WO2019186919A1 - Wireless communication method, wireless communication system, and terminal device - Google Patents

Wireless communication method, wireless communication system, and terminal device Download PDF

Info

Publication number
WO2019186919A1
WO2019186919A1 PCT/JP2018/013320 JP2018013320W WO2019186919A1 WO 2019186919 A1 WO2019186919 A1 WO 2019186919A1 JP 2018013320 W JP2018013320 W JP 2018013320W WO 2019186919 A1 WO2019186919 A1 WO 2019186919A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
data
signal
response signal
base station
Prior art date
Application number
PCT/JP2018/013320
Other languages
French (fr)
Japanese (ja)
Inventor
武志 芥川
義博 河▲崎▼
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2018/013320 priority Critical patent/WO2019186919A1/en
Publication of WO2019186919A1 publication Critical patent/WO2019186919A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals

Definitions

  • the present disclosure relates to a wireless communication method, a wireless communication system, and a terminal device.
  • the base station and the terminal device execute transmission / reception of data using a wireless signal. For example, when data transmitted from the base station is received by the terminal device, the terminal device verifies whether or not an error is included in the received packet data. For example, in cyclic redundancy check (CRC), the base station calculates a remainder value obtained by dividing the data by a predetermined generator polynomial, and adds the calculated remainder value to the data as an error detection code (CRC code) for transmission. . Then, the terminal device that has received the data also uses the same generator polynomial to obtain a remainder value obtained by dividing the data, and by comparing with the error detection code notified from the transmitting device, there is an error in the received packet data. Determine whether it is included.
  • CRC code error detection code
  • a response signal (hereinafter referred to as “NACK signal”) indicating that the data includes an error is transmitted to the base station.
  • the base station that has received the NACK signal performs data retransmission in accordance with the NACK signal.
  • the terminal device transmits a response signal (hereinafter referred to as “ACK signal”) indicating that the data has been correctly received to the base station.
  • ACK signal a response signal
  • the “response signal” is used as a high-level concept word including both the ACK signal and the NACK signal.
  • an error may occur in the content of the response signal transmitted from the terminal device. That is, the base station that has received the response signal may mistakenly recognize the ACK signal as a NACK signal, or may mistakenly recognize the NACK signal as an ACK signal.
  • the response signal does not include an error detection code such as a CRC code, and even if the response signal data includes an error, the base station cannot detect the error. As a result, if the base station misrecognizes the NACK signal as an ACK signal, data retransmission is not executed.
  • the received data includes an error and the NACK signal is returned to the transmission side device, if the NACK signal is erroneously determined to be ACK by the transmission side device, the data re-transmission is not executed. A solution is desired.
  • An object of the present invention is to provide an appropriate solution to the problem that data retransmission is not performed when a NACK signal is erroneously determined to be ACK.
  • a wireless communication method using a wireless communication system including a first communication device and a second communication device that performs wireless communication with the first communication device, wherein the first communication device transmits the second communication of data.
  • the second communication device determines whether a reception error has occurred for the data, and determines that the reception error has occurred, the second communication device determines that the reception error has occurred.
  • a first response signal indicating the occurrence of the error is transmitted to the second communication device, and it is determined that the reception error has occurred, and a radio signal between the first communication device and the second communication device
  • the second communication device transmits a second response signal indicating the occurrence of the reception error to the first communication device
  • the first communication device At least one of the first response signal and the second response signal Based on one, a wireless communication method characterized by performing the retransmission of the data are disclosed.
  • a method for reducing the possibility that data retransmission will not be executed even when a NACK signal transmitted from a terminal apparatus to a base station is erroneously determined as an ACK signal in the base station Is disclosed.
  • the terminal apparatus if it is determined that an error is included in data transmitted from a first communication apparatus, for example, a base station, to a second communication apparatus, for example, a terminal apparatus, the terminal apparatus transmits a first NACK signal.
  • the terminal device specifies the signal quality of the radio signal between the base station and the terminal device, and transmits the second NACK signal to the base station when the signal quality is equal to or lower than the threshold value.
  • the base station performs data retransmission based on at least one of the first NACK signal and the second NACK signal.
  • the NACK signal is transmitted to the base station a plurality of times.
  • unnecessary consumption of radio resources can be suppressed as compared with a method in which the terminal apparatus is set in advance to execute transmission of a NACK signal multiple times.
  • data retransmission can be performed earlier compared to a method in which a data retransmission request signal is transmitted when data retransmission based on a NACK signal is not performed within a predetermined time.
  • FIG. 1 is a diagram showing a wireless communication system including a base station 3 and a terminal device 4.
  • the base station 3 is connected to a host device such as the server 2 via the network 1.
  • the server 2 is, for example, an application server. Further, the base station 3 and the terminal device 4 are connected by a wireless link, and perform data transmission / reception.
  • FIG. 2 is a ladder chart regarding data transmission / reception and ACK signal transmission / reception between the base station 3 and the terminal device 4.
  • step S10 the base station 3 performs encoding processing and modulation processing on the transmitted data. Thereafter, the base station 3 transmits data to the terminal device 4 in the process S11.
  • the terminal device 4 receives the data transmitted from the base station 3.
  • the terminal device 4 performs demodulation processing and decoding processing on the received data.
  • the terminal device 4 confirms whether or not the data includes an error based on an error detection code such as a CRC code added to the data. In the example of FIG. 2, it is assumed that no error is included in the data.
  • the terminal device 4 transmits a response signal (ACK signal) indicating that no error is included in the data to the base station 3.
  • the base station 3 receives a response signal (ACK signal).
  • FIG. 3 is a ladder chart relating to data transmission / reception and NACK signal transmission / reception between the base station 3 and the terminal device 4.
  • the terminal apparatus 4 confirms whether or not an error is included in the data in the process S22b.
  • the data contains an error.
  • the terminal device 4 transmits a response signal (NACK signal) indicating that an error is included in the data to the base station 3.
  • the base station 3 receives a response signal (NACK signal).
  • step S13a the base station 3 performs data retransmission based on the received NACK signal.
  • the NACK signal includes information (for example, a data ID) that identifies data to be retransmitted.
  • the terminal device 4 receives the retransmitted data.
  • the response signal generally does not include an error detection code such as a CRC code. Therefore, when the terminal device 4 transmits a NACK signal as a response signal, an error occurs in the response signal data, and the base station 3 erroneously determines the response signal as an ACK signal. The error cannot be detected. As a result, the data requested by the terminal device 4 is not retransmitted. In preparation for such a case, a method in which the terminal device 4 transmits the NACK signal again will be described with reference to FIG.
  • an error detection code such as a CRC code
  • FIG. 4 is a ladder chart relating to data transmission / reception and NACK signal transmission / reception between the base station 3 and the terminal device 4 in the first embodiment, and the NACK signal is erroneously determined to be an ACK signal by the base station 3. It is a figure which shows the process in a case. The processes having the same contents as those in FIG.
  • the terminal device 4 transmits a response signal (NACK signal) to the base station 3 in step S23b.
  • the base station 3 receives a response signal (NACK signal).
  • NACK signal a response signal
  • the base station 3 erroneously determines the content of the received response signal as an ACK signal in the process S14. In this case, the base station 3 does not retransmit data.
  • the terminal apparatus 4 transmits a NACK signal in the process S23b and specifies the signal quality of the radio signal between the base station 3 and the terminal apparatus 4 in the process S26.
  • a signal interference ratio (SIR) value is measured by the terminal device 4 as the reception quality of the downlink signal (downlink signal) from the base station 3 to the terminal device 4 at the terminal device 4. This SIR measurement may be performed after an error is detected in step S22b, or an SIR value measured before an error is detected may be used.
  • SIR signal interference ratio
  • the terminal device 4 determines whether or not to transmit the NACK signal again based on the specified signal quality. Specifically, when the SIR value as the signal quality is equal to or lower than a predetermined value, the terminal device 4 determines to retransmit the NACK signal. This is because if the signal quality is not good, it is considered that the NACK signal transmitted in the process S23b may not be correctly recognized as a NACK signal by the base station 3.
  • the terminal device 4 transmits a response signal that is a NACK signal to the base station 3.
  • the response signal that is retransmitted based on the signal quality is referred to as a “re-response signal” for convenience.
  • the re-response signal transmitted from the terminal device 4 in the process S28a is received by the base station 3 in the process S16a.
  • the base station 3 performs retransmission of the target data in process S13a.
  • the terminal device 4 receives the retransmitted data in the process S24a.
  • FIG. 5 is a hardware configuration diagram of the base station 3 in the first embodiment.
  • the base station 3 includes a wireless processing circuit 310, a processor 320, a nonvolatile memory 340, a volatile memory 350, and a network interface circuit 360.
  • the radio processing circuit 310 performs frequency down-conversion, analog to digital (AD) conversion, and the like on the radio signal received by the antenna.
  • the radio processing circuit 310 performs digital to analog (DA) conversion, frequency up-conversion, and the like on a radio signal transmitted from the antenna.
  • the processor 320 executes data transmission processing to the terminal device 4, data retransmission processing for the NACK signal received from the terminal device 4, and the like.
  • the processor 320 is a hardware processor, and includes a central processing unit (CPU), a micro control unit (MCU), a micro processing unit (MPU), a digital signal processor (DSP), and a field programmable processor (DSP). Circuit (ASIC) is also applicable.
  • CPU central processing unit
  • MCU micro control unit
  • MPU micro processing unit
  • DSP digital signal processor
  • DSP field programmable processor
  • ASIC circuit
  • the nonvolatile memory 340 is a computer-readable recording medium.
  • the nonvolatile memory 340 stores a computer program executed by the processor 320 and the like.
  • the non-volatile memory 340 includes, for example, Read Only Memory (ROM), Mask Read Only Memory (mask ROM), Programmable Read Only Memory (PROM), Flash Memory, Magnetoretic Memory Random Memory Random Access Memory.
  • ROM Read Only Memory
  • mask ROM Mask Read Only Memory
  • PROM Programmable Read Only Memory
  • Flash Memory Flash Memory
  • Magnetoretic Memory Random Memory Random Access Memory Magnetoretic Memory Random Access Memory.
  • FeRAM Ferroelectric Random Access Memory
  • the computer program can be recorded on a storage medium other than the non-volatile memory 340 and a computer-readable recording medium (except for a carrier wave).
  • portable recording media such as Digital Versatile Disc (DVD) and Compact Disc Read Only Memory (CD-ROM) in which a computer program is recorded can be distributed.
  • the computer program can be transmitted via a network.
  • the volatile memory 350 is a computer-readable recording medium.
  • the computer program stored in the non-volatile memory 340 is loaded into the volatile memory 350.
  • the volatile memory 350 holds data used for arithmetic processing by the processor 320, data that is the result of the arithmetic processing, and the like.
  • the volatile memory 350 is, for example, Static Random Access Memory (SRAM), Dynamic Random Access Memory (DRAM), or the like.
  • the network interface circuit 360 is an interface device with the network 1.
  • FIG. 6 is a hardware configuration diagram of the terminal device 4 in the first embodiment.
  • the terminal device 4 includes a wireless processing circuit 410, a processor 420, a nonvolatile memory 440, and a volatile memory 450.
  • the wireless processing circuit 410 performs down conversion, AD conversion, and the like on the wireless signal received by the antenna.
  • the wireless processing circuit 410 performs DA conversion, up-conversion, and the like on the wireless signal transmitted from the antenna.
  • the processor 420 performs processing related to data transmission / reception with the base station 3, error detection processing, signal quality measurement processing, response signal generation processing, and the like.
  • the processor 420 is a hardware processor, and in addition to a CPU, MCU, MPU, and DSP, an FPGA or an ASIC is also applicable.
  • the nonvolatile memory 440 is a computer-readable recording medium.
  • the nonvolatile memory 440 stores a computer program executed by the processor 420 and the like.
  • the nonvolatile memory 440 is, for example, a ROM, mask ROM, PROM, flash memory, MRAM, ReRAM, FeRAM, or the like.
  • the computer program can be recorded on a storage medium other than the nonvolatile memory 440 and a computer-readable recording medium (excluding a carrier wave).
  • portable recording media such as DVDs and CD-ROMs on which computer programs are recorded can be distributed.
  • the computer program can be transmitted via a network.
  • the volatile memory 450 is a computer-readable recording medium.
  • the computer program stored in the nonvolatile memory 440 is loaded into the volatile memory 450.
  • the volatile memory 450 holds data used for arithmetic processing by the processor 420, data that is the result of the arithmetic processing, and the like.
  • the volatile memory 450 is, for example, SRAM or DRAM.
  • FIG. 7 is a functional block diagram of the processor 320 of the base station 3 in the first embodiment.
  • the processor 320 includes an encoding processing unit 321, a modulation processing unit 322, a transmission unit 323, a decoding processing unit 324, a demodulation processing unit 325, a receiving unit 326, a buffer unit 327, a response signal determination unit 328, and a retransmission processing unit 329. Function as.
  • the encoding processing unit 321 performs encoding processing on the transmitted data.
  • the modulation processing unit 322 performs modulation processing on transmitted data. In the modulation process, the transmission signal is modulated based on a predetermined modulation method. Examples of the modulation method include a two-phase shift keying (BPSK) method, a four-phase shift keying (QPSK) method, and a quadrature transfer amplitude modulation (QAM) method.
  • the transmission unit 323 executes data transmission processing.
  • the decryption processing unit 324 performs decryption processing on the received data.
  • the demodulation processing unit 325 performs demodulation processing on the received data.
  • the received data is added with modulation scheme information indicating which modulation scheme is used in the transmission side apparatus.
  • the demodulation processing unit 325 specifies the modulation method of the modulation process performed by the transmission-side apparatus based on the modulation method information, and executes the demodulation process according to the specified modulation method.
  • the receiving unit 326 performs data reception processing.
  • the buffer unit 327 holds data received from the server 1, for example. In addition, the buffer unit 327 holds the data transmitted to the terminal device 4 for a predetermined time after the transmission process.
  • a process for retransmitting data held in the buffer unit 327 is executed.
  • the response signal determination unit 328 decodes the contents of the response signal and the reresponse signal received from the terminal device 4 and determines whether the response signal or the reresponse signal is an ACK signal or a NACK signal.
  • the retransmission processing unit 329 executes data retransmission processing when it is determined that the received response signal or retransmission response signal is a NACK signal.
  • FIG. 8 is a functional block diagram of the processor 420 of the terminal device 4 in the first embodiment.
  • the processor 420 includes an encoding processing unit 421, a modulation processing unit 422, a transmission unit 423, a decoding processing unit 424, a demodulation processing unit 425, a receiving unit 426, an error determination unit 427, a signal quality identification unit 428, and a response signal generation unit. 429 functions.
  • the encoding processing unit 421 performs an encoding process on data transmitted to the base station 3.
  • the modulation processing unit 422 performs modulation processing on data transmitted to the base station 3.
  • the transmission unit 423 executes transmission processing of data transmitted to the base station 3.
  • the decryption processing unit 424 performs a decryption process on the data received from the base station 3.
  • the demodulation processing unit 425 performs demodulation processing on data received from the base station 3.
  • the receiving unit 426 executes processing for receiving data from the base station 3.
  • the error determination unit 427 determines whether or not an error is included in the received data. For example, based on the CRC code added to the data, it is determined whether or not the data includes an error.
  • the signal quality specifying unit 428 measures, for example, an SIR value as the signal quality of a radio signal between the base station 3 and the terminal device 4.
  • the response signal generation unit 429 generates a response signal for the received data. If an error is detected by the error determination unit 427, a NACK signal is generated as a response signal. If no error is detected, an ACK signal is generated as a response signal. Further, the response signal generation unit 429 generates a reresponse signal that is a NACK signal when an error is detected and the signal quality of the radio signal is lower than a predetermined state.
  • FIG. 9 is a diagram showing a format example of a response signal in the first embodiment.
  • the response signal includes a response signal ID assigned individually for each response signal. For example, different response signal IDs are attached to the response signal transmitted in the process S23b disclosed in FIG. 4 and the reresponse signal transmitted in the process S28a. Therefore, the base station 3 that receives these signals can individually identify the response signal and the re-response signal based on the response signal ID.
  • the response signal includes information indicating whether the response signal is an ACK signal or a NACK signal.
  • This information is, for example, 1-bit information. When this information is “1”, for example, the response signal is an ACK signal. When this information is “0”, the response signal is Indicates a NACK signal.
  • the response signal when the response signal is a NACK signal, the response signal includes a data ID for specifying data to be retransmitted.
  • the response signal transmitted in step S23b of FIG. 4 and the re-response signal transmitted in step S28a have different response signal IDs but the same data ID. Therefore, even if the response signal that is a NACK signal is erroneously determined to be an ACK signal in the process S14 of FIG. 4, if the reresponse signal is correctly determined to be a NACK signal in the process S17, the response signal is changed. The same data as the requested data is transmitted based on the re-response signal.
  • the base station 3 When the response signal received by the base station 3 is correctly determined as a NACK signal and data is retransmitted, the base station 3 records the response signal ID and the data ID included in the response signal. deep. After that, when the re-response signal is received, the response signal and the re-response signal are issued for the same data by referring to the response signal ID and the data ID included in each of the response signal and the re-response signal. It is determined that Then, the base station 3 can perform control so as not to further transmit data based on the re-response signal.
  • FIG. 10 is a flowchart of processing executed by the processor 320 of the base station 3 in the first embodiment.
  • the processing flow is started in process S50, and in process S51, the encoding processing unit 321 and the modulation processing unit 322 respectively perform encoding processing and modulation processing of transmitted data.
  • step S ⁇ b> 52 the transmission unit 323 transmits data to the terminal device 4.
  • the reception unit 326 determines whether a response signal from the terminal device 4 is received in the process S53. If it is determined that a response signal has been received (Yes in process S53), the process flow proceeds to process S54. If it is not determined that a response signal has been received (No in process S53), the process flow repeats process S53. .
  • the response signal determination unit 328 determines whether the received response signal is a NACK signal. When it is determined that the response signal is a NACK signal (Yes in process S54), the process flow returns to process S51, and the data encoding process, the modulation process, and the transmission process are executed again. On the other hand, when it is not determined that the response signal is a NACK signal (No in process S54), the process flow ends in process S59.
  • step S55 the reception unit 326 determines whether a reresponse signal from the terminal device 4 has been received. If it is determined that a reresponse signal has been received (Yes in process S55), the process flow proceeds to process S56. If it is not determined that a reresponse signal has been received (No in process S55), the process flow is processed in process S59. End with.
  • the response signal determination unit 328 determines whether the received reresponse signal is a NACK signal. If it is determined that the re-response signal is a NACK signal (Yes in process S56), the process flow proceeds to process S57. If it is not determined that the re-response signal is a NACK signal (No in process S56), the process proceeds to step S57. The flow ends in process S59.
  • the retransmission processing unit 329 determines whether or not data retransmission has already been performed on the response signal. If the response signal is determined to be a NACK signal in process S54 (Yes in process S54), the process flow returns to process S51, and data is retransmitted in process S52. Therefore, process S57 is executed in order to prevent a plurality of retransmission processes from being performed on the same data. If it is determined that retransmission has already been performed (Yes in process S57), the process flow ends in process S59. If it is not determined that the data has been retransmitted (No in process S57), the process flow proceeds to process S58. In step S58, the retransmission processing unit 329 executes retransmission of the data specified by the retransmission response signal to the terminal device 4. Thereafter, the process flow ends in process S59.
  • FIG. 11 is a flowchart of processing executed by the processor 420 of the terminal device 4 in the first embodiment.
  • the processing flow is started by processing S70, and the reception unit 426 receives data transmitted from the base station 3 in processing S71.
  • the demodulation processing unit 425 and the decoding processing unit 424 execute demodulation processing and decoding processing, respectively.
  • the error determination unit 427 determines whether the received data includes an error. If it is determined that the data contains an error (Yes in process S73), the process flow proceeds to process S75. If it is not determined that the data contains an error (No in process S73), the process flow is processed in process S74. Proceed to
  • the response signal generation unit 429 When the process flow proceeds to process S74, the response signal generation unit 429 generates a response signal (ACK signal) in process S74, and the generated response signal is transmitted to the base station 3. Thereafter, the process flow ends in process S79.
  • ACK signal response signal
  • the response signal generation unit 429 generates a response signal (NACK signal) in process S75, and the generated response signal is transmitted to the base station 3.
  • the signal quality specifying unit 428 determines whether the signal quality of the radio signal is equal to or less than a threshold value. If it is determined that the signal quality is less than or equal to the threshold (Yes in process S76), the process flow proceeds to process S77. If the signal quality is not determined to be less than or equal to the threshold (No in process S76), the process flow is It progresses to process S78.
  • the response signal generation unit 429 generates a reresponse signal that is a NACK signal, and the generated reresponse signal is transmitted to the base station 3.
  • the receiving unit 426 re-receives data.
  • the re-received data is data transmitted from the base station 3 based on either the response signal transmitted in the process S75 or the re-response signal transmitted in the process S77.
  • the first embodiment has been disclosed.
  • a re-response signal is transmitted when an error is included in data transmitted from the base station 3 and the SIR value in the downlink is not more than a predetermined value. It was.
  • the frequency of the radio signal used in the downlink and the frequency of the radio signal used in the uplink are close, in a situation where the SIR value in the downlink is low, the SIR value in the uplink is also low. May show. Therefore, it is possible to use the SIR value in the downlink instead of the SIR value in the uplink in determining whether or not to transmit the re-response signal.
  • the first embodiment is not limited to using the signal quality of the radio signal used in the downlink in determining whether to transmit the re-response signal. For example, in determining whether or not to transmit a re-response signal, it may be determined whether or not to transmit a re-response signal using the SIR value in the uplink.
  • the base station 3 measures the SIR value in the uplink. Then, the measured SIR value is notified from the base station 3 to the terminal device 4.
  • the terminal device 4 transmits a re-response signal when an error is included in the received data and the SIR value in the uplink notified from the base station 3 is equal to or less than a predetermined value. With this method, it is possible to more accurately determine the possibility of an error occurring in the uplink in which the NACK signal is transmitted, and a determination as to whether or not to transmit a re-response signal is performed.
  • the present invention is not limited to the case where the value of the data transmitted from the base station 3 has changed in the wireless communication process due to interference of other signals, for example, when the terminal device 4 fails to receive data. It is also applicable to. For example, even when data to be received by the terminal device 4 is not received by the terminal device 4 in a predetermined period, or when an error occurs in the reception operation of the terminal device 4 and the data is not correctly received. The present invention is applicable. These errors are collectively referred to as “reception errors”.
  • the terminal device 4 transmits a re-response signal that is a NACK signal to the base station when an error is included in the data received from the base station 3 and the signal quality of the radio signal is lower than a predetermined value. Sent to station 3. Accordingly, it is possible to suppress the possibility that the NACK signal is erroneously determined as the ACK signal in the base station 3 and the data retransmission is not executed.
  • the terminal device 4 when transmitting a re-response signal, transmits the re-response signal including modulation method specifying information for specifying a modulation method for performing data re-transmission.
  • the base station 3 that has received the re-response signal retransmits data based on the modulation scheme designation information included in the re-response signal.
  • the modulation method in the first data transmission is the QAM method.
  • the terminal apparatus 4 changes the modulation scheme in the data retransmission to the base station 3 to a modulation scheme that is less likely to cause an error, for example, QPSK. Instruct to change to the method. Thereby, it is possible to suppress the occurrence of a data error again in data retransmission.
  • FIG. 12 is a ladder chart related to data transmission / reception and NACK signal transmission / reception between the base station 3 and the terminal device 4 in the second embodiment, and processing when a NACK signal is erroneously determined to be an ACK signal.
  • FIG. The same processes as those disclosed in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the base station 3 transmits the modulated data to the terminal device 4.
  • the base station 3 when transmitting data, notifies the terminal device 4 of the downlink modulation scheme by adding modulation scheme information indicating the modulation scheme used in the wireless transmission of the data to the data. .
  • a response signal that is a NACK signal is transmitted in process S23b, and the signal quality is specified in process S26. If the identified signal quality is equal to or lower than the predetermined value, the terminal device 4 determines to transmit a reresponse signal.
  • the terminal device 4 generates modulation scheme designation information for designating a downlink modulation scheme when the specified signal quality is equal to or lower than a predetermined value.
  • the modulation scheme designation information is generated so that the data is retransmitted by a modulation scheme that is less likely to cause an error than the modulation scheme used in the modulation processing of step S10.
  • the terminal apparatus 4 when the modulation process is performed by the QAM system, it is preferable that the data retransmission is performed using the QPSK system, which has a lower risk of error than the QAM system.
  • the terminal apparatus 4 generates modulation scheme designation information so that data retransmission is performed using the QPSK scheme.
  • step S ⁇ b> 28 b the terminal device 4 transmits a reresponse signal including the generated modulation scheme designation information to the base station 3.
  • step S16b the base station 3 receives the re-response signal, and identifies the modulation method in the data retransmission processing based on the modulation method designation information included in the re-response signal.
  • step S13b the base station 3 executes a modulation process based on the specified modulation method, and executes data retransmission.
  • step S24b the terminal device 4 receives the retransmitted data.
  • FIG. 13 is a diagram for explaining a method for the terminal device 4 to specify the modulation method of data transmitted from the base station 3 in the second embodiment.
  • FIG. 13A shows the correspondence between the modulation method and the Modulation and Coding Scheme (MCS) value.
  • MCS Modulation and Coding Scheme
  • An MCS value is added to the data transmitted from the base station 3 to the terminal device 4 as modulation scheme information indicating the modulation scheme executed by the base station 3.
  • the MCS value is divided into, for example, 10 levels from “0” to “9”.
  • the MCS value “0” corresponds to the BPSK method
  • the MCS values “1” and “2” correspond to the QPSK method.
  • the MCS values “3” and “4” correspond to the 16QAM system
  • the MCS values “5”, “6”, and “7” correspond to the 64QAM system
  • FIG. 13B shows a table for specifying the changed value of the MCS value based on the SIR value.
  • the terminal device 4 that has received the data acquires the MCS value added to the data. Further, the terminal device 4 specifies a value indicating the signal quality, for example, a downlink SIR value. Then, the change value of the MCS value is specified based on the difference value between the specific threshold value and the SIR value. For example, when the measured value of the SIR value is ⁇ 80 dBm and the specific threshold value is ⁇ 60 dBm, the difference value between the specific threshold value and the SIR value is ⁇ 20 dBm. In this case, the change value of the MCS value is specified as “ ⁇ 2” by referring to the table shown in FIG.
  • the terminal device 4 adds “ ⁇ 2” to “4”, so that the changed MCS value is “2” is obtained. Then, the terminal device 4 notifies the base station 3 of “2” that is the changed MCS value as the modulation scheme designation information. As shown in FIG. 13C, the terminal device 4 transmits modulation scheme designation information to, for example, a re-response notification signal and transmits it to the base station.
  • the base station 3 sets the modulation scheme to the QPSK scheme based on the MCS value “2” that is the modulation scheme designation information included in the re-response notification signal, and executes data retransmission using the set QPSK scheme. .
  • data retransmission can be executed by a modulation scheme that is less likely to cause errors than previous data transmission.
  • FIG. 14 is a diagram for explaining a method for the terminal device 4 to specify the modulation method of data transmitted from the base station 3 in the second embodiment.
  • a method for instructing the modulation scheme to the base station 3 by including the MCS value (the MCS value after the change) for designating the modulation scheme in the re-response signal. was disclosed.
  • the terminal device 4 instructs the base station 3 on the modulation scheme by adjusting the phase difference of the reresponse signal with respect to the reference signal.
  • the phase difference with respect to the reference signal is set to “90 °”
  • the change value of the MCS value is “ ⁇ 2”
  • the position with respect to the reference signal is set.
  • the phase difference with respect to the reference signal is set to “270 °”.
  • a re-response signal having a phase difference with respect to the reference signal set in this way is transmitted from the terminal device 4.
  • the base station 3 that has received the reresponse signal can recognize the change value of the MCS value by detecting the phase difference of the reresponse signal with respect to the reference signal.
  • the base station 3 identifies the modulation scheme based on the changed value of the MCS value, and retransmits data using the identified modulation scheme.
  • FIG. 15 is a functional block diagram of the processor 420 of the terminal device 4 in the second embodiment.
  • the processor 420 includes the encoding processing unit 421, the modulation processing unit 422, the transmission unit 423, the decoding processing unit 424, the demodulation processing unit 425, the reception unit 426, the error determination unit 427, and the response signal generation unit 429 disclosed in FIG. In addition, it functions as a modulation scheme designation unit 430.
  • the modulation scheme designation unit 430 generates modulation scheme designation information that designates a modulation scheme used when data is retransmitted when the terminal device 4 transmits a re-response notification to the base station 3.
  • the generated modulation scheme designation information is notified to the base station 3 by the method shown in FIG. 13C or FIG.
  • FIG. 16 is a flowchart of processing executed by the processor 420 of the terminal device 4 in the second embodiment.
  • processing S70 to S79 are the same as the contents disclosed in FIG. If it is determined in process S76 that the signal quality is equal to or lower than the threshold value (Yes in process S76), the process flow proceeds to process S80.
  • the modulation scheme designation unit 430 generates modulation scheme designation information based on the modulation scheme information added to the data from the base station 3 and the signal quality of the radio signal. The generated modulation scheme designation information is notified to the base station 3 when the re-response signal is transmitted in step S77.
  • FIG. 17 is a flowchart of processing executed by the processor 320 of the base station 3 in the second embodiment.
  • processing S50 to processing S59 are the same as the content disclosed in FIG. If it is not determined in step S57 that data transmission for the response signal has already been performed (No in step S57), the process flow proceeds to step S60.
  • step S ⁇ b> 60 the modulation processing unit 322 specifies a modulation scheme used in data retransmission based on the modulation scheme designation information included in the reresponse signal from the terminal device 4.
  • step S58 data retransmission is performed using the specified modulation method.
  • the second embodiment has been disclosed.
  • a re-response signal that is a NACK signal is transmitted from the terminal device 4.
  • modulation scheme designation information for designating a modulation scheme used when data retransmission is executed is notified from the terminal device 4 to the base station 3. Thereby, it is possible to suppress the occurrence of an error in the data in the data retransmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

[Problem] When an error is included in received data and a NACK signal is transmitted to a transmission-side device, packet retransmission is not executed by the transmission-side device if the NACK signal is misdetermined as an ACK signal. [Solution] A wireless communication method in which there is used a wireless communication system that includes a transmission-side device and a reception-side device, wherein: the transmission-side device executes packet transmission to the reception-side device; the reception-side device determines whether an error is included in data; and, when it is determined that an error is included in the data and when the quality of a wireless signal between the transmission-side device and the reception-side device is less than or equal to a prescribed value, the reception-side device transmits a NACK signal to the transmission-side device multiple times.

Description

無線通信方法、無線通信システム及び端末装置Wireless communication method, wireless communication system, and terminal device
 本開示は、無線通信方法、無線通信システム及び端末装置に関する。 The present disclosure relates to a wireless communication method, a wireless communication system, and a terminal device.
 無線通信において基地局と端末装置は、無線信号を行いたデータの送受信を実行する。例えば基地局が送信したデータが端末装置によって受信された場合、端末装置は、受信されたパケットのデータにエラーが含まれるか否かを検証する。例えば巡回冗長検査(CRC)において基地局は、所定の生成多項式でデータを除算した余りの値を算出し、算出された余りの値を誤り検出符号(CRCコード)としてデータに付加して送信する。そしてデータを受信した端末装置も同じ生成多項式を使用してデータを除算した余りの値を求め、送信装置から通知された誤り検出符号と比較照合することによって、受信されたパケットのデータにエラーが含まれるかを判定する。 In the wireless communication, the base station and the terminal device execute transmission / reception of data using a wireless signal. For example, when data transmitted from the base station is received by the terminal device, the terminal device verifies whether or not an error is included in the received packet data. For example, in cyclic redundancy check (CRC), the base station calculates a remainder value obtained by dividing the data by a predetermined generator polynomial, and adds the calculated remainder value to the data as an error detection code (CRC code) for transmission. . Then, the terminal device that has received the data also uses the same generator polynomial to obtain a remainder value obtained by dividing the data, and by comparing with the error detection code notified from the transmitting device, there is an error in the received packet data. Determine whether it is included.
 端末装置が受信データ中にエラーが含まれることを検出した場合には、データにエラーが含まれることを示す応答信号(以下、「NACK信号」と呼ぶ)が、基地局に送信される。NACK信号を受信した基地局は、NACK信号に応じてデータの再送信を実行する。一方、受信データ中にエラーが含まれない場合には、端末装置は、データが正しく受信されたことを示す応答信号(以下、「ACK信号」と呼ぶ)を、基地局に送信する。尚、本明細書の以降の部分において「応答信号」は、ACK信号及びNACK信号の両方を包含する上位概念の語として使用されるものとする。 When the terminal device detects that the received data includes an error, a response signal (hereinafter referred to as “NACK signal”) indicating that the data includes an error is transmitted to the base station. The base station that has received the NACK signal performs data retransmission in accordance with the NACK signal. On the other hand, when no error is included in the received data, the terminal device transmits a response signal (hereinafter referred to as “ACK signal”) indicating that the data has been correctly received to the base station. In the following description of this specification, the “response signal” is used as a high-level concept word including both the ACK signal and the NACK signal.
 ところが、端末装置から送信される応答信号の内容にエラーが発生する場合がある。すなわち、応答信号を受信した基地局が、ACK信号を誤ってNACK信号と認識する、又はNACK信号を誤ってACK信号と認識する場合がある。通常、応答信号にはCRCコードのような誤り検出符号が含まれておらず、応答信号のデータにエラーが含まれていても、基地局は当該エラーを検出することができない。その結果、基地局がNACK信号をACK信号と誤認識した場合、データの再送信は実行されないこととなる。 However, an error may occur in the content of the response signal transmitted from the terminal device. That is, the base station that has received the response signal may mistakenly recognize the ACK signal as a NACK signal, or may mistakenly recognize the NACK signal as an ACK signal. Usually, the response signal does not include an error detection code such as a CRC code, and even if the response signal data includes an error, the base station cannot detect the error. As a result, if the base station misrecognizes the NACK signal as an ACK signal, data retransmission is not executed.
 このような場合に備え、端末装置がNACK信号の送信を複数回実行するように予め設定される方法が開発されている。しかしこの方法では、NACK信号の送信が予め設定された回数実行されるため、無線リソースが不要に消費されるという問題が生じる。他の方法として、NACK信号が送信されてから所定時間が経過するまでに対応するデータが再送信されない場合に、先に送信されたNACK信号とは別の再送信要求信号が、端末装置から基地局に対して送信される、という方法も検討されている。しかしこの方法では、NACK信号の送信から所定時間が経過した後に再送信要求信号が送信されるため、データの再送信に関して少なくとも所定時間以上の遅延が発生することになる。 In preparation for such a case, a method has been developed in which the terminal device is set in advance so that the NACK signal is transmitted a plurality of times. However, this method causes a problem that radio resources are unnecessarily consumed because transmission of a NACK signal is executed a preset number of times. As another method, when the corresponding data is not retransmitted until a predetermined time elapses after the NACK signal is transmitted, a retransmission request signal different from the previously transmitted NACK signal is transmitted from the terminal device to the base station. A method of transmitting to a station is also being studied. However, in this method, since a retransmission request signal is transmitted after a predetermined time has elapsed since the transmission of a NACK signal, a delay of at least a predetermined time or more occurs with respect to data retransmission.
 近年、例えば第5世代移動通信システム(5G)の通信等においては、例えばUltra Reliable and Low Latency Communications(URLLC)のように、高信頼性、低遅延のデータ通信が要求されている。 In recent years, for example, in the communication of the fifth generation mobile communication system (5G), data communication with high reliability and low delay is required as in, for example, Ultra Reliable and Low Latency Communications (URLLC).
特開2005-020590号公報Japanese Patent Laying-Open No. 2005-020590 特表2004-518352号公報JP-T-2004-518352
 受信されたデータにエラーが含まれ、NACK信号が送信側装置に返信される場合、送信側装置によってNACK信号がACKと誤判定されると、データの再送信が実行されない、という課題に対する適切な解決手段が望まれている。 When the received data includes an error and the NACK signal is returned to the transmission side device, if the NACK signal is erroneously determined to be ACK by the transmission side device, the data re-transmission is not executed. A solution is desired.
 本発明は、NACK信号がACKと誤判定されると、データの再送信が実行されない、という課題に対する適切な解決手段を提供することを目的とする。 An object of the present invention is to provide an appropriate solution to the problem that data retransmission is not performed when a NACK signal is erroneously determined to be ACK.
 第1通信装置と、前記第1通信装置と無線通信を行う第2通信装置と、を含む無線通信システムを用いた無線通信方法であって、前記第1通信装置が、データの前記第2通信装置への送信を実行し、前記第2通信装置が、前記データについて受信エラーが発生したかを判定し、前記受信エラーが発生したと判定された場合に、前記第2通信装置が前記受信エラーの発生を示す第1応答信号を、前記第2通信装置に送信し、前記受信エラーが発生したと判定された場合であって、前記第1通信装置と前記第2通信装置の間の無線信号の品質が第1の値以下である場合に、前記第2通信装置が、前記受信エラーの発生を示す第2応答信号を、前記第1通信装置に送信し、前記第1通信装置が、前記第1応答信号及び前記第2応答信号の少なくとも一つに基づいて、前記データの再送信を実行することを特徴とする無線通信方法が開示される。 A wireless communication method using a wireless communication system including a first communication device and a second communication device that performs wireless communication with the first communication device, wherein the first communication device transmits the second communication of data. The second communication device determines whether a reception error has occurred for the data, and determines that the reception error has occurred, the second communication device determines that the reception error has occurred. A first response signal indicating the occurrence of the error is transmitted to the second communication device, and it is determined that the reception error has occurred, and a radio signal between the first communication device and the second communication device When the quality of the second communication device is equal to or lower than the first value, the second communication device transmits a second response signal indicating the occurrence of the reception error to the first communication device, and the first communication device At least one of the first response signal and the second response signal Based on one, a wireless communication method characterized by performing the retransmission of the data are disclosed.
 本発明によれば、データの再送信が適切に実行されない、という問題を抑制することができる。 According to the present invention, it is possible to suppress the problem that data retransmission is not performed properly.
基地局及び端末装置を含む無線通信システムを示す図である。It is a figure which shows the radio | wireless communications system containing a base station and a terminal device. 基地局と端末装置との間におけるデータの送受信及びACK信号の送受信に関するラダーチャートである。It is a ladder chart regarding transmission / reception of data and transmission / reception of an ACK signal between a base station and a terminal device. 基地局と端末装置との間におけるデータの送受信及びNACK信号の送受信に関するラダーチャートである。It is a ladder chart regarding transmission / reception of data and transmission / reception of a NACK signal between a base station and a terminal device. 第1実施例における、基地局と端末装置との間におけるデータの送受信及びNACK信号の送受信に関するラダーチャートであって、基地局によってNACK信号がACK信号と誤判定された場合の処理を示す図である。It is a ladder chart about transmission / reception of data and transmission / reception of a NACK signal between a base station and a terminal device in a 1st Example, Comprising: The figure which shows a process when a NACK signal is misjudged as an ACK signal by the base station. is there. 第1実施例における基地局のハードウェア構成図であるIt is a hardware block diagram of the base station in 1st Example. 第1実施例における端末装置のハードウェア構成図である。It is a hardware block diagram of the terminal device in 1st Example. 第1実施例における基地局のプロセッサの機能ブロック図である。It is a functional block diagram of the processor of the base station in 1st Example. 第1実施例における端末装置のプロセッサの機能ブロック図である。It is a functional block diagram of the processor of the terminal device in 1st Example. 第1実施例における応答信号のフォーマット例を示す図である。It is a figure which shows the example of a format of the response signal in 1st Example. 第1実施例における基地局のプロセッサによって実行される処理のフローチャートである。It is a flowchart of the process performed by the processor of the base station in 1st Example. 第1実施例における端末装置のプロセッサによって実行される処理のフローチャートである。It is a flowchart of the process performed by the processor of the terminal device in 1st Example. 第2実施例における、基地局と端末装置との間におけるデータの送受信及びNACK信号の送受信に関するラダーチャートであって、NACK信号がACK信号と誤判定された場合の処理を示す図である。It is a ladder chart regarding transmission / reception of data and transmission / reception of a NACK signal between the base station and the terminal device in the second embodiment, and is a diagram illustrating processing when the NACK signal is erroneously determined as an ACK signal. 第2実施例における、基地局から送信されるデータの変調方式を端末装置が指定するための方法を説明するための図である。It is a figure for demonstrating the method for a terminal device to designate the modulation system of the data transmitted from a base station in 2nd Example. 第2実施例における、基地局から送信されるデータの変調方式を端末装置が指定するための方法を説明するための図である。It is a figure for demonstrating the method for a terminal device to designate the modulation system of the data transmitted from a base station in 2nd Example. 第2実施例における端末装置のプロセッサの機能ブロック図である。It is a functional block diagram of the processor of the terminal device in 2nd Example. 第2実施例における端末装置のプロセッサによって実行される処理のフローチャートである。It is a flowchart of the process performed by the processor of the terminal device in 2nd Example. 第2実施例における基地局のプロセッサによって実行される処理のフローチャートである。It is a flowchart of the process performed by the processor of the base station in 2nd Example.
 <第1実施例>
 第1実施例では、端末装置から基地局へ送信されたNACK信号が、基地局においてACK信号と誤判定された場合であっても、データの再送信が実行されない可能性を低減するための方法が開示される。第1実施例では、第1の通信装置、例えば基地局から、第2の通信装置、例えば端末装置へ送信されたデータにエラーが含まれると判定された場合、端末装置は第1のNACK信号を基地局に送信する。更に端末装置は、基地局と端末装置の間の無線信号の信号品質を特定し、当該信号品質が閾値以下である場合に、第2のNACK信号を基地局に送信する。基地局は、第1のNACK信号及び第2のNACK信号の少なくとも一つに基づいて、データの再送信を実行する。このように、データにエラーが含まれる場合であって、基地局と端末装置の間の無線信号の信号品質が閾値以下である場合には、NACK信号が複数回、基地局に送信される。これにより、複数のNACK信号の何れかが基地局によって正しく認識されなかった場合でも、他のNACK信号が基地局によって正しく認識されればデータの再送信は実行され、無線通信の高信頼性を保つことができる。また、端末装置がNACK信号の送信を複数回実行するように予め設定される方法に比べて、無線リソースの不要な消費を抑制することができる。また、NACK信号に基づくデータの再送信が所定時間内に行われない場合にデータの再送信要求信号が送信される方法に比べて、早期にデータの再送信を実行させることができる。
<First embodiment>
In the first embodiment, a method for reducing the possibility that data retransmission will not be executed even when a NACK signal transmitted from a terminal apparatus to a base station is erroneously determined as an ACK signal in the base station Is disclosed. In the first embodiment, if it is determined that an error is included in data transmitted from a first communication apparatus, for example, a base station, to a second communication apparatus, for example, a terminal apparatus, the terminal apparatus transmits a first NACK signal. To the base station. Furthermore, the terminal device specifies the signal quality of the radio signal between the base station and the terminal device, and transmits the second NACK signal to the base station when the signal quality is equal to or lower than the threshold value. The base station performs data retransmission based on at least one of the first NACK signal and the second NACK signal. As described above, when the data includes an error and the signal quality of the radio signal between the base station and the terminal device is equal to or lower than the threshold value, the NACK signal is transmitted to the base station a plurality of times. As a result, even if any one of the plurality of NACK signals is not correctly recognized by the base station, data retransmission is performed if another NACK signal is correctly recognized by the base station, thereby improving the reliability of wireless communication. Can keep. In addition, unnecessary consumption of radio resources can be suppressed as compared with a method in which the terminal apparatus is set in advance to execute transmission of a NACK signal multiple times. In addition, data retransmission can be performed earlier compared to a method in which a data retransmission request signal is transmitted when data retransmission based on a NACK signal is not performed within a predetermined time.
 図1は、基地局3及び端末装置4を含む無線通信システムを示す図である。基地局3は、ネットワーク1を介して上位装置、例えばサーバ2に接続される。サーバ2は例えばアプリケーションサーバである。また基地局3と端末装置4は無線リンクによって接続され、データの送受信を行う。 FIG. 1 is a diagram showing a wireless communication system including a base station 3 and a terminal device 4. The base station 3 is connected to a host device such as the server 2 via the network 1. The server 2 is, for example, an application server. Further, the base station 3 and the terminal device 4 are connected by a wireless link, and perform data transmission / reception.
 図2は、基地局3と端末装置4との間におけるデータの送受信及びACK信号の送受信に関するラダーチャートである。処理S10において基地局3が、送信されるデータに対して符号化処理及び変調処理を行う。その後、処理S11において基地局3が、データを端末装置4に送信する。 FIG. 2 is a ladder chart regarding data transmission / reception and ACK signal transmission / reception between the base station 3 and the terminal device 4. In step S10, the base station 3 performs encoding processing and modulation processing on the transmitted data. Thereafter, the base station 3 transmits data to the terminal device 4 in the process S11.
 処理S20において端末装置4が、基地局3から送信されたデータを受信する。処理S21において端末装置4が、受信されたデータについて復調処理及び復号化処理を行う。処理S22aにおいて端末装置4が、データに付加されたCRCコード等の誤り検出符号に基づいて、データにエラーが含まれていないかを確認する。図2の例においては、データにエラーは含まれていないものとする。処理S23aにおいて端末装置4は、データにエラーが含まれていないことを示す応答信号(ACK信号)を基地局3に送信する。処理S12aにおいて基地局3は、応答信号(ACK信号)を受信する。 In processing S20, the terminal device 4 receives the data transmitted from the base station 3. In process S21, the terminal device 4 performs demodulation processing and decoding processing on the received data. In step S22a, the terminal device 4 confirms whether or not the data includes an error based on an error detection code such as a CRC code added to the data. In the example of FIG. 2, it is assumed that no error is included in the data. In the process S23a, the terminal device 4 transmits a response signal (ACK signal) indicating that no error is included in the data to the base station 3. In step S12a, the base station 3 receives a response signal (ACK signal).
 図3は、基地局3と端末装置4との間におけるデータの送受信及びNACK信号の送受信に関するラダーチャートである。図2と同一内容の処理については同一の参照符号を付し、説明は適宜省略する。処理S21において受信データの復調処理及び復号化処理が終了した後、処理S22bにおいて端末装置4は、データにエラーが含まれていないかを確認する。ここではデータにエラーが含まれていたとする。処理S23bにおいて端末装置4は、データにエラーが含まれていることを示す応答信号(NACK信号)を基地局3に送信する。処理S12bにおいて基地局3は、応答信号(NACK信号)を受信する。そして処理S13aにおいて基地局3は、受信されたNACK信号に基づいて、データの再送信を実行する。尚、NACK信号には再送信の対象となるデータを特定する情報(例えばデータID)が含まれるものとする。処理S24aにおいて端末装置4は、再送信されたデータを受信する。 FIG. 3 is a ladder chart relating to data transmission / reception and NACK signal transmission / reception between the base station 3 and the terminal device 4. The processes having the same contents as those in FIG. After the demodulating process and the decoding process of the received data are completed in the process S21, the terminal apparatus 4 confirms whether or not an error is included in the data in the process S22b. Here, it is assumed that the data contains an error. In the process S23b, the terminal device 4 transmits a response signal (NACK signal) indicating that an error is included in the data to the base station 3. In step S12b, the base station 3 receives a response signal (NACK signal). In step S13a, the base station 3 performs data retransmission based on the received NACK signal. Note that the NACK signal includes information (for example, a data ID) that identifies data to be retransmitted. In the process S24a, the terminal device 4 receives the retransmitted data.
 先述のように、一般的に応答信号には、CRCコードのような誤り検出符号は含まれない。そのため、端末装置4が応答信号としてNACK信号を送信したにも関わらず、応答信号のデータにエラーが発生し、基地局3によって当該応答信号がACK信号として誤判定された場合、基地局3は当該エラーを検出することができない。その結果、端末装置4が要求するデータの再送信は実行されない。このような場合に備えて、端末装置4がNACK信号を再度送信する方法について、図4に沿って説明する。 As described above, the response signal generally does not include an error detection code such as a CRC code. Therefore, when the terminal device 4 transmits a NACK signal as a response signal, an error occurs in the response signal data, and the base station 3 erroneously determines the response signal as an ACK signal. The error cannot be detected. As a result, the data requested by the terminal device 4 is not retransmitted. In preparation for such a case, a method in which the terminal device 4 transmits the NACK signal again will be described with reference to FIG.
 図4は、第1実施例における、基地局3と端末装置4との間におけるデータの送受信及びNACK信号の送受信に関するラダーチャートであって、基地局3によってNACK信号がACK信号と誤判定された場合の処理を示す図である。図3と同一内容の処理については同一の参照符号を付し、説明は適宜省略する。 FIG. 4 is a ladder chart relating to data transmission / reception and NACK signal transmission / reception between the base station 3 and the terminal device 4 in the first embodiment, and the NACK signal is erroneously determined to be an ACK signal by the base station 3. It is a figure which shows the process in a case. The processes having the same contents as those in FIG.
 基地局3から端末装置4に送信されたデータにエラーが含まれていた場合、処理S23bにおいて端末装置4は、応答信号(NACK信号)を基地局3に送信する。処理S12bにおいて基地局3は、応答信号(NACK信号)を受信する。ここで、処理S14において基地局3が、受信された応答信号の内容をACK信号と誤判定したとする。この場合、基地局3はデータの再送信を実行しない。 If the data transmitted from the base station 3 to the terminal device 4 includes an error, the terminal device 4 transmits a response signal (NACK signal) to the base station 3 in step S23b. In step S12b, the base station 3 receives a response signal (NACK signal). Here, it is assumed that the base station 3 erroneously determines the content of the received response signal as an ACK signal in the process S14. In this case, the base station 3 does not retransmit data.
 一方、端末装置4は、処理S22bにおいてデータにエラーを検出した場合、処理S23bにおいてNACK信号を送信すると共に、処理S26において基地局3と端末装置4との間の無線信号の信号品質を特定する。例えば基地局3から端末装置4への下り信号(ダウンリンク信号)の、端末装置4における受信品質として、Signal Interference Ratio(SIR)値が端末装置4によって測定される。尚、このSIR測定は、処理S22bにおいてエラーが検出された後に行われてもよく、エラーが検出される前に測定されたSIR値が利用されてもよい。 On the other hand, when an error is detected in the data in the process S22b, the terminal apparatus 4 transmits a NACK signal in the process S23b and specifies the signal quality of the radio signal between the base station 3 and the terminal apparatus 4 in the process S26. . For example, a signal interference ratio (SIR) value is measured by the terminal device 4 as the reception quality of the downlink signal (downlink signal) from the base station 3 to the terminal device 4 at the terminal device 4. This SIR measurement may be performed after an error is detected in step S22b, or an SIR value measured before an error is detected may be used.
 処理S27において端末装置4は、特定された信号品質に基づいて、NACK信号を再度送信するか否かを判定する。具体的には、信号品質としてのSIR値が所定値以下である場合、端末装置4は、NACK信号を再送信することを決定する。信号品質が良好でない場合、処理S23bで送信されたNACK信号が基地局3で正しくNACK信号として認識されない可能性があると考えられるからである。そして処理S28aにおいて端末装置4は、NACK信号である応答信号を基地局3に送信する。尚、本明細書の以降の部分において、信号品質に基づいて再度送信される応答信号を、便宜上「再応答信号」と記載することとする。 In process S27, the terminal device 4 determines whether or not to transmit the NACK signal again based on the specified signal quality. Specifically, when the SIR value as the signal quality is equal to or lower than a predetermined value, the terminal device 4 determines to retransmit the NACK signal. This is because if the signal quality is not good, it is considered that the NACK signal transmitted in the process S23b may not be correctly recognized as a NACK signal by the base station 3. In step S28a, the terminal device 4 transmits a response signal that is a NACK signal to the base station 3. In the following part of this specification, the response signal that is retransmitted based on the signal quality is referred to as a “re-response signal” for convenience.
 処理S28aにおいて端末装置4から送信された再応答信号は、処理S16aにおいて基地局3によって受信される。基地局3は、受信された再応答信号がNACK信号であると判定された場合(処理S17)は、処理S13aにおいて対象となるデータの再送信を実行する。端末装置4は、処理S24aにおいて、再送信されたデータを受信する。 The re-response signal transmitted from the terminal device 4 in the process S28a is received by the base station 3 in the process S16a. When it is determined that the received re-response signal is a NACK signal (process S17), the base station 3 performs retransmission of the target data in process S13a. The terminal device 4 receives the retransmitted data in the process S24a.
 図4に開示された方法により、基地局3と端末装置4との間の無線信号の信号品質に基づいてNACK信号が再度送信されるため、基地局3からのデータの再送信が実行される確率を高めることができる。 Since the NACK signal is transmitted again based on the signal quality of the radio signal between the base station 3 and the terminal device 4 by the method disclosed in FIG. 4, data retransmission from the base station 3 is executed. Probability can be increased.
 図5は、第1実施例における基地局3のハードウェア構成図である。基地局3は、無線処理回路310、プロセッサ320、不揮発性メモリ340、揮発性メモリ350及びネットワークインターフェース回路360を有する。無線処理回路310は、アンテナによって受信された無線信号について、周波数のダウンコンバージョンやAnalog to Digital(AD)変換等を実行する。また無線処理回路310は、アンテナから送信される無線信号について、Digital to Analog(DA)変換や周波数のアップコンバージョン等を実行する。プロセッサ320は、端末装置4へのデータの送信処理や、端末装置4から受信したNACK信号に対するデータの再送信処理等を実行する。プロセッサ320はハードウェアプロセッサであり、Central Processing Unit(CPU)、Micro Control Unit(MCU)、Micro Processing Unit(MPU)、Digital Signal Processor(DSP)の他、Field Programmable Gate Array(FPGA)やApplication Specific Integrated Circuit(ASIC)も適用可能である。 FIG. 5 is a hardware configuration diagram of the base station 3 in the first embodiment. The base station 3 includes a wireless processing circuit 310, a processor 320, a nonvolatile memory 340, a volatile memory 350, and a network interface circuit 360. The radio processing circuit 310 performs frequency down-conversion, analog to digital (AD) conversion, and the like on the radio signal received by the antenna. In addition, the radio processing circuit 310 performs digital to analog (DA) conversion, frequency up-conversion, and the like on a radio signal transmitted from the antenna. The processor 320 executes data transmission processing to the terminal device 4, data retransmission processing for the NACK signal received from the terminal device 4, and the like. The processor 320 is a hardware processor, and includes a central processing unit (CPU), a micro control unit (MCU), a micro processing unit (MPU), a digital signal processor (DSP), and a field programmable processor (DSP). Circuit (ASIC) is also applicable.
 不揮発性メモリ340は、コンピュータで読み取り可能な記録媒体である。不揮発性メモリ340には、プロセッサ320によって実行されるコンピュータプログラム等が格納される。不揮発性メモリ340は、例えばRead Only Memory(ROM)、Mask Read Only Memory(マスクROM)、Programmable Read Only Memory(PROM)、フラッシュメモリ、Magnetoresistive Random Access Memory(MRAM)、Resistive Random Access Memory(ReRAM)、Ferroelectric Random Access Memory(FeRAM)等である。コンピュータプログラムは、不揮発性メモリ340以外の記憶媒体であって、コンピュータで読み取り可能な記録媒体(ただし、搬送波は除く)に記録させることもできる。また、コンピュータプログラムが記録されたDigital Versatile Disc(DVD)、Compact Disc Read Only Memory(CD-ROM)などの可搬型記録媒体を流通させることもできる。また、コンピュータプログラムは、ネットワークを介して送信され得る。 The nonvolatile memory 340 is a computer-readable recording medium. The nonvolatile memory 340 stores a computer program executed by the processor 320 and the like. The non-volatile memory 340 includes, for example, Read Only Memory (ROM), Mask Read Only Memory (mask ROM), Programmable Read Only Memory (PROM), Flash Memory, Magnetoretic Memory Random Memory Random Access Memory. For example, Ferroelectric Random Access Memory (FeRAM). The computer program can be recorded on a storage medium other than the non-volatile memory 340 and a computer-readable recording medium (except for a carrier wave). Also, portable recording media such as Digital Versatile Disc (DVD) and Compact Disc Read Only Memory (CD-ROM) in which a computer program is recorded can be distributed. The computer program can be transmitted via a network.
 揮発性メモリ350は、コンピュータで読み取り可能な記録媒体である。揮発性メモリ350には、不揮発性メモリ340に格納されているコンピュータプログラムがロードされる。また揮発性メモリ350には、プロセッサ320による演算処理に使用されるデータや演算処理の結果であるデータ等が保持される。揮発性メモリ350は、例えばStatic Random Access Memory(SRAM)やDynamic Random Access Memory(DRAM)等である。 The volatile memory 350 is a computer-readable recording medium. The computer program stored in the non-volatile memory 340 is loaded into the volatile memory 350. The volatile memory 350 holds data used for arithmetic processing by the processor 320, data that is the result of the arithmetic processing, and the like. The volatile memory 350 is, for example, Static Random Access Memory (SRAM), Dynamic Random Access Memory (DRAM), or the like.
 ネットワークインターフェース回路360は、ネットワーク1とのインターフェース装置である。 The network interface circuit 360 is an interface device with the network 1.
 図6は、第1実施例における端末装置4のハードウェア構成図である。端末装置4は、無線処理回路410、プロセッサ420、不揮発性メモリ440及び揮発性メモリ450を有する。無線処理回路410は、アンテナによって受信された無線信号について、ダウンコンバージョンやAD変換等を実行する。また無線処理回路410は、アンテナから送信される無線信号について、DA変換やアップコンバージョン等を実行する。プロセッサ420は、基地局3との間でのデータの送受信に関する処理、エラー検出処理の他、信号品質の測定処理や応答信号の生成処理等を実行する。プロセッサ420はハードウェアプロセッサであり、CPU、MCU、MPU、DSPの他、FPGAやASICも適用可能である。 FIG. 6 is a hardware configuration diagram of the terminal device 4 in the first embodiment. The terminal device 4 includes a wireless processing circuit 410, a processor 420, a nonvolatile memory 440, and a volatile memory 450. The wireless processing circuit 410 performs down conversion, AD conversion, and the like on the wireless signal received by the antenna. The wireless processing circuit 410 performs DA conversion, up-conversion, and the like on the wireless signal transmitted from the antenna. The processor 420 performs processing related to data transmission / reception with the base station 3, error detection processing, signal quality measurement processing, response signal generation processing, and the like. The processor 420 is a hardware processor, and in addition to a CPU, MCU, MPU, and DSP, an FPGA or an ASIC is also applicable.
 不揮発性メモリ440は、コンピュータで読み取り可能な記録媒体である。不揮発性メモリ440には、プロセッサ420によって実行されるコンピュータプログラム等が格納される。不揮発性メモリ440は、例えばROM、マスクROM、PROM、フラッシュメモリ、MRAM、ReRAM、FeRAM等である。コンピュータプログラムは、不揮発性メモリ440以外の記憶媒体であって、コンピュータで読み取り可能な記録媒体(ただし、搬送波は除く)に記録させることもできる。また、コンピュータプログラムが記録されたDVD、CD-ROMなどの可搬型記録媒体を流通させることもできる。また、コンピュータプログラムは、ネットワークを介して送信され得る。 The nonvolatile memory 440 is a computer-readable recording medium. The nonvolatile memory 440 stores a computer program executed by the processor 420 and the like. The nonvolatile memory 440 is, for example, a ROM, mask ROM, PROM, flash memory, MRAM, ReRAM, FeRAM, or the like. The computer program can be recorded on a storage medium other than the nonvolatile memory 440 and a computer-readable recording medium (excluding a carrier wave). In addition, portable recording media such as DVDs and CD-ROMs on which computer programs are recorded can be distributed. The computer program can be transmitted via a network.
 揮発性メモリ450は、コンピュータで読み取り可能な記録媒体である。揮発性メモリ450には、不揮発性メモリ440に格納されているコンピュータプログラムがロードされる。また揮発性メモリ450には、プロセッサ420による演算処理に使用されるデータや演算処理の結果であるデータ等が保持される。揮発性メモリ450は、例えばSRAMやDRAM等である。 The volatile memory 450 is a computer-readable recording medium. The computer program stored in the nonvolatile memory 440 is loaded into the volatile memory 450. The volatile memory 450 holds data used for arithmetic processing by the processor 420, data that is the result of the arithmetic processing, and the like. The volatile memory 450 is, for example, SRAM or DRAM.
 図7は、第1実施例における基地局3のプロセッサ320の機能ブロック図である。プロセッサ320は、符号化処理部321、変調処理部322、送信部323、復号化処理部324、復調処理部325、受信部326、バッファ部327、応答信号判定部328、及び再送信処理部329として機能する。 FIG. 7 is a functional block diagram of the processor 320 of the base station 3 in the first embodiment. The processor 320 includes an encoding processing unit 321, a modulation processing unit 322, a transmission unit 323, a decoding processing unit 324, a demodulation processing unit 325, a receiving unit 326, a buffer unit 327, a response signal determination unit 328, and a retransmission processing unit 329. Function as.
 符号化処理部321は、送信されるデータについて、符号化処理を実行する。変調処理部322は、送信されるデータの変調処理を実行する。変調処理においては所定の変調方式に基づいて送信信号が変調される。変調方式としては、例えば2位相偏移変調(BPSK)方式や4位相偏移変調(QPSK)方式、直角移送振幅変調(QAM)方式等がある。送信部323は、データの送信処理を実行する。 The encoding processing unit 321 performs encoding processing on the transmitted data. The modulation processing unit 322 performs modulation processing on transmitted data. In the modulation process, the transmission signal is modulated based on a predetermined modulation method. Examples of the modulation method include a two-phase shift keying (BPSK) method, a four-phase shift keying (QPSK) method, and a quadrature transfer amplitude modulation (QAM) method. The transmission unit 323 executes data transmission processing.
 復号化処理部324は、受信されたデータについて、復号化処理を実行する。復調処理部325は、受信されたデータの復調処理を実行する。受信されたデータには、送信側の装置においてどの変調方式によって変調処理が実行されたかを示す変調方式情報が付加される。復調処理部325は、変調方式情報に基づいて送信側の装置で行われた変調処理の変調方式を特定し、特定された変調方式に応じて復調処理を実行する。受信部326は、データの受信処理を実行する。 The decryption processing unit 324 performs decryption processing on the received data. The demodulation processing unit 325 performs demodulation processing on the received data. The received data is added with modulation scheme information indicating which modulation scheme is used in the transmission side apparatus. The demodulation processing unit 325 specifies the modulation method of the modulation process performed by the transmission-side apparatus based on the modulation method information, and executes the demodulation process according to the specified modulation method. The receiving unit 326 performs data reception processing.
 バッファ部327は、例えばサーバ1から受信したデータを保持する。またバッファ部327は、端末装置4に送信されたデータを、送信処理の後の所定時間、保持する。そして端末装置4からのNACK信号が受信された場合に、バッファ部327に保持されているデータの再送信処理が実行される。応答信号判定部328は、端末装置4から受信した応答信号及び再応答信号の内容を解読し、応答信号又は再応答信号がACK信号であるのかNACK信号であるのかを判定する。再送信処理部329は、受信された応答信号又は再応答信号がNACK信号であると判定された場合に、データの再送信処理を実行する。 The buffer unit 327 holds data received from the server 1, for example. In addition, the buffer unit 327 holds the data transmitted to the terminal device 4 for a predetermined time after the transmission process. When a NACK signal from the terminal device 4 is received, a process for retransmitting data held in the buffer unit 327 is executed. The response signal determination unit 328 decodes the contents of the response signal and the reresponse signal received from the terminal device 4 and determines whether the response signal or the reresponse signal is an ACK signal or a NACK signal. The retransmission processing unit 329 executes data retransmission processing when it is determined that the received response signal or retransmission response signal is a NACK signal.
 図8は、第1実施例における端末装置4のプロセッサ420の機能ブロック図である。プロセッサ420は、符号化処理部421、変調処理部422、送信部423、復号化処理部424、復調処理部425、受信部426、エラー判定部427、信号品質特定部428、及び応答信号生成部429として機能する。 FIG. 8 is a functional block diagram of the processor 420 of the terminal device 4 in the first embodiment. The processor 420 includes an encoding processing unit 421, a modulation processing unit 422, a transmission unit 423, a decoding processing unit 424, a demodulation processing unit 425, a receiving unit 426, an error determination unit 427, a signal quality identification unit 428, and a response signal generation unit. 429 functions.
 符号化処理部421は、基地局3へ送信されるデータについて、符号化処理を実行する。変調処理部422は、基地局3へ送信されるデータの変調処理を実行する。送信部423は、基地局3へ送信されるデータの送信処理を実行する。 The encoding processing unit 421 performs an encoding process on data transmitted to the base station 3. The modulation processing unit 422 performs modulation processing on data transmitted to the base station 3. The transmission unit 423 executes transmission processing of data transmitted to the base station 3.
 復号化処理部424は、基地局3より受信されたデータについて、復号化処理を実行する。復調処理部425は、基地局3より受信されたデータの復調処理を実行する。受信部426は、基地局3からのデータの受信処理を実行する。 The decryption processing unit 424 performs a decryption process on the data received from the base station 3. The demodulation processing unit 425 performs demodulation processing on data received from the base station 3. The receiving unit 426 executes processing for receiving data from the base station 3.
 エラー判定部427は、受信されたデータにエラーが含まれるか否かを判定する。例えばデータに付加されたCRCコードに基づいて、データにエラーが含まれるか否が判定される。信号品質特定部428は、基地局3と端末装置4との間の無線信号の信号品質として例えばSIR値を測定する。応答信号生成部429は、受信されたデータについての応答信号の生成を行う。エラー判定部427によってエラーが検出された場合は、応答信号としてNACK信号が生成され、エラーが検出されなかった場合は、応答信号としてACK信号が生成される。また応答信号生成部429は、エラーが検出された場合であって、無線信号の信号品質が所定の状態より低い場合に、NACK信号である再応答信号を生成する。 The error determination unit 427 determines whether or not an error is included in the received data. For example, based on the CRC code added to the data, it is determined whether or not the data includes an error. The signal quality specifying unit 428 measures, for example, an SIR value as the signal quality of a radio signal between the base station 3 and the terminal device 4. The response signal generation unit 429 generates a response signal for the received data. If an error is detected by the error determination unit 427, a NACK signal is generated as a response signal. If no error is detected, an ACK signal is generated as a response signal. Further, the response signal generation unit 429 generates a reresponse signal that is a NACK signal when an error is detected and the signal quality of the radio signal is lower than a predetermined state.
 図9は、第1実施例における応答信号のフォーマット例を示す図である。応答信号には、応答信号毎に個別に割り当てられる応答信号IDが含まれる。例えば図4において開示された処理S23bで送信される応答信号と、処理S28aで送信される再応答信号には、互いに相違する応答信号IDが付される。よって、これらの信号を受信する基地局3は、応答信号IDに基づいて、応答信号と再応答信号を個別に識別することが可能となる。 FIG. 9 is a diagram showing a format example of a response signal in the first embodiment. The response signal includes a response signal ID assigned individually for each response signal. For example, different response signal IDs are attached to the response signal transmitted in the process S23b disclosed in FIG. 4 and the reresponse signal transmitted in the process S28a. Therefore, the base station 3 that receives these signals can individually identify the response signal and the re-response signal based on the response signal ID.
 更に応答信号には、当該応答信号がACK信号であるのかNACK信号であるのかを示す情報が含まれる。この情報は、例えば1bitの情報であり、この情報が例えば「1」である場合には当該応答信号がACK信号であることを示し、この情報が「0」である場合には当該応答信号がNACK信号であることを示す。 Further, the response signal includes information indicating whether the response signal is an ACK signal or a NACK signal. This information is, for example, 1-bit information. When this information is “1”, for example, the response signal is an ACK signal. When this information is “0”, the response signal is Indicates a NACK signal.
 更に応答信号がNACK信号である場合、応答信号には、再送対象となるデータを特定するデータIDが含まれる。上述のように、図4の処理S23bで送信される応答信号と、処理S28aで送信される再応答信号は、互いに相違する応答信号IDを有するが、同一のデータIDを有する。そのため、図4の処理S14において、NACK信号である応答信号がACK信号であると誤判定された場合であっても、処理S17において再応答信号が正しくNACK信号と判定されれば、応答信号にて要求されたデータと同一のデータが、再応答信号に基づいて送信される。尚、基地局3に受信された応答信号が正しくNACK信号と判定され、データが再送信された場合には、基地局3は、応答信号に含まれる応答信号IDとデータIDとを記録しておく。そしてその後、再応答信号を受信した場合に、応答信号と再応答信号のそれぞれに含まれる応答信号IDとデータIDを参照することにより、応答信号と再応答信号が同一のデータについて発行されたものであると判定する。そして基地局3は、再応答信号に基づくデータの更なる送信を行わないように制御することが可能となる。 Further, when the response signal is a NACK signal, the response signal includes a data ID for specifying data to be retransmitted. As described above, the response signal transmitted in step S23b of FIG. 4 and the re-response signal transmitted in step S28a have different response signal IDs but the same data ID. Therefore, even if the response signal that is a NACK signal is erroneously determined to be an ACK signal in the process S14 of FIG. 4, if the reresponse signal is correctly determined to be a NACK signal in the process S17, the response signal is changed. The same data as the requested data is transmitted based on the re-response signal. When the response signal received by the base station 3 is correctly determined as a NACK signal and data is retransmitted, the base station 3 records the response signal ID and the data ID included in the response signal. deep. After that, when the re-response signal is received, the response signal and the re-response signal are issued for the same data by referring to the response signal ID and the data ID included in each of the response signal and the re-response signal. It is determined that Then, the base station 3 can perform control so as not to further transmit data based on the re-response signal.
 図10は、第1実施例における基地局3のプロセッサ320によって実行される処理のフローチャートである。処理フローは処理S50において開始され、処理S51において符号化処理部321及び変調処理部322がそれぞれ、送信されるデータの符号化処理及び変調処理を実行する。処理S52において送信部323が、データを端末装置4に送信する。 FIG. 10 is a flowchart of processing executed by the processor 320 of the base station 3 in the first embodiment. The processing flow is started in process S50, and in process S51, the encoding processing unit 321 and the modulation processing unit 322 respectively perform encoding processing and modulation processing of transmitted data. In step S <b> 52, the transmission unit 323 transmits data to the terminal device 4.
 処理S52の後、処理S53において受信部326が、端末装置4からの応答信号が受信されたかを判定する。応答信号が受信されたと判定された場合(処理S53のYes)は、処理フローは処理S54へ進み、応答信号が受信されたと判定されない場合(処理S53のNo)は、処理フローは処理S53を繰り返す。処理S54において応答信号判定部328が、受信された応答信号がNACK信号であるかを判定する。応答信号がNACK信号であると判定された場合(処理S54のYes)は、処理フローは処理S51へ戻って、再度、データの符号化処理、変調処理及び送信処理が実行される。一方、応答信号がNACK信号であると判定されない場合(処理S54のNo)は、処理フローは処理S59にて終了する。 After the process S52, the reception unit 326 determines whether a response signal from the terminal device 4 is received in the process S53. If it is determined that a response signal has been received (Yes in process S53), the process flow proceeds to process S54. If it is not determined that a response signal has been received (No in process S53), the process flow repeats process S53. . In step S54, the response signal determination unit 328 determines whether the received response signal is a NACK signal. When it is determined that the response signal is a NACK signal (Yes in process S54), the process flow returns to process S51, and the data encoding process, the modulation process, and the transmission process are executed again. On the other hand, when it is not determined that the response signal is a NACK signal (No in process S54), the process flow ends in process S59.
 また処理フローは、処理S52の後、処理S55へ進む。処理S55において受信部326が、端末装置4からの再応答信号が受信されたかを判定する。再応答信号が受信されたと判定された場合(処理S55のYes)は、処理フローは処理S56へ進み、再応答信号が受信されたと判定されない場合(処理S55のNo)は、処理フローは処理S59にて終了する。 The process flow proceeds to process S55 after process S52. In step S55, the reception unit 326 determines whether a reresponse signal from the terminal device 4 has been received. If it is determined that a reresponse signal has been received (Yes in process S55), the process flow proceeds to process S56. If it is not determined that a reresponse signal has been received (No in process S55), the process flow is processed in process S59. End with.
 処理S56において応答信号判定部328が、受信された再応答信号がNACK信号であるかを判定する。再応答信号がNACK信号であると判定された場合(処理S56のYes)は、処理フローは処理S57へ進み、再応答信号がNACK信号であると判定されない場合(処理S56のNo)は、処理フローは処理S59にて終了する。 In process S56, the response signal determination unit 328 determines whether the received reresponse signal is a NACK signal. If it is determined that the re-response signal is a NACK signal (Yes in process S56), the process flow proceeds to process S57. If it is not determined that the re-response signal is a NACK signal (No in process S56), the process proceeds to step S57. The flow ends in process S59.
 処理S57において再送信処理部329が、応答信号に対してデータの再送信を既に行っているかを判定する。処理S54において応答信号がNACK信号と判定された場合(処理S54のYes)には、処理フローが処理S51に戻って、処理S52においてデータの再送信が行われている。そのため、同一データについて複数回の再送信処理が行われることを防ぐために、処理S57が実行される。再送信が既に行われていると判定された場合(処理S57のYes)は、処理フローは処理S59にて終了する。データの再送信が既に行われていると判定されない場合(処理S57のNo)は、処理フローは処理S58へ進む。処理S58において再送信処理部329は、再応答信号にて特定されるデータの、端末装置4への再送信を実行する。その後、処理フローは処理S59において終了する。 In processing S57, the retransmission processing unit 329 determines whether or not data retransmission has already been performed on the response signal. If the response signal is determined to be a NACK signal in process S54 (Yes in process S54), the process flow returns to process S51, and data is retransmitted in process S52. Therefore, process S57 is executed in order to prevent a plurality of retransmission processes from being performed on the same data. If it is determined that retransmission has already been performed (Yes in process S57), the process flow ends in process S59. If it is not determined that the data has been retransmitted (No in process S57), the process flow proceeds to process S58. In step S58, the retransmission processing unit 329 executes retransmission of the data specified by the retransmission response signal to the terminal device 4. Thereafter, the process flow ends in process S59.
 図11は、第1実施例における端末装置4のプロセッサ420によって実行される処理のフローチャートである。処理フローは処理S70によって開始され、処理S71において受信部426が、基地局3から送信されたデータを受信する。処理S72において復調処理部425及び復号化処理部424が、復調処理及び復号化処理のそれぞれを実行する。処理S73においてエラー判定部427が、受信されたデータにエラーが含まれるかを判定する。データにエラーが含まれると判定された場合(処理S73のYes)は、処理フローは処理S75へ進み、データにエラーが含まれると判定されない場合(処理S73のNo)は、処理フローは処理S74へ進む。 FIG. 11 is a flowchart of processing executed by the processor 420 of the terminal device 4 in the first embodiment. The processing flow is started by processing S70, and the reception unit 426 receives data transmitted from the base station 3 in processing S71. In step S72, the demodulation processing unit 425 and the decoding processing unit 424 execute demodulation processing and decoding processing, respectively. In step S73, the error determination unit 427 determines whether the received data includes an error. If it is determined that the data contains an error (Yes in process S73), the process flow proceeds to process S75. If it is not determined that the data contains an error (No in process S73), the process flow is processed in process S74. Proceed to
 処理フローが処理S74へ進んだ場合は、処理S74において応答信号生成部429が、応答信号(ACK信号)を生成し、生成された応答信号が基地局3へ送信される。その後、処理フローは処理S79において終了する。 When the process flow proceeds to process S74, the response signal generation unit 429 generates a response signal (ACK signal) in process S74, and the generated response signal is transmitted to the base station 3. Thereafter, the process flow ends in process S79.
 一方、処理フローが処理S75に進んだ場合は、処理S75において応答信号生成部429が、応答信号(NACK信号)を生成し、生成された応答信号が基地局3へ送信される。処理S76において信号品質特定部428が、無線信号の信号品質が閾値以下であるかを判定する。信号品質が閾値以下であると判定された場合(処理S76のYes)は、処理フローは処理S77へ進み、信号品質が閾値以下であると判定されない場合(処理S76のNo)は、処理フローは処理S78へ進む。 On the other hand, when the process flow proceeds to process S75, the response signal generation unit 429 generates a response signal (NACK signal) in process S75, and the generated response signal is transmitted to the base station 3. In process S76, the signal quality specifying unit 428 determines whether the signal quality of the radio signal is equal to or less than a threshold value. If it is determined that the signal quality is less than or equal to the threshold (Yes in process S76), the process flow proceeds to process S77. If the signal quality is not determined to be less than or equal to the threshold (No in process S76), the process flow is It progresses to process S78.
 処理S77において応答信号生成部429が、NACK信号である再応答信号を生成し、生成された再応答信号が基地局3へ送信される。処理S78において受信部426が、データを再受信する。ここで再受信されたデータは、処理S75で送信された応答信号もしくは処理S77で送信された再応答信号の何れかに基づいて、基地局3から送信されたデータである。処理S78の後、処理フローは処理S79において終了する。 In process S77, the response signal generation unit 429 generates a reresponse signal that is a NACK signal, and the generated reresponse signal is transmitted to the base station 3. In process S78, the receiving unit 426 re-receives data. Here, the re-received data is data transmitted from the base station 3 based on either the response signal transmitted in the process S75 or the re-response signal transmitted in the process S77. After process S78, the process flow ends in process S79.
 ここまで第1実施例が開示された。第1実施例においては、基地局3から送信されたデータにエラーが含まれる場合であって、ダウンリンクにおけるSIR値が所定値以下である場合に、再応答信号が送信される例が開示された。ダウンリンクで使用される無線信号の周波数と、アップリンクで使用される無線信号の周波数とが近接する場合には、ダウンリンクにおけるSIR値が低い状況においては、アップリンクにおけるSIR値も低い値を示す可能性がある。そのため、再応答信号を送信すべきか否かの判断において、アップリンクにおけるSIR値に代えてダウンリンクにおけるSIR値を使用することも可能である。しかし第1実施例は、再応答信号を送信するか否かの判断において、ダウンリンクで使用される無線信号の信号品質を使用することに限定されるものではない。例えば、再応答信号を送信すべきか否かの判断において、アップリンクにおけるSIR値を用いて再応答信号を送信すべきか否かの判断が行われてもよい。この場合、基地局3が、アップリンクにおけるSIR値を測定する。そして、測定されたSIR値が基地局3から端末装置4に通知される。端末装置4は、受信されたデータにエラーが含まれる場合であって、基地局3から通知されたアップリンクにおけるSIR値が所定値以下である場合に、再応答信号を送信する。この方法により、NACK信号が送信されるアップリンクにおいてエラーが発生する可能性をより正確に判断することが可能となり、再応答信号を送信するか否かの判断が実行される。 So far, the first embodiment has been disclosed. In the first embodiment, there is disclosed an example in which a re-response signal is transmitted when an error is included in data transmitted from the base station 3 and the SIR value in the downlink is not more than a predetermined value. It was. When the frequency of the radio signal used in the downlink and the frequency of the radio signal used in the uplink are close, in a situation where the SIR value in the downlink is low, the SIR value in the uplink is also low. May show. Therefore, it is possible to use the SIR value in the downlink instead of the SIR value in the uplink in determining whether or not to transmit the re-response signal. However, the first embodiment is not limited to using the signal quality of the radio signal used in the downlink in determining whether to transmit the re-response signal. For example, in determining whether or not to transmit a re-response signal, it may be determined whether or not to transmit a re-response signal using the SIR value in the uplink. In this case, the base station 3 measures the SIR value in the uplink. Then, the measured SIR value is notified from the base station 3 to the terminal device 4. The terminal device 4 transmits a re-response signal when an error is included in the received data and the SIR value in the uplink notified from the base station 3 is equal to or less than a predetermined value. With this method, it is possible to more accurately determine the possibility of an error occurring in the uplink in which the NACK signal is transmitted, and a determination as to whether or not to transmit a re-response signal is performed.
 第1実施例では、基地局3から送信され、端末装置4によって受信されたデータにエラーが含まれる場合について説明した。しかし本発明は、基地局3から送信されたデータの値が、他の信号の干渉等によって無線通信工程において変化してしまった場合だけでなく、例えば端末装置4がデータの受信に失敗した場合にも適用可能である。例えば端末装置4によって受信されるべきデータが所定期間に端末装置4によって受信されなかった場合や、端末装置4の受信動作に何等かのエラーが発生して正しくデータが受信されなかった場合にも、本発明は適用可能である。これらのエラーを総称して「受信エラー」と呼ぶ。 In the first embodiment, the case where an error is included in the data transmitted from the base station 3 and received by the terminal device 4 has been described. However, the present invention is not limited to the case where the value of the data transmitted from the base station 3 has changed in the wireless communication process due to interference of other signals, for example, when the terminal device 4 fails to receive data. It is also applicable to. For example, even when data to be received by the terminal device 4 is not received by the terminal device 4 in a predetermined period, or when an error occurs in the reception operation of the terminal device 4 and the data is not correctly received. The present invention is applicable. These errors are collectively referred to as “reception errors”.
 <第2実施例>
 次に、第2実施例について開示する。第1実施例において端末装置4は、基地局3から受信したデータにエラーが含まれる場合であって、無線信号の信号品質が所定値よりも低い場合に、NACK信号である再応答信号を基地局3に送信した。これにより基地局3においてNACK信号がACK信号と誤判定されてデータの再送信が実行されない可能性を抑制することができる。第2実施例では、端末装置4は、再応答信号を送信する際に、データの再送信を実行する際の変調方式を指定する変調方式指定情報を再応答信号に含ませて送信する。再応答信号を受信した基地局3は、再応答信号に含まれる変調方式指定情報に基づき、データの再送信を実行する。例えば最初のデータ送信における変調方式がQAM方式であったとする。この場合、データの再送信において再度エラーが発生することを抑制するために、端末装置4は基地局3に対して、データの再送信における変調方式を、よりエラーが生じにくい変調方式、例えばQPSK方式に変更するよう指示する。これによって、データの再送信においてデータのエラーが再度生じることを抑制することができる。
<Second embodiment>
Next, a second embodiment will be disclosed. In the first embodiment, the terminal device 4 transmits a re-response signal that is a NACK signal to the base station when an error is included in the data received from the base station 3 and the signal quality of the radio signal is lower than a predetermined value. Sent to station 3. Accordingly, it is possible to suppress the possibility that the NACK signal is erroneously determined as the ACK signal in the base station 3 and the data retransmission is not executed. In the second embodiment, when transmitting a re-response signal, the terminal device 4 transmits the re-response signal including modulation method specifying information for specifying a modulation method for performing data re-transmission. The base station 3 that has received the re-response signal retransmits data based on the modulation scheme designation information included in the re-response signal. For example, assume that the modulation method in the first data transmission is the QAM method. In this case, in order to suppress the occurrence of an error again in the data retransmission, the terminal apparatus 4 changes the modulation scheme in the data retransmission to the base station 3 to a modulation scheme that is less likely to cause an error, for example, QPSK. Instruct to change to the method. Thereby, it is possible to suppress the occurrence of a data error again in data retransmission.
 図12は、第2実施例における、基地局3と端末装置4との間におけるデータの送受信及びNACK信号の送受信に関するラダーチャートであって、NACK信号がACK信号と誤判定された場合の処理を示す図である。図4に開示された処理内容と同一の処理については同一の参照符号を付し、説明を適宜省略する。 FIG. 12 is a ladder chart related to data transmission / reception and NACK signal transmission / reception between the base station 3 and the terminal device 4 in the second embodiment, and processing when a NACK signal is erroneously determined to be an ACK signal. FIG. The same processes as those disclosed in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 処理S11において基地局3は、変調処理がなされたデータを、端末装置4へ送信する。ここで基地局3は、データを送信する際に、当該データの無線送信において用いられた変調方式を示す変調方式情報をデータに付加することによって、ダウンリンクの変調方式を端末装置4に通知する。 In process S11, the base station 3 transmits the modulated data to the terminal device 4. Here, when transmitting data, the base station 3 notifies the terminal device 4 of the downlink modulation scheme by adding modulation scheme information indicating the modulation scheme used in the wireless transmission of the data to the data. .
 処理S22bにおいてデータにエラーが検出された場合、処理S23bにおいてNACK信号である応答信号が送信され、また処理S26において信号品質が特定される。特定された信号品質が所定値以下である場合には、端末装置4は、再応答信号を送信することを決定する。 If an error is detected in the data in process S22b, a response signal that is a NACK signal is transmitted in process S23b, and the signal quality is specified in process S26. If the identified signal quality is equal to or lower than the predetermined value, the terminal device 4 determines to transmit a reresponse signal.
 更に端末装置4は、特定された信号品質が所定値以下である場合に、ダウンリンクにおける変調方式を指定する変調方式指定情報を生成する。具体的には、処理S10の変調処理において使用された変調方式よりもエラーが生じにくい変調方式によってデータの再送信が実行されるよう、変調方式指定情報を生成する。例えば、処理S10においてはQAM方式によって変調処理がなされた場合には、QAM方式よりもエラーの発生リスクが低いQPSK方式を用いてデータの再送信が実行されることが好ましいと考えられる。この場合、データの再送信がQPSK方式にて実行されるように、端末装置4は、変調方式指定情報を生成する。そして処理S28bにおいて端末装置4は、生成された変調方式指定情報を含む再応答信号を、基地局3に送信する。処理S16bにおいて基地局3は、再応答信号を受信し、再応答信号に含まれる変調方式指定情報に基づいて、データの再送信処理における変調方式を特定する。そして処理S13bにおいて基地局3は、特定された変調方式に基づく変調処理を実行し、データの再送信を実行する。処理S24bにおいて端末装置4は、再送信されたデータを受信する。 Further, the terminal device 4 generates modulation scheme designation information for designating a downlink modulation scheme when the specified signal quality is equal to or lower than a predetermined value. Specifically, the modulation scheme designation information is generated so that the data is retransmitted by a modulation scheme that is less likely to cause an error than the modulation scheme used in the modulation processing of step S10. For example, in the process S10, when the modulation process is performed by the QAM system, it is preferable that the data retransmission is performed using the QPSK system, which has a lower risk of error than the QAM system. In this case, the terminal apparatus 4 generates modulation scheme designation information so that data retransmission is performed using the QPSK scheme. In step S <b> 28 b, the terminal device 4 transmits a reresponse signal including the generated modulation scheme designation information to the base station 3. In step S16b, the base station 3 receives the re-response signal, and identifies the modulation method in the data retransmission processing based on the modulation method designation information included in the re-response signal. In step S13b, the base station 3 executes a modulation process based on the specified modulation method, and executes data retransmission. In step S24b, the terminal device 4 receives the retransmitted data.
 図13は、第2実施例における、基地局3から送信されるデータの変調方式を端末装置4が指定するための方法を説明するための図である。図13の(A)には、変調方式とModulation and Coding Scheme(MCS)値との対応関係が示される。基地局3から端末装置4へ送信されるデータには、基地局3にて実行された変調方式を示す変調方式情報として、MCS値が付加される。MCS値は例えば「0」から「9」の10段階に区分されており、例えばMCS値が「0」がBPSK方式に対応し、MCS値が「1」及び「2」がQPSK方式に対応し、MCS値が「3」及び「4」が16QAM方式に対応し、MCS値が「5」、「6」及び「7」が64QAM方式に対応し、MCS値が「8」及び「9」が256QAM方式に対応している。 FIG. 13 is a diagram for explaining a method for the terminal device 4 to specify the modulation method of data transmitted from the base station 3 in the second embodiment. FIG. 13A shows the correspondence between the modulation method and the Modulation and Coding Scheme (MCS) value. An MCS value is added to the data transmitted from the base station 3 to the terminal device 4 as modulation scheme information indicating the modulation scheme executed by the base station 3. The MCS value is divided into, for example, 10 levels from “0” to “9”. For example, the MCS value “0” corresponds to the BPSK method, and the MCS values “1” and “2” correspond to the QPSK method. The MCS values “3” and “4” correspond to the 16QAM system, the MCS values “5”, “6”, and “7” correspond to the 64QAM system, and the MCS values “8” and “9”. It corresponds to the 256QAM system.
 図13の(B)には、SIR値に基づいてMCS値の変更値を特定するためのテーブルが示される。データを受信した端末装置4は、データに付加されたMCS値を取得する。また端末装置4は、信号品質を示す値、例えばダウンリンクのSIR値を特定する。そして特定の閾値とSIR値との差分値に基づいて、MCS値の変更値を特定する。例えばSIR値の測定値が-80dBmであり、特定の閾値が-60dBmである場合、特定の閾値とSIR値との差分値は-20dBmである。この場合、図13の(B)に示されるテーブルを参照することにより、MCS値の変更値が「-2」であると特定される。この場合、基地局3より受信されたデータに付加されたMCS値が例えば「4」であれば、端末装置4は「4」に「-2」を加算することにより、変更されたMCS値が「2」を得られる。そして端末装置4は、変更されたMCS値である「2」を変調方式指定情報として、基地局3へ通知する。端末装置4は、図13の(C)に示されるように、変調方式指定情報を例えば再応答通知信号に含ませて基地局に送信する。基地局3は、再応答通知信号に含まれる変調方式指定情報であるMCS値の「2」に基づいて、変調方式をQPSK方式に設定し、設定されたQPSK方式によってデータの再送信を実行する。これにより、データの再送信を、先のデータ送信に比べてエラーが発生し難い変調方式によって実行することが可能となる。 FIG. 13B shows a table for specifying the changed value of the MCS value based on the SIR value. The terminal device 4 that has received the data acquires the MCS value added to the data. Further, the terminal device 4 specifies a value indicating the signal quality, for example, a downlink SIR value. Then, the change value of the MCS value is specified based on the difference value between the specific threshold value and the SIR value. For example, when the measured value of the SIR value is −80 dBm and the specific threshold value is −60 dBm, the difference value between the specific threshold value and the SIR value is −20 dBm. In this case, the change value of the MCS value is specified as “−2” by referring to the table shown in FIG. In this case, if the MCS value added to the data received from the base station 3 is “4”, for example, the terminal device 4 adds “−2” to “4”, so that the changed MCS value is “2” is obtained. Then, the terminal device 4 notifies the base station 3 of “2” that is the changed MCS value as the modulation scheme designation information. As shown in FIG. 13C, the terminal device 4 transmits modulation scheme designation information to, for example, a re-response notification signal and transmits it to the base station. The base station 3 sets the modulation scheme to the QPSK scheme based on the MCS value “2” that is the modulation scheme designation information included in the re-response notification signal, and executes data retransmission using the set QPSK scheme. . As a result, data retransmission can be executed by a modulation scheme that is less likely to cause errors than previous data transmission.
 図14は、第2実施例における、基地局3から送信されるデータの変調方式を端末装置4が指定するための方法を説明するための図である。図13の(C)に開示された例においては、変調方式を指定するためのMCS値(変更後のMCS値)を再応答信号に含ませることによって、基地局3に変調方式を指示する方法が開示された。図14に開示の例において端末装置4は、規準信号に対する再応答信号の位相差を調整することによって、基地局3に変調方式を指示する。例えば、MCS値の変更値が「-1」である場合は、規準信号に対する位相差が「90°」に設定され、MCS値の変更値が「-2」である場合は、規準信号に対する位相差が「180°」に設定され、MCS値の変更値が「-3」である場合は、規準信号に対する位相差が「270°」に設定される。このように設定された基準信号に対する位相差を有する再応答信号が端末装置4から送信される。そして、再応答信号を受信した基地局3は、基準信号に対する再応答信号の位相差を検出することにより、MCS値の変更値を認識することができる。基地局3は、MCS値の変更値に基づいて変調方式を特定し、特定された変調方式を用いてデータの再送信を実行する。 FIG. 14 is a diagram for explaining a method for the terminal device 4 to specify the modulation method of data transmitted from the base station 3 in the second embodiment. In the example disclosed in FIG. 13C, a method for instructing the modulation scheme to the base station 3 by including the MCS value (the MCS value after the change) for designating the modulation scheme in the re-response signal. Was disclosed. In the example disclosed in FIG. 14, the terminal device 4 instructs the base station 3 on the modulation scheme by adjusting the phase difference of the reresponse signal with respect to the reference signal. For example, when the change value of the MCS value is “−1”, the phase difference with respect to the reference signal is set to “90 °”, and when the change value of the MCS value is “−2”, the position with respect to the reference signal is set. When the phase difference is set to “180 °” and the change value of the MCS value is “−3”, the phase difference with respect to the reference signal is set to “270 °”. A re-response signal having a phase difference with respect to the reference signal set in this way is transmitted from the terminal device 4. Then, the base station 3 that has received the reresponse signal can recognize the change value of the MCS value by detecting the phase difference of the reresponse signal with respect to the reference signal. The base station 3 identifies the modulation scheme based on the changed value of the MCS value, and retransmits data using the identified modulation scheme.
 図15は、第2実施例における端末装置4のプロセッサ420の機能ブロック図である。プロセッサ420は、図8において開示された符号化処理部421、変調処理部422、送信部423、復号化処理部424、復調処理部425、受信部426、エラー判定部427、応答信号生成部429に加え、変調方式指定部430として機能する。 FIG. 15 is a functional block diagram of the processor 420 of the terminal device 4 in the second embodiment. The processor 420 includes the encoding processing unit 421, the modulation processing unit 422, the transmission unit 423, the decoding processing unit 424, the demodulation processing unit 425, the reception unit 426, the error determination unit 427, and the response signal generation unit 429 disclosed in FIG. In addition, it functions as a modulation scheme designation unit 430.
 変調方式指定部430は、端末装置4が再応答通知を基地局3へ送信する際、データの再送信の際に使用される変調方式を指定する変調方式指定情報を生成する。生成された変調方式指定情報は、図13の(C)又は図14に示された方法により、基地局3に通知される。 The modulation scheme designation unit 430 generates modulation scheme designation information that designates a modulation scheme used when data is retransmitted when the terminal device 4 transmits a re-response notification to the base station 3. The generated modulation scheme designation information is notified to the base station 3 by the method shown in FIG. 13C or FIG.
 図16は、第2実施例における端末装置4のプロセッサ420によって実行される処理のフローチャートである。図11に開示された処理と同一の処理については同一の参照符号を付し、説明を適宜省略する。図16に開示される処理フローのうち、処理S70乃至処理S79は、図11に開示された内容と同一である。処理S76において信号品質が閾値以下であると判定された場合(処理S76のYes)は、処理フローは処理S80へ進む。そして処理S80において変調方式指定部430が、基地局3からのデータに付加された変調方式情報と、無線信号の信号品質とに基づいて、変調方式指定情報を生成する。生成された変調方式指定情報は、処理S77における再応答信号の送信の際に、基地局3へ通知される。 FIG. 16 is a flowchart of processing executed by the processor 420 of the terminal device 4 in the second embodiment. The same processes as those disclosed in FIG. 11 are denoted by the same reference numerals, and description thereof will be omitted as appropriate. Of the processing flow disclosed in FIG. 16, processing S70 to S79 are the same as the contents disclosed in FIG. If it is determined in process S76 that the signal quality is equal to or lower than the threshold value (Yes in process S76), the process flow proceeds to process S80. In step S80, the modulation scheme designation unit 430 generates modulation scheme designation information based on the modulation scheme information added to the data from the base station 3 and the signal quality of the radio signal. The generated modulation scheme designation information is notified to the base station 3 when the re-response signal is transmitted in step S77.
 図17は、第2実施例における基地局3のプロセッサ320によって実行される処理のフローチャートである。図10に開示された処理と同一の処理については同一の参照符号を付し、説明を適宜省略する。図17に開示される処理フローのうち、処理S50乃至処理S59は、図10に開示された内容と同一である。処理S57において既に応答信号に対するデータの送信が実行済であると判定されない場合(処理S57のNo)は、処理フローは処理S60へ進む。そして処理S60において変調処理部322が、端末装置4からの再応答信号に含まれる変調方式指定情報に基づき、データの再送信において使用される変調方式を特定する。そして処理S58において、特定された変調方式によりデータの再送信が実行される。 FIG. 17 is a flowchart of processing executed by the processor 320 of the base station 3 in the second embodiment. The same processes as those disclosed in FIG. 10 are denoted by the same reference numerals, and description thereof will be omitted as appropriate. Of the processing flow disclosed in FIG. 17, processing S50 to processing S59 are the same as the content disclosed in FIG. If it is not determined in step S57 that data transmission for the response signal has already been performed (No in step S57), the process flow proceeds to step S60. In step S <b> 60, the modulation processing unit 322 specifies a modulation scheme used in data retransmission based on the modulation scheme designation information included in the reresponse signal from the terminal device 4. In step S58, data retransmission is performed using the specified modulation method.
 以上、第2実施例が開示された。第2実施例では、基地局3からのデータにエラーが含まれる場合であって、信号品質が所定値以下の場合に、NACK信号である再応答信号が端末装置4より送信される。また、データの再送信の実行の際に用いられる変調方式を指定するための変調方式指定情報が端末装置4から基地局3に通知される。これにより、データの再送信においてデータにエラーが発生することを抑制することができる。 As described above, the second embodiment has been disclosed. In the second embodiment, when the data from the base station 3 includes an error and the signal quality is equal to or lower than a predetermined value, a re-response signal that is a NACK signal is transmitted from the terminal device 4. Also, modulation scheme designation information for designating a modulation scheme used when data retransmission is executed is notified from the terminal device 4 to the base station 3. Thereby, it is possible to suppress the occurrence of an error in the data in the data retransmission.
 1 ネットワーク
 2 サーバ
 3 基地局
 4 端末装置
 310 無線処理回路
 320 プロセッサ
 340 不揮発性メモリ
 350 揮発性メモリ
 360 ネットワークインターフェース回路
 410 無線処理回路
 420 プロセッサ
 440 不揮発性メモリ
 450 揮発性メモリ
 321 符号化処理部
 322 変調処理部
 323 送信部
 324 復号化処理部
 325 復調処理部
 326 受信部
 327 バッファ部
 328 応答信号判定部
 329 再送信処理部
 421 符号化処理部
 422 変調処理部
 423 送信部
 424 復号化処理部
 425 復調処理部
 426 受信部
 427 エラー判定部
 428 信号品質特定部
 429 応答信号生成部
 430 変調方式指定部
DESCRIPTION OF SYMBOLS 1 Network 2 Server 3 Base station 4 Terminal device 310 Wireless processing circuit 320 Processor 340 Non-volatile memory 350 Volatile memory 360 Network interface circuit 410 Wireless processing circuit 420 Processor 440 Non-volatile memory 450 Volatile memory 321 Encoding processing unit 322 Modulation processing Unit 323 transmission unit 324 decoding processing unit 325 demodulation processing unit 326 reception unit 327 buffer unit 328 response signal determination unit 329 retransmission processing unit 421 encoding processing unit 422 modulation processing unit 423 transmission unit 424 decoding processing unit 425 demodulation processing unit 426 receiving unit 427 error determining unit 428 signal quality specifying unit 429 response signal generating unit 430 modulation method specifying unit

Claims (15)

  1.  第1通信装置と、前記第1通信装置と無線通信を行う第2通信装置と、を含む無線通信システムを用いた無線通信方法であって、
     前記第1通信装置が、データの前記第2通信装置への送信を実行し、
     前記第2通信装置が、前記データについて受信エラーが発生したかを判定し、
     前記受信エラーが発生したと判定された場合に、前記第2通信装置が前記受信エラーの発生を示す第1応答信号を、前記第1通信装置に送信し、
     前記受信エラーが発生したと判定された場合であって、前記第1通信装置と前記第2通信装置の間の無線信号の品質が第1の値以下である場合に、前記第2通信装置が、前記受信エラーの発生を示す第2応答信号を、前記第1通信装置に送信し、
     前記第1通信装置が、前記第1応答信号及び前記第2応答信号の少なくとも一つに基づいて、前記データの再送信を実行する
     ことを特徴とする無線通信方法。
    A wireless communication method using a wireless communication system including a first communication device and a second communication device that performs wireless communication with the first communication device,
    The first communication device performs transmission of data to the second communication device;
    The second communication device determines whether a reception error has occurred for the data;
    When it is determined that the reception error has occurred, the second communication device transmits a first response signal indicating the occurrence of the reception error to the first communication device;
    If it is determined that the reception error has occurred, and the quality of the radio signal between the first communication device and the second communication device is equal to or lower than a first value, the second communication device A second response signal indicating the occurrence of the reception error is transmitted to the first communication device;
    The wireless communication method, wherein the first communication device performs retransmission of the data based on at least one of the first response signal and the second response signal.
  2.  前記第1通信装置は、前記第1応答信号に応じて前記データの前記再送信を実行した場合には、前記第2応答信号に応じて前記データの前記再送信を実行しない
     ことを特徴とする請求項1に記載の無線通信方法。
    The first communication device does not execute the retransmission of the data according to the second response signal when the retransmission of the data is performed according to the first response signal. The wireless communication method according to claim 1.
  3.  前記第2通信装置は、前記第1通信装置から送信され前記第2通信装置によって受信された第1無線信号の第1信号品質、又は前記第2通信装置から送信され前記第1通信装置によって受信された第2無線信号の第2信号品質の何れか一方を、前記品質として特定する
     ことを特徴とする請求項1又は2に記載の無線通信方法。
    The second communication device is a first signal quality of a first radio signal transmitted from the first communication device and received by the second communication device, or transmitted from the second communication device and received by the first communication device. 3. The wireless communication method according to claim 1, wherein any one of the second signal qualities of the second radio signal is specified as the quality. 4.
  4.  前記第1通信装置は、前記第2信号品質を前記データに付加して前記第2通信装置へ送信する
     ことを特徴とする請求項3に記載の無線通信方法。
    The wireless communication method according to claim 3, wherein the first communication device adds the second signal quality to the data and transmits the data to the second communication device.
  5.  前記第1通信装置は、第1変調方式を用いて前記データを変調する場合、前記第1変調方式を特定する変調方式情報を含む前記データを前記第2通信装置へ送信し、
     前記第2通信装置は、前記データに付加された前記変調方式情報と、前記品質とに基づいて、第2変調方式を特定し、
     前記第2通信装置は、前記第2変調方式を特定する変調方式指定情報を含む前記第2応答信号を、前記第1通信装置へ送信し、
     前記第1通信装置は、前記第2応答信号に応じて前記データの前記再送信を実行する場合は、前記第2応答信号に含まれる前記変調方式指定情報に基づいて、前記第2変調方式を用いて前記データを変調する
     ことを特徴とする請求項1乃至4何れか一項に記載の無線通信方法。
    When the first communication device modulates the data using a first modulation method, the first communication device transmits the data including modulation method information specifying the first modulation method to the second communication device,
    The second communication device identifies a second modulation scheme based on the modulation scheme information added to the data and the quality,
    The second communication device transmits the second response signal including modulation scheme designation information for specifying the second modulation scheme to the first communication device;
    When the first communication device performs the retransmission of the data in response to the second response signal, the first communication device determines the second modulation scheme based on the modulation scheme designation information included in the second response signal. The wireless communication method according to any one of claims 1 to 4, wherein the data is modulated by using the data.
  6.  前記第1通信装置は基地局であり、前記第2通信装置は端末装置である
     ことを特徴とする請求項1乃至5何れか一項に記載の無線通信方法。
    The wireless communication method according to claim 1, wherein the first communication device is a base station, and the second communication device is a terminal device.
  7.  第1通信装置と、
     前記第1通信装置と無線通信を行う第2通信装置と、
     を含む無線通信システムであって、
     前記第1通信装置が、データの前記第2通信装置への送信を実行し、
     前記第2通信装置が、前記データについて受信エラーが発生したかを判定し、
     前記受信エラーが発生したと判定された場合に、前記第2通信装置が前記受信エラーの発生を示す第1応答信号を、前記第1通信装置に送信し、
     前記受信エラーが発生したと判定された場合であって、前記第1通信装置と前記第2通信装置の間の無線信号の品質が第1の値以下である場合に、前記第2通信装置が、前記受信エラーの発生を示す第2応答信号を、前記第1通信装置に送信し、
     前記第1通信装置が、前記第1応答信号及び前記第2応答信号の少なくとも一つに基づいて、前記データの再送信を実行する
     ことを特徴とする無線通信システム。
    A first communication device;
    A second communication device for performing wireless communication with the first communication device;
    A wireless communication system comprising:
    The first communication device performs transmission of data to the second communication device;
    The second communication device determines whether a reception error has occurred for the data;
    When it is determined that the reception error has occurred, the second communication device transmits a first response signal indicating the occurrence of the reception error to the first communication device;
    If it is determined that the reception error has occurred, and the quality of the radio signal between the first communication device and the second communication device is equal to or lower than a first value, the second communication device A second response signal indicating the occurrence of the reception error is transmitted to the first communication device;
    The wireless communication system, wherein the first communication device performs retransmission of the data based on at least one of the first response signal and the second response signal.
  8.  前記第1通信装置は、前記第1応答信号に応じて前記データの前記再送信を実行した場合には、前記第2応答信号に応じて前記データの前記再送信を実行しない
     ことを特徴とする請求項7に記載の無線通信システム。
    The first communication device does not execute the retransmission of the data according to the second response signal when the retransmission of the data is performed according to the first response signal. The wireless communication system according to claim 7.
  9.  前記第2通信装置は、前記第1通信装置から送信され前記第2通信装置によって受信された第1無線信号の第1信号品質、又は前記第2通信装置から送信され前記第1通信装置によって受信された第2無線信号の第2信号品質の何れか一方を、前記品質として特定する
     ことを特徴とする請求項7又は8に記載の無線通信システム。
    The second communication device is a first signal quality of a first radio signal transmitted from the first communication device and received by the second communication device, or transmitted from the second communication device and received by the first communication device. The radio communication system according to claim 7 or 8, wherein any one of the second signal qualities of the second radio signal that has been determined is specified as the quality.
  10.  前記第1通信装置は、前記第2信号品質を前記データに付加して前記第2通信装置へ送信する
     ことを特徴とする請求項9に記載の無線通信システム。
    The wireless communication system according to claim 9, wherein the first communication device adds the second signal quality to the data and transmits the data to the second communication device.
  11.  前記第1通信装置は、第1変調方式を用いて前記データを変調する場合、前記第1変調方式を特定する変調方式情報を含む前記データを前記第2通信装置へ送信し、
     前記第2通信装置は、前記データに付加された前記変調方式情報と、前記品質とに基づいて、第2変調方式を特定し、
     前記第2通信装置は、前記第2変調方式を特定する変調方式指定情報を含む前記第2応答信号を、前記第1通信装置へ送信し、
     前記第1通信装置は、前記第2応答信号に応じて前記データの前記再送信を実行する場合は、前記第2応答信号に含まれる前記変調方式指定情報に基づいて、前記第2変調方式を用いて前記データを変調する
     ことを特徴とする請求項7乃至10何れか一項に記載の無線通信システム。
    When the first communication device modulates the data using a first modulation method, the first communication device transmits the data including modulation method information specifying the first modulation method to the second communication device,
    The second communication device identifies a second modulation scheme based on the modulation scheme information added to the data and the quality,
    The second communication device transmits the second response signal including modulation scheme designation information for specifying the second modulation scheme to the first communication device;
    When the first communication device performs the retransmission of the data in response to the second response signal, the first communication device determines the second modulation scheme based on the modulation scheme designation information included in the second response signal. The wireless communication system according to any one of claims 7 to 10, wherein the data is modulated by using the data.
  12.  前記第1通信装置は基地局であり、前記第2通信装置は端末装置である
     ことを特徴とする請求項7乃至11何れか一項に記載の無線通信システム。
    The wireless communication system according to any one of claims 7 to 11, wherein the first communication device is a base station, and the second communication device is a terminal device.
  13.  基地局と無線通信を行う端末装置であって、
     前記基地局から送信されたデータについての受信エラーが発生したかを判定するエラー判定部と、
     前記受信エラーが発生したと判定された場合に、前記受信エラーの発生を示す第1応答信号を生成し、前記受信エラーが発生したと判定された場合であって、前記基地局と前記端末装置の間の無線信号の品質が第1の値以下である場合に、前記受信エラーの発生を示す第2応答信号を生成する応答信号生成部と、
     前記第1応答信号と前記第2応答信号を前記基地局へ送信する送信部と
     を有することを特徴とする端末装置。
    A terminal device that performs wireless communication with a base station,
    An error determination unit that determines whether a reception error has occurred with respect to data transmitted from the base station;
    When it is determined that the reception error has occurred, a first response signal indicating the occurrence of the reception error is generated, and when it is determined that the reception error has occurred, the base station and the terminal device A response signal generating unit that generates a second response signal indicating the occurrence of the reception error when the quality of the radio signal during the period is equal to or lower than the first value;
    A terminal apparatus comprising: a transmission unit configured to transmit the first response signal and the second response signal to the base station.
  14.  前記基地局から送信され前記端末装置によって受信された第1無線信号の第1信号品質、又は前記端末装置から送信され前記基地局によって受信された第2無線信号の第2信号品質の何れか一方を、前記品質として特定する信号品質特定部
     を更に有することを特徴とする請求項13に記載の端末装置。
    Either the first signal quality of the first radio signal transmitted from the base station and received by the terminal device, or the second signal quality of the second radio signal transmitted from the terminal device and received by the base station The terminal device according to claim 13, further comprising: a signal quality specifying unit that specifies the quality as the quality.
  15.  前記基地局が第1変調方式を用いて前記データを変調する場合、前記データには、前記第1変調方式を特定する変調方式情報が付加され、
     前記端末装置は、前記データに付加された前記変調方式情報と、前記品質とに基づいて、第2変調方式を特定する変調方式指定部を更に有し、
     前記送信部は、前記第2変調方式を特定する変調方式指定情報を含む前記第2応答信号を、前記基地局へ送信する
     ことを特徴とする請求項13又は14に記載の端末装置。
    When the base station modulates the data using the first modulation scheme, the data is added with modulation scheme information specifying the first modulation scheme,
    The terminal device further includes a modulation scheme designating unit that identifies a second modulation scheme based on the modulation scheme information added to the data and the quality,
    The terminal apparatus according to claim 13 or 14, wherein the transmission unit transmits the second response signal including modulation scheme designation information specifying the second modulation scheme to the base station.
PCT/JP2018/013320 2018-03-29 2018-03-29 Wireless communication method, wireless communication system, and terminal device WO2019186919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013320 WO2019186919A1 (en) 2018-03-29 2018-03-29 Wireless communication method, wireless communication system, and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013320 WO2019186919A1 (en) 2018-03-29 2018-03-29 Wireless communication method, wireless communication system, and terminal device

Publications (1)

Publication Number Publication Date
WO2019186919A1 true WO2019186919A1 (en) 2019-10-03

Family

ID=68059591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013320 WO2019186919A1 (en) 2018-03-29 2018-03-29 Wireless communication method, wireless communication system, and terminal device

Country Status (1)

Country Link
WO (1) WO2019186919A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053771A (en) * 2005-08-19 2007-03-01 Samsung Electronics Co Ltd Method and apparatus for controlling reliability of feedback signal in mobile communication system for supporting harq
WO2008114694A1 (en) * 2007-03-20 2008-09-25 Ntt Docomo, Inc. User device, base station device, and method
WO2014024728A1 (en) * 2012-08-06 2014-02-13 株式会社エヌ・ティ・ティ・ドコモ Mobile station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053771A (en) * 2005-08-19 2007-03-01 Samsung Electronics Co Ltd Method and apparatus for controlling reliability of feedback signal in mobile communication system for supporting harq
WO2008114694A1 (en) * 2007-03-20 2008-09-25 Ntt Docomo, Inc. User device, base station device, and method
WO2014024728A1 (en) * 2012-08-06 2014-02-13 株式会社エヌ・ティ・ティ・ドコモ Mobile station

Similar Documents

Publication Publication Date Title
TWI262659B (en) Method and apparatus for reducing uplink and downlink transmission errors in a third generation cellular system
US11664934B2 (en) Adaptive transmission method for satellite communication, apparatus, and system
US9363621B2 (en) System and method adopting a reliable stop-and-wait hybrid automatic repeat request protocol
KR20040007651A (en) Adaptive coding and modulation
JP2011147142A (en) Apparatus and method for selective response to incremental redundancy transmission
US11770207B2 (en) Method for mitigating branch-amplitude faults in 5G and 6G messages
US20120084618A1 (en) Jointly encoding a scheduling request indicator and acknowledgments/negative acknowledgments
JP2010530194A (en) Method for allocating resources in a mobile radio communication network, corresponding transmitter and receiver
JP6126698B2 (en) Method and apparatus for a modified HARQ procedure after a receiver down event
US9083524B2 (en) Systems and methods for sending an acknowledgement message in a wireless communication system
WO2019186919A1 (en) Wireless communication method, wireless communication system, and terminal device
JP2020043459A (en) Wireless communication device and communication parameter notification method
US20050108615A1 (en) Transmission power control apparatus in wireless communication system and method therefor
US7525916B2 (en) High-efficiency control of radio burst signal transmission system
US20170033897A1 (en) Data retransmission method, data recovery method, and apparatuses thereof
JP6536988B2 (en) Transmitting terminal device, receiving terminal device, and power line communication system
KR20040084212A (en) Hybrid ARQ Wireless Communication System Using state of Feedback Channel
AU2018410518B2 (en) Reception failure indication by legacy message
KR101084149B1 (en) Transmission power control apparatus in wireless communication system and method thereof
US11336387B2 (en) Wireless communication apparatus, data reception method, and program
US20230231652A1 (en) Methods for performing multi-link hybrid automatic repeat request in wireless local area networks and related electronic devices
EP3602881A1 (en) Acknowledgment signalling in communications
CN103825685B (en) It is used for realization the method and apparatus of hybrid automatic repeat-request
JP2022154662A (en) Terminal device, base station device, communication method, and program using extended acknowledgment
WO2018123058A1 (en) Wireless communication device, wireless communication system, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP