WO2019186760A1 - Drive device, electric vehicle, and drive device control method - Google Patents

Drive device, electric vehicle, and drive device control method Download PDF

Info

Publication number
WO2019186760A1
WO2019186760A1 PCT/JP2018/012748 JP2018012748W WO2019186760A1 WO 2019186760 A1 WO2019186760 A1 WO 2019186760A1 JP 2018012748 W JP2018012748 W JP 2018012748W WO 2019186760 A1 WO2019186760 A1 WO 2019186760A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
duty ratio
pwm signal
side pwm
control
Prior art date
Application number
PCT/JP2018/012748
Other languages
French (fr)
Japanese (ja)
Inventor
一由希 目黒
雄大 井ノ口
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to CN201880091322.8A priority Critical patent/CN111869097B/en
Priority to JP2020510293A priority patent/JP7135069B2/en
Priority to PCT/JP2018/012748 priority patent/WO2019186760A1/en
Priority to TW108110736A priority patent/TWI743462B/en
Publication of WO2019186760A1 publication Critical patent/WO2019186760A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to a drive device, an electric vehicle, and a drive device control method.
  • An electric motorcycle using a battery as a power source and a three-phase motor (hereinafter referred to as a motor) as a power source is known.
  • a three-phase full bridge circuit (that is, an inverter circuit) having a high-side switch and a low-side switch for each phase is used to drive the motor to each phase coil of the motor.
  • the energization was controlled.
  • PWM control is performed on the switch with a set duty ratio, and the motor drive is controlled with an energization waveform corresponding to the duty ratio.
  • a trapezoidal energization waveform with a gentle rise and fall was generated by gradually increasing or decreasing the duty ratio in order to prevent ripples in the energization waveform.
  • the timing of PWM control is determined by a constant carrier cycle by a triangular wave. If the duty ratio is continuously increased or decreased for each carrier cycle to generate a trapezoidal energization waveform, the PWM control timing is There has been a problem that the processing load becomes excessive.
  • JP-A-8-331885 discloses a technology for making a three-phase alternating current substantially trapezoidal.
  • the technique disclosed in Japanese Patent Laid-Open No. 8-331885 does not mention anything about reducing the processing load of PWM control for generating a trapezoidal wave, and is a technique completely different from the present invention.
  • an object of the present invention is to provide a drive device, an electric vehicle, and a drive device control method capable of reducing the processing load of PWM control for generating a trapezoidal energization waveform.
  • a driving device includes: A first switch having one end connected to the power supply terminal and the other end connected to the first output terminal to the first phase coil of the motor; A second switch having one end connected to the first output terminal and the other end connected to a ground terminal; A third switch having one end connected to the power supply terminal and the other end connected to a second output terminal to the second phase coil of the motor; A fourth switch having one end connected to the second output terminal and the other end connected to the ground terminal; A fifth switch having one end connected to the power supply terminal and the other end connected to a third output terminal to the third phase coil of the motor; A sixth switch having one end connected to the third output terminal and the other end connected to the ground terminal; A control unit for controlling the driving of the motor by controlling the first to sixth switches, The control unit performs drive control of the motor with a trapezoidal energization waveform, The drive control is The adjustment duty ratio is adjusted to increase stepwise to a preset setting duty ratio, maintain the setting duty ratio after the increase, and decrease stepwise from the
  • the stepwise increase to the set duty ratio and the stepwise decrease from the set duty ratio are caused by the first phase high-side PWM signal, the second phase high-side PWM signal, and the third phase high-side PWM signal. It is performed at a set cycle set longer than the pulse cycle.
  • the controller is The duty ratio in each of a plurality of pulse periods included in the same set period may be controlled to be constant.
  • the control for switching on / off of the first switch by the first-phase high-side PWM signal of the adjustment duty ratio forms the first phase so as to form a dead time that does not turn on the second switch simultaneously with the first switch.
  • the first phase low-side PWM signal whose duty ratio is adjusted between the high-side PWM signal and the first switch are complementarily switched to turn on / off the second switch.
  • the control to switch on / off the third switch by the second phase high-side PWM signal of the adjustment duty ratio is performed so as to form a dead time in which the fourth switch is not turned on simultaneously with the third switch.
  • the second phase low-side PWM signal is performed together with the control to turn on / off the fourth switch complementarily to the third switch
  • the control to switch on / off the fifth switch by the third phase high-side PWM signal of the adjustment duty ratio is performed so as to form a dead time in which the sixth switch is not turned on simultaneously with the fifth switch.
  • the control may be performed together with a control for switching on / off of the sixth switch complementarily to the fifth switch by a third phase low-side PWM signal whose duty ratio is adjusted with the high-side PWM signal.
  • a rotation speed detector for detecting the rotation speed of the rotor of the motor In the driving device, A rotation speed detector for detecting the rotation speed of the rotor of the motor; The set duty ratio may be set based on a detection speed by the rotation speed detection unit and a user operation amount for controlling the rotation of the motor.
  • the controller is First detection speed is equal to or higher than a preset first reference speed and is slower than a preset second reference speed, and the set duty ratio is lower than a preset first reference duty ratio. In this case, the drive control may be performed.
  • the controller is The detected speed is greater than or equal to the first reference speed and slower than the second reference speed, and the set duty ratio is greater than or equal to the first reference duty ratio and greater than a preset second reference duty ratio.
  • the detection speed is lower or the detection speed is equal to or higher than the second reference speed and is slower than a preset third reference speed and the set duty ratio is lower than the second reference duty ratio.
  • the first phase high side PWM signal having the set duty ratio is switched on / off of the first switch, and at the same time as the first switch, the first phase high side is set so as to form a dead time that does not turn on the second switch.
  • the third phase switch is turned on / off by the second phase high side PWM signal of the set duty ratio, and the second phase high level is set so as to form a dead time that does not turn on the fourth switch simultaneously with the third switch.
  • Control for switching on / off of the fourth switch complementarily to the third switch by a second phase low-side PWM signal whose duty ratio is adjusted with respect to the side PWM signal;
  • the fifth switch is turned on / off by a third phase high-side PWM signal of the set duty ratio, and the third phase high so as to form a dead time that does not turn on the sixth switch simultaneously with the fifth switch.
  • Control may be performed to turn on / off the sixth switch complementarily to the fifth switch by a third-phase low-side PWM signal whose duty ratio has been adjusted with respect to the side PWM signal.
  • the controller is The detected speed is not less than the first reference speed and slower than the third reference speed, and the set duty ratio is not less than the second reference duty ratio, or the detected speed is the third reference speed.
  • Control may be performed to turn on / off the fifth switch by a third-phase high-side PWM signal having the set duty ratio while turning off the sixth switch.
  • the controller is In the first to third cases, 180 ° energization may be performed in which a phase current flows during an energization period corresponding to an electrical angle of 180 °.
  • the controller is In the fourth case where the detection speed is slower than the first reference speed and the set duty ratio is lower than a preset third reference duty ratio, The first phase high side PWM signal having the set duty ratio is switched on / off of the first switch, and at the same time as the first switch, the first phase high side is set so as to form a dead time that does not turn on the second switch.
  • the third phase switch is turned on / off by the second phase high side PWM signal of the set duty ratio, and the second phase high level is set so as to form a dead time that does not turn on the fourth switch simultaneously with the third switch.
  • Control for switching on / off of the fourth switch complementarily to the third switch by a second phase low-side PWM signal whose duty ratio is adjusted with respect to the side PWM signal;
  • the fifth switch is turned on / off by a third phase high-side PWM signal of the set duty ratio, and the third phase high so as to form a dead time that does not turn on the sixth switch simultaneously with the fifth switch.
  • Control may be performed to turn on / off the sixth switch complementarily to the fifth switch by a third-phase low-side PWM signal whose duty ratio has been adjusted with respect to the side PWM signal.
  • the controller is In the fifth case where the detection speed is slower than the first reference speed and the set duty ratio is greater than or equal to the third reference duty ratio, Control to turn on / off the first switch by a first phase high-side PWM signal of the set duty ratio while turning off the second switch; Control to turn on / off the third switch by a second-phase high-side PWM signal of the set duty ratio while turning off the fourth switch; Control may be performed to turn on / off the fifth switch by a third-phase high-side PWM signal having the set duty ratio while turning off the sixth switch.
  • the controller is In the fourth and fifth cases, 120 ° energization may be performed such that a phase current flows during an energization period corresponding to an electrical angle of 120 °.
  • An electric vehicle includes: An electric vehicle comprising a motor and a drive device,
  • the driving device includes: A first switch having one end connected to a power supply terminal and the other end connected to a first output terminal to the first phase coil of the motor; A second switch having one end connected to the first output terminal and the other end connected to a ground terminal; A third switch having one end connected to the power supply terminal and the other end connected to a second output terminal to the second phase coil of the motor; A fourth switch having one end connected to the second output terminal and the other end connected to the ground terminal; A fifth switch having one end connected to the power supply terminal and the other end connected to a third output terminal to the third phase coil of the motor; A sixth switch having one end connected to the third output terminal and the other end connected to the ground terminal; A control unit for controlling the driving of the motor by controlling the first to sixth switches, The control unit performs drive control of the motor with a trapezoidal energization waveform, The drive control is The adjustment duty ratio is adjusted to increase stepwise to a
  • the stepwise increase to the set duty ratio and the stepwise decrease from the set duty ratio are caused by the first phase high-side PWM signal, the second phase high-side PWM signal, and the third phase high-side PWM signal. It is performed at a set cycle set longer than the pulse cycle.
  • a rotation speed detector for detecting the rotation speed of the rotor of the motor In the electric vehicle, A rotation speed detector for detecting the rotation speed of the rotor of the motor; The set duty ratio may be set based on a detection speed by the rotation speed detection unit and an accelerator operation amount by a user.
  • the controller is Based on a torque map indicating a correspondence relationship between the rotational speed of the rotor, the accelerator operation amount, and the torque of the motor, a torque corresponding to the detected speed and the accelerator operation amount is set.
  • the duty ratio corresponding to the detected speed and the set torque may be set as the set duty ratio based on a duty map indicating a correspondence relationship between the rotational speed of the rotor, the torque, and the duty ratio. Good.
  • a control method of a driving device includes: A first switch with one end connected to the power supply terminal and the other end connected to the first output terminal to the first phase coil of the motor, one end connected to the first output terminal, and the other end connected to the ground terminal The second switch, one end connected to the power supply terminal, the other end connected to the second output terminal to the second phase coil of the motor, and one end connected to the second output terminal A fourth switch having the other end connected to the ground terminal, a fifth switch having one end connected to the power supply terminal and the other end connected to a third output terminal to the third phase coil of the motor; A control method for a drive device comprising a sixth switch having one end connected to the third output terminal and the other end connected to the ground terminal, By controlling the first to sixth switches, drive control of the motor by a trapezoidal energization waveform is performed, The drive control is The adjustment duty ratio is adjusted to increase stepwise to a preset setting duty ratio, maintain the setting duty ratio after the increase, and decrease stepwise from the setting duty
  • the stepwise increase to the set duty ratio and the stepwise decrease from the set duty ratio are caused by the first phase high-side PWM signal, the second phase high-side PWM signal, and the third phase high-side PWM signal. It is performed at a set cycle set longer than the pulse cycle.
  • the drive device includes a first switch having one end connected to the power supply terminal and the other end connected to the first output terminal to the first phase coil of the motor, and one end connected to the first output terminal.
  • a second switch connected to the ground terminal, the other end connected to the power supply terminal, the other end connected to the second output terminal to the second phase coil of the motor, and one end Is connected to the second output terminal, the other end is connected to the ground terminal, one end is connected to the power supply terminal, and the other end is connected to the third output terminal to the third phase coil of the motor.
  • the controller performs drive control of the motor with a trapezoidal energization waveform
  • the dynamic control increases in steps up to a preset set duty ratio, maintains the set duty ratio after the increase, and adjusts the duty ratio adjusted to decrease gradually from the set duty ratio after the maintenance.
  • the duty ratio is increased for each pulse period. No need to decrease.
  • the processing load of PWM control for generating a trapezoidal energization waveform can be reduced.
  • FIG. 1 is a diagram showing a power conversion unit 30 and a motor 3 in an electric motorcycle 100 according to a first embodiment.
  • a magnet provided on a rotor of a motor 3 and an angle sensor 4 are shown.
  • FIG. 5 is a timing chart showing 180 ° upper and lower trapezoidal wave PWM control in the control method for the electric motorcycle 100 according to the first embodiment.
  • 4 is a timing chart showing a duty ratio in 180 ° upper and lower trapezoidal wave PWM control in the control method for the electric motorcycle 100 according to the first embodiment.
  • FIG. 5 is a timing chart showing duty ratio control in 180 ° upper and lower trapezoidal wave PWM control in the control method for the electric motorcycle 100 according to the first embodiment.
  • 5 is a flowchart showing a control method of the electric motorcycle 100 according to the second embodiment.
  • FIG. 6 is an explanatory diagram for explaining a rotor rotation speed detection step and a duty ratio setting step in the control method for the electric motorcycle 100 according to the second embodiment.
  • 6 is a graph showing an example of a torque map used for carrying out a duty ratio setting step in the control method for the electric motorcycle 100 according to the second embodiment.
  • 6 is a graph showing an example of a duty ratio map used for performing a duty ratio setting step in the control method for the electric motorcycle 100 according to the second embodiment.
  • 6 is a graph showing an energization control method according to a rotor rotational speed and a target torque in the control method for the electric motorcycle 100 according to the second embodiment.
  • 6 is a graph showing an energization control method according to a rotor rotational speed and a set duty ratio in the control method for the electric motorcycle 100 according to the second embodiment.
  • 10 is a timing chart showing 120 ° upper and lower rectangular wave PWM control in the control method for the electric motorcycle 100 according to the second embodiment.
  • 10 is a timing chart showing a dead time in 120 ° upper and lower rectangular wave PWM control in the control method for the electric motorcycle 100 according to the second embodiment.
  • 6 is a timing chart showing 120 ° upper rectangular wave PWM control in the control method for the electric motorcycle 100 according to the second embodiment.
  • 10 is a timing chart showing 180 ° upper and lower rectangular wave PWM control in the control method for the electric motorcycle 100 according to the second embodiment.
  • 6 is a timing chart showing upper rectangular wave PWM 180 ° energization in the control method for the electric motorcycle 100 according to the second embodiment.
  • the electric motorcycle 100 is an electric motorcycle such as an electric motorcycle that travels by driving a motor using electric power supplied from a battery. More specifically, the electric motorcycle 100 is a clutchless electric motorcycle in which a motor and wheels are mechanically connected without a clutch.
  • the electric motorcycle 100 includes an electric vehicle control device 1 that is an example of a drive device, a battery 2, a motor 3, an angle sensor 4 that is an example of a rotation speed detection unit, and an accelerator position sensor 5. And a meter 7 and wheels 8.
  • the electric vehicle control device 1 is a device that controls the electric motorcycle 100 and includes a control unit 10, a storage unit 20, and a power conversion unit 30.
  • the electric vehicle control device 1 may be configured as an ECU (Electronic Control Unit) that controls the entire electric motorcycle 100. Next, each component of the electric vehicle control apparatus 1 will be described in detail.
  • the control unit 10 inputs information from various devices connected to the electric vehicle control device 1 and drives and controls the motor 3 via the power conversion unit 30. Details of the control unit 10 will be described later.
  • the storage unit 20 stores information used by the control unit 10 and a program for operating the control unit 10.
  • the storage unit 20 is, for example, a nonvolatile semiconductor memory, but is not limited to this.
  • the power converter 30 converts the DC power of the battery 2 into AC power and supplies the AC power to the motor 3.
  • the power conversion unit 30 includes an inverter circuit, more specifically, a three-phase full bridge circuit.
  • the full bridge circuit includes a first semiconductor switch Q1 as an example of a first switch, a second semiconductor switch Q2 as an example of a second switch, a third semiconductor switch Q3 as an example of a third switch, and a fourth switch.
  • a fourth semiconductor switch Q4 as an example, a fifth semiconductor switch Q5 as an example of a fifth switch, and a sixth semiconductor switch Q6 as an example of a sixth switch.
  • the first semiconductor switch Q1 has one end connected to the power supply terminal 30a connected to the positive electrode of the battery 2, and the other end connected to the first output terminal 3a to the U-phase coil 31u of the motor 3, which is an example of the first-phase coil. It is connected.
  • the second semiconductor switch Q2 has one end connected to the first output terminal 3a and the other end connected to the ground terminal 30b connected to the negative electrode of the battery 2 grounded.
  • the third semiconductor switch Q3 has one end connected to the power supply terminal 30a and the other end connected to the second output terminal 3b to the V-phase coil 31v of the motor 3, which is an example of the second-phase coil.
  • the fourth semiconductor switch Q4 has one end connected to the second output terminal 3b and the other end connected to the ground terminal 30b.
  • the fifth semiconductor switch Q5 has one end connected to the power supply terminal 30a and the other end connected to the third output terminal 3c to the W-phase coil 31w of the motor 3 which is an example of the third-phase coil.
  • the sixth semiconductor switch Q6 has one end connected to the third output terminal 3c and the other end connected to the ground terminal 30b.
  • the control terminals of the semiconductor switches Q1 to Q6 are electrically connected to the control unit 10.
  • a smoothing capacitor C is provided between the power supply terminal 30a and the ground terminal 30b.
  • the semiconductor switches Q1 to Q6 are, for example, MOSFETs or IGBTs.
  • Battery 2 can be charged / discharged. Specifically, the battery 2 supplies DC power to the power conversion unit 30 during discharging.
  • the battery 2 is charged with DC power obtained by converting AC power supplied from a power source with a charger (not shown) during charging with AC power supplied from an external power source such as a commercial power source. Further, the battery 2 is charged with a DC voltage obtained by converting the AC power output from the motor 3 by the power converter 100 when charging with AC power output from the motor 3 as the wheel 8 rotates.
  • This battery 2 includes a battery management unit (BMU).
  • the battery management unit transmits information regarding the voltage of the battery 2 and the state of the battery 2 (charge rate, etc.) to the control unit 10.
  • the number of the batteries 2 is not limited to one and may be plural.
  • the battery 2 is, for example, a lithium ion battery, but may be another type of battery.
  • the battery 2 may be composed of batteries of different types (for example, a lithium ion battery and a lead battery).
  • the motor 3 outputs torque for driving the wheels 8 by the electric power supplied from the battery 2. Alternatively, the motor 3 outputs electric power as the wheel 8 rotates.
  • the motor 3 is a three-phase motor having three-phase coils 31u, 31v, and 31w of U, V, and W.
  • the motor 3 outputs torque for driving the wheels 8 by being driven by AC power supplied from the power conversion unit 30.
  • the torque is controlled by the control unit 10 outputting to the semiconductor switches Q1 to Q6 of the power conversion unit 30 a PWM signal having an energization timing and a duty ratio calculated based on the target torque. That is, the torque is controlled by the control unit 10 controlling the power supplied from the battery 2 to the motor 3.
  • the motor 3 is mechanically connected to the wheel 8 and rotates the wheel 8 in a desired direction by torque.
  • the motor 3 is mechanically connected to the wheel 8 without using a clutch. Note that the type of the motor 3 is not particularly limited.
  • the angle sensor 4 is a sensor that detects the rotation angle of the rotor of the motor 3 in order to detect the rotation speed of the motor 3. As shown in FIG. 3, N-pole and S-pole magnets (sensor magnets) are alternately attached to the peripheral surface of the rotor 3 r of the motor 3.
  • the angle sensor 4 is constituted by a Hall element, for example, and detects a change in the magnetic field accompanying the rotation of the motor 3.
  • the magnet may be provided inside the flywheel (not shown).
  • the angle sensor 4 includes a U-phase angle sensor 4u, a V-phase angle sensor 4v, and a W-phase angle sensor 4w.
  • the U-phase angle sensor 4 u and the V-phase angle sensor 4 v are arranged so as to form an angle of 30 ° with respect to the rotor of the motor 3.
  • the V-phase angle sensor 4v and the W-phase angle sensor 4w are arranged so as to form an angle of 30 ° with respect to the rotor of the motor 3.
  • the U-phase angle sensor 4u, the V-phase angle sensor 4v, and the W-phase angle sensor 4w output a pulse signal having a phase corresponding to the rotor angle (angular position) (that is, a rotation angle detection signal). To do.
  • a number indicating a motor stage (motor stage number) is assigned for each predetermined rotor angle.
  • the motor stage indicates the angular position of the rotor 3r of the motor 3.
  • motor stage numbers 1, 2, 3, 4, 5, and 6 are assigned every 60 ° in electrical angle.
  • the motor stage is defined by a combination of output signal levels (H level or L level) of the U phase angle sensor 4u, the V phase angle sensor 4v, and the W phase angle sensor 4w.
  • the accelerator position sensor 5 detects the accelerator operation amount set by the user's accelerator operation, and transmits the detected accelerator operation amount to the control unit 10 as an electric signal.
  • the accelerator operation amount may be, for example, a throttle opening. When the user wants to accelerate, the accelerator operation amount increases.
  • the meter 7 is a display (for example, a liquid crystal panel) provided in the electric motorcycle 100 and displays various information. Specifically, information such as the traveling speed of the electric motorcycle 100, the remaining amount of the battery 2, the current time, and the traveling distance is displayed on the meter 7. In the present embodiment, the meter 7 is provided on a handle (not shown) of the electric motorcycle 100.
  • control unit 10 of the electric vehicle control device 1 will be described in detail.
  • the control unit 10 controls the driving of the motor 3 by controlling the semiconductor switches Q1 to Q6.
  • the control unit 10 performs drive control of the motor 3 with a trapezoidal energization waveform.
  • the drive control of the motor 3 by the trapezoidal energization waveform increases in a stepwise manner from a duty ratio of zero (that is, an OFF state) to a preset set duty ratio, maintains the set duty ratio after the increase,
  • the first semiconductor switch Q1 is turned on / off by a U-phase high-side PWM signal (that is, a first-phase high-side PWM signal) having an adjusted duty ratio adjusted so as to decrease stepwise from the set duty ratio to zero. Includes control to switch.
  • the drive control of the motor 3 by the trapezoidal energization waveform is a control for switching on / off the third semiconductor switch Q3 by the V-phase high-side PWM signal (that is, the second-phase high-side PWM signal) of the adjustment duty ratio. Including.
  • the drive control of the motor 3 with the trapezoidal energization waveform is a control for switching on / off the fifth semiconductor switch Q5 by the W-phase high-side PWM signal (that is, the third-phase high-side PWM signal) of the adjustment duty ratio. Including.
  • a gradual increase to the set duty ratio and a gradual decrease from the set duty ratio are caused by the U-phase high-side PWM signal, the V-phase high-side PWM signal, and the W-phase high-side PWM signal. It is performed at a set cycle set longer than the pulse cycle.
  • control unit 10 controls the duty ratio in each of a plurality of pulse periods included in the same set period to be constant.
  • the control for switching on / off of the first semiconductor switch Q1 by the U-phase high-side PWM signal of the adjustment duty ratio is performed on the first semiconductor switch Q1 by the U-phase low-side PWM signal (that is, the first-phase low-side PWM signal).
  • the second semiconductor switch Q2 may be complementarily controlled to switch on / off.
  • the U-phase low-side PWM signal here has a duty ratio between the U-phase high-side PWM signal of the adjusted duty ratio so as to form a dead time in which the second semiconductor switch Q2 is not turned on simultaneously with the first semiconductor switch Q1. It is the adjusted PWM signal.
  • the control for switching on / off of the third semiconductor switch Q3 by the V-phase high-side PWM signal of the adjustment duty ratio is performed on the third semiconductor switch Q3 by the V-phase low-side PWM signal (that is, the second-phase low-side PWM signal).
  • the fourth semiconductor switch Q4 may be complementarily controlled to switch on / off.
  • the duty ratio between the V-phase low-side PWM signal and the V-phase high-side PWM signal of the adjusted duty ratio is set so as to form a dead time in which the fourth semiconductor switch Q4 is not turned on simultaneously with the third semiconductor switch Q3. It is the adjusted PWM signal.
  • Control for switching on / off of the fifth semiconductor switch Q5 by the W-phase high-side PWM signal of the adjustment duty ratio is performed on the fifth semiconductor switch Q5 by the W-phase low-side PWM signal (that is, the third-phase low-side PWM signal).
  • the duty ratio between the W-phase low-side PWM signal and the W-phase high-side PWM signal of the adjustment duty ratio is so set as to form a dead time in which the sixth semiconductor switch Q6 is not turned on simultaneously with the fifth semiconductor switch Q5. It is the adjusted PWM signal.
  • the control unit 10 functions as a rotation speed detection unit together with the angle sensor 4 and detects the rotor rotation speed based on a detection signal from the angle sensor 4. As an example, as shown in FIG. 4, the control unit 10 calculates the rotor rotation speed based on the time t from the fall of the output of the V-phase rotor angle sensor to the rise of the output of the U-phase rotor angle sensor.
  • the set duty ratio is based on a rotor rotation speed (hereinafter also referred to as a detection speed) detected by the control unit 10 (rotation speed detection unit) and an accelerator operation amount (user operation amount) for controlling the rotation of the motor 3. May be set. More specifically, the control unit 10 sets a target torque corresponding to the detected speed and the accelerator operation amount based on a torque map indicating the correspondence relationship between the rotation speed of the rotor 3r, the accelerator operation amount, and the torque of the motor 3. May be. Then, the control unit 10 sets the duty ratio corresponding to the detected speed and the set target torque as the set duty ratio based on the duty ratio map indicating the correspondence relationship between the rotational speed of the rotor, the target torque, and the duty ratio. It may be set.
  • the control unit 10 may periodically set first to sixth energization periods that each correspond to an electrical angle of 60 ° according to the detection angle by the angle sensor 4.
  • the drive control of the motor 3 by the trapezoidal energization waveform is performed by switching the first semiconductor switch Q1 on / off by the U-phase high-side PWM signal and by the U-phase low-side PWM signal during the first to fourth energization periods.
  • a control for switching on / off of the second semiconductor switch Q2 may be included.
  • the drive control of the motor 3 by the trapezoidal energization waveform is performed by switching the third semiconductor switch Q3 on / off by the V-phase high-side PWM signal and by the V-phase low-side PWM signal during the third to sixth energization periods.
  • a control for switching on / off of the fourth semiconductor switch Q4 may be included.
  • the drive control of the motor 3 by the trapezoidal energization waveform is performed by the W-phase high-side PWM signal in the fifth and sixth energization periods and the first and second energization periods of the next period following the sixth energization period.
  • Control may be included in which the semiconductor switch Q5 is turned on / off and the sixth semiconductor switch Q6 is turned on / off by the W-phase low-side PWM signal.
  • 180 ° energization is performed so that the phase current flows during the energization period corresponding to the electrical angle of 180 ° as drive control of the motor 3 by the trapezoidal energization waveform.
  • the adjustment duty ratio of the U-phase high-side PWM signal gradually increases to the set duty ratio in the first energization period, is maintained at the set duty ratio in the second and third energization periods, and is set in the fourth energization period.
  • the duty ratio may be decreased stepwise.
  • the adjustment duty ratio of the V-phase high-side PWM signal gradually increases to the set duty ratio in the third energization period, is maintained at the set duty ratio in the fourth and fifth energization periods, and is set in the sixth energization period.
  • the duty ratio may be decreased stepwise.
  • the adjustment duty ratio of the W-phase high-side PWM signal gradually increases to the set duty ratio in the fifth energization period, and is maintained at the set duty ratio in the sixth energization period and the first energization period of the next cycle. You may reduce in steps from a setting duty ratio in the 2nd electricity supply period of a period.
  • Control method of electric motorcycle 100 (Control method of electric motorcycle 100)
  • the control method of the electric motorcycle 100 according to the first embodiment will be described as an example of the control method of the drive device.
  • the control unit 10 executes 180 ° upper and lower trapezoidal wave PWM control as drive control of the motor 3 with a trapezoidal energization waveform.
  • the 180 ° upper and lower trapezoidal wave PWM control generates a substantially trapezoidal energization waveform with PWM control to both the high-side semiconductor switches Q1, Q3, and Q5 and the low-side semiconductor switches Q2, Q4, and Q6. It is.
  • the U-phase high-side PWM of the adjustment duty ratio in the continuous sixth to third energization stages (that is, the first to fourth energization periods).
  • Control is performed to turn on / off the first semiconductor switch Q1 according to the signal. More specifically, in the No. 6 energization stage, it gradually increases to the set duty ratio, maintained at the set duty ratio in the No. 1 and No. 2 energization stages, and gradually from the set duty ratio in the No. 3 energization stage. Control is performed to turn on / off the first semiconductor switch Q1 by the U-phase high-side PWM signal having a decreasing duty ratio.
  • the dead time during which the second semiconductor switch Q2 is not turned on simultaneously with the first semiconductor switch Q1 in the continuous sixth to third energization stages is switched on / off complementarily to the first semiconductor switch Q1 by the U-phase low-side PWM signal whose duty ratio is adjusted with the U-phase high-side PWM signal so as to be formed.
  • the third semiconductor is controlled by the V-phase high-side PWM signal of the adjusted duty ratio in the continuous second to fifth energization stages (that is, the third to sixth energization periods).
  • Control to switch on / off the switch Q3 is performed. More specifically, in the second energization stage, it gradually increases to the set duty ratio, maintained at the set duty ratio in the third and fourth energization stages, and gradually from the set duty ratio in the fifth energization stage. Control is performed to turn on / off the third semiconductor switch Q3 by the V-phase high-side PWM signal having a decreasing duty ratio.
  • the V-phase high level is set so as to form a dead time in which the fourth semiconductor switch Q4 is not turned on simultaneously with the third semiconductor switch Q3 in the continuous second to fifth energization stages.
  • the fourth semiconductor switch Q4 is controlled to be turned on / off complementarily to the third semiconductor switch Q3 by the V-phase low-side PWM signal whose duty ratio is adjusted with respect to the side PWM signal.
  • the adjustment duty ratio in the continuous fourth to first energization stages (that is, the fifth and sixth energization periods and the first and second energization periods of the next cycle).
  • the fifth semiconductor switch Q5 is controlled to be turned on / off by the W-phase high-side PWM signal. More specifically, in the No. 4 energization stage, it gradually increases to the set duty ratio, and is maintained at the set duty ratio in the No. 5 and No. 6 energization stages, and gradually from the set duty ratio in the No. 1 energization stage. Control is performed to turn on / off the fifth semiconductor switch Q5 by the W-phase high-side PWM signal having a decreasing duty ratio.
  • the W phase high so as to form a dead time in which the sixth semiconductor switch Q6 is not turned on simultaneously with the fifth semiconductor switch Q5 in the continuous fourth to first energization stages.
  • the sixth semiconductor switch Q6 is controlled to be turned on / off complementarily to the fifth semiconductor switch Q5 by the W-phase low-side PWM signal whose duty ratio is adjusted with the side PWM signal.
  • FIG. 5 the energization waveform is shown superimposed on the PWM signal so that the correspondence between the rise and fall of the trapezoidal wave and the energization stage is easily understood.
  • FIG. 5 also shows the UV phase voltage, the VW phase voltage, and the WU phase voltage corresponding to each energization stage.
  • the PWM signal is generated for each carrier cycle of the triangular wave based on the triangular wave generated by the control unit 10.
  • the duty ratio of the U-phase PWM signal increases stepwise as time elapses.
  • the duty ratio of the U-phase PWM signal gradually decreases with time.
  • control unit 10 sets the period T1 of increase and decrease of the duty ratio in the rising and falling periods of the trapezoidal wave to be higher than the carrier period T2 of the PWM signal by the triangular wave. It is set long.
  • ripples can be suppressed by gently raising and lowering the energization waveform.
  • the stepwise increase to the set duty ratio and the stepwise decrease from the set duty ratio are longer than the pulse periods of the U-phase high-side PWM signal, the V-phase high-side PWM signal, and the W-phase high-side PWM signal.
  • the control unit 10 performs drive control of the motor 3 with a trapezoidal energization waveform.
  • the drive control gradually increases to a preset set duty ratio, maintains the set duty ratio after the increase, and adjusts the duty ratio adjusted to decrease gradually from the set duty ratio after the maintenance.
  • This includes control for switching on / off of the first switch (first semiconductor switch Q1) by a one-phase high-side PWM signal (U-phase high-side PWM signal).
  • the drive control includes control for switching on / off of the third switch (third semiconductor switch Q3) by the second-phase high-side PWM signal (V-phase high-side PWM signal) of the adjustment duty ratio.
  • the drive control includes control for turning on / off the fifth switch (fifth semiconductor switch Q5) by the third phase high-side PWM signal (W-phase high-side PWM signal) of the adjustment duty ratio.
  • the stepwise increase to the set duty ratio and the stepwise decrease from the set duty ratio are the pulse periods of the first phase high-side PWM signal, the second phase high-side PWM signal, and the third phase high-side PWM signal. It is performed at a set cycle that is set longer.
  • control unit 10 determines that the detected speed of the rotor 3r is equal to or higher than the preset first reference speed and is slower than the preset second reference speed, and the set duty ratio is preset. In the first case, which is lower than the first reference duty ratio, the drive control of the motor 3 by the trapezoidal energization waveform is performed.
  • control unit 10 has a preset second reference duty ratio in which the detected speed is equal to or higher than the first reference speed and slower than the second reference speed, and the set duty ratio is equal to or higher than the first reference duty ratio.
  • the detected speed is equal to or higher than the second reference speed, slower than the preset third reference speed, and the set duty ratio is lower than the second reference duty ratio.
  • the control unit 10 switches on / off of the first semiconductor switch Q1 by the U-phase high-side PWM signal having the set duty ratio, and also controls the first semiconductor switch Q1 by the U-phase low-side PWM signal. Complementary control is performed to turn on / off the second semiconductor switch Q2.
  • the U-phase low-side PWM signal in the second case has a duty ratio between the U-phase high-side PWM signal having a set duty ratio so as to form a dead time in which the second semiconductor switch Q2 is not turned on simultaneously with the first semiconductor switch Q1. This is a PWM signal whose ratio is adjusted.
  • the control unit 10 switches on / off of the third semiconductor switch Q3 by the V-phase high-side PWM signal having the set duty ratio, and switches the third semiconductor switch Q3 to the third semiconductor switch Q3 by the V-phase low-side PWM signal.
  • the fourth semiconductor switch Q4 is controlled to be turned on / off in a complementary manner.
  • the V-phase low-side PWM signal in the second case has a duty ratio between the V-phase high-side PWM signal having a set duty ratio so as to form a dead time in which the fourth semiconductor switch Q4 is not turned on simultaneously with the third semiconductor switch Q3. This is a PWM signal whose ratio is adjusted.
  • the control unit 10 switches the fifth semiconductor switch Q5 on / off by the W-phase high-side PWM signal having the set duty ratio, and switches the fifth semiconductor switch Q5 to the fifth semiconductor switch Q5 by the W-phase low-side PWM signal.
  • the sixth semiconductor switch Q6 is controlled to be turned on / off in a complementary manner.
  • the duty ratio of the W-phase low-side PWM signal in the second case is adjusted with the W-phase high-side PWM signal so as to form a dead time in which the sixth semiconductor switch Q6 is not turned on simultaneously with the fifth semiconductor switch Q5. PWM signal.
  • the control unit 10 switches on / off the first semiconductor switch Q1 by the U-phase high-side PWM signal and outputs the U-phase low-side PWM signal during the first to third energization periods.
  • the second semiconductor switch Q2 may be controlled to be turned on / off.
  • control unit 10 switches the third semiconductor switch Q3 on / off by the V-phase high-side PWM signal and performs the fourth operation by the V-phase low-side PWM signal during the third to fifth energization periods. You may perform control which switches on / off of semiconductor switch Q4.
  • control unit 10 turns on the fifth semiconductor switch Q5 by the W-phase high-side PWM signal during the first energization period following the fifth and sixth energization periods and the sixth energization period. Control may be performed to switch on / off of the sixth semiconductor switch Q6 in accordance with the W-phase low-side PWM signal while switching / off.
  • the 180 ° energization is performed by the control in the second case.
  • control unit 10 has a detected speed that is equal to or higher than the first reference speed and slower than the third reference speed, and the set duty ratio is equal to or higher than the second reference duty ratio, or the detected speed is the third reference speed. In the third case as described above, the following control is performed.
  • control unit 10 performs control to turn on / off the first semiconductor switch Q1 by the U-phase high-side PWM signal of the set duty ratio while turning off the second semiconductor switch Q2.
  • control unit 10 performs control to turn on / off the third semiconductor switch Q3 by the V-phase high-side PWM signal having the set duty ratio while turning off the fourth semiconductor switch Q4.
  • control unit 10 performs control to turn on / off the fifth semiconductor switch Q5 by the W-phase high-side PWM signal having the set duty ratio while turning off the sixth semiconductor switch Q6.
  • control unit 10 turns on / off the first semiconductor switch Q1 by the U-phase high-side PWM signal while turning off the second semiconductor switch Q2 during the first to third energization periods. You may perform control which switches.
  • control unit 10 performs control to switch on / off the third semiconductor switch Q3 by the V-phase high-side PWM signal while turning off the fourth semiconductor switch Q4 during the third to fifth energization periods. May be performed.
  • control unit 10 controls the W-phase high-side PWM while turning off the sixth semiconductor switch Q6 during the fifth and sixth energization periods and the first energization period of the next period following the sixth energization period. Control may be performed to turn on / off the fifth semiconductor switch Q5 by a signal.
  • the 180 ° energization is performed by the control in the third case.
  • control unit 10 performs the following control in the fourth case where the detection speed is slower than the first reference speed and the set duty ratio is lower than the preset third reference duty ratio.
  • the control unit 10 switches on / off of the first semiconductor switch Q1 by the U-phase high-side PWM signal having the set duty ratio, and controls the first semiconductor switch Q1 by the U-phase low-side PWM signal. Complementary control is performed to turn on / off the second semiconductor switch Q2.
  • the U-phase low-side PWM signal in the fourth case has a duty ratio between the U-phase high-side PWM signal having a set duty ratio so as to form a dead time that does not turn on the second semiconductor switch Q2 simultaneously with the first semiconductor switch Q1. This is a PWM signal whose ratio is adjusted.
  • the control unit 10 switches the third semiconductor switch Q3 on / off by the V-phase high-side PWM signal having the set duty ratio, and switches the third semiconductor switch Q3 to the third semiconductor switch Q3 by the V-phase low-side PWM signal.
  • the fourth semiconductor switch Q4 is controlled to be turned on / off in a complementary manner.
  • the V-phase low-side PWM signal in the fourth case has a duty ratio between the V-phase high-side PWM signal having a set duty ratio so as to form a dead time in which the fourth semiconductor switch Q4 is not turned on simultaneously with the third semiconductor switch Q3. This is a PWM signal whose ratio is adjusted.
  • the control unit 10 switches the fifth semiconductor switch Q5 on / off by the W-phase high-side PWM signal having the set duty ratio, and switches the fifth semiconductor switch Q5 to the fifth semiconductor switch Q5 by the W-phase low-side PWM signal.
  • the sixth semiconductor switch Q6 is controlled to be turned on / off in a complementary manner.
  • the W-phase low-side PWM signal in the fourth case has a duty ratio between the W-phase high-side PWM signal having a set duty ratio so as to form a dead time in which the sixth semiconductor switch Q6 is not turned on simultaneously with the fifth semiconductor switch Q5. This is a PWM signal whose ratio is adjusted.
  • control unit 10 switches the second and third energizations while switching on / off the second semiconductor switch Q2 by the U-phase low-side PWM signal during the first to fourth energization periods. You may perform control which switches on / off of the 1st semiconductor switch Q1 with a U-phase high side PWM signal in a period.
  • control unit 10 switches the ON / OFF state of the fourth semiconductor switch Q4 by the V-phase low-side PWM signal during the third to sixth energization periods, while the V and the fifth energization periods Control for switching on / off of the third semiconductor switch Q3 may be performed by the phase high-side PWM signal.
  • control unit 10 controls the sixth semiconductor switch Q6 by the W-phase low-side PWM signal during the fifth and sixth energization periods and the first and second energization periods of the next period following the sixth energization period. Control may be performed to turn on / off the fifth semiconductor switch Q5 by the W-phase high-side PWM signal during the sixth energization period and the first energization period of the next cycle while switching on / off.
  • 120 ° energization is performed in which a phase current is passed during an energization period corresponding to an electrical angle of 120 °.
  • the control unit 10 turns off the second semiconductor switch Q2 and sets the set duty Control is performed to turn on / off the first semiconductor switch Q1 by the U-phase high-side PWM signal of the ratio.
  • control unit 10 performs control to turn on / off the third semiconductor switch Q3 by the V-phase high-side PWM signal having the set duty ratio while turning off the fourth semiconductor switch Q4.
  • control unit 10 performs control to turn on / off the fifth semiconductor switch Q5 by the W-phase high-side PWM signal having the set duty ratio while turning off the sixth semiconductor switch Q6.
  • control unit 10 turns off the second semiconductor switch Q2 in the first to fourth energization periods, and outputs the first and second energization periods by the U-phase high-side PWM signal. 1 Control to switch on / off of the semiconductor switch Q1 may be performed.
  • control unit 10 turns off the fourth semiconductor switch Q4 during the third to sixth energization periods, and uses the V-phase high-side PWM signal during the fourth and fifth energization periods. You may perform control which switches on / off of Q3.
  • control unit 10 turns off the sixth semiconductor switch Q6 during the fifth and sixth energization periods and the first and second energization periods of the next cycle following the sixth energization period. Control may be performed to turn on / off the fifth semiconductor switch Q5 by the W-phase high-side PWM signal during the energization period and the first energization period of the next cycle.
  • control unit 10 detects the accelerator operation amount based on the detection signal of the accelerator position sensor 5 (step S1).
  • control unit 10 detects the rotor rotation speed based on the detection signal of the angle sensor 4 (step S2).
  • control unit 10 After detecting the accelerator operation amount and the rotor rotation speed, the control unit 10 sets a target torque based on the detected accelerator operation amount and the detected rotor rotation speed (that is, also called the detection speed) (step S3). ).
  • control unit 10 sets the target torque by acquiring the target torque corresponding to the accelerator operation amount and the rotor rotational speed with reference to the torque map.
  • the torque map is a map showing a correspondence relationship between the rotor rotational speed, the accelerator operation amount, and the target torque.
  • the torque map may be stored in the storage unit 20 so that the control unit 10 can read the torque map.
  • control unit 10 After setting the target torque, as shown in FIG. 8, the control unit 10 sets the duty ratio based on the detected speed and the set target torque (step S4).
  • the control unit 10 sets the duty ratio by obtaining a duty ratio corresponding to the detected speed and the target torque with reference to the duty ratio map.
  • the duty ratio map is a map showing a correspondence relationship between the rotor rotational speed, the target torque, and the duty ratio.
  • the duty ratio map may be stored in the storage unit 20 in a state where the control unit 10 can read the duty ratio map.
  • control unit 10 determines whether or not the detected speed is equal to or higher than a first reference speed set in advance (step S5).
  • step S6 the control unit 10 determines whether or not the set duty ratio is equal to or higher than a preset third reference duty ratio (step S6).
  • step S6 When the set duty ratio is not equal to or greater than the third reference duty ratio (step S6: No), the control unit 10 performs the energization method in the first region R1 (that is, the fourth case) illustrated in FIGS. 120 ° upper and lower rectangular wave PWM control is executed (step S11).
  • the 120 ° vertical rectangular wave PWM control is a substantially rectangular energization waveform with PWM control to both the upper or high-side semiconductor switches Q1, Q3, and Q5 and the lower or low-side semiconductor switches Q2, Q4, and Q6.
  • the resulting 120 ° energization is a substantially rectangular energization waveform with PWM control to both the upper or high-side semiconductor switches Q1, Q3, and Q5 and the lower or low-side semiconductor switches Q2, Q4, and Q6.
  • the first to sixth energization stages each having an electrical angle of 60 ° which are periodically set according to the first to sixth motor stages.
  • the first semiconductor switch Q1 is turned on by the U-phase high-side PWM signal of the set duty ratio in the first and second energization stages (that is, the second and third energization periods) in the energization period (that is, the energization period). Control to switch off / off.
  • the U-phase high-side PWM signal and the U-phase high-side PWM signal are formed so as to form a dead time in the continuous sixth to third energization stages (that is, the first to fourth energization periods).
  • the second semiconductor switch Q2 is controlled to be turned on / off complementarily to the first semiconductor switch Q1 by the U-phase low-side PWM signal whose duty ratio is adjusted between the first semiconductor switch Q1 and the second semiconductor switch Q2.
  • the ON / OFF of the second semiconductor switch Q2 is complementary to the first semiconductor switch Q1.
  • the high-side semiconductor switch Q1 corresponds to the on state of the high signal level
  • the low-side semiconductor switch Q2 corresponds to the on state of the low level signal.
  • the signal is shown as “Hi Active”
  • the low-side PWM signal is shown as “Lo Active”.
  • the U-phase low-side PWM signal forms a dead time Dt that does not turn on the second semiconductor switch Q2 simultaneously with the first semiconductor switch Q1.
  • the duty ratio is adjusted with the U-phase high-side PWM signal.
  • the V-phase high of the set duty ratio is applied in the third and fourth energization stages (that is, the fourth and fifth energization periods).
  • the third semiconductor switch Q3 is controlled to be turned on / off by the side PWM signal.
  • the V-phase high-side PWM signal and the V-phase high-side PWM signal are formed so as to form a dead time in the second to fifth energization stages (that is, the third to sixth energization periods).
  • the fourth semiconductor switch Q4 is controlled to be turned on / off in a complementary manner with respect to the third semiconductor switch Q3 by the V-phase low-side PWM signal whose duty ratio is adjusted between.
  • the W-phase high-side PWM of the set duty ratio in the continuous fifth and sixth energization stages that is, the sixth energization period and the first energization period of the next cycle. Control to turn on / off the fifth semiconductor switch Q5 by a signal is performed.
  • the 120 ° upper and lower rectangular wave PWM control dead time is reduced in the fourth to first energization stages (that is, the fifth and sixth energization periods and the first and second energization periods of the next cycle).
  • the sixth semiconductor switch Q6 is switched on / off complementarily to the fifth semiconductor switch Q5 by the W-phase low-side PWM signal whose duty ratio is adjusted with the W-phase high-side PWM signal so as to be formed. Take control.
  • the first semiconductor switch Q1 is turned off in energization stages other than No. 1 and No. 2.
  • the second semiconductor switch Q2 is turned off.
  • the third semiconductor switch Q3 is turned off.
  • the fourth semiconductor switch Q4 is turned off.
  • the fifth semiconductor switch Q5 is turned off.
  • the sixth semiconductor switch Q6 is turned off.
  • the energization stage may have a deviation of an angle set according to the target torque and the motor rotation speed with respect to the motor stage.
  • the starting characteristics can be improved by conducting 120 ° energization during the low rotation of the rotor 3r. Further, through current can be prevented by PWM controlling the low-side switches Q2, Q4, and Q6 such that a dead time is formed between the high-side switches Q1, Q3, and Q5.
  • step S6 when the set duty ratio is greater than or equal to the third reference duty ratio (step S6: Yes), the control unit 10 uses the second region R2 (ie, the fifth region) shown in FIGS. 12A and 12B. ), The 120 ° upper rectangular wave PWM control is executed (step S12).
  • the third reference duty ratio matches the second reference duty ratio, but the third reference duty ratio may be different from the second reference duty ratio.
  • the 120 ° upper rectangular wave PWM control is 120 ° energization that generates a substantially rectangular energization waveform with PWM control only to the high-side semiconductor switches Q1, Q3, and Q5.
  • the U-phase high-side PWM signal having a set duty ratio in the continuous first and second energization stages (that is, the second and third energization periods). Is used to control the first semiconductor switch Q1 to be turned on / off.
  • the second semiconductor switch Q2 is continuously turned off in the continuous sixth to third energization stages (that is, the first to fourth energization periods).
  • the third semiconductor switch is set by the V-phase high-side PWM signal having the set duty ratio in the third and fourth energization stages (that is, the fourth and fifth energization periods). Control to switch on / off of Q3 is performed.
  • the fourth semiconductor switch Q4 is continuously turned off in the continuous second to fifth energization stages (that is, the third to sixth energization periods).
  • the W-phase high-side PWM signal having the set duty ratio in the continuous fifth and sixth energization stages that is, the sixth energization period and the first energization period of the next cycle.
  • control is performed to switch on / off the fifth semiconductor switch Q5.
  • the sixth semiconductor switch is used in the fourth to first energization stages (that is, the fifth and sixth energization periods and the first and second energization periods of the next cycle). Control is performed to keep Q6 off.
  • the 120 ° upper-stage rectangular wave PWM control as described above, when the set duty ratio is high, the low-side switches Q2, Q4, and Q6 are turned off and only the high-side switches Q1, Q3, and Q5 are subjected to PWM control. By doing so, it is not necessary to adjust the duty ratio of the PWM signals so that a dead time is formed between the high-side switches Q1, Q3, and Q5 and the low-side switches Q2, Q4, and Q6.
  • step S5 when the detected speed is equal to or higher than the first reference speed (step S5: Yes), the control unit 10 determines whether or not the detected speed is equal to or higher than the second reference speed (step S7). .
  • step S7 When the detected speed is not equal to or higher than the second reference speed (step S7: No), the control unit 10 determines whether or not the set duty ratio is equal to or higher than the first reference duty ratio (step S8).
  • step S8: No When the set duty ratio is not equal to or greater than the first reference duty ratio (step S8: No), the control unit 10 performs the energization method in the third region R3 (that is, the first case) illustrated in FIGS. 12A and 12B. 180 ° upper and lower trapezoidal wave PWM control is executed (step S13).
  • the waveforms in the 180 ° upper and lower trapezoidal wave PWM control are as shown in FIGS. 5 to 7 in the first embodiment. According to the 180 ° upper / lower trapezoidal wave PWM control, ripples can be suppressed by gently raising and lowering the energization waveform.
  • step S7 when the detected speed is equal to or higher than the second reference speed (step S7: Yes), the control unit 10 determines whether or not the detected speed is equal to or higher than the third reference speed (step S9). .
  • step S9: No When the detected speed is not equal to or higher than the third reference speed (step S9: No), or when the set duty ratio is equal to or higher than the first reference duty ratio (step S8: Yes), the control unit 10 sets the second set duty ratio to the second reference duty ratio. It is determined whether or not the duty ratio is equal to or greater than the reference duty ratio (step S10).
  • step S10 When the set duty ratio is not equal to or greater than the second reference duty ratio (step S10: No), the control unit 10 performs the energization method in the fourth region R4 (that is, the second case) illustrated in FIGS. 12A and 12B. 180 ° upper and lower rectangular wave PWM control is executed (step S14).
  • the 180 ° upper and lower rectangular wave PWM control generates a substantially rectangular energization waveform with PWM control to both the high-side semiconductor switches Q1, Q3, and Q5 and the low-side semiconductor switches Q2, Q4, and Q6. It is.
  • the U-phase high-side PWM of the set duty ratio in the continuous first to third energization stages that is, the first to third energization periods. Control is performed to turn on / off the first semiconductor switch Q1 according to the signal.
  • the U phase whose duty ratio is adjusted with the U phase high-side PWM signal so as to form a dead time in the continuous first to third energization stages. Control is performed to turn on / off the second semiconductor switch Q2 in a complementary manner to the first semiconductor switch Q1 by the low-side PWM signal.
  • the third semiconductor is controlled by the V-phase high-side PWM signal having the set duty ratio in the continuous third to fifth energization stages (that is, the third to fifth energization periods). Control to switch on / off the switch Q3 is performed.
  • the duty ratio is adjusted with the V-phase high-side PWM signal so as to form a dead time in the continuous third to fifth energization stages. Control is performed to turn on / off the fourth semiconductor switch Q4 in a complementary manner to the third semiconductor switch Q3 by the low-side PWM signal.
  • the W phase of the set duty ratio in the continuous fifth to first energization stages (that is, the fifth and sixth energization periods and the first energization period of the next cycle). Control to turn on / off the fifth semiconductor switch Q5 is performed by the high-side PWM signal.
  • Control is performed to turn on / off the sixth semiconductor switch Q6 complementarily to the fifth semiconductor switch Q5 by the low-side PWM signal.
  • the power supply voltage is used by applying 180 ° power so that torque can be appropriately applied to the rotor 3r rotating at high speed.
  • a sufficiently large torque can be obtained by increasing the ratio.
  • through current can be prevented by PWM controlling the low-side switches Q2, Q4, and Q6 such that a dead time is formed between the high-side switches Q1, Q3, and Q5.
  • step S9 when the detected speed is greater than or equal to the third reference speed (step S9: Yes), or when the set duty ratio is greater than or equal to the second reference duty ratio (step S10: Yes), the control unit 10 Executes 180 ° upper rectangular wave PWM control as the energization method of the fifth region R5 (that is, the third case) shown in FIGS. 12A and 12B (step S15).
  • 180 ° upper-stage rectangular wave PWM control is 180 ° energization that generates a substantially rectangular energization waveform with PWM control only to the high-side semiconductor switches Q1, Q3, and Q5.
  • the U-phase high-side PWM signal having the set duty ratio in the continuous first to third energization stages (that is, the first to third energization periods). Is used to control the first semiconductor switch Q1 to be turned on / off.
  • the second semiconductor switch Q2 is continuously turned off in the continuous first to third energization stages.
  • the third semiconductor switch is set by the V-phase high-side PWM signal having the set duty ratio in the third through fifth energization stages (that is, the third through fifth energization periods). Control to switch on / off of Q3 is performed.
  • the fourth semiconductor switch Q4 is continuously turned off in the continuous third to fifth energization stages.
  • the W-phase high of the set duty ratio in the continuous fifth to first energization stages (that is, the fifth and sixth energization periods and the first energization period of the next cycle).
  • the fifth semiconductor switch Q5 is controlled to be turned on / off by the side PWM signal.
  • the sixth semiconductor switch Q6 is continuously turned off in the continuous energization stages Nos. 5 to 1.
  • the 180 ° upper-stage rectangular wave PWM control as described above, as in the case of the 120 ° upper-stage rectangular wave PWM control, when the set duty ratio is high, the low-side switches Q2, Q4, Q6 are turned off and the high-side By performing PWM control only on the switches Q1, Q3, and Q5, the PWM signals of each other so that a dead time is formed between the high-side switches Q1, Q3, and Q5 and the low-side switches Q2, Q4, and Q6. It is not necessary to adjust the duty ratio.
  • a suitable PWM control can be selected in accordance with the detection speed and the set duty ratio, and therefore, as much torque as possible is output by efficiently using the charging voltage of the battery 2. It becomes possible to do.
  • At least a part of the electric vehicle control device 1 described in the embodiment described above may be configured by hardware or software.
  • a program for realizing at least a part of the functions of the electric vehicle control device 1 may be stored in a recording medium such as a flexible disk or a CD-ROM, and read and executed by a computer.
  • the recording medium is not limited to a removable medium such as a magnetic disk or an optical disk, but may be a fixed recording medium such as a hard disk device or a memory.
  • a program that realizes at least a part of the functions of the electric vehicle control device 1 may be distributed via a communication line (including wireless communication) such as the Internet. Further, the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.
  • a communication line including wireless communication
  • the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A control unit performs drive control of a motor by using a trapezoidal-shaped energization waveform, wherein said drive control includes: control for switching the on/off of a first switch by using a first phase high-side PWM signal having an adjusted duty ratio which is adjusted so as to increase in stages up to a preset set duty ratio, maintain the set duty ratio after increasing, and decrease in stages from the set duty ratio after maintaining; control for switching the on/off of a third switch by using a second phase high-side PWM signal having the adjusted duty ratio; and control for switching the on/off of a fifth switch by using a third phase high-side PWM signal having the adjusted duty ratio. Increasing in stages up to the set duty ratio and decreasing in stages from the set duty ratio are performed in a set period which is set longer than the pulse periods of the first phase high-side PWM signal, the second phase high-side PWM signal, and the third phase high-side PWM signal.

Description

駆動装置、電動車両および駆動装置の制御方法Drive device, electric vehicle, and control method of drive device
 本発明は、駆動装置、電動車両および駆動装置の制御方法に関する。 The present invention relates to a drive device, an electric vehicle, and a drive device control method.
 バッテリを電源とし、3相モータ(以下、モータと呼ぶ)を動力源とした電動二輪車が知られている。 An electric motorcycle using a battery as a power source and a three-phase motor (hereinafter referred to as a motor) as a power source is known.
 この種の電動二輪車においては、モータを駆動するため、各相毎にハイサイドおよびローサイドのスイッチを備えた3相フルブリッジ回路(すなわち、インバータ回路)によって、バッテリからモータの各相のコイルへの通電を制御していた。 In this type of electric motorcycle, in order to drive the motor, a three-phase full bridge circuit (that is, an inverter circuit) having a high-side switch and a low-side switch for each phase is used to drive the motor to each phase coil of the motor. The energization was controlled.
 通電の制御においては、スイッチに対して、設定されたデューティ比によるPWM制御を行い、デューティ比に応じた通電波形でモータの駆動を制御していた。 In the energization control, PWM control is performed on the switch with a set duty ratio, and the motor drive is controlled with an energization waveform corresponding to the duty ratio.
 PWM制御においては、通電波形にリップルが生じることを防止するために、デューティ比を徐々に増加または減少させることで、立ち上がりおよび立下りが緩やかな台形状の通電波形を生成していた。 In PWM control, a trapezoidal energization waveform with a gentle rise and fall was generated by gradually increasing or decreasing the duty ratio in order to prevent ripples in the energization waveform.
 しかしながら、PWM制御のタイミングは、三角波による一定のキャリア周期で決められているところ、台形状の通電波形を生成するためにキャリア周期ごとに連続的にデューティ比を増加または減少させると、PWM制御の処理負荷が過大となってしまうといった問題があった。 However, the timing of PWM control is determined by a constant carrier cycle by a triangular wave. If the duty ratio is continuously increased or decreased for each carrier cycle to generate a trapezoidal energization waveform, the PWM control timing is There has been a problem that the processing load becomes excessive.
 なお、特開平8-331885号公報には、3相交流電流を略台形状にする技術が開示されている。しかしながら、特開平8-331885号公報に開示された技術は、台形波を生成するためのPWM制御の処理負荷を軽減することについて何ら触れておらず、本発明とは全く異なる技術である。 Incidentally, JP-A-8-331885 discloses a technology for making a three-phase alternating current substantially trapezoidal. However, the technique disclosed in Japanese Patent Laid-Open No. 8-331885 does not mention anything about reducing the processing load of PWM control for generating a trapezoidal wave, and is a technique completely different from the present invention.
 そこで、本発明は、台形状の通電波形を生成するためのPWM制御の処理負荷を軽減することが可能な駆動装置、電動車両および駆動装置の制御方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a drive device, an electric vehicle, and a drive device control method capable of reducing the processing load of PWM control for generating a trapezoidal energization waveform.
 本発明の一態様に係る駆動装置は、
 一端が電源端子に接続され、他端がモータの第1相コイルへの第1出力端子に接続された第1スイッチと、
 一端が前記第1出力端子に接続され、他端が接地端子に接続された第2スイッチと、
 一端が前記電源端子に接続され、他端が前記モータの第2相コイルへの第2出力端子に接続された第3スイッチと、
 一端が前記第2出力端子に接続され、他端が前記接地端子に接続された第4スイッチと、
 一端が前記電源端子に接続され、他端が前記モータの第3相コイルへの第3出力端子に接続された第5スイッチと、
 一端が前記第3出力端子に接続され、他端が前記接地端子に接続された第6スイッチと、
 前記第1~第6スイッチを制御することで前記モータの駆動を制御する制御部とを備え、
 前記制御部は、台形状の通電波形による前記モータの駆動制御を行い、
 前記駆動制御は、
 予め設定された設定デューティ比まで段階的に増加し、前記増加の後に前記設定デューティ比を維持し、前記維持の後に前記設定デューティ比から段階的に減少するように調整された調整デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替える制御と、前記調整デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替える制御と、前記調整デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替える制御とを含み、
 前記設定デューティ比までの段階的な増加および前記設定デューティ比からの段階的な減少は、前記第1相ハイ側PWM信号、前記第2相ハイ側PWM信号、および第3相ハイ側PWM信号のパルス周期よりも長く設定された設定周期で行われる。
A driving device according to one embodiment of the present invention includes:
A first switch having one end connected to the power supply terminal and the other end connected to the first output terminal to the first phase coil of the motor;
A second switch having one end connected to the first output terminal and the other end connected to a ground terminal;
A third switch having one end connected to the power supply terminal and the other end connected to a second output terminal to the second phase coil of the motor;
A fourth switch having one end connected to the second output terminal and the other end connected to the ground terminal;
A fifth switch having one end connected to the power supply terminal and the other end connected to a third output terminal to the third phase coil of the motor;
A sixth switch having one end connected to the third output terminal and the other end connected to the ground terminal;
A control unit for controlling the driving of the motor by controlling the first to sixth switches,
The control unit performs drive control of the motor with a trapezoidal energization waveform,
The drive control is
The adjustment duty ratio is adjusted to increase stepwise to a preset setting duty ratio, maintain the setting duty ratio after the increase, and decrease stepwise from the setting duty ratio after the maintenance. Control for switching on / off of the first switch by a one-phase high-side PWM signal, control for switching on / off of the third switch by a second-phase high-side PWM signal of the adjustment duty ratio, and the adjustment duty ratio Control to switch on / off the fifth switch by the third phase high-side PWM signal of
The stepwise increase to the set duty ratio and the stepwise decrease from the set duty ratio are caused by the first phase high-side PWM signal, the second phase high-side PWM signal, and the third phase high-side PWM signal. It is performed at a set cycle set longer than the pulse cycle.
 前記駆動装置において、
 前記制御部は、
 同一の設定周期に含まれる複数のパルス周期のそれぞれにおけるデューティ比を一定に制御してもよい。
In the driving device,
The controller is
The duty ratio in each of a plurality of pulse periods included in the same set period may be controlled to be constant.
 前記駆動装置において、
 前記調整デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替える制御は、前記第1スイッチと同時に前記第2スイッチをオンしないデッドタイムを形成するように前記第1相ハイ側PWM信号との間でデューティ比が調整された第1相ロー側PWM信号によって前記第1スイッチに対して相補的に前記第2スイッチのオン/オフを切り替える制御とともに行われ、
 前記調整デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替える制御は、前記第3スイッチと同時に前記第4スイッチをオンしないデッドタイムを形成するように前記第2相ハイ側PWM信号との間でデューティ比が調整された第2相ロー側PWM信号によって前記第3スイッチに対して相補的に前記第4スイッチのオン/オフを切り替える制御とともに行われ、
 前記調整デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替える制御は、前記第5スイッチと同時に前記第6スイッチをオンしないデッドタイムを形成するように前記第3相ハイ側PWM信号との間でデューティ比が調整された第3相ロー側PWM信号によって前記第5スイッチに対して相補的に前記第6スイッチのオン/オフを切り替える制御とともに行われてもよい。
In the driving device,
The control for switching on / off of the first switch by the first-phase high-side PWM signal of the adjustment duty ratio forms the first phase so as to form a dead time that does not turn on the second switch simultaneously with the first switch. The first phase low-side PWM signal whose duty ratio is adjusted between the high-side PWM signal and the first switch are complementarily switched to turn on / off the second switch.
The control to switch on / off the third switch by the second phase high-side PWM signal of the adjustment duty ratio is performed so as to form a dead time in which the fourth switch is not turned on simultaneously with the third switch. The second phase low-side PWM signal, the duty ratio of which is adjusted with respect to the high-side PWM signal, is performed together with the control to turn on / off the fourth switch complementarily to the third switch,
The control to switch on / off the fifth switch by the third phase high-side PWM signal of the adjustment duty ratio is performed so as to form a dead time in which the sixth switch is not turned on simultaneously with the fifth switch. The control may be performed together with a control for switching on / off of the sixth switch complementarily to the fifth switch by a third phase low-side PWM signal whose duty ratio is adjusted with the high-side PWM signal.
 前記駆動装置において、
 前記モータのロータの回転速度を検出する回転速度検出部を更に備え、
 前記設定デューティ比は、前記回転速度検出部による検出速度と前記モータの回転を制御するためのユーザ操作量とに基づいて設定されてもよい。
In the driving device,
A rotation speed detector for detecting the rotation speed of the rotor of the motor;
The set duty ratio may be set based on a detection speed by the rotation speed detection unit and a user operation amount for controlling the rotation of the motor.
 前記駆動装置において、
 前記制御部は、
 前記検出速度が予め設定された第1基準速度以上であって予め設定された第2基準速度よりも遅く、かつ、前記設定デューティ比が予め設定された第1基準デューティ比よりも低い第1の場合に、前記駆動制御を行ってもよい。
In the driving device,
The controller is
First detection speed is equal to or higher than a preset first reference speed and is slower than a preset second reference speed, and the set duty ratio is lower than a preset first reference duty ratio. In this case, the drive control may be performed.
 前記駆動装置において、
 前記制御部は、
 前記検出速度が前記第1基準速度以上であって前記第2基準速度よりも遅く、かつ、前記設定デューティ比が前記第1基準デューティ比以上であって予め設定された第2基準デューティ比よりも低く、または、前記検出速度が前記第2基準速度以上であって予め設定された第3基準速度よりも遅く、かつ、前記設定デューティ比が前記第2基準デューティ比よりも低い第2の場合には、
 前記設定デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替えるとともに、前記第1スイッチと同時に前記第2スイッチをオンしないデッドタイムを形成するように前記第1相ハイ側PWM信号との間でデューティ比が調整された第1相ロー側PWM信号によって前記第1スイッチに対して相補的に前記第2スイッチのオン/オフを切り替える制御と、
 前記設定デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替えるとともに、前記第3スイッチと同時に前記第4スイッチをオンしないデッドタイムを形成するように前記第2相ハイ側PWM信号との間でデューティ比が調整された第2相ロー側PWM信号によって前記第3スイッチに対して相補的に前記第4スイッチのオン/オフを切り替える制御と、
 前記設定デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替えるとともに、前記第5スイッチと同時に前記第6スイッチをオンしないデッドタイムを形成するように前記第3相ハイ側PWM信号との間でデューティ比が調整された第3相ロー側PWM信号によって前記第5スイッチに対して相補的に前記第6スイッチのオン/オフを切り替える制御とを行ってもよい。
In the driving device,
The controller is
The detected speed is greater than or equal to the first reference speed and slower than the second reference speed, and the set duty ratio is greater than or equal to the first reference duty ratio and greater than a preset second reference duty ratio. In a second case where the detection speed is lower or the detection speed is equal to or higher than the second reference speed and is slower than a preset third reference speed and the set duty ratio is lower than the second reference duty ratio. Is
The first phase high side PWM signal having the set duty ratio is switched on / off of the first switch, and at the same time as the first switch, the first phase high side is set so as to form a dead time that does not turn on the second switch. Control for switching on / off of the second switch in a complementary manner to the first switch by a first phase low-side PWM signal whose duty ratio is adjusted with the side PWM signal;
The third phase switch is turned on / off by the second phase high side PWM signal of the set duty ratio, and the second phase high level is set so as to form a dead time that does not turn on the fourth switch simultaneously with the third switch. Control for switching on / off of the fourth switch complementarily to the third switch by a second phase low-side PWM signal whose duty ratio is adjusted with respect to the side PWM signal;
The fifth switch is turned on / off by a third phase high-side PWM signal of the set duty ratio, and the third phase high so as to form a dead time that does not turn on the sixth switch simultaneously with the fifth switch. Control may be performed to turn on / off the sixth switch complementarily to the fifth switch by a third-phase low-side PWM signal whose duty ratio has been adjusted with respect to the side PWM signal.
 前記駆動装置において、
 前記制御部は、
 前記検出速度が前記第1基準速度以上であって前記第3基準速度よりも遅く、かつ、前記設定デューティ比が前記第2基準デューティ比以上であり、または、前記検出速度が前記第3基準速度以上である第3の場合には、
 前記第2スイッチをオフしながら前記設定デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替える制御と、
 前記第4スイッチをオフしながら前記設定デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替える制御と、
 前記第6スイッチをオフしながら前記設定デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替える制御とを行ってもよい。
In the driving device,
The controller is
The detected speed is not less than the first reference speed and slower than the third reference speed, and the set duty ratio is not less than the second reference duty ratio, or the detected speed is the third reference speed. In the third case above,
Control to turn on / off the first switch by a first phase high-side PWM signal of the set duty ratio while turning off the second switch;
Control to turn on / off the third switch by a second-phase high-side PWM signal of the set duty ratio while turning off the fourth switch;
Control may be performed to turn on / off the fifth switch by a third-phase high-side PWM signal having the set duty ratio while turning off the sixth switch.
 前記駆動装置において、
 前記制御部は、
 前記第1~第3の場合には、電気角180°に相当する通電期間に相電流を流す180°通電を行ってもよい。
In the driving device,
The controller is
In the first to third cases, 180 ° energization may be performed in which a phase current flows during an energization period corresponding to an electrical angle of 180 °.
 前記駆動装置において、
 前記制御部は、
 前記検出速度が前記第1基準速度よりも遅く、かつ、前記設定デューティ比が予め設定された第3基準デューティ比よりも低い第4の場合には、
 前記設定デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替えるとともに、前記第1スイッチと同時に前記第2スイッチをオンしないデッドタイムを形成するように前記第1相ハイ側PWM信号との間でデューティ比が調整された第1相ロー側PWM信号によって前記第1スイッチに対して相補的に前記第2スイッチのオン/オフを切り替える制御と、
 前記設定デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替えるとともに、前記第3スイッチと同時に前記第4スイッチをオンしないデッドタイムを形成するように前記第2相ハイ側PWM信号との間でデューティ比が調整された第2相ロー側PWM信号によって前記第3スイッチに対して相補的に前記第4スイッチのオン/オフを切り替える制御と、
 前記設定デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替えるとともに、前記第5スイッチと同時に前記第6スイッチをオンしないデッドタイムを形成するように前記第3相ハイ側PWM信号との間でデューティ比が調整された第3相ロー側PWM信号によって前記第5スイッチに対して相補的に前記第6スイッチのオン/オフを切り替える制御とを行ってもよい。
In the driving device,
The controller is
In the fourth case where the detection speed is slower than the first reference speed and the set duty ratio is lower than a preset third reference duty ratio,
The first phase high side PWM signal having the set duty ratio is switched on / off of the first switch, and at the same time as the first switch, the first phase high side is set so as to form a dead time that does not turn on the second switch. Control for switching on / off of the second switch in a complementary manner to the first switch by a first phase low-side PWM signal whose duty ratio is adjusted with the side PWM signal;
The third phase switch is turned on / off by the second phase high side PWM signal of the set duty ratio, and the second phase high level is set so as to form a dead time that does not turn on the fourth switch simultaneously with the third switch. Control for switching on / off of the fourth switch complementarily to the third switch by a second phase low-side PWM signal whose duty ratio is adjusted with respect to the side PWM signal;
The fifth switch is turned on / off by a third phase high-side PWM signal of the set duty ratio, and the third phase high so as to form a dead time that does not turn on the sixth switch simultaneously with the fifth switch. Control may be performed to turn on / off the sixth switch complementarily to the fifth switch by a third-phase low-side PWM signal whose duty ratio has been adjusted with respect to the side PWM signal.
 前記駆動装置において、
 前記制御部は、
 前記検出速度が前記第1基準速度よりも遅く、かつ、前記設定デューティ比が前記第3基準デューティ比以上である第5の場合には、
 前記第2スイッチをオフしながら前記設定デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替える制御と、
 前記第4スイッチをオフしながら前記設定デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替える制御と、
 前記第6スイッチをオフしながら前記設定デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替える制御とを行ってもよい。
In the driving device,
The controller is
In the fifth case where the detection speed is slower than the first reference speed and the set duty ratio is greater than or equal to the third reference duty ratio,
Control to turn on / off the first switch by a first phase high-side PWM signal of the set duty ratio while turning off the second switch;
Control to turn on / off the third switch by a second-phase high-side PWM signal of the set duty ratio while turning off the fourth switch;
Control may be performed to turn on / off the fifth switch by a third-phase high-side PWM signal having the set duty ratio while turning off the sixth switch.
 前記駆動装置において、
 前記制御部は、
 前記第4および第5の場合には、電気角120°に相当する通電期間に相電流を流す120°通電を行ってもよい。
In the driving device,
The controller is
In the fourth and fifth cases, 120 ° energization may be performed such that a phase current flows during an energization period corresponding to an electrical angle of 120 °.
 本発明の一態様に係る電動車両は、
 モータと、駆動装置と、を備える電動車両であって、
 前記駆動装置は、
 一端が電源端子に接続され、他端が前記モータの第1相コイルへの第1出力端子に接続された第1スイッチと、
 一端が前記第1出力端子に接続され、他端が接地端子に接続された第2スイッチと、
 一端が前記電源端子に接続され、他端が前記モータの第2相コイルへの第2出力端子に接続された第3スイッチと、
 一端が前記第2出力端子に接続され、他端が前記接地端子に接続された第4スイッチと、
 一端が前記電源端子に接続され、他端が前記モータの第3相コイルへの第3出力端子に接続された第5スイッチと、
 一端が前記第3出力端子に接続され、他端が前記接地端子に接続された第6スイッチと、
 前記第1~第6スイッチを制御することで前記モータの駆動を制御する制御部とを備え、
 前記制御部は、台形状の通電波形による前記モータの駆動制御を行い、
 前記駆動制御は、
 予め設定された設定デューティ比まで段階的に増加し、前記増加の後に前記設定デューティ比を維持し、前記維持の後に前記設定デューティ比から段階的に減少するように調整された調整デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替える制御と、前記調整デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替える制御と、前記調整デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替える制御とを含み、
 前記設定デューティ比までの段階的な増加および前記設定デューティ比からの段階的な減少は、前記第1相ハイ側PWM信号、前記第2相ハイ側PWM信号、および第3相ハイ側PWM信号のパルス周期よりも長く設定された設定周期で行われる。
An electric vehicle according to an aspect of the present invention includes:
An electric vehicle comprising a motor and a drive device,
The driving device includes:
A first switch having one end connected to a power supply terminal and the other end connected to a first output terminal to the first phase coil of the motor;
A second switch having one end connected to the first output terminal and the other end connected to a ground terminal;
A third switch having one end connected to the power supply terminal and the other end connected to a second output terminal to the second phase coil of the motor;
A fourth switch having one end connected to the second output terminal and the other end connected to the ground terminal;
A fifth switch having one end connected to the power supply terminal and the other end connected to a third output terminal to the third phase coil of the motor;
A sixth switch having one end connected to the third output terminal and the other end connected to the ground terminal;
A control unit for controlling the driving of the motor by controlling the first to sixth switches,
The control unit performs drive control of the motor with a trapezoidal energization waveform,
The drive control is
The adjustment duty ratio is adjusted to increase stepwise to a preset setting duty ratio, maintain the setting duty ratio after the increase, and decrease stepwise from the setting duty ratio after the maintenance. Control for switching on / off of the first switch by a one-phase high-side PWM signal, control for switching on / off of the third switch by a second-phase high-side PWM signal of the adjustment duty ratio, and the adjustment duty ratio Control to switch on / off the fifth switch by the third phase high-side PWM signal of
The stepwise increase to the set duty ratio and the stepwise decrease from the set duty ratio are caused by the first phase high-side PWM signal, the second phase high-side PWM signal, and the third phase high-side PWM signal. It is performed at a set cycle set longer than the pulse cycle.
 前記電動車両において、
 前記モータのロータの回転速度を検出する回転速度検出部を更に備え、
 前記設定デューティ比は、前記回転速度検出部による検出速度とユーザによるアクセル操作量とに基づいて設定されてもよい。
In the electric vehicle,
A rotation speed detector for detecting the rotation speed of the rotor of the motor;
The set duty ratio may be set based on a detection speed by the rotation speed detection unit and an accelerator operation amount by a user.
 前記電動車両において、
 前記制御部は、
 前記ロータの回転速度と、前記アクセル操作量と、前記モータのトルクとの対応関係を示すトルクマップに基づいて、前記検出速度および前記アクセル操作量に対応するトルクを設定し、
 前記ロータの回転速度と、前記トルクと、前記デューティ比との対応関係を示すデューティマップに基づいて、前記検出速度および前記設定されたトルクに対応するデューティ比を前記設定デューティ比として設定してもよい。
In the electric vehicle,
The controller is
Based on a torque map indicating a correspondence relationship between the rotational speed of the rotor, the accelerator operation amount, and the torque of the motor, a torque corresponding to the detected speed and the accelerator operation amount is set.
The duty ratio corresponding to the detected speed and the set torque may be set as the set duty ratio based on a duty map indicating a correspondence relationship between the rotational speed of the rotor, the torque, and the duty ratio. Good.
 本発明の一態様に係る駆動装置の制御方法は、
 一端が電源端子に接続され、他端がモータの第1相コイルへの第1出力端子に接続された第1スイッチと、一端が前記第1出力端子に接続され、他端が接地端子に接続された第2スイッチと、一端が前記電源端子に接続され、他端が前記モータの第2相コイルへの第2出力端子に接続された第3スイッチと、一端が前記第2出力端子に接続され、他端が前記接地端子に接続された第4スイッチと、一端が前記電源端子に接続され、他端が前記モータの第3相コイルへの第3出力端子に接続された第5スイッチと、一端が前記第3出力端子に接続され、他端が前記接地端子に接続された第6スイッチとを備えた駆動装置の制御方法であって、
 前記第1~第6スイッチを制御することで台形状の通電波形による前記モータの駆動制御を行い、
 前記駆動制御は、
 予め設定された設定デューティ比まで段階的に増加し、前記増加の後に前記設定デューティ比を維持し、前記維持の後に前記設定デューティ比から段階的に減少するように調整された調整デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替える制御と、前記調整デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替える制御と、前記調整デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替える制御とを含み、
 前記設定デューティ比までの段階的な増加および前記設定デューティ比からの段階的な減少は、前記第1相ハイ側PWM信号、前記第2相ハイ側PWM信号、および第3相ハイ側PWM信号のパルス周期よりも長く設定された設定周期で行われる。
A control method of a driving device according to an aspect of the present invention includes:
A first switch with one end connected to the power supply terminal and the other end connected to the first output terminal to the first phase coil of the motor, one end connected to the first output terminal, and the other end connected to the ground terminal The second switch, one end connected to the power supply terminal, the other end connected to the second output terminal to the second phase coil of the motor, and one end connected to the second output terminal A fourth switch having the other end connected to the ground terminal, a fifth switch having one end connected to the power supply terminal and the other end connected to a third output terminal to the third phase coil of the motor; A control method for a drive device comprising a sixth switch having one end connected to the third output terminal and the other end connected to the ground terminal,
By controlling the first to sixth switches, drive control of the motor by a trapezoidal energization waveform is performed,
The drive control is
The adjustment duty ratio is adjusted to increase stepwise to a preset setting duty ratio, maintain the setting duty ratio after the increase, and decrease stepwise from the setting duty ratio after the maintenance. Control for switching on / off of the first switch by a one-phase high-side PWM signal, control for switching on / off of the third switch by a second-phase high-side PWM signal of the adjustment duty ratio, and the adjustment duty ratio Control to switch on / off the fifth switch by the third phase high-side PWM signal of
The stepwise increase to the set duty ratio and the stepwise decrease from the set duty ratio are caused by the first phase high-side PWM signal, the second phase high-side PWM signal, and the third phase high-side PWM signal. It is performed at a set cycle set longer than the pulse cycle.
 本発明の一態様に係る駆動装置は、一端が電源端子に接続され、他端がモータの第1相コイルへの第1出力端子に接続された第1スイッチと、一端が第1出力端子に接続され、他端が接地端子に接続された第2スイッチと、一端が電源端子に接続され、他端がモータの第2相コイルへの第2出力端子に接続された第3スイッチと、一端が第2出力端子に接続され、他端が接地端子に接続された第4スイッチと、一端が電源端子に接続され、他端がモータの第3相コイルへの第3出力端子に接続された第5スイッチと、一端が第3出力端子に接続され、他端が接地端子に接続された第6スイッチと、第1~第6スイッチを制御することでモータの駆動を制御する制御部とを備え、制御部は、台形状の通電波形によるモータの駆動制御を行い、駆動制御は、予め設定された設定デューティ比まで段階的に増加し、増加の後に設定デューティ比を維持し、維持の後に設定デューティ比から段階的に減少するように調整された調整デューティ比の第1相ハイ側PWM信号によって第1スイッチのオン/オフを切り替える制御と、調整デューティ比の第2相ハイ側PWM信号によって第3スイッチのオン/オフを切り替える制御と、調整デューティ比の第3相ハイ側PWM信号によって第5スイッチのオン/オフを切り替える制御とを含み、設定デューティ比までの段階的な増加および設定デューティ比からの段階的な減少は、第1相ハイ側PWM信号、第2相ハイ側PWM信号、および第3相ハイ側PWM信号のパルス周期よりも長く設定された設定周期で行われる。 The drive device according to one aspect of the present invention includes a first switch having one end connected to the power supply terminal and the other end connected to the first output terminal to the first phase coil of the motor, and one end connected to the first output terminal. A second switch connected to the ground terminal, the other end connected to the power supply terminal, the other end connected to the second output terminal to the second phase coil of the motor, and one end Is connected to the second output terminal, the other end is connected to the ground terminal, one end is connected to the power supply terminal, and the other end is connected to the third output terminal to the third phase coil of the motor. A fifth switch; a sixth switch having one end connected to the third output terminal and the other end connected to the ground terminal; and a control unit that controls driving of the motor by controlling the first to sixth switches. Equipped, the controller performs drive control of the motor with a trapezoidal energization waveform, The dynamic control increases in steps up to a preset set duty ratio, maintains the set duty ratio after the increase, and adjusts the duty ratio adjusted to decrease gradually from the set duty ratio after the maintenance. Control for switching on / off of the first switch by the one-phase high-side PWM signal, control for switching on / off of the third switch by the second-phase high-side PWM signal of the adjustment duty ratio, and third phase of the adjustment duty ratio Control to switch on / off of the fifth switch by the high-side PWM signal, and the stepwise increase to the set duty ratio and the stepwise decrease from the set duty ratio are the first phase high-side PWM signal, the second This is performed at a set cycle that is set longer than the pulse cycle of the phase high-side PWM signal and the third phase high-side PWM signal.
 このように、本発明によれば、台形状の通電波形を生成するためのデューティ比の増加および減少をPWM信号のパルス周期より長い設定周期で行うことで、パルス周期毎にデューティ比を増加、減少することを要しなくなる。 Thus, according to the present invention, by increasing and decreasing the duty ratio for generating the trapezoidal energization waveform at a set period longer than the pulse period of the PWM signal, the duty ratio is increased for each pulse period. No need to decrease.
 したがって、本発明によれば、台形状の通電波形を生成するためのPWM制御の処理負荷を軽減することができる。 Therefore, according to the present invention, the processing load of PWM control for generating a trapezoidal energization waveform can be reduced.
第1の実施形態に係る電動二輪車100を示す図である。It is a figure showing electric motorcycle 100 concerning a 1st embodiment. 第1の実施形態に係る電動二輪車100において、電力変換部30およびモータ3を示す図である。1 is a diagram showing a power conversion unit 30 and a motor 3 in an electric motorcycle 100 according to a first embodiment. 第1の実施形態に係る電動二輪車100において、モータ3のロータに設けられた磁石、およびアングルセンサ4を示す図である。In the electric motorcycle 100 according to the first embodiment, a magnet provided on a rotor of a motor 3 and an angle sensor 4 are shown. 第1の実施形態に係る電動二輪車100において、ロータアングルと、アングルセンサ4の出力との関係を示す図である。In the electric motorcycle 100 according to the first embodiment, it is a diagram showing the relationship between the rotor angle and the output of the angle sensor 4. FIG. 第1の実施形態に係る電動二輪車100の制御方法において、180°上下段台形波PWM制御を示すタイミングチャートである。5 is a timing chart showing 180 ° upper and lower trapezoidal wave PWM control in the control method for the electric motorcycle 100 according to the first embodiment. 第1の実施形態に係る電動二輪車100の制御方法において、180°上下段台形波PWM制御におけるデューティ比を示すタイミングチャートである。4 is a timing chart showing a duty ratio in 180 ° upper and lower trapezoidal wave PWM control in the control method for the electric motorcycle 100 according to the first embodiment. 第1の実施形態に係る電動二輪車100の制御方法において、180°上下段台形波PWM制御におけるデューティ比制御を示すタイミングチャートである。5 is a timing chart showing duty ratio control in 180 ° upper and lower trapezoidal wave PWM control in the control method for the electric motorcycle 100 according to the first embodiment. 第2の実施形態に係る電動二輪車100の制御方法を示すフローチャートである。5 is a flowchart showing a control method of the electric motorcycle 100 according to the second embodiment. 第2の実施形態に係る電動二輪車100の制御方法において、ロータ回転速度の検出工程およびデューティ比の設定工程を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining a rotor rotation speed detection step and a duty ratio setting step in the control method for the electric motorcycle 100 according to the second embodiment. 第2の実施形態に係る電動二輪車100の制御方法において、デューティ比の設定工程の実施に用いられるトルクマップの一例を示すグラフである。6 is a graph showing an example of a torque map used for carrying out a duty ratio setting step in the control method for the electric motorcycle 100 according to the second embodiment. 第2の実施形態に係る電動二輪車100の制御方法において、デューティ比の設定工程の実施に用いられるデューティ比マップの一例を示すグラフである。6 is a graph showing an example of a duty ratio map used for performing a duty ratio setting step in the control method for the electric motorcycle 100 according to the second embodiment. 第2の実施形態に係る電動二輪車100の制御方法において、ロータ回転速度および目標トルクに応じた通電制御方式を示すグラフである。6 is a graph showing an energization control method according to a rotor rotational speed and a target torque in the control method for the electric motorcycle 100 according to the second embodiment. 第2の実施形態に係る電動二輪車100の制御方法において、ロータ回転速度および設定デューティ比に応じた通電制御方式を示すグラフである。6 is a graph showing an energization control method according to a rotor rotational speed and a set duty ratio in the control method for the electric motorcycle 100 according to the second embodiment. 第2の実施形態に係る電動二輪車100の制御方法において、120°上下段矩形波PWM制御を示すタイミングチャートである。10 is a timing chart showing 120 ° upper and lower rectangular wave PWM control in the control method for the electric motorcycle 100 according to the second embodiment. 第2の実施形態に係る電動二輪車100の制御方法において、120°上下段矩形波PWM制御におけるデッドタイムを示すタイミングチャートである。10 is a timing chart showing a dead time in 120 ° upper and lower rectangular wave PWM control in the control method for the electric motorcycle 100 according to the second embodiment. 第2の実施形態に係る電動二輪車100の制御方法において、120°上段矩形波PWM制御を示すタイミングチャートである。6 is a timing chart showing 120 ° upper rectangular wave PWM control in the control method for the electric motorcycle 100 according to the second embodiment. 第2の実施形態に係る電動二輪車100の制御方法において、180°上下段矩形波PWM制御を示すタイミングチャートである。10 is a timing chart showing 180 ° upper and lower rectangular wave PWM control in the control method for the electric motorcycle 100 according to the second embodiment. 第2の実施形態に係る電動二輪車100の制御方法において、上段矩形波PWM180°通電を示すタイミングチャートである。6 is a timing chart showing upper rectangular wave PWM 180 ° energization in the control method for the electric motorcycle 100 according to the second embodiment.
 以下、図面を参照して本発明に係る実施形態を説明する。なお、以下に示す実施形態は、本発明を限定するものではない。また、実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号を付し、その繰り返しの説明は省略する。 Embodiments according to the present invention will be described below with reference to the drawings. In addition, embodiment shown below does not limit this invention. In the drawings referred to in the embodiments, the same portions or portions having similar functions are denoted by the same or similar reference numerals, and the repeated description thereof is omitted.
(第1の実施形態)
 まず、図1を参照して、電動車両の一例としての第1の実施形態に係る電動二輪車100について説明する。
(First embodiment)
First, an electric motorcycle 100 according to a first embodiment as an example of an electric vehicle will be described with reference to FIG.
 電動二輪車100は、バッテリから供給される電力を用いてモータを駆動することで走行する電動バイク等の電動二輪車である。より詳しくは、電動二輪車100は、モータと車輪がクラッチを介さずに機械的に接続されたクラッチレスの電動二輪車である。 The electric motorcycle 100 is an electric motorcycle such as an electric motorcycle that travels by driving a motor using electric power supplied from a battery. More specifically, the electric motorcycle 100 is a clutchless electric motorcycle in which a motor and wheels are mechanically connected without a clutch.
 電動二輪車100は、図1に示すように、駆動装置の一例である電動車両制御装置1と、バッテリ2と、モータ3と、回転速度検出部の一例であるアングルセンサ4と、アクセルポジションセンサ5と、メータ7と、車輪8とを備える。 As shown in FIG. 1, the electric motorcycle 100 includes an electric vehicle control device 1 that is an example of a drive device, a battery 2, a motor 3, an angle sensor 4 that is an example of a rotation speed detection unit, and an accelerator position sensor 5. And a meter 7 and wheels 8.
 以下、電動二輪車100の各構成要素について詳しく説明する。 Hereinafter, each component of the electric motorcycle 100 will be described in detail.
 電動車両制御装置1は、電動二輪車100を制御する装置であり、制御部10と、記憶部20と、電力変換部30とを有している。なお、電動車両制御装置1は、電動二輪車100全体を制御するECU(Electronic Control Unit)として構成されてもよい。次に、電動車両制御装置1の各構成要素について詳しく説明する。 The electric vehicle control device 1 is a device that controls the electric motorcycle 100 and includes a control unit 10, a storage unit 20, and a power conversion unit 30. The electric vehicle control device 1 may be configured as an ECU (Electronic Control Unit) that controls the entire electric motorcycle 100. Next, each component of the electric vehicle control apparatus 1 will be described in detail.
 制御部10は、電動車両制御装置1に接続された各種装置から情報を入力するとともに、電力変換部30を介してモータ3を駆動制御する。制御部10の詳細については後述する。 The control unit 10 inputs information from various devices connected to the electric vehicle control device 1 and drives and controls the motor 3 via the power conversion unit 30. Details of the control unit 10 will be described later.
 記憶部20は、制御部10が用いる情報や、制御部10が動作するためのプログラムを記憶する。この記憶部20は、例えば不揮発性の半導体メモリであるが、これに限定されない。 The storage unit 20 stores information used by the control unit 10 and a program for operating the control unit 10. The storage unit 20 is, for example, a nonvolatile semiconductor memory, but is not limited to this.
 電力変換部30は、バッテリ2の直流電力を交流電力に変換してモータ3に供給する。この電力変換部30は、図2に示すように、インバータ回路、より詳しくは、3相のフルブリッジ回路で構成されている。 The power converter 30 converts the DC power of the battery 2 into AC power and supplies the AC power to the motor 3. As shown in FIG. 2, the power conversion unit 30 includes an inverter circuit, more specifically, a three-phase full bridge circuit.
 フルブリッジ回路は、第1スイッチの一例である第1半導体スイッチQ1と、第2スイッチの一例である第2半導体スイッチQ2と、第3スイッチの一例である第3半導体スイッチQ3と、第4スイッチの一例である第4半導体スイッチQ4と、第5スイッチの一例である第5半導体スイッチQ5と、第6スイッチの一例である第6半導体スイッチQ6とを有する。 The full bridge circuit includes a first semiconductor switch Q1 as an example of a first switch, a second semiconductor switch Q2 as an example of a second switch, a third semiconductor switch Q3 as an example of a third switch, and a fourth switch. A fourth semiconductor switch Q4 as an example, a fifth semiconductor switch Q5 as an example of a fifth switch, and a sixth semiconductor switch Q6 as an example of a sixth switch.
 第1半導体スイッチQ1は、一端がバッテリ2の正極に接続される電源端子30aに接続され、他端が第1相コイルの一例であるモータ3のU相コイル31uへの第1出力端子3aに接続されている。 The first semiconductor switch Q1 has one end connected to the power supply terminal 30a connected to the positive electrode of the battery 2, and the other end connected to the first output terminal 3a to the U-phase coil 31u of the motor 3, which is an example of the first-phase coil. It is connected.
 第2半導体スイッチQ2は、一端が第1出力端子3aに接続され、他端が接地されたバッテリ2の負極に接続される接地端子30bに接続されている。 The second semiconductor switch Q2 has one end connected to the first output terminal 3a and the other end connected to the ground terminal 30b connected to the negative electrode of the battery 2 grounded.
 第3半導体スイッチQ3は、一端が電源端子30aに接続され、他端が第2相コイルの一例であるモータ3のV相コイル31vへの第2出力端子3bに接続されている。 The third semiconductor switch Q3 has one end connected to the power supply terminal 30a and the other end connected to the second output terminal 3b to the V-phase coil 31v of the motor 3, which is an example of the second-phase coil.
 第4半導体スイッチQ4は、一端が第2出力端子3bに接続され、他端が接地端子30bに接続されている。 The fourth semiconductor switch Q4 has one end connected to the second output terminal 3b and the other end connected to the ground terminal 30b.
 第5半導体スイッチQ5は、一端が電源端子30aに接続され、他端が第3相コイルの一例であるモータ3のW相コイル31wへの第3出力端子3cに接続されている。 The fifth semiconductor switch Q5 has one end connected to the power supply terminal 30a and the other end connected to the third output terminal 3c to the W-phase coil 31w of the motor 3 which is an example of the third-phase coil.
 第6半導体スイッチQ6は、一端が第3出力端子3cに接続され、他端が接地端子30bに接続されている。 The sixth semiconductor switch Q6 has one end connected to the third output terminal 3c and the other end connected to the ground terminal 30b.
 半導体スイッチQ1~Q6の制御端子は、制御部10に電気的に接続されている。電源端子30aと接地端子30bとの間には平滑コンデンサCが設けられている。半導体スイッチQ1~Q6は、例えばMOSFETまたはIGBT等である。 The control terminals of the semiconductor switches Q1 to Q6 are electrically connected to the control unit 10. A smoothing capacitor C is provided between the power supply terminal 30a and the ground terminal 30b. The semiconductor switches Q1 to Q6 are, for example, MOSFETs or IGBTs.
 バッテリ2は、充放電可能である。具体的には、バッテリ2は、放電時に電力変換部30に直流電力を供給する。また、バッテリ2は、商用電源等の外部の電源から供給された交流電力による充電時に、電源から供給された交流電力を図示しない充電器で変換した直流電力によって充電される。また、バッテリ2は、車輪8の回転にともなってモータ3が出力する交流電力による充電時に、モータ3が出力した交流電力を電力変換装置100で変換した直流電圧によって充電される。 Battery 2 can be charged / discharged. Specifically, the battery 2 supplies DC power to the power conversion unit 30 during discharging. The battery 2 is charged with DC power obtained by converting AC power supplied from a power source with a charger (not shown) during charging with AC power supplied from an external power source such as a commercial power source. Further, the battery 2 is charged with a DC voltage obtained by converting the AC power output from the motor 3 by the power converter 100 when charging with AC power output from the motor 3 as the wheel 8 rotates.
 このバッテリ2は、バッテリ管理ユニット(BMU)を含む。バッテリ管理ユニットは、バッテリ2の電圧やバッテリ2の状態(充電率等)に関する情報を制御部10に送信する。 This battery 2 includes a battery management unit (BMU). The battery management unit transmits information regarding the voltage of the battery 2 and the state of the battery 2 (charge rate, etc.) to the control unit 10.
 なお、バッテリ2の数は一つに限らず、複数であってもよい。バッテリ2は、例えばリチウムイオン電池であるが、他の種類のバッテリであってもよい。バッテリ2は、異なる種類(例えば、リチウムイオン電池と鉛電池)のバッテリから構成されてもよい。 Note that the number of the batteries 2 is not limited to one and may be plural. The battery 2 is, for example, a lithium ion battery, but may be another type of battery. The battery 2 may be composed of batteries of different types (for example, a lithium ion battery and a lead battery).
 モータ3は、バッテリ2から供給された電力によって車輪8を駆動するためのトルクを出力する。または、モータ3は、車輪8の回転にともなって電力を出力する。モータ3は、U、VおよびWの3相のコイル31u、31v、31wを有する3相モータである。 The motor 3 outputs torque for driving the wheels 8 by the electric power supplied from the battery 2. Alternatively, the motor 3 outputs electric power as the wheel 8 rotates. The motor 3 is a three-phase motor having three- phase coils 31u, 31v, and 31w of U, V, and W.
 モータ3は、電力変換部30から供給される交流電力により駆動されることで、車輪8を駆動するためのトルクを出力する。トルクは、制御部10が電力変換部30の半導体スイッチQ1~Q6に目標トルクに基づいて算出された通電タイミングとデューティ比を有するPWM信号を出力することで制御される。すなわち、トルクは、制御部10がバッテリ2からモータ3に供給される電力を制御することで制御される。 The motor 3 outputs torque for driving the wheels 8 by being driven by AC power supplied from the power conversion unit 30. The torque is controlled by the control unit 10 outputting to the semiconductor switches Q1 to Q6 of the power conversion unit 30 a PWM signal having an energization timing and a duty ratio calculated based on the target torque. That is, the torque is controlled by the control unit 10 controlling the power supplied from the battery 2 to the motor 3.
 モータ3は、車輪8に機械的に接続されており、トルクによって所望の方向に車輪8を回転させる。本実施形態では、モータ3は、クラッチを介さずに車輪8に機械的に接続されている。なお、モータ3の種類は特に限定されない。 The motor 3 is mechanically connected to the wheel 8 and rotates the wheel 8 in a desired direction by torque. In the present embodiment, the motor 3 is mechanically connected to the wheel 8 without using a clutch. Note that the type of the motor 3 is not particularly limited.
 アングルセンサ4は、モータ3の回転速度を検出するために、モータ3のロータの回転角度を検出するセンサである。図3に示すように、モータ3のロータ3rの周面には、N極とS極の磁石(センサマグネット)が交互に取り付けられている。アングルセンサ4は、例えばホール素子により構成されており、モータ3の回転に伴う磁場の変化を検出する。なお、磁石は、フライホイール(図示せず)の内側に設けられてもよい。 The angle sensor 4 is a sensor that detects the rotation angle of the rotor of the motor 3 in order to detect the rotation speed of the motor 3. As shown in FIG. 3, N-pole and S-pole magnets (sensor magnets) are alternately attached to the peripheral surface of the rotor 3 r of the motor 3. The angle sensor 4 is constituted by a Hall element, for example, and detects a change in the magnetic field accompanying the rotation of the motor 3. The magnet may be provided inside the flywheel (not shown).
 図3に示すように、アングルセンサ4は、U相アングルセンサ4uと、V相アングルセンサ4vと、W相アングルセンサ4wとを有している。本実施形態では、U相アングルセンサ4uとV相アングルセンサ4vとはモータ3のロータに対して30°の角度をなすように配置されている。同様に、V相アングルセンサ4vとW相アングルセンサ4wとはモータ3のロータに対して30°の角度をなすように配置されている。 As shown in FIG. 3, the angle sensor 4 includes a U-phase angle sensor 4u, a V-phase angle sensor 4v, and a W-phase angle sensor 4w. In the present embodiment, the U-phase angle sensor 4 u and the V-phase angle sensor 4 v are arranged so as to form an angle of 30 ° with respect to the rotor of the motor 3. Similarly, the V-phase angle sensor 4v and the W-phase angle sensor 4w are arranged so as to form an angle of 30 ° with respect to the rotor of the motor 3.
 図4に示すように、U相アングルセンサ4u、V相アングルセンサ4vおよびW相アングルセンサ4wは、ロータアングル(角度位置)に応じた位相のパルス信号(すなわち、回転角度の検出信号)を出力する。 As shown in FIG. 4, the U-phase angle sensor 4u, the V-phase angle sensor 4v, and the W-phase angle sensor 4w output a pulse signal having a phase corresponding to the rotor angle (angular position) (that is, a rotation angle detection signal). To do.
 また、図4に示すように、所定のロータアングルごとに、モータステージを示す番号(モータステージ番号)が割り振られている。モータステージはモータ3のロータ3rの角度位置を示しており、本実施形態では、電気角で60°ごとにモータステージ番号1,2,3,4,5,6が割り振られている。モータステージは、U相アングルセンサ4u、V相アングルセンサ4vおよびW相アングルセンサ4wの出力信号のレベル(HレベルまたはLレベル)の組合せにより定義されている。例えば、モータステージ番号1は(U相、V相、W相)=(H,L,H)であり、モータステージ番号2は(U相、V相、W相)=(H,L,L)である。 Further, as shown in FIG. 4, a number indicating a motor stage (motor stage number) is assigned for each predetermined rotor angle. The motor stage indicates the angular position of the rotor 3r of the motor 3. In this embodiment, motor stage numbers 1, 2, 3, 4, 5, and 6 are assigned every 60 ° in electrical angle. The motor stage is defined by a combination of output signal levels (H level or L level) of the U phase angle sensor 4u, the V phase angle sensor 4v, and the W phase angle sensor 4w. For example, motor stage number 1 is (U phase, V phase, W phase) = (H, L, H), and motor stage number 2 is (U phase, V phase, W phase) = (H, L, L). ).
 アクセルポジションセンサ5は、ユーザのアクセル操作により設定されたアクセル操作量を検知し、検知されたアクセル操作量を電気信号として制御部10に送信する。アクセル操作量は、例えば、スロットル開度であってもよい。ユーザが加速したい場合に、アクセル操作量は大きくなる。 The accelerator position sensor 5 detects the accelerator operation amount set by the user's accelerator operation, and transmits the detected accelerator operation amount to the control unit 10 as an electric signal. The accelerator operation amount may be, for example, a throttle opening. When the user wants to accelerate, the accelerator operation amount increases.
 メータ7は、電動二輪車100に設けられたディスプレイ(例えば液晶パネル)であり、各種情報を表示する。具体的には、電動二輪車100の走行速度、バッテリ2の残量、現在時刻、走行距離などの情報がメータ7に表示される。本実施形態では、メータ7は、電動二輪車100のハンドル(図示せず)に設けられる。 The meter 7 is a display (for example, a liquid crystal panel) provided in the electric motorcycle 100 and displays various information. Specifically, information such as the traveling speed of the electric motorcycle 100, the remaining amount of the battery 2, the current time, and the traveling distance is displayed on the meter 7. In the present embodiment, the meter 7 is provided on a handle (not shown) of the electric motorcycle 100.
 次に、電動車両制御装置1の制御部10について詳しく説明する。 Next, the control unit 10 of the electric vehicle control device 1 will be described in detail.
 制御部10は、半導体スイッチQ1~Q6を制御することでモータ3の駆動を制御する。制御部10は、台形状の通電波形によるモータ3の駆動制御を行う。 The control unit 10 controls the driving of the motor 3 by controlling the semiconductor switches Q1 to Q6. The control unit 10 performs drive control of the motor 3 with a trapezoidal energization waveform.
 台形状の通電波形によるモータ3の駆動制御は、デューティ比ゼロ(すなわち、オフ状態)から予め設定された設定デューティ比まで段階的に増加し、増加の後に設定デューティ比を維持し、維持の後に設定デューティ比からデューティ比ゼロまで段階的に減少するように調整された調整デューティ比のU相ハイ側PWM信号(すなわち、第1相ハイ側PWM信号)によって第1半導体スイッチQ1のオン/オフを切り替える制御を含む。 The drive control of the motor 3 by the trapezoidal energization waveform increases in a stepwise manner from a duty ratio of zero (that is, an OFF state) to a preset set duty ratio, maintains the set duty ratio after the increase, The first semiconductor switch Q1 is turned on / off by a U-phase high-side PWM signal (that is, a first-phase high-side PWM signal) having an adjusted duty ratio adjusted so as to decrease stepwise from the set duty ratio to zero. Includes control to switch.
 また、台形状の通電波形によるモータ3の駆動制御は、調整デューティ比のV相ハイ側PWM信号(すなわち、第2相ハイ側PWM信号)によって第3半導体スイッチQ3のオン/オフを切り替える制御を含む。 Further, the drive control of the motor 3 by the trapezoidal energization waveform is a control for switching on / off the third semiconductor switch Q3 by the V-phase high-side PWM signal (that is, the second-phase high-side PWM signal) of the adjustment duty ratio. Including.
 また、台形状の通電波形によるモータ3の駆動制御は、調整デューティ比のW相ハイ側PWM信号(すなわち、第3相ハイ側PWM信号)によって第5半導体スイッチQ5のオン/オフを切り替える制御を含む。 Further, the drive control of the motor 3 with the trapezoidal energization waveform is a control for switching on / off the fifth semiconductor switch Q5 by the W-phase high-side PWM signal (that is, the third-phase high-side PWM signal) of the adjustment duty ratio. Including.
 そして、調整デューティ比において、設定デューティ比までの段階的な増加および設定デューティ比からの段階的な減少は、U相ハイ側PWM信号、V相ハイ側PWM信号、およびW相ハイ側PWM信号のパルス周期よりも長く設定された設定周期で行われる。 In the adjustment duty ratio, a gradual increase to the set duty ratio and a gradual decrease from the set duty ratio are caused by the U-phase high-side PWM signal, the V-phase high-side PWM signal, and the W-phase high-side PWM signal. It is performed at a set cycle set longer than the pulse cycle.
 すなわち、制御部10は、同一の設定周期に含まれる複数のパルス周期のそれぞれにおけるデューティ比を一定に制御する。 That is, the control unit 10 controls the duty ratio in each of a plurality of pulse periods included in the same set period to be constant.
 調整デューティ比のU相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替える制御は、U相ロー側PWM信号(すなわち、第1相ロー側PWM信号)によって第1半導体スイッチQ1に対して相補的に第2半導体スイッチQ2のオン/オフを切り替える制御とともに行われてもよい。ここでのU相ロー側PWM信号は、第1半導体スイッチQ1と同時に第2半導体スイッチQ2をオンしないデッドタイムを形成するように調整デューティ比のU相ハイ側PWM信号との間でデューティ比が調整されたPWM信号である。 The control for switching on / off of the first semiconductor switch Q1 by the U-phase high-side PWM signal of the adjustment duty ratio is performed on the first semiconductor switch Q1 by the U-phase low-side PWM signal (that is, the first-phase low-side PWM signal). The second semiconductor switch Q2 may be complementarily controlled to switch on / off. The U-phase low-side PWM signal here has a duty ratio between the U-phase high-side PWM signal of the adjusted duty ratio so as to form a dead time in which the second semiconductor switch Q2 is not turned on simultaneously with the first semiconductor switch Q1. It is the adjusted PWM signal.
 調整デューティ比のV相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替える制御は、V相ロー側PWM信号(すなわち、第2相ロー側PWM信号)によって第3半導体スイッチQ3に対して相補的に第4半導体スイッチQ4のオン/オフを切り替える制御とともに行われてもよい。ここでのV相ロー側PWM信号は、第3半導体スイッチQ3と同時に第4半導体スイッチQ4をオンしないデッドタイムを形成するように調整デューティ比のV相ハイ側PWM信号との間でデューティ比が調整されたPWM信号である。 The control for switching on / off of the third semiconductor switch Q3 by the V-phase high-side PWM signal of the adjustment duty ratio is performed on the third semiconductor switch Q3 by the V-phase low-side PWM signal (that is, the second-phase low-side PWM signal). The fourth semiconductor switch Q4 may be complementarily controlled to switch on / off. The duty ratio between the V-phase low-side PWM signal and the V-phase high-side PWM signal of the adjusted duty ratio is set so as to form a dead time in which the fourth semiconductor switch Q4 is not turned on simultaneously with the third semiconductor switch Q3. It is the adjusted PWM signal.
 調整デューティ比のW相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替える制御は、W相ロー側PWM信号(すなわち、第3相ロー側PWM信号)によって第5半導体スイッチQ5に対して相補的に第6半導体スイッチQ6のオン/オフを切り替える制御とともに行われてもよい。ここでのW相ロー側PWM信号は、第5半導体スイッチQ5と同時に第6半導体スイッチQ6をオンしないデッドタイムを形成するように調整デューティ比のW相ハイ側PWM信号との間でデューティ比が調整されたPWM信号である。 Control for switching on / off of the fifth semiconductor switch Q5 by the W-phase high-side PWM signal of the adjustment duty ratio is performed on the fifth semiconductor switch Q5 by the W-phase low-side PWM signal (that is, the third-phase low-side PWM signal). Thus, it may be performed together with the control for switching on / off the sixth semiconductor switch Q6 in a complementary manner. Here, the duty ratio between the W-phase low-side PWM signal and the W-phase high-side PWM signal of the adjustment duty ratio is so set as to form a dead time in which the sixth semiconductor switch Q6 is not turned on simultaneously with the fifth semiconductor switch Q5. It is the adjusted PWM signal.
 制御部10は、アングルセンサ4とともに回転速度検出部として機能し、アングルセンサ4による検出信号に基づいて、ロータ回転速度を検出する。一例として、制御部10は、図4に示すように、V相ロータアングルセンサの出力の立下りからU相ロータアングルセンサの出力の立ち上がりまでの時間tに基づいてロータ回転速度を算出する。 The control unit 10 functions as a rotation speed detection unit together with the angle sensor 4 and detects the rotor rotation speed based on a detection signal from the angle sensor 4. As an example, as shown in FIG. 4, the control unit 10 calculates the rotor rotation speed based on the time t from the fall of the output of the V-phase rotor angle sensor to the rise of the output of the U-phase rotor angle sensor.
 設定デューティ比は、制御部10(回転速度検出部)によって検出されたロータ回転速度(以下、検出速度とも呼ぶ)とモータ3の回転を制御するためのアクセル操作量(ユーザ操作量)とに基づいて設定されてもよい。より詳しくは、制御部10は、ロータ3rの回転速度と、アクセル操作量と、モータ3のトルクとの対応関係を示すトルクマップに基づいて、検出速度およびアクセル操作量に対応する目標トルクを設定してもよい。そして、制御部10は、ロータの回転速度と、目標トルクと、デューティ比との対応関係を示すデューティ比マップに基づいて、検出速度および設定された目標トルクに対応するデューティ比を設定デューティ比として設定してもよい。 The set duty ratio is based on a rotor rotation speed (hereinafter also referred to as a detection speed) detected by the control unit 10 (rotation speed detection unit) and an accelerator operation amount (user operation amount) for controlling the rotation of the motor 3. May be set. More specifically, the control unit 10 sets a target torque corresponding to the detected speed and the accelerator operation amount based on a torque map indicating the correspondence relationship between the rotation speed of the rotor 3r, the accelerator operation amount, and the torque of the motor 3. May be. Then, the control unit 10 sets the duty ratio corresponding to the detected speed and the set target torque as the set duty ratio based on the duty ratio map indicating the correspondence relationship between the rotational speed of the rotor, the target torque, and the duty ratio. It may be set.
 制御部10は、アングルセンサ4による検出角度に応じて、それぞれが電気角60°に相当する連続する第1~第6通電期間を周期的に設定してもよい。 The control unit 10 may periodically set first to sixth energization periods that each correspond to an electrical angle of 60 ° according to the detection angle by the angle sensor 4.
 そして、台形状の通電波形によるモータ3の駆動制御は、第1~第4通電期間に、U相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替えるとともにU相ロー側PWM信号によって第2半導体スイッチQ2のオン/オフを切り替える制御を含んでもよい。 The drive control of the motor 3 by the trapezoidal energization waveform is performed by switching the first semiconductor switch Q1 on / off by the U-phase high-side PWM signal and by the U-phase low-side PWM signal during the first to fourth energization periods. A control for switching on / off of the second semiconductor switch Q2 may be included.
 また、台形状の通電波形によるモータ3の駆動制御は、第3~第6通電期間に、V相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替えるとともにV相ロー側PWM信号によって第4半導体スイッチQ4のオン/オフを切り替える制御を含んでもよい。 Further, the drive control of the motor 3 by the trapezoidal energization waveform is performed by switching the third semiconductor switch Q3 on / off by the V-phase high-side PWM signal and by the V-phase low-side PWM signal during the third to sixth energization periods. A control for switching on / off of the fourth semiconductor switch Q4 may be included.
 また、台形状の通電波形によるモータ3の駆動制御は、第5および第6通電期間ならびに第6通電期間に続く次周期の第1および第2通電期間に、W相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替えるとともにW相ロー側PWM信号によって第6半導体スイッチQ6のオン/オフを切り替える制御を含んでもよい。 The drive control of the motor 3 by the trapezoidal energization waveform is performed by the W-phase high-side PWM signal in the fifth and sixth energization periods and the first and second energization periods of the next period following the sixth energization period. Control may be included in which the semiconductor switch Q5 is turned on / off and the sixth semiconductor switch Q6 is turned on / off by the W-phase low-side PWM signal.
 このような制御により、台形状の通電波形によるモータ3の駆動制御として、電気角180°に相当する通電期間に相電流を流す180°通電が行われる。 By such control, 180 ° energization is performed so that the phase current flows during the energization period corresponding to the electrical angle of 180 ° as drive control of the motor 3 by the trapezoidal energization waveform.
 また、U相ハイ側PWM信号の調整デューティ比は、第1通電期間に設定デューティ比まで段階的に増加し、第2および第3通電期間に設定デューティ比に維持され、第4通電期間に設定デューティ比から段階的に減少してもよい。 Further, the adjustment duty ratio of the U-phase high-side PWM signal gradually increases to the set duty ratio in the first energization period, is maintained at the set duty ratio in the second and third energization periods, and is set in the fourth energization period. The duty ratio may be decreased stepwise.
 また、V相ハイ側PWM信号の調整デューティ比は、第3通電期間に設定デューティ比まで段階的に増加し、第4および第5通電期間に設定デューティ比に維持され、第6通電期間に設定デューティ比から段階的に減少してもよい。 Further, the adjustment duty ratio of the V-phase high-side PWM signal gradually increases to the set duty ratio in the third energization period, is maintained at the set duty ratio in the fourth and fifth energization periods, and is set in the sixth energization period. The duty ratio may be decreased stepwise.
 また、W相ハイ側PWM信号の調整デューティ比は、第5通電期間に設定デューティ比まで段階的に増加し、第6通電期間および次周期の第1通電期間に設定デューティ比に維持され、次周期の第2通電期間に設定デューティ比から段階的に減少してもよい。 The adjustment duty ratio of the W-phase high-side PWM signal gradually increases to the set duty ratio in the fifth energization period, and is maintained at the set duty ratio in the sixth energization period and the first energization period of the next cycle. You may reduce in steps from a setting duty ratio in the 2nd electricity supply period of a period.
(電動二輪車100の制御方法)
 以下、駆動装置の制御方法の一例として、第1の実施形態に係る電動二輪車100の制御方法について説明する。
(Control method of electric motorcycle 100)
Hereinafter, the control method of the electric motorcycle 100 according to the first embodiment will be described as an example of the control method of the drive device.
<180°上下段台形波PWM制御>
 図5に示すように、制御部10は、台形状の通電波形によるモータ3の駆動制御として、180°上下段台形波PWM制御を実行する。
<180 ° vertical trapezoidal wave PWM control>
As shown in FIG. 5, the control unit 10 executes 180 ° upper and lower trapezoidal wave PWM control as drive control of the motor 3 with a trapezoidal energization waveform.
 180°上下段台形波PWM制御は、ハイサイドの半導体スイッチQ1、Q3、Q5とローサイドの半導体スイッチQ2、Q4、Q6との双方へのPWM制御をともなう略台形状の通電波形を生じる180°通電である。 The 180 ° upper and lower trapezoidal wave PWM control generates a substantially trapezoidal energization waveform with PWM control to both the high-side semiconductor switches Q1, Q3, and Q5 and the low-side semiconductor switches Q2, Q4, and Q6. It is.
 図5に示すように、180°上下段台形波PWM制御においては、連続する6番~3番の通電ステージ(すなわち、第1~第4通電期間)において、調整デューティ比のU相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替える制御を行う。より詳しくは、6番の通電ステージにおいて、設定デューティ比まで段階的に増加し、1番および2番の通電ステージにおいて設定デューティ比に維持され、3番の通電ステージにおいて設定デューティ比から段階的に減少するようなデューティ比のU相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替える制御を行う。 As shown in FIG. 5, in the 180 ° upper and lower trapezoidal wave PWM control, the U-phase high-side PWM of the adjustment duty ratio in the continuous sixth to third energization stages (that is, the first to fourth energization periods). Control is performed to turn on / off the first semiconductor switch Q1 according to the signal. More specifically, in the No. 6 energization stage, it gradually increases to the set duty ratio, maintained at the set duty ratio in the No. 1 and No. 2 energization stages, and gradually from the set duty ratio in the No. 3 energization stage. Control is performed to turn on / off the first semiconductor switch Q1 by the U-phase high-side PWM signal having a decreasing duty ratio.
 また、図5に示すように、180°上下段台形波PWM制御においては、連続する6番~3番の通電ステージにおいて、第1半導体スイッチQ1と同時に第2半導体スイッチQ2をオンしないデッドタイムを形成するようにU相ハイ側PWM信号との間でデューティ比が調整されたU相ロー側PWM信号によって、第1半導体スイッチQ1に対して相補的に第2半導体スイッチQ2のオン/オフを切り替える制御を行う。 Further, as shown in FIG. 5, in the 180 ° upper and lower trapezoidal wave PWM control, the dead time during which the second semiconductor switch Q2 is not turned on simultaneously with the first semiconductor switch Q1 in the continuous sixth to third energization stages. The second semiconductor switch Q2 is switched on / off complementarily to the first semiconductor switch Q1 by the U-phase low-side PWM signal whose duty ratio is adjusted with the U-phase high-side PWM signal so as to be formed. Take control.
 また、180°上下段台形波PWM制御においては、連続する2番~5番の通電ステージ(すなわち、第3~第6通電期間)において、調整デューティ比のV相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替える制御を行う。より詳しくは、2番の通電ステージにおいて、設定デューティ比まで段階的に増加し、3番および4番の通電ステージにおいて設定デューティ比に維持され、5番の通電ステージにおいて設定デューティ比から段階的に減少するようなデューティ比のV相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替える制御を行う。 Further, in the 180 ° upper and lower trapezoidal wave PWM control, the third semiconductor is controlled by the V-phase high-side PWM signal of the adjusted duty ratio in the continuous second to fifth energization stages (that is, the third to sixth energization periods). Control to switch on / off the switch Q3 is performed. More specifically, in the second energization stage, it gradually increases to the set duty ratio, maintained at the set duty ratio in the third and fourth energization stages, and gradually from the set duty ratio in the fifth energization stage. Control is performed to turn on / off the third semiconductor switch Q3 by the V-phase high-side PWM signal having a decreasing duty ratio.
 また、180°上下段台形波PWM制御においては、連続する2番~5番の通電ステージにおいて、第3半導体スイッチQ3と同時に第4半導体スイッチQ4をオンしないデッドタイムを形成するようにV相ハイ側PWM信号との間でデューティ比が調整されたV相ロー側PWM信号によって、第3半導体スイッチQ3に対して相補的に第4半導体スイッチQ4のオン/オフを切り替える制御を行う。 Further, in the 180 ° upper and lower trapezoidal wave PWM control, the V-phase high level is set so as to form a dead time in which the fourth semiconductor switch Q4 is not turned on simultaneously with the third semiconductor switch Q3 in the continuous second to fifth energization stages. The fourth semiconductor switch Q4 is controlled to be turned on / off complementarily to the third semiconductor switch Q3 by the V-phase low-side PWM signal whose duty ratio is adjusted with respect to the side PWM signal.
 また、180°上下段台形波PWM制御においては、連続する4番~1番の通電ステージ(すなわち、第5、第6通電期間および次周期の第1、第2通電期間)において、調整デューティ比のW相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替える制御を行う。より詳しくは、4番の通電ステージにおいて、設定デューティ比まで段階的に増加し、5番および6番の通電ステージにおいて設定デューティ比に維持され、1番の通電ステージにおいて設定デューティ比から段階的に減少するようなデューティ比のW相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替える制御を行う。 Further, in the 180 ° upper and lower trapezoidal wave PWM control, the adjustment duty ratio in the continuous fourth to first energization stages (that is, the fifth and sixth energization periods and the first and second energization periods of the next cycle). The fifth semiconductor switch Q5 is controlled to be turned on / off by the W-phase high-side PWM signal. More specifically, in the No. 4 energization stage, it gradually increases to the set duty ratio, and is maintained at the set duty ratio in the No. 5 and No. 6 energization stages, and gradually from the set duty ratio in the No. 1 energization stage. Control is performed to turn on / off the fifth semiconductor switch Q5 by the W-phase high-side PWM signal having a decreasing duty ratio.
 また、180°上下段台形波PWM制御においては、連続する4番~1番の通電ステージにおいて、第5半導体スイッチQ5と同時に第6半導体スイッチQ6をオンしないデッドタイムを形成するようにW相ハイ側PWM信号との間でデューティ比が調整されたW相ロー側PWM信号によって、第5半導体スイッチQ5に対して相補的に第6半導体スイッチQ6のオン/オフを切り替える制御を行う。 Also, in the 180 ° upper and lower trapezoidal wave PWM control, the W phase high so as to form a dead time in which the sixth semiconductor switch Q6 is not turned on simultaneously with the fifth semiconductor switch Q5 in the continuous fourth to first energization stages. The sixth semiconductor switch Q6 is controlled to be turned on / off complementarily to the fifth semiconductor switch Q5 by the W-phase low-side PWM signal whose duty ratio is adjusted with the side PWM signal.
 なお、図5には、台形波の立ち上がりおよび立下りと通電ステージとの対応関係が分かり易いように、PWM信号に重ねて通電波形が図示されている。また、図5には、各通電ステージに応じたUV相間電圧、VW相間電圧およびWU相間電圧が図示されている。 In FIG. 5, the energization waveform is shown superimposed on the PWM signal so that the correspondence between the rise and fall of the trapezoidal wave and the energization stage is easily understood. FIG. 5 also shows the UV phase voltage, the VW phase voltage, and the WU phase voltage corresponding to each energization stage.
 また、図5中の破線枠部を拡大した図6に示すように、PWM信号は、制御部10で生成される三角波に基づいて、三角波によるキャリア周期毎に生成される。U相の台形波が立ち上がる6番の通電ステージにおいて、U相のPWM信号のデューティ比は、時間経過にしたがって段階的に増加している。また、図示はしないが、U相の台形波が立ち下がる第3番の通電ステージにおいて、U相のPWM信号のデューティ比は、時間経過にしたがって段階的に減少する。 Further, as shown in FIG. 6 in which the broken-line frame in FIG. 5 is enlarged, the PWM signal is generated for each carrier cycle of the triangular wave based on the triangular wave generated by the control unit 10. In the sixth energization stage in which the U-phase trapezoidal wave rises, the duty ratio of the U-phase PWM signal increases stepwise as time elapses. Although not shown, in the third energization stage in which the U-phase trapezoidal wave falls, the duty ratio of the U-phase PWM signal gradually decreases with time.
 より具体的には、図7に示すように、制御部10は、台形波の立ち上げ期間および立ち下げ期間におけるデューティ比の増加および減少の周期T1を、三角波によるPWM信号のキャリア周期T2よりも長く設定している。 More specifically, as shown in FIG. 7, the control unit 10 sets the period T1 of increase and decrease of the duty ratio in the rising and falling periods of the trapezoidal wave to be higher than the carrier period T2 of the PWM signal by the triangular wave. It is set long.
 以上のような180°上下段台形波PWM制御によれば、通電波形の立ち上げおよび立ち下げを緩やかに行うことで、リップルを抑制することができる。また、設定デューティ比までの段階的な増加および設定デューティ比からの段階的な減少を、U相ハイ側PWM信号、V相ハイ側PWM信号、およびW相ハイ側PWM信号のパルス周期よりも長く設定された設定周期で行うことで、台形状の通電波形を生成するためのPWM制御の処理負荷を軽減することができる。 According to the 180 ° upper and lower trapezoidal wave PWM control as described above, ripples can be suppressed by gently raising and lowering the energization waveform. The stepwise increase to the set duty ratio and the stepwise decrease from the set duty ratio are longer than the pulse periods of the U-phase high-side PWM signal, the V-phase high-side PWM signal, and the W-phase high-side PWM signal. By performing with the set setting cycle, the processing load of PWM control for generating the trapezoidal energization waveform can be reduced.
 以上述べたように、第1の実施形態に係る電動二輪車100において、制御部10は、台形状の通電波形によるモータ3の駆動制御を行う。駆動制御は、予め設定された設定デューティ比まで段階的に増加し、増加の後に設定デューティ比を維持し、維持の後に設定デューティ比から段階的に減少するように調整された調整デューティ比の第1相ハイ側PWM信号(U相ハイ側PWM信号)によって第1スイッチ(第1半導体スイッチQ1)のオン/オフを切り替える制御を含む。また、駆動制御は、調整デューティ比の第2相ハイ側PWM信号(V相ハイ側PWM信号)によって第3スイッチ(第3半導体スイッチQ3)のオン/オフを切り替える制御を含む。また、駆動制御は、調整デューティ比の第3相ハイ側PWM信号(W相ハイ側PWM信号)によって第5スイッチ(第5半導体スイッチQ5)のオン/オフを切り替える制御を含む。そして、設定デューティ比までの段階的な増加および設定デューティ比からの段階的な減少は、第1相ハイ側PWM信号、第2相ハイ側PWM信号、および第3相ハイ側PWM信号のパルス周期よりも長く設定された設定周期で行われる。 As described above, in the electric motorcycle 100 according to the first embodiment, the control unit 10 performs drive control of the motor 3 with a trapezoidal energization waveform. The drive control gradually increases to a preset set duty ratio, maintains the set duty ratio after the increase, and adjusts the duty ratio adjusted to decrease gradually from the set duty ratio after the maintenance. This includes control for switching on / off of the first switch (first semiconductor switch Q1) by a one-phase high-side PWM signal (U-phase high-side PWM signal). The drive control includes control for switching on / off of the third switch (third semiconductor switch Q3) by the second-phase high-side PWM signal (V-phase high-side PWM signal) of the adjustment duty ratio. Further, the drive control includes control for turning on / off the fifth switch (fifth semiconductor switch Q5) by the third phase high-side PWM signal (W-phase high-side PWM signal) of the adjustment duty ratio. The stepwise increase to the set duty ratio and the stepwise decrease from the set duty ratio are the pulse periods of the first phase high-side PWM signal, the second phase high-side PWM signal, and the third phase high-side PWM signal. It is performed at a set cycle that is set longer.
 このような構成によれば、パルス周期毎にデューティ比を増加、減少することを要しなくなるので、台形状の通電波形を生成するためのPWM制御の処理負荷を軽減することができる。 According to such a configuration, it is not necessary to increase or decrease the duty ratio for each pulse period, so that it is possible to reduce the processing load of PWM control for generating a trapezoidal energization waveform.
(第2の実施形態)
 次に、走行状態に応じて通電方式を選択する第2の実施形態について説明する。
(Second Embodiment)
Next, a second embodiment in which the energization method is selected according to the traveling state will be described.
 第2の実施形態において、制御部10は、ロータ3rの検出速度が予め設定された第1基準速度以上であって予め設定された第2基準速度よりも遅く、かつ、設定デューティ比が予め設定された第1基準デューティ比よりも低い第1の場合に、台形状の通電波形によるモータ3の駆動制御を行う。 In the second embodiment, the control unit 10 determines that the detected speed of the rotor 3r is equal to or higher than the preset first reference speed and is slower than the preset second reference speed, and the set duty ratio is preset. In the first case, which is lower than the first reference duty ratio, the drive control of the motor 3 by the trapezoidal energization waveform is performed.
 台形状の通電波形によるモータ3の駆動制御の詳細は、第1の実施形態で説明した通りである。 Details of the drive control of the motor 3 by the trapezoidal energization waveform are as described in the first embodiment.
 また、制御部10は、検出速度が第1基準速度以上であって第2基準速度よりも遅く、かつ、設定デューティ比が第1基準デューティ比以上であって予め設定された第2基準デューティ比よりも低く、または、検出速度が第2基準速度以上であって予め設定された第3基準速度よりも遅く、かつ、設定デューティ比が第2基準デューティ比よりも低い第2の場合には、以下の制御を行う。 In addition, the control unit 10 has a preset second reference duty ratio in which the detected speed is equal to or higher than the first reference speed and slower than the second reference speed, and the set duty ratio is equal to or higher than the first reference duty ratio. In the second case where the detected speed is equal to or higher than the second reference speed, slower than the preset third reference speed, and the set duty ratio is lower than the second reference duty ratio, The following control is performed.
 第2の場合に、制御部10は、設定デューティ比のU相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替えるとともに、U相ロー側PWM信号によって第1半導体スイッチQ1に対して相補的に第2半導体スイッチQ2のオン/オフを切り替える制御を行う。第2の場合のU相ロー側PWM信号は、第1半導体スイッチQ1と同時に第2半導体スイッチQ2をオンしないデッドタイムを形成するように設定デューティ比のU相ハイ側PWM信号との間でデューティ比が調整されたPWM信号である。 In the second case, the control unit 10 switches on / off of the first semiconductor switch Q1 by the U-phase high-side PWM signal having the set duty ratio, and also controls the first semiconductor switch Q1 by the U-phase low-side PWM signal. Complementary control is performed to turn on / off the second semiconductor switch Q2. The U-phase low-side PWM signal in the second case has a duty ratio between the U-phase high-side PWM signal having a set duty ratio so as to form a dead time in which the second semiconductor switch Q2 is not turned on simultaneously with the first semiconductor switch Q1. This is a PWM signal whose ratio is adjusted.
 また、第2の場合に、制御部10は、設定デューティ比のV相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替えるとともに、V相ロー側PWM信号によって第3半導体スイッチQ3に対して相補的に第4半導体スイッチQ4のオン/オフを切り替える制御を行う。第2の場合のV相ロー側PWM信号は、第3半導体スイッチQ3と同時に第4半導体スイッチQ4をオンしないデッドタイムを形成するように設定デューティ比のV相ハイ側PWM信号との間でデューティ比が調整されたPWM信号である。 また、第2の場合に、制御部10は、設定デューティ比のW相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替えるとともに、W相ロー側PWM信号によって第5半導体スイッチQ5に対して相補的に第6半導体スイッチQ6のオン/オフを切り替える制御を行う。第2の場合のW相ロー側PWM信号は、第5半導体スイッチQ5と同時に第6半導体スイッチQ6をオンしないデッドタイムを形成するようにW相ハイ側PWM信号との間でデューティ比が調整されたPWM信号である。 In the second case, the control unit 10 switches on / off of the third semiconductor switch Q3 by the V-phase high-side PWM signal having the set duty ratio, and switches the third semiconductor switch Q3 to the third semiconductor switch Q3 by the V-phase low-side PWM signal. On the other hand, the fourth semiconductor switch Q4 is controlled to be turned on / off in a complementary manner. The V-phase low-side PWM signal in the second case has a duty ratio between the V-phase high-side PWM signal having a set duty ratio so as to form a dead time in which the fourth semiconductor switch Q4 is not turned on simultaneously with the third semiconductor switch Q3. This is a PWM signal whose ratio is adjusted. In the second case, the control unit 10 switches the fifth semiconductor switch Q5 on / off by the W-phase high-side PWM signal having the set duty ratio, and switches the fifth semiconductor switch Q5 to the fifth semiconductor switch Q5 by the W-phase low-side PWM signal. On the other hand, the sixth semiconductor switch Q6 is controlled to be turned on / off in a complementary manner. The duty ratio of the W-phase low-side PWM signal in the second case is adjusted with the W-phase high-side PWM signal so as to form a dead time in which the sixth semiconductor switch Q6 is not turned on simultaneously with the fifth semiconductor switch Q5. PWM signal.
 より詳しくは、制御部10は、第2の場合には、第1~第3通電期間に、U相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替えるとともにU相ロー側PWM信号によって第2半導体スイッチQ2のオン/オフを切り替える制御を行ってもよい。 More specifically, in the second case, the control unit 10 switches on / off the first semiconductor switch Q1 by the U-phase high-side PWM signal and outputs the U-phase low-side PWM signal during the first to third energization periods. The second semiconductor switch Q2 may be controlled to be turned on / off.
 また、第2の場合に、制御部10は、第3~第5通電期間に、V相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替えるとともにV相ロー側PWM信号によって第4半導体スイッチQ4のオン/オフを切り替える制御を行ってもよい。 In the second case, the control unit 10 switches the third semiconductor switch Q3 on / off by the V-phase high-side PWM signal and performs the fourth operation by the V-phase low-side PWM signal during the third to fifth energization periods. You may perform control which switches on / off of semiconductor switch Q4.
 また、第2の場合に、制御部10は、第5および第6通電期間および第6通電期間に続く次周期の第1通電期間に、W相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替えるとともにW相ロー側PWM信号によって第6半導体スイッチQ6のオン/オフを切り替える制御を行ってもよい。 In the second case, the control unit 10 turns on the fifth semiconductor switch Q5 by the W-phase high-side PWM signal during the first energization period following the fifth and sixth energization periods and the sixth energization period. Control may be performed to switch on / off of the sixth semiconductor switch Q6 in accordance with the W-phase low-side PWM signal while switching / off.
 このような第2の場合における制御により、180°通電が行われる。 The 180 ° energization is performed by the control in the second case.
 また、制御部10は、検出速度が第1基準速度以上であって第3基準速度よりも遅く、かつ、設定デューティ比が第2基準デューティ比以上であり、または、検出速度が第3基準速度以上である第3の場合には、以下の制御を行う。 In addition, the control unit 10 has a detected speed that is equal to or higher than the first reference speed and slower than the third reference speed, and the set duty ratio is equal to or higher than the second reference duty ratio, or the detected speed is the third reference speed. In the third case as described above, the following control is performed.
 第3の場合に、制御部10は、第2半導体スイッチQ2をオフしながら設定デューティ比のU相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替える制御を行う。 In the third case, the control unit 10 performs control to turn on / off the first semiconductor switch Q1 by the U-phase high-side PWM signal of the set duty ratio while turning off the second semiconductor switch Q2.
 また、第3の場合に、制御部10は、第4半導体スイッチQ4をオフしながら設定デューティ比のV相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替える制御を行う。 In the third case, the control unit 10 performs control to turn on / off the third semiconductor switch Q3 by the V-phase high-side PWM signal having the set duty ratio while turning off the fourth semiconductor switch Q4.
 また、第3の場合に、制御部10は、第6半導体スイッチQ6をオフしながら設定デューティ比のW相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替える制御を行う。 In the third case, the control unit 10 performs control to turn on / off the fifth semiconductor switch Q5 by the W-phase high-side PWM signal having the set duty ratio while turning off the sixth semiconductor switch Q6.
 より詳しくは、制御部10は、第3の場合には、第1~第3通電期間に、第2半導体スイッチQ2をオフしながらU相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替える制御を行ってもよい。 More specifically, in the third case, the control unit 10 turns on / off the first semiconductor switch Q1 by the U-phase high-side PWM signal while turning off the second semiconductor switch Q2 during the first to third energization periods. You may perform control which switches.
 また、第3の場合に、制御部10は、第3~第5通電期間に、第4半導体スイッチQ4をオフしながらV相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替える制御を行ってもよい。 In the third case, the control unit 10 performs control to switch on / off the third semiconductor switch Q3 by the V-phase high-side PWM signal while turning off the fourth semiconductor switch Q4 during the third to fifth energization periods. May be performed.
 また、第3の場合に、制御部10は、第5および第6通電期間ならびに第6通電期間に続く次周期の第1通電期間に、第6半導体スイッチQ6をオフしながらW相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替える制御を行ってもよい。 Further, in the third case, the control unit 10 controls the W-phase high-side PWM while turning off the sixth semiconductor switch Q6 during the fifth and sixth energization periods and the first energization period of the next period following the sixth energization period. Control may be performed to turn on / off the fifth semiconductor switch Q5 by a signal.
 このような第3の場合における制御により、180°通電が行われる。 The 180 ° energization is performed by the control in the third case.
 また、制御部10は、検出速度が第1基準速度よりも遅く、かつ、設定デューティ比が予め設定された第3基準デューティ比よりも低い第4の場合には、以下の制御を行う。 Further, the control unit 10 performs the following control in the fourth case where the detection speed is slower than the first reference speed and the set duty ratio is lower than the preset third reference duty ratio.
 第4の場合に、制御部10は、設定デューティ比のU相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替えるとともに、U相ロー側PWM信号によって第1半導体スイッチQ1に対して相補的に第2半導体スイッチQ2のオン/オフを切り替える制御を行う。第4の場合のU相ロー側PWM信号は、第1半導体スイッチQ1と同時に第2半導体スイッチQ2をオンしないデッドタイムを形成するように設定デューティ比のU相ハイ側PWM信号との間でデューティ比が調整されたPWM信号である。 In the fourth case, the control unit 10 switches on / off of the first semiconductor switch Q1 by the U-phase high-side PWM signal having the set duty ratio, and controls the first semiconductor switch Q1 by the U-phase low-side PWM signal. Complementary control is performed to turn on / off the second semiconductor switch Q2. The U-phase low-side PWM signal in the fourth case has a duty ratio between the U-phase high-side PWM signal having a set duty ratio so as to form a dead time that does not turn on the second semiconductor switch Q2 simultaneously with the first semiconductor switch Q1. This is a PWM signal whose ratio is adjusted.
 また、第4の場合に、制御部10は、設定デューティ比のV相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替えるとともに、V相ロー側PWM信号によって第3半導体スイッチQ3に対して相補的に第4半導体スイッチQ4のオン/オフを切り替える制御を行う。第4の場合のV相ロー側PWM信号は、第3半導体スイッチQ3と同時に第4半導体スイッチQ4をオンしないデッドタイムを形成するように設定デューティ比のV相ハイ側PWM信号との間でデューティ比が調整されたPWM信号である。 In the fourth case, the control unit 10 switches the third semiconductor switch Q3 on / off by the V-phase high-side PWM signal having the set duty ratio, and switches the third semiconductor switch Q3 to the third semiconductor switch Q3 by the V-phase low-side PWM signal. On the other hand, the fourth semiconductor switch Q4 is controlled to be turned on / off in a complementary manner. The V-phase low-side PWM signal in the fourth case has a duty ratio between the V-phase high-side PWM signal having a set duty ratio so as to form a dead time in which the fourth semiconductor switch Q4 is not turned on simultaneously with the third semiconductor switch Q3. This is a PWM signal whose ratio is adjusted.
 また、第4の場合に、制御部10は、設定デューティ比のW相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替えるとともに、W相ロー側PWM信号によって第5半導体スイッチQ5に対して相補的に第6半導体スイッチQ6のオン/オフを切り替える制御を行う。第4の場合のW相ロー側PWM信号は、第5半導体スイッチQ5と同時に第6半導体スイッチQ6をオンしないデッドタイムを形成するように設定デューティ比のW相ハイ側PWM信号との間でデューティ比が調整されたPWM信号である。 In the fourth case, the control unit 10 switches the fifth semiconductor switch Q5 on / off by the W-phase high-side PWM signal having the set duty ratio, and switches the fifth semiconductor switch Q5 to the fifth semiconductor switch Q5 by the W-phase low-side PWM signal. On the other hand, the sixth semiconductor switch Q6 is controlled to be turned on / off in a complementary manner. The W-phase low-side PWM signal in the fourth case has a duty ratio between the W-phase high-side PWM signal having a set duty ratio so as to form a dead time in which the sixth semiconductor switch Q6 is not turned on simultaneously with the fifth semiconductor switch Q5. This is a PWM signal whose ratio is adjusted.
 より詳しくは、制御部10は、第4の場合には、第1~第4通電期間にU相ロー側PWM信号によって第2半導体スイッチQ2のオン/オフを切り替えながら、第2および第3通電期間にU相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替える制御を行ってもよい。 More specifically, in the fourth case, the control unit 10 switches the second and third energizations while switching on / off the second semiconductor switch Q2 by the U-phase low-side PWM signal during the first to fourth energization periods. You may perform control which switches on / off of the 1st semiconductor switch Q1 with a U-phase high side PWM signal in a period.
 また、第4の場合に、制御部10は、第3~第6通電期間にV相ロー側PWM信号によって第4半導体スイッチQ4のオン/オフを切り替えながら、第4および第5通電期間にV相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替える制御を行ってもよい。 Further, in the fourth case, the control unit 10 switches the ON / OFF state of the fourth semiconductor switch Q4 by the V-phase low-side PWM signal during the third to sixth energization periods, while the V and the fifth energization periods Control for switching on / off of the third semiconductor switch Q3 may be performed by the phase high-side PWM signal.
 また、第4の場合に、制御部10は、第5および第6通電期間ならびに第6通電期間に続く次周期の第1および第2通電期間にW相ロー側PWM信号によって第6半導体スイッチQ6のオン/オフを切り替えながら、第6通電期間および次周期の第1通電期間にW相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替える制御を行ってもよい。 In the fourth case, the control unit 10 controls the sixth semiconductor switch Q6 by the W-phase low-side PWM signal during the fifth and sixth energization periods and the first and second energization periods of the next period following the sixth energization period. Control may be performed to turn on / off the fifth semiconductor switch Q5 by the W-phase high-side PWM signal during the sixth energization period and the first energization period of the next cycle while switching on / off.
 このような第4の場合における制御により、電気角120°に相当する通電期間に相電流を流す120°通電が行われる。 By such control in the fourth case, 120 ° energization is performed in which a phase current is passed during an energization period corresponding to an electrical angle of 120 °.
 また、制御部10は、検出速度が第1基準速度よりも遅く、かつ、設定デューティ比が第3基準デューティ比以上である第5の場合には、第2半導体スイッチQ2をオフしながら設定デューティ比のU相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替える制御を行う。 Further, in the fifth case where the detection speed is slower than the first reference speed and the set duty ratio is equal to or greater than the third reference duty ratio, the control unit 10 turns off the second semiconductor switch Q2 and sets the set duty Control is performed to turn on / off the first semiconductor switch Q1 by the U-phase high-side PWM signal of the ratio.
 また、第5の場合に、制御部10は、第4半導体スイッチQ4をオフしながら設定デューティ比のV相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替える制御を行う。 In the fifth case, the control unit 10 performs control to turn on / off the third semiconductor switch Q3 by the V-phase high-side PWM signal having the set duty ratio while turning off the fourth semiconductor switch Q4.
 また、第5の場合に、制御部10は、第6半導体スイッチQ6をオフしながら設定デューティ比のW相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替える制御を行う。 In the fifth case, the control unit 10 performs control to turn on / off the fifth semiconductor switch Q5 by the W-phase high-side PWM signal having the set duty ratio while turning off the sixth semiconductor switch Q6.
 より詳しくは、制御部10は、第5の場合には、第1~第4通電期間に第2半導体スイッチQ2をオフしながら、第2および第3通電期間にU相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替える制御を行ってもよい。 More specifically, in the fifth case, the control unit 10 turns off the second semiconductor switch Q2 in the first to fourth energization periods, and outputs the first and second energization periods by the U-phase high-side PWM signal. 1 Control to switch on / off of the semiconductor switch Q1 may be performed.
 また、第5の場合に、制御部10は、第3~第6通電期間に第4半導体スイッチQ4をオフしながら、第4および第5通電期間にV相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替える制御を行ってもよい。 In the fifth case, the control unit 10 turns off the fourth semiconductor switch Q4 during the third to sixth energization periods, and uses the V-phase high-side PWM signal during the fourth and fifth energization periods. You may perform control which switches on / off of Q3.
 また、第5の場合に、制御部10は、第5および第6通電期間ならびに第6通電期間に続く次周期の第1および第2通電期間に第6半導体スイッチQ6をオフしながら、第6通電期間および次周期の第1通電期間にW相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替える制御を行ってもよい。 Further, in the fifth case, the control unit 10 turns off the sixth semiconductor switch Q6 during the fifth and sixth energization periods and the first and second energization periods of the next cycle following the sixth energization period. Control may be performed to turn on / off the fifth semiconductor switch Q5 by the W-phase high-side PWM signal during the energization period and the first energization period of the next cycle.
 このような第5の場合における制御により、120°通電が行われる。 120 ° energization is performed by the control in the fifth case.
(電動二輪車100の制御方法)
 以下、図8のフローチャートを参照して、第2の実施形態に係る電動二輪車100の制御方法について説明する。なお、図8のフローチャートは、必要に応じて繰り返される。
(Control method of electric motorcycle 100)
Hereinafter, a control method of the electric motorcycle 100 according to the second embodiment will be described with reference to the flowchart of FIG. 8. Note that the flowchart of FIG. 8 is repeated as necessary.
 先ず、制御部10は、アクセルポジションセンサ5の検出信号に基づいてアクセル操作量を検出する(ステップS1)。 First, the control unit 10 detects the accelerator operation amount based on the detection signal of the accelerator position sensor 5 (step S1).
 また、制御部10は、アングルセンサ4の検出信号に基づいてロータ回転速度を検出する(ステップS2)。 Further, the control unit 10 detects the rotor rotation speed based on the detection signal of the angle sensor 4 (step S2).
 アクセル操作量およびロータ回転速度を検出した後、制御部10は、検出されたアクセル操作量および検出されたロータ回転速度(すなわち、検出速度とも呼ぶ)に基づいて、目標トルクを設定する(ステップS3)。 After detecting the accelerator operation amount and the rotor rotation speed, the control unit 10 sets a target torque based on the detected accelerator operation amount and the detected rotor rotation speed (that is, also called the detection speed) (step S3). ).
 具体的には、図9に示すように、制御部10は、トルクマップを参照してアクセル操作量とロータ回転速度とに対応する目標トルクを取得することで、目標トルクを設定する。 Specifically, as shown in FIG. 9, the control unit 10 sets the target torque by acquiring the target torque corresponding to the accelerator operation amount and the rotor rotational speed with reference to the torque map.
 トルクマップは、図10に示すように、ロータ回転速度と、アクセル操作量と、目標トルクとの対応関係を示すマップである。トルクマップは、制御部10が読出し可能な状態で記憶部20に記憶されていてもよい。 As shown in FIG. 10, the torque map is a map showing a correspondence relationship between the rotor rotational speed, the accelerator operation amount, and the target torque. The torque map may be stored in the storage unit 20 so that the control unit 10 can read the torque map.
 目標トルクを設定した後、図8に示すように、制御部10は、検出速度と設定された目標トルクとに基づいてデューティ比を設定する(ステップS4)。 After setting the target torque, as shown in FIG. 8, the control unit 10 sets the duty ratio based on the detected speed and the set target torque (step S4).
 具体的には、図9に示すように、制御部10は、デューティ比マップを参照して検出速度と目標トルクとに対応するデューティ比を取得することで、デューティ比を設定する。デューティ比マップは、図11に示すように、ロータ回転速度と、目標トルクと、デューティ比との対応関係を示すマップである。デューティ比マップは、制御部10が読出し可能な状態で記憶部20に記憶されていてもよい。 Specifically, as shown in FIG. 9, the control unit 10 sets the duty ratio by obtaining a duty ratio corresponding to the detected speed and the target torque with reference to the duty ratio map. As shown in FIG. 11, the duty ratio map is a map showing a correspondence relationship between the rotor rotational speed, the target torque, and the duty ratio. The duty ratio map may be stored in the storage unit 20 in a state where the control unit 10 can read the duty ratio map.
 デューティ比を設定した後、図8に示すように、制御部10は、検出速度が予め設定された第1基準速度以上であるか否かを判定する(ステップS5)。 After setting the duty ratio, as shown in FIG. 8, the control unit 10 determines whether or not the detected speed is equal to or higher than a first reference speed set in advance (step S5).
 検出速度が第1基準速度以上でない場合(ステップS5:No)、制御部10は、設定デューティ比が予め設定された第3基準デューティ比以上であるか否かを判定する(ステップS6)。 When the detected speed is not equal to or higher than the first reference speed (step S5: No), the control unit 10 determines whether or not the set duty ratio is equal to or higher than a preset third reference duty ratio (step S6).
<120°上下段矩形波PWM制御>
 設定デューティ比が第3基準デューティ比以上でない場合(ステップS6:No)、制御部10は、図12Aおよび図12Bに示される第1の領域R1(すなわち、第4の場合)の通電方式として、120°上下段矩形波PWM制御を実行する(ステップS11)。
<120 ° upper and lower rectangular wave PWM control>
When the set duty ratio is not equal to or greater than the third reference duty ratio (step S6: No), the control unit 10 performs the energization method in the first region R1 (that is, the fourth case) illustrated in FIGS. 120 ° upper and lower rectangular wave PWM control is executed (step S11).
 120°上下段矩形波PWM制御は、上段すなわちハイサイドの半導体スイッチQ1、Q3、Q5と下段すなわちローサイドの半導体スイッチQ2、Q4、Q6との双方へのPWM制御をともなう略矩形状の通電波形を生じる120°通電である。 The 120 ° vertical rectangular wave PWM control is a substantially rectangular energization waveform with PWM control to both the upper or high-side semiconductor switches Q1, Q3, and Q5 and the lower or low-side semiconductor switches Q2, Q4, and Q6. The resulting 120 ° energization.
 図13に示すように、120°上下段矩形波PWM制御においては、1番~6番のモータステージに応じて周期的に設定されたそれぞれが電気角60°の1番~6番の通電ステージ(すなわち、通電期間)のうち、連続する1番および2番の通電ステージ(すなわち、第2、第3通電期間)において、設定デューティ比のU相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替える制御を行う。 As shown in FIG. 13, in the 120 ° up-and-down rectangular wave PWM control, the first to sixth energization stages each having an electrical angle of 60 ° which are periodically set according to the first to sixth motor stages. The first semiconductor switch Q1 is turned on by the U-phase high-side PWM signal of the set duty ratio in the first and second energization stages (that is, the second and third energization periods) in the energization period (that is, the energization period). Control to switch off / off.
 また、120°上下段矩形波PWM制御においては、連続する6番~3番の通電ステージ(すなわち、第1~第4通電期間)において、デッドタイムを形成するようにU相ハイ側PWM信号との間でデューティ比が調整されたU相ロー側PWM信号によって、第1半導体スイッチQ1に対して相補的に第2半導体スイッチQ2のオン/オフを切り替える制御を行う。 In the 120 ° upper and lower rectangular wave PWM control, the U-phase high-side PWM signal and the U-phase high-side PWM signal are formed so as to form a dead time in the continuous sixth to third energization stages (that is, the first to fourth energization periods). The second semiconductor switch Q2 is controlled to be turned on / off complementarily to the first semiconductor switch Q1 by the U-phase low-side PWM signal whose duty ratio is adjusted between the first semiconductor switch Q1 and the second semiconductor switch Q2.
 なお、6番および3番の通電ステージでは第1半導体スイッチQ1はオフするため、第1半導体スイッチQ1に対して第2半導体スイッチQ2のオン/オフが相補的になるのは、厳密には、連続する6番~3番の通電ステージのうちの1番および2番の通電ステージである。 In addition, since the first semiconductor switch Q1 is turned off at the energization stages No. 6 and No. 3, the ON / OFF of the second semiconductor switch Q2 is complementary to the first semiconductor switch Q1. These are the first and second energization stages of the continuous 6th to 3rd energization stages.
 また、ハイサイドの半導体スイッチQ1は信号のハイレベルがオン状態に相当するのに対して、ローサイドの半導体スイッチQ2は信号のローレベルがオン状態に相当するため、図13には、ハイ側PWM信号に“Hi Active”と図示され、ロー側PWM信号に“Lo Active”と図示されている。 Further, the high-side semiconductor switch Q1 corresponds to the on state of the high signal level, while the low-side semiconductor switch Q2 corresponds to the on state of the low level signal. The signal is shown as “Hi Active”, and the low-side PWM signal is shown as “Lo Active”.
 また、図13中の破線枠部分を拡大した図14に示すように、U相ロー側PWM信号は、第1半導体スイッチQ1と同時に第2半導体スイッチQ2をオンしないデッドタイムDtを形成するようにU相ハイ側PWM信号との間でデューティ比が調整されている。 Further, as shown in FIG. 14 in which the broken-line frame portion in FIG. 13 is enlarged, the U-phase low-side PWM signal forms a dead time Dt that does not turn on the second semiconductor switch Q2 simultaneously with the first semiconductor switch Q1. The duty ratio is adjusted with the U-phase high-side PWM signal.
 また、図13に示すように、120°上下段矩形波PWM制御においては、連続する3番および4番の通電ステージ(すなわち、第4、第5通電期間)において、設定デューティ比のV相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替える制御を行う。 Further, as shown in FIG. 13, in the 120 ° upper and lower rectangular wave PWM control, the V-phase high of the set duty ratio is applied in the third and fourth energization stages (that is, the fourth and fifth energization periods). The third semiconductor switch Q3 is controlled to be turned on / off by the side PWM signal.
 また、120°上下段矩形波PWM制御においては、連続する2番~5番の通電ステージ(すなわち、第3~第6通電期間)において、デッドタイムを形成するようにV相ハイ側PWM信号との間でデューティ比が調整されたV相ロー側PWM信号によって、第3半導体スイッチQ3に対して相補的に第4半導体スイッチQ4のオン/オフを切り替える制御を行う。 In addition, in the 120 ° upper and lower rectangular wave PWM control, the V-phase high-side PWM signal and the V-phase high-side PWM signal are formed so as to form a dead time in the second to fifth energization stages (that is, the third to sixth energization periods). The fourth semiconductor switch Q4 is controlled to be turned on / off in a complementary manner with respect to the third semiconductor switch Q3 by the V-phase low-side PWM signal whose duty ratio is adjusted between.
 また、120°上下段矩形波PWM制御においては、連続する5番および6番の通電ステージ(すなわち、第6通電期間および次周期の第1通電期間)において、設定デューティ比のW相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替える制御を行う。 Further, in the 120 ° upper and lower rectangular wave PWM control, the W-phase high-side PWM of the set duty ratio in the continuous fifth and sixth energization stages (that is, the sixth energization period and the first energization period of the next cycle). Control to turn on / off the fifth semiconductor switch Q5 by a signal is performed.
 また、120°上下段矩形波PWM制御においては、連続する4番~1番の通電ステージ(すなわち、第5、第6通電期間および次周期の第1、第2通電期間)において、デッドタイムを形成するようにW相ハイ側PWM信号との間でデューティ比が調整されたW相ロー側PWM信号によって、第5半導体スイッチQ5に対して相補的に第6半導体スイッチQ6のオン/オフを切り替える制御を行う。 Further, in the 120 ° upper and lower rectangular wave PWM control, dead time is reduced in the fourth to first energization stages (that is, the fifth and sixth energization periods and the first and second energization periods of the next cycle). The sixth semiconductor switch Q6 is switched on / off complementarily to the fifth semiconductor switch Q5 by the W-phase low-side PWM signal whose duty ratio is adjusted with the W-phase high-side PWM signal so as to be formed. Take control.
 なお、1番および2番以外の通電ステージにおいて、第1半導体スイッチQ1はオフされる。6番~3番以外の通電ステージにおいて、第2半導体スイッチQ2はオフされる。3番および4番以外の通電ステージにおいて、第3半導体スイッチQ3はオフされる。2番~5番以外の通電ステージにおいて、第4半導体スイッチQ4はオフされる。5番および6番以外の通電ステージにおいて、第5半導体スイッチQ5はオフされる。4番~1番以外の通電ステージにおいて、第6半導体スイッチQ6はオフされる。 The first semiconductor switch Q1 is turned off in energization stages other than No. 1 and No. 2. In energization stages other than No. 6 to No. 3, the second semiconductor switch Q2 is turned off. In energization stages other than No. 3 and No. 4, the third semiconductor switch Q3 is turned off. In energization stages other than No. 2 to No. 5, the fourth semiconductor switch Q4 is turned off. In energization stages other than No. 5 and No. 6, the fifth semiconductor switch Q5 is turned off. In energization stages other than Nos. 4 to 1, the sixth semiconductor switch Q6 is turned off.
 通電ステージは、モータステージに対して、目標トルクとモータ回転速度に応じて設定された角度分のずれを有していてもよい。 The energization stage may have a deviation of an angle set according to the target torque and the motor rotation speed with respect to the motor stage.
 以上のような120°上下段矩形波PWM制御によれば、ロータ3rの低回転時においては、120°通電を行うことで始動特性を向上させることができる。また、ハイサイドのスイッチQ1、Q3、Q5との間にデッドタイムが形成されるようにローサイドのスイッチQ2、Q4、Q6をPWM制御することで、貫通電流を防止することができる。 According to the 120 ° upper and lower rectangular wave PWM control as described above, the starting characteristics can be improved by conducting 120 ° energization during the low rotation of the rotor 3r. Further, through current can be prevented by PWM controlling the low-side switches Q2, Q4, and Q6 such that a dead time is formed between the high-side switches Q1, Q3, and Q5.
<120°上段矩形波PWM制御>
 図8に示すように、設定デューティ比が第3基準デューティ比以上である場合(ステップS6:Yes)、制御部10は、図12Aおよび図12Bに示される第2の領域R2(すなわち、第5の場合)の通電方式として、120°上段矩形波PWM制御を実行する(ステップS12)。図12Bの例において、第3基準デューティ比は第2基準デューティ比に一致しているが、第3基準デューティ比は第2基準デューティ比と異なっていてもよい。
<120 ° upper rectangular wave PWM control>
As shown in FIG. 8, when the set duty ratio is greater than or equal to the third reference duty ratio (step S6: Yes), the control unit 10 uses the second region R2 (ie, the fifth region) shown in FIGS. 12A and 12B. ), The 120 ° upper rectangular wave PWM control is executed (step S12). In the example of FIG. 12B, the third reference duty ratio matches the second reference duty ratio, but the third reference duty ratio may be different from the second reference duty ratio.
 120°上段矩形波PWM制御は、ハイサイドの半導体スイッチQ1、Q3、Q5のみへのPWM制御をともなう略矩形状の通電波形を生じる120°通電である。 The 120 ° upper rectangular wave PWM control is 120 ° energization that generates a substantially rectangular energization waveform with PWM control only to the high-side semiconductor switches Q1, Q3, and Q5.
 図15に示すように、120°上段矩形波PWM制御においては、連続する1番および2番の通電ステージ(すなわち、第2、第3通電期間)において、設定デューティ比のU相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替える制御を行う。 As shown in FIG. 15, in the 120 ° upper-stage rectangular wave PWM control, the U-phase high-side PWM signal having a set duty ratio in the continuous first and second energization stages (that is, the second and third energization periods). Is used to control the first semiconductor switch Q1 to be turned on / off.
 また、120°上段矩形波PWM制御においては、連続する6番~3番の通電ステージ(すなわち、第1~第4通電期間)において、第2半導体スイッチQ2をオフし続ける制御を行う。 In the 120 ° upper rectangular wave PWM control, the second semiconductor switch Q2 is continuously turned off in the continuous sixth to third energization stages (that is, the first to fourth energization periods).
 また、120°上段矩形波PWM制御においては、連続する3番および4番の通電ステージ(すなわち、第4、第5通電期間)において、設定デューティ比のV相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替える制御を行う。 Further, in the 120 ° upper rectangular wave PWM control, the third semiconductor switch is set by the V-phase high-side PWM signal having the set duty ratio in the third and fourth energization stages (that is, the fourth and fifth energization periods). Control to switch on / off of Q3 is performed.
 また、120°上段矩形波PWM制御においては、連続する2番~5番の通電ステージ(すなわち、第3~第6通電期間)において、第4半導体スイッチQ4をオフし続ける制御を行う。 Further, in the 120 ° upper rectangular wave PWM control, the fourth semiconductor switch Q4 is continuously turned off in the continuous second to fifth energization stages (that is, the third to sixth energization periods).
 また、120°上段矩形波PWM制御においては、連続する5番および6番の通電ステージ(すなわち、第6通電期間および次周期の第1通電期間)において、設定デューティ比のW相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替える制御を行う。 Further, in the 120 ° upper rectangular wave PWM control, the W-phase high-side PWM signal having the set duty ratio in the continuous fifth and sixth energization stages (that is, the sixth energization period and the first energization period of the next cycle). Thus, control is performed to switch on / off the fifth semiconductor switch Q5.
 また、120°上段矩形波PWM制御においては、連続する4番~1番の通電ステージ(すなわち、第5、第6通電期間および次周期の第1、第2通電期間)において、第6半導体スイッチQ6をオフし続ける制御を行う。 In the 120 ° upper-stage rectangular wave PWM control, the sixth semiconductor switch is used in the fourth to first energization stages (that is, the fifth and sixth energization periods and the first and second energization periods of the next cycle). Control is performed to keep Q6 off.
 以上のような120°上段矩形波PWM制御によれば、設定デューティ比が高い場合には、ローサイドのスイッチQ2、Q4、Q6をオフしてハイサイドのスイッチQ1、Q3、Q5のみにPWM制御を行うことで、ハイサイドのスイッチQ1、Q3、Q5とローサイドのスイッチQ2、Q4、Q6との間でデッドタイムが形成されるように互いのPWM信号のデューティ比を調整することを要しなくなる。 According to the 120 ° upper-stage rectangular wave PWM control as described above, when the set duty ratio is high, the low-side switches Q2, Q4, and Q6 are turned off and only the high-side switches Q1, Q3, and Q5 are subjected to PWM control. By doing so, it is not necessary to adjust the duty ratio of the PWM signals so that a dead time is formed between the high-side switches Q1, Q3, and Q5 and the low-side switches Q2, Q4, and Q6.
 これにより、ハイサイドのPWM信号のデューティ比を十分に大きくすることができるので、バッテリ2の充電電圧を最大限利用して可及的に大きなトルクを出力することが可能となる。 This makes it possible to sufficiently increase the duty ratio of the high-side PWM signal, so that as much torque as possible can be output using the charging voltage of the battery 2 as much as possible.
<180°上下段台形波PWM制御>
 図8に示すように、検出速度が第1基準速度以上である場合(ステップS5:Yes)、制御部10は、検出速度が第2基準速度以上であるか否かを判定する(ステップS7)。
<180 ° vertical trapezoidal wave PWM control>
As shown in FIG. 8, when the detected speed is equal to or higher than the first reference speed (step S5: Yes), the control unit 10 determines whether or not the detected speed is equal to or higher than the second reference speed (step S7). .
 検出速度が第2基準速度以上でない場合(ステップS7:No)、制御部10は、設定デューティ比が第1基準デューティ比以上であるか否かを判定する(ステップS8)。 When the detected speed is not equal to or higher than the second reference speed (step S7: No), the control unit 10 determines whether or not the set duty ratio is equal to or higher than the first reference duty ratio (step S8).
 設定デューティ比が第1基準デューティ比以上でない場合(ステップS8:No)、制御部10は、図12Aおよび図12Bに示される第3の領域R3(すなわち、第1の場合)の通電方式として、180°上下段台形波PWM制御を実行する(ステップS13)。 When the set duty ratio is not equal to or greater than the first reference duty ratio (step S8: No), the control unit 10 performs the energization method in the third region R3 (that is, the first case) illustrated in FIGS. 12A and 12B. 180 ° upper and lower trapezoidal wave PWM control is executed (step S13).
 180°上下段台形波PWM制御における波形は、第1の実施形態において図5~図7に示した通りである。180°上下段台形波PWM制御によれば、通電波形の立ち上げおよび立ち下げを緩やかに行うことで、リップルを抑制することができる。 The waveforms in the 180 ° upper and lower trapezoidal wave PWM control are as shown in FIGS. 5 to 7 in the first embodiment. According to the 180 ° upper / lower trapezoidal wave PWM control, ripples can be suppressed by gently raising and lowering the energization waveform.
<180°上下段矩形波PWM制御>
 図8に示すように、検出速度が第2基準速度以上である場合(ステップS7:Yes)、制御部10は、検出速度が第3基準速度以上であるか否かを判定する(ステップS9)。
<180 ° vertical rectangular PWM control>
As shown in FIG. 8, when the detected speed is equal to or higher than the second reference speed (step S7: Yes), the control unit 10 determines whether or not the detected speed is equal to or higher than the third reference speed (step S9). .
 検出速度が第3基準速度以上でない場合(ステップS9:No)、または、設定デューティ比が第1基準デューティ比以上である場合(ステップS8:Yes)、制御部10は、設定デューティ比が第2基準デューティ比以上であるか否かを判定する(ステップS10)。 When the detected speed is not equal to or higher than the third reference speed (step S9: No), or when the set duty ratio is equal to or higher than the first reference duty ratio (step S8: Yes), the control unit 10 sets the second set duty ratio to the second reference duty ratio. It is determined whether or not the duty ratio is equal to or greater than the reference duty ratio (step S10).
 設定デューティ比が第2基準デューティ比以上でない場合(ステップS10:No)、制御部10は、図12Aおよび図12Bに示される第4の領域R4(すなわち、第2の場合)の通電方式として、180°上下段矩形波PWM制御を実行する(ステップS14)。 When the set duty ratio is not equal to or greater than the second reference duty ratio (step S10: No), the control unit 10 performs the energization method in the fourth region R4 (that is, the second case) illustrated in FIGS. 12A and 12B. 180 ° upper and lower rectangular wave PWM control is executed (step S14).
 180°上下段矩形波PWM制御は、ハイサイドの半導体スイッチQ1、Q3、Q5とローサイドの半導体スイッチQ2、Q4、Q6との双方へのPWM制御をともなう略矩形状の通電波形を生じる180°通電である。 The 180 ° upper and lower rectangular wave PWM control generates a substantially rectangular energization waveform with PWM control to both the high-side semiconductor switches Q1, Q3, and Q5 and the low-side semiconductor switches Q2, Q4, and Q6. It is.
 図16に示すように、180°上下段矩形波PWM制御においては、連続する1番~3番の通電ステージ(すなわち、第1~第3通電期間)において、設定デューティ比のU相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替える制御を行う。 As shown in FIG. 16, in the 180 ° upper and lower rectangular wave PWM control, the U-phase high-side PWM of the set duty ratio in the continuous first to third energization stages (that is, the first to third energization periods). Control is performed to turn on / off the first semiconductor switch Q1 according to the signal.
 また、180°上下段矩形波PWM制御においては、連続する1番~3番の通電ステージにおいて、デッドタイムを形成するようにU相ハイ側PWM信号との間でデューティ比が調整されたU相ロー側PWM信号によって、第1半導体スイッチQ1に対して相補的に第2半導体スイッチQ2のオン/オフを切り替える制御を行う。 In the 180 ° upper and lower rectangular wave PWM control, the U phase whose duty ratio is adjusted with the U phase high-side PWM signal so as to form a dead time in the continuous first to third energization stages. Control is performed to turn on / off the second semiconductor switch Q2 in a complementary manner to the first semiconductor switch Q1 by the low-side PWM signal.
 また、180°上下段矩形波PWM制御においては、連続する3番~5番の通電ステージ(すなわち、第3~第5通電期間)において、設定デューティ比のV相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替える制御を行う。 Further, in the 180 ° upper and lower rectangular wave PWM control, the third semiconductor is controlled by the V-phase high-side PWM signal having the set duty ratio in the continuous third to fifth energization stages (that is, the third to fifth energization periods). Control to switch on / off the switch Q3 is performed.
 また、180°上下段矩形波PWM制御においては、連続する3番~5番の通電ステージにおいて、デッドタイムを形成するようにV相ハイ側PWM信号との間でデューティ比が調整されたV相ロー側PWM信号によって、第3半導体スイッチQ3に対して相補的に第4半導体スイッチQ4のオン/オフを切り替える制御を行う。 In the 180 ° upper and lower rectangular wave PWM control, the duty ratio is adjusted with the V-phase high-side PWM signal so as to form a dead time in the continuous third to fifth energization stages. Control is performed to turn on / off the fourth semiconductor switch Q4 in a complementary manner to the third semiconductor switch Q3 by the low-side PWM signal.
 また、180°上下段矩形波PWM制御においては、連続する5番~1番の通電ステージ(すなわち、第5、第6通電期間および次周期の第1通電期間)において、設定デューティ比のW相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替える制御を行う。 Further, in the 180 ° upper and lower rectangular wave PWM control, the W phase of the set duty ratio in the continuous fifth to first energization stages (that is, the fifth and sixth energization periods and the first energization period of the next cycle). Control to turn on / off the fifth semiconductor switch Q5 is performed by the high-side PWM signal.
 また、180°上下段矩形波PWM制御においては、連続する5番~1番の通電ステージにおいて、デッドタイムを形成するようにW相ハイ側PWM信号との間でデューティ比が調整されたW相ロー側PWM信号によって、第5半導体スイッチQ5に対して相補的に第6半導体スイッチQ6のオン/オフを切り替える制御を行う。 Also, in the 180 ° upper and lower rectangular wave PWM control, the W phase in which the duty ratio is adjusted with the W phase high-side PWM signal so as to form a dead time in the continuous energization stages of No. 5 to No. 1. Control is performed to turn on / off the sixth semiconductor switch Q6 complementarily to the fifth semiconductor switch Q5 by the low-side PWM signal.
 以上のような180°上下段矩形波PWM制御によれば、ロータ3rの高回転時においては、高回転するロータ3rに対してトルクを適切に付与できるように、180°通電によって電源電圧の利用率を高めて十分に大きなトルクを得ることができる。また、ハイサイドのスイッチQ1、Q3、Q5との間にデッドタイムが形成されるようにローサイドのスイッチQ2、Q4、Q6をPWM制御することで、貫通電流を防止することができる。 According to the 180 ° upper and lower rectangular wave PWM control as described above, when the rotor 3r rotates at high speed, the power supply voltage is used by applying 180 ° power so that torque can be appropriately applied to the rotor 3r rotating at high speed. A sufficiently large torque can be obtained by increasing the ratio. Further, through current can be prevented by PWM controlling the low-side switches Q2, Q4, and Q6 such that a dead time is formed between the high-side switches Q1, Q3, and Q5.
<180°上段矩形波PWM制御>
 図8に示すように、検出速度が第3基準速度以上である場合(ステップS9:Yes)、または、設定デューティ比が第2基準デューティ比以上である場合(ステップS10:Yes)、制御部10は、図12Aおよび図12Bに示される第5の領域R5(すなわち、第3の場合)の通電方式として、180°上段矩形波PWM制御を実行する(ステップS15)。
<180 ° upper rectangular wave PWM control>
As shown in FIG. 8, when the detected speed is greater than or equal to the third reference speed (step S9: Yes), or when the set duty ratio is greater than or equal to the second reference duty ratio (step S10: Yes), the control unit 10 Executes 180 ° upper rectangular wave PWM control as the energization method of the fifth region R5 (that is, the third case) shown in FIGS. 12A and 12B (step S15).
 180°上段矩形波PWM制御は、ハイサイドの半導体スイッチQ1、Q3、Q5のみへのPWM制御をともなう略矩形状の通電波形を生じる180°通電である。 180 ° upper-stage rectangular wave PWM control is 180 ° energization that generates a substantially rectangular energization waveform with PWM control only to the high-side semiconductor switches Q1, Q3, and Q5.
 図17に示すように、180°上段矩形波PWM制御においては、連続する1番~3番の通電ステージ(すなわち、第1~第3通電期間)において、設定デューティ比のU相ハイ側PWM信号によって第1半導体スイッチQ1のオン/オフを切り替える制御を行う。 As shown in FIG. 17, in the 180 ° upper-stage rectangular wave PWM control, the U-phase high-side PWM signal having the set duty ratio in the continuous first to third energization stages (that is, the first to third energization periods). Is used to control the first semiconductor switch Q1 to be turned on / off.
 また、180°上段矩形波PWM制御においては、連続する1番~3番の通電ステージにおいて、第2半導体スイッチQ2をオフし続ける制御を行う。 In the 180 ° upper-stage rectangular wave PWM control, the second semiconductor switch Q2 is continuously turned off in the continuous first to third energization stages.
 また、180°上段矩形波PWM制御においては、連続する3番~5番の通電ステージ(すなわち、第3~第5通電期間)において、設定デューティ比のV相ハイ側PWM信号によって第3半導体スイッチQ3のオン/オフを切り替える制御を行う。 In the 180 ° upper rectangular wave PWM control, the third semiconductor switch is set by the V-phase high-side PWM signal having the set duty ratio in the third through fifth energization stages (that is, the third through fifth energization periods). Control to switch on / off of Q3 is performed.
 また、180°上段矩形波PWM制御においては、連続する3番~5番の通電ステージにおいて、第4半導体スイッチQ4をオフし続ける制御を行う。 In the 180 ° upper-stage rectangular wave PWM control, the fourth semiconductor switch Q4 is continuously turned off in the continuous third to fifth energization stages.
 また、180°上段矩形波PWM制御においては、連続する5番~1番の通電ステージ(すなわち、第5、第6通電期間および次周期の第1通電期間)において、設定デューティ比のW相ハイ側PWM信号によって第5半導体スイッチQ5のオン/オフを切り替える制御を行う。 Further, in the 180 ° upper-stage rectangular wave PWM control, the W-phase high of the set duty ratio in the continuous fifth to first energization stages (that is, the fifth and sixth energization periods and the first energization period of the next cycle). The fifth semiconductor switch Q5 is controlled to be turned on / off by the side PWM signal.
 また、180°上段矩形波PWM制御においては、連続する5番~1番の通電ステージにおいて、第6半導体スイッチQ6をオフし続ける制御を行う。 In the 180 ° upper-stage rectangular wave PWM control, the sixth semiconductor switch Q6 is continuously turned off in the continuous energization stages Nos. 5 to 1.
 以上のような180°上段矩形波PWM制御によれば、120°上段矩形波PWM制御の場合と同様に、設定デューティ比が高い場合に、ローサイドのスイッチQ2、Q4、Q6をオフしてハイサイドのスイッチQ1、Q3、Q5のみにPWM制御を行うことで、ハイサイドのスイッチQ1、Q3、Q5とローサイドのスイッチQ2、Q4、Q6との間でデッドタイムが形成されるように互いのPWM信号のデューティ比を調整することを要しなくなる。 According to the 180 ° upper-stage rectangular wave PWM control as described above, as in the case of the 120 ° upper-stage rectangular wave PWM control, when the set duty ratio is high, the low-side switches Q2, Q4, Q6 are turned off and the high-side By performing PWM control only on the switches Q1, Q3, and Q5, the PWM signals of each other so that a dead time is formed between the high-side switches Q1, Q3, and Q5 and the low-side switches Q2, Q4, and Q6. It is not necessary to adjust the duty ratio.
 これにより、ハイサイドのPWM信号のデューティ比を十分に大きくすることができるので、バッテリ2の充電電圧を最大限利用して可及的に大きなトルクを出力することが可能となる。 This makes it possible to sufficiently increase the duty ratio of the high-side PWM signal, so that as much torque as possible can be output using the charging voltage of the battery 2 as much as possible.
 第2の実施形態によれば、検出速度および設定デューティ比に応じて好適なPWM制御を選択することができるので、バッテリ2の充電電圧を効率的に利用して可及的に大きなトルクを出力することが可能となる。 According to the second embodiment, a suitable PWM control can be selected in accordance with the detection speed and the set duty ratio, and therefore, as much torque as possible is output by efficiently using the charging voltage of the battery 2. It becomes possible to do.
 上述した実施形態で説明した電動車両制御装置1の少なくとも一部は、ハードウェアで構成してもよいし、ソフトウェアで構成してもよい。ソフトウェアで構成する場合には、電動車両制御装置1の少なくとも一部の機能を実現するプログラムをフレキシブルディスクやCD-ROM等の記録媒体に収納し、コンピュータに読み込ませて実行させてもよい。記録媒体は、磁気ディスクや光ディスク等の着脱可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記録媒体でもよい。 At least a part of the electric vehicle control device 1 described in the embodiment described above may be configured by hardware or software. When configured by software, a program for realizing at least a part of the functions of the electric vehicle control device 1 may be stored in a recording medium such as a flexible disk or a CD-ROM, and read and executed by a computer. The recording medium is not limited to a removable medium such as a magnetic disk or an optical disk, but may be a fixed recording medium such as a hard disk device or a memory.
 また、電動車両制御装置1の少なくとも一部の機能を実現するプログラムを、インターネット等の通信回線(無線通信も含む)を介して頒布してもよい。さらに、同プログラムを暗号化したり、変調をかけたり、圧縮した状態で、インターネット等の有線回線や無線回線を介して、あるいは記録媒体に収納して頒布してもよい。 Further, a program that realizes at least a part of the functions of the electric vehicle control device 1 may be distributed via a communication line (including wireless communication) such as the Internet. Further, the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.
 上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した個々の実施形態に限定されるものではない。異なる実施形態にわたる構成要素を適宜組み合わせてもよい。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。 Based on the above description, those skilled in the art may be able to conceive additional effects and various modifications of the present invention, but the aspects of the present invention are not limited to the individual embodiments described above. . You may combine suitably the component covering different embodiment. Various additions, modifications, and partial deletions can be made without departing from the concept and spirit of the present invention derived from the contents defined in the claims and equivalents thereof.
1 電動車両制御装置
3 モータ
10 制御部
DESCRIPTION OF SYMBOLS 1 Electric vehicle control apparatus 3 Motor 10 Control part

Claims (15)

  1.  一端が電源端子に接続され、他端がモータの第1相コイルへの第1出力端子に接続された第1スイッチと、
     一端が前記第1出力端子に接続され、他端が接地端子に接続された第2スイッチと、
     一端が前記電源端子に接続され、他端が前記モータの第2相コイルへの第2出力端子に接続された第3スイッチと、
     一端が前記第2出力端子に接続され、他端が前記接地端子に接続された第4スイッチと、
     一端が前記電源端子に接続され、他端が前記モータの第3相コイルへの第3出力端子に接続された第5スイッチと、
     一端が前記第3出力端子に接続され、他端が前記接地端子に接続された第6スイッチと、
     前記第1~第6スイッチを制御することで前記モータの駆動を制御する制御部とを備え、
     前記制御部は、台形状の通電波形による前記モータの駆動制御を行い、
     前記駆動制御は、
     予め設定された設定デューティ比まで段階的に増加し、前記増加の後に前記設定デューティ比を維持し、前記維持の後に前記設定デューティ比から段階的に減少するように調整された調整デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替える制御と、前記調整デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替える制御と、前記調整デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替える制御とを含み、
     前記設定デューティ比までの段階的な増加および前記設定デューティ比からの段階的な減少は、前記第1相ハイ側PWM信号、前記第2相ハイ側PWM信号、および第3相ハイ側PWM信号のパルス周期よりも長く設定された設定周期で行われることを特徴とする駆動装置。
    A first switch having one end connected to the power supply terminal and the other end connected to the first output terminal to the first phase coil of the motor;
    A second switch having one end connected to the first output terminal and the other end connected to a ground terminal;
    A third switch having one end connected to the power supply terminal and the other end connected to a second output terminal to the second phase coil of the motor;
    A fourth switch having one end connected to the second output terminal and the other end connected to the ground terminal;
    A fifth switch having one end connected to the power supply terminal and the other end connected to a third output terminal to the third phase coil of the motor;
    A sixth switch having one end connected to the third output terminal and the other end connected to the ground terminal;
    A control unit for controlling the driving of the motor by controlling the first to sixth switches,
    The control unit performs drive control of the motor with a trapezoidal energization waveform,
    The drive control is
    The adjustment duty ratio is adjusted to increase stepwise to a preset setting duty ratio, maintain the setting duty ratio after the increase, and decrease stepwise from the setting duty ratio after the maintenance. Control for switching on / off of the first switch by a one-phase high-side PWM signal, control for switching on / off of the third switch by a second-phase high-side PWM signal of the adjustment duty ratio, and the adjustment duty ratio Control to switch on / off the fifth switch by the third phase high-side PWM signal of
    The stepwise increase to the set duty ratio and the stepwise decrease from the set duty ratio are caused by the first phase high-side PWM signal, the second phase high-side PWM signal, and the third phase high-side PWM signal. A driving apparatus characterized by being performed at a set cycle set longer than the pulse cycle.
  2.  前記制御部は、
     同一の設定周期に含まれる複数のパルス周期のそれぞれにおけるデューティ比を一定に制御することを特徴とする請求項1に記載の駆動装置。
    The controller is
    2. The driving apparatus according to claim 1, wherein the duty ratio in each of a plurality of pulse periods included in the same set period is controlled to be constant.
  3.  前記調整デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替える制御は、前記第1スイッチと同時に前記第2スイッチをオンしないデッドタイムを形成するように前記第1相ハイ側PWM信号との間でデューティ比が調整された第1相ロー側PWM信号によって前記第1スイッチに対して相補的に前記第2スイッチのオン/オフを切り替える制御とともに行われ、
     前記調整デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替える制御は、前記第3スイッチと同時に前記第4スイッチをオンしないデッドタイムを形成するように前記第2相ハイ側PWM信号との間でデューティ比が調整された第2相ロー側PWM信号によって前記第3スイッチに対して相補的に前記第4スイッチのオン/オフを切り替える制御とともに行われ、
     前記調整デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替える制御は、前記第5スイッチと同時に前記第6スイッチをオンしないデッドタイムを形成するように前記第3相ハイ側PWM信号との間でデューティ比が調整された第3相ロー側PWM信号によって前記第5スイッチに対して相補的に前記第6スイッチのオン/オフを切り替える制御とともに行われることを特徴とする請求項1に記載の駆動装置。
    The control for switching on / off of the first switch by the first-phase high-side PWM signal of the adjustment duty ratio forms the first phase so as to form a dead time that does not turn on the second switch simultaneously with the first switch. The first phase low-side PWM signal whose duty ratio is adjusted between the high-side PWM signal and the first switch are complementarily switched to turn on / off the second switch.
    The control to switch on / off the third switch by the second phase high-side PWM signal of the adjustment duty ratio is performed so as to form a dead time in which the fourth switch is not turned on simultaneously with the third switch. The second phase low-side PWM signal, the duty ratio of which is adjusted with respect to the high-side PWM signal, is performed together with the control to turn on / off the fourth switch complementarily to the third switch,
    The control to switch on / off the fifth switch by the third phase high-side PWM signal of the adjustment duty ratio is performed so as to form a dead time in which the sixth switch is not turned on simultaneously with the fifth switch. The control is performed together with the control to switch on / off the sixth switch in a complementary manner to the fifth switch by a third phase low-side PWM signal whose duty ratio is adjusted with the high-side PWM signal. The drive device according to claim 1.
  4.  前記モータのロータの回転速度を検出する回転速度検出部を更に備え、
     前記設定デューティ比は、前記回転速度検出部による検出速度と前記モータの回転を制御するためのユーザ操作量とに基づいて設定されることを特徴とする請求項1に記載の駆動装置。
    A rotation speed detector for detecting the rotation speed of the rotor of the motor;
    The drive device according to claim 1, wherein the set duty ratio is set based on a detection speed by the rotation speed detection unit and a user operation amount for controlling rotation of the motor.
  5.  前記制御部は、
     前記検出速度が予め設定された第1基準速度以上であって予め設定された第2基準速度よりも遅く、かつ、前記設定デューティ比が予め設定された第1基準デューティ比よりも低い第1の場合に、前記駆動制御を行うことを特徴とする請求項4に記載の駆動装置。
    The controller is
    First detection speed is equal to or higher than a preset first reference speed and is slower than a preset second reference speed, and the set duty ratio is lower than a preset first reference duty ratio. The drive device according to claim 4, wherein the drive control is performed.
  6.  前記制御部は、
     前記検出速度が前記第1基準速度以上であって前記第2基準速度よりも遅く、かつ、前記設定デューティ比が前記第1基準デューティ比以上であって予め設定された第2基準デューティ比よりも低く、または、前記検出速度が前記第2基準速度以上であって予め設定された第3基準速度よりも遅く、かつ、前記設定デューティ比が前記第2基準デューティ比よりも低い第2の場合には、
     前記設定デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替えるとともに、前記第1スイッチと同時に前記第2スイッチをオンしないデッドタイムを形成するように前記第1相ハイ側PWM信号との間でデューティ比が調整された第1相ロー側PWM信号によって前記第1スイッチに対して相補的に前記第2スイッチのオン/オフを切り替える制御と、
     前記設定デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替えるとともに、前記第3スイッチと同時に前記第4スイッチをオンしないデッドタイムを形成するように前記第2相ハイ側PWM信号との間でデューティ比が調整された第2相ロー側PWM信号によって前記第3スイッチに対して相補的に前記第4スイッチのオン/オフを切り替える制御と、
     前記設定デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替えるとともに、前記第5スイッチと同時に前記第6スイッチをオンしないデッドタイムを形成するように前記第3相ハイ側PWM信号との間でデューティ比が調整された第3相ロー側PWM信号によって前記第5スイッチに対して相補的に前記第6スイッチのオン/オフを切り替える制御とを行うことを特徴とする請求項5に記載の駆動装置。
    The controller is
    The detected speed is greater than or equal to the first reference speed and slower than the second reference speed, and the set duty ratio is greater than or equal to the first reference duty ratio and greater than a preset second reference duty ratio. In a second case where the detection speed is lower or the detection speed is equal to or higher than the second reference speed and is slower than a preset third reference speed and the set duty ratio is lower than the second reference duty ratio. Is
    The first phase high side PWM signal having the set duty ratio is switched on / off of the first switch, and at the same time as the first switch, the first phase high side is set so as to form a dead time that does not turn on the second switch. Control for switching on / off of the second switch in a complementary manner to the first switch by a first phase low-side PWM signal whose duty ratio is adjusted with the side PWM signal;
    The third phase switch is turned on / off by the second phase high side PWM signal of the set duty ratio, and the second phase high level is set so as to form a dead time that does not turn on the fourth switch simultaneously with the third switch. Control for switching on / off of the fourth switch complementarily to the third switch by a second phase low-side PWM signal whose duty ratio is adjusted with respect to the side PWM signal;
    The fifth switch is turned on / off by a third phase high-side PWM signal of the set duty ratio, and the third phase high so as to form a dead time that does not turn on the sixth switch simultaneously with the fifth switch. Control for switching on / off of the sixth switch complementarily to the fifth switch by a third-phase low-side PWM signal whose duty ratio is adjusted with the side PWM signal. The drive device according to claim 5.
  7.  前記制御部は、
     前記検出速度が前記第1基準速度以上であって前記第3基準速度よりも遅く、かつ、前記設定デューティ比が前記第2基準デューティ比以上であり、または、前記検出速度が前記第3基準速度以上である第3の場合には、
     前記第2スイッチをオフしながら前記設定デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替える制御と、
     前記第4スイッチをオフしながら前記設定デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替える制御と、
     前記第6スイッチをオフしながら前記設定デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替える制御とを行うことを特徴とする請求項6に記載の駆動装置。
    The controller is
    The detected speed is not less than the first reference speed and slower than the third reference speed, and the set duty ratio is not less than the second reference duty ratio, or the detected speed is the third reference speed. In the third case above,
    Control to turn on / off the first switch by a first phase high-side PWM signal of the set duty ratio while turning off the second switch;
    Control to turn on / off the third switch by a second-phase high-side PWM signal of the set duty ratio while turning off the fourth switch;
    7. The driving device according to claim 6, wherein the fifth switch is controlled to be turned on / off by a third-phase high-side PWM signal having the set duty ratio while the sixth switch is turned off.
  8.  前記制御部は、
     前記第1~第3の場合には、電気角180°に相当する通電期間に相電流を流す180°通電を行うことを特徴とする請求項7に記載の駆動装置。
    The controller is
    8. The driving apparatus according to claim 7, wherein in the first to third cases, 180 ° energization is performed so that a phase current flows during an energization period corresponding to an electrical angle of 180 °.
  9.  前記制御部は、
     前記検出速度が前記第1基準速度よりも遅く、かつ、前記設定デューティ比が予め設定された第3基準デューティ比よりも低い第4の場合には、
     前記設定デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替えるとともに、前記第1スイッチと同時に前記第2スイッチをオンしないデッドタイムを形成するように前記第1相ハイ側PWM信号との間でデューティ比が調整された第1相ロー側PWM信号によって前記第1スイッチに対して相補的に前記第2スイッチのオン/オフを切り替える制御と、
     前記設定デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替えるとともに、前記第3スイッチと同時に前記第4スイッチをオンしないデッドタイムを形成するように前記第2相ハイ側PWM信号との間でデューティ比が調整された第2相ロー側PWM信号によって前記第3スイッチに対して相補的に前記第4スイッチのオン/オフを切り替える制御と、
     前記設定デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替えるとともに、前記第5スイッチと同時に前記第6スイッチをオンしないデッドタイムを形成するように前記第3相ハイ側PWM信号との間でデューティ比が調整された第3相ロー側PWM信号によって前記第5スイッチに対して相補的に前記第6スイッチのオン/オフを切り替える制御とを行うことを特徴とする請求項8に記載の駆動装置。
    The controller is
    In the fourth case where the detection speed is slower than the first reference speed and the set duty ratio is lower than a preset third reference duty ratio,
    The first phase high side PWM signal having the set duty ratio is switched on / off of the first switch, and at the same time as the first switch, the first phase high side is set so as to form a dead time that does not turn on the second switch. Control for switching on / off of the second switch in a complementary manner to the first switch by a first phase low-side PWM signal whose duty ratio is adjusted with the side PWM signal;
    The third phase switch is turned on / off by the second phase high side PWM signal of the set duty ratio, and the second phase high level is set so as to form a dead time that does not turn on the fourth switch simultaneously with the third switch. Control for switching on / off of the fourth switch complementarily to the third switch by a second phase low-side PWM signal whose duty ratio is adjusted with respect to the side PWM signal;
    The fifth switch is turned on / off by a third phase high-side PWM signal of the set duty ratio, and the third phase high so as to form a dead time that does not turn on the sixth switch simultaneously with the fifth switch. Control for switching on / off of the sixth switch complementarily to the fifth switch by a third-phase low-side PWM signal whose duty ratio is adjusted with the side PWM signal. The drive device according to claim 8.
  10.  前記制御部は、
     前記検出速度が前記第1基準速度よりも遅く、かつ、前記設定デューティ比が前記第3基準デューティ比以上である第5の場合には、
     前記第2スイッチをオフしながら前記設定デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替える制御と、
     前記第4スイッチをオフしながら前記設定デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替える制御と、
     前記第6スイッチをオフしながら前記設定デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替える制御とを行うことを特徴とする請求項4に記載の駆動装置。
    The controller is
    In the fifth case where the detection speed is slower than the first reference speed and the set duty ratio is greater than or equal to the third reference duty ratio,
    Control to turn on / off the first switch by a first phase high-side PWM signal of the set duty ratio while turning off the second switch;
    Control to turn on / off the third switch by a second-phase high-side PWM signal of the set duty ratio while turning off the fourth switch;
    5. The driving device according to claim 4, wherein the fifth switch is controlled to be turned on / off by a third-phase high-side PWM signal having the set duty ratio while the sixth switch is turned off.
  11.  前記制御部は、
     前記第4および第5の場合には、電気角120°に相当する通電期間に相電流を流す120°通電を行うことを特徴とする請求項10に記載の駆動装置。
    The controller is
    11. The driving apparatus according to claim 10, wherein in the fourth and fifth cases, 120 ° energization is performed so that a phase current flows during an energization period corresponding to an electrical angle of 120 °.
  12.  モータと、駆動装置と、を備える電動車両であって、
     前記駆動装置は、
     一端が電源端子に接続され、他端が前記モータの第1相コイルへの第1出力端子に接続された第1スイッチと、
     一端が前記第1出力端子に接続され、他端が接地端子に接続された第2スイッチと、
     一端が前記電源端子に接続され、他端が前記モータの第2相コイルへの第2出力端子に接続された第3スイッチと、
     一端が前記第2出力端子に接続され、他端が前記接地端子に接続された第4スイッチと、
     一端が前記電源端子に接続され、他端が前記モータの第3相コイルへの第3出力端子に接続された第5スイッチと、
     一端が前記第3出力端子に接続され、他端が前記接地端子に接続された第6スイッチと、
     前記第1~第6スイッチを制御することで前記モータの駆動を制御する制御部とを備え、
     前記制御部は、台形状の通電波形による前記モータの駆動制御を行い、
     前記駆動制御は、
     予め設定された設定デューティ比まで段階的に増加し、前記増加の後に前記設定デューティ比を維持し、前記維持の後に前記設定デューティ比から段階的に減少するように調整された調整デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替える制御と、前記調整デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替える制御と、前記調整デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替える制御とを含み、
     前記設定デューティ比までの段階的な増加および前記設定デューティ比からの段階的な減少は、前記第1相ハイ側PWM信号、前記第2相ハイ側PWM信号、および第3相ハイ側PWM信号のパルス周期よりも長く設定された設定周期で行われることを特徴とする電動車両。
    An electric vehicle comprising a motor and a drive device,
    The driving device includes:
    A first switch having one end connected to a power supply terminal and the other end connected to a first output terminal to the first phase coil of the motor;
    A second switch having one end connected to the first output terminal and the other end connected to a ground terminal;
    A third switch having one end connected to the power supply terminal and the other end connected to a second output terminal to the second phase coil of the motor;
    A fourth switch having one end connected to the second output terminal and the other end connected to the ground terminal;
    A fifth switch having one end connected to the power supply terminal and the other end connected to a third output terminal to the third phase coil of the motor;
    A sixth switch having one end connected to the third output terminal and the other end connected to the ground terminal;
    A control unit for controlling the driving of the motor by controlling the first to sixth switches,
    The control unit performs drive control of the motor with a trapezoidal energization waveform,
    The drive control is
    The adjustment duty ratio is adjusted to increase stepwise to a preset setting duty ratio, maintain the setting duty ratio after the increase, and decrease stepwise from the setting duty ratio after the maintenance. Control for switching on / off of the first switch by a one-phase high-side PWM signal, control for switching on / off of the third switch by a second-phase high-side PWM signal of the adjustment duty ratio, and the adjustment duty ratio Control to switch on / off the fifth switch by the third phase high-side PWM signal of
    The stepwise increase to the set duty ratio and the stepwise decrease from the set duty ratio are caused by the first phase high-side PWM signal, the second phase high-side PWM signal, and the third phase high-side PWM signal. An electric vehicle characterized by being performed at a set cycle set longer than the pulse cycle.
  13.  前記モータのロータの回転速度を検出する回転速度検出部を更に備え、
     前記設定デューティ比は、前記回転速度検出部による検出速度とユーザによるアクセル操作量とに基づいて設定されることを特徴とする請求項12に記載の電動車両。
    A rotation speed detector for detecting the rotation speed of the rotor of the motor;
    The electric vehicle according to claim 12, wherein the set duty ratio is set based on a detection speed detected by the rotation speed detection unit and an accelerator operation amount by a user.
  14.  前記制御部は、
     前記ロータの回転速度と、前記アクセル操作量と、前記モータのトルクとの対応関係を示すトルクマップに基づいて、前記検出速度および前記アクセル操作量に対応するトルクを設定し、
     前記ロータの回転速度と、前記トルクと、前記デューティ比との対応関係を示すデューティマップに基づいて、前記検出速度および前記設定されたトルクに対応するデューティ比を前記設定デューティ比として設定することを特徴とする請求項13に記載の電動車両。
    The controller is
    Based on a torque map indicating a correspondence relationship between the rotational speed of the rotor, the accelerator operation amount, and the torque of the motor, a torque corresponding to the detected speed and the accelerator operation amount is set.
    The duty ratio corresponding to the detected speed and the set torque is set as the set duty ratio based on a duty map indicating a correspondence relationship between the rotational speed of the rotor, the torque, and the duty ratio. The electric vehicle according to claim 13.
  15.  一端が電源端子に接続され、他端がモータの第1相コイルへの第1出力端子に接続された第1スイッチと、一端が前記第1出力端子に接続され、他端が接地端子に接続された第2スイッチと、一端が前記電源端子に接続され、他端が前記モータの第2相コイルへの第2出力端子に接続された第3スイッチと、一端が前記第2出力端子に接続され、他端が前記接地端子に接続された第4スイッチと、一端が前記電源端子に接続され、他端が前記モータの第3相コイルへの第3出力端子に接続された第5スイッチと、一端が前記第3出力端子に接続され、他端が前記接地端子に接続された第6スイッチとを備えた駆動装置の制御方法であって、
     前記第1~第6スイッチを制御することで台形状の通電波形による前記モータの駆動制御を行い、
     前記駆動制御は、
     予め設定された設定デューティ比まで段階的に増加し、前記増加の後に前記設定デューティ比を維持し、前記維持の後に前記設定デューティ比から段階的に減少するように調整された調整デューティ比の第1相ハイ側PWM信号によって前記第1スイッチのオン/オフを切り替える制御と、前記調整デューティ比の第2相ハイ側PWM信号によって前記第3スイッチのオン/オフを切り替える制御と、前記調整デューティ比の第3相ハイ側PWM信号によって前記第5スイッチのオン/オフを切り替える制御とを含み、
     前記設定デューティ比までの段階的な増加および前記設定デューティ比からの段階的な減少は、前記第1相ハイ側PWM信号、前記第2相ハイ側PWM信号、および第3相ハイ側PWM信号のパルス周期よりも長く設定された設定周期で行われることを特徴とする駆動装置の制御方法。
    A first switch with one end connected to the power supply terminal and the other end connected to the first output terminal to the first phase coil of the motor, one end connected to the first output terminal, and the other end connected to the ground terminal The second switch, one end connected to the power supply terminal, the other end connected to the second output terminal to the second phase coil of the motor, and one end connected to the second output terminal A fourth switch having the other end connected to the ground terminal, a fifth switch having one end connected to the power supply terminal and the other end connected to a third output terminal to the third phase coil of the motor; A control method for a drive device comprising a sixth switch having one end connected to the third output terminal and the other end connected to the ground terminal,
    By controlling the first to sixth switches, drive control of the motor by a trapezoidal energization waveform is performed,
    The drive control is
    The adjustment duty ratio is adjusted to increase stepwise to a preset setting duty ratio, maintain the setting duty ratio after the increase, and decrease stepwise from the setting duty ratio after the maintenance. Control for switching on / off of the first switch by a one-phase high-side PWM signal, control for switching on / off of the third switch by a second-phase high-side PWM signal of the adjustment duty ratio, and the adjustment duty ratio Control to switch on / off the fifth switch by the third phase high-side PWM signal of
    The stepwise increase to the set duty ratio and the stepwise decrease from the set duty ratio are caused by the first phase high-side PWM signal, the second phase high-side PWM signal, and the third phase high-side PWM signal. A control method for a driving device, wherein the control method is performed at a set cycle set longer than a pulse cycle.
PCT/JP2018/012748 2018-03-28 2018-03-28 Drive device, electric vehicle, and drive device control method WO2019186760A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880091322.8A CN111869097B (en) 2018-03-28 2018-03-28 Driving device, electric vehicle, and control method for driving device
JP2020510293A JP7135069B2 (en) 2018-03-28 2018-03-28 Driving device, electric vehicle, and driving device control method
PCT/JP2018/012748 WO2019186760A1 (en) 2018-03-28 2018-03-28 Drive device, electric vehicle, and drive device control method
TW108110736A TWI743462B (en) 2018-03-28 2019-03-27 Drive device, electric vehicle, and control method of drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012748 WO2019186760A1 (en) 2018-03-28 2018-03-28 Drive device, electric vehicle, and drive device control method

Publications (1)

Publication Number Publication Date
WO2019186760A1 true WO2019186760A1 (en) 2019-10-03

Family

ID=68059556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012748 WO2019186760A1 (en) 2018-03-28 2018-03-28 Drive device, electric vehicle, and drive device control method

Country Status (4)

Country Link
JP (1) JP7135069B2 (en)
CN (1) CN111869097B (en)
TW (1) TWI743462B (en)
WO (1) WO2019186760A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186791A (en) * 1999-12-28 2001-07-06 Hitachi Ltd Motor driving device
JP2003018878A (en) * 2001-06-28 2003-01-17 Mitsubishi Electric Corp Motor drive and blower
JP2011142721A (en) * 2010-01-06 2011-07-21 Sunstar Engineering Inc Control device of three-phase brushless motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006006067A (en) * 2004-06-18 2006-01-05 Nidec Shibaura Corp Brushless dc motor driving apparatus
JP4424421B2 (en) * 2008-01-17 2010-03-03 トヨタ自動車株式会社 Electric vehicle control device, electric vehicle equipped with the same, electric vehicle control method, and computer-readable recording medium storing a program for causing a computer to execute the control method
JP6014989B2 (en) * 2011-10-28 2016-10-26 株式会社リコー Motor drive control apparatus and method
JP6024245B2 (en) * 2012-07-05 2016-11-09 株式会社豊田自動織機 Inverter control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186791A (en) * 1999-12-28 2001-07-06 Hitachi Ltd Motor driving device
JP2003018878A (en) * 2001-06-28 2003-01-17 Mitsubishi Electric Corp Motor drive and blower
JP2011142721A (en) * 2010-01-06 2011-07-21 Sunstar Engineering Inc Control device of three-phase brushless motor

Also Published As

Publication number Publication date
JP7135069B2 (en) 2022-09-12
CN111869097A (en) 2020-10-30
TWI743462B (en) 2021-10-21
JPWO2019186760A1 (en) 2021-02-18
TW201945242A (en) 2019-12-01
CN111869097B (en) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2019186761A1 (en) Drive device, electric vehicle, and drive device control method
WO2019186760A1 (en) Drive device, electric vehicle, and drive device control method
CN111225820B (en) Electric vehicle, electric vehicle control device, and electric vehicle control method
WO2019186759A1 (en) Drive device, electric vehicle, and drive device control method
CN111225818B (en) Electric vehicle, electric vehicle control device, and electric vehicle control method
JP2006006067A (en) Brushless dc motor driving apparatus
CN111869090B (en) Driving device, driving method, driving program, and electric vehicle
CN111954977B (en) Driving device, driving method, computer readable medium, and electric vehicle
JP6953622B2 (en) Drive unit, drive method, drive program and electric vehicle
JPWO2019049344A1 (en) Electric vehicle control device, electric vehicle control method, electric vehicle control program, and electric vehicle
JP2011062010A (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510293

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912823

Country of ref document: EP

Kind code of ref document: A1