WO2019186852A1 - Radio communication system, radio control device, and radio resource control method - Google Patents

Radio communication system, radio control device, and radio resource control method Download PDF

Info

Publication number
WO2019186852A1
WO2019186852A1 PCT/JP2018/013049 JP2018013049W WO2019186852A1 WO 2019186852 A1 WO2019186852 A1 WO 2019186852A1 JP 2018013049 W JP2018013049 W JP 2018013049W WO 2019186852 A1 WO2019186852 A1 WO 2019186852A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
control device
unit
resource
wireless
Prior art date
Application number
PCT/JP2018/013049
Other languages
French (fr)
Japanese (ja)
Inventor
忠人 富川
大出 高義
高木 淳一
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2018/013049 priority Critical patent/WO2019186852A1/en
Publication of WO2019186852A1 publication Critical patent/WO2019186852A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a wireless communication system, a wireless control device, and a wireless resource control method.
  • base station devices provided in wireless communication systems have been separated into wireless control devices such as BBU (Base Band Unit) and wireless devices such as RRH (Remote Radio Head). It may be connected by an interface such as CPRI (Common Public Radio Interface).
  • gNB which is a base station device of the 5th generation wireless communication system (5G)
  • CU Central Unit
  • CU Central Unit
  • the CU is connected to the DU (Distributed Unit), which is a wireless device that performs the communication, and the CU and the DU are connected by the F1 interface.
  • a plurality of DUs are connected to one CU, and the DUs are distributed to construct a wireless communication system that covers a large area at a low cost. Is possible.
  • various wireless communication services can be efficiently provided.
  • it is also considered to connect a CU and a DU in many-to-many connection instead of the above-described one-to-many connection or many-to-one connection.
  • the functions of the base station apparatus include processing of PDCP (Packet Data Convergence Protocol) layer, RLC (Radio Link Control) layer, MAC (Media Access Control) layer and PHY (Physical) layer in order from the upper layer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • PHY Physical layer
  • the base station apparatus When the base station apparatus (gNB) is functionally separated into CUs and DUs, there are various options as to which layer is separated into CUs and DUs.
  • HLS High Layer Split
  • LLS Low Layer Split
  • a CU and a DU are separated between the PDCP layer and the RLC layer, the processing unit of the RRC layer and the PDCP layer is included in the CU, and the RLC layer and the MAC are included in the DU.
  • Layer and PHY layer processing units are included.
  • the CU and DU are separated between the MAC layer and the PHY layer, the CU includes an RRC layer, a PDCP layer, an RLC layer, and a MAC layer processing unit, and the DU includes a PHY layer processing unit.
  • an LLS in which the inside of the PHY layer is divided into an upper layer and a lower layer and the CU and DU are separated between the upper layer and the lower layer is also considered.
  • a processing unit of the MAC layer is included in the CU.
  • the MAC layer includes a process such as scheduling for allocating radio resources that can be used for radio transmission from the DU to the radio terminal apparatus. Therefore, when the functions are separated by the LLS, the DU (radio apparatus) and the radio terminal A CU (Radio Control Unit) executes scheduling of radio communication between apparatuses.
  • the disclosed technology has been made in view of the above points, and an object thereof is to provide a radio communication system, a radio control apparatus, and a radio resource control method capable of avoiding redundant allocation of radio resources during scheduling. To do.
  • a wireless communication system disclosed in the present application is a wireless communication system including a first wireless control device, a second wireless control device, a wireless device, and a wireless terminal device, wherein the first wireless control device
  • the apparatus includes a transmission unit that notifies the second radio control apparatus of a request related to a first radio resource for communication according to the control of the first radio control apparatus, and the second radio control apparatus A receiving unit that receives a request regarding the first radio resource notified from the first radio control device, the first radio resource, and the radio device connected to the second radio control device.
  • a management unit that controls a second radio resource used for radio communication, a notification unit that notifies the first radio control apparatus of information related to the first radio resource controlled by the management unit, and the second radio resource None
  • a scheduling unit that allocates a third radio resource that is at least part of the second radio resource controlled by the management unit for communication between the control device and the radio terminal device; And a wireless communication unit that wirelessly communicates with the wireless device using the third wireless resource.
  • the wireless control device and the wireless resource control method disclosed in the present application, there is an effect that it is possible to avoid overlapping assignment of wireless resources during scheduling.
  • FIG. 1 is a diagram illustrating a specific example of CU / DU function separation.
  • FIG. 2 is a diagram illustrating an example of the wireless communication system according to the first embodiment.
  • FIG. 3 is a block diagram showing a configuration of the CU according to the first embodiment.
  • FIG. 4 is a block diagram showing a configuration of the DU according to the first embodiment.
  • FIG. 5 is a sequence diagram showing an operation at the time of IF setting.
  • FIG. 6 is a sequence diagram showing an operation at the time of regular resource arbitration.
  • FIG. 7 is a sequence diagram showing an operation at the time of temporary resource arbitration.
  • FIG. 8 is a diagram illustrating an example of a change in the amount of radio resources.
  • FIG. 9 is a block diagram showing a configuration of a CU according to the second embodiment.
  • FIG. 10 is a sequence diagram showing an operation when the master is changed.
  • FIG. 11 is a sequence diagram illustrating a specific example of the master change.
  • FIG. 2 is a diagram illustrating an example of the wireless communication system according to the first embodiment.
  • a plurality of CUs (Central Units) 100a to 100c are connected to a core network, and the CUs 100a to 100c and a plurality of DUs (Distributed Units) 200a to 200c are many-to-many connected.
  • the DUs 200a to 200c communicate wirelessly with a terminal device (UE: User Equipment) 20.
  • UE User Equipment
  • the core network includes UPF (User Plane Function) 11, AMF (Access and Mobility Management Function) 12, SMF (Session Management Function) 13, PCF (Policy Control Function) 14, AUSF (Authentication Server Function) 15, and UDM (Unified). Data Management) 16 is arranged.
  • UPF User Plane Function
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • PCF Policy Control Function
  • AUSF Authentication Server Function
  • UDM Unified. Data Management
  • the UPF 11 is a device that controls the user plane, and executes routing and transfer of user data.
  • the AMF 12 is a device that controls the control plane, and terminates the control plane in a radio access network (RAN).
  • the SMF 13 performs session management.
  • the PCF 14 provides policy rules related to the control plane.
  • the AUSF 15 performs an authentication process for the UE 20.
  • the UDM 16 stores subscriber information and the like.
  • the CUs 100a to 100c are radio control apparatuses that are connected to the UPF 11 and the AMF 12 of the core network and control radio communication between the DUs 200a to 200c and the UE 20 that are connected to each other. That is, in the example shown in FIG. 2, the CU 100a controls wireless communication by the DU 200a, the CU 100b controls wireless communication by the DUs 200a and 200b, and the CU 100c controls wireless communication by the DUs 200a and 200c.
  • Each of the CUs 100a to 100c may be a wireless control device that controls transmission / reception of data of different services, or may be a wireless control device managed by different communication carriers.
  • the CUs 100a to 100c execute MAC layer scheduling. That is, the CUs 100a to 100c allocate radio resources to radio communication between the DUs 200a to 200c and the UE 20 to be connected. Any one of the CUs 100a to 100c connected to the DU 200a is a master CU (hereinafter also simply referred to as “master”) regarding the DU 200a, and the remaining two are CUs that are slaves (hereinafter also simply referred to as “slave”). It becomes.
  • master master CU
  • slave CUs that are slaves
  • the master executes arbitration (control) of radio resources used by the CUs 100a to 100c for scheduling, and controls the radio resources available to the respective CUs 100a to 100c for scheduling. Therefore, the slave performs scheduling of radio communication by the DU 200a using the radio resource instructed by the master.
  • the configuration and operation of the CUs 100a to 100c will be described in detail later. For example, an operation of selecting the UE 20 with which the CU 100a communicates and selecting (determining) a radio resource to be used for radio communication with the selected UE 20 is referred to as “scheduling”.
  • the total radio resources used when the CU 100a performs radio communication with one or more UEs 20 and the total radio resources used when the other CUs 100b and CU 100c perform radio communication with one or more UEs 20 are controlled.
  • the operation to be managed is called “resource control”.
  • the DUs 200a to 200c are wireless devices that perform wireless communication with the UE 20 according to control by the connected CUs 100a to 100c. That is, in the example shown in FIG. 2, the DU 200a is controlled by the CUs 100a to 100c, the DU 200b is controlled by the CU 100b, and the DU 200c is controlled by the CU 100c.
  • the data addressed to the UE 20 is wirelessly transmitted according to the scheduling performed by each of the CUs 100a to 100c. That is, the DU 200a wirelessly transmits data to the UE 20 using the radio resources allocated by each of the CUs 100a to 100c. At this time, since arbitration of radio resources is performed by the master, duplicate allocation of radio resources by the CUs 100a to 100c does not occur, and the DU 200a wirelessly transmits data as scheduled by all the CUs 100a to 100c. Can do.
  • the UE 20 performs wireless communication with the DUs 200a to 200c.
  • the wireless communication system may include a plurality of UEs 20, and data destined for each UE 20 is transmitted according to scheduling by the CUs 100a to 100c. 200c is wirelessly transmitted.
  • data transmitted from a plurality of UEs 20 may be wirelessly transmitted from each UE 20 in accordance with scheduling by the CUs 100a to 100c.
  • FIG. 3 is a block diagram illustrating a configuration of the CU 100 according to the first embodiment.
  • the CU 100 corresponds to the CUs 100a to 100c shown in FIG. 3 includes a network interface unit (hereinafter abbreviated as “network I / F unit”) 110, a processor 120, a memory 130, and a LAN (Local Area Network) communication interface unit (hereinafter “LAN communication I / F unit”). 140).
  • network I / F unit network interface unit
  • processor 120 a processor 120
  • memory 130 a memory 130
  • LAN communication I / F unit Local Area Network
  • the network I / F unit 110 is connected to the UPF 11 and the AMF 12 of the core network, and transmits / receives data. Specifically, the network I / F unit 110 transmits / receives user data to / from the UPF 11 and transmits / receives control data to / from the AMF 12.
  • the processor 120 includes, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), or a DSP (Digital Signal Processor), and performs overall control of the CU 100.
  • the processor 120 includes a PDCP processing unit 121, an RLC processing unit 122, a MAC processing unit 123, a resource control unit 124, and a master management unit 125.
  • the PDCP processing unit 121 executes PDCP layer processing such as data ordering and header compression. That is, the PDCP processing unit 121 performs PDCP layer processing on the transmission data acquired from the UPF 11 or the AMF 12 and outputs the transmission data to the RLC processing unit 122. In addition, the PDCP processing unit 121 acquires received data from the RLC processing unit 122, and executes PDCP layer processing on the received data.
  • PDCP layer processing such as data ordering and header compression. That is, the PDCP processing unit 121 performs PDCP layer processing on the transmission data acquired from the UPF 11 or the AMF 12 and outputs the transmission data to the RLC processing unit 122.
  • the PDCP processing unit 121 acquires received data from the RLC processing unit 122, and executes PDCP layer processing on the received data.
  • the RLC processing unit 122 executes RLC layer processing such as retransmission control. That is, the RLC processing unit 122 acquires transmission data from the PDCP processing unit 121, and performs RLC layer processing on the transmission data. In addition, the RLC processing unit 122 acquires received data from the MAC processing unit 123, and performs RLC layer processing on the received data.
  • RLC layer processing such as retransmission control. That is, the RLC processing unit 122 acquires transmission data from the PDCP processing unit 121, and performs RLC layer processing on the transmission data. In addition, the RLC processing unit 122 acquires received data from the MAC processing unit 123, and performs RLC layer processing on the received data.
  • the MAC processing unit 123 executes MAC layer processing such as scheduling and retransmission control. That is, the MAC processing unit 123 acquires transmission data from the RLC processing unit 122, and performs MAC layer processing on the transmission data. In addition, the MAC processing unit 123 acquires received data from the DU 200 via the LAN communication I / F unit 140, and executes a MAC layer process on the received data.
  • the MAC processing unit 123 is also a scheduling unit that executes scheduling.
  • the MAC processing unit 123 uses a radio resource such as a time or a frequency band specified by the resource control unit 124 when executing scheduling for allocating radio resources for radio communication between the DU 200 and the UE 20.
  • the resource control unit 124 controls radio resources that the MAC processing unit 123 can use in scheduling. Specifically, the resource control unit 124 designates radio resources allocated by the master CU to the CU 100 as radio resources that can be used for scheduling. Further, the resource control unit 124 monitors the allocation status of radio resources in the MAC processing unit 123, and responds with an amount of radio resources necessary for scheduling when inquired from the master management unit 125. Furthermore, the resource control unit 124 determines whether or not a shortage of radio resources has occurred in the scheduling, and if a shortage of radio resources has occurred, reports that fact to the master management unit 125.
  • the master management unit 125 manages master CU information for each DU 200 to which the CU 100 is connected. Then, when the CU 100 is a master, the master management unit 125 requests a slave connected to the same DU 200 to periodically report the amount of necessary radio resources. When the amount of necessary radio resource is reported from the slave, the master management unit 125 controls the radio resource used by each CU including the CU 100 and notifies each slave of the control result as information on the radio resource.
  • the master management unit 125 makes an inquiry to the resource control unit 124 for information on the amount of radio resources necessary for scheduling and the usage status of radio resources in response to a request from the master, The response from the control unit 124 is reported to the master. Further, when the resource control unit 124 reports that a shortage of radio resources has occurred, the master management unit 125 requests the master to increase the distribution of radio resources. Note that the master management unit 125 may request the master to reduce the allocation of radio resources when the resource control unit 124 reports that surplus radio resources have occurred. Furthermore, when radio resources used based on radio channel quality such as reception power or reception quality notified from the UE 20 are not suitable for radio communication, the master management unit 125 changes the radio resources to the master. You may request. In short, the master management unit 125 executes control regarding radio resources.
  • the processor 120 may have an SDAP (Service Data Adaptation Protocol) processing unit.
  • the SDAP processing unit maps a flow in which communication conditions (for example, QoS (Quality of Service)) are set to a bearer.
  • the memory 130 includes, for example, RAM (Random Access Memory) or ROM (Read Only Memory), and stores information used by the processor 120 to execute processing.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • LAN communication I / F unit 140 is connected to other CU 100 and DU 200 to transmit and receive data. Specifically, the LAN communication unit I / F unit 140 periodically transmits / receives a request or response for the amount of required radio resources to / from other CUs 100, or notifies the allocation of radio resources in each CU 100. Send and receive. Further, the LAN communication unit I / F unit 140 transmits the transmission data processed by the MAC processing unit 123 to the DU 200, receives the reception data from the DU 200, and outputs the received data to the MAC processing unit 123.
  • an interface connected to another CU 100 is called, for example, an Xn interface
  • an interface connected to the DU 200 is called, for example, an F1 interface.
  • Control information (C plane) transmitted using the Xn interface or F1 interface is transmitted using SCTP (Stream Control Transmission Protocol), and user data (U plane) is transmitted using GTP-U (GPRS Tunneling Protocol for User Plane). ) And UDP (User Datagram Protocol).
  • FIG. 4 is a block diagram showing a configuration of DU 200 according to the first embodiment.
  • the DU 200 corresponds to the DUs 200a to 200c shown in FIG. 4 includes a LAN communication I / F unit 210, a processor 220, a memory 230, and a wireless transmission / reception unit 240.
  • the LAN communication I / F unit 210 is connected to the CU 100 and transmits / receives data. Specifically, the LAN communication I / F unit 210 receives transmission data from the CU 100 and transmits the reception data acquired from the PHY processing unit 221 to the CU 100.
  • the LAN communication unit I / F unit 210 can be connected to a plurality of CUs 100, and receives transmission data scheduled by each CU 100.
  • the processor 220 includes, for example, a CPU, FPGA, DSP, or the like, and performs overall control of the entire DU 200. Specifically, the processor 220 includes a PHY processing unit 221.
  • the PHY processing unit 221 executes PHY layer processing such as D / A (Digital / Analog) conversion, A / D (Analog / Digital) conversion, and amplification of signals. That is, the PHY processing unit 221 acquires transmission data from the LAN communication I / F unit 210, executes PHY layer processing on the transmission data, and outputs the transmission data to the wireless transmission / reception unit 240. In addition, the PHY processing unit 221 performs PHY layer processing on the reception data output from the wireless transmission / reception unit 240.
  • PHY layer processing such as D / A (Digital / Analog) conversion, A / D (Analog / Digital) conversion, and amplification of signals. That is, the PHY processing unit 221 acquires transmission data from the LAN communication I / F unit 210, executes PHY layer processing on the transmission data, and outputs the transmission data to the wireless transmission / reception unit 240. In addition, the PHY processing unit 221 performs PHY layer processing on the reception
  • the memory 230 includes, for example, a RAM or a ROM, and stores information used by the processor 120 to execute processing.
  • the wireless transmission / reception unit 240 is a wireless communication unit that wirelessly transmits the transmission data output from the PHY processing unit 221 to the UE 20 via the antenna. In addition, the wireless transmission / reception unit 240 outputs reception data received via the antenna to the PHY processing unit 221.
  • an interface is set between the CU 100a and the DU 200 (step S101). That is, for example, an F1 interface is set between the LAN communication I / F unit 140 of the CU 100a and the LAN communication I / F unit 210 of the DU 200.
  • the CU 100a since no other CU is connected to the DU 200 and the CU 100a is the CU that first connects to the DU 200, the CU 100a becomes the master. Therefore, the master management unit 125 of the CU 100a stores that the CU 100a is a master.
  • a master CU may be determined for each DU 200 in advance, or a CU that is connected to the DU 200 first in a service unit provided by the DU 200 may be a master.
  • the F1 interface is subsequently set between the CU 100b and the DU 200 (step S102).
  • the DU 200 since the CU 100a and the DU 200 are already connected, the DU 200 notifies the CU 100b that the CU 100a is already connected (step S103).
  • This notification includes information that can identify the CU 100a such as an IP (Internet Protocol) address of the CU 100a and a cell ID that uniquely identifies the CU 100a.
  • the DU 200 notifies the CU 100b to that effect (step S104).
  • This notification also includes information that can identify the CU 100a such as the IP address and cell ID of the CU 100a.
  • the master management unit 125 of the CU 100b stores that the CU 100a is the master.
  • the F1 interface is set between the CU 100c and the DU 200 (step S105).
  • the DU 200 since the CUs 100a and 100b and the DU 200 are already connected, the DU 200 notifies the CU 100c that the CUs 100a and 100b are already connected (step S106).
  • This notification includes information that can identify the CU 100a and the CU 100b, such as the IP addresses of the CUs 100a and 100b and the cell IDs corresponding to the CUs 100a and 100b.
  • the DU 200 notifies the CU 100c to that effect (step S107).
  • This notification includes information that can specify the CU 100a such as the IP address and cell ID of the CU 100a, for example, as described above.
  • the master management unit 125 of the CU 100c stores that the CU 100a is the master.
  • a plurality of CUs 100a to 100c connected to the DU 200 share information regarding the master, and the CU 100a is set as the master CU. Thereafter, arbitration of radio resources used by the CUs 100a to 100c for scheduling is executed by the master.
  • FIG. 6 is a sequence diagram illustrating an operation when radio resource arbitration is periodically performed.
  • the master management unit 125 of the CU 100a that has become the master requests the slave CUs 100b and 100c to report the amount of radio resources necessary for scheduling in a predetermined cycle (steps S201 and S202).
  • This request may include identification information of the DU 200 in order to specify that the report is related to the DU 200.
  • service identification information may be included to specify that the resource is a radio resource related to a specific service. It may be.
  • the master management unit 125 requests the resource control unit 124 to report the same amount of radio resources.
  • the master management unit 125 of the slave CUs 100b and 100c that received the request inquires the resource control unit 124 about the amount of radio resources necessary for scheduling and obtains a response. Then, the master management unit 125 of the CUs 100b and 100c transmits the requested resource information including the obtained amount of radio resources to the master CU 100a (steps S203 and S204).
  • the requested resource information includes, for example, the identification information of the target service, the required bandwidth indicated by the number of subcarriers or the number of resource blocks, the maximum transmission data amount in one transmission, the required transmission delay, the buffer retention amount, etc. May be included.
  • the master management unit 125 of the CU 100a executes radio resource arbitration (step S205). That is, allocation of the entire radio resources that can be used for scheduling by the CUs 100a to 100c to the CUs 100a to 100c is determined. In this arbitration, allocation is determined so that radio resources used for scheduling by the CUs 100a to 100c do not overlap each other. In addition, due to this arbitration, more radio resources are allocated to CUs in which a shortage of radio resources occurs, and less radio resources are allocated to CUs in which a surplus of radio resources occurs. The In this way, the master management unit 125 controls radio resources.
  • the master management unit 125 of the CU 100a generates distribution resource information for notifying the distribution of radio resources to the slave CUs 100b and 100c, and transmits them to the CUs 100b and 100c (steps S206 and S207). Also, information on the radio resources allocated to the CU 100a is notified from the master management unit 125 to the resource control unit 124. The information on the radio resource controlled as described above may be notified as information on the radio resource. Information regarding radio resources for slave CUs 100b and 100c is notified to CUs 100b and 100c by network I / F unit 110.
  • the transmitted allocation resource information is acquired by the master management unit 125 of the CUs 100b and 100c and output to the resource control unit 124.
  • the resource control unit 124 of each of the CUs 100a to 100c specifies, to the MAC processing unit 123, radio resources that the own CU uses for scheduling according to the distributed resource information. Then, the MAC processing unit 123 executes scheduling for assigning the designated radio resource to the radio communication between the DU 200 and the UE 20, and transmission data, for example, is transmitted from each of the CUs 100a to 100c to the DU 200 according to the scheduling result (step) S208 to S210).
  • FIG. 7 is a sequence diagram illustrating an operation in a case where arbitration of radio resources is temporarily performed.
  • the resource control unit 124 of the CU 100b notifies the master management unit 125 that the shortage of radio resources has occurred and the amount of radio resources necessary for scheduling. Then, the master management unit 125 of the CU 100b transmits request resource information including the notified amount of radio resources to the master CU 100a (step S301).
  • the master management unit 125 of the CU 100a executes radio resource arbitration (step S302). That is, it is determined whether or not to distribute the radio resources allocated to the other CUs 100a and 100c to the CU 100b that lacks radio resources. As a result of this determination, in the case of allocating radio resources, it is determined how much radio resources allocated to which CU are allocated to the CU 100b. That is, the allocation of new radio resources to compensate for the shortage of radio resources of the CU 100b is determined.
  • the master management unit 125 of the CU 100a generates distribution resource information for notifying the distribution of radio resources to the slave CUs 100b and 100c, and transmits the generated resource information to the CUs 100b and 100c (steps S303 and S304). Also, information on the radio resources allocated to the CU 100a is notified from the master management unit 125 to the resource control unit 124. Note that the allocated resource information may not be transmitted to a CU in which the allocated radio resource does not change. That is, for example, when the shortage of radio resources in the CU 100b is allotted from the radio resources allocated to the CU 100a, transmission of allocated resource information to the CU 100c can be omitted.
  • the transmitted allocation resource information is acquired by the master management unit 125 of the CUs 100b and 100c and output to the resource control unit 124.
  • the resource control unit 124 of each of the CUs 100a to 100c specifies, to the MAC processing unit 123, radio resources that the own CU uses for scheduling according to the distributed resource information. Then, the MAC processing unit 123 executes scheduling for assigning the designated radio resource to the radio communication between the DU 200 and the UE 20, and transmission data, for example, is transmitted from each of the CUs 100a to 100c to the DU 200 according to the scheduling result (step) S305 to S307).
  • the master performs radio resource arbitration in response to a request from the corresponding CU.
  • radio resource arbitration in response to a request from the corresponding CU.
  • FIG. 8 is a diagram showing an example of changes in the amount of radio resources allocated to the CUs 100a to 100c.
  • the amount of radio resources allocated to the CUs 100a to 100c does not change even in uplink (UL) transmission timings UL # 1 to # 3 at which data is transmitted from the UE 20 to the DU 200.
  • the CUs 100a to 100c perform scheduling using the allocated radio resources.
  • the radio resources are not assigned redundantly by the CUs 100a to 100c.
  • the master CU 100a is requested to add radio resources, and the CU 100a performs radio resource arbitration.
  • radio resources allocated to the CU 100c are allocated to the CU 100b.
  • the allocation resource information is transmitted from the master to the CUs 100b and 100c, and the radio resources allocated to the CU 100b increase at the downlink transmission timings DL # 4 and DL # 5 and the uplink transmission timing UL # 4.
  • the radio resources allocated to the CU 100c are decreasing.
  • the master CU 100a performs arbitration of radio resources used by the CU 100a to CU 100c for scheduling, so that an appropriate amount of radio resources is allocated to the CUs 100a to 100c. Further, since the radio resources allocated to each of the CUs 100a to 100c do not overlap each other, it is possible to avoid overlapping allocation of radio resources at the time of scheduling.
  • each CU shares information related to the master CU at the time of setting the interface between the CU and the DU, and the master CU distributes wirelessly to each CU periodically and temporarily.
  • a resource is determined and distribution resource information is notified to each CU. Since each CU performs scheduling of allocated radio resources according to the allocated resource information, even when a plurality of CUs are connected to one DU, each CU allocates the same radio resource to radio communication. There is no. In other words, it is possible to avoid redundant allocation of radio resources during scheduling.
  • the feature of the second embodiment is that the master detects the processing load, and when the processing load is large, the master is changed to another CU.
  • FIG. 9 is a block diagram showing a configuration of CU 100 according to the second embodiment. 9, the same parts as those in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • the CU 100 illustrated in FIG. 9 includes a processing load detection unit 301 and a master management unit 302 instead of the master management unit 125 of the CU 100 illustrated in FIG.
  • the processing load detection unit 301 detects the processing load in the CU 100. Specifically, when the CU 100 is a master, the processing load detection unit 301 monitors, for example, the operation rate of the processor 120 or the number of DUs 200 that the CU 100 operates as a master as the processing load, and the processing load is predetermined. It is determined whether or not the reference is exceeded. Then, when the processing load is equal to or greater than a predetermined reference, the processing load detection unit 301 notifies the master management unit 302 to that effect. In this manner, the processing load detection unit 301 collects (acquires) information regarding the processing load status and notifies the master management unit 302 of information regarding the processing load.
  • the processing load detection unit 301 collects (acquires) information regarding the processing load status and notifies the master management unit 302 of information regarding the processing load.
  • the processing load detection unit 301 determines, for example, the processing rate of the processor 120 and the number of DUs 200 that the CU 100 operates as a master when the processing load is inquired from the master. Detect as. Then, the processing load detection unit 301 generates a processing load response including information on the detected processing load and outputs the response to the master management unit 302.
  • the master management unit 302 manages information on the master CU for each DU 200 to which the CU 100 is connected. Then, when the CU 100 is a master, the master management unit 302 requests a slave connected to the same DU 200 to periodically report the amount of necessary radio resources. When the amount of necessary radio resources is reported from the slave, the master management unit 302 determines the allocation of radio resources for each CU including the CU 100 and notifies the determined allocation to each slave. Further, when the processing load detection unit 301 is notified that the processing load is equal to or greater than a predetermined reference, the master management unit 302 inquires of the slave about the processing load. When the processing load response is received from the slave, the master management unit 302 determines a new master based on the processing load of each slave, and transmits information on the new master to each slave.
  • the master management unit 302 inquires the resource control unit 124 about the amount of radio resources necessary for scheduling in response to a request from the master, and sends a response from the resource control unit 124 to the master. Report to In addition, when the resource control unit 124 reports that a shortage of radio resources has occurred, the master management unit 302 requests the master to increase radio resource allocation. Further, the master management unit 302 transmits the processing load response generated by the processing load detection unit 301 to the master when there is an inquiry about the processing load from the master.
  • the processing load is monitored by the processing load detector 301.
  • This processing load is, for example, the operating rate of the processor 120 or the number of DUs 200 that the CU 100a operates as a master.
  • the processing load detection unit 301 detects that the processing load is equal to or greater than a predetermined reference (step S401)
  • the master management unit 302 transmits an inquiry about the processing load to the slave CUs 100b and 100c ( Steps S402 and S403).
  • the processing load detection unit 301 detects the processing load in the slave CUs 100b and 100c for which the processing load has been inquired. That is, for example, the operating rate of the processor 120 and the number of DUs 200 that the CUs 100b and 100c operate as masters are detected as the processing load. Then, a processing load response including information on the detected processing load is transmitted from the master management unit 302 of each of the CUs 100b and 100c (steps S404 and S405).
  • the master management unit 302 of the CU 100a determines a new master based on the processing load of the slave (step S406). Specifically, for example, a CU having the smallest processing load and a smaller processing load than the current master CU 100a is determined as a new master.
  • the description will be continued assuming that the CU 100b is determined as a new master.
  • the master management unit 302 of the CU 100a transmits to the CU 100b, which is the new master, charge request information (charge request information) for requesting (requesting) a master charge (step request information). S407).
  • charge request information charge request information
  • step request information charge request information
  • step request information charge approval information for approving the master charge
  • step S408 charge rejection information for rejecting the master charge
  • the master management unit 302 of the CU 100a transmits a master change notification notifying that the master is changed to the CU 100b to the CUs 100b and 100c (steps S409 and S410).
  • the master for the DU 200 is changed from the CU 100a to the CU 100b, and thereafter, the CU 100b determines the allocation of radio resources to the CUs 100a to 100c.
  • the master inquires about the processing load of the slave CU and requests the slave in charge of the master to handle the master.
  • the master is changed, so that the CU with a small processing load operates as the master, and the control delay related to the arbitration of radio resources can be reduced.
  • arbitration of radio resources is performed quickly, and scheduling and data transmission delays by each CU can be suppressed.
  • the master change described in the second embodiment may be performed individually for each DU 200. That is, since the master is determined for each DU 200, for example, when the CU 100a is a master for two different DUs 200, the master for only one DU 200 can be changed.
  • step S401 when it is detected that the processing load of the CU 100a is large when the CU 100a is a master for DU # 1 and DU # 2 (step S401), the master change described above is performed. Is performed (steps S402 to S410). However, here, it is assumed that the master for only DU # 1 of DU # 1 and DU # 2 is changed to CU100b, and CU100a continues to be DU # 2 even after CU100b becomes the master for DU # 1. Master about.

Abstract

A first radio control device has a transmission unit (140) that notifies a second radio control device of a request regarding a first radio resource for transmitting in accordance with the control of the first radio control device. The second radio control device has a reception unit (140) that receives the request regarding the first radio resource, a management unit (125) that controls the first radio resource and a second radio resource, said second radio resource being used for radio communication by a radio device that connects to the second radio control device, a notification unit (140) that notifies the first radio control device of information regarding the first radio resource controlled by the management unit, and a scheduling unit (123) that assigns a third radio resource to communication of the second radio control device and a radio terminal device, said third radio resource being at least one portion of the second radio resource controlled by the management unit. The radio device has a radio communication unit (240) that uses the third radio resource to perform radio communication with the radio device.

Description

無線通信システム、無線制御装置及び無線リソース制御方法Radio communication system, radio control apparatus, and radio resource control method
 本発明は、無線通信システム、無線制御装置及び無線リソース制御方法に関する。 The present invention relates to a wireless communication system, a wireless control device, and a wireless resource control method.
 近年、無線通信システムに設けられる基地局装置が例えばBBU(Base Band Unit)などの無線制御装置と例えばRRH(Remote Radio Head)などの無線装置とに分離され、無線制御装置と無線装置とが例えばCPRI(Common Public Radio Interface)などのインタフェースによって接続されることがある。また、3GPP(3rd Generation Partnership Project)では、第5世代無線通信システム(5G)の基地局装置であるgNBを、種々の制御をする無線制御装置であるCU(Central Unit)と、信号の無線送受信をする無線装置であるDU(Distributed Unit)とに分離し、CUとDUをF1インタフェースによって接続することが検討されている。 In recent years, base station devices provided in wireless communication systems have been separated into wireless control devices such as BBU (Base Band Unit) and wireless devices such as RRH (Remote Radio Head). It may be connected by an interface such as CPRI (Common Public Radio Interface). Also, in 3GPP (3rd Generation Partnership Project), gNB, which is a base station device of the 5th generation wireless communication system (5G), and CU (Central Unit), which is a radio controller that performs various controls, transmit and receive signals wirelessly. It is considered that the CU is connected to the DU (Distributed Unit), which is a wireless device that performs the communication, and the CU and the DU are connected by the F1 interface.
 このように基地局装置の機能分離をすることにより、例えば1つのCUに複数のDUを接続し、DUを分散配置することで、低コストで広大なエリアをカバーする無線通信システムを構築することが可能となる。また反対に、例えばサービスごとに設けられる複数のCUを1つのDUに接続することで、効率的に多様な無線通信サービスを提供することが可能となる。さらに、上記のような1対多接続又は多対1接続ではなく、CUとDUを多対多接続することも検討されている。 By separating the functions of the base station device in this way, for example, a plurality of DUs are connected to one CU, and the DUs are distributed to construct a wireless communication system that covers a large area at a low cost. Is possible. On the other hand, for example, by connecting a plurality of CUs provided for each service to one DU, various wireless communication services can be efficiently provided. Furthermore, it is also considered to connect a CU and a DU in many-to-many connection instead of the above-described one-to-many connection or many-to-one connection.
 ところで、一般に基地局装置の機能は、上位レイヤから順にPDCP(Packet Data Convergence Protocol)層、RLC(Radio Link Control)層、MAC(Media Access Control)層及びPHY(Physical)層の処理を含む。そして、5Gでは、ユーザプレーン(Uプレーン)の機能に、PDCP層の上位レイヤであるSDAP(Service Data Adaptation Protocol)層の処理を導入することが議論されている。 By the way, in general, the functions of the base station apparatus include processing of PDCP (Packet Data Convergence Protocol) layer, RLC (Radio Link Control) layer, MAC (Media Access Control) layer and PHY (Physical) layer in order from the upper layer. In 5G, it is discussed to introduce processing of an SDAP (Service Data Adaptation Protocol) layer, which is an upper layer of the PDCP layer, into the function of the user plane (U plane).
 基地局装置(gNB)をCU及びDUに機能分離する際には、どのレイヤ間でCUとDUに分離するかについて、様々な選択肢がある。5Gの無線通信システムでは、現在のところ、比較的上位のレイヤ間でCUとDUを分離するHLS(High Layer Split)と、比較的下位のレイヤ間でCUとDUを分離するLLS(Low Layer Split)とが導入される予定である。 When the base station apparatus (gNB) is functionally separated into CUs and DUs, there are various options as to which layer is separated into CUs and DUs. In 5G wireless communication systems, currently, HLS (High Layer Split) that separates CU and DU between relatively higher layers and LLS (Low Layer Split) that separates CU and DU between relatively lower layers. ) And will be introduced.
 具体的には、例えば図1に示すように、HLSではPDCP層とRLC層の間でCUとDUが分離され、CUにRRC層及びPDCP層の処理部が含まれ、DUにRLC層、MAC層及びPHY層の処理部が含まれる。一方、LLSではMAC層とPHY層の間でCUとDUが分離され、CUにRRC層、PDCP層、RLC層及びMAC層の処理部が含まれ、DUにPHY層の処理部が含まれる。他にも、PHY層内部を上位層と下位層に分割し、この上位層と下位層の間でCUとDUが分離されるLLSも考えられている。 Specifically, for example, as shown in FIG. 1, in HLS, a CU and a DU are separated between the PDCP layer and the RLC layer, the processing unit of the RRC layer and the PDCP layer is included in the CU, and the RLC layer and the MAC are included in the DU. Layer and PHY layer processing units are included. On the other hand, in LLS, the CU and DU are separated between the MAC layer and the PHY layer, the CU includes an RRC layer, a PDCP layer, an RLC layer, and a MAC layer processing unit, and the DU includes a PHY layer processing unit. In addition, an LLS in which the inside of the PHY layer is divided into an upper layer and a lower layer and the CU and DU are separated between the upper layer and the lower layer is also considered.
 上述したように、gNBをLLSによって機能分離する場合には、MAC層の処理部がCUに含まれる。MAC層には、例えばDUからの無線送信に利用可能な無線リソースを無線端末装置に割り当てるスケジューリングなどの処理が含まれるため、LLSによって機能分離された場合には、DU(無線装置)と無線端末装置間の無線通信のスケジューリングをCU(無線制御装置)が実行する。 As described above, when gNB is functionally separated by LLS, a processing unit of the MAC layer is included in the CU. The MAC layer includes a process such as scheduling for allocating radio resources that can be used for radio transmission from the DU to the radio terminal apparatus. Therefore, when the functions are separated by the LLS, the DU (radio apparatus) and the radio terminal A CU (Radio Control Unit) executes scheduling of radio communication between apparatuses.
 このとき、複数のCUが1つのDUに接続される多対1接続や多対多接続の構成では、複数のCUによるスケジューリングにより、無線リソースの重複割り当てが発生することがあるという問題がある。すなわち、複数のCUは、それぞれ1つのDUから端末装置への無線通信のスケジューリングを実行するため、他のCUによって割り当て済みの無線リソースを重複して通信に割り当てることがある。この結果、DUは、端末装置に対して正常に信号を送信することが困難となり、データの欠損や遅延が発生する可能性がある。 At this time, in a many-to-one connection or a many-to-many connection configuration in which a plurality of CUs are connected to one DU, there is a problem in that overlapping allocation of radio resources may occur due to scheduling by a plurality of CUs. That is, since a plurality of CUs each perform scheduling of radio communication from one DU to a terminal device, radio resources already allocated by other CUs may be allocated to communication redundantly. As a result, it becomes difficult for the DU to normally transmit a signal to the terminal device, and data loss and delay may occur.
 開示の技術は、かかる点に鑑みてなされたものであって、スケジューリング時の無線リソースの重複割り当てを回避することができる無線通信システム、無線制御装置及び無線リソース制御方法を提供することを目的とする。 The disclosed technology has been made in view of the above points, and an object thereof is to provide a radio communication system, a radio control apparatus, and a radio resource control method capable of avoiding redundant allocation of radio resources during scheduling. To do.
 本願が開示する無線通信システムは、1つの態様において、第1の無線制御装置と第2の無線制御装置と無線装置と無線端末装置とを有する無線通信システムであって、前記第1の無線制御装置は、前記第1の無線制御装置の制御に応じて通信するための第1の無線リソースに関する要求を前記第2の無線制御装置に通知する送信部を有し、前記第2の無線制御装置は、前記第1の無線制御装置から通知された前記第1の無線リソースに関する要求を受信する受信部と、前記第1の無線リソースと、前記第2の無線制御装置に接続する前記無線装置が無線通信に用いる第2の無線リソースとを制御する管理部と、前記管理部によって制御された第1の無線リソースに関する情報を前記第1の無線制御装置に通知する通知部と、前記第2の無線制御装置と前記無線端末装置との通信に対して、前記管理部によって制御された第2の無線リソースの少なくとも一部である第3の無線リソースを割り当てるスケジューリング部とを有し、前記無線装置は、前記第3の無線リソースを用いて前記無線装置と無線通信する無線通信部を有する。 In one aspect, a wireless communication system disclosed in the present application is a wireless communication system including a first wireless control device, a second wireless control device, a wireless device, and a wireless terminal device, wherein the first wireless control device The apparatus includes a transmission unit that notifies the second radio control apparatus of a request related to a first radio resource for communication according to the control of the first radio control apparatus, and the second radio control apparatus A receiving unit that receives a request regarding the first radio resource notified from the first radio control device, the first radio resource, and the radio device connected to the second radio control device. A management unit that controls a second radio resource used for radio communication, a notification unit that notifies the first radio control apparatus of information related to the first radio resource controlled by the management unit, and the second radio resource Nothing A scheduling unit that allocates a third radio resource that is at least part of the second radio resource controlled by the management unit for communication between the control device and the radio terminal device; And a wireless communication unit that wirelessly communicates with the wireless device using the third wireless resource.
 本願が開示する無線通信システム、無線制御装置及び無線リソース制御方法の1つの態様によれば、スケジューリング時の無線リソースの重複割り当てを回避することができるという効果を奏する。 According to one aspect of the wireless communication system, the wireless control device, and the wireless resource control method disclosed in the present application, there is an effect that it is possible to avoid overlapping assignment of wireless resources during scheduling.
図1は、CU/DU機能分離の具体例を示す図である。FIG. 1 is a diagram illustrating a specific example of CU / DU function separation. 図2は、実施の形態1に係る無線通信システムの一例を示す図である。FIG. 2 is a diagram illustrating an example of the wireless communication system according to the first embodiment. 図3は、実施の形態1に係るCUの構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of the CU according to the first embodiment. 図4は、実施の形態1に係るDUの構成を示すブロック図である。FIG. 4 is a block diagram showing a configuration of the DU according to the first embodiment. 図5は、IF設定時の動作を示すシーケンス図である。FIG. 5 is a sequence diagram showing an operation at the time of IF setting. 図6は、定期リソース調停時の動作を示すシーケンス図である。FIG. 6 is a sequence diagram showing an operation at the time of regular resource arbitration. 図7は、臨時リソース調停時の動作を示すシーケンス図である。FIG. 7 is a sequence diagram showing an operation at the time of temporary resource arbitration. 図8は、無線リソース量の変化の一例を示す図である。FIG. 8 is a diagram illustrating an example of a change in the amount of radio resources. 図9は、実施の形態2に係るCUの構成を示すブロック図である。FIG. 9 is a block diagram showing a configuration of a CU according to the second embodiment. 図10は、マスター変更時の動作を示すシーケンス図である。FIG. 10 is a sequence diagram showing an operation when the master is changed. 図11は、マスター変更の具体例を示すシーケンス図である。FIG. 11 is a sequence diagram illustrating a specific example of the master change.
 以下、本願が開示する無線通信システム、無線制御装置及び無線リソース制御方法の実施の形態について、図面を参照して詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。 Hereinafter, embodiments of a wireless communication system, a wireless control device, and a wireless resource control method disclosed in the present application will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment.
(実施の形態1)
 図2は、実施の形態1に係る無線通信システムの一例を示す図である。図2に示す無線通信システムにおいては、コアネットワークに複数のCU(Central Unit)100a~100cが接続されており、CU100a~100cと複数のDU(Distributed Unit)200a~200cとが多対多接続されている。DU200a~200cは、端末装置(UE:User Equipment)20と無線通信する。
(Embodiment 1)
FIG. 2 is a diagram illustrating an example of the wireless communication system according to the first embodiment. In the wireless communication system shown in FIG. 2, a plurality of CUs (Central Units) 100a to 100c are connected to a core network, and the CUs 100a to 100c and a plurality of DUs (Distributed Units) 200a to 200c are many-to-many connected. ing. The DUs 200a to 200c communicate wirelessly with a terminal device (UE: User Equipment) 20.
 コアネットワークには、UPF(User Plane Function)11、AMF(Access and Mobility Management Function)12、SMF(Session Management Function)13、PCF(Policy Control Function)14、AUSF(Authentication Server Function)15及びUDM(Unified Data Management)16が配置される。 The core network includes UPF (User Plane Function) 11, AMF (Access and Mobility Management Function) 12, SMF (Session Management Function) 13, PCF (Policy Control Function) 14, AUSF (Authentication Server Function) 15, and UDM (Unified). Data Management) 16 is arranged.
 UPF11は、ユーザプレーンを制御する装置であり、ユーザデータのルーティングや転送を実行する。AMF12は、コントロールプレーンを制御する装置であり、無線アクセスネットワーク(RAN:Radio Access Network)におけるコントロールプレーンを終端する。SMF13は、セッション管理をする。PCF14は、コントロールプレーンに関するポリシールールなどを提供する。AUSF15は、UE20の認証処理をする。UDM16は、加入者情報などを記憶する。 The UPF 11 is a device that controls the user plane, and executes routing and transfer of user data. The AMF 12 is a device that controls the control plane, and terminates the control plane in a radio access network (RAN). The SMF 13 performs session management. The PCF 14 provides policy rules related to the control plane. The AUSF 15 performs an authentication process for the UE 20. The UDM 16 stores subscriber information and the like.
 CU100a~100cは、コアネットワークのUPF11及びAMF12に接続され、それぞれ接続するDU200a~200cとUE20との間の無線通信を制御する無線制御装置である。すなわち、図2に示す例では、CU100aがDU200aによる無線通信を制御し、CU100bがDU200a、200bによる無線通信を制御し、CU100cがDU200a、200cによる無線通信を制御する。CU100a~100cは、それぞれが異なるサービスのデータの送受信を制御する無線制御装置であっても良いし、異なる通信事業者が管理する無線制御装置であっても良い。 The CUs 100a to 100c are radio control apparatuses that are connected to the UPF 11 and the AMF 12 of the core network and control radio communication between the DUs 200a to 200c and the UE 20 that are connected to each other. That is, in the example shown in FIG. 2, the CU 100a controls wireless communication by the DU 200a, the CU 100b controls wireless communication by the DUs 200a and 200b, and the CU 100c controls wireless communication by the DUs 200a and 200c. Each of the CUs 100a to 100c may be a wireless control device that controls transmission / reception of data of different services, or may be a wireless control device managed by different communication carriers.
 また、本実施の形態においては、LLSによってCU100a~100cとDU200a~200cとに機能分離されているため、CU100a~100cは、MAC層のスケジューリングを実行する。すなわち、CU100a~100cは、それぞれ接続するDU200a~200cとUE20との間の無線通信に無線リソースを割り当てる。そして、DU200aに接続するCU100a~100cのいずれか1つは、DU200aに関するマスターのCU(以下、単に「マスター」ともいう)となり、残りの2つがスレーブのCU(以下、単に「スレーブ」ともいう)となる。マスターは、CU100a~100cがスケジューリングに用いる無線リソースの調停(制御)を実行し、それぞれのCU100a~100cがスケジューリングに利用可能な無線リソースを制御する。したがって、スレーブは、マスターから指示された無線リソースを用いて、DU200aによる無線通信のスケジューリングを実行する。CU100a~100cの構成及び動作については、後に詳述する。なお、例えばCU100aが通信するUE20を選択し、選択したUE20との無線通信で使用する無線リソースを選択(決定)する動作を「スケジューリング」という。一方で、例えばCU100aが1つ以上のUE20と無線通信を行う際に使用する総無線リソースと他のCU100b及びCU100cが1つ以上のUE20と無線通信を行う際に使用する総無線リソースとを制御及び管理する動作を「リソース制御」という。 In this embodiment, since the functions are separated into the CUs 100a to 100c and the DUs 200a to 200c by the LLS, the CUs 100a to 100c execute MAC layer scheduling. That is, the CUs 100a to 100c allocate radio resources to radio communication between the DUs 200a to 200c and the UE 20 to be connected. Any one of the CUs 100a to 100c connected to the DU 200a is a master CU (hereinafter also simply referred to as “master”) regarding the DU 200a, and the remaining two are CUs that are slaves (hereinafter also simply referred to as “slave”). It becomes. The master executes arbitration (control) of radio resources used by the CUs 100a to 100c for scheduling, and controls the radio resources available to the respective CUs 100a to 100c for scheduling. Therefore, the slave performs scheduling of radio communication by the DU 200a using the radio resource instructed by the master. The configuration and operation of the CUs 100a to 100c will be described in detail later. For example, an operation of selecting the UE 20 with which the CU 100a communicates and selecting (determining) a radio resource to be used for radio communication with the selected UE 20 is referred to as “scheduling”. On the other hand, for example, the total radio resources used when the CU 100a performs radio communication with one or more UEs 20 and the total radio resources used when the other CUs 100b and CU 100c perform radio communication with one or more UEs 20 are controlled. The operation to be managed is called “resource control”.
 DU200a~200cは、それぞれ接続するCU100a~100cによる制御に従って、UE20との間で無線通信する無線装置である。すなわち、図2に示す例では、DU200aがCU100a~100cによって制御され、DU200bがCU100bによって制御され、DU200cがCU100cによって制御される。 The DUs 200a to 200c are wireless devices that perform wireless communication with the UE 20 according to control by the connected CUs 100a to 100c. That is, in the example shown in FIG. 2, the DU 200a is controlled by the CUs 100a to 100c, the DU 200b is controlled by the CU 100b, and the DU 200c is controlled by the CU 100c.
 DU200aは、CU100a~100cによって制御されるため、CU100a~100cそれぞれによるスケジューリングに従って、UE20宛てのデータを無線送信する。すなわち、DU200aは、CU100a~100cそれぞれによって割り当てられた無線リソースを用いて、データをUE20へ無線送信する。このとき、無線リソースの調停がマスターによって実行されているため、CU100a~100cによる無線リソースの重複割り当てが発生しておらず、DU200aは、すべてのCU100a~100cによるスケジューリング通りにデータを無線送信することができる。 Since the DU 200a is controlled by the CUs 100a to 100c, the data addressed to the UE 20 is wirelessly transmitted according to the scheduling performed by each of the CUs 100a to 100c. That is, the DU 200a wirelessly transmits data to the UE 20 using the radio resources allocated by each of the CUs 100a to 100c. At this time, since arbitration of radio resources is performed by the master, duplicate allocation of radio resources by the CUs 100a to 100c does not occur, and the DU 200a wirelessly transmits data as scheduled by all the CUs 100a to 100c. Can do.
 UE20は、DU200a~200cとの間で無線通信する。なお、図2においては、1つのUE20のみを図示しているが、無線通信システムには複数のUE20が含まれていても良く、それぞれのUE20宛てのデータは、CU100a~100cによるスケジューリングに従ってDU200a~200cから無線送信される。同様に、複数のUE20から送信されるデータも、CU100a~100cによるスケジューリングに従って各UE20から無線送信されても良い。 The UE 20 performs wireless communication with the DUs 200a to 200c. In FIG. 2, only one UE 20 is illustrated, but the wireless communication system may include a plurality of UEs 20, and data destined for each UE 20 is transmitted according to scheduling by the CUs 100a to 100c. 200c is wirelessly transmitted. Similarly, data transmitted from a plurality of UEs 20 may be wirelessly transmitted from each UE 20 in accordance with scheduling by the CUs 100a to 100c.
 図3は、実施の形態1に係るCU100の構成を示すブロック図である。CU100は、図2に示したCU100a~100cに対応する。図3に示すCU100は、ネットワークインタフェース部(以下「ネットワークI/F部」と略記する)110、プロセッサ120、メモリ130及びLAN(Local Area Network)通信インタフェース部(以下「LAN通信I/F部」と略記する)140を有する。 FIG. 3 is a block diagram illustrating a configuration of the CU 100 according to the first embodiment. The CU 100 corresponds to the CUs 100a to 100c shown in FIG. 3 includes a network interface unit (hereinafter abbreviated as “network I / F unit”) 110, a processor 120, a memory 130, and a LAN (Local Area Network) communication interface unit (hereinafter “LAN communication I / F unit”). 140).
 ネットワークI/F部110は、コアネットワークのUPF11及びAMF12と接続し、データを送受信する。具体的には、ネットワークI/F部110は、UPF11との間でユーザデータを送受信し、AMF12との間で制御データを送受信する。 The network I / F unit 110 is connected to the UPF 11 and the AMF 12 of the core network, and transmits / receives data. Specifically, the network I / F unit 110 transmits / receives user data to / from the UPF 11 and transmits / receives control data to / from the AMF 12.
 プロセッサ120は、例えばCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)又はDSP(Digital Signal Processor)などを備え、CU100の全体を統括制御する。具体的には、プロセッサ120は、PDCP処理部121、RLC処理部122、MAC処理部123、リソース制御部124及びマスター管理部125を有する。 The processor 120 includes, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), or a DSP (Digital Signal Processor), and performs overall control of the CU 100. Specifically, the processor 120 includes a PDCP processing unit 121, an RLC processing unit 122, a MAC processing unit 123, a resource control unit 124, and a master management unit 125.
 PDCP処理部121は、例えばデータの順序整列やヘッダ圧縮などのPDCP層の処理を実行する。すなわち、PDCP処理部121は、UPF11又はAMF12から取得した送信データに対してPDCP層の処理を実行し、送信データをRLC処理部122へ出力する。また、PDCP処理部121は、RLC処理部122から受信データを取得し、受信データに対してPDCP層の処理を実行する。 The PDCP processing unit 121 executes PDCP layer processing such as data ordering and header compression. That is, the PDCP processing unit 121 performs PDCP layer processing on the transmission data acquired from the UPF 11 or the AMF 12 and outputs the transmission data to the RLC processing unit 122. In addition, the PDCP processing unit 121 acquires received data from the RLC processing unit 122, and executes PDCP layer processing on the received data.
 RLC処理部122は、例えば再送制御などのRLC層の処理を実行する。すなわち、RLC処理部122は、PDCP処理部121から送信データを取得し、送信データに対してRLC層の処理を実行する。また、RLC処理部122は、MAC処理部123から受信データを取得し、受信データに対してRLC層の処理を実行する。 The RLC processing unit 122 executes RLC layer processing such as retransmission control. That is, the RLC processing unit 122 acquires transmission data from the PDCP processing unit 121, and performs RLC layer processing on the transmission data. In addition, the RLC processing unit 122 acquires received data from the MAC processing unit 123, and performs RLC layer processing on the received data.
 MAC処理部123は、例えばスケジューリング及び再送制御などのMAC層の処理を実行する。すなわち、MAC処理部123は、RLC処理部122から送信データを取得し、送信データに対してMAC層の処理を実行する。また、MAC処理部123は、LAN通信I/F部140を介してDU200から受信データを取得し、受信データに対してMAC層の処理を実行する。MAC処理部123は、スケジューリングを実行するスケジューリング部でもある。 The MAC processing unit 123 executes MAC layer processing such as scheduling and retransmission control. That is, the MAC processing unit 123 acquires transmission data from the RLC processing unit 122, and performs MAC layer processing on the transmission data. In addition, the MAC processing unit 123 acquires received data from the DU 200 via the LAN communication I / F unit 140, and executes a MAC layer process on the received data. The MAC processing unit 123 is also a scheduling unit that executes scheduling.
 MAC処理部123は、DU200とUE20の間の無線通信に無線リソースを割り当てるスケジューリングを実行する際には、リソース制御部124によって指定される時間又は周波数帯域などの無線リソースを利用する。 The MAC processing unit 123 uses a radio resource such as a time or a frequency band specified by the resource control unit 124 when executing scheduling for allocating radio resources for radio communication between the DU 200 and the UE 20.
 リソース制御部124は、MAC処理部123がスケジューリングにおいて利用可能な無線リソースを制御する。具体的には、リソース制御部124は、マスターのCUがCU100に配分した無線リソースをスケジューリングに利用可能な無線リソースとして指定する。また、リソース制御部124は、MAC処理部123における無線リソースの割り当て状況を監視し、マスター管理部125から問い合わせられた場合に、スケジューリングに必要な無線リソースの量を応答する。さらに、リソース制御部124は、スケジューリングにおいて無線リソースの不足が発生しているか否かを判定し、無線リソースの不足が発生している場合には、その旨をマスター管理部125へ報告する。 The resource control unit 124 controls radio resources that the MAC processing unit 123 can use in scheduling. Specifically, the resource control unit 124 designates radio resources allocated by the master CU to the CU 100 as radio resources that can be used for scheduling. Further, the resource control unit 124 monitors the allocation status of radio resources in the MAC processing unit 123, and responds with an amount of radio resources necessary for scheduling when inquired from the master management unit 125. Furthermore, the resource control unit 124 determines whether or not a shortage of radio resources has occurred in the scheduling, and if a shortage of radio resources has occurred, reports that fact to the master management unit 125.
 マスター管理部125は、CU100が接続するDU200ごとにマスターのCUの情報を管理する。そして、マスター管理部125は、CU100がマスターである場合には、同じDU200に接続するスレーブに対して、定期的に必要な無線リソースの量を報告するように要求する。必要な無線リソースの量がスレーブから報告されると、マスター管理部125は、CU100を含むCUそれぞれが使用する無線リソースを制御し、制御結果を無線リソースに関する情報としてを各スレーブへ通知する。 The master management unit 125 manages master CU information for each DU 200 to which the CU 100 is connected. Then, when the CU 100 is a master, the master management unit 125 requests a slave connected to the same DU 200 to periodically report the amount of necessary radio resources. When the amount of necessary radio resource is reported from the slave, the master management unit 125 controls the radio resource used by each CU including the CU 100 and notifies each slave of the control result as information on the radio resource.
 一方、マスター管理部125は、CU100がスレーブである場合には、マスターからの要求に応じて、スケジューリングに必要な無線リソースの量や無線リソースの使用状況に関する情報をリソース制御部124へ問い合わせ、リソース制御部124からの応答をマスターへ報告する。また、マスター管理部125は、無線リソースの不足が発生していることがリソース制御部124から報告されると、マスターに対して無線リソースの配分の増加を要求する。なお、マスター管理部125は、無線リソースの余剰が発生していることがリソース制御部124から報告された場合には、マスターに対して無線リソースの配分の削減を要求しても良い。さらに、UE20から通知される受信電力又は受信品質などの無線回線品質に基づいて使用される無線リソースが無線通信に適さない場合には、マスター管理部125は、マスターに対して無線リソースの変更を要求しても良い。要するに、マスター管理部125は、無線リソースに関する制御を実行する。 On the other hand, when the CU 100 is a slave, the master management unit 125 makes an inquiry to the resource control unit 124 for information on the amount of radio resources necessary for scheduling and the usage status of radio resources in response to a request from the master, The response from the control unit 124 is reported to the master. Further, when the resource control unit 124 reports that a shortage of radio resources has occurred, the master management unit 125 requests the master to increase the distribution of radio resources. Note that the master management unit 125 may request the master to reduce the allocation of radio resources when the resource control unit 124 reports that surplus radio resources have occurred. Furthermore, when radio resources used based on radio channel quality such as reception power or reception quality notified from the UE 20 are not suitable for radio communication, the master management unit 125 changes the radio resources to the master. You may request. In short, the master management unit 125 executes control regarding radio resources.
 なお、図3では省略したが、プロセッサ120は、SDAP(Service Data Adaptation Protocol)処理部を有していても良い。SDAP処理部は、通信条件(例えばQoS(Quality of Service)が設定されたフローをベアラにマッピングする。 Although omitted in FIG. 3, the processor 120 may have an SDAP (Service Data Adaptation Protocol) processing unit. The SDAP processing unit maps a flow in which communication conditions (for example, QoS (Quality of Service)) are set to a bearer.
 メモリ130は、例えばRAM(Random Access Memory)又はROM(Read Only Memory)などを備え、プロセッサ120が処理を実行するために使用する情報を記憶する。 The memory 130 includes, for example, RAM (Random Access Memory) or ROM (Read Only Memory), and stores information used by the processor 120 to execute processing.
 LAN通信I/F部140は、他のCU100及びDU200と接続し、データを送受信する。具体的には、LAN通信部I/F部140は、他のCU100との間で定期的に必要な無線リソースの量の要求又は応答を送受信したり、各CU100における無線リソースの配分の通知を送受信したりする。また、LAN通信部I/F部140は、MAC処理部123によって処理された送信データをDU200へ送信し、受信データをDU200から受信してMAC処理部123へ出力する。なお、LAN通信I/F部140のうち他のCU100と接続するインタフェースは、例えばXnインタフェースと呼ばれ、DU200と接続するインタフェースは、例えばF1インタフェースと呼ばれることがある。また、XnインタフェースやF1インタフェースを用いて伝送される制御情報(Cプレーン)はSCTP(Stream Control Transmission Protocol)を用いて伝送され、ユーザデータ(Uプレーン)はGTP-U(GPRS Tunneling Protocol for User Plane)やUDP(User Datagram Protocol)を用いて伝送される。 LAN communication I / F unit 140 is connected to other CU 100 and DU 200 to transmit and receive data. Specifically, the LAN communication unit I / F unit 140 periodically transmits / receives a request or response for the amount of required radio resources to / from other CUs 100, or notifies the allocation of radio resources in each CU 100. Send and receive. Further, the LAN communication unit I / F unit 140 transmits the transmission data processed by the MAC processing unit 123 to the DU 200, receives the reception data from the DU 200, and outputs the received data to the MAC processing unit 123. Of the LAN communication I / F unit 140, an interface connected to another CU 100 is called, for example, an Xn interface, and an interface connected to the DU 200 is called, for example, an F1 interface. Control information (C plane) transmitted using the Xn interface or F1 interface is transmitted using SCTP (Stream Control Transmission Protocol), and user data (U plane) is transmitted using GTP-U (GPRS Tunneling Protocol for User Plane). ) And UDP (User Datagram Protocol).
 図4は、実施の形態1に係るDU200の構成を示すブロック図である。DU200は、図2に示したDU200a~200cに対応する。図4に示すDU200は、LAN通信I/F部210、プロセッサ220、メモリ230及び無線送受信部240を有する。 FIG. 4 is a block diagram showing a configuration of DU 200 according to the first embodiment. The DU 200 corresponds to the DUs 200a to 200c shown in FIG. 4 includes a LAN communication I / F unit 210, a processor 220, a memory 230, and a wireless transmission / reception unit 240.
 LAN通信I/F部210は、CU100と接続し、データを送受信する。具体的には、LAN通信I/F部210は、送信データをCU100から受信し、PHY処理部221から取得した受信データをCU100へ送信する。なお、LAN通信部I/F部210は、複数のCU100と接続可能であり、それぞれのCU100によってスケジューリングされた送信データを受信する。 The LAN communication I / F unit 210 is connected to the CU 100 and transmits / receives data. Specifically, the LAN communication I / F unit 210 receives transmission data from the CU 100 and transmits the reception data acquired from the PHY processing unit 221 to the CU 100. The LAN communication unit I / F unit 210 can be connected to a plurality of CUs 100, and receives transmission data scheduled by each CU 100.
 プロセッサ220は、例えばCPU、FPGA又はDSPなどを備え、DU200の全体を統括制御する。具体的には、プロセッサ220は、PHY処理部221を有する。 The processor 220 includes, for example, a CPU, FPGA, DSP, or the like, and performs overall control of the entire DU 200. Specifically, the processor 220 includes a PHY processing unit 221.
 PHY処理部221は、例えば信号のD/A(Digital/Analog)変換及びA/D(Analog/Digital)変換や増幅などのPHY層の処理を実行する。すなわち、PHY処理部221は、LAN通信I/F部210から送信データを取得し、送信データに対してPHY層の処理を実行し、無線送受信部240へ出力する。また、PHY処理部221は、無線送受信部240から出力された受信データに対してPHY層の処理を実行する。 The PHY processing unit 221 executes PHY layer processing such as D / A (Digital / Analog) conversion, A / D (Analog / Digital) conversion, and amplification of signals. That is, the PHY processing unit 221 acquires transmission data from the LAN communication I / F unit 210, executes PHY layer processing on the transmission data, and outputs the transmission data to the wireless transmission / reception unit 240. In addition, the PHY processing unit 221 performs PHY layer processing on the reception data output from the wireless transmission / reception unit 240.
 メモリ230は、例えばRAM又はROMなどを備え、プロセッサ120が処理を実行するために使用する情報を記憶する。 The memory 230 includes, for example, a RAM or a ROM, and stores information used by the processor 120 to execute processing.
 無線送受信部240は、PHY処理部221から出力された送信データをアンテナを介してUE20へ無線送信する無線通信部である。また、無線送受信部240は、アンテナを介して受信された受信データをPHY処理部221へ出力する。 The wireless transmission / reception unit 240 is a wireless communication unit that wirelessly transmits the transmission data output from the PHY processing unit 221 to the UE 20 via the antenna. In addition, the wireless transmission / reception unit 240 outputs reception data received via the antenna to the PHY processing unit 221.
 次いで、上記のように構成された無線通信システムにおけるCU100とDU200の間のインタフェース設定時の動作について、図5に示すシーケンス図を参照しながら説明する。以下では、CU100a~100cが1つのDU200との間でインタフェースを設定する場合について説明する。 Next, an operation at the time of setting an interface between the CU 100 and the DU 200 in the wireless communication system configured as described above will be described with reference to a sequence diagram shown in FIG. Hereinafter, a case where the CUs 100a to 100c set an interface with one DU 200 will be described.
 まず、CU100aとDU200の間でインタフェースが設定される(ステップS101)。すなわち、CU100aのLAN通信I/F部140とDU200のLAN通信I/F部210との間に例えばF1インタフェースが設定される。そして、ここではDU200に他のCUが接続されておらず、CU100aが最初にDU200に接続するCUであるため、CU100aがマスターとなる。このため、CU100aのマスター管理部125によって、CU100aがマスターであることが記憶される。 First, an interface is set between the CU 100a and the DU 200 (step S101). That is, for example, an F1 interface is set between the LAN communication I / F unit 140 of the CU 100a and the LAN communication I / F unit 210 of the DU 200. Here, since no other CU is connected to the DU 200 and the CU 100a is the CU that first connects to the DU 200, the CU 100a becomes the master. Therefore, the master management unit 125 of the CU 100a stores that the CU 100a is a master.
 なお、ここでは最初にDU200に接続するCUがマスターとなるものとして説明するが、必ずしも最初にDU200に接続するCUがマスターとならなくても良い。例えば、DU200ごとにあらかじめマスターとなるCUが決定されていても良いし、DU200が提供するサービス単位で最初にDU200に接続するCUがマスターとなっても良い。 Note that, here, it is assumed that the CU connected to the DU 200 first becomes the master, but the CU connected to the DU 200 first does not necessarily become the master. For example, a master CU may be determined for each DU 200 in advance, or a CU that is connected to the DU 200 first in a service unit provided by the DU 200 may be a master.
 CU100aとDU200の間にF1インタフェースが設定された後、続いてCU100bとDU200の間でF1インタフェースが設定される(ステップS102)。ここでは、既にCU100aとDU200が接続済みであるため、CU100aが接続済みであることがDU200からCU100bへ通知される(ステップS103)。この通知には、例えばCU100aのIP(Internet Protocol)アドレスやCU100aを一意に特定するセルIDなどのように、CU100aを特定可能な情報が含まれる。 After the F1 interface is set between the CU 100a and the DU 200, the F1 interface is subsequently set between the CU 100b and the DU 200 (step S102). Here, since the CU 100a and the DU 200 are already connected, the DU 200 notifies the CU 100b that the CU 100a is already connected (step S103). This notification includes information that can identify the CU 100a such as an IP (Internet Protocol) address of the CU 100a and a cell ID that uniquely identifies the CU 100a.
 また、CU100aがマスターとなっているため、その旨がDU200からCU100bへ通知される(ステップS104)。この通知にも、例えばCU100aのIPアドレスやセルIDなどのCU100aを特定可能な情報が含まれる。マスターに関する通知を受け、CU100bのマスター管理部125によって、CU100aがマスターであることが記憶される。 Further, since the CU 100a is the master, the DU 200 notifies the CU 100b to that effect (step S104). This notification also includes information that can identify the CU 100a such as the IP address and cell ID of the CU 100a. Upon receiving the notification regarding the master, the master management unit 125 of the CU 100b stores that the CU 100a is the master.
 続いてCU100cとDU200の間でF1インタフェースが設定される(ステップS105)。ここでは、既にCU100a、100bとDU200が接続済みであるため、CU100a、100bが接続済みであることがDU200からCU100cへ通知される(ステップS106)。この通知には、例えばCU100a、100bのIPアドレスやCU100a、100bに対応するセルIDなどのように、CU100a、CU100bを特定可能な情報が含まれる。 Subsequently, the F1 interface is set between the CU 100c and the DU 200 (step S105). Here, since the CUs 100a and 100b and the DU 200 are already connected, the DU 200 notifies the CU 100c that the CUs 100a and 100b are already connected (step S106). This notification includes information that can identify the CU 100a and the CU 100b, such as the IP addresses of the CUs 100a and 100b and the cell IDs corresponding to the CUs 100a and 100b.
 また、CU100aがマスターとなっているため、その旨がDU200からCU100cへ通知される(ステップS107)。この通知には、上記と同様に、例えばCU100aのIPアドレスやセルIDなどのCU100aを特定可能な情報が含まれる。マスターに関する通知を受け、CU100cのマスター管理部125によって、CU100aがマスターであることが記憶される。 Further, since the CU 100a is the master, the DU 200 notifies the CU 100c to that effect (step S107). This notification includes information that can specify the CU 100a such as the IP address and cell ID of the CU 100a, for example, as described above. In response to the notification regarding the master, the master management unit 125 of the CU 100c stores that the CU 100a is the master.
 このようなインタフェース設定により、DU200に接続する複数のCU100a~100cがマスターに関する情報を共有し、CU100aがマスターのCUに設定される。以降は、マスターによってCU100a~100cがスケジューリングに利用する無線リソースの調停が実行される。 By such interface setting, a plurality of CUs 100a to 100c connected to the DU 200 share information regarding the master, and the CU 100a is set as the master CU. Thereafter, arbitration of radio resources used by the CUs 100a to 100c for scheduling is executed by the master.
 次に、マスターによる無線リソースの調停について、図6、7に示すシーケンス図を参照しながら説明する。図6は、定期的に無線リソースの調停が実行される場合の動作を示すシーケンス図である。 Next, arbitration of radio resources by the master will be described with reference to the sequence diagrams shown in FIGS. FIG. 6 is a sequence diagram illustrating an operation when radio resource arbitration is periodically performed.
 マスターとなったCU100aのマスター管理部125は、所定の周期でスレーブのCU100b、100cに対してスケジューリングに必要な無線リソースの量の報告を要求する(ステップS201、S202)。この要求には、DU200に関する報告であることを指定するためにDU200の識別情報が含まれていても良いし、例えば特定のサービスに関する無線リソースであることを指定するためにサービスの識別情報が含まれていても良い。また、CU100a内では、マスター管理部125からリソース制御部124に対して、同様の無線リソースの量の報告が要求される。 The master management unit 125 of the CU 100a that has become the master requests the slave CUs 100b and 100c to report the amount of radio resources necessary for scheduling in a predetermined cycle (steps S201 and S202). This request may include identification information of the DU 200 in order to specify that the report is related to the DU 200. For example, service identification information may be included to specify that the resource is a radio resource related to a specific service. It may be. In the CU 100a, the master management unit 125 requests the resource control unit 124 to report the same amount of radio resources.
 要求を受信したスレーブのCU100b、100cのマスター管理部125は、リソース制御部124に対して、スケジューリングに必要な無線リソースの量を問い合わせ、応答を取得する。そして、CU100b、100cのマスター管理部125は、得られた無線リソースの量を含む要求リソース情報をマスターのCU100aへ送信する(ステップS203、S204)。要求リソース情報には、例えば対象となるサービスの識別情報、サブキャリア数又はリソースブロック数などによって示される所要帯域幅、1回の送信における最大送信データ量、所要伝送遅延、並びにバッファの滞留量などが含まれていても良い。 The master management unit 125 of the slave CUs 100b and 100c that received the request inquires the resource control unit 124 about the amount of radio resources necessary for scheduling and obtains a response. Then, the master management unit 125 of the CUs 100b and 100c transmits the requested resource information including the obtained amount of radio resources to the master CU 100a (steps S203 and S204). The requested resource information includes, for example, the identification information of the target service, the required bandwidth indicated by the number of subcarriers or the number of resource blocks, the maximum transmission data amount in one transmission, the required transmission delay, the buffer retention amount, etc. May be included.
 要求リソース情報がCU100aによって受信され、CU100aのリソース制御部124からも必要な無線リソースの量が報告されると、CU100aのマスター管理部125によって、無線リソースの調停が実行される(ステップS205)。すなわち、CU100a~100cがスケジューリングに利用可能な全体の無線リソースの、それぞれのCU100a~100cへの配分が決定される。この調停では、CU100a~100cがスケジューリングに利用する無線リソースが互いに重複しないように配分が決定される。また、この調停により、無線リソースの不足が発生しているCUに対してはより多くの無線リソースが配分され、無線リソースの余剰が発生しているCUに対してはより少ない無線リソースが配分される。このように、マスター管理部125は、無線リソースを制御する。 When the requested resource information is received by the CU 100a and the amount of necessary radio resource is reported from the resource control unit 124 of the CU 100a, the master management unit 125 of the CU 100a executes radio resource arbitration (step S205). That is, allocation of the entire radio resources that can be used for scheduling by the CUs 100a to 100c to the CUs 100a to 100c is determined. In this arbitration, allocation is determined so that radio resources used for scheduling by the CUs 100a to 100c do not overlap each other. In addition, due to this arbitration, more radio resources are allocated to CUs in which a shortage of radio resources occurs, and less radio resources are allocated to CUs in which a surplus of radio resources occurs. The In this way, the master management unit 125 controls radio resources.
 そして、CU100aのマスター管理部125によって、無線リソースの配分をそれぞれのスレーブのCU100b、100cへ通知するための配分リソース情報が生成され、CU100b、100cへ送信される(ステップS206、S207)。また、CU100aに配分された無線リソースの情報は、マスター管理部125からリソース制御部124へ通知される。上記のように制御された無線リソースの情報は、無線リソースに関する情報として通知されても良い。なお、スレーブのCU100b、100cに対する無線リソースに関する情報は、ネットワークI/F部110によってCU100b、100cへ通知される。 Then, the master management unit 125 of the CU 100a generates distribution resource information for notifying the distribution of radio resources to the slave CUs 100b and 100c, and transmits them to the CUs 100b and 100c (steps S206 and S207). Also, information on the radio resources allocated to the CU 100a is notified from the master management unit 125 to the resource control unit 124. The information on the radio resource controlled as described above may be notified as information on the radio resource. Information regarding radio resources for slave CUs 100b and 100c is notified to CUs 100b and 100c by network I / F unit 110.
 送信された配分リソース情報は、CU100b、100cのマスター管理部125によって取得され、リソース制御部124へ出力される。各CU100a~100cのリソース制御部124は、配分リソース情報に従って、自CUがスケジューリングに利用する無線リソースをMAC処理部123に対して指定する。そして、MAC処理部123によって、指定された無線リソースをDU200とUE20の間の無線通信に割り当てるスケジューリングが実行され、スケジューリング結果に応じて例えば送信データが各CU100a~100cからDU200へ送信される(ステップS208~S210)。 The transmitted allocation resource information is acquired by the master management unit 125 of the CUs 100b and 100c and output to the resource control unit 124. The resource control unit 124 of each of the CUs 100a to 100c specifies, to the MAC processing unit 123, radio resources that the own CU uses for scheduling according to the distributed resource information. Then, the MAC processing unit 123 executes scheduling for assigning the designated radio resource to the radio communication between the DU 200 and the UE 20, and transmission data, for example, is transmitted from each of the CUs 100a to 100c to the DU 200 according to the scheduling result (step) S208 to S210).
 このようなマスターによる定期的な無線リソースの調停により、CU100a~CU100cがスケジューリングに利用する無線リソースが重複せず、それぞれのCU100a~100cが利用する無線リソースの量が適切に維持される。しかし、例えばいずれかのCUにおいて突発的に大量のトラフィックが発生し、多くの無線リソースが必要になる場合には、定期的な調停だけでは無線リソースの不足が発生する可能性がある。そこで、定期的な無線リソースの調停に加えて、臨時に無線リソースの調停が実行されるようにするのが好ましい。図7は、臨時に無線リソースの調停が実行される場合の動作を示すシーケンス図である。 By such regular arbitration of radio resources by the master, radio resources used for scheduling by the CUs 100a to 100c do not overlap, and the amount of radio resources used by the respective CUs 100a to 100c is appropriately maintained. However, for example, when a large amount of traffic suddenly occurs in any CU and a large amount of radio resources are required, there is a possibility that a shortage of radio resources may occur only by periodic arbitration. Therefore, it is preferable to temporarily perform radio resource arbitration in addition to periodic radio resource arbitration. FIG. 7 is a sequence diagram illustrating an operation in a case where arbitration of radio resources is temporarily performed.
 例えばスレーブのCU100bで無線リソースの不足が発生すると、CU100bのリソース制御部124からマスター管理部125へ、無線リソースの不足が発生した旨とともにスケジューリングに必要な無線リソースの量が通知される。そして、CU100bのマスター管理部125は、通知された無線リソースの量を含む要求リソース情報をマスターのCU100aへ送信する(ステップS301)。 For example, when a shortage of radio resources occurs in the slave CU 100b, the resource control unit 124 of the CU 100b notifies the master management unit 125 that the shortage of radio resources has occurred and the amount of radio resources necessary for scheduling. Then, the master management unit 125 of the CU 100b transmits request resource information including the notified amount of radio resources to the master CU 100a (step S301).
 要求リソース情報がCU100aによって受信されると、CU100aのマスター管理部125によって、無線リソースの調停が実行される(ステップS302)。すなわち、無線リソースが不足するCU100bに対して、他のCU100a、100cに配分された無線リソースを分与するか否かが判定される。この判定の結果、無線リソースを分与する場合には、どのCUに配分された無線リソースをどれだけCU100bに分与するかが決定される。つまり、CU100bの無線リソースの不足分を補う新たな無線リソースの配分が決定される。 When the requested resource information is received by the CU 100a, the master management unit 125 of the CU 100a executes radio resource arbitration (step S302). That is, it is determined whether or not to distribute the radio resources allocated to the other CUs 100a and 100c to the CU 100b that lacks radio resources. As a result of this determination, in the case of allocating radio resources, it is determined how much radio resources allocated to which CU are allocated to the CU 100b. That is, the allocation of new radio resources to compensate for the shortage of radio resources of the CU 100b is determined.
 そして、CU100aのマスター管理部125によって、無線リソースの配分をそれぞれのスレーブのCU100b、100cへ通知するための配分リソース情報が生成され、CU100b、100cへ送信される(ステップS303、S304)。また、CU100aに配分された無線リソースの情報は、マスター管理部125からリソース制御部124へ通知される。なお、配分された無線リソースに変化がないCUに対しては、配分リソース情報が送信されなくても良い。すなわち、例えばCU100bにおける無線リソースの不足分がすべてCU100aに配分された無線リソースから分与される場合には、CU100cに対する配分リソース情報の送信は省略可能である。 Then, the master management unit 125 of the CU 100a generates distribution resource information for notifying the distribution of radio resources to the slave CUs 100b and 100c, and transmits the generated resource information to the CUs 100b and 100c (steps S303 and S304). Also, information on the radio resources allocated to the CU 100a is notified from the master management unit 125 to the resource control unit 124. Note that the allocated resource information may not be transmitted to a CU in which the allocated radio resource does not change. That is, for example, when the shortage of radio resources in the CU 100b is allotted from the radio resources allocated to the CU 100a, transmission of allocated resource information to the CU 100c can be omitted.
 送信された配分リソース情報は、CU100b、100cのマスター管理部125によって取得され、リソース制御部124へ出力される。各CU100a~100cのリソース制御部124は、配分リソース情報に従って、自CUがスケジューリングに利用する無線リソースをMAC処理部123に対して指定する。そして、MAC処理部123によって、指定された無線リソースをDU200とUE20の間の無線通信に割り当てるスケジューリングが実行され、スケジューリング結果に応じて例えば送信データが各CU100a~100cからDU200へ送信される(ステップS305~S307)。 The transmitted allocation resource information is acquired by the master management unit 125 of the CUs 100b and 100c and output to the resource control unit 124. The resource control unit 124 of each of the CUs 100a to 100c specifies, to the MAC processing unit 123, radio resources that the own CU uses for scheduling according to the distributed resource information. Then, the MAC processing unit 123 executes scheduling for assigning the designated radio resource to the radio communication between the DU 200 and the UE 20, and transmission data, for example, is transmitted from each of the CUs 100a to 100c to the DU 200 according to the scheduling result (step) S305 to S307).
 このように、一時的な無線リソースの不足が発生した場合には、該当するCUからの要求に応じてマスターが無線リソースの調停を実行する。これにより、例えば突発的なトラフィックの増大が発生した場合でも、無線リソースの重複割り当てを回避することができる。 In this way, when a shortage of radio resources occurs, the master performs radio resource arbitration in response to a request from the corresponding CU. Thereby, for example, even when a sudden increase in traffic occurs, it is possible to avoid overlapping allocation of radio resources.
 図8は、CU100a~100cに配分された無線リソース量の変化の一例を示す図である。図8において、DU200からUE20へデータが送信される下り回線(DL)の送信タイミングDL#1~#3では、CU100a~100cに配分された無線リソースの量に変化はない。同様に、UE20からDU200へデータが送信される上り回線(UL)の送信タイミングUL#1~#3でも、CU100a~100cに配分された無線リソースの量に変化はない。この間、CU100a~100cは、それぞれ配分された無線リソースを用いてスケジューリングを実行する。この結果、CU100a~100cによる無線リソースの重複割り当ては発生しない。 FIG. 8 is a diagram showing an example of changes in the amount of radio resources allocated to the CUs 100a to 100c. In FIG. 8, there is no change in the amount of radio resources allocated to the CUs 100a to 100c at downlink (DL) transmission timings DL # 1 to # 3 at which data is transmitted from the DU 200 to the UE 20. Similarly, the amount of radio resources allocated to the CUs 100a to 100c does not change even in uplink (UL) transmission timings UL # 1 to # 3 at which data is transmitted from the UE 20 to the DU 200. During this time, the CUs 100a to 100c perform scheduling using the allocated radio resources. As a result, the radio resources are not assigned redundantly by the CUs 100a to 100c.
 その後、例えばCU100bにおいて無線リソースの不足が発生すると、マスターであるCU100aに対して無線リソースの追加が要求され、CU100aによって無線リソースの調停が実行される。ここでは、例えばCU100cに配分された無線リソースがCU100bに分与されるものとする。この調停の結果、配分リソース情報がマスターからCU100b、100cへ送信され、下り回線の送信タイミングDL#4、DL#5及び上り回線の送信タイミングUL#4では、CU100bに配分された無線リソースが増加し、CU100cに配分された無線リソースが減少している。このように、マスターのCU100aが、CU100a~CU100cがスケジューリングに利用する無線リソースの調停を実行することで、各CU100a~100cに適切な量の無線リソースが配分される。また、各CU100a~100cに配分された無線リソースは、互いに重複することがないため、スケジューリング時の無線リソースの重複割り当てを回避することができる。 After that, for example, when a shortage of radio resources occurs in the CU 100b, the master CU 100a is requested to add radio resources, and the CU 100a performs radio resource arbitration. Here, for example, radio resources allocated to the CU 100c are allocated to the CU 100b. As a result of this arbitration, the allocation resource information is transmitted from the master to the CUs 100b and 100c, and the radio resources allocated to the CU 100b increase at the downlink transmission timings DL # 4 and DL # 5 and the uplink transmission timing UL # 4. However, the radio resources allocated to the CU 100c are decreasing. As described above, the master CU 100a performs arbitration of radio resources used by the CU 100a to CU 100c for scheduling, so that an appropriate amount of radio resources is allocated to the CUs 100a to 100c. Further, since the radio resources allocated to each of the CUs 100a to 100c do not overlap each other, it is possible to avoid overlapping allocation of radio resources at the time of scheduling.
 以上のように、本実施の形態によれば、CUとDUの間のインタフェース設定時に各CUがマスターのCUに関する情報を共有し、マスターのCUは、定期的及び臨時に各CUに配分する無線リソースを決定し、配分リソース情報を各CUへ通知する。そして、各CUは、配分リソース情報に従って、配分された無線リソースのスケジューリングを実行するため、複数のCUが1つのDUに接続される場合でも、各CUが同一の無線リソースを無線通信に割り当てることがない。換言すれば、スケジューリング時の無線リソースの重複割り当てを回避することができる。 As described above, according to the present embodiment, each CU shares information related to the master CU at the time of setting the interface between the CU and the DU, and the master CU distributes wirelessly to each CU periodically and temporarily. A resource is determined and distribution resource information is notified to each CU. Since each CU performs scheduling of allocated radio resources according to the allocated resource information, even when a plurality of CUs are connected to one DU, each CU allocates the same radio resource to radio communication. There is no. In other words, it is possible to avoid redundant allocation of radio resources during scheduling.
(実施の形態2)
 実施の形態2の特徴は、マスターが処理負荷を検知し、処理負荷が大きい場合には、マスターを他のCUに変更する点である。
(Embodiment 2)
The feature of the second embodiment is that the master detects the processing load, and when the processing load is large, the master is changed to another CU.
 実施の形態2に係る無線通信システムの構成は、実施の形態1(図2)と同様であるため、その説明を省略する。図9は、実施の形態2に係るCU100の構成を示すブロック図である。図9において、図3と同じ部分には同じ符号を付し、その説明を省略する。図9に示すCU100は、図3に示すCU100のマスター管理部125に代えて、処理負荷検知部301及びマスター管理部302を有する。 Since the configuration of the wireless communication system according to Embodiment 2 is the same as that of Embodiment 1 (FIG. 2), description thereof is omitted. FIG. 9 is a block diagram showing a configuration of CU 100 according to the second embodiment. 9, the same parts as those in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted. The CU 100 illustrated in FIG. 9 includes a processing load detection unit 301 and a master management unit 302 instead of the master management unit 125 of the CU 100 illustrated in FIG.
 処理負荷検知部301は、CU100における処理負荷を検知する。具体的には、処理負荷検知部301は、CU100がマスターである場合には、例えばプロセッサ120の稼働率やCU100がマスターとして動作するDU200の数などを処理負荷として監視し、処理負荷が所定の基準以上となっているか否かを判定する。そして、処理負荷検知部301は、処理負荷が所定の基準以上となっている場合に、その旨をマスター管理部302へ通知する。このように、処理負荷検知部301は、処理の負荷状況に関する情報を収集(取得)し、マスター管理部302に対して処理負荷に関する情報を通知する。 The processing load detection unit 301 detects the processing load in the CU 100. Specifically, when the CU 100 is a master, the processing load detection unit 301 monitors, for example, the operation rate of the processor 120 or the number of DUs 200 that the CU 100 operates as a master as the processing load, and the processing load is predetermined. It is determined whether or not the reference is exceeded. Then, when the processing load is equal to or greater than a predetermined reference, the processing load detection unit 301 notifies the master management unit 302 to that effect. In this manner, the processing load detection unit 301 collects (acquires) information regarding the processing load status and notifies the master management unit 302 of information regarding the processing load.
 一方、処理負荷検知部301は、CU100がスレーブである場合には、マスターから処理負荷の問い合わせがあった場合に、例えばプロセッサ120の稼働率やCU100がマスターとして動作するDU200の数などを処理負荷として検知する。そして、処理負荷検知部301は、検知した処理負荷の情報を含む処理負荷応答を生成し、マスター管理部302へ出力する。 On the other hand, when the CU 100 is a slave, the processing load detection unit 301 determines, for example, the processing rate of the processor 120 and the number of DUs 200 that the CU 100 operates as a master when the processing load is inquired from the master. Detect as. Then, the processing load detection unit 301 generates a processing load response including information on the detected processing load and outputs the response to the master management unit 302.
 マスター管理部302は、CU100が接続するDU200ごとにマスターのCUの情報を管理する。そして、マスター管理部302は、CU100がマスターである場合には、同じDU200に接続するスレーブに対して、定期的に必要な無線リソースの量を報告するように要求する。必要な無線リソースの量がスレーブから報告されると、マスター管理部302は、CU100を含むCUそれぞれに対する無線リソースの配分を決定し、決定した配分を各スレーブへ通知する。また、マスター管理部302は、処理負荷が所定の基準以上であることが処理負荷検知部301から通知された場合に、スレーブに対して処理負荷を問い合わせる。そして、スレーブから処理負荷応答が受信されると、マスター管理部302は、各スレーブの処理負荷に基づいて新たなマスターを決定し、新たなマスターに関する情報を各スレーブへ送信する。 The master management unit 302 manages information on the master CU for each DU 200 to which the CU 100 is connected. Then, when the CU 100 is a master, the master management unit 302 requests a slave connected to the same DU 200 to periodically report the amount of necessary radio resources. When the amount of necessary radio resources is reported from the slave, the master management unit 302 determines the allocation of radio resources for each CU including the CU 100 and notifies the determined allocation to each slave. Further, when the processing load detection unit 301 is notified that the processing load is equal to or greater than a predetermined reference, the master management unit 302 inquires of the slave about the processing load. When the processing load response is received from the slave, the master management unit 302 determines a new master based on the processing load of each slave, and transmits information on the new master to each slave.
 一方、マスター管理部302は、CU100がスレーブである場合には、マスターからの要求に応じて、スケジューリングに必要な無線リソースの量をリソース制御部124へ問い合わせ、リソース制御部124からの応答をマスターへ報告する。また、マスター管理部302は、無線リソースの不足が発生していることがリソース制御部124から報告されると、マスターに対して無線リソースの配分の増加を要求する。さらに、マスター管理部302は、マスターから処理負荷の問い合わせがあった場合に、処理負荷検知部301によって生成された処理負荷応答をマスターへ送信する。 On the other hand, when the CU 100 is a slave, the master management unit 302 inquires the resource control unit 124 about the amount of radio resources necessary for scheduling in response to a request from the master, and sends a response from the resource control unit 124 to the master. Report to In addition, when the resource control unit 124 reports that a shortage of radio resources has occurred, the master management unit 302 requests the master to increase radio resource allocation. Further, the master management unit 302 transmits the processing load response generated by the processing load detection unit 301 to the master when there is an inquiry about the processing load from the master.
 次いで、上記のように構成された無線通信システムにおけるマスター変更時の動作について、図10に示すシーケンス図を参照しながら説明する。以下では、マスターがCU100aからCU100bに変更される場合について説明する。 Next, the operation at the time of master change in the wireless communication system configured as described above will be described with reference to the sequence diagram shown in FIG. Below, the case where a master is changed from CU100a to CU100b is demonstrated.
 マスターのCU100aにおいては、処理負荷検知部301によって処理負荷が監視されている。この処理負荷は、例えばプロセッサ120の稼働率やCU100aがマスターとして動作するDU200の数などである。そして、処理負荷検知部301によって、処理負荷が所定の基準以上であることが検知されると(ステップS401)、マスター管理部302によって、スレーブのCU100b、100cに対する処理負荷の問い合わせが送信される(ステップS402、S403)。 In the master CU 100a, the processing load is monitored by the processing load detector 301. This processing load is, for example, the operating rate of the processor 120 or the number of DUs 200 that the CU 100a operates as a master. When the processing load detection unit 301 detects that the processing load is equal to or greater than a predetermined reference (step S401), the master management unit 302 transmits an inquiry about the processing load to the slave CUs 100b and 100c ( Steps S402 and S403).
 処理負荷が問い合わせられたスレーブのCU100b、100cにおいては、処理負荷検知部301によって処理負荷が検知される。すなわち、例えばプロセッサ120の稼働率やCU100b、100cがマスターとして動作するDU200の数などが処理負荷として検知される。そして、検知された処理負荷の情報を含む処理負荷応答がCU100b、100cそれぞれのマスター管理部302から送信される(ステップS404、S405)。 The processing load detection unit 301 detects the processing load in the slave CUs 100b and 100c for which the processing load has been inquired. That is, for example, the operating rate of the processor 120 and the number of DUs 200 that the CUs 100b and 100c operate as masters are detected as the processing load. Then, a processing load response including information on the detected processing load is transmitted from the master management unit 302 of each of the CUs 100b and 100c (steps S404 and S405).
 処理負荷応答がCU100aによって受信されると、CU100aのマスター管理部302によって、スレーブの処理負荷に基づいて新たなマスターが決定される(ステップS406)。具体的には、例えば処理負荷が最小であり、かつ、現在のマスターであるCU100aよりも処理負荷が小さいCUが新たなマスターに決定される。ここでは、CU100bが新たなマスターに決定されたものとして説明を続ける。 When the processing load response is received by the CU 100a, the master management unit 302 of the CU 100a determines a new master based on the processing load of the slave (step S406). Specifically, for example, a CU having the smallest processing load and a smaller processing load than the current master CU 100a is determined as a new master. Here, the description will be continued assuming that the CU 100b is determined as a new master.
 新たなマスターが決定されると、CU100aのマスター管理部302によって、新たなマスターであるCU100bに対して、マスターの担当を依頼(要求)する担当依頼情報(担当要求情報)が送信される(ステップS407)。この担当依頼情報に対して、CU100bのマスター管理部302がマスターを担当可能であると判断した場合には、マスターの担当を承認する担当承認情報がCU100aへ送信される(ステップS408)。なお、CU100bのマスター管理部302がマスターを担当可能ではないと判断した場合には、マスターの担当を拒否する担当拒否情報がCU100aへ送信されるようにしても良い。 When a new master is determined, the master management unit 302 of the CU 100a transmits to the CU 100b, which is the new master, charge request information (charge request information) for requesting (requesting) a master charge (step request information). S407). When the master management unit 302 of the CU 100b determines that the master can be in charge of the charge request information, charge approval information for approving the master charge is transmitted to the CU 100a (step S408). If the master management unit 302 of the CU 100b determines that it is not possible to take charge of the master, charge rejection information for rejecting the master charge may be transmitted to the CU 100a.
 担当承認情報がCU100aによって受信されると、CU100aのマスター管理部302によって、マスターがCU100bに変更されることを通知するマスター変更通知がCU100b、100cへ送信される(ステップS409、S410)。これにより、DU200に関するマスターがCU100aからCU100bに変更され、以後は、CU100bがCU100a~100cに対する無線リソースの配分を決定するようになる。 When the responsible approval information is received by the CU 100a, the master management unit 302 of the CU 100a transmits a master change notification notifying that the master is changed to the CU 100b to the CUs 100b and 100c (steps S409 and S410). As a result, the master for the DU 200 is changed from the CU 100a to the CU 100b, and thereafter, the CU 100b determines the allocation of radio resources to the CUs 100a to 100c.
 以上のように、本実施の形態によれば、マスターのCUの処理負荷が大きくなると、マスターは、スレーブのCUの処理負荷を問い合わせ、処理負荷が小さいスレーブにマスターの担当を依頼する。そして、依頼が承認された場合にはマスターが変更されるため、処理負荷が小さいCUがマスターとして動作することになり、無線リソースの調停に係る制御遅延を低減することができる。結果として、無線リソースの調停が迅速に実行され、各CUによるスケジューリング及びデータ送信の遅延を抑制することができる。 As described above, according to the present embodiment, when the processing load of the master CU increases, the master inquires about the processing load of the slave CU and requests the slave in charge of the master to handle the master. When the request is approved, the master is changed, so that the CU with a small processing load operates as the master, and the control delay related to the arbitration of radio resources can be reduced. As a result, arbitration of radio resources is performed quickly, and scheduling and data transmission delays by each CU can be suppressed.
 なお、上記実施の形態2で説明したマスターの変更は、DU200ごとに個別に行われても良い。すなわち、マスターは、DU200ごとに決定されているため、例えばCU100aが2つの異なるDU200についてのマスターである場合には、一方のDU200についてのみのマスターが変更されるようにすることも可能である。 Note that the master change described in the second embodiment may be performed individually for each DU 200. That is, since the master is determined for each DU 200, for example, when the CU 100a is a master for two different DUs 200, the master for only one DU 200 can be changed.
 具体的には、例えば図11に示すように、CU100aがDU#1及びDU#2についてのマスターである場合にCU100aの処理負荷が大きいことが検知されると(ステップS401)、上述したマスター変更の動作が行われる(ステップS402~S410)。ただし、ここでは、DU#1及びDU#2のうちDU#1のみについてのマスターがCU100bに変更されるものとし、CU100bがDU#1についてのマスターとなった後も、CU100aは引き続きDU#2についてのマスターである。 Specifically, for example, as shown in FIG. 11, when it is detected that the processing load of the CU 100a is large when the CU 100a is a master for DU # 1 and DU # 2 (step S401), the master change described above is performed. Is performed (steps S402 to S410). However, here, it is assumed that the master for only DU # 1 of DU # 1 and DU # 2 is changed to CU100b, and CU100a continues to be DU # 2 even after CU100b becomes the master for DU # 1. Master about.
 このように、DU200ごとに個別にマスターを変更することも可能であり、マスターのCUの処理負荷を柔軟な態様で分散することが可能である。 In this way, it is possible to change the master individually for each DU 200, and the processing load of the master CU can be distributed in a flexible manner.
 110 ネットワークI/F部
 120、220 プロセッサ
 121 PDCP処理部
 122 RLC処理部
 123 MAC処理部
 124 リソース制御部
 125、302 マスター管理部
 130、230 メモリ
 140、210 LAN通信I/F部
 221 PHY処理部
 240 無線送受信部
 301 処理負荷検知部
110 Network I / F unit 120, 220 Processor 121 PDCP processing unit 122 RLC processing unit 123 MAC processing unit 124 Resource control unit 125, 302 Master management unit 130, 230 Memory 140, 210 LAN communication I / F unit 221 PHY processing unit 240 Wireless transceiver 301 Processing load detector

Claims (6)

  1.  第1の無線制御装置と第2の無線制御装置と無線装置と無線端末装置とを有する無線通信システムであって、
     前記第1の無線制御装置は、
     前記第1の無線制御装置の制御に応じて通信するための第1の無線リソースに関する要求を前記第2の無線制御装置に通知する送信部を有し、
     前記第2の無線制御装置は、
     前記第1の無線制御装置から通知された前記第1の無線リソースに関する要求を受信する受信部と、
     前記第1の無線リソースと、前記第2の無線制御装置に接続する前記無線装置が無線通信に用いる第2の無線リソースとを制御する管理部と、
     前記管理部によって制御された第1の無線リソースに関する情報を前記第1の無線制御装置に通知する通知部と、
     前記第2の無線制御装置と前記無線端末装置との通信に対して、前記管理部によって制御された第2の無線リソースの少なくとも一部である第3の無線リソースを割り当てるスケジューリング部とを有し、
     前記無線装置は、
     前記第3の無線リソースを用いて前記無線装置と無線通信する無線通信部を有する
     ことを特徴とする無線通信システム。
    A wireless communication system having a first wireless control device, a second wireless control device, a wireless device, and a wireless terminal device,
    The first radio control device is:
    A transmission unit for notifying the second wireless control device of a request related to the first wireless resource for communication according to the control of the first wireless control device;
    The second radio control device is:
    A receiving unit for receiving a request regarding the first radio resource notified from the first radio control device;
    A management unit that controls the first radio resource and a second radio resource used for radio communication by the radio device connected to the second radio control device;
    A notification unit for notifying the first radio control device of information related to the first radio resource controlled by the management unit;
    A scheduling unit that allocates a third radio resource that is at least a part of the second radio resource controlled by the management unit for communication between the second radio control device and the radio terminal device; ,
    The wireless device includes:
    A wireless communication system comprising: a wireless communication unit that wirelessly communicates with the wireless device using the third wireless resource.
  2.  前記送信部は、
     所定の周期で前記第2の無線制御装置に対して前記第1の無線リソースに関する要求を通知することを特徴とする請求項1記載の無線通信システム。
    The transmitter is
    The wireless communication system according to claim 1, wherein a request for the first wireless resource is notified to the second wireless control device at a predetermined cycle.
  3.  前記送信部は、
     前記第1の無線リソースの変動が発生する場合に、前記第2の無線制御装置に対して無線リソースに関する要求を通知することを特徴とする請求項1記載の無線通信システム。
    The transmitter is
    The radio communication system according to claim 1, wherein when the first radio resource varies, a request for radio resources is notified to the second radio control apparatus.
  4.  前記第2の無線制御装置は、
     前記第1の無線制御装置の処理負荷に関する情報を取得して前記管理部へ通知する処理負荷検知部をさらに有し、
     前記通知部は、
     前記第1の無線制御装置に対して、前記第1及び第2の無線制御装置とは異なる第3の無線制御装置が使用する無線リソースの制御を要求する
     ことを特徴とする請求項1記載の無線通信システム。
    The second radio control device is:
    A processing load detector that acquires information about the processing load of the first wireless control device and notifies the management unit;
    The notification unit
    The control unit according to claim 1, wherein the first radio control device is requested to control radio resources used by a third radio control device different from the first and second radio control devices. Wireless communication system.
  5.  無線装置による無線通信に無線リソースを割り当てるスケジューリングを実行するスケジューリング部と、
     自装置及び/又は他の無線制御装置のスケジューリングにおいて利用される無線リソースに関する要求を受信する受信部と、
     前記他の無線制御装置が利用する無線リソースを制御する管理部と、
     前記管理部によって制御された無線リソースに関する情報を前記他の無線制御装置に通知する通知部と
     を有することを特徴とする無線制御装置。
    A scheduling unit for performing scheduling for allocating radio resources for radio communication by a radio device;
    A receiving unit for receiving a request regarding radio resources used in scheduling of the own device and / or another radio control device;
    A management unit that controls radio resources used by the other radio control device;
    A radio control apparatus comprising: a notification unit configured to notify the other radio control apparatus of information related to radio resources controlled by the management unit.
  6.  無線装置と第1の無線制御装置と第2の無線制御装置と無線端末装置とを有する無線通信システムにおいて、前記第1の無線制御装置が実行する無線リソース制御方法であって、
     前記第2の無線制御装置の制御に応じて通信するための第2の無線リソースに関する要求を前記第2の無線制御装置から受信し、
     前記第2の無線リソースと、前記第1の無線制御装置に接続する前記無線装置が無線通信に用いる第1の無線リソースとを制御し、
     前記制御された第2の無線リソースに関する情報を前記第2の無線制御装置へ通知する
     処理を有することを特徴とする無線リソース制御方法。
    In a radio communication system having a radio device, a first radio control device, a second radio control device, and a radio terminal device, a radio resource control method executed by the first radio control device,
    Receiving a request from the second radio control apparatus regarding a second radio resource for communicating according to the control of the second radio control apparatus;
    Controlling the second radio resource and the first radio resource used by the radio device connected to the first radio control device for radio communication;
    A radio resource control method comprising: a process of notifying the second radio control apparatus of information related to the controlled second radio resource.
PCT/JP2018/013049 2018-03-28 2018-03-28 Radio communication system, radio control device, and radio resource control method WO2019186852A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013049 WO2019186852A1 (en) 2018-03-28 2018-03-28 Radio communication system, radio control device, and radio resource control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013049 WO2019186852A1 (en) 2018-03-28 2018-03-28 Radio communication system, radio control device, and radio resource control method

Publications (1)

Publication Number Publication Date
WO2019186852A1 true WO2019186852A1 (en) 2019-10-03

Family

ID=68058006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013049 WO2019186852A1 (en) 2018-03-28 2018-03-28 Radio communication system, radio control device, and radio resource control method

Country Status (1)

Country Link
WO (1) WO2019186852A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010154262A (en) * 2008-12-25 2010-07-08 Kddi Corp Cellular mobile communication system, base station control device, and base station- coordinated communication control method
JP2015529042A (en) * 2012-07-16 2015-10-01 アルカテル−ルーセント Apparatus, method and computer program for base station transceiver
JP2016538759A (en) * 2013-10-24 2016-12-08 エルジー エレクトロニクス インコーポレイティド Method of setting downlink transmission power via RRH in cloud RAN environment
WO2018029854A1 (en) * 2016-08-12 2018-02-15 富士通株式会社 Wireless base station, wireless device, wireless control device, wireless communication system, wireless method, and wireless terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010154262A (en) * 2008-12-25 2010-07-08 Kddi Corp Cellular mobile communication system, base station control device, and base station- coordinated communication control method
JP2015529042A (en) * 2012-07-16 2015-10-01 アルカテル−ルーセント Apparatus, method and computer program for base station transceiver
JP2016538759A (en) * 2013-10-24 2016-12-08 エルジー エレクトロニクス インコーポレイティド Method of setting downlink transmission power via RRH in cloud RAN environment
WO2018029854A1 (en) * 2016-08-12 2018-02-15 富士通株式会社 Wireless base station, wireless device, wireless control device, wireless communication system, wireless method, and wireless terminal

Similar Documents

Publication Publication Date Title
US10925106B2 (en) Mobile communication system, control apparatus, base station, and user terminal supporting dual connectivity
CN109565703B (en) Method and apparatus for managing data communications in a wireless communication network
KR102252271B1 (en) Method for establishing a fronthaul interface, method for performing access for a ue, method and apparatus for performing a handover for a ue, data forwarding method, user equipment and base station
JP7043506B2 (en) Multi-technology aggregation architecture for long-term evolution communication systems
JP6785346B2 (en) Methods and equipment for establishing paths for data offload
EP3086589B1 (en) Core network device, access network device, data distribution method and system
CN102883441B (en) Wireless broadband communication method and device
CN106664597B (en) Communication system
EP3522589A1 (en) Method and apparatus for managing network slice and computer storage medium
RU2768788C2 (en) METHOD OF PROCESSING QUALITY OF SERVICE PARAMETER QoS AND NETWORK ELEMENT, SYSTEM AND DATA MEDIUM
JP3926799B2 (en) Wireless network system and wireless communication control method
KR20120071227A (en) Mobile communication systems for controlling load in distributed manner and method threrof
CN111356172B (en) Communication method, communication device, terminal, network device and storage medium
US20220303825A1 (en) Data transmission method and apparatus
CN115462100A (en) Access network signaling and resource allocation for multicast/broadcast sessions
JP2023515782A (en) Dynamic spectrum sharing in wireless communication systems
WO2019240808A1 (en) Backhaul scheduling
WO2022052851A1 (en) Quality of service (qos) monitoring method
CN115428555A (en) Access network signaling and resource allocation for multicast/broadcast sessions
CN105704828A (en) Resource scheduling method and resource scheduling device
KR101920295B1 (en) Resource allocation and service transmission method and apparatus
KR20140045887A (en) Mehtod and appartus for cell load balancing in a wireless communication system
WO2014082444A1 (en) Group resource scheduling method and system during cluster communication
WO2022202835A1 (en) Communication control method
WO2019186852A1 (en) Radio communication system, radio control device, and radio resource control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP