WO2019187138A1 - Remaining lifespan prediction device and machine tool - Google Patents

Remaining lifespan prediction device and machine tool Download PDF

Info

Publication number
WO2019187138A1
WO2019187138A1 PCT/JP2018/013941 JP2018013941W WO2019187138A1 WO 2019187138 A1 WO2019187138 A1 WO 2019187138A1 JP 2018013941 W JP2018013941 W JP 2018013941W WO 2019187138 A1 WO2019187138 A1 WO 2019187138A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
remaining life
time
inspection data
data
Prior art date
Application number
PCT/JP2018/013941
Other languages
French (fr)
Japanese (ja)
Inventor
友英 那須
左京 松下
Original Assignee
株式会社牧野フライス製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社牧野フライス製作所 filed Critical 株式会社牧野フライス製作所
Priority to PCT/JP2018/013941 priority Critical patent/WO2019187138A1/en
Publication of WO2019187138A1 publication Critical patent/WO2019187138A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present application relates to a remaining life prediction apparatus and a machine tool including a remaining life prediction unit.
  • Patent Document 1 discloses a rolling bearing failure diagnosis device that outputs a failure state of a rolling bearing.
  • This apparatus includes a neural network that receives a Fourier spectrum based on the detected vibration data of the rolling bearing as an input, and outputs whether or not the rolling bearing has failed and the state of the failure.
  • an object of the present invention is to provide a remaining life prediction apparatus and a machine tool that can indicate the remaining life of an apparatus.
  • One aspect of the present disclosure inputs inspection data obtained from a predetermined inspection operation in an apparatus and an inspection time that is a use time of the apparatus at the time when the inspection operation is performed in the apparatus for predicting the remaining life of the apparatus.
  • the apparatus is configured to calculate a predicted remaining life of the device using the machine learning unit configured to perform the inspection, the inspection data input in the first input unit, and the algorithm obtained from the machine learning.
  • the remaining life prediction unit and the remaining life Comprising an output unit for outputting the predicted residual life obtained by the life predicting portion, a residual life predicting device of the apparatus.
  • the device remaining life prediction apparatus In the device remaining life prediction apparatus according to an aspect of the present disclosure, machine learning is performed in which inspection data obtained from a predetermined inspection operation is input and the remaining life at each inspection time is output. And the estimated remaining lifetime of an apparatus is calculated using the algorithm obtained from machine learning, and the newly input test
  • Machine learning includes (i) a convolutional neural network that uses the result of wavelet transform from inspection data, (ii) a neural network based on long- and short-term memory that uses feature values preprocessed from inspection data, and (iii) inspection data May be included in at least one of neural networks based on long-term and short-term memory.
  • the machine learning may include a convolutional neural network and a neural network based on long- and short-term memory using preprocessed feature values. In this case, highly accurate prediction based on machine learning including two methods can be realized.
  • the preprocessed feature amount includes the peak amplitude obtained by fast Fourier transform of the envelope-processed inspection data, the peak amplitude obtained by direct fast Fourier transform of the inspection data, and the inspection data
  • the mean square value and kurtosis obtained from the inspection data may be included. In this case, highly accurate prediction based on machine learning including the plurality of feature amounts can be realized.
  • the inspection operation may be included in the warm-up operation. In this case, it is not necessary to operate the device only for the inspection operation.
  • the usage time is the length of time from the time when the use of the device is started to the time when the use time is confirmed, or the time when the use of the device is started and the use time is confirmed. Two pieces of time data may be used.
  • another aspect of the present disclosure is a sensor for obtaining inspection data related to equipment included in a machine tool in a machine tool, wherein the inspection data is obtained from a predetermined inspection operation in the equipment, and the sensor
  • a remaining life prediction unit configured to calculate a predicted remaining life of a device using inspection data measured at a predetermined frequency and sampled at a predetermined frequency and an algorithm obtained from machine learning, and a remaining life prediction unit
  • a display device for displaying the predicted remaining life obtained in step 4
  • the algorithm is determined by performing machine learning with inspection data as input and remaining life as output for multiple devices that have become unusable
  • the remaining lifetime is based on the lifetime that is the usage time of the device when the device becomes unusable and the inspection time that is the usage time of the device when the inspection operation is performed. Te is calculated for each of the past inspection time, a machine tool.
  • Such a machine tool can also indicate the remaining life of the device in the same manner as the remaining life prediction apparatus.
  • An example of inspection data is shown.
  • inspection data is shown.
  • inspection data is shown.
  • inspection data is shown.
  • An example of the image wavelet-transformed from vibration data is shown.
  • FIG. 1 is a schematic block diagram showing a system including a remaining life prediction apparatus according to an embodiment.
  • the remaining lifetime of the equipment constituting the machine tool 10 is predicted.
  • the system 100 includes a machine tool 10 and a remaining life prediction device 50.
  • the machine tool 10 can be, for example, various NC (Numerical Control) machine tools such as a machining center.
  • NC Genetic Control
  • the machine tool 10 includes, for example, a main shaft 11, a front bearing 12 and a rear bearing 13, a bearing case 14, and a sensor 15.
  • the machine tool 10 may include other components.
  • the spindle 11 grips the tool T or the workpiece according to the type or application of the machine tool.
  • the bearings 12 and 13 rotatably support the main shaft 11.
  • the bearings 12 and 13 can be various bearings such as a rolling bearing such as a ball bearing or a roller bearing.
  • the inner rings of the bearings 12 and 13 can be fixed to the main shaft 11, and the outer rings of the bearings 12 and 13 can be fixed to the bearing case 14.
  • the bearing case 14 accommodates the bearings 12 and 13.
  • the sensor 15 is used to obtain inspection data relating to a device (in this embodiment, the main spindle 11) that is a target of calculation of the predicted remaining life.
  • a device in this embodiment, the main spindle 11
  • Such equipment may be, for example, a component of a machine tool used to move or transport a tool T or a workpiece (not shown). From another point of view, the equipment may be a moving element of a machine tool that includes two or more parts that are in rolling contact or sliding contact.
  • the sensor 15 can be used to obtain inspection data regarding the bearings 12, 13 that support the main shaft 11.
  • the inspection data obtained from the measurement value detected by the sensor 15 is used to calculate the predicted remaining life.
  • Such inspection data can be, for example, data representing a relationship between time and a physical quantity that varies according to the operation of the device.
  • the inspection data can change over time depending on various factors, such as equipment damage and / or equipment usage time.
  • the sensor 15 can be an acceleration sensor, and in this case, the inspection data is vibration data representing a relationship between time and acceleration.
  • the sensor 15 may be a displacement sensor, and in this case, the inspection data is vibration data representing a relationship between time and displacement.
  • the sensor 15 can be attached, for example, in the vicinity of the main shaft 11. In the present embodiment, the sensor 15 is attached to the outer surface of the bearing case 14 (for example, screwed). The sensor 15 may be attached to another component in the vicinity of the main shaft 11.
  • the inspection data may be data obtained from a servo motor (not shown) for rotating the spindle 11 instead of the vibration data as described above.
  • the sensor 15 may be incorporated in a servo motor, for example.
  • the sensor 15 may be used to obtain inspection data relating to a feed mechanism (not shown) for moving a workpiece or a tool, instead of the spindle 11.
  • the device for which the expected remaining life is calculated is, for example, a ball screw or a linear motion rolling guide included in a linear motion feed mechanism (for example, a table or a saddle), or a bearing included in a rotary table. Also good.
  • the sensor 15 may be used to obtain inspection data relating to an automatic tool changer (ATC) for moving a tool or an automatic pallet changer (APC) for moving a workpiece via a pallet.
  • ATC automatic tool changer
  • APC automatic pallet changer
  • a device such as a bearing included in ATC or APC can be a target for calculating the predicted remaining life.
  • the sensor 15 can be mounted, for example, in the vicinity of the feed mechanism, ATC or APC, or can be incorporated in a servo motor for driving the feed mechanism, ATC or APC.
  • FIG. 2 shows an example of inspection data, and shows an example of vibration data obtained by the sensor 15 when the sensor 15 is an acceleration sensor. As shown in FIG. 2, the vibration data represents the relationship between time and acceleration.
  • FIGS. 3 to 6 show other examples of inspection data, showing examples of inspection data obtained by a servo motor.
  • the inspection data may be data representing a relationship between time and the position of the device, as shown in FIG.
  • the inspection data may be data representing a relationship between time and a position error representing a deviation from a desired position.
  • the inspection data may be data representing a relationship between time and a torque command value of the servo motor, as shown in FIG.
  • the inspection data may be data representing a relationship between time and a reading value of an encoder of a servo motor.
  • Inspection data is obtained from a predetermined inspection operation on the equipment.
  • the inspection operation can be performed, for example, once every several hours, once every day to every few days, once every week to every few weeks, or once every month to every few months.
  • the spindle 11, the feed mechanism, the ATC, or the APC or the like to which the predetermined tool T or the workpiece is attached or not attached is processed at a predetermined rotational speed without machining the workpiece. It can be operated at a predetermined speed and / or a predetermined distance.
  • the inspection operation may be performed for a relatively short time, for example, may be performed for 1 second to several tens of seconds or 1 minute to several minutes, or may be performed for a time shorter or longer than these times.
  • the inspection operation can be, for example, a warm-up operation of the device or can be part of a warm-up operation.
  • the machine tool 10 further includes a control device 20 and a data collection device 30.
  • the control device 20 may be, for example, an NC device for controlling the spindle 11 and the feed mechanism of the machine tool 10 and / or other equipment (for example, ATC and / or APC) of the machine tool 10. It may be a machine control device for controlling.
  • the control device 20 includes a display unit 21 such as a touch panel or a liquid crystal display.
  • the control device 20 includes a processor such as a CPU (Central Processing Unit), a memory such as a hard disk drive, a ROM (read only memory), a RAM (random access memory), and / or a mouse and / or Other components such as an input device such as a keyboard can be included.
  • a CPU Central Processing Unit
  • a memory such as a hard disk drive
  • ROM read only memory
  • RAM random access memory
  • Other components such as an input device such as a keyboard can be included.
  • the data collection device 30 is connected to the sensor 15 in a wired or wireless manner, and receives a measurement value detected by the sensor 15. Further, the data collection device 30 is connected to the control device 20 so as to be communicable by wire or wirelessly.
  • the data collection device 30 has a storage unit 31.
  • the storage unit 31 can be, for example, a hard disk drive.
  • the storage unit 31 stores a plurality of sets of inspection data based on the measurement value received from the sensor 15 and inspection time when the corresponding inspection operation is performed.
  • the measurement value detected by the sensor 15 is sampled at a predetermined frequency (for example, 18 kHz to 120 kHz) and stored in the storage unit 31 as inspection data.
  • “inspection time” may mean the usage time of the device at the time when the inspection operation is performed. Further, in the present disclosure, the “use time” may mean the total time that the device actually operates from the time when the device is installed or from a predetermined time after the device is installed. . Alternatively, for example, the “use time” may be the length of time from the time when use of the device is started to the time when the use time is confirmed. Furthermore, two time data of the time when the use of the device is started and the time when the use time is confirmed are stored as the use time, and in the following machine learning and calculation of the predicted remaining life, etc. The remaining time may be calculated as the usage time in the remaining life prediction apparatus 50.
  • the data collection device 30 and / or the control device 20 may include a counter for counting the usage time of the device.
  • the storage unit 31 may further store the “life” of the device (details will be described later).
  • the “life” may be input to the data collection device 30 by the user of the machine tool 10 when the device becomes unusable, for example.
  • the data collection device 30 may calculate the “remaining life” (details will be described later) of the device at each past inspection time based on the “inspection time” and the “lifetime”. The recorded “remaining life” may be stored.
  • the data collection device 30 may be provided separately from the control device 20 or may be incorporated in the control device 20. When the data collection device 30 is incorporated in the control device 20, each component of the data collection device 30 may be realized by a corresponding component in the control device 20, or what is a component in the control device 20? It may be provided separately.
  • the data collection device 30 may include other components such as a processor such as a CPU, a ROM, a RAM, and / or an input / output device such as a touch panel, a mouse, and / or a keyboard. .
  • the remaining life prediction device 50 can communicate with the control device 20 and the data collection device 30 via a network.
  • the remaining life prediction apparatus 50 can be provided on the manufacturer side of the machine tool 10, for example, and can be, for example, a computer, a server, and / or a mobile terminal such as a smartphone and / or a tablet.
  • the network is, for example, a communication system based on a communication standard defined by 3GPP (Third Generation Partnership Project) such as the Internet, WiFi (registered trademark), Bluetooth (registered trademark), 3G and 4G, or other communication methods, or Any combination of these can be used, wired or wireless, or a combination thereof.
  • 3GPP Third Generation Partnership Project
  • the remaining life prediction apparatus 50 can include a first input unit 51, a second input unit 52, a storage unit 53, a processor 54, and an output unit 55. These elements are connected via a bus or the like. Are connected to each other.
  • the remaining life prediction apparatus 50 may further include other components.
  • the first input unit 51 receives input of inspection data and inspection time.
  • the first input unit 51 can be, for example, an I / O port.
  • the first input unit 51 can receive the inspection data and the inspection time transmitted from the data collection device 30.
  • the first input unit 51 may be configured to read inspection data and inspection time stored in a storage medium.
  • the inspection data and the inspection time input from the first input unit 51 are transmitted to the storage unit 53.
  • the storage device 53 is used to indicate which device of the machine tool 10 the inspection data and the inspection time input from the first input unit 51 are related to. Identification information indicating which region of the inspection data and inspection time should be stored may be input to the first input unit 51.
  • Identification information indicating whether inspection data and inspection time should be stored in the area may be input to the first input unit.
  • the second input unit 52 receives an input of the life of the device when the device becomes unusable (for example, when it fails or is damaged).
  • the “lifetime” may mean the usage time of the device when the device becomes unusable.
  • the 2nd input part 52 can receive the input of failure mode, when an apparatus becomes unusable.
  • the “failure mode” may mean a failure type indicating how the device has become unusable. For example, if the device is a bearing 12 or 13 of the spindle 11, the failure modes can include outer ring breakage, inner ring breakage, and cage breakage. Failure modes may also include, for example, bearing indentation, poor lubrication and / or preload loss, or ball screw wear, indentation, misalignment and / or poor lubrication.
  • the second input unit 52 can be, for example, an input device such as a mouse, a keyboard, and / or a touch panel.
  • the lifetime and failure mode can be input by the second input unit 52.
  • the second input unit 52 can be, for example, an I / O port or the like.
  • the lifetime and failure mode of the device transmitted from the data collection device 30 can be received by the second input unit 52.
  • the second input unit 52 may be realized by an I / O port for the first input unit 51, or may be provided separately from the I / O port for the first input unit 51.
  • the lifetime and failure mode input to the second input unit 52 are transmitted to the storage unit 53. As described above, identification information indicating in which area of the storage device 53 the life should be stored may be input to the second input unit 52.
  • the storage unit 53 stores the inspection data and the inspection time transmitted from the first input unit 51, and the life and failure mode transmitted from the second input unit 52.
  • the storage unit 53 can be, for example, a hard disk drive.
  • the storage unit 53 may store other programs and / or data such as a program executed by the processor 54 described below.
  • the processor 54 can be, for example, one or more CPUs.
  • the processor 54 includes a machine learning unit 54 a and a remaining life prediction unit 54 b, and these can be realized by a program stored in the storage unit 53, for example.
  • the machine learning unit 54a performs machine learning to obtain an algorithm for predicting the remaining life of the device.
  • a neural network can be used, and an algorithm in which the weight in each neuron is determined is obtained by machine learning.
  • the machine learning unit 54a obtains “remaining life” in each past inspection time based on the life and inspection time stored in the storage unit 53 for each of the plurality of devices that have become unusable. Specifically, the “remaining life” at each inspection time can be calculated by subtracting each inspection time from the life. Note that, as described above, when the remaining life is calculated by the data collection device 30 on the user side of the machine tool 10, the machine learning unit 54a does not need to calculate the remaining life. I want.
  • the machine learning unit 54a performs machine learning with the inspection data as an input and the remaining life as an output, using data of a plurality of devices that have become unusable.
  • the machine learning unit 54a can further perform machine learning to obtain an algorithm for predicting the failure mode of the device.
  • the machine learning unit 54a performs machine learning using test data as input and failure mode as output using data of a plurality of devices that have become unusable.
  • FIG. 7 is a schematic diagram illustrating an example of machine learning according to the embodiment.
  • the machine learning unit 54a can perform machine learning based on various methods.
  • the machine learning performed by the machine learning unit 54a may be a convolutional neural network (CNN (Convolutional Neural Network)) that uses preprocessed inspection data.
  • CNN Convolutional Neural Network
  • wavelet transformation can be used as the preprocessing, and a wavelet transformed image is obtained by the preprocessing.
  • FIG. 8 shows an example of an image obtained as a result of wavelet transform from inspection data.
  • the image may include information indicating a comparison between the inspection data at the first inspection time and the inspection data at a certain inspection time after the second inspection.
  • the image can include a red portion (R), a green portion (G), and a blue portion (B).
  • R red portion
  • G green portion
  • B blue portion
  • a green part shows the area
  • the red part indicates a region where there is a change from the first inspection data.
  • the blue part indicates an area where there is no data.
  • the preprocessed image as described above can be used as an input to the CNN, and the remaining life (RUL (Remaining Useful Life)) and the failure mode are output.
  • RUL Remaining Useful Life
  • the machine learning may be a neural network based on long-short-term memory (LSTM (Long Short-Term Memory)) using feature values preprocessed from inspection data.
  • the feature amount may include, for example, the peak amplitude obtained by performing fast Fourier transform on the inspection data subjected to envelope processing.
  • the inspection data is subjected to, for example, a band pass filter, MED (Minimum Entropy Deconvolution), and envelope processing (for example, Hilbert transform), and then to a fast Fourier transform (FFT (Fast Fourier Transform)). May be.
  • MED Minimum Entropy Deconvolution
  • envelope processing for example, Hilbert transform
  • FFT Fast Fourier transform
  • the feature amount may include, for example, the peak amplitude obtained by directly performing fast Fourier transform on the inspection data, the root mean square value of the inspection data, and the kurtosis obtained from the inspection data.
  • the kurtosis can be obtained, for example, from inspection data passed through a bandpass filter and MED.
  • These preprocessed feature quantities can be used as inputs to the LSTM, with RUL and failure modes being the outputs. It should be noted that the feature amount may include a larger number of preprocessed numerical values.
  • the machine learning may be a neural network based on LSTM that uses inspection data as it is.
  • unprocessed inspection data can be used as input to the LSTM, and RUL and failure mode are output.
  • FIG. 9 is a schematic diagram illustrating another example of machine learning according to the embodiment.
  • the machine learning performed by the machine learning unit 54 a includes CNN that uses the wavelet-transformed image in FIG. 7, a neural network that is based on LSTM that uses feature values preprocessed from inspection data, and A combination of these may be used.
  • Machine learning may further include other neural networks.
  • the inspection data is passed through a filter that uses the results obtained by the CNN. Specifically, in a wavelet-transformed image, if the red portion occupies a predetermined ratio or more of the entire image, the corresponding inspection data is determined as “abnormal”; otherwise, the corresponding inspection data is “normal”. It is determined.
  • Only the inspection data determined to be “abnormal” can pass through the filter. As shown in FIG. 9, only the inspection data that has passed through the filter is preprocessed, and the feature value obtained from the preprocess is used in the neural network based on LSTM, and the RUL and failure mode are output.
  • the remaining life prediction unit 54 b uses the new inspection data input by the first input unit 51 and the algorithm obtained from the above machine learning, and the predicted remaining life of the device and Calculate the failure mode.
  • the “predicted remaining life” is an operation that is performed when it is assumed that a device that has been used for a certain period of use will continue to perform machining that is subject to a load similar to that before the machine tool 10 performs the prediction. It can mean the remaining time expected to be able to.
  • the remaining life prediction unit 54b can be updated.
  • the inspection data used in the machine learning unit 54a and the remaining life prediction unit 54b may be obtained by, for example, an acceleration test.
  • an acceleration test In this case, operations such as algorithm acquisition and system verification can be performed earlier.
  • the acceleration test can be performed by providing an indentation on a device such as a bearing 12, 13 or a ball screw.
  • the output unit 55 outputs the predicted remaining life and the failure mode obtained by the remaining life prediction unit 54b to the control device 20.
  • the output unit 55 can be, for example, an I / O port.
  • an inspection operation is executed on the spindle 11 every time the engine is warmed up, and a measured value is obtained by the sensor 15.
  • the measured value is sampled at a predetermined frequency and stored in the storage unit 31 as inspection data.
  • the storage unit 31 also stores the inspection time.
  • the data stored in the storage unit 31 is transmitted to the remaining life prediction apparatus 50.
  • the data stored in the storage unit 31 is the remaining life prediction device. 50 may be transmitted.
  • Data input through the first input unit 51 is stored in the storage unit 53.
  • the operator of the manufacturer inputs the life of the corresponding bearing through the second input unit.
  • the data input at the second input unit is stored in the storage unit 53.
  • the machine learning unit 54a When the data of the unusable bearings 12 or 13 exceeding the predetermined number is stored in the storage unit 53, the machine learning unit 54a performs machine learning using the inspection data as an input and the remaining life as an output. Further, the machine learning unit 54a performs machine learning using the inspection data as an input and the failure mode as an output. Then, the remaining life prediction unit 54 b calculates the predicted remaining life and failure mode of the device using the algorithm obtained from the machine learning and the new inspection data input by the first input unit 51. The calculated predicted remaining life and failure mode can be output from the output unit 55 to the control device 20 and displayed on the display unit 21 of the control device 20.
  • FIG. 10 is a graph showing the actual remaining life and the predicted remaining life.
  • the horizontal axis of FIG. 10 shows the usage time (or inspection time) of the bearing, and the vertical axis shows the ratio between the remaining life and the life of the bearing at each usage time.
  • the “actual remaining life” (Actual RUL) in FIG. 10 is calculated by subtracting each inspection time from the life of a bearing that has actually become unusable.
  • the “predicted remaining life” (Predicted10RUL) in FIG. 10 is calculated using the same inspection data of the bearing that has actually become unusable and the algorithm obtained from machine learning. As shown in FIG. 10, the predicted remaining life is in good agreement with the actual remaining life.
  • the algorithm used to calculate the “predicted remaining life” in FIG. 10 uses the inspection data and remaining life of a plurality of other bearings that have actually become unusable, and the two neural networks shown in FIG. It is derived from machine learning based on combinations.
  • the inspection operation the main shaft 11 was rotated at 1800 rpm (30 Hz).
  • the inspection data is vibration data representing the relationship between time and acceleration.
  • 41 feature quantities preprocessed from vibration data were used. Specifically, the 41 feature values are the inner ring, the outer ring, the rolling element, and the holding for each of the front bearing 12 and the rear bearing 13 ( ⁇ 2) obtained by direct Fourier transform of vibration data.
  • the rotational frequency (30 Hz) of the spindle 11 obtained by fast Fourier transform of the vibration data subjected to the envelope processing and a frequency (60 Hz) ( ⁇ ) twice that of the spindle 11 are obtained.
  • the remaining life prediction apparatus 50 As described above, in the remaining life prediction apparatus 50 according to the embodiment, machine learning is performed in which the inspection data obtained from a predetermined inspection operation is input and the remaining life at each inspection time is output. Then, the predicted remaining life of the bearing 12 or 13 is calculated using an algorithm obtained from machine learning and newly input inspection data. Therefore, the remaining life prediction device 50 can indicate the remaining life of the bearing 12 or 13.
  • machine learning is performed by (i) a convolutional neural network using an image wavelet transformed from inspection data, and (ii) a neural network based on long- and short-term memory using feature values preprocessed from the inspection data. It may include at least one of a network and (iii) a neural network based on long and short-term memory using the inspection data as it is.
  • the machine learning can also include a convolutional neural network and a neural network based on long- and short-term memory using preprocessed feature values. In this case, highly accurate prediction based on machine learning including two methods can be realized.
  • the preprocessed feature amount is obtained by performing fast Fourier transform directly on the amplitude of the peak obtained by performing fast Fourier transform on the inspection data subjected to envelope processing.
  • the peak amplitude, the root mean square value of the inspection data, and the kurtosis obtained from the inspection data are included. Therefore, highly accurate prediction based on machine learning including the plurality of feature amounts can be realized.
  • the inspection operation is included in the warm-up operation. Therefore, it is not necessary to operate the machine tool 10 only for the inspection operation.
  • FIG. 11 is a schematic block diagram illustrating a system including the machine tool according to the embodiment.
  • the remaining life prediction unit 32a is provided in the data collection device 30 on the user side of the machine tool 40, and the device 60 on the manufacturer side does not have the remaining life prediction unit 54b.
  • the processor 32 of the data collection device 30 has a remaining life prediction unit 32a.
  • the system 200 may be similar to the system 100.
  • the processor 32 can be, for example, one or more CPUs.
  • an algorithm for predicting the remaining life and failure mode of the device is obtained in the machine learning unit 54a of the device 60 on the manufacturer side in the same manner as the system 100 described above.
  • the obtained algorithm is copied to the data collection device 30 as the remaining life prediction unit 32a.
  • the remaining life prediction unit 32a can be realized by a program stored in the storage unit 31, for example. When new data of an unusable device is added to the storage unit 53 and the algorithm is updated in the machine learning unit 54a, the remaining life prediction unit 32a can be updated through the network.
  • the remaining life prediction unit 32a uses the inspection data measured by the sensor 15 and sampled at a predetermined frequency, and the algorithm obtained from the machine learning in the machine learning unit 54a, and the predicted remaining life and failure mode of the device. Is calculated. The calculated predicted remaining life and failure mode can be output to the control device 20 and displayed on the display unit 21.
  • the machine tool 40 as described above can indicate the remaining life of the device, similarly to the remaining life prediction apparatus 50 described above.

Abstract

This remaining lifespan prediction device (50) comprises: a first input unit (51) for receiving inspection data and inspection times for machines (12, 13); a storage unit (53) for storing the inspection data and inspection times; a second input unit (52) for inputting the lifespans of machines (12, 13) when the machines (12, 13) have become unusable; a machine learning unit (54b) configured so as to carry out, for a plurality of machines (12, 13) that have become unusable, machine learning having the inspection data as input and having, as output, remaining lifespans calculated for each past inspection time on the basis of the lifespans and inspection times; a remaining lifespan prediction unit (54b) configured so as to calculate predicted remaining lifespans for machines (12, 13) using inspection data and an algorithm obtained from the machine learning; and an output unit (55) for outputting the predicted remaining lifespans.

Description

残寿命予測装置及び工作機械Remaining life prediction device and machine tool
 本願は、残寿命予測装置、及び、残寿命予測部を備える工作機械に関する。 The present application relates to a remaining life prediction apparatus and a machine tool including a remaining life prediction unit.
 機器の故障を予測するための様々な装置が提案されている。例えば、特許文献1は、転がり軸受の故障の状態を出力する、転がり軸受故障診断装置を開示している。この装置は、検出された転がり軸受の振動データに基づくフーリエスペクトルを入力とし、転がり軸受の故障の有無及び故障の状態を出力とする、ニューラルネットワークを備えている。 Various devices for predicting equipment failure have been proposed. For example, Patent Document 1 discloses a rolling bearing failure diagnosis device that outputs a failure state of a rolling bearing. This apparatus includes a neural network that receives a Fourier spectrum based on the detected vibration data of the rolling bearing as an input, and outputs whether or not the rolling bearing has failed and the state of the failure.
特開平6-186136号公報JP-A-6-186136
 機器の保守においては、ダウンタイムを削減するために、予知保全が採られる場合がある。予知保全を効率的に実施するためには、機器の残寿命を知ることが重要である。したがって、本発明は、機器の残寿命を示すことができる残寿命予測装置及び工作機械を提供することを目的とする。 In equipment maintenance, predictive maintenance may be used to reduce downtime. In order to efficiently perform predictive maintenance, it is important to know the remaining life of the equipment. Therefore, an object of the present invention is to provide a remaining life prediction apparatus and a machine tool that can indicate the remaining life of an apparatus.
 本開示の一態様は、機器の残寿命予測装置において、機器において所定の検査動作から得られる検査データと、検査動作が行われた時点での機器の使用時間である検査時間と、を入力するための第1入力部と、第1入力部で入力された検査データと検査時間とを記憶する記憶部と、機器が使用不能となった時の機器の使用時間である寿命を入力するための第2入力部と、使用不能となった複数の機器について、検査データを入力とし、寿命及び検査時間に基づいて過去の検査時間の各々に対して算出された残寿命を出力とする、機械学習を行うように構成された、機械学習部と、第1入力部で入力された検査データと、機械学習から得られたアルゴリズムと、を用いて、機器の予測残寿命を算出するように構成された、残寿命予測部と、残寿命予測部で得られた予測残寿命を出力するための出力部と、を備える、機器の残寿命予測装置である。 One aspect of the present disclosure inputs inspection data obtained from a predetermined inspection operation in an apparatus and an inspection time that is a use time of the apparatus at the time when the inspection operation is performed in the apparatus for predicting the remaining life of the apparatus. A first input unit for storing, a storage unit for storing the inspection data and the inspection time input in the first input unit, and a lifetime for inputting the lifetime of the device when the device becomes unusable Machine learning that inputs inspection data and outputs the remaining life calculated for each past inspection time based on the life and inspection time for the second input unit and a plurality of devices that have become unusable The apparatus is configured to calculate a predicted remaining life of the device using the machine learning unit configured to perform the inspection, the inspection data input in the first input unit, and the algorithm obtained from the machine learning. The remaining life prediction unit and the remaining life Comprising an output unit for outputting the predicted residual life obtained by the life predicting portion, a residual life predicting device of the apparatus.
 本開示の一態様による機器の残寿命予測装置では、所定の検査動作から得られた検査データを入力とし、各検査時間における残寿命を出力とする、機械学習が行われる。そして、機械学習から得られたアルゴリズムと、新たに入力された検査データと、を用いて、機器の予測残寿命が算出される。したがって、残寿命予測装置は、機器の残寿命を示すことができる。 In the device remaining life prediction apparatus according to an aspect of the present disclosure, machine learning is performed in which inspection data obtained from a predetermined inspection operation is input and the remaining life at each inspection time is output. And the estimated remaining lifetime of an apparatus is calculated using the algorithm obtained from machine learning, and the newly input test | inspection data. Therefore, the remaining life prediction apparatus can indicate the remaining life of the device.
 機械学習は、(i)検査データからウェーブレット変換された結果を用いる畳み込みニューラルネットワーク、(ii)検査データから前処理された特徴量を用いる長短期記憶に基づくニューラルネットワーク、及び、(iii)検査データをそのまま用いる長短期記憶に基づくニューラルネットワーク、のうちの少なくとも1つを含んでもよい。 Machine learning includes (i) a convolutional neural network that uses the result of wavelet transform from inspection data, (ii) a neural network based on long- and short-term memory that uses feature values preprocessed from inspection data, and (iii) inspection data May be included in at least one of neural networks based on long-term and short-term memory.
 また、機械学習は、畳み込みニューラルネットワークと、前処理された特徴量を用いる長短期記憶に基づくニューラルネットワークと、を含んでもよい。この場合、2つの手法を含む機械学習に基づく高精度な予測が実現され得る。 Also, the machine learning may include a convolutional neural network and a neural network based on long- and short-term memory using preprocessed feature values. In this case, highly accurate prediction based on machine learning including two methods can be realized.
 また、前処理された特徴量が、エンベロープ処理された検査データを高速フーリエ変換することにより得られるピークの振幅、検査データを直接的に高速フーリエ変換することにより得られるピークの振幅、検査データの二乗平均値、及び、検査データから得られる尖度、を含んでもよい。この場合、これら複数の特徴量を含む機械学習に基づく高精度な予測が実現され得る。 In addition, the preprocessed feature amount includes the peak amplitude obtained by fast Fourier transform of the envelope-processed inspection data, the peak amplitude obtained by direct fast Fourier transform of the inspection data, and the inspection data The mean square value and kurtosis obtained from the inspection data may be included. In this case, highly accurate prediction based on machine learning including the plurality of feature amounts can be realized.
 検査動作が、暖機運転に含まれてもよい。この場合、検査動作のためにのみに機器を動作する必要はない。 The inspection operation may be included in the warm-up operation. In this case, it is not necessary to operate the device only for the inspection operation.
 使用時間は、機器の使用が開始された時刻から当該使用時間の確認が行われた時刻までの時間の長さ、又は、機器の使用が開始された時刻及び当該使用時間の確認が行われた時刻の2つの時刻データであってもよい。 The usage time is the length of time from the time when the use of the device is started to the time when the use time is confirmed, or the time when the use of the device is started and the use time is confirmed. Two pieces of time data may be used.
 また、本開示の他の態様は、工作機械において、工作機械に含まれる機器に関する検査データを得るためのセンサであって、検査データが、機器において所定の検査動作から得られる、センサと、センサで測定され所定の周波数でサンプリングされた検査データと、機械学習から得られたアルゴリズムと、を用いて、機器の予測残寿命を算出するように構成された残寿命予測部と、残寿命予測部で得られた予測残寿命を表示するための表示装置と、を備え、アルゴリズムが、使用不能となった複数の機器について、検査データを入力とし残寿命を出力とする機械学習を行うことにより決定されており、残寿命は、機器が使用不能となった時の機器の使用時間である寿命と、検査動作が行われた時の機器の使用時間である検査時間と、に基づいて、過去の検査時間の各々に対して算出される、工作機械である。このような工作機械も、上記の残寿命予測装置と同様に、機器の残寿命を示すことができる。 Further, another aspect of the present disclosure is a sensor for obtaining inspection data related to equipment included in a machine tool in a machine tool, wherein the inspection data is obtained from a predetermined inspection operation in the equipment, and the sensor A remaining life prediction unit configured to calculate a predicted remaining life of a device using inspection data measured at a predetermined frequency and sampled at a predetermined frequency and an algorithm obtained from machine learning, and a remaining life prediction unit And a display device for displaying the predicted remaining life obtained in step 4, and the algorithm is determined by performing machine learning with inspection data as input and remaining life as output for multiple devices that have become unusable The remaining lifetime is based on the lifetime that is the usage time of the device when the device becomes unusable and the inspection time that is the usage time of the device when the inspection operation is performed. Te is calculated for each of the past inspection time, a machine tool. Such a machine tool can also indicate the remaining life of the device in the same manner as the remaining life prediction apparatus.
 本開示の態様によれば、機器の残寿命を示すことができる残寿命予測装置及び工作機械を提供することが可能となる。 According to the aspect of the present disclosure, it is possible to provide a remaining life prediction apparatus and a machine tool that can indicate the remaining life of a device.
実施形態に係る残寿命予測装置を具備するシステムを示す概略的なブロック図である。It is a schematic block diagram which shows the system which comprises the remaining life prediction apparatus which concerns on embodiment. 検査データの一例を示す。An example of inspection data is shown. 検査データの他の例を示す。The other example of test | inspection data is shown. 検査データの他の例を示す。The other example of test | inspection data is shown. 検査データの他の例を示す。The other example of test | inspection data is shown. 検査データの他の例を示す。The other example of test | inspection data is shown. 実施形態に係る機械学習の例を示す概略図である。It is the schematic which shows the example of the machine learning which concerns on embodiment. 振動データからウェーブレット変換された画像の一例を示す。An example of the image wavelet-transformed from vibration data is shown. 実施形態に係る機械学習の他の例を示す概略図である。It is the schematic which shows the other example of the machine learning which concerns on embodiment. 実際の残寿命と予測残寿命とを示すグラフである。It is a graph which shows an actual remaining life and an estimated remaining life. 実施形態に係る工作機械を具備するシステムを示す概略的なブロック図である。It is a schematic block diagram which shows the system which comprises the machine tool which concerns on embodiment.
 以下、添付図面を参照して、実施形態に係る残寿命予測装置及び工作機械を説明する。同様な又は対応する要素には同一の符号を付し、重複する説明は省略する。理解を容易にするために、図の縮尺は変更されている場合がある。 Hereinafter, the remaining life prediction apparatus and the machine tool according to the embodiment will be described with reference to the accompanying drawings. Similar or corresponding elements are denoted by the same reference numerals, and redundant description is omitted. In order to facilitate understanding, the scale of the figures may be changed.
 図1は、実施形態に係る残寿命予測装置を具備するシステムを示す概略的なブロック図である。システム100では、工作機械10を構成する機器の残寿命が予測される。システム100は、工作機械10と、残寿命予測装置50と、を具備している。 FIG. 1 is a schematic block diagram showing a system including a remaining life prediction apparatus according to an embodiment. In the system 100, the remaining lifetime of the equipment constituting the machine tool 10 is predicted. The system 100 includes a machine tool 10 and a remaining life prediction device 50.
 工作機械10は、例えば、マシニングセンタ等の様々なNC(Numerical Control)工作機械であることができる。工作機械10では、例えば、1つ又は複数の所定の加工のみが主として行われることができ、この場合、主軸11及び送り機構等の機器には、ある一定の負荷のみが主として作用する。工作機械10は、例えば、主軸11と、フロントベアリング12及びリアベアリング13と、ベアリングケース14と、センサ15と、を備えている。工作機械10は、その他の構成要素を備えてもよい。 The machine tool 10 can be, for example, various NC (Numerical Control) machine tools such as a machining center. In the machine tool 10, for example, only one or a plurality of predetermined processes can be mainly performed, and in this case, only a certain load mainly acts on devices such as the spindle 11 and the feed mechanism. The machine tool 10 includes, for example, a main shaft 11, a front bearing 12 and a rear bearing 13, a bearing case 14, and a sensor 15. The machine tool 10 may include other components.
 主軸11は、工作機械の種類又は用途に応じて、工具T又はワークを把持する。ベアリング12,13は、主軸11を回転可能に支持する。ベアリング12,13は、例えば、玉軸受又はころ軸受等の転がり軸受など、様々な軸受であることができる。例えば、ベアリング12,13の内輪は主軸11に固定され、ベアリング12,13の外輪はベアリングケース14に固定されることができる。ベアリングケース14は、ベアリング12,13を収容する。 The spindle 11 grips the tool T or the workpiece according to the type or application of the machine tool. The bearings 12 and 13 rotatably support the main shaft 11. The bearings 12 and 13 can be various bearings such as a rolling bearing such as a ball bearing or a roller bearing. For example, the inner rings of the bearings 12 and 13 can be fixed to the main shaft 11, and the outer rings of the bearings 12 and 13 can be fixed to the bearing case 14. The bearing case 14 accommodates the bearings 12 and 13.
 センサ15は、予測残寿命の計算対象となる機器(本実施形態では、主軸11)に関する検査データを得るために使用される。このような機器は、例えば、工具T又はワーク(不図示)を移動又は搬送するために使用される工作機械の構成要素であってもよい。別の観点からは、機器は、転がり接触又は滑り接触する2つ以上の部品を含む、工作機械の可動要素であってもよい。例えば、センサ15は、主軸11を支持するベアリング12,13に関する検査データを得るために使用されることができる。 The sensor 15 is used to obtain inspection data relating to a device (in this embodiment, the main spindle 11) that is a target of calculation of the predicted remaining life. Such equipment may be, for example, a component of a machine tool used to move or transport a tool T or a workpiece (not shown). From another point of view, the equipment may be a moving element of a machine tool that includes two or more parts that are in rolling contact or sliding contact. For example, the sensor 15 can be used to obtain inspection data regarding the bearings 12, 13 that support the main shaft 11.
 センサ15によって検出される測定値から得られる検査データは、予測残寿命を計算するために用いられる。このような検査データは、例えば、時間と、機器の動作に応じて変動する物理量と、の間の関係を表すデータであることができる。検査データは、例えば機器の損傷及び/又は機器の使用時間等、様々な要因に応じて経時的に変化し得る。例えば、センサ15は、加速度センサであることができ、この場合、検査データは、時間と加速度との間の関係を表す振動データである。また、センサ15は、変位センサであってもよく、この場合、検査データは、時間と変位との間の関係を表す振動データである。センサ15は、例えば、主軸11の近傍に取り付けられることができる。本実施形態では、センサ15は、ベアリングケース14の外表面に取付けられている(例えば、ネジ止め)。センサ15は、主軸11の近傍の他の構成要素に取り付けられてもよい。 The inspection data obtained from the measurement value detected by the sensor 15 is used to calculate the predicted remaining life. Such inspection data can be, for example, data representing a relationship between time and a physical quantity that varies according to the operation of the device. The inspection data can change over time depending on various factors, such as equipment damage and / or equipment usage time. For example, the sensor 15 can be an acceleration sensor, and in this case, the inspection data is vibration data representing a relationship between time and acceleration. Further, the sensor 15 may be a displacement sensor, and in this case, the inspection data is vibration data representing a relationship between time and displacement. The sensor 15 can be attached, for example, in the vicinity of the main shaft 11. In the present embodiment, the sensor 15 is attached to the outer surface of the bearing case 14 (for example, screwed). The sensor 15 may be attached to another component in the vicinity of the main shaft 11.
 検査データは、上記のような振動データに代えて、主軸11を回転させるためのサーボモータ(不図示)から得られるデータであってもよい。この場合、センサ15は、例えば、サーボモータに組み込まれていてもよい。 The inspection data may be data obtained from a servo motor (not shown) for rotating the spindle 11 instead of the vibration data as described above. In this case, the sensor 15 may be incorporated in a servo motor, for example.
 センサ15は、主軸11に代えて、ワーク又は工具を移動させるための送り機構(不図示)に関する検査データを得るために使用されてもよい。この場合、予測残寿命の計算対象となる機器は、例えば、直動送り機構(例えば、テーブル又はサドル)に含まれるボールねじ若しくは直動転がりガイド、又は、回転テーブルに含まれるベアリング等であってもよい。また、センサ15は、工具を移動させるための自動工具交換装置(ATC)、又は、パレットを介してワークを移動させるための自動パレット交換装置(APC)に関する検査データを得るために使用されてもよい。この場合、ATC又はAPCに含まれるベアリング等の機器が、予測残寿命の計算対象になり得る。センサ15は、例えば、送り機構、ATC又はAPCの近傍に取り付けられることができ、又は、送り機構、ATC又はAPCを駆動するためのサーボモータに組み込まれることができる。 The sensor 15 may be used to obtain inspection data relating to a feed mechanism (not shown) for moving a workpiece or a tool, instead of the spindle 11. In this case, the device for which the expected remaining life is calculated is, for example, a ball screw or a linear motion rolling guide included in a linear motion feed mechanism (for example, a table or a saddle), or a bearing included in a rotary table. Also good. Further, the sensor 15 may be used to obtain inspection data relating to an automatic tool changer (ATC) for moving a tool or an automatic pallet changer (APC) for moving a workpiece via a pallet. Good. In this case, a device such as a bearing included in ATC or APC can be a target for calculating the predicted remaining life. The sensor 15 can be mounted, for example, in the vicinity of the feed mechanism, ATC or APC, or can be incorporated in a servo motor for driving the feed mechanism, ATC or APC.
 図2は、検査データの一例を示しており、センサ15が加速度センサである場合に、センサ15で得られる振動データの一例を示している。図2に示されるように、振動データは、時間と、加速度との関係を表している。 FIG. 2 shows an example of inspection data, and shows an example of vibration data obtained by the sensor 15 when the sensor 15 is an acceleration sensor. As shown in FIG. 2, the vibration data represents the relationship between time and acceleration.
 図3~図6は、検査データの他の例を示しており、サーボモータで得られる検査データの例を示している。例えば、検査データは、図3に示されるように、時間と、機器の位置と、の間の関係を表すデータであってもよい。また、例えば、検査データは、図4に示されるように、時間と、所望の位置からのずれを表す位置誤差と、の間の関係を表すデータであってもよい。また、例えば、検査データは、図5に示されるように、時間と、サーボモータのトルク指令値と、の間の関係を表すデータであってもよい。また、例えば、検査データは、図6に示されるように、時間と、サーボモータのエンコーダの読み取り値と、の間の関係を表すデータであってもよい。 FIGS. 3 to 6 show other examples of inspection data, showing examples of inspection data obtained by a servo motor. For example, the inspection data may be data representing a relationship between time and the position of the device, as shown in FIG. Further, for example, as shown in FIG. 4, the inspection data may be data representing a relationship between time and a position error representing a deviation from a desired position. Further, for example, the inspection data may be data representing a relationship between time and a torque command value of the servo motor, as shown in FIG. Further, for example, as shown in FIG. 6, the inspection data may be data representing a relationship between time and a reading value of an encoder of a servo motor.
 検査データは、機器における所定の検査動作から得られる。検査動作は、例えば、数時間に1回、1日~数日に1回、1週~数週に1回、又は、1月~数月に1回の頻度で実施されることができる。検査動作では、例えば、所定の工具T若しくはワークが取り付けられた又は工具T若しくはワークが取り付けられていない主軸11、送り機構、ATC又はAPC等が、ワークの加工無しに、所定の回転数で、所定の速度で、及び/又は、所定の距離だけ、動作されることができる。検査動作は、比較的短い時間行われることができ、例えば、1秒~数十秒若しくは1分~数分行われてもよく、又は、これらの時間よりも短い若しくは長い時間行われてもよい。検査動作は、例えば、機器の暖機運転であることができる、又は、暖機運転の一部であることができる。 Inspection data is obtained from a predetermined inspection operation on the equipment. The inspection operation can be performed, for example, once every several hours, once every day to every few days, once every week to every few weeks, or once every month to every few months. In the inspection operation, for example, the spindle 11, the feed mechanism, the ATC, or the APC or the like to which the predetermined tool T or the workpiece is attached or not attached, is processed at a predetermined rotational speed without machining the workpiece. It can be operated at a predetermined speed and / or a predetermined distance. The inspection operation may be performed for a relatively short time, for example, may be performed for 1 second to several tens of seconds or 1 minute to several minutes, or may be performed for a time shorter or longer than these times. The inspection operation can be, for example, a warm-up operation of the device or can be part of a warm-up operation.
 図1を参照して、工作機械10は、制御装置20と、データ収集装置30と、を更に備える。 Referring to FIG. 1, the machine tool 10 further includes a control device 20 and a data collection device 30.
 制御装置20は、例えば、工作機械10の主軸11及び送り機構を制御するためのNC装置であってもよく、及び/又は、工作機械10の他の機器(例えば、ATC及び/又はAPC)を制御するための機械制御装置であってもよい。制御装置20は、タッチパネル又は液晶ディスプレイ等の表示部21を有している。制御装置20は、表示部21に加えて、CPU(Central Processing Unit)等のプロセッサ、ハードディスクドライブ等のメモリ、ROM(read only memory)、RAM(random access memory)、並びに/又は、マウス及び/若しくはキーボード等の入力装置等、他の構成要素を有することができる。 The control device 20 may be, for example, an NC device for controlling the spindle 11 and the feed mechanism of the machine tool 10 and / or other equipment (for example, ATC and / or APC) of the machine tool 10. It may be a machine control device for controlling. The control device 20 includes a display unit 21 such as a touch panel or a liquid crystal display. In addition to the display unit 21, the control device 20 includes a processor such as a CPU (Central Processing Unit), a memory such as a hard disk drive, a ROM (read only memory), a RAM (random access memory), and / or a mouse and / or Other components such as an input device such as a keyboard can be included.
 データ収集装置30は、センサ15に有線又は無線で接続されており、センサ15で検出された測定値を受信する。また、データ収集装置30は、制御装置20に有線又は無線で通信可能に接続されている。データ収集装置30は、記憶部31を有している。記憶部31は、例えばハードディスクドライブであることができる。記憶部31は、センサ15から受信した測定値に基づく検査データと、対応する検査動作が行われた検査時間と、の複数の組を記憶する。センサ15で検出された測定値は、所定の周波数(例えば、18kHz~120kHz)でサンプリングされて、検査データとして記憶部31に記憶される。本開示において、「検査時間」とは、検査動作が行われた時点での機器の使用時間を意味することができる。また、本開示において、「使用時間」とは、機器が設置された時から、又は、機器が設置された後の所定の時から、機器が実際に動作した合計の時間を意味することができる。代替的に、例えば、「使用時間」は、機器の使用が開始された時刻から当該使用時間の確認が行われた時刻までの時間の長さであってもよい。さらに、機器の使用が開始された時刻及び当該使用時間の確認が行われた時刻の2つの時刻データが使用時間として記憶され、以下の機械学習及び予測残寿命の算出等において、2つの時刻の間の時間の長さが残寿命予測装置50において使用時間として算出されてもよい。データ収集装置30及び/又は制御装置20は、機器の使用時間を計数するためのカウンタを有してもよい。また、記憶部31は、機器の「寿命」(詳しくは後述)を更に記憶してもよい。「寿命」は、例えば、機器が使用不能となったときに、工作機械10のユーザによってデータ収集装置30に入力されてもよい。また、データ収集装置30は、「検査時間」及び「寿命」に基づいて、過去の各検査時間における機器の「残寿命」(詳しくは後述)を算出してもよく、記憶部31は、算出された「残寿命」を記憶してもよい。 The data collection device 30 is connected to the sensor 15 in a wired or wireless manner, and receives a measurement value detected by the sensor 15. Further, the data collection device 30 is connected to the control device 20 so as to be communicable by wire or wirelessly. The data collection device 30 has a storage unit 31. The storage unit 31 can be, for example, a hard disk drive. The storage unit 31 stores a plurality of sets of inspection data based on the measurement value received from the sensor 15 and inspection time when the corresponding inspection operation is performed. The measurement value detected by the sensor 15 is sampled at a predetermined frequency (for example, 18 kHz to 120 kHz) and stored in the storage unit 31 as inspection data. In the present disclosure, “inspection time” may mean the usage time of the device at the time when the inspection operation is performed. Further, in the present disclosure, the “use time” may mean the total time that the device actually operates from the time when the device is installed or from a predetermined time after the device is installed. . Alternatively, for example, the “use time” may be the length of time from the time when use of the device is started to the time when the use time is confirmed. Furthermore, two time data of the time when the use of the device is started and the time when the use time is confirmed are stored as the use time, and in the following machine learning and calculation of the predicted remaining life, etc. The remaining time may be calculated as the usage time in the remaining life prediction apparatus 50. The data collection device 30 and / or the control device 20 may include a counter for counting the usage time of the device. The storage unit 31 may further store the “life” of the device (details will be described later). The “life” may be input to the data collection device 30 by the user of the machine tool 10 when the device becomes unusable, for example. Further, the data collection device 30 may calculate the “remaining life” (details will be described later) of the device at each past inspection time based on the “inspection time” and the “lifetime”. The recorded “remaining life” may be stored.
 データ収集装置30は、制御装置20と別個に設けられてもよく、又は、制御装置20に組み込まれてもよい。データ収集装置30が制御装置20に組み込まれる場合、データ収集装置30の各構成要素は、制御装置20中の対応する構成要素によって実現されてもよく、又は、制御装置20中の構成要素とは別個に設けられてもよい。データ収集装置30は、記憶部31に加えて、CPU等のプロセッサ、ROM、RAM、並びに/又は、タッチパネル、マウス及び/若しくはキーボード等の入出力装置等、他の構成要素を有してもよい。 The data collection device 30 may be provided separately from the control device 20 or may be incorporated in the control device 20. When the data collection device 30 is incorporated in the control device 20, each component of the data collection device 30 may be realized by a corresponding component in the control device 20, or what is a component in the control device 20? It may be provided separately. In addition to the storage unit 31, the data collection device 30 may include other components such as a processor such as a CPU, a ROM, a RAM, and / or an input / output device such as a touch panel, a mouse, and / or a keyboard. .
 残寿命予測装置50は、ネットワークを介して、制御装置20及びデータ収集装置30と通信可能である。残寿命予測装置50は、例えば、工作機械10の製造メーカ側に設けられることができ、例えば、コンピュータ、サーバ、並びに/又は、スマートフォン及び/若しくはタブレット等の携帯端末等であることができる。ネットワークは、例えば、インターネット、WiFi(登録商標)、ブルートゥース(登録商標)、3G及び4G等の3GPP(Third Generation Partnership Project)により定められた通信規格に基づく通信方式、若しくは、その他の通信方式、又は、これらの任意の組み合わせを使用することができ、有線若しくは無線又はこれらの組み合わせを使用することができる。なお、図1では、残寿命予測装置50に対して1つの工作機械10が接続されているが、残寿命予測装置50に対して複数の工作機械が接続されてもよい。 The remaining life prediction device 50 can communicate with the control device 20 and the data collection device 30 via a network. The remaining life prediction apparatus 50 can be provided on the manufacturer side of the machine tool 10, for example, and can be, for example, a computer, a server, and / or a mobile terminal such as a smartphone and / or a tablet. The network is, for example, a communication system based on a communication standard defined by 3GPP (Third Generation Partnership Project) such as the Internet, WiFi (registered trademark), Bluetooth (registered trademark), 3G and 4G, or other communication methods, or Any combination of these can be used, wired or wireless, or a combination thereof. In FIG. 1, one machine tool 10 is connected to the remaining life prediction apparatus 50, but a plurality of machine tools may be connected to the remaining life prediction apparatus 50.
 残寿命予測装置50は、第1入力部51と、第2入力部52と、記憶部53と、プロセッサ54と、出力部55と、を備えることができ、これらの要素はバス等を介して相互に接続されている。残寿命予測装置50は、他の構成要素を更に備えてもよい。 The remaining life prediction apparatus 50 can include a first input unit 51, a second input unit 52, a storage unit 53, a processor 54, and an output unit 55. These elements are connected via a bus or the like. Are connected to each other. The remaining life prediction apparatus 50 may further include other components.
 第1入力部51は、検査データ及び検査時間の入力を受け付ける。第1入力部51は、例えば、I/Oポート等であることができる。第1入力部51は、例えば、データ収集装置30から送信された検査データ及び検査時間を受信することができる。また、第1入力部51は、記憶媒体に記憶された検査データ及び検査時間を読み取るように構成されていてもよい。第1入力部51から入力された検査データ及び検査時間は、記憶部53に送信される。なお、例えば、工作機械10の複数の機器のデータが保存される場合、第1入力部51から入力された検査データ及び検査時間が工作機械10のどの機器に関しているかを示すために、記憶装置53のどの領域に検査データ及び検査時間が保存されるべきかを示す識別情報が、第1入力部51に入力されてもよい。同様に、例えば、複数の工作機械10の機器のデータが保存される場合、第1入力部51から入力された検査データ及び検査時間がどの工作機械に関しているかを示すために、記憶装置53のどの領域に検査データ及び検査時間が保存されるべきかを示す識別情報が、第1入力部に入力されてもよい。 The first input unit 51 receives input of inspection data and inspection time. The first input unit 51 can be, for example, an I / O port. For example, the first input unit 51 can receive the inspection data and the inspection time transmitted from the data collection device 30. The first input unit 51 may be configured to read inspection data and inspection time stored in a storage medium. The inspection data and the inspection time input from the first input unit 51 are transmitted to the storage unit 53. For example, when data of a plurality of devices of the machine tool 10 is stored, the storage device 53 is used to indicate which device of the machine tool 10 the inspection data and the inspection time input from the first input unit 51 are related to. Identification information indicating which region of the inspection data and inspection time should be stored may be input to the first input unit 51. Similarly, for example, in a case where data of a plurality of machine tools 10 are stored, in order to indicate which machine tool the inspection data and inspection time input from the first input unit 51 are associated with, Identification information indicating whether inspection data and inspection time should be stored in the area may be input to the first input unit.
 第2入力部52は、機器が使用不能となった場合(例えば、故障又は破損した場合)に、機器の寿命の入力を受け付ける。本開示において、「寿命」とは、機器が使用不能となった時点での機器の使用時間を意味することができる。また、第2入力部52は、機器が使用不能となった場合に、障害モードの入力を受け付けることができる。本開示において、「障害モード」とは、機器がどのように使用不能となったかを示す障害の種類を意味することができる。例えば、機器が主軸11のベアリング12又は13である場合、障害モードは、外輪の破損、内輪の破損、及び、保持器の破損を含むことができる。また、障害モードは、例えば、ベアリングの圧痕、潤滑不良及び/若しくは予圧抜け、又は、ボールねじの摩耗、圧痕、芯ずれ及び/若しくは潤滑不良を含んでもよい。 The second input unit 52 receives an input of the life of the device when the device becomes unusable (for example, when it fails or is damaged). In the present disclosure, the “lifetime” may mean the usage time of the device when the device becomes unusable. Moreover, the 2nd input part 52 can receive the input of failure mode, when an apparatus becomes unusable. In the present disclosure, the “failure mode” may mean a failure type indicating how the device has become unusable. For example, if the device is a bearing 12 or 13 of the spindle 11, the failure modes can include outer ring breakage, inner ring breakage, and cage breakage. Failure modes may also include, for example, bearing indentation, poor lubrication and / or preload loss, or ball screw wear, indentation, misalignment and / or poor lubrication.
 第2入力部52は、例えば、マウス、キーボード、及び/又は、タッチパネル等の入力装置であることができる。この場合、製造メーカ側のオペレータが、機器が使用不能になったとの情報を工作機械10のユーザから受けたときに、寿命及び障害モードを第2入力部52によって入力することができる。また、第2入力部52は、例えば、I/Oポート等であることができる。この場合、データ収集装置30から送信された機器の寿命及び障害モードを、第2入力部52によって受信することができる。この場合、第2入力部52は、第1入力部51用のI/Oポートによって実現されてもよく、又は、第1入力部51用のI/Oポートと別個に設けられてもよい。第2入力部52に入力された寿命及び障害モードは、記憶部53に送信される。なお、上記と同様に、記憶装置53のどの領域に寿命が保存されるべきかを示す識別情報が、第2入力部52に入力されてもよい。 The second input unit 52 can be, for example, an input device such as a mouse, a keyboard, and / or a touch panel. In this case, when the operator on the manufacturer side receives information from the user of the machine tool 10 that the device has become unusable, the lifetime and failure mode can be input by the second input unit 52. The second input unit 52 can be, for example, an I / O port or the like. In this case, the lifetime and failure mode of the device transmitted from the data collection device 30 can be received by the second input unit 52. In this case, the second input unit 52 may be realized by an I / O port for the first input unit 51, or may be provided separately from the I / O port for the first input unit 51. The lifetime and failure mode input to the second input unit 52 are transmitted to the storage unit 53. As described above, identification information indicating in which area of the storage device 53 the life should be stored may be input to the second input unit 52.
 記憶部53は、第1入力部51から送信された検査データ及び検査時間、並びに、第2入力部52から送信された寿命及び障害モードを記憶する。記憶部53は、例えばハードディスクドライブであることができる。記憶部53は、以下で説明されるプロセッサ54で実行されるプログラム等の他のプログラム及び/又はデータを保存してもよい。 The storage unit 53 stores the inspection data and the inspection time transmitted from the first input unit 51, and the life and failure mode transmitted from the second input unit 52. The storage unit 53 can be, for example, a hard disk drive. The storage unit 53 may store other programs and / or data such as a program executed by the processor 54 described below.
 プロセッサ54は、例えば、1つ又は複数のCPUであることができる。プロセッサ54は、機械学習部54aと、残寿命予測部54bと、を含んでおり、これらは、例えば記憶部53に保存されたプログラムによって実現されることができる。 The processor 54 can be, for example, one or more CPUs. The processor 54 includes a machine learning unit 54 a and a remaining life prediction unit 54 b, and these can be realized by a program stored in the storage unit 53, for example.
 機械学習部54aは、機器の残寿命を予測するためのアルゴリズムを得るために機械学習を行う。機械学習部54aでは、例えば、ニューラルネットワークが用いられることができ、機械学習によって、各ニューロンにおける重みが決定されたアルゴリズムが得られる。 The machine learning unit 54a performs machine learning to obtain an algorithm for predicting the remaining life of the device. In the machine learning unit 54a, for example, a neural network can be used, and an algorithm in which the weight in each neuron is determined is obtained by machine learning.
 機械学習部54aは、使用不能となった複数の機器の各々について、記憶部53に記憶されている寿命及び検査時間に基づいて、過去の検査時間の各々における「残寿命」を求める。具体的には、寿命から各検査時間を引くことによって、各検査時間における「残寿命」を算出することができる。なお、以上で説明されたように、工作機械10のユーザ側のデータ収集装置30で残寿命が算出される場合には、機械学習部54aは、残寿命を算出する必要はない点に留意されたい。 The machine learning unit 54a obtains “remaining life” in each past inspection time based on the life and inspection time stored in the storage unit 53 for each of the plurality of devices that have become unusable. Specifically, the “remaining life” at each inspection time can be calculated by subtracting each inspection time from the life. Note that, as described above, when the remaining life is calculated by the data collection device 30 on the user side of the machine tool 10, the machine learning unit 54a does not need to calculate the remaining life. I want.
 続いて、機械学習部54aは、使用不能となった複数の機器のデータを用いて、検査データを入力とし残寿命を出力とする機械学習を行う。 Subsequently, the machine learning unit 54a performs machine learning with the inspection data as an input and the remaining life as an output, using data of a plurality of devices that have become unusable.
 また、機械学習部54aは、機器の障害モードを予測するためのアルゴリズムを得るために機械学習を更に行うことができる。この場合、機械学習部54aは、使用不能となった複数の機器のデータを用いて、検査データを入力とし障害モードを出力とする機械学習を行う。 The machine learning unit 54a can further perform machine learning to obtain an algorithm for predicting the failure mode of the device. In this case, the machine learning unit 54a performs machine learning using test data as input and failure mode as output using data of a plurality of devices that have become unusable.
 図7は、実施形態に係る機械学習の例を示す概略図である。図7に示されるように、機械学習部54aは、様々な手法に基づく機械学習を行うことができる。例えば、機械学習部54aで行われる機械学習は、前処理された検査データを用いる、畳み込みニューラルネットワーク(CNN(Convolutional Neural Network))であることができる。前処理としては、例えば、ウェーブレット変換が用いられることができ、当該前処理によって、ウェーブレット変換された画像が得られる。 FIG. 7 is a schematic diagram illustrating an example of machine learning according to the embodiment. As shown in FIG. 7, the machine learning unit 54a can perform machine learning based on various methods. For example, the machine learning performed by the machine learning unit 54a may be a convolutional neural network (CNN (Convolutional Neural Network)) that uses preprocessed inspection data. For example, wavelet transformation can be used as the preprocessing, and a wavelet transformed image is obtained by the preprocessing.
 図8は、検査データからウェーブレット変換された結果として得られた画像の一例を示す。画像は、最初の検査時間における検査データと、2回目以降のある検査時間における検査データと、の比較を示す情報を含むことができる。例えば、画像は、赤部分(R)、緑部分(G)、及び、青部分(B)を含むことができる。緑部分は、最初の検査データから変化がない領域を示す。赤部分は、最初の検査データから変化がある領域を示す。青部分は、データがない領域を示す。図7を参照して、上記のような前処理された画像が、入力としてCNNに用いられることができ、残寿命(RUL(Remaining Useful Life))及び障害モードが出力となる。 FIG. 8 shows an example of an image obtained as a result of wavelet transform from inspection data. The image may include information indicating a comparison between the inspection data at the first inspection time and the inspection data at a certain inspection time after the second inspection. For example, the image can include a red portion (R), a green portion (G), and a blue portion (B). A green part shows the area | region which has not changed from the first test data. The red part indicates a region where there is a change from the first inspection data. The blue part indicates an area where there is no data. Referring to FIG. 7, the preprocessed image as described above can be used as an input to the CNN, and the remaining life (RUL (Remaining Useful Life)) and the failure mode are output.
 また、例えば、機械学習は、検査データから前処理された特徴量を用いる長短期記憶(LSTM(Long Short-Term Memory))に基づくニューラルネットワークであってもよい。特徴量は、例えば、エンベロープ処理された検査データを高速フーリエ変換することにより得られるピークの振幅を含んでもよい。この場合、検査データは、例えば、バンドパスフィルタ、MED(Minimum Entropy Deconvolution)、及び、エンベロープ処理(例えば、ヒルベルト変換)を通され、その後、高速フーリエ変換(FFT(Fast Fourier Transform))に通されてもよい。また、特徴量は、例えば、検査データを直接的に高速フーリエ変換することにより得られるピークの振幅、検査データの二乗平均値、及び、検査データから得られる尖度を含んでもよい。尖度は、例えば、バンドパスフィルタ及びMEDを通された検査データから得られることができる。これらの前処理された特徴量が、入力としてLSTMに用いられることができ、RUL及び障害モードが出力となる。なお、特徴量は、さらに多くの前処理された数値を含んでもよいことに留意されたい。 Further, for example, the machine learning may be a neural network based on long-short-term memory (LSTM (Long Short-Term Memory)) using feature values preprocessed from inspection data. The feature amount may include, for example, the peak amplitude obtained by performing fast Fourier transform on the inspection data subjected to envelope processing. In this case, the inspection data is subjected to, for example, a band pass filter, MED (Minimum Entropy Deconvolution), and envelope processing (for example, Hilbert transform), and then to a fast Fourier transform (FFT (Fast Fourier Transform)). May be. The feature amount may include, for example, the peak amplitude obtained by directly performing fast Fourier transform on the inspection data, the root mean square value of the inspection data, and the kurtosis obtained from the inspection data. The kurtosis can be obtained, for example, from inspection data passed through a bandpass filter and MED. These preprocessed feature quantities can be used as inputs to the LSTM, with RUL and failure modes being the outputs. It should be noted that the feature amount may include a larger number of preprocessed numerical values.
 また、例えば、機械学習は、検査データをそのまま用いるLSTMに基づくニューラルネットワークであってもよい。このような機械学習では、処理されていない検査データが、入力としてLSTMに用いられることができ、RUL及び障害モードが出力となる。 Further, for example, the machine learning may be a neural network based on LSTM that uses inspection data as it is. In such machine learning, unprocessed inspection data can be used as input to the LSTM, and RUL and failure mode are output.
 図9は、実施形態に係る機械学習の他の例を示す概略図である。図9に示されるように、機械学習部54aで行われる機械学習は、図7中のウェーブレット変換された画像を用いるCNNと、検査データから前処理された特徴量を用いるLSTMに基づくニューラルネットワークと、の組合せであってもよい。機械学習は、さらに他のニューラルネットワークを含んでもよい。図9の機械学習では、検査データが、CNNによって得られた結果を用いるフィルタに通される。具体的には、ウェーブレット変換された画像において、赤部分が画像全体の所定の割合以上を占める場合、対応する検査データは「異常」と判定され、そうでない場合、対応する検査データは「正常」と判定される。そして、「異常」と判定された検査データのみがフィルタを通過することができる。図9に示されるように、フィルタを通過した検査データのみが前処理され、前処理から得られた特徴量が、LSTMに基づくニューラルネットワークに用いられ、RUL及び障害モードが出力となる。 FIG. 9 is a schematic diagram illustrating another example of machine learning according to the embodiment. As shown in FIG. 9, the machine learning performed by the machine learning unit 54 a includes CNN that uses the wavelet-transformed image in FIG. 7, a neural network that is based on LSTM that uses feature values preprocessed from inspection data, and A combination of these may be used. Machine learning may further include other neural networks. In the machine learning of FIG. 9, the inspection data is passed through a filter that uses the results obtained by the CNN. Specifically, in a wavelet-transformed image, if the red portion occupies a predetermined ratio or more of the entire image, the corresponding inspection data is determined as “abnormal”; otherwise, the corresponding inspection data is “normal”. It is determined. Only the inspection data determined to be “abnormal” can pass through the filter. As shown in FIG. 9, only the inspection data that has passed through the filter is preprocessed, and the feature value obtained from the preprocess is used in the neural network based on LSTM, and the RUL and failure mode are output.
 図1を参照して、残寿命予測部54bは、第1入力部51で入力された新たな検査データと、上記の機械学習から得られたアルゴリズムと、を用いて、機器の予測残寿命及び障害モードを算出する。本開示において、「予測残寿命」とは、ある使用期間使用された機器が、今後も工作機械10が予測を行う前の加工と同程度の負荷がかかる加工を行うと仮定した場合に、動作することができると予測される残りの時間を意味することができる。使用不能な機器の新たなデータが記憶部53に追加され、機械学習部54aにおいてアルゴリズムが更新された場合には、残寿命予測部54bは、更新されることができる。 Referring to FIG. 1, the remaining life prediction unit 54 b uses the new inspection data input by the first input unit 51 and the algorithm obtained from the above machine learning, and the predicted remaining life of the device and Calculate the failure mode. In the present disclosure, the “predicted remaining life” is an operation that is performed when it is assumed that a device that has been used for a certain period of use will continue to perform machining that is subject to a load similar to that before the machine tool 10 performs the prediction. It can mean the remaining time expected to be able to. When new data of an unusable device is added to the storage unit 53 and the algorithm is updated in the machine learning unit 54a, the remaining life prediction unit 54b can be updated.
 上記の機械学習部54a及び残寿命予測部54bで用いられる検査データは、例えば、加速試験によって得られてもよい。この場合、アルゴリズムの取得及びシステムの検証等の作業をより早期に実施することができる。例えば、加速試験は、ベアリング12,13又はボールねじ等の機器に圧痕を設けることによって実施することができる。 The inspection data used in the machine learning unit 54a and the remaining life prediction unit 54b may be obtained by, for example, an acceleration test. In this case, operations such as algorithm acquisition and system verification can be performed earlier. For example, the acceleration test can be performed by providing an indentation on a device such as a bearing 12, 13 or a ball screw.
 出力部55は、残寿命予測部54bで得られた予測残寿命及び障害モードを制御装置20に出力する。出力部55は、例えば、I/Oポートであることができる。 The output unit 55 outputs the predicted remaining life and the failure mode obtained by the remaining life prediction unit 54b to the control device 20. The output unit 55 can be, for example, an I / O port.
 次に、システム100の動作について説明する。 Next, the operation of the system 100 will be described.
 システム100では、暖機運転の度に主軸11において検査動作が実行され、センサ15によって測定値が得られる。測定値は、所定の周波数でサンプリングされて、検査データとして記憶部31に記憶される。記憶部31には、検査時間も記憶される。 In the system 100, an inspection operation is executed on the spindle 11 every time the engine is warmed up, and a measured value is obtained by the sensor 15. The measured value is sampled at a predetermined frequency and stored in the storage unit 31 as inspection data. The storage unit 31 also stores the inspection time.
 検査動作が行われる度に、記憶部31に記憶されたデータが残寿命予測装置50に送信される。代替的に、所定の容量を超える検査データが記憶部31に記憶された場合に、又は、ベアリング12又は13が使用不能となった場合に、記憶部31に記憶されたデータが残寿命予測装置50に送信されてもよい。第1入力部51で入力されたデータは、記憶部53に記憶される。 Each time an inspection operation is performed, the data stored in the storage unit 31 is transmitted to the remaining life prediction apparatus 50. Alternatively, when inspection data exceeding a predetermined capacity is stored in the storage unit 31 or when the bearing 12 or 13 becomes unusable, the data stored in the storage unit 31 is the remaining life prediction device. 50 may be transmitted. Data input through the first input unit 51 is stored in the storage unit 53.
 ベアリング12又は13が使用不能になると、製造メーカ側のオペレータが、該当するベアリングの寿命を第2入力部によって入力する。第2入力部で入力されたデータは、記憶部53に記憶される。 When the bearing 12 or 13 becomes unusable, the operator of the manufacturer inputs the life of the corresponding bearing through the second input unit. The data input at the second input unit is stored in the storage unit 53.
 所定の個数を超える使用不能なベアリング12又は13のデータが記憶部53に記憶されると、機械学習部54aは、検査データを入力とし残寿命を出力とする機械学習を行う。また、機械学習部54aは、検査データを入力とし障害モードを出力とする機械学習を行う。そして、残寿命予測部54bは、機械学習から得られたアルゴリズムと、第1入力部51で入力された新たな検査データと、を用いて、機器の予測残寿命及び障害モードを算出する。算出された予測残寿命及び障害モードは、出力部55から制御装置20に出力され、制御装置20の表示部21に表示されることができる。 When the data of the unusable bearings 12 or 13 exceeding the predetermined number is stored in the storage unit 53, the machine learning unit 54a performs machine learning using the inspection data as an input and the remaining life as an output. Further, the machine learning unit 54a performs machine learning using the inspection data as an input and the failure mode as an output. Then, the remaining life prediction unit 54 b calculates the predicted remaining life and failure mode of the device using the algorithm obtained from the machine learning and the new inspection data input by the first input unit 51. The calculated predicted remaining life and failure mode can be output from the output unit 55 to the control device 20 and displayed on the display unit 21 of the control device 20.
 図10は、実際の残寿命と予測残寿命とを示すグラフである。図10の横軸は、ベアリングの使用時間(又は検査時間)を示しており、縦軸は、各使用時間におけるベアリングの残寿命と寿命との比率を示している。図10中の「実際の残寿命」(Actual RUL)は、実際に使用不能となったベアリングについて、寿命から各検査時間を引くことによって算出されている。図10中の「予測残寿命」(Predicted RUL)は、同じ実際に使用不能となったベアリングの検査データと、機械学習から得られたアルゴリズムと、を用いて算出されている。図10に示されるように、予測残寿命は、実際の残寿命と良く一致している。 FIG. 10 is a graph showing the actual remaining life and the predicted remaining life. The horizontal axis of FIG. 10 shows the usage time (or inspection time) of the bearing, and the vertical axis shows the ratio between the remaining life and the life of the bearing at each usage time. The “actual remaining life” (Actual RUL) in FIG. 10 is calculated by subtracting each inspection time from the life of a bearing that has actually become unusable. The “predicted remaining life” (Predicted10RUL) in FIG. 10 is calculated using the same inspection data of the bearing that has actually become unusable and the algorithm obtained from machine learning. As shown in FIG. 10, the predicted remaining life is in good agreement with the actual remaining life.
 図10中の「予測残寿命」の算出に用いられたアルゴリズムは、実際に使用不能となった別の複数のベアリングの検査データ及び残寿命を用いて、図9に示される2つのニューラルネットワークの組合せに基づく機械学習から得られている。検査動作では、主軸11が1800rpm(30Hz)で回転された。検査データは、時間と加速度との関係を表す振動データである。LSTMでは、振動データから前処理された41個の特徴量が用いられた。具体的には、41個の特徴量は、振動データを直接的に高速フーリエ変換することにより得られたフロントベアリング12及びリアベアリング13(×2)の各々についての内輪、外輪、転動体及び保持器(×4)に関する1番目及び2番目(×2)におけるピークの振幅(16特徴量=2×4×2)、エンベロープ処理された振動データを高速フーリエ変換することにより得られたフロントベアリング12及びリアベアリング13(×2)の各々についての内輪、外輪、転動体及び保持器(×4)に関する1番目及び2番目(×2)におけるピークの振幅(16特徴量=2×4×2)、エンベロープ処理された振動データを高速フーリエ変換することにより得られた主軸11の回転周波数(30Hz)及びその2倍の周波数(60Hz)(×)におけるピークの振幅(2特徴量)、低周波数領域(5Hz以上1300Hz未満)、中間周波数領域(1300Hz以上5000Hz未満)及び高周波数領域(5000Hz以上9000Hz未満)における振動データのパワー(エネルギー)(3特徴量)、並びに、振動データの二乗平均値、エントロピー、歪度及び尖度(4特徴量)を含む。 The algorithm used to calculate the “predicted remaining life” in FIG. 10 uses the inspection data and remaining life of a plurality of other bearings that have actually become unusable, and the two neural networks shown in FIG. It is derived from machine learning based on combinations. In the inspection operation, the main shaft 11 was rotated at 1800 rpm (30 Hz). The inspection data is vibration data representing the relationship between time and acceleration. In LSTM, 41 feature quantities preprocessed from vibration data were used. Specifically, the 41 feature values are the inner ring, the outer ring, the rolling element, and the holding for each of the front bearing 12 and the rear bearing 13 (× 2) obtained by direct Fourier transform of vibration data. Front bearing 12 obtained by fast Fourier transform of amplitude (16 feature amount = 2 × 4 × 2) and envelope-processed vibration data at the first and second (× 2) of the device (× 4) And the peak amplitude at the first and second (× 2) for the inner ring, outer ring, rolling element and cage (× 4) for each of the rear bearings 13 (× 2) (16 feature amounts = 2 × 4 × 2) In addition, the rotational frequency (30 Hz) of the spindle 11 obtained by fast Fourier transform of the vibration data subjected to the envelope processing and a frequency (60 Hz) (×) twice that of the spindle 11 are obtained. Peak amplitude (2 feature quantities), vibration data power (energy) in the low frequency range (5 Hz to less than 1300 Hz), intermediate frequency range (1300 Hz to less than 5000 Hz) and high frequency range (5000 Hz to less than 9000 Hz) (3 features) Quantity), and the mean square value, entropy, skewness, and kurtosis (four feature quantities) of vibration data.
 以上、実施形態に係る残寿命予測装置50では、所定の検査動作から得られた検査データを入力とし、各検査時間における残寿命を出力とする、機械学習が行われる。そして、機械学習から得られたアルゴリズムと、新たに入力された検査データと、を用いて、ベアリング12又は13の予測残寿命が算出される。したがって、残寿命予測装置50は、ベアリング12又は13の残寿命を示すことができる。 As described above, in the remaining life prediction apparatus 50 according to the embodiment, machine learning is performed in which the inspection data obtained from a predetermined inspection operation is input and the remaining life at each inspection time is output. Then, the predicted remaining life of the bearing 12 or 13 is calculated using an algorithm obtained from machine learning and newly input inspection data. Therefore, the remaining life prediction device 50 can indicate the remaining life of the bearing 12 or 13.
 また、残寿命予測装置50では、機械学習は、(i)検査データからウェーブレット変換された画像を用いる畳み込みニューラルネットワーク、(ii)検査データから前処理された特徴量を用いる長短期記憶に基づくニューラルネットワーク、及び、(iii)検査データをそのまま用いる長短期記憶に基づくニューラルネットワーク、のうちの少なくとも1つを含むことができる。また、残寿命予測装置50では、機械学習は、畳み込みニューラルネットワークと、前処理された特徴量を用いる長短期記憶に基づくニューラルネットワークと、を含むこともできる。この場合、2つの手法を含む機械学習に基づく高精度な予測が実現され得る。 In the remaining life prediction apparatus 50, machine learning is performed by (i) a convolutional neural network using an image wavelet transformed from inspection data, and (ii) a neural network based on long- and short-term memory using feature values preprocessed from the inspection data. It may include at least one of a network and (iii) a neural network based on long and short-term memory using the inspection data as it is. In the remaining life prediction apparatus 50, the machine learning can also include a convolutional neural network and a neural network based on long- and short-term memory using preprocessed feature values. In this case, highly accurate prediction based on machine learning including two methods can be realized.
 また、残寿命予測装置50では、前処理された特徴量が、エンベロープ処理された検査データを高速フーリエ変換することにより得られるピークの振幅、検査データを直接的に高速フーリエ変換することにより得られるピークの振幅、検査データの二乗平均値、及び、検査データから得られる尖度、を含んでいる。したがって、これら複数の特徴量を含む機械学習に基づく高精度な予測が実現され得る。 Further, in the remaining life prediction apparatus 50, the preprocessed feature amount is obtained by performing fast Fourier transform directly on the amplitude of the peak obtained by performing fast Fourier transform on the inspection data subjected to envelope processing. The peak amplitude, the root mean square value of the inspection data, and the kurtosis obtained from the inspection data are included. Therefore, highly accurate prediction based on machine learning including the plurality of feature amounts can be realized.
 また、残寿命予測装置50では、検査動作が、暖機運転に含まれている。したがって、検査動作のためにのみに工作機械10を動作する必要がない。 In the remaining life prediction apparatus 50, the inspection operation is included in the warm-up operation. Therefore, it is not necessary to operate the machine tool 10 only for the inspection operation.
 次に、他の実施形態に係るシステムについて説明する。 Next, a system according to another embodiment will be described.
 図11は、実施形態に係る工作機械を具備するシステムを示す概略的なブロック図である。システム200は、残寿命予測部32aが、工作機械40のユーザ側のデータ収集装置30に設けられており、製造メーカ側の装置60は、残寿命予測部54bを有していない点で、上記のシステム100と異なる。具体的には、システム200では、データ収集装置30のプロセッサ32が、残寿命予測部32aを有している。他の構成要素については、システム200は、システム100と同様であってもよい。 FIG. 11 is a schematic block diagram illustrating a system including the machine tool according to the embodiment. In the system 200, the remaining life prediction unit 32a is provided in the data collection device 30 on the user side of the machine tool 40, and the device 60 on the manufacturer side does not have the remaining life prediction unit 54b. Different from the system 100 of FIG. Specifically, in the system 200, the processor 32 of the data collection device 30 has a remaining life prediction unit 32a. For other components, the system 200 may be similar to the system 100.
 プロセッサ32は、例えば、1つ又は複数のCPUであることができる。システム200では、上記のシステム100と同様にして、製造メーカ側の装置60の機械学習部54aにおいて、機器の残寿命及び障害モードを予測するためのアルゴリズムが得られる。得られたアルゴリズムは、残寿命予測部32aとしてデータ収集装置30にコピーされている。残寿命予測部32aは、例えば、記憶部31に記憶されたプログラムによって実現されることができる。使用不能な機器の新たなデータが記憶部53に追加され、機械学習部54aにおいてアルゴリズムが更新された場合には、残寿命予測部32aは、ネットワークを通じて更新されることができる。残寿命予測部32aは、センサ15で測定され所定の周波数でサンプリングされた検査データと、機械学習部54aでの機械学習から得られたアルゴリズムと、を用いて、機器の予測残寿命及び障害モードを算出する。算出された予測残寿命及び障害モードは、制御装置20に出力され、表示部21に表示されることができる。 The processor 32 can be, for example, one or more CPUs. In the system 200, an algorithm for predicting the remaining life and failure mode of the device is obtained in the machine learning unit 54a of the device 60 on the manufacturer side in the same manner as the system 100 described above. The obtained algorithm is copied to the data collection device 30 as the remaining life prediction unit 32a. The remaining life prediction unit 32a can be realized by a program stored in the storage unit 31, for example. When new data of an unusable device is added to the storage unit 53 and the algorithm is updated in the machine learning unit 54a, the remaining life prediction unit 32a can be updated through the network. The remaining life prediction unit 32a uses the inspection data measured by the sensor 15 and sampled at a predetermined frequency, and the algorithm obtained from the machine learning in the machine learning unit 54a, and the predicted remaining life and failure mode of the device. Is calculated. The calculated predicted remaining life and failure mode can be output to the control device 20 and displayed on the display unit 21.
 以上のような工作機械40は、上記の残寿命予測装置50と同様に、機器の残寿命を示すことができる。 The machine tool 40 as described above can indicate the remaining life of the device, similarly to the remaining life prediction apparatus 50 described above.
 残寿命予測装置及び工作機械の実施形態について説明したが、本発明は上記の実施形態に限定されない。当業者であれば、上記の実施形態の様々な変形が可能であることを理解するだろう。また、当業者であれば、1つの実施形態に含まれる特徴は、矛盾が生じない限り、他の実施形態に組み込むことができる、又は、他の実施形態に含まれる特徴と交換可能であることを理解するだろう。 Although the embodiment of the remaining life prediction apparatus and the machine tool has been described, the present invention is not limited to the above embodiment. Those skilled in the art will appreciate that various modifications of the above-described embodiments are possible. In addition, a person skilled in the art can incorporate a feature included in one embodiment into another embodiment or replace a feature included in the other embodiment as long as no contradiction arises. Will understand.
 10  工作機械
 11  主軸
 12  フロントベアリング(機器)
 13  リアベアリング(機器)
 15  センサ
 21  表示部
 32a  残寿命予測部
 40  工作機械
 50  残寿命予測装置
 51  第1入力部
 52  第2入力部
 53  記憶部
 54a  機械学習部
 54b  残寿命予測部
 55  出力部
 T  工具
10 Machine tools 11 Spindles 12 Front bearings (equipment)
13 Rear bearing (equipment)
DESCRIPTION OF SYMBOLS 15 Sensor 21 Display part 32a Remaining life prediction part 40 Machine tool 50 Remaining life prediction apparatus 51 1st input part 52 2nd input part 53 Memory | storage part 54a Machine learning part 54b Remaining life prediction part 55 Output part T tool

Claims (7)

  1.  機器の残寿命予測装置において、
     前記機器において所定の検査動作から得られる検査データと、前記検査動作が行われた時点での前記機器の使用時間である検査時間と、を入力するための第1入力部と、
     前記第1入力部で入力された前記検査データと前記検査時間とを記憶する記憶部と、
     前記機器が使用不能となった時の前記機器の使用時間である寿命を入力するための第2入力部と、
     使用不能となった複数の機器について、前記検査データを入力とし、前記寿命及び前記検査時間に基づいて過去の検査時間の各々に対して算出された残寿命を出力とする、機械学習を行うように構成された、機械学習部と、
     前記第1入力部で入力された検査データと、前記機械学習から得られたアルゴリズムと、を用いて、前記機器の予測残寿命を算出するように構成された、残寿命予測部と、
     前記残寿命予測部で得られた前記予測残寿命を出力するための出力部と、
    を備えたことを特徴とする、機器の残寿命予測装置。
    In the equipment remaining life prediction device,
    A first input unit for inputting inspection data obtained from a predetermined inspection operation in the device and an inspection time which is a usage time of the device at the time when the inspection operation is performed;
    A storage unit for storing the inspection data and the inspection time input by the first input unit;
    A second input unit for inputting a lifetime which is a usage time of the device when the device becomes unusable;
    Machine learning is performed on a plurality of devices that have become unusable, with the inspection data being input and the remaining life calculated for each past inspection time based on the life and the inspection time being output. A machine learning part configured in
    A remaining life prediction unit configured to calculate a predicted remaining life of the device using the inspection data input in the first input unit and an algorithm obtained from the machine learning;
    An output unit for outputting the predicted remaining life obtained by the remaining life prediction unit;
    An apparatus for predicting the remaining life of equipment.
  2.  前記機械学習は、
      前記検査データからウェーブレット変換された結果を用いる畳み込みニューラルネットワーク、
      前記検査データから前処理された特徴量を用いる長短期記憶に基づくニューラルネットワーク、及び、
      前記検査データをそのまま用いる長短期記憶に基づくニューラルネットワーク、
     のうちの少なくとも1つを含む、請求項1に記載の機器の残寿命予測装置。
    The machine learning is
    A convolutional neural network using a result of wavelet transform from the inspection data,
    A neural network based on long- and short-term memory using feature quantities pre-processed from the inspection data; and
    A neural network based on long-term memory using the inspection data as it is,
    The apparatus remaining life prediction apparatus of Claim 1 containing at least 1 of these.
  3.  前記機械学習は、前記畳み込みニューラルネットワークと、前記前処理された特徴量を用いる長短期記憶に基づくニューラルネットワークと、を含む、請求項2に記載の残寿命予測装置。 3. The remaining life prediction apparatus according to claim 2, wherein the machine learning includes the convolutional neural network and a neural network based on long- and short-term memory using the preprocessed feature amount.
  4.  前記前処理された特徴量が、エンベロープ処理された前記検査データを高速フーリエ変換することにより得られるピークの振幅、前記検査データを直接的に高速フーリエ変換することにより得られるピークの振幅、前記検査データの二乗平均値、及び、前記検査データから得られる尖度、を含む、請求項2に記載の機器の残寿命予測装置。 The preprocessed feature amount is a peak amplitude obtained by fast Fourier transform of the envelope-processed inspection data, a peak amplitude obtained by direct fast Fourier transform of the inspection data, the inspection The apparatus remaining life prediction apparatus according to claim 2, comprising a root mean square value of data and a kurtosis obtained from the inspection data.
  5.  前記検査動作が、暖機運転に含まれる、請求項1に記載の残寿命予測装置。 The remaining life prediction apparatus according to claim 1, wherein the inspection operation is included in a warm-up operation.
  6.  前記使用時間は、前記機器の使用が開始された時刻から当該使用時間の確認が行われた時刻までの時間の長さ、又は、前記機器の使用が開始された時刻及び当該使用時間の確認が行われた時刻の2つの時刻データである、請求項1に記載の機器の残寿命予測装置。 The usage time is the length of time from the time when the use of the device is started to the time when the use time is confirmed, or the time when the use of the device is started and the confirmation of the use time. The apparatus remaining life prediction apparatus according to claim 1, wherein the apparatus is two pieces of time data of performed times.
  7.  工作機械において、
     前記工作機械に含まれる機器に関する検査データを得るためのセンサであって、前記検査データが、前記機器における所定の検査動作から得られる、センサと、
     前記センサで測定され所定の周波数でサンプリングされた前記検査データと、機械学習から得られたアルゴリズムと、を用いて、前記機器の予測残寿命を算出するように構成された残寿命予測部と、
     前記残寿命予測部で得られた前記予測残寿命を表示するための表示装置と、
    を備え、
     前記アルゴリズムが、使用不能となった複数の機器について、前記検査データを入力とし、残寿命を出力とする機械学習を行うことにより決定されており、前記残寿命は、前記機器が使用不能となった時の前記機器の使用時間である寿命と、前記検査動作が行われた時の前記機器の使用時間である検査時間と、に基づいて、過去の検査時間の各々に対して算出されることを特徴とした、工作機械。
    In machine tools,
    A sensor for obtaining inspection data relating to equipment included in the machine tool, wherein the inspection data is obtained from a predetermined inspection operation in the equipment;
    A remaining life prediction unit configured to calculate a predicted remaining life of the device using the inspection data measured by the sensor and sampled at a predetermined frequency, and an algorithm obtained from machine learning;
    A display device for displaying the predicted remaining life obtained by the remaining life prediction unit;
    With
    The algorithm is determined by performing machine learning with the inspection data as an input and the remaining life as an output for a plurality of devices that have become unusable, and the remaining life becomes unusable for the device. Calculated for each past inspection time based on the lifetime that is the usage time of the device at the time of the inspection and the inspection time that is the usage time of the device when the inspection operation is performed. A machine tool characterized by
PCT/JP2018/013941 2018-03-30 2018-03-30 Remaining lifespan prediction device and machine tool WO2019187138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013941 WO2019187138A1 (en) 2018-03-30 2018-03-30 Remaining lifespan prediction device and machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013941 WO2019187138A1 (en) 2018-03-30 2018-03-30 Remaining lifespan prediction device and machine tool

Publications (1)

Publication Number Publication Date
WO2019187138A1 true WO2019187138A1 (en) 2019-10-03

Family

ID=68059706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013941 WO2019187138A1 (en) 2018-03-30 2018-03-30 Remaining lifespan prediction device and machine tool

Country Status (1)

Country Link
WO (1) WO2019187138A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554657A (en) * 2019-10-16 2019-12-10 河北工业大学 Health diagnosis system and diagnosis method for operation state of numerical control machine tool
WO2021090842A1 (en) * 2019-11-08 2021-05-14 Dmg森精機株式会社 Machine tool and display device
CN114186500A (en) * 2022-02-16 2022-03-15 华中科技大学 Marine bearing residual life prediction method based on transfer learning and multiple time windows
WO2022064769A1 (en) * 2020-09-24 2022-03-31 国立大学法人大阪大学 Degradation-status prediction system and degradation-status prediction method
WO2024014070A1 (en) * 2022-07-11 2024-01-18 株式会社日本製鋼所 Inference method, inference device, and computer program
WO2024048065A1 (en) * 2022-08-30 2024-03-07 三菱重工業株式会社 Information processing device, information processing method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08207624A (en) * 1995-01-31 1996-08-13 Mazda Motor Corp Judging method and judging device for traveling environment
JP2006072659A (en) * 2004-09-01 2006-03-16 Matsushita Electric Works Ltd Signal identification method and signal identification device
JP2008061462A (en) * 2006-09-01 2008-03-13 Nagoya Institute Of Technology Short circuit diagnostic system of stator winding for motor
JP2017046540A (en) * 2015-08-28 2017-03-02 ファナック株式会社 Machine learning apparatus and method for learning estimated life of electric motor, life estimation apparatus having the same and motor system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08207624A (en) * 1995-01-31 1996-08-13 Mazda Motor Corp Judging method and judging device for traveling environment
JP2006072659A (en) * 2004-09-01 2006-03-16 Matsushita Electric Works Ltd Signal identification method and signal identification device
JP2008061462A (en) * 2006-09-01 2008-03-13 Nagoya Institute Of Technology Short circuit diagnostic system of stator winding for motor
JP2017046540A (en) * 2015-08-28 2017-03-02 ファナック株式会社 Machine learning apparatus and method for learning estimated life of electric motor, life estimation apparatus having the same and motor system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG JINJIANG ET AL.: "A multi-scale convolution neural network for featureless fault diagnosis", PROGRAM OF 2016 INTERNATIONAL SYMPOSIUM ON FLEXIBLE AUTOMATION, 2016, pages 65 - 70, XP033026944, doi:10.1109/ISFA.2016.7790137 *
ZHENG SHUAI ET AL.: "Long Short-Term Memory Network for Remaining Useful Life estimation", PROGRAM OF 2017 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, 2017, pages 88 - 95, XP033135865, doi:10.1109/ICPHM.2017.7998311 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554657A (en) * 2019-10-16 2019-12-10 河北工业大学 Health diagnosis system and diagnosis method for operation state of numerical control machine tool
WO2021090842A1 (en) * 2019-11-08 2021-05-14 Dmg森精機株式会社 Machine tool and display device
WO2022064769A1 (en) * 2020-09-24 2022-03-31 国立大学法人大阪大学 Degradation-status prediction system and degradation-status prediction method
CN114186500A (en) * 2022-02-16 2022-03-15 华中科技大学 Marine bearing residual life prediction method based on transfer learning and multiple time windows
CN114186500B (en) * 2022-02-16 2022-04-29 华中科技大学 Marine bearing residual life prediction method based on transfer learning and multiple time windows
WO2024014070A1 (en) * 2022-07-11 2024-01-18 株式会社日本製鋼所 Inference method, inference device, and computer program
WO2024048065A1 (en) * 2022-08-30 2024-03-07 三菱重工業株式会社 Information processing device, information processing method, and program

Similar Documents

Publication Publication Date Title
WO2019187138A1 (en) Remaining lifespan prediction device and machine tool
US11897068B2 (en) Information processing method, information processing system, and information processing device
CN104374571B (en) Bearing life decision maker
US10513001B2 (en) Bearing diagnostic device
JP4618125B2 (en) Bearing management system
CN106944928B (en) Abnormality analysis system and analysis device
US20140039666A1 (en) Apparatus and method for automatically detecting and compensating for a backlash of a machine tool
JP6730441B2 (en) Data storage device and system
JP2018106562A (en) Analyzer and analysis system
JP6540911B1 (en) Motor control system, motor control device, and bearing life diagnosis method
CN107728586B (en) Analysis system
JP5268637B2 (en) Method of operating an evaluation device for a production machine
JPWO2018025634A1 (en) Method and apparatus for diagnosing abnormality in feed shaft
JP7147131B2 (en) Analysis system
TW202333011A (en) Method of monitoring the condition of a machine tool
US6665581B2 (en) Method of supporting maintenance of facility and system
JP6873759B2 (en) Diagnostic model update system for machine tool diagnostic equipment
US20200004220A1 (en) Method and apparatus for performing an automatic health checkup for a cnc turning center
JP2019086447A (en) Life prediction system
US9757829B2 (en) Method of reinstalling object to be supported
JP6966166B2 (en) Machine tool feed shaft operating status display device and operating status display method
JP2007032712A (en) Bearing deterioration monitoring device for motor and control system
US20170357238A1 (en) Method and system for gauging and auto correcting geometric tolerances
JP2018192485A (en) Mold press device and mold press method
JP2005148873A (en) Robot deterioration diagnostic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911436

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18911436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP