 Mizusawa Ind Chem Ltd Amorphous silica
JP6403080B1 (en) * 2017-08-22 2018-10-10 大阪ガスケミカル株式会社 Coating composition and method for producing coating film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136866B2 (en) * 1982-06-07 1986-08-20 Mizusawa Industrial Chem
JPH02225314A (en) * 1989-02-28 1990-09-07 Mizusawa Ind Chem Ltd Amorphous silica-alumina spherical particle and production thereof
JPH04220447A (en) * 1990-12-21 1992-08-11 Mizusawa Ind Chem Ltd Nucleator and resin composition
JPH1067882A (en) * 1996-05-24 1998-03-10 Mizusawa Ind Chem Ltd Compounding ingredient for resin, production thereof, and olefin resin composition containing the same
JPH11193358A (en) * 1997-10-17 1999-07-21 Mizusawa Ind Chem Ltd Inorganic antimicrobial agent excellent in discoloration resistance and production thereof
JP2000229809A (en) * 1999-02-10 2000-08-22 Nippon Shikizai Kogyo Kenkyusho:Kk Cosmetic
JP2002362925A (en) * 2001-06-06 2002-12-18 Sumitomo Osaka Cement Co Ltd Fine powder of surface coated zinc oxide and cosmetic material containing the dame
JP2010184856A (en) * 2009-01-15 2010-08-26 Mizusawa Ind Chem Ltd Amorphous silica
JP6403080B1 (en) * 2017-08-22 2018-10-10 大阪ガスケミカル株式会社 Coating composition and method for producing coating film

Similar Documents

Publication Publication Date Title
US10080713B2 (en) Surface-treated spherical calcium carbonate particles for cosmetics and method for producing same
JP6105896B2 (en) Liquid aryl group-containing polyorganosiloxane
JP5825871B2 (en) Water-in-oil emulsified cosmetic
JP5850189B1 (en) Zinc oxide powder, dispersion, paint, cosmetics
CN110325477B (en) Barium sulfate spherical composite powder and method for producing same
KR20120022696A (en) Irregular-shaped hollow microparticle, method for producing same, and cosmetic material and resin composition containing irregular-shaped hollow microparticle
WO2019002275A1 (en) Cosmetic composition comprising an ordered porous material for reducing the visible and/or tactile irregularities of the skin
JP7163070B2 (en) Cosmetic additives and cosmetics containing the same
JP6309858B2 (en) Powder cosmetics
JP2004043291A (en) Flaky particles, and cosmetic, coating material composition, resin composition and ink composition each blended with the same
WO2019111831A1 (en) Water-in-oil type emulsion cosmetic
JP6859949B2 (en) Silicon oxide-coated zinc oxide, silicon oxide-coated zinc oxide-containing composition, cosmetics
WO2019187254A1 (en) Cosmetic additive and cosmetic
CN106132876A (en) Silicon oxide coating zinc oxide and manufacture method thereof, compositions containing silica coating zinc oxide and cosmetic
JP6636276B2 (en) Emulsified cosmetic
WO2019187255A1 (en) Hydrophobized inorganic particle, method for producing same, cosmetic additive, and method for producing same
JP6314898B2 (en) Zinc oxide powder, dispersion, paint, cosmetics
WO2020067406A1 (en) Surface-treated metal oxide particles, liquid dispersion, composition, cosmetic, and method for producing surface-treated metal oxide particles
WO2021200541A1 (en) Surface-treated metal oxide particles, dispersion liquid, cosmetic preparation and method for producing surface-treated metal oxide particles
JP2020075845A (en) Hexagonal boron nitride powder
JP2021104906A (en) Cosmetic raw material, and cosmetics comprising the same
JP7358375B2 (en) Cosmetic additives and their manufacturing method
JP2021105071A (en) Cosmetic additive and method for producing the same
JP2021160953A (en) Surface-treated metal oxide particle, dispersion liquid, cosmetic preparation, and method for producing surface-treated metal oxide particle
TW201927279A (en) Granular composite containing keratin and hexagonal plate-like zinc oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911874

Country of ref document: EP

Kind code of ref document: A1