WO2019187146A1 - Base station, radio communication terminal, radio communication system, and radio communication method - Google Patents

Base station, radio communication terminal, radio communication system, and radio communication method Download PDF

Info

Publication number
WO2019187146A1
WO2019187146A1 PCT/JP2018/013958 JP2018013958W WO2019187146A1 WO 2019187146 A1 WO2019187146 A1 WO 2019187146A1 JP 2018013958 W JP2018013958 W JP 2018013958W WO 2019187146 A1 WO2019187146 A1 WO 2019187146A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
base station
ack
unit
resource
Prior art date
Application number
PCT/JP2018/013958
Other languages
French (fr)
Japanese (ja)
Inventor
三夫 小林
義博 河▲崎▼
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2018/013958 priority Critical patent/WO2019187146A1/en
Priority to JP2020508910A priority patent/JP6947291B2/en
Publication of WO2019187146A1 publication Critical patent/WO2019187146A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present invention relates to a base station, a wireless communication terminal, a wireless communication system, and a wireless communication method.
  • eMBB enhanced Mobile Broad Band
  • URLLC ultra-reliable and low latency communications
  • MMTC massive Machine Type Communications
  • URLLC is expected to be applied to automatic operation, telemedicine, industrial equipment, IoT (Internet of Things), etc. by realizing not only low delay but also highly reliable wireless communication.
  • AMC adaptive modulation coding
  • HARQ Hybrid Automatic Repeat reQuest
  • the Modulation Order (modulation multi-level number) and TBS (Transport Block Size) index (data size index) for the MCS index are uniquely defined, and the base station selects the MCS index according to the radio propagation status.
  • adaptive modulation coding is performed. For example, the base station selects a small MCS index when the radio wave condition is poor and the SNR is low, and selects a large MCS index when the SNR is high.
  • URLLC in order to make wireless communication highly reliable even in an SNR lower than LTE, it is considered to introduce an MCS index having a lower SNR than in the past.
  • the communication quality of an ACK (Acknowledge) signal for notifying a transmission side (for example, a base station) from a reception side (for example, a wireless communication terminal) that communication is successful has an important meaning. This is because if the downlink communication (main signal communication) succeeds but the reception of the uplink ACK signal fails, the transmitting side determines that the downlink communication has failed and performs retransmission. This is because the throughput is reduced.
  • ACK Acknowledge
  • T the maximum throughput in a certain MCS is T max_mcs , the block error rate of the main signal is BLER, and the error rate of the ACK signal with respect to the main signal is ACK BER , T can be expressed by the following equation: .
  • T T max_mcs ⁇ (1 ⁇ (BLER + ACK BER ))
  • the disclosed technique has been made in view of the above, and is capable of suppressing non-delivery of an ACK signal while maintaining resource utilization efficiency, a base station, a wireless communication terminal, a wireless communication system, and a wireless communication method
  • the purpose is to provide.
  • the base station disclosed in the present application includes, in one aspect, a first determination unit, a second determination unit, and a reception unit.
  • the first determination unit determines a coding and modulation scheme of a signal to be transmitted to the wireless communication terminal.
  • the second determination unit refers to association information between an encoding and modulation scheme applied to the signal and a resource used for transmission of a response signal to the signal, and determines the resource.
  • the receiving unit receives the response signal transmitted using the resource.
  • the base station disclosed in the present application it is possible to suppress non-delivery of the ACK signal while maintaining resource utilization efficiency.
  • FIG. 1 is a diagram illustrating the configuration of the base station according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of data storage in the LUT according to the first embodiment.
  • FIG. 3 is a diagram illustrating that the uplink transmission resource for ACK return is a variable size in the PUCCH.
  • FIG. 4 is a diagram showing that the uplink transmission resource for ACK reply has a variable size in PUSCH.
  • FIG. 5 is a diagram illustrating the configuration of the wireless communication terminal according to the first embodiment.
  • FIG. 6 is a diagram for explaining the operation of the wireless communication system.
  • FIG. 7 is a diagram illustrating an example of signaling when an LUT including an ACK index definition is individually set for each wireless communication terminal.
  • FIG. 8 is a diagram for explaining resource allocation by the control signal modulation unit of the base station according to the first embodiment.
  • FIG. 9 is a diagram for explaining resource allocation by the main signal modulation unit of the base station according to the first embodiment.
  • FIG. 10 is a diagram for explaining variables used in the equations (5) and (6).
  • FIG. 11 is a diagram illustrating an example of data storage in the LUT according to the second embodiment when 256QAM is not applied.
  • FIG. 12 is a diagram illustrating a data storage example of the LUT according to the second embodiment when 256QAM is applied.
  • FIG. 13 is a diagram for explaining resource allocation by the control signal modulation unit of the base station according to the second embodiment.
  • FIG. 14 is a diagram for explaining resource allocation by the main signal modulation unit of the base station according to the second embodiment.
  • FIG. 15 is a diagram for explaining variables used in Expression (8) and Expression (9).
  • FIG. 1 is a diagram illustrating the configuration of the base station 100 according to the first embodiment.
  • the base station 100 includes a reception antenna unit 101, a radio reception unit 102, a PUCCH / PUSCH demodulation / decoding unit 103, an AN determination unit 104, a HARQ control buffer unit 105, an encoding unit 106, and a modulation unit 107.
  • a wireless transmission unit 108 and a transmission antenna unit 109 are included.
  • the base station 100 includes a PDSCH / MCS control unit 110, an LUT (LookUp Table) 111, an ACK reception MCS-ACK index determination unit 112, and an HARQ process (m) MCS storage unit 113. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
  • the receiving antenna unit 101 receives an uplink radio signal.
  • the wireless reception unit 102 performs frequency conversion and A / D (Analog to Digital) conversion.
  • the PUCCH / PUSCH demodulation / decoding unit 103 refers to the resource information determined by the ACK reception MCS-ACK index determination unit 112 and performs demodulation and decoding according to the LTE uplink physical channel specification.
  • the AN determination unit 104 determines whether the demodulation / decoding result of PUCCH (Physical Uplink Control CHannel) or PUSCH (Physical Uplink Shared CHannel) is ACK or NACK.
  • the HARQ control buffer unit 105 performs retransmission control using HARQ.
  • the encoding unit 106 includes a control signal encoding unit 106a and a main signal encoding unit 106b, and encodes PDCCH (Physical Downlink Control Channel) and PDSCH (Physical Downlink Shared Channel) for each signal. .
  • the modulation unit 107 includes a control signal modulation unit 107a and a main signal modulation unit 107b, and performs PDCCH and PDSCH modulation and resource allocation for each signal.
  • the wireless transmission unit 108 performs D / A (Digital to Analog) conversion and frequency conversion.
  • the transmission antenna unit 109 transmits a downlink radio signal.
  • the PDSCH / MCS control unit 110 depending on the CQI (Channel Quality Indicator) reported from the radio communication terminal 200, the downlink data size, and the coding and modulation scheme (DL-MCS: Down Link-Modulation and) Determine Coding Scheme.
  • the determined DL-MCS is transmitted to the radio communication terminal 200 as a part of DCI (Downlink Control Information) by the PDCCH encoded by the control signal encoding unit 106a.
  • An LUT (LookUp Table) 111 is a common MCS table that is predetermined between the base station 100 and the radio communication terminal 200, and is referred to when the ACK reception MCS-ACK index determination unit 112 determines resource allocation information.
  • the FIG. 2 is a diagram illustrating a data storage example of the LUT 111 according to the first embodiment. As shown in FIG. 2, taking the main signal MCS table in the LTE system as an example, ACKindex is defined in addition to MCSindex, Modulation Order, and TBSindex. This makes it possible to determine the ACK index according to the downlink main signal MCS.
  • FIG. 3 is a diagram showing that the uplink transmission resource for ACK return is a variable size in the PUCCH.
  • FIG. 4 is a diagram showing that the uplink transmission resource for ACK reply has a variable size in PUSCH.
  • time is defined on the x-axis and frequency is defined on the y-axis.
  • the radio communication terminal 200 when there is no UL-Grant (PUSCH), the radio communication terminal 200 returns an ACK signal using resources on the PUCCH (for example, PUCCH # 1), but UL-Grant (PUSCH). ), An ACK signal is returned using resources on the PUSCH.
  • variable-size ACK resources R1 to R4 exist on PUCCH.
  • variable-size ACK resources R5 to R8 exist on PUSCH.
  • the wireless communication terminal 200 when performing MIMO (Multiple Input Multiple Output) -2CW (Code Word) communication in the downlink, the wireless communication terminal 200 returns a total of 2 bits as the ACK signal of each CW. .
  • the radio communication terminal 200 may return an ACK signal for communication of a plurality of downlink subframes in one uplink subframe. In this way, the number of ACK signals to be returned varies depending on MIMO and TDD, but the ACK signal per CW is 1 bit in any case.
  • the ACK reception MCS-ACK index determination unit 112 determines PUCCH or PUSCH physical resource information. Specifically, the ACK reception MCS-ACK index determination unit 112 reads the DL-MCS of the HARQ process number that receives the ACK / NACK signal from the HARQ process (m) MCS storage unit 113, and then refers to the LUT 111. , Resource allocation information (physical resource allocation and coding information) for receiving an ACK / NACK signal by PUCCH or PUSCH is determined. The HARQ process (m) MCS storage unit 113 stores the DL-MCS for each HARQ process number.
  • FIG. 5 is a diagram illustrating the configuration of the wireless communication terminal 200 according to the first embodiment.
  • the radio communication terminal 200 includes a reception antenna unit 201, a radio reception unit 202, a PDSCH demodulation / decoding unit 203, a CQI measurement unit 204, an AN determination unit 205, a transmission UCI (Uplink Control Information) generation unit 206, The encoding modulation unit 207, the transmission power control unit 208, the wireless transmission unit 209, and the transmission antenna unit 210 are included.
  • the radio communication terminal 200 includes a PDCCH demodulation / decoding unit 211, a DCI determination unit 212, an ACK / NACK transmission MCS-ACK index determination unit 213, and an LUT 214. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
  • the receiving antenna unit 201 receives a downlink radio signal.
  • the wireless reception unit 202 performs frequency conversion and A / D conversion.
  • PDSCH demodulation / decoding section 203 demodulates and decodes PDSCH using DL-MCS, HARQ information, and resource information.
  • CQI measurement section 204 measures SINR (Signal-to-Interference and Noise power Ratio) and channel capacity from the received signal, determines CQI based on the measurement result, and reports it according to instructions from base station 100 .
  • the AN determination unit 205 determines whether the PDSCH demodulation / decoding result is ACK or NACK by, for example, CRC (Cyclic Redundancy Check) inspection.
  • CRC Cyclic Redundancy Check
  • the transmission UCI generation unit 206 encodes the ACK / NACK signal.
  • the coding modulation unit 207 includes a control signal coding modulation unit 207a and a main signal coding modulation unit 207b, and performs modulation of PUCCH or PUSCH and arrangement to physical resources for each signal.
  • the transmission power control unit 208 controls the power for transmitting the ACK signal using PUCCH or PUSCH, for example.
  • the wireless transmission unit 209 performs D / A conversion and frequency conversion.
  • the transmission antenna unit 210 transmits an uplink radio signal.
  • the PDCCH demodulation / decoding unit 211 performs blind detection of the PDCCH using an RNTI (Radio Network Temporary Identifier) as a terminal identifier.
  • the DCI determination unit 212 decodes the demodulated decoding information including DL-MCS and HARQ information.
  • the ACK / NACK transmission MCS-ACK index determination unit 213 determines PUCCH or PUSCH physical resource information. Specifically, the ACK / NACK transmission MCS-ACK index determination unit 213 refers to the LUT 214 using the received DCI DL-MCS addressed to its own terminal, and allocates the PUCCH or PUSCH resource arrangement for transmitting the ACK / NACK signal. Information (physical resource allocation and coding information) is determined. Since the LUT 214 has the same configuration as the LUT 111 described above, detailed description thereof is omitted.
  • FIG. 6 is a diagram for explaining the operation (HARQ sequence) of the wireless communication system.
  • the wireless transmission unit 209 of the wireless communication terminal 200 reports the CQI to the base station 100 via the transmission antenna unit 210 by PUCCH or PUSCH.
  • the PDSCH / MCS control unit 110 of the base station 100 determines the downlink MCS using the CQI and LUT 111 reported in the uplink (S2). Next, the PDSCH / MCS control unit 110 generates a new HARQ process (m) (S3), and notifies that there is downlink transmission of the HARQ process (m) to the radio communication terminal 200 by PDCCH (DCI). Notify (S4). At the same time, the base station 100 also transmits PDSCH (traffic data) to the radio communication terminal 200 (S5).
  • PDSCH traffic data
  • the DCI of the PDCCH includes MCS as information for demodulating and decoding PDSCH traffic data (downlink main signal), and information indicating the number of HARQ transmissions.
  • the wireless communication terminal 200 analyzes the DCI received in S4, refers to each information of the MCS and HARQ transmission frequency, and demodulates and decodes the traffic data received in S5. At this time, if the number of HARQ transmissions is 0 (initial transmission), the demodulated data is decoded as it is. If it is other than 0 (retransmission), the previous received signal and the current received signal are combined by software. Decrypt from.
  • the AN determination unit 205 of the wireless communication terminal 200 determines ACK / NACK from the decoding result of PDSCH using CRC (Cyclic Redundancy Check).
  • the ACK / NACK transmission MCS-ACK index determination unit 213 determines an ACK / NACK reply resource by referring to the LUT 214 (S7).
  • the wireless communication terminal 200 executes an encoding process such as bit repetition, and returns a 1-bit ACK / NACK signal per CW to the base station 100 via the PUCCH or the PUSCH (UCI transmission) (S8).
  • the radio communication terminal 200 performs UCI transmission using only the PUCCH # 1-1 as usual, but when the ACK index is “2”, the PUCCH # 1 -1 and PUCCH # 1-2 are used to perform encoding by repeating the ACK bit twice.
  • the radio communication terminal 200 uses PUCCH # 1-1, PUCCH # 1-2, and PUCCH # 1-3, and performs encoding by repeating the ACK bit three times. Do.
  • the base station 100 stores the MCS of the HARQ process (m) newly generated in S3 (S9), and determines the resource in which the ACK / NACK signal is allocated according to the MCS of the corresponding downlink signal. Determine (S10).
  • the PUCCH / PUSCH demodulation / decoding unit 103 of the base station 100 detects a reply from S8, the PUCCH / PUSCH demodulation / decoding unit 103 synthesizes a soft decision value based on the number of repetitions corresponding to the ACK index, and demodulates and decodes the PUCCH or PUSCH (S11).
  • the base station 100 selects new transmission or retransmission according to the UCI determination of the HARQ process (m). That is, the base station 100 analyzes the UCI of the uplink channel and determines whether the analysis result is ACK / NACK / DTX (S12). In the case of ACK, the base station 100 generates a new HARQ process (m) as in S3 (S13), and in the case of NACK / DTX, the communication of the HARQ process (m) generated in S3. Is re-successful and the HARQ process (m) is retransmitted (S14).
  • the PDSCH / MCS control unit 110 of the base station 100 notifies the radio communication terminal 200 by PDCCH (DCI) that there is downlink transmission of the HARQ process (m), similarly to S4 (S15). . Then, the base station 100 also transmits PDSCH (traffic data) to the wireless communication terminal 200 as in S5 (S16).
  • DCI PDCCH
  • m downlink transmission of the HARQ process
  • the wireless communication terminal 200 uses UL-MCS (Up Link-Modulation and Coding Scheme) determined by uplink signal scheduling instead of DL-MCS of the downlink main signal when ACK is returned using PUSCH.
  • UL-MCS Up Link-Modulation and Coding Scheme
  • ACKindex may be determined from LUT 214.
  • the base station 100 may notify the LUT 111 that the ACK index definition described above is included in the cell as system information, or may be individually set for each wireless communication terminal 200.
  • FIG. 7 is a diagram illustrating an example of signaling when the LUT 111 including the ACK index definition is individually set for each wireless communication terminal 200.
  • the base station 100 transmits the LUT 111 to the wireless communication terminal 200 as RRC Connection Reconfiguration.
  • the wireless communication terminal 200 selects the LUT 111 transmitted in S21 as a reference table (MCS table) when determining the used resources in S7. Then, the wireless communication terminal 200 returns RRC Connection Reconfiguration Complete to the base station 100 (S23).
  • MCS table reference table
  • FIG. 8 is a diagram for explaining resource allocation by the control signal modulation unit 107a of the base station 100 according to the first embodiment.
  • the resource arrangement m k is the maximum allowable resource number K max .
  • the resource number m calculated by the method (3Gpp TS36.211 v15.0.0) it can be calculated by the following equation (1).
  • K max is equal to twice the maximum value of the ACK index defined in the MCS table, as shown in the following equation (2).
  • K max 2 ⁇ ACK index _MAX ⁇ (2)
  • ACK indexMAX 4.
  • the base station 100 executes RE (Resource Element) placement processing (mapping) according to the procedure shown in FIG. 8 with Z (i) as the encoded PUCCH symbol.
  • RE Resource Element
  • Z Z (i) as the encoded PUCCH symbol.
  • ACKindex 1 (T1; Yes)
  • T2 since there is no increase in resources (T2)
  • T3 the base station 100 is arranged according to the following equation (3) also shown in FIG. Processing is executed (T3).
  • the RE arrangement processing by the PUCCH / PUSCH demodulation / decoding unit 103 is the same as the RE arrangement processing by the control signal modulation unit 107a.
  • FIG. 9 is a diagram for explaining resource allocation by the main signal modulation unit 107b of the base station 100 according to the first embodiment.
  • UL-SCH Up Link-Shared CHannel
  • the base station 100 sets the number of ACK / NACK signals to be transmitted as O ACK and the number of ACK / NACK modulation symbols to be transmitted as Q ′ as shown in FIG.
  • the number of modulation symbols is determined by the encoding process (T13). Then, the base station 100 modulates the main signal with the determined number of symbols (T14), and executes RE arrangement processing (T15).
  • the base station 100 executes resource calculation for increasing resources (T16), and then performs UL ⁇ according to the following equation (6) shown in FIG.
  • the number of modulation symbols is determined by the SCH encoding process (T17).
  • the base station 100 modulates the main signal with the determined number of symbols (T18), and executes RE arrangement processing (T19).
  • FIG. 10 is a diagram for explaining variables used in Expression (5) and Expression (6).
  • “1” indicates presence and “0” indicates absence regarding the presence or absence of the subframe head symbol of the first PUCSH transmission.
  • “1” indicates presence and “0” indicates absence.
  • the radio communication system performs radio communication between the base station 100 and the radio communication terminal 200 by applying HARQ and AMC.
  • Base station 100 includes PDSCH / MCS control section 110, ACK reception MCS-ACK index determination section 112, and radio reception section 102.
  • the PDSCH / MCS control unit 110 determines the encoding and modulation scheme (MCS) of the downlink main signal to be transmitted to the radio communication terminal 200.
  • the ACK reception MCS-ACK index determination unit 112 receives resources (for example, PUCCH size) for receiving a response signal (ACK) to the main signal according to the coding and modulation schemes determined by the PDSCH / MCS control unit 110. , Arrangement, number) are variably determined.
  • the radio reception unit 102 receives the response signal using the resource determined by the ACK reception MCS-ACK index determination unit 112.
  • the wireless communication terminal 200 includes a wireless reception unit 202, an ACK / NACK transmission MCS-ACK index determination unit 213, and a wireless transmission unit 209.
  • the radio reception unit 202 receives the encoding and modulation scheme determined by the PDSCH / MCS control unit 110.
  • Radio transmitting section 209 transmits the response signal using the resource determined by ACK / NACK transmission MCS-ACK index determining section 213.
  • the base station 100 determines an encoding and modulation scheme (MCS) of a signal to be transmitted to the radio communication terminal 200, an encoding and modulation scheme applied to the signal, and a response signal for the signal
  • MCS encoding and modulation scheme
  • the resource is determined by referring to the association information (LUT 111) with the resource used for transmitting (ACK), and the response signal transmitted from the radio communication terminal 200 is received using the resource.
  • the radio communication terminal 200 receives information on the determined coding and modulation scheme, refers to the association information of resources used for transmission of a response signal for the received coding and modulation scheme, and determines the resource The response signal is transmitted to the base station 100 using the resource.
  • the resource number and the bit repetition coding number of the ACK / NACK signal returned by the UL channel are associated with the MCS of the corresponding PDSCH.
  • the base station 100 dynamically controls PUCCH or PUSCH resource allocation by MCS of PDSCH.
  • the base station 100 adaptively determines the resource size for ACK / NACK reply from the MCS situation of the downlink main signal when performing ACK reply at low SNR, and repeats the number of ACK bit repetition codings ( ACKindex).
  • ACKindex repeats the number of ACK bit repetition codings
  • the radio reception unit 102 receives radio quality information (CQI) reported from the radio communication terminal 200.
  • the PDSCH / MCS control unit 110 can also determine the coding and modulation scheme according to the radio quality information (CQI). Thereby, the base station 100 can determine the resource for receiving the ACK signal accurately and accurately according to the communication environment of the radio communication terminal 200.
  • the ACK reception MCS-ACK index determination unit 112 controls the resource by controlling the number of transmission resources of the response signal and the number of repetition coding (ACK index) of the bits (ACK bits) of the response signal. It is good also as what determines. Thereby, the base station 100 can determine appropriately the resource for making an ACK signal reach
  • Example 2 The configuration of the wireless communication system in the second embodiment is the same as the configuration of the wireless communication system in the first embodiment described above.
  • the configurations of the base station and the wireless communication terminal in the second embodiment are the same as the configurations of the base station 100 and the wireless communication terminal 200 in the first embodiment shown in FIG. Therefore, in the second embodiment, the same reference numerals are used for the same components as in the first embodiment, and detailed description thereof is omitted.
  • the difference between the second embodiment and the first embodiment is a wireless communication system. Specifically, the first embodiment has been described assuming LTE as an object to which the technology according to the present embodiment is applied, but in the second embodiment, NR (New Radio) is assumed.
  • the base station 100 and the wireless communication terminal 200 have predetermined common LUTs 111a and 111b, respectively.
  • the ACK reception MCS-ACK index determination unit 112 refers to these LUTs 111a and 111b and identifies an ACK index suitable for the MCS of the downlink main signal.
  • FIG. 11 is a diagram illustrating a data storage example of the LUT 111a according to the second embodiment when 256QAM (Quadrature Amplitude Modulation) is not applied.
  • ACKindex is defined in addition to MCSindex, Modulation Order, Target code Rate, and Spectral efficiency. As a result, even when NR is applied, it is possible to determine the ACK index according to the downlink main signal MCS.
  • FIG. 12 is a diagram illustrating a data storage example of the LUT 111b according to the second embodiment when 256QAM is applied. As shown in FIG. 12, the table structure when 256QAM is applied is the same as that when 256QAM is not applied, but the numerical values such as Target code Rate and Spectral efficiency stored in each field are high.
  • FIG. 13 is a diagram for explaining resource allocation by the control signal modulation unit 107a of the base station 100 according to the second embodiment.
  • the process shown in FIG. 13 has the same basic flow as the process shown in FIG. 8 and will not be described in detail. However, in URLLC with a low SNR, use of a small block UCI is assumed, and PUCCH format0 is Used.
  • PUCCH-resource-config-PF0 3Gpp TS38.213 v15.0.0
  • PUCCH-starting-PRB Physical Resource Brock
  • PRB position when starting
  • PUCCH-2nd-hop-PRB PRB position (during hopping)
  • PUCCH-F0-F2-starting symbol Symbol start position
  • PUCCH-F0-F2-number-of-symbols Number of symbols
  • the number of symbols N symb can be calculated by the following equation (7).
  • the RE arrangement processing by the PUCCH / PUSCH demodulation / decoding unit 103 is the same as the RE arrangement processing by the control signal modulation unit 107a.
  • FIG. 14 is a diagram for explaining resource allocation by the main signal modulation unit 107b of the base station 100 according to the second embodiment.
  • the base station 100 sets the number of bits of the ACK / NACK signal to be transmitted as O ACK and the number of modulation symbols of the ACK / NACK to be transmitted as Q ′ by the procedure shown in FIG. Execute placement processing.
  • ACKindex 1 (T31; Yes)
  • T32 there is no increase in resources
  • the base station 100 performs UL-SCH according to the following equation (8) also shown in FIG.
  • the number of modulation symbols is determined by the encoding process (T33).
  • the base station 100 modulates the main signal with the determined number of symbols (T34), and executes RE arrangement processing (T35).
  • the base station 100 executes resource calculation for increasing resources (T36), and then performs UL ⁇ according to the following equation (9) shown in FIG.
  • the number of modulation symbols is determined by the SCH encoding process (T37).
  • the base station 100 modulates the main signal with the determined number of symbols (T38), and executes RE arrangement processing (T39).
  • FIG. 15 is a diagram for explaining variables used in the equations (8) and (9).
  • the formula (8) is a conventional calculation formula (3Gpp TS38.212 v15.0.0).
  • the base station 100 performs wireless communication (for example, transmission of a main signal and reception of an ACK signal) with the wireless communication terminal 200 by NR. Therefore, the resource (for example, PUCCH) variable control technology for transmitting and receiving the ACK signal can be applied not only to an existing wireless communication method such as LTE but also to a 5G (Generation) wireless communication method.
  • the resource for example, PUCCH
  • CQI and SNR are used as indicators for determining radio quality.
  • the information is not limited to these information.
  • RSSI Received Signal Strength Indication
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal
  • It may be information on the link status such as Received Quality (RSCP), Received Signal Code Power (RSCP), or FER (Frame Error Rate).
  • RSCP Received Quality
  • RSCP Received Signal Code Power
  • FER Frerame Error Rate
  • the wireless communication terminal 200 is assumed to be a wireless communication terminal such as a mobile phone, a smart phone, or a PDA (Personal Digital Assistant).
  • the present invention is not limited to the wireless communication terminal, and the ACK The present invention can be applied to various communication devices that can allocate resources.
  • Each component of the base station 100 and the wireless communication terminal 200 does not necessarily need to be physically configured as illustrated.
  • the specific mode of distribution / integration of each device is not limited to that shown in the figure, and all or a part thereof may be functionally or physically distributed in arbitrary units according to various loads or usage conditions. -It can also be integrated and configured.
  • the control signal encoding unit 106a and the main signal encoding unit 106b, or the control signal encoding modulation unit 207a and the main signal encoding modulation unit 207b may be integrated as one component.
  • the ACK reception MCS-ACK index determination unit 112 of the base station 100 the ACK reception resource determination part 112 and the ACK bit repetitive coding number (ACK index) selection part may be distributed. Good. Further, the HARQ process (m) MCS storage unit 113 may be connected as an external device of the base station 100 via a network or a cable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The base station (100) has a PDSCH/MCS control unit (110), an ACK reception MCS-ACK index determination unit (112), and a radio reception unit (102). The PDSCH/MCS control unit (110) determines a coding and modulation scheme for a signal to be transmitted to a radio communication terminal. The ACK reception MCS-ACK index determination unit (112) determines resources to be used in the transmission of a response signal to the aforementioned signal by reference to association information associating such resources to the coding and modulation scheme applied to the aforementioned signal. The radio reception unit (102) receives the aforementioned response signal transmitted using the aforementioned resources.

Description

基地局、無線通信端末、無線通信システム、及び無線通信方法Base station, radio communication terminal, radio communication system, and radio communication method
 本発明は、基地局、無線通信端末、無線通信システム、及び無線通信方法に関する。 The present invention relates to a base station, a wireless communication terminal, a wireless communication system, and a wireless communication method.
 近年、より高速かつ信頼性の高い次世代無線通信システムとして、第5世代移動通信システムの開発が進行しつつある。第5世代移動通信システムに対する要件として、例えば、無線サービスのブロードバンド化(eMBB:enhanced Mobile Broad Band)、超高信頼低遅延通信(URLLC:Ultra-Reliable and Low Latency Communications)、大量のマシン端末による通信(mMTC:massive Machine Type Communications)が挙げられる。これらの技術のうち、URLLCは、低遅延のみならず高信頼の無線通信を実現することにより、自動運転、遠隔医療、産業機器、IoT(Internet of Things)等への応用が期待されている。 In recent years, as a next-generation wireless communication system with higher speed and higher reliability, development of a fifth-generation mobile communication system is in progress. Requirements for the fifth generation mobile communication system include, for example, broadband wireless service (eMBB: enhanced Mobile Broad Band), ultra-reliable and low latency communications (URLLC), and communication with a large number of machine terminals. (MMTC: massive Machine Type Communications). Among these technologies, URLLC is expected to be applied to automatic operation, telemedicine, industrial equipment, IoT (Internet of Things), etc. by realizing not only low delay but also highly reliable wireless communication.
 URLLCにおいて高信頼性を実現するには、例えば、送信電力を上げてSNR(Signal to Noise Ratio)を高くする手法、適応変調符号化(AMC:Adaptive Modulation Coding)によってSNR耐力を向上する手法、及び、HARQ(Hybrid Automatic Repeat reQuest)による再送制御を行う手法が考えられる。これらの手法のうち、AMCについては、LTE(Long Term Evolution)標準仕様(3Gpp TS36.213)においてMCS(Modulation and Coding Scheme)テーブルとして定義されている。 In order to achieve high reliability in URLLC, for example, a technique of increasing the transmission power to increase the SNR (Signal to Noise Ratio), a technique of improving the SNR tolerance by adaptive modulation coding (AMC), and A method of performing retransmission control using HARQ (Hybrid Automatic Repeat reQuest) is conceivable. Among these methods, AMC is defined as an MCS (Modulation and Coding Scheme) table in LTE (Long Term Evolution) standard specifications (3Gpp TS36.213).
 MCSテーブルには、MCSindexに対するModulation Order(変調多値数)及びTBS(Transport Block Size)index(データサイズのindex)が一意に定義されており、基地局は、無線伝搬状況に応じてMCSindexを選択することにより適応変調符号化を行う。例えば、基地局は、無線電波状況が悪くSNRが低い場合には小さなMCSindexを選択し、SNRが高い場合には大きなMCSindexを選択する。URLLCでは、LTEよりも低いSNRにおいても無線通信を高信頼化するために、従来よりもSNRの低いMCSindexを導入することが検討されている。 In the MCS table, the Modulation Order (modulation multi-level number) and TBS (Transport Block Size) index (data size index) for the MCS index are uniquely defined, and the base station selects the MCS index according to the radio propagation status. Thus, adaptive modulation coding is performed. For example, the base station selects a small MCS index when the radio wave condition is poor and the SNR is low, and selects a large MCS index when the SNR is high. In URLLC, in order to make wireless communication highly reliable even in an SNR lower than LTE, it is considered to introduce an MCS index having a lower SNR than in the past.
 HARQを適用するシステムにおいては、通信が成功したことを受信側(例えば、無線通信端末)から送信側(例えば、基地局)へ通知するACK(Acknowledge)信号の通信品質が重要な意味を持つ。なぜなら、ダウンリンク通信(主信号の通信)が成功したにも拘らず、アップリンク通信のACK信号の受信に失敗すれば、送信側は、ダウンリンク通信が失敗したと判断して再送を行うこととなり、スループットが低下してしまうからである。ここで、得られるスループットをT、あるMCSにおける最大スループットをTmax_mcs、主信号のブロックエラーレートをBLER、主信号に対するACK信号のエラーレートをACKBERとすると、Tは次式により表すことができる。 In a system to which HARQ is applied, the communication quality of an ACK (Acknowledge) signal for notifying a transmission side (for example, a base station) from a reception side (for example, a wireless communication terminal) that communication is successful has an important meaning. This is because if the downlink communication (main signal communication) succeeds but the reception of the uplink ACK signal fails, the transmitting side determines that the downlink communication has failed and performs retransmission. This is because the throughput is reduced. Here, if the obtained throughput is T, the maximum throughput in a certain MCS is T max_mcs , the block error rate of the main signal is BLER, and the error rate of the ACK signal with respect to the main signal is ACK BER , T can be expressed by the following equation: .
 T=Tmax_mcs×(1-(BLER+ACKBER)) T = T max_mcs × (1− (BLER + ACK BER ))
 上述した様な、URLLCにおいて低いSNRで通信を行う場合には、主信号の送信だけでなく、ACK信号の返信についても失敗する可能性が高まる。ACK信号の通信品質を向上するための手法として、例えば、送信電力をより高くすること、占有リソースをより増やすことが考えられる。しかしながら、固定的なリソース増加では、送信電力の限界あるいはリソース増加に伴うシステム効率の低下といった新たな問題が生じ得る。 As described above, when communication is performed with a low SNR in URLLC, there is a high possibility that not only the transmission of the main signal but also the return of the ACK signal will fail. As a technique for improving the communication quality of the ACK signal, for example, it is conceivable to increase the transmission power and increase the occupied resources. However, a fixed increase in resources may cause new problems such as a limit in transmission power or a decrease in system efficiency accompanying an increase in resources.
 開示の技術は、上記に鑑みてなされたものであって、リソース利用効率を維持しつつ、ACK信号の不達を抑制することのできる基地局、無線通信端末、無線通信システム、及び無線通信方法を提供することを目的とする。 The disclosed technique has been made in view of the above, and is capable of suppressing non-delivery of an ACK signal while maintaining resource utilization efficiency, a base station, a wireless communication terminal, a wireless communication system, and a wireless communication method The purpose is to provide.
 上述した課題を解決し、目的を達成するために、本願の開示する基地局は、一つの態様において、第1決定部と、第2決定部と、受信部とを有する。前記第1決定部は、無線通信端末へ送信する信号の符号化及び変調方式を決定する。前記第2決定部は、前記信号に適用される符号化及び変調方式と、前記信号に対する応答信号の送信に用いるリソースとの関連付け情報を参照し、前記リソースを決定する。前記受信部は、前記リソースを用いて送信された前記応答信号を受信する。 In order to solve the above-described problem and achieve the object, the base station disclosed in the present application includes, in one aspect, a first determination unit, a second determination unit, and a reception unit. The first determination unit determines a coding and modulation scheme of a signal to be transmitted to the wireless communication terminal. The second determination unit refers to association information between an encoding and modulation scheme applied to the signal and a resource used for transmission of a response signal to the signal, and determines the resource. The receiving unit receives the response signal transmitted using the resource.
 本願の開示する基地局の一つの態様によれば、リソース利用効率を維持しつつ、ACK信号の不達を抑制することができる。 According to one aspect of the base station disclosed in the present application, it is possible to suppress non-delivery of the ACK signal while maintaining resource utilization efficiency.
図1は、実施例1に係る基地局の構成を示す図である。FIG. 1 is a diagram illustrating the configuration of the base station according to the first embodiment. 図2は、実施例1に係るLUTのデータ格納例を示す図である。FIG. 2 is a diagram illustrating an example of data storage in the LUT according to the first embodiment. 図3は、PUCCHにおいて、ACK返信用の上り送信リソースが可変サイズであることを示す図である。FIG. 3 is a diagram illustrating that the uplink transmission resource for ACK return is a variable size in the PUCCH. 図4は、PUSCHにおいて、ACK返信用の上り送信リソースが可変サイズであることを示す図である。FIG. 4 is a diagram showing that the uplink transmission resource for ACK reply has a variable size in PUSCH. 図5は、実施例1に係る無線通信端末の構成を示す図である。FIG. 5 is a diagram illustrating the configuration of the wireless communication terminal according to the first embodiment. 図6は、無線通信システムの動作を説明するための図である。FIG. 6 is a diagram for explaining the operation of the wireless communication system. 図7は、ACKindex定義を含むLUTを各無線通信端末毎に個別に設定する場合のシグナリング例を示す図である。FIG. 7 is a diagram illustrating an example of signaling when an LUT including an ACK index definition is individually set for each wireless communication terminal. 図8は、実施例1に係る基地局の制御信号変調部によるリソース配置を説明するための図である。FIG. 8 is a diagram for explaining resource allocation by the control signal modulation unit of the base station according to the first embodiment. 図9は、実施例1に係る基地局の主信号変調部によるリソース配置を説明するための図である。FIG. 9 is a diagram for explaining resource allocation by the main signal modulation unit of the base station according to the first embodiment. 図10は、式(5)及び式(6)に用いられる変数を説明するための図である。FIG. 10 is a diagram for explaining variables used in the equations (5) and (6). 図11は、256QAM適用の無い場合の実施例2に係るLUTのデータ格納例を示す図である。FIG. 11 is a diagram illustrating an example of data storage in the LUT according to the second embodiment when 256QAM is not applied. 図12は、256QAM適用の有る場合の実施例2に係るLUTのデータ格納例を示す図である。FIG. 12 is a diagram illustrating a data storage example of the LUT according to the second embodiment when 256QAM is applied. 図13は、実施例2に係る基地局の制御信号変調部によるリソース配置を説明するための図である。FIG. 13 is a diagram for explaining resource allocation by the control signal modulation unit of the base station according to the second embodiment. 図14は、実施例2に係る基地局の主信号変調部によるリソース配置を説明するための図である。FIG. 14 is a diagram for explaining resource allocation by the main signal modulation unit of the base station according to the second embodiment. 図15は、式(8)及び式(9)に用いられる変数を説明するための図である。FIG. 15 is a diagram for explaining variables used in Expression (8) and Expression (9).
 以下に、本願の開示する基地局、無線通信端末、無線通信システム、及び無線通信方法の実施例を、図面を参照しながら詳細に説明する。なお、以下の実施例の記載により、本願の開示する基地局、無線通信端末、無線通信システム、及び無線通信方法が限定されるものではない。 Hereinafter, embodiments of a base station, a wireless communication terminal, a wireless communication system, and a wireless communication method disclosed in the present application will be described in detail with reference to the drawings. The base station, wireless communication terminal, wireless communication system, and wireless communication method disclosed in the present application are not limited by the description of the following embodiments.
 まず、実施例1について説明する。図1は、実施例1に係る基地局100の構成を示す図である。図1に示す様に、基地局100は、受信アンテナ部101と無線受信部102とPUCCH/PUSCH復調復号部103とAN判定部104とHARQ制御バッファ部105と符号化部106と変調部107と無線送信部108と送信アンテナ部109とを有する。更に、基地局100は、PDSCH/MCS制御部110とLUT(LookUp Table)111とACK受信MCS-ACKindex判定部112とHARQプロセス(m)MCS記憶部113とを有する。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。 First, Example 1 will be described. FIG. 1 is a diagram illustrating the configuration of the base station 100 according to the first embodiment. As shown in FIG. 1, the base station 100 includes a reception antenna unit 101, a radio reception unit 102, a PUCCH / PUSCH demodulation / decoding unit 103, an AN determination unit 104, a HARQ control buffer unit 105, an encoding unit 106, and a modulation unit 107. A wireless transmission unit 108 and a transmission antenna unit 109 are included. Furthermore, the base station 100 includes a PDSCH / MCS control unit 110, an LUT (LookUp Table) 111, an ACK reception MCS-ACK index determination unit 112, and an HARQ process (m) MCS storage unit 113. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
 受信アンテナ部101は、アップリンク無線信号を受信する。無線受信部102は、周波数変換及びA/D(Analog to Digital)変換を行う。PUCCH/PUSCH復調復号部103は、ACK受信MCS-ACKindex判定部112により決定されたリソース情報を参照し、LTE上り物理チャネル仕様に応じた復調及び復号を行う。AN判定部104は、PUCCH(Physical Uplink Control CHannel)またはPUSCH(Physical Uplink Shared CHannel)の復調復号結果がACKであるかNACKであるかを判定する。HARQ制御バッファ部105は、HARQによる再送制御を行う。符号化部106は、制御信号符号化部106aと主信号符号化部106bとを有し、各々の信号に対し、PDCCH(Physical Downlink Control CHannel)及びPDSCH(Physical Downlink Shared CHannel)の符号化を行う。変調部107は、制御信号変調部107aと主信号変調部107bとを有し、各々の信号に対し、PDCCH及びPDSCHの変調及びリソース配置を行う。無線送信部108は、D/A(Digital to Analog)変換及び周波数変換を行う。送信アンテナ部109は、ダウンリンク無線信号を送信する。 The receiving antenna unit 101 receives an uplink radio signal. The wireless reception unit 102 performs frequency conversion and A / D (Analog to Digital) conversion. The PUCCH / PUSCH demodulation / decoding unit 103 refers to the resource information determined by the ACK reception MCS-ACK index determination unit 112 and performs demodulation and decoding according to the LTE uplink physical channel specification. The AN determination unit 104 determines whether the demodulation / decoding result of PUCCH (Physical Uplink Control CHannel) or PUSCH (Physical Uplink Shared CHannel) is ACK or NACK. The HARQ control buffer unit 105 performs retransmission control using HARQ. The encoding unit 106 includes a control signal encoding unit 106a and a main signal encoding unit 106b, and encodes PDCCH (Physical Downlink Control Channel) and PDSCH (Physical Downlink Shared Channel) for each signal. . The modulation unit 107 includes a control signal modulation unit 107a and a main signal modulation unit 107b, and performs PDCCH and PDSCH modulation and resource allocation for each signal. The wireless transmission unit 108 performs D / A (Digital to Analog) conversion and frequency conversion. The transmission antenna unit 109 transmits a downlink radio signal.
 PDSCH/MCS制御部110は、無線通信端末200から報告されるCQI(Channel Quality Indicator)に応じて、ダウンリンクのデータサイズ、並びに、符号化及び変調の方式(DL-MCS:Down Link-Modulation and Coding Scheme)を決定する。決定されたDL-MCSは、DCI(Downlink Control Information)の一部として、制御信号符号化部106aにより符号化されたPDCCHにより、無線通信端末200へ送信される。 The PDSCH / MCS control unit 110, depending on the CQI (Channel Quality Indicator) reported from the radio communication terminal 200, the downlink data size, and the coding and modulation scheme (DL-MCS: Down Link-Modulation and) Determine Coding Scheme. The determined DL-MCS is transmitted to the radio communication terminal 200 as a part of DCI (Downlink Control Information) by the PDCCH encoded by the control signal encoding unit 106a.
 LUT(LookUp Table)111は、基地局100と無線通信端末200との間で予め決められた共通のMCSテーブルであり、ACK受信MCS-ACKindex判定部112がリソース配置情報を決定する際に参照される。図2は、実施例1に係るLUT111のデータ格納例を示す図である。図2に示す様に、LTEシステムにおける主信号MCSテーブルを例に採ると、MCSindex、Modulation Order、及びTBSindexに加えて、ACKindexが定義されている。これにより、下り主信号MCSに応じたACKindexの決定が可能となる。 An LUT (LookUp Table) 111 is a common MCS table that is predetermined between the base station 100 and the radio communication terminal 200, and is referred to when the ACK reception MCS-ACK index determination unit 112 determines resource allocation information. The FIG. 2 is a diagram illustrating a data storage example of the LUT 111 according to the first embodiment. As shown in FIG. 2, taking the main signal MCS table in the LTE system as an example, ACKindex is defined in addition to MCSindex, Modulation Order, and TBSindex. This makes it possible to determine the ACK index according to the downlink main signal MCS.
 図3は、PUCCHにおいて、ACK返信用の上り送信リソースが可変サイズであることを示す図である。図4は、PUSCHにおいて、ACK返信用の上り送信リソースが可変サイズであることを示す図である。図3及び図4では、x軸に時間が規定され、y軸に周波数が規定されている。LTEでの上りチャネルでは、無線通信端末200は、UL-Grant(PUSCH)が無い場合は、PUCCH上のリソース(例えば、PUCCH#1)を用いてACK信号を返信するが、UL-Grant(PUSCH)が有る場合は、PUSCH上のリソースを用いてACK信号を返信する。図3に示す様に、PUCCHによりACKを返信する場合、PUCCH上に、可変サイズのACK用リソースR1~R4が存在する。図4に示す様に、PUSCHによりACKを返信する場合、PUSCH上に、可変サイズのACK用リソースR5~R8が存在する。 FIG. 3 is a diagram showing that the uplink transmission resource for ACK return is a variable size in the PUCCH. FIG. 4 is a diagram showing that the uplink transmission resource for ACK reply has a variable size in PUSCH. 3 and 4, time is defined on the x-axis and frequency is defined on the y-axis. In the uplink channel in LTE, when there is no UL-Grant (PUSCH), the radio communication terminal 200 returns an ACK signal using resources on the PUCCH (for example, PUCCH # 1), but UL-Grant (PUSCH). ), An ACK signal is returned using resources on the PUSCH. As shown in FIG. 3, when an ACK is returned by PUCCH, variable-size ACK resources R1 to R4 exist on PUCCH. As shown in FIG. 4, when ACK is returned by PUSCH, variable-size ACK resources R5 to R8 exist on PUSCH.
 なお、ACK信号のビット数に関し、例えば下りリンクでMIMO(Multiple Input Multiple Output)-2CW(Code Word)通信をする場合は、無線通信端末200は、CWそれぞれのACK信号として合計2ビットを返信する。別の例として、TDD(Time Division Duplex)のコンフィグレーションによっては、無線通信端末200は、複数のダウンリンクサブフレームの通信に対するACK信号を、1つのアップリンクサブフレームにより返信する場合もある。この様に、MIMO、TDDによって、返信すべきACK信号の数は変化するが、CW当たりのACK信号は、何れの場合も1ビットとなる。 Regarding the number of bits of the ACK signal, for example, when performing MIMO (Multiple Input Multiple Output) -2CW (Code Word) communication in the downlink, the wireless communication terminal 200 returns a total of 2 bits as the ACK signal of each CW. . As another example, depending on the configuration of TDD (Time Division Duplex), the radio communication terminal 200 may return an ACK signal for communication of a plurality of downlink subframes in one uplink subframe. In this way, the number of ACK signals to be returned varies depending on MIMO and TDD, but the ACK signal per CW is 1 bit in any case.
 ACK受信MCS-ACKindex判定部112は、PUCCHまたはPUSCHの物理リソース情報を決定する。具体的には、ACK受信MCS-ACKindex判定部112は、ACK/NACK信号を受信するHARQプロセス番号のDL-MCSを、HARQプロセス(m)MCS記憶部113から読み出した後、LUT111を参照しながら、PUCCHまたはPUSCHによりACK/NACK信号を受信するためのリソース配置情報(物理リソース配置及び符号化情報)を決定する。HARQプロセス(m)MCS記憶部113は、上記DL-MCSを、上記HARQプロセス番号別に記憶する。 The ACK reception MCS-ACK index determination unit 112 determines PUCCH or PUSCH physical resource information. Specifically, the ACK reception MCS-ACK index determination unit 112 reads the DL-MCS of the HARQ process number that receives the ACK / NACK signal from the HARQ process (m) MCS storage unit 113, and then refers to the LUT 111. , Resource allocation information (physical resource allocation and coding information) for receiving an ACK / NACK signal by PUCCH or PUSCH is determined. The HARQ process (m) MCS storage unit 113 stores the DL-MCS for each HARQ process number.
 図5は、実施例1に係る無線通信端末200の構成を示す図である。図5に示す様に、無線通信端末200は、受信アンテナ部201と無線受信部202とPDSCH復調復号部203とCQI測定部204とAN判定部205と送信UCI(Uplink Control Information)生成部206と符号化変調部207と送信電力制御部208と無線送信部209と送信アンテナ部210とを有する。更に、無線通信端末200は、PDCCH復調復号部211とDCI判定部212とACK/NACK送信MCS-ACKindex判定部213とLUT214とを有する。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。 FIG. 5 is a diagram illustrating the configuration of the wireless communication terminal 200 according to the first embodiment. As shown in FIG. 5, the radio communication terminal 200 includes a reception antenna unit 201, a radio reception unit 202, a PDSCH demodulation / decoding unit 203, a CQI measurement unit 204, an AN determination unit 205, a transmission UCI (Uplink Control Information) generation unit 206, The encoding modulation unit 207, the transmission power control unit 208, the wireless transmission unit 209, and the transmission antenna unit 210 are included. Furthermore, the radio communication terminal 200 includes a PDCCH demodulation / decoding unit 211, a DCI determination unit 212, an ACK / NACK transmission MCS-ACK index determination unit 213, and an LUT 214. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
 受信アンテナ部201は、ダウンリンク無線信号を受信する。無線受信部202は、周波数変換及びA/D変換を行う。PDSCH復調復号部203は、DL-MCS、HARQ情報、及びリソース情報を用いて、PDSCHを復調及び復号する。CQI測定部204は、受信信号から、SINR(Signal-to-Interference and Noise power Ratio)及びチャネル容量を測定し、該測定の結果に基づいてCQIを決定し、基地局100からの指示に従って報告する。AN判定部205は、例えばCRC(Cyclic Redundancy Check)検査により、PDSCHの復調復号結果がACKであるかNACKであるかを判定する。送信UCI生成部206は、ACK/NACK信号を符号化する。符号化変調部207は、制御信号符号化変調部207aと主信号符号化変調部207bとを有し、各々の信号に対し、PUCCHまたはPUSCHの変調、及び物理リソースへの配置を行う。送信電力制御部208は、例えば、PUCCHまたはPUSCHによりACK信号を送信するための電力を制御する。無線送信部209は、D/A変換及び周波数変換を行う。送信アンテナ部210は、アップリンク無線信号を送信する。 The receiving antenna unit 201 receives a downlink radio signal. The wireless reception unit 202 performs frequency conversion and A / D conversion. PDSCH demodulation / decoding section 203 demodulates and decodes PDSCH using DL-MCS, HARQ information, and resource information. CQI measurement section 204 measures SINR (Signal-to-Interference and Noise power Ratio) and channel capacity from the received signal, determines CQI based on the measurement result, and reports it according to instructions from base station 100 . The AN determination unit 205 determines whether the PDSCH demodulation / decoding result is ACK or NACK by, for example, CRC (Cyclic Redundancy Check) inspection. The transmission UCI generation unit 206 encodes the ACK / NACK signal. The coding modulation unit 207 includes a control signal coding modulation unit 207a and a main signal coding modulation unit 207b, and performs modulation of PUCCH or PUSCH and arrangement to physical resources for each signal. The transmission power control unit 208 controls the power for transmitting the ACK signal using PUCCH or PUSCH, for example. The wireless transmission unit 209 performs D / A conversion and frequency conversion. The transmission antenna unit 210 transmits an uplink radio signal.
 PDCCH復調復号部211は、端末識別子としてのRNTI(Radio Network Temporary Identifier)により、PDCCHのブラインド検出を行う。DCI判定部212は、上記ブラインド検出により自端末宛のPDCCHが検出された場合、DL-MCS、及びHARQ情報を始めとする復調復号情報を解読する。ACK/NACK送信MCS-ACKindex判定部213は、PUCCHまたはPUSCHの物理リソース情報を決定する。具体的には、ACK/NACK送信MCS-ACKindex判定部213は、自端末宛の受信したDCIのDL-MCSを用いて、LUT214を参照し、ACK/NACK信号を送信するPUCCHまたはPUSCHのリソース配置情報(物理リソース配置及び符号化情報)を決定する。LUT214は、上述したLUT111と同様の構成を有するため、詳細な説明は省略する。 The PDCCH demodulation / decoding unit 211 performs blind detection of the PDCCH using an RNTI (Radio Network Temporary Identifier) as a terminal identifier. When the PDCCH addressed to the terminal is detected by the blind detection, the DCI determination unit 212 decodes the demodulated decoding information including DL-MCS and HARQ information. The ACK / NACK transmission MCS-ACK index determination unit 213 determines PUCCH or PUSCH physical resource information. Specifically, the ACK / NACK transmission MCS-ACK index determination unit 213 refers to the LUT 214 using the received DCI DL-MCS addressed to its own terminal, and allocates the PUCCH or PUSCH resource arrangement for transmitting the ACK / NACK signal. Information (physical resource allocation and coding information) is determined. Since the LUT 214 has the same configuration as the LUT 111 described above, detailed description thereof is omitted.
 次に、基地局100と無線通信端末200とを含む無線通信システムの動作を説明する。 Next, the operation of a wireless communication system including the base station 100 and the wireless communication terminal 200 will be described.
 図6は、無線通信システムの動作(HARQシーケンス)を説明するための図である。S1では、無線通信端末200の無線送信部209は、送信アンテナ部210を介して、PUCCHまたはPUSCHにより、基地局100へCQIを報告する。 FIG. 6 is a diagram for explaining the operation (HARQ sequence) of the wireless communication system. In S <b> 1, the wireless transmission unit 209 of the wireless communication terminal 200 reports the CQI to the base station 100 via the transmission antenna unit 210 by PUCCH or PUSCH.
 基地局100のPDSCH/MCS制御部110は、アップリンクにて報告されるCQIとLUT111とを用いて、ダウンリンクのMCSを決定する(S2)。次に、PDSCH/MCS制御部110は、新規のHARQプロセス(m)を生成し(S3)、該HARQプロセス(m)のダウンリンク送信があることを、PDCCH(DCI)により無線通信端末200へ通知する(S4)。併せて、基地局100は、PDSCH(トラフィックデータ)も無線通信端末200へ送信する(S5)。 The PDSCH / MCS control unit 110 of the base station 100 determines the downlink MCS using the CQI and LUT 111 reported in the uplink (S2). Next, the PDSCH / MCS control unit 110 generates a new HARQ process (m) (S3), and notifies that there is downlink transmission of the HARQ process (m) to the radio communication terminal 200 by PDCCH (DCI). Notify (S4). At the same time, the base station 100 also transmits PDSCH (traffic data) to the radio communication terminal 200 (S5).
 上記PDCCHのDCIには、PDSCHのトラフィックデータ(下り主信号)を復調及び復号するための情報としてのMCS、及びHARQ送信回数を示す情報が含まれる。無線通信端末200は、S4にて受信されたDCIを解析し、上記MCS及びHARQ送信回数の各情報を参照して、S5にて受信されたトラフィックデータを復調及び復号する。なお、このときHARQ送信回数が0(初送信)の場合は、復調データをそのまま復号し、0以外(再送信)の場合は、前回までの受信信号と今回の受信信号とをソフト合成してから復号を行う。 The DCI of the PDCCH includes MCS as information for demodulating and decoding PDSCH traffic data (downlink main signal), and information indicating the number of HARQ transmissions. The wireless communication terminal 200 analyzes the DCI received in S4, refers to each information of the MCS and HARQ transmission frequency, and demodulates and decodes the traffic data received in S5. At this time, if the number of HARQ transmissions is 0 (initial transmission), the demodulated data is decoded as it is. If it is other than 0 (retransmission), the previous received signal and the current received signal are combined by software. Decrypt from.
 S6では、無線通信端末200のAN判定部205は、CRC(Cyclic Redundancy Check)を用いて、PDSCHの復号結果からACK/NACKを判定する。次に、ACK/NACK送信MCS-ACKindex判定部213は、LUT214の参照により、ACK/NACK返信用のリソースを決定する(S7)。その後、無線通信端末200は、ビット繰返し等の符号化処理を実行し、CW当たり1ビットのACK/NACK信号を、PUCCHまたはPUSCHにより、基地局100に返信(UCI送信)する(S8)。 In S6, the AN determination unit 205 of the wireless communication terminal 200 determines ACK / NACK from the decoding result of PDSCH using CRC (Cyclic Redundancy Check). Next, the ACK / NACK transmission MCS-ACK index determination unit 213 determines an ACK / NACK reply resource by referring to the LUT 214 (S7). Thereafter, the wireless communication terminal 200 executes an encoding process such as bit repetition, and returns a 1-bit ACK / NACK signal per CW to the base station 100 via the PUCCH or the PUSCH (UCI transmission) (S8).
 例えば、LUT214のACKindexが“1”の場合は、無線通信端末200は、従来通り、PUCCH#1-1のみを利用してUCI送信を行うが、ACKindexが“2”の場合は、PUCCH#1-1及びPUCCH#1-2を利用し、ACKビットを2回繰り返した符号化を行う。同様に、無線通信端末200は、ACKindexが“3”の場合は、PUCCH#1-1、PUCCH#1-2、及びPUCCH#1-3を利用し、ACKビットを3回繰り返した符号化を行う。 For example, when the ACK index of the LUT 214 is “1”, the radio communication terminal 200 performs UCI transmission using only the PUCCH # 1-1 as usual, but when the ACK index is “2”, the PUCCH # 1 -1 and PUCCH # 1-2 are used to perform encoding by repeating the ACK bit twice. Similarly, when the ACK index is “3”, the radio communication terminal 200 uses PUCCH # 1-1, PUCCH # 1-2, and PUCCH # 1-3, and performs encoding by repeating the ACK bit three times. Do.
 一方、基地局100は、S3にて新規生成されたHARQプロセス(m)のMCSを記憶しておき(S9)、該当する下り信号のMCSに応じて、ACK/NACK信号が配置されるリソースを決定する(S10)。基地局100のPUCCH/PUSCH復調復号部103は、上記S8による返信を検知すると、ACKindexに応じた繰り返し数により軟判定値を合成し、PUCCHまたはPUSCHの復調及び復号を行う(S11)。 On the other hand, the base station 100 stores the MCS of the HARQ process (m) newly generated in S3 (S9), and determines the resource in which the ACK / NACK signal is allocated according to the MCS of the corresponding downlink signal. Determine (S10). When the PUCCH / PUSCH demodulation / decoding unit 103 of the base station 100 detects a reply from S8, the PUCCH / PUSCH demodulation / decoding unit 103 synthesizes a soft decision value based on the number of repetitions corresponding to the ACK index, and demodulates and decodes the PUCCH or PUSCH (S11).
 その後は、基地局100は、HARQプロセス(m)のUCI判定により、新規送信または再送信を選択する。すなわち、基地局100は、上りチャネルのUCIを解析し、該解析結果が、ACK/NACK/DTXの何れであるかを判定する(S12)。ACKの場合には、基地局100は、S3と同様に、新規のHARQプロセス(m)を生成し(S13)、NACK/DTXの場合には、S3で生成されたHARQプロセス(m)の通信が失敗したと判断して、HARQプロセス(m)を再送する(S14)。以降、基地局100のPDSCH/MCS制御部110は、上記S4と同様に、上記HARQプロセス(m)のダウンリンク送信があることを、PDCCH(DCI)により無線通信端末200へ通知する(S15)。そして、基地局100は、上記S5と同様に、PDSCH(トラフィックデータ)も無線通信端末200へ送信する(S16)。 Thereafter, the base station 100 selects new transmission or retransmission according to the UCI determination of the HARQ process (m). That is, the base station 100 analyzes the UCI of the uplink channel and determines whether the analysis result is ACK / NACK / DTX (S12). In the case of ACK, the base station 100 generates a new HARQ process (m) as in S3 (S13), and in the case of NACK / DTX, the communication of the HARQ process (m) generated in S3. Is re-successful and the HARQ process (m) is retransmitted (S14). Thereafter, the PDSCH / MCS control unit 110 of the base station 100 notifies the radio communication terminal 200 by PDCCH (DCI) that there is downlink transmission of the HARQ process (m), similarly to S4 (S15). . Then, the base station 100 also transmits PDSCH (traffic data) to the wireless communication terminal 200 as in S5 (S16).
 なお、無線通信端末200は、PUSCHを用いたACK返信時は、下り主信号のDL-MCSではなく、上り信号のスケジューリングにより決定されたUL-MCS(Up Link-Modulation and Coding Scheme)を用いて、LUT214から、ACKindexを決定してもよい。 The wireless communication terminal 200 uses UL-MCS (Up Link-Modulation and Coding Scheme) determined by uplink signal scheduling instead of DL-MCS of the downlink main signal when ACK is returned using PUSCH. ACKindex may be determined from LUT 214.
 また、基地局100は、LUT111が上述したACKindex定義を含むことをシステム情報としてセル内に報知してもよいし、各無線通信端末200毎に個別に設定してもよい。図7は、ACKindex定義を含むLUT111を各無線通信端末200毎に個別に設定する場合のシグナリング例を示す図である。 In addition, the base station 100 may notify the LUT 111 that the ACK index definition described above is included in the cell as system information, or may be individually set for each wireless communication terminal 200. FIG. 7 is a diagram illustrating an example of signaling when the LUT 111 including the ACK index definition is individually set for each wireless communication terminal 200.
 S21では、基地局100は、RRC Connection Reconfigurationとして、LUT111を、無線通信端末200宛に送信する。S22では、無線通信端末200は、S21にて送信されたLUT111を、上記S7における使用リソースの決定に際しての参照テーブル(MCSテーブル)として選択する。そして、無線通信端末200は、RRC Connection Reconfiguration Completeを基地局100へ返信する(S23)。 In S21, the base station 100 transmits the LUT 111 to the wireless communication terminal 200 as RRC Connection Reconfiguration. In S22, the wireless communication terminal 200 selects the LUT 111 transmitted in S21 as a reference table (MCS table) when determining the used resources in S7. Then, the wireless communication terminal 200 returns RRC Connection Reconfiguration Complete to the base station 100 (S23).
 次に、実施例1におけるリソース配置処理について、より詳細に説明する。図8は、実施例1に係る基地局100の制御信号変調部107aによるリソース配置を説明するための図である。図8に示す様に、リソース配置mは、ACK/NACKリソース番号をk(k=1、2、・・・、ACKindex)とすると、許容される最大リソース数Kmax、及び、従来の手法(3Gpp TS36.211 v15.0.0)により計算したリソース番号mを用いて、次式(1)により計算可能である。 Next, the resource allocation process in the first embodiment will be described in more detail. FIG. 8 is a diagram for explaining resource allocation by the control signal modulation unit 107a of the base station 100 according to the first embodiment. As shown in FIG. 8, when the ACK / NACK resource number is k (k = 1, 2,..., ACK index ), the resource arrangement m k is the maximum allowable resource number K max , Using the resource number m calculated by the method (3Gpp TS36.211 v15.0.0), it can be calculated by the following equation (1).
 m=(m+k-1)mod Kmax ・・・(1) m k = (m + k−1) mod K max (1)
 また、Kmaxは、次式(2)に示す様に、MCSテーブルに定義するACKindexの最大値の2倍に等しい。 K max is equal to twice the maximum value of the ACK index defined in the MCS table, as shown in the following equation (2).
 Kmax=2×ACKindex_MAX ・・・(2) K max = 2 × ACK index _MAX ··· (2)
 なお、図3及び図4に例示したACKリソースマップでは、ACKindexMAX=4となる。 In the ACK resource map illustrated in FIGS. 3 and 4, ACK indexMAX = 4.
 基地局100は、符号化後のPUCCHシンボルをZ(i)として、図8に示す手順により、RE(Resource Element)の配置処理(マッピング)を実行する。図8に示す様に、ACKindex=1の場合(T1;Yes)には、リソース増加が無いため(T2)、基地局100は、図8にも示す次式(3)に従った従来の配置処理を実行する(T3)。 The base station 100 executes RE (Resource Element) placement processing (mapping) according to the procedure shown in FIG. 8 with Z (i) as the encoded PUCCH symbol. As shown in FIG. 8, when ACKindex = 1 (T1; Yes), since there is no increase in resources (T2), the base station 100 is arranged according to the following equation (3) also shown in FIG. Processing is executed (T3).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 これに対し、ACKindex>1の場合(T1;No)には、基地局100は、リソース増加のためのリソース計算を実行した後(T4)、図8にも示す次式(4)に従った新たな配置処理を実行する(T5)。 On the other hand, when ACKindex> 1 (T1; No), the base station 100 performs resource calculation for increasing resources (T4), and then follows the following equation (4) shown in FIG. A new arrangement process is executed (T5).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、PUCCH/PUSCH復調復号部103によるRE配置処理は、制御信号変調部107aによるRE配置処理と同様である。 Note that the RE arrangement processing by the PUCCH / PUSCH demodulation / decoding unit 103 is the same as the RE arrangement processing by the control signal modulation unit 107a.
 図9は、実施例1に係る基地局100の主信号変調部107bによるリソース配置を説明するための図である。基地局100は、UL-SCH(Up Link-Shared CHannel)符号化において、送信するACK/NACK信号のビット数をOACKとし、送信するACK/NACKの変調シンボル数をQ’とすると、図9に示す手順により、REの配置処理を実行する。図9に示す様に、ACKindex=1の場合(T11;Yes)には、リソース増加が無いため(T12)、基地局100は、図9にも示す次式(5)に従ったUL-SCH符号化処理により、変調シンボル数を決定する(T13)。そして、基地局100は、決定されたシンボル数により主信号を変調し(T14)、RE配置処理を実行する(T15)。 FIG. 9 is a diagram for explaining resource allocation by the main signal modulation unit 107b of the base station 100 according to the first embodiment. In UL-SCH (Up Link-Shared CHannel) coding, the base station 100 sets the number of ACK / NACK signals to be transmitted as O ACK and the number of ACK / NACK modulation symbols to be transmitted as Q ′ as shown in FIG. The RE placement process is executed according to the procedure shown in FIG. As shown in FIG. 9, when ACKindex = 1 (T11; Yes), there is no increase in resources (T12), so that the base station 100 performs UL-SCH according to the following equation (5) also shown in FIG. The number of modulation symbols is determined by the encoding process (T13). Then, the base station 100 modulates the main signal with the determined number of symbols (T14), and executes RE arrangement processing (T15).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 一方、ACKindex>1の場合(T11;No)には、基地局100は、リソース増加のためのリソース計算を実行した後(T16)、図9にも示す次式(6)に従ったUL-SCH符号化処理により、変調シンボル数を決定する(T17)。そして、基地局100は、決定されたシンボル数により主信号を変調し(T18)、RE配置処理を実行する(T19)。 On the other hand, when ACKindex> 1 (T11; No), the base station 100 executes resource calculation for increasing resources (T16), and then performs UL− according to the following equation (6) shown in FIG. The number of modulation symbols is determined by the SCH encoding process (T17). Then, the base station 100 modulates the main signal with the determined number of symbols (T18), and executes RE arrangement processing (T19).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 図10は、式(5)及び式(6)に用いられる変数を説明するための図である。図10において、PUCSH初回送信のsubframe先頭シンボルの有無に関し、“1”は有りを示し、“0”は無しを示す。同様に、PUCSH初回送信のsubframe最終シンボルの有無に関し、“1”は有りを示し、“0”は無しを示す。 FIG. 10 is a diagram for explaining variables used in Expression (5) and Expression (6). In FIG. 10, “1” indicates presence and “0” indicates absence regarding the presence or absence of the subframe head symbol of the first PUCSH transmission. Similarly, regarding the presence / absence of the subframe final symbol of the first PUCSH transmission, “1” indicates presence and “0” indicates absence.
 以上説明した様に、実施例1に係る無線通信システムは、基地局100と無線通信端末200との間で、HARQ及びAMCを適用して無線通信を行う。基地局100は、PDSCH/MCS制御部110とACK受信MCS-ACKindex判定部112と無線受信部102とを有する。PDSCH/MCS制御部110は、無線通信端末200へ送信する下り方向の主信号の符号化及び変調方式(MCS)を決定する。ACK受信MCS-ACKindex判定部112は、PDSCH/MCS制御部110により決定された符号化及び変調方式に応じて、上記主信号に対する応答信号(ACK)を受信するためのリソース(例えば、PUCCHのサイズ、配置、数)を可変的に決定する。無線受信部102は、ACK受信MCS-ACKindex判定部112により決定されたリソースを用いて、上記応答信号を受信する。無線通信端末200は、無線受信部202とACK/NACK送信MCS-ACKindex判定部213と無線送信部209とを有する。無線受信部202は、PDSCH/MCS制御部110により決定された符号化及び変調方式を受信する。ACK/NACK送信MCS-ACKindex判定部213は、無線受信部202により受信された符号化及び変調方式に応じて、上記応答信号(ACK)を送信するためのリソース(例えば、PUCCHのサイズ、配置、数)を可変的に決定する。無線送信部209は、ACK/NACK送信MCS-ACKindex判定部213により決定されたリソースを用いて、上記応答信号を送信する。 As described above, the radio communication system according to the first embodiment performs radio communication between the base station 100 and the radio communication terminal 200 by applying HARQ and AMC. Base station 100 includes PDSCH / MCS control section 110, ACK reception MCS-ACK index determination section 112, and radio reception section 102. The PDSCH / MCS control unit 110 determines the encoding and modulation scheme (MCS) of the downlink main signal to be transmitted to the radio communication terminal 200. The ACK reception MCS-ACK index determination unit 112 receives resources (for example, PUCCH size) for receiving a response signal (ACK) to the main signal according to the coding and modulation schemes determined by the PDSCH / MCS control unit 110. , Arrangement, number) are variably determined. The radio reception unit 102 receives the response signal using the resource determined by the ACK reception MCS-ACK index determination unit 112. The wireless communication terminal 200 includes a wireless reception unit 202, an ACK / NACK transmission MCS-ACK index determination unit 213, and a wireless transmission unit 209. The radio reception unit 202 receives the encoding and modulation scheme determined by the PDSCH / MCS control unit 110. The ACK / NACK transmission MCS-ACK index determination unit 213, depending on the coding and modulation scheme received by the radio reception unit 202, resources for transmitting the response signal (ACK) (for example, the size, arrangement, and PUCCH of the PUCCH) Number) is variably determined. Radio transmitting section 209 transmits the response signal using the resource determined by ACK / NACK transmission MCS-ACK index determining section 213.
 より具体的には、基地局100は、無線通信端末200へ送信する信号の符号化及び変調方式(MCS)を決定し、上記信号に適用される符号化及び変調方式と、上記信号に対する応答信号(ACK)の送信に用いるリソースとの関連付け情報(LUT111)を参照し、上記リソースを決定し、上記リソースを用いて、無線通信端末200から送信された上記応答信号を受信する。また、無線通信端末200は、決定された符号化及び変調方式に関する情報を受信し、受信された符号化及び変調方式に対する応答信号の送信に用いるリソースの関連付け情報を参照し、上記リソースを決定し、該リソースを用いて、上記応答信号を基地局100に送信する。 More specifically, the base station 100 determines an encoding and modulation scheme (MCS) of a signal to be transmitted to the radio communication terminal 200, an encoding and modulation scheme applied to the signal, and a response signal for the signal The resource is determined by referring to the association information (LUT 111) with the resource used for transmitting (ACK), and the response signal transmitted from the radio communication terminal 200 is received using the resource. Also, the radio communication terminal 200 receives information on the determined coding and modulation scheme, refers to the association information of resources used for transmission of a response signal for the received coding and modulation scheme, and determines the resource The response signal is transmitted to the base station 100 using the resource.
 上述した様に、本実施例に係る無線通信システムにおいては、ULチャネルにより返信するACK/NACK信号のリソース数及びビット繰り返し符号化数が、該当するPDSCHのMCSに関連付けられている。これにより、基地局100は、PDSCHのMCSにより、PUCCHまたはPUSCHのリソース割り当てを動的に制御する。換言すれば、基地局100は、低SNR時にACK返信を行う際に、下り主信号のMCS状況から、ACK/NACK返信用のリソースサイズを適応的に決定し、ACKビットの繰り返し符号化数(ACKindex)を選択する。これにより、固定的なリソース増加に対して、リソース利用効率を高く維持しつつ、ACK受信品質を向上させることができる。その結果、ACK信号の不達は、抑制される。 As described above, in the wireless communication system according to the present embodiment, the resource number and the bit repetition coding number of the ACK / NACK signal returned by the UL channel are associated with the MCS of the corresponding PDSCH. Thereby, the base station 100 dynamically controls PUCCH or PUSCH resource allocation by MCS of PDSCH. In other words, the base station 100 adaptively determines the resource size for ACK / NACK reply from the MCS situation of the downlink main signal when performing ACK reply at low SNR, and repeats the number of ACK bit repetition codings ( ACKindex). As a result, ACK reception quality can be improved while maintaining high resource utilization efficiency against a fixed increase in resources. As a result, non-delivery of the ACK signal is suppressed.
 基地局100において、無線受信部102は、無線通信端末200から報告される無線品質情報(CQI)を受信する。PDSCH/MCS制御部110は、上記無線品質情報(CQI)に応じて、上記符号化及び変調方式を決定することも可能である。これにより、基地局100は、無線通信端末200の通信環境に合わせて、ACK信号を受信するためのリソースを適確かつ高精度に決定することができる。 In the base station 100, the radio reception unit 102 receives radio quality information (CQI) reported from the radio communication terminal 200. The PDSCH / MCS control unit 110 can also determine the coding and modulation scheme according to the radio quality information (CQI). Thereby, the base station 100 can determine the resource for receiving the ACK signal accurately and accurately according to the communication environment of the radio communication terminal 200.
 基地局100において、ACK受信MCS-ACKindex判定部112は、上記応答信号の送信リソース数、及び、上記応答信号のビット(ACKビット)の繰り返し符号化数(ACKindex)を制御することにより、上記リソースを決定するものとしてもよい。これにより、基地局100は、無線通信端末200から基地局100にACK信号を確実に到達させるためのリソースを、過不足無く適確に決定することができる。 In the base station 100, the ACK reception MCS-ACK index determination unit 112 controls the resource by controlling the number of transmission resources of the response signal and the number of repetition coding (ACK index) of the bits (ACK bits) of the response signal. It is good also as what determines. Thereby, the base station 100 can determine appropriately the resource for making an ACK signal reach | attain reliably from the radio | wireless communication terminal 200 to the base station 100 without excess and deficiency.
 また、本実施例に係る無線通信方法では、無線装置である基地局100が他の無線装置である無線通信端末200に送信する信号に適用される符号化及び変調方式と、上記信号に対する応答信号の送信に使用されるリソースとが関連付けられる。 Further, in the radio communication method according to the present embodiment, the encoding and modulation schemes applied to the signal transmitted from the base station 100, which is a radio apparatus, to the radio communication terminal 200, which is another radio apparatus, and the response signal to the signal Associated with the resource used to transmit
 次に、実施例2について説明する。実施例2における無線通信システムの構成は、上述した実施例1における無線通信システムの構成と同様である。また、実施例2における基地局、無線通信端末の各構成は、図1に示した実施例1における基地局100、無線通信端末200の各構成と同様である。従って、実施例2では、実施例1と共通する構成要素には、同一の参照符号を用いると共に、その詳細な説明は省略する。実施例2が実施例1と主に異なる点は、無線通信方式である。具体的には、実施例1では、本実施例に係る技術を適用する対象としてLTEを想定して説明したが、実施例2では、NR(New Radio)を想定する。 Next, Example 2 will be described. The configuration of the wireless communication system in the second embodiment is the same as the configuration of the wireless communication system in the first embodiment described above. The configurations of the base station and the wireless communication terminal in the second embodiment are the same as the configurations of the base station 100 and the wireless communication terminal 200 in the first embodiment shown in FIG. Therefore, in the second embodiment, the same reference numerals are used for the same components as in the first embodiment, and detailed description thereof is omitted. The difference between the second embodiment and the first embodiment is a wireless communication system. Specifically, the first embodiment has been described assuming LTE as an object to which the technology according to the present embodiment is applied, but in the second embodiment, NR (New Radio) is assumed.
 実施例2において、基地局100と無線通信端末200とは、予め決められた共通のLUT111a、111bをそれぞれ有する。ACK受信MCS-ACKindex判定部112は、これらのLUT111a、111bを参照して、下り主信号のMCSに適したACKindexを特定する。図11は、256QAM(Quadrature Amplitude Modulation)適用の無い場合の実施例2に係るLUT111aのデータ格納例を示す図である。図11に示す様に、NRシステムにおける主信号MCSテーブルを例に採ると、MCSindex、Modulation Order、Target code Rate、及びSpectral efficiencyに加えて、ACKindexが定義されている。これにより、NRを適用した場合でも、下り主信号MCSに応じたACKindexの決定が可能となる。 In the second embodiment, the base station 100 and the wireless communication terminal 200 have predetermined common LUTs 111a and 111b, respectively. The ACK reception MCS-ACK index determination unit 112 refers to these LUTs 111a and 111b and identifies an ACK index suitable for the MCS of the downlink main signal. FIG. 11 is a diagram illustrating a data storage example of the LUT 111a according to the second embodiment when 256QAM (Quadrature Amplitude Modulation) is not applied. As shown in FIG. 11, taking the main signal MCS table in the NR system as an example, ACKindex is defined in addition to MCSindex, Modulation Order, Target code Rate, and Spectral efficiency. As a result, even when NR is applied, it is possible to determine the ACK index according to the downlink main signal MCS.
 図12は、256QAM適用の有る場合の実施例2に係るLUT111bのデータ格納例を示す図である。図12に示す様に、256QAM適用の有る場合のテーブル構成についても、256QAM適用の無い場合と同様であるが、各フィールドに格納されるTarget code Rate、及びSpectral efficiency等の数値が高くなる。 FIG. 12 is a diagram illustrating a data storage example of the LUT 111b according to the second embodiment when 256QAM is applied. As shown in FIG. 12, the table structure when 256QAM is applied is the same as that when 256QAM is not applied, but the numerical values such as Target code Rate and Spectral efficiency stored in each field are high.
 次に、実施例2の動作を説明する。実施例2の動作は、図6及び図7を参照して説明した実施例1に係る無線通信システムの動作と同様であるため、詳細な説明は省略し、以下、実施例2におけるリソース配置処理について、より詳細に説明する。図13は、実施例2に係る基地局100の制御信号変調部107aによるリソース配置を説明するための図である。図13に示す処理は、図8に示した処理と基本的な流れが同様であるので、詳細な説明は省略するが、低SNRのURLLCでは、小ブロックUCIの利用が想定され、PUCCH format0が利用される。 Next, the operation of the second embodiment will be described. Since the operation of the second embodiment is the same as the operation of the wireless communication system according to the first embodiment described with reference to FIGS. 6 and 7, detailed description thereof will be omitted, and resource allocation processing in the second embodiment will be described below. Will be described in more detail. FIG. 13 is a diagram for explaining resource allocation by the control signal modulation unit 107a of the base station 100 according to the second embodiment. The process shown in FIG. 13 has the same basic flow as the process shown in FIG. 8 and will not be described in detail. However, in URLLC with a low SNR, use of a small block UCI is assumed, and PUCCH format0 is Used.
 PUCCH format0のリソース配置は、図13に示す様に、上位レイヤシグナリングにより、以下のパラメータを用いて指定される。
PUCCH-resource-config-PF0(3Gpp TS38.213 v15.0.0)
PUCCH-starting-PRB(Physical Resource Brock):PRB位置(スタート時)
PUCCH-2nd-hop-PRB:PRB位置(ホッピング時)
PUCCH-F0-F2-starting symbol:シンボル開始位置
PUCCH-F0-F2-number-of-symbols:シンボル数
As shown in FIG. 13, the resource arrangement of PUCCH format 0 is specified by higher layer signaling using the following parameters.
PUCCH-resource-config-PF0 (3Gpp TS38.213 v15.0.0)
PUCCH-starting-PRB (Physical Resource Brock): PRB position (when starting)
PUCCH-2nd-hop-PRB: PRB position (during hopping)
PUCCH-F0-F2-starting symbol: Symbol start position PUCCH-F0-F2-number-of-symbols: Number of symbols
 ここで、上記シンボル数にACKindexを適用すると、シンボル数Nsymbは、次式(7)により算出可能である。 Here, if the ACK index is applied to the number of symbols, the number of symbols N symb can be calculated by the following equation (7).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 基地局100は、符号化後のPUCCHシンボルをZ(i)として、図13に示す手順により、REの配置処理(マッピング)を実行する。図13に示す様に、ACKindex=1の場合(T21;Yes)には、リソース増加が無いため(T22)、基地局100は、従来の配置処理を実行する(T23)。これに対し、ACKindex>1の場合(T21;No)には、基地局100は、上記式(7)を用いて、リソース増加のためのリソース計算を実行した後(T24)、上記各パラメータを用いた新たな配置処理を実行する(T25)。 The base station 100 executes RE arrangement processing (mapping) according to the procedure shown in FIG. 13 with the encoded PUCCH symbol as Z (i). As shown in FIG. 13, when ACKindex = 1 (T21; Yes), since there is no increase in resources (T22), the base station 100 executes a conventional arrangement process (T23). On the other hand, when ACKindex> 1 (T21; No), the base station 100 performs resource calculation for increasing resources using the above equation (7) (T24), and then sets each parameter described above. The new arrangement process used is executed (T25).
 なお、PUCCH/PUSCH復調復号部103によるRE配置処理は、制御信号変調部107aによるRE配置処理と同様である。 Note that the RE arrangement processing by the PUCCH / PUSCH demodulation / decoding unit 103 is the same as the RE arrangement processing by the control signal modulation unit 107a.
 図14は、実施例2に係る基地局100の主信号変調部107bによるリソース配置を説明するための図である。基地局100は、UL-SCH符号化において、送信するACK/NACK信号のビット数をOACKとし、送信するACK/NACKの変調シンボル数をQ’とすると、図14に示す手順により、REの配置処理を実行する。図14に示す様に、ACKindex=1の場合(T31;Yes)には、リソース増加が無いため(T32)、基地局100は、図14にも示す次式(8)に従ったUL-SCH符号化処理により、変調シンボル数を決定する(T33)。そして、基地局100は、決定されたシンボル数により主信号を変調し(T34)、RE配置処理を実行する(T35)。 FIG. 14 is a diagram for explaining resource allocation by the main signal modulation unit 107b of the base station 100 according to the second embodiment. In UL-SCH encoding, the base station 100 sets the number of bits of the ACK / NACK signal to be transmitted as O ACK and the number of modulation symbols of the ACK / NACK to be transmitted as Q ′ by the procedure shown in FIG. Execute placement processing. As shown in FIG. 14, when ACKindex = 1 (T31; Yes), there is no increase in resources (T32). Therefore, the base station 100 performs UL-SCH according to the following equation (8) also shown in FIG. The number of modulation symbols is determined by the encoding process (T33). Then, the base station 100 modulates the main signal with the determined number of symbols (T34), and executes RE arrangement processing (T35).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 一方、ACKindex>1の場合(T31;No)には、基地局100は、リソース増加のためのリソース計算を実行した後(T36)、図14にも示す次式(9)に従ったUL-SCH符号化処理により、変調シンボル数を決定する(T37)。そして、基地局100は、決定されたシンボル数により主信号を変調し(T38)、RE配置処理を実行する(T39)。 On the other hand, when ACKindex> 1 (T31; No), the base station 100 executes resource calculation for increasing resources (T36), and then performs UL− according to the following equation (9) shown in FIG. The number of modulation symbols is determined by the SCH encoding process (T37). Then, the base station 100 modulates the main signal with the determined number of symbols (T38), and executes RE arrangement processing (T39).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 図15は、式(8)及び式(9)に用いられる変数を説明するための図である。式(8)及び式(9)の内、式(8)は、従来の計算式(3Gpp TS38.212 v15.0.0)である。Lは、図15に示す通りCRCビット数を表すが、低SNRのURLLCでは、小ブロックUCIの利用が想定されるため、上記式(8)及び式(9)において、L=0となる。 FIG. 15 is a diagram for explaining variables used in the equations (8) and (9). Of the formulas (8) and (9), the formula (8) is a conventional calculation formula (3Gpp TS38.212 v15.0.0). L represents the number of CRC bits as shown in FIG. 15, but in the low LCNR LCLC, it is assumed that the small block UCI is used, and therefore L = 0 in the above equations (8) and (9).
 上述した様に、実施例2に係る基地局100は、無線通信端末200との間で、NRにより無線通信(例えば、主信号の送信、及びACK信号の受信)を行う。従って、ACK信号の送受信に際してのリソース(例えば、PUCCH)可変制御技術を、LTE等の既存の無線通信方式に限らず、5G(Generation)の無線通信方式に対しても適用することができる。 As described above, the base station 100 according to the second embodiment performs wireless communication (for example, transmission of a main signal and reception of an ACK signal) with the wireless communication terminal 200 by NR. Therefore, the resource (for example, PUCCH) variable control technology for transmitting and receiving the ACK signal can be applied not only to an existing wireless communication method such as LTE but also to a 5G (Generation) wireless communication method.
 上記各実施例では、無線品質の判断指標として、CQI、SNRを用いたが、これらの情報に限らず、例えば、RSSI(Received Signal Strength Indication)、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、RSCP(Received Signal Code Power)、あるいは、FER(Frame Error Rate)等のリンク状態に関する情報であってもよい。また、上記各実施例では、無線通信端末200として、携帯電話、スマートフォン、PDA(Personal Digital Assistant)等の無線通信端末を想定して説明したが、本発明は、無線通信端末に限らず、ACKへのリソース割り当ての可能な様々な通信機器に対して適用可能である。 In each of the above-described embodiments, CQI and SNR are used as indicators for determining radio quality. However, the information is not limited to these information. For example, RSSI (Received Signal Strength Indication), RSRP (Reference Signal Received Power), RSRQ (Reference Signal) It may be information on the link status such as Received Quality (RSCP), Received Signal Code Power (RSCP), or FER (Frame Error Rate). In each of the above embodiments, the wireless communication terminal 200 is assumed to be a wireless communication terminal such as a mobile phone, a smart phone, or a PDA (Personal Digital Assistant). However, the present invention is not limited to the wireless communication terminal, and the ACK The present invention can be applied to various communication devices that can allocate resources.
 基地局100及び無線通信端末200の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的態様は、図示のものに限らず、その全部又は一部を、各種の負荷や使用状態等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することもできる。例えば、制御信号符号化部106aと主信号符号化部106b、あるいは、制御信号符号化変調部207aと主信号符号化変調部207bをそれぞれ1つの構成要素として統合してもよい。反対に、例えば、基地局100のACK受信MCS-ACKindex判定部112に関し、ACK受信用のリソースを決定する部分と、ACKビットの繰り返し符号化数(ACKindex)を選択する部分とに分散してもよい。更に、HARQプロセス(m)MCS記憶部113を基地局100の外部装置として、ネットワークやケーブル経由で接続するようにしてもよい。 Each component of the base station 100 and the wireless communication terminal 200 does not necessarily need to be physically configured as illustrated. In other words, the specific mode of distribution / integration of each device is not limited to that shown in the figure, and all or a part thereof may be functionally or physically distributed in arbitrary units according to various loads or usage conditions. -It can also be integrated and configured. For example, the control signal encoding unit 106a and the main signal encoding unit 106b, or the control signal encoding modulation unit 207a and the main signal encoding modulation unit 207b may be integrated as one component. On the other hand, for example, with respect to the ACK reception MCS-ACK index determination unit 112 of the base station 100, the ACK reception resource determination part 112 and the ACK bit repetitive coding number (ACK index) selection part may be distributed. Good. Further, the HARQ process (m) MCS storage unit 113 may be connected as an external device of the base station 100 via a network or a cable.
 100 基地局
 101 受信アンテナ部
 102 無線受信部
 103 PUCCH/PUSCH復調復号部
 104 AN判定部
 105 HARQ制御バッファ部
 106 符号化部
 106a 制御信号符号化部
 106b 主信号符号化部
 107 変調部
 107a 制御信号変調部
 107b 主信号変調部
 108 無線送信部
 109 送信アンテナ部
 110 PDSCH/MCS制御部
 111 LUT
 111a 256QAM適用の無いLUT
 111b 256QAM適用の有るLUT
 112 ACK受信MCS-ACKindex判定部
 113 HARQプロセス(m)MCS記憶部
 200 無線通信端末
 201 受信アンテナ部
 202 無線受信部
 203 PDSCH復調復号部
 204 CQI測定部
 205 AN判定部
 206 送信UCI生成部
 207 符号化変調部
 207a 制御信号符号化変調部
 207b 主信号符号化変調部
 208 送信電力制御部
 209 無線送信部
 210 送信アンテナ部
 211 PDCCH復調復号部
 212 DCI判定部
 213 ACK/NACK送信MCS-ACKindex判定部
 214 LUT
 R1~R4 PUCCH上の可変ACKリソース
 R5~R8 PUSCH上の可変ACKリソース
DESCRIPTION OF SYMBOLS 100 Base station 101 Reception antenna part 102 Radio | wireless receiving part 103 PUCCH / PUSCH demodulation decoding part 104 AN determination part 105 HARQ control buffer part 106 Encoding part 106a Control signal encoding part 106b Main signal encoding part 107 Modulation part 107a Control signal modulation Unit 107b main signal modulation unit 108 wireless transmission unit 109 transmission antenna unit 110 PDSCH / MCS control unit 111 LUT
111a LUT without 256QAM
111b LUT with 256QAM application
112 ACK reception MCS-ACK index determination unit 113 HARQ process (m) MCS storage unit 200 wireless communication terminal 201 reception antenna unit 202 wireless reception unit 203 PDSCH demodulation / decoding unit 204 CQI measurement unit 205 AN determination unit 206 transmission UCI generation unit 207 encoding Modulation unit 207a Control signal coding modulation unit 207b Main signal coding modulation unit 208 Transmission power control unit 209 Wireless transmission unit 210 Transmission antenna unit 211 PDCCH demodulation decoding unit 212 DCI determination unit 213 ACK / NACK transmission MCS-ACK index determination unit 214 LUT
R1-R4 Variable ACK resource on PUCCH R5-R8 Variable ACK resource on PUSCH

Claims (7)

  1.  無線通信端末へ送信する信号の符号化及び変調方式を決定する第1決定部と、
     前記信号に適用される符号化及び変調方式と、前記信号に対する応答信号の送信に用いるリソースとの関連付け情報を参照し、前記リソースを決定する第2決定部と、
     前記リソースを用いて送信された前記応答信号を受信する受信部と
     を有することを特徴とする基地局。
    A first determination unit that determines a coding and modulation scheme of a signal to be transmitted to a wireless communication terminal;
    A second deciding unit that decides the resource by referring to association information between a coding and modulation scheme applied to the signal and a resource used for transmission of a response signal to the signal;
    And a reception unit that receives the response signal transmitted using the resource.
  2.  前記受信部は、無線通信端末から無線品質情報を受信し、
     前記第1決定部は、前記無線品質情報に応じて、前記符号化及び変調方式を決定することが可能なことを特徴とする請求項1記載の基地局。
    The receiving unit receives wireless quality information from a wireless communication terminal,
    The base station according to claim 1, wherein the first determination unit is capable of determining the encoding and modulation schemes according to the radio quality information.
  3.  前記第2決定部は、前記応答信号の送信リソース数を制御することにより、前記リソースを決定することを特徴とする請求項1記載の基地局。 The base station according to claim 1, wherein the second determination unit determines the resource by controlling the number of transmission resources of the response signal.
  4.  前記無線通信端末との間で、NR(New Radio)により、前記信号の送信、及び前記応答信号の受信を行うことを特徴とする請求項1記載の基地局。 The base station according to claim 1, wherein the base station transmits the signal and receives the response signal by NR (New Radio) with the wireless communication terminal.
  5.  基地局の送信する信号に適用された符号化及び変調方式に関する情報を受信する受信部と、
     前記信号に適用される符号化及び変調方式と、前記信号に対する応答信号の送信に用いるリソースとの関連付け情報を参照し、前記リソースを決定する決定部と、
     前記リソースを用いて、前記応答信号を送信する送信部と
     を有することを特徴とする無線通信端末。
    A receiving unit that receives information on a coding and modulation scheme applied to a signal transmitted by the base station;
    A determination unit that determines the resource by referring to association information between a coding and modulation scheme applied to the signal and a resource used to transmit a response signal to the signal;
    A wireless communication terminal comprising: a transmission unit that transmits the response signal using the resource.
  6.  基地局と無線通信端末との間で無線通信を行う無線通信システムであって、
     前記基地局は、
     前記無線通信端末へ送信する信号の符号化及び変調方式を決定する第1決定部と、
     前記信号に適用される符号化及び変調方式と、前記信号に対する応答信号の送信に用いるリソースとの関連付け情報を参照し、前記リソースを決定する第2決定部と、
     前記リソースを用いて、前記無線通信端末から送信された前記応答信号を受信する第1受信部とを有し、
     前記無線通信端末は、
     前記第1決定部により決定された符号化及び変調方式に関する情報を受信する第2受信部と、
     前記第2受信部により受信された符号化及び変調方式に対する応答信号の送信に用いるリソースの関連付け情報を参照し、前記リソースを決定する第3決定部と、
     前記リソースを用いて、前記応答信号を前記基地局に送信する送信部と
     を有することを特徴とする無線通信システム。
    A wireless communication system for performing wireless communication between a base station and a wireless communication terminal,
    The base station
    A first determination unit for determining a coding and modulation scheme of a signal to be transmitted to the wireless communication terminal;
    A second deciding unit that decides the resource by referring to association information between a coding and modulation scheme applied to the signal and a resource used for transmission of a response signal to the signal;
    A first receiving unit that receives the response signal transmitted from the wireless communication terminal using the resource;
    The wireless communication terminal is
    A second receiver for receiving information on the coding and modulation schemes determined by the first determiner;
    A third determination unit that determines the resource with reference to resource association information used for transmission of a response signal to the coding and modulation scheme received by the second reception unit;
    A wireless communication system comprising: a transmission unit that transmits the response signal to the base station using the resource.
  7.  無線装置が他の無線装置に送信する信号に適用される符号化及び変調方式と、前記信号に対する応答信号の送信に使用されるリソースとが関連付けられることを特徴とする無線通信方法。 A wireless communication method characterized in that a coding and modulation scheme applied to a signal transmitted from a wireless device to another wireless device is associated with a resource used for transmitting a response signal to the signal.
PCT/JP2018/013958 2018-03-30 2018-03-30 Base station, radio communication terminal, radio communication system, and radio communication method WO2019187146A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/013958 WO2019187146A1 (en) 2018-03-30 2018-03-30 Base station, radio communication terminal, radio communication system, and radio communication method
JP2020508910A JP6947291B2 (en) 2018-03-30 2018-03-30 Base stations, wireless communication terminals, wireless communication systems, and wireless communication methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013958 WO2019187146A1 (en) 2018-03-30 2018-03-30 Base station, radio communication terminal, radio communication system, and radio communication method

Publications (1)

Publication Number Publication Date
WO2019187146A1 true WO2019187146A1 (en) 2019-10-03

Family

ID=68058062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013958 WO2019187146A1 (en) 2018-03-30 2018-03-30 Base station, radio communication terminal, radio communication system, and radio communication method

Country Status (2)

Country Link
JP (1) JP6947291B2 (en)
WO (1) WO2019187146A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011161887A1 (en) * 2010-06-21 2011-12-29 パナソニック株式会社 Terminal apparatus and communication method thereof
WO2017221871A1 (en) * 2016-06-20 2017-12-28 株式会社Nttドコモ User terminal and wireless communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011161887A1 (en) * 2010-06-21 2011-12-29 パナソニック株式会社 Terminal apparatus and communication method thereof
WO2017221871A1 (en) * 2016-06-20 2017-12-28 株式会社Nttドコモ User terminal and wireless communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "DL Control Channel for URLLC", 3GPP TSG RAN WG1 #88 R1-1702997, 17 February 2017 (2017-02-17), XP051210139 *

Also Published As

Publication number Publication date
JPWO2019187146A1 (en) 2020-12-10
JP6947291B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
US9307527B2 (en) Selecting a codeword and determining a symbol length for uplink control information
JP5859013B2 (en) Power control for ACK / NACK format with carrier aggregation
JP5293423B2 (en) Terminal apparatus and base station apparatus
JP7227294B2 (en) Wireless network nodes, wireless devices and methods performed thereon
US10667270B2 (en) 256 quadrature amplitude modulation user equipment category handling
US20120099453A1 (en) Uplink Link Adaption at the User Equipment
US10362579B2 (en) 256 quadrature amplitude modulation user equipment category handling
US9942079B2 (en) 256 quadrature amplitude modulation user equipment category handling
CN113841449B (en) Resource selection for ultra-reliable low-latency communication uplinks
JPWO2018173482A1 (en) Terminal and communication method
JP2019515538A (en) Wireless network node, wireless device and method implemented in them
US11923982B2 (en) Transmission device, reception device, transmission method, and reception method
US20240196410A1 (en) Base station, terminal, and communication method
US20210337528A1 (en) Network access node and client device for indication of multiple data channels in a single control message
CN117223362A (en) Channel state information feedback enhancement for ultra-reliable low delay communications
US10050745B2 (en) Wireless communications system, terminal, base station, and process method
WO2019137458A1 (en) Uplink control information handling for new radio
JP6947291B2 (en) Base stations, wireless communication terminals, wireless communication systems, and wireless communication methods
US11108527B2 (en) CQI codepoint reinterpretation
US11044711B2 (en) Base station, terminal, and communication method
US20240014968A1 (en) Data transmission method and apparatus
WO2019127488A1 (en) Communication method, apparatus and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508910

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18912898

Country of ref document: EP

Kind code of ref document: A1