WO2019186757A1 - Drive device, drive method, drive program, and electric vehicle - Google Patents

Drive device, drive method, drive program, and electric vehicle Download PDF

Info

Publication number
WO2019186757A1
WO2019186757A1 PCT/JP2018/012745 JP2018012745W WO2019186757A1 WO 2019186757 A1 WO2019186757 A1 WO 2019186757A1 JP 2018012745 W JP2018012745 W JP 2018012745W WO 2019186757 A1 WO2019186757 A1 WO 2019186757A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
signal
rotation speed
instantaneous
duty ratio
Prior art date
Application number
PCT/JP2018/012745
Other languages
French (fr)
Japanese (ja)
Inventor
一由希 目黒
雄大 井ノ口
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to PCT/JP2018/012745 priority Critical patent/WO2019186757A1/en
Priority to JP2020510290A priority patent/JP6972305B2/en
Priority to CN201880091312.4A priority patent/CN111869090B/en
Priority to TW108110614A priority patent/TWI702338B/en
Publication of WO2019186757A1 publication Critical patent/WO2019186757A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information

Definitions

  • the present invention relates to a drive device, a drive method, a drive program, and an electric vehicle.
  • An electric vehicle such as a two-wheel EV includes a motor for driving wheels and a driving device having a control unit for controlling the motor.
  • a required torque can be obtained from a low rotation range to a high rotation range even when the gear is fixed. For this reason, the electric vehicle which does not provide a clutch is examined.
  • the motor directly receives an external force from a wheel that has been cut off by the clutch in the conventional electric vehicle.
  • Patent Document 1 describes an engine speed control device that controls the engine speed and performs PWM control of a motor that drives the opening and closing of a throttle valve. Further, it is described that a PWM duty correction value for correcting the duty ratio of the PWM signal is calculated according to the target engine speed change amount.
  • Rotational position sensor for detecting the rotational position of the rotor is provided in the stator of the motor of the electric vehicle.
  • the control unit of the driving device receives a rising edge signal or a falling edge signal (hereinafter, also collectively referred to as “sensor signal”) for each predetermined electrical angle from the rotational position sensor. Based on the sensor signal, the control unit grasps the rotation speed of the motor and controls the motor.
  • the voltage induced by the rotation of the motor decreases instantaneously by the voltage Va.
  • the output of the inverter that supplies AC power to the motor remains constant.
  • the voltage difference V0 is a value set so as to obtain the target torque.
  • the present invention provides a drive device, an electric vehicle control method, an electric vehicle control program, and an electric vehicle capable of performing appropriate motor control even when the rotational speed of the motor instantaneously varies due to an external force. With the goal.
  • the drive device is A signal receiving unit that receives a plurality of signals output from the rotational position sensor during one rotation of the motor that drives the load and that arrives at an interval corresponding to the rotational speed of the motor; Based on the signal interval between the reception time of the first signal most recently received by the signal receiving unit and the reception time of the second signal received before the first signal, the instantaneous moment of the motor A rotation speed calculation unit for calculating the rotation speed; A motor control unit that generates a PWM signal based on the instantaneous rotational speed and transmits the PWM signal to an inverter that supplies AC power to the motor to control the motor; When the amount of change in the instantaneous rotation speed is equal to or greater than a predetermined value, the motor control unit determines the duty ratio of the PWM signal based on the instantaneous rotation speed, and the output voltage of the inverter corresponds to the instantaneous rotation speed. The correction is made so that
  • the motor control unit may correct the duty ratio by linear interpolation using a characteristic straight line indicating a relationship between the instantaneous rotation speed and the corrected duty ratio.
  • the linear interpolation may be performed every time the instantaneous rotational speed is calculated.
  • the characteristic line is A first point defined by a lower limit value of a rotation speed range centered on an average rotation speed calculated from a time during which the motor makes one rotation, and a duty ratio corresponding to the lower limit value;
  • a straight line connecting the upper limit value of the rotation speed range and the second point defined by the duty ratio corresponding to the upper limit value may be used.
  • the rotation speed range may be determined in consideration of the fluctuation range of the instantaneous rotation speed of the motor.
  • the characteristic line may be updated each time the average rotation speed is calculated.
  • the rotation speed calculation unit is configured to multiply the count number counted for each monitoring time interval from when the second signal is received until the first signal is received by multiplying the signal by the monitoring time interval.
  • the interval may be calculated.
  • the rotation speed calculation unit may calculate the instantaneous rotation speed according to the following equation.
  • n 60000 / ( ⁇ T ⁇ Np)
  • n is the instantaneous rotational speed [rpm]
  • ⁇ T is the signal interval [mSec]
  • Np is the number of the signals received by the signal receiving unit while the motor makes one electrical rotation. Is a value indicating
  • the motor control unit searches a duty ratio map indicating a relationship among the target torque of the motor, the rotational speed of the motor, and the duty ratio of the PWM signal, using the target torque of the motor and the instantaneous rotational speed. By doing so, the duty ratio may be acquired.
  • the load is a wheel of an electric vehicle
  • the motor control unit may gradually increase the duty ratio of the PWM signal when the electric vehicle is started when the motor directly drives the wheels.
  • the signal received by the signal receiving unit may be a rising edge signal or a falling edge signal of a pulse signal output from a rotational position sensor provided in the motor.
  • the electric vehicle according to the present invention is It is the said drive device, Comprising:
  • the said load is a drive device which is a wheel of an electric vehicle, It is characterized by the above-mentioned.
  • the wheel and the motor may be mechanically connected without a clutch.
  • the driving method includes: A signal receiving unit that receives a plurality of signals output from the rotational position sensor while the motor driving the load makes one rotation and that arrives at an interval corresponding to the rotational speed of the motor;
  • the rotation speed calculation unit is based on a signal interval between the reception time of the first signal most recently received by the signal reception unit and the reception time of the second signal received before the first signal.
  • a motor control unit that generates a PWM signal based on the instantaneous rotational speed, and transmits the PWM signal to an inverter that supplies AC power to the motor to control the motor, and
  • the motor control unit determines the duty ratio of the PWM signal based on the instantaneous rotation speed, and the output voltage of the inverter corresponds to the instantaneous rotation speed. The correction is made so that
  • the drive program is: A signal receiving unit that receives a plurality of signals output from the rotational position sensor while the motor driving the load makes one rotation and that arrives at an interval corresponding to the rotational speed of the motor;
  • the rotation speed calculation unit is based on a signal interval between the reception time of the first signal most recently received by the signal reception unit and the reception time of the second signal received before the first signal.
  • a motor control unit that generates a PWM signal based on the instantaneous rotation speed, and transmits the PWM signal to an inverter that supplies AC power to the motor to control the motor; Because When the amount of change in the instantaneous rotation speed is equal to or greater than a predetermined value, the motor control unit determines the duty ratio of the PWM signal based on the instantaneous rotation speed, and the output voltage of the inverter corresponds to the instantaneous rotation speed. The correction is made so that
  • the signal receiving unit receives a plurality of signals output from the rotational position sensor during one rotation of the motor and arrives at an interval corresponding to the rotational speed of the motor, and the rotational speed calculating unit
  • the instantaneous rotation speed of the motor is calculated based on the signal interval between the first signal and the second signal, and the motor control unit instantaneously rotates when the calculated change amount of the instantaneous rotation speed is equal to or greater than a specified value.
  • the duty ratio of the PWM signal is corrected based on the speed. The duty ratio is corrected so that the output voltage of the power converter becomes a value corresponding to the instantaneous rotation speed.
  • FIG. 1 is a diagram showing a schematic configuration of an electric vehicle 100 according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a schematic configuration of a power conversion unit 30 and a motor 3.
  • 3 is a diagram showing a magnet provided on a rotor 3r of a motor 3 and an angle sensor 4.
  • FIG. It is a figure which shows the relationship between a rotor angle and the output of an angle sensor. It is a timing chart for demonstrating the PWM control which concerns on embodiment.
  • 2 is a functional block diagram of a control unit 10 of the electric vehicle control device 1.
  • FIG. It is a figure for demonstrating the relationship between a sensor signal, and a count number. It is a figure for demonstrating the calculation process of the duty ratio of a PWM signal, or an output angle.
  • (A) shows the configuration of the torque map
  • (b) shows the configuration of the duty ratio map
  • (c) shows the configuration of the output angle map.
  • an electric vehicle control device that drives and controls an electric vehicle will be described as an embodiment of the drive device according to the present invention.
  • the drive device according to the present invention may drive a load other than the wheels of the electric vehicle.
  • the electric vehicle 100 is a vehicle that travels by driving a motor using electric power supplied from a battery.
  • the electric vehicle 100 is an electric motorcycle such as an electric motorcycle. More specifically, as shown in FIG. 1, the electric motorcycle 100 in which the motor 3 and the wheels 8 are mechanically directly connected without using a clutch. It is.
  • the electric vehicle according to the present invention may be a vehicle in which the motor 3 and the wheels 8 are connected via a clutch. Moreover, it is not limited to a two-wheeled vehicle, For example, a three-wheeled or four-wheeled electric vehicle may be sufficient.
  • the electric vehicle 100 includes an electric vehicle control device 1, a battery 2, a motor 3, an angle sensor (rotational position sensor) 4, an accelerator position sensor 5, an assist switch 6, a meter ( Display portion) 7, wheels 8, and charger 9.
  • the electric vehicle control device 1 is a device that controls the electric vehicle 100, and includes a control unit 10, a storage unit 20, and a power conversion unit (driver) 30.
  • the electric vehicle control apparatus 1 may be configured as an ECU (Electronic Control Unit) that controls the entire electric vehicle 100.
  • the control unit 10 inputs information from various devices connected to the electric vehicle control device 1. Specifically, the control unit 10 receives various signals output from the battery 2, the angle sensor (rotational position sensor) 4, the accelerator position sensor 5, the assist switch 6, and the charger 9. The control unit 10 outputs a signal to be displayed on the meter 7. In addition, the control unit 10 controls the motor 3 through the power conversion unit 30. Details of the control unit 10 will be described later.
  • the storage unit 20 stores information (such as various maps described later) used by the control unit 10 and a program for operating the control unit 10.
  • the storage unit 20 is, for example, a nonvolatile semiconductor memory, but is not limited to this. Note that the storage unit 20 may be incorporated as a part of the control unit 10.
  • the power converter 30 converts the DC power output from the battery 2 into AC power and supplies it to the motor 3.
  • the power conversion unit 30 includes an inverter configured by a three-phase full bridge circuit as shown in FIG.
  • Semiconductor switches Q1, Q3, and Q5 are high-side switches, and semiconductor switches Q2, Q4, and Q6 are low-side switches.
  • the control terminals of the semiconductor switches Q1 to Q6 are electrically connected to the control unit 10.
  • the semiconductor switches Q1 to Q6 are, for example, MOSFETs or IGBTs.
  • a smoothing capacitor C is provided between the power supply terminal 30a and the power supply terminal 30b.
  • the input terminal 3 a is a U-phase input terminal of the motor 3
  • the input terminal 3 b is a V-phase input terminal of the motor 3
  • the input terminal 3 c is a W-phase input terminal of the motor 3.
  • the semiconductor switch Q ⁇ b> 1 is connected between a power supply terminal 30 a to which the positive electrode of the battery 2 is connected and an input terminal 3 a of the motor 3.
  • the semiconductor switch Q3 is connected between the power supply terminal 30a and the input terminal 3b of the motor 3.
  • the semiconductor switch Q5 is connected between the power supply terminal 30a and the input terminal 3c of the motor 3.
  • the semiconductor switch Q2 is connected between the input terminal 3a of the motor 3 and the power supply terminal 30b to which the negative electrode of the battery 2 is connected.
  • the semiconductor switch Q4 is connected between the input terminal 3b of the motor 3 and the power supply terminal 30b.
  • the semiconductor switch Q6 is connected between the input terminal 3c of the motor 3 and the power supply terminal 30b.
  • the battery 2 supplies power to the motor 3 that rotates the wheels 8 of the electric vehicle 100.
  • the battery 2 supplies DC power to the power conversion unit 30.
  • the battery 2 is, for example, a lithium ion battery, but may be another type of battery. Note that the number of the batteries 2 is not limited to one and may be plural. That is, the electric vehicle 100 may be provided with a plurality of batteries 2 connected in parallel or in series with each other. Further, the battery 2 may include a lead battery for supplying an operating voltage to the control unit 10.
  • Battery 2 includes a battery management unit (BMU).
  • BMU battery management unit
  • the battery management unit transmits battery information regarding the voltage of the battery 2 and the state of the battery 2 (charge rate, etc.) to the control unit 10.
  • the motor 3 is a motor that drives a load such as the wheel 8 by AC power supplied from the power conversion unit 30.
  • the motor 3 is mechanically connected to the wheel 8 and rotates the wheel 8 in a desired direction.
  • the motor 3 is a three-phase AC motor having a U phase, a V phase, and a W phase. As described above, the motor 3 is mechanically directly connected to the wheel 8 without using a clutch.
  • a three-phase brushless motor is used as the three-phase AC motor, but the type of the motor 3 is not limited to this.
  • the angle sensor 4 is a sensor that detects the rotational position of the rotor 3r of the motor 3. As shown in FIG. 3, N-pole and S-pole magnets (sensor magnets) are alternately attached to the circumferential surface of the rotor 3r.
  • the angle sensor 4 is constituted by a Hall element, for example, and detects a change in the magnetic field accompanying the rotation of the motor 3.
  • the number of the magnets shown in FIG. 3 is an example, and is not limited to this. Further, the magnet may be provided inside a flywheel (not shown).
  • the angle sensor 4 includes a U-phase angle sensor 4 u associated with the U-phase of the motor 3, a V-phase angle sensor 4 v associated with the V-phase of the motor 3, and the W of the motor 3. And a W-phase angle sensor 4w associated with the phase.
  • the angle sensors 4u, 4v, 4w for each phase are provided in the motor 3.
  • the U-phase angle sensor 4u and the V-phase angle sensor 4v are arranged so as to form an angle of 30 ° with respect to the rotor 3r.
  • the V-phase angle sensor 4v and the W-phase angle sensor 4w are arranged to form an angle of 30 ° with respect to the rotor 3r of the motor 3.
  • the U-phase angle sensor 4u, the V-phase angle sensor 4v, and the W-phase angle sensor 4w output a pulse signal having a phase corresponding to the rotational position of the rotor 3r.
  • the width of this pulse signal (or the time interval of the sensor signal) becomes narrower as the rotational speed of the motor 3 (ie, the wheel 8) is higher.
  • a number (motor stage number) indicating a motor stage is assigned to each predetermined rotational position.
  • the motor stage indicates the rotational position of the rotor 3r.
  • motor stage numbers 1, 2, 3, 4, 5, and 6 are assigned for each electrical angle of 60 °.
  • the output stage is also called an energization stage, and is obtained by adding a time based on the output angle to the motor stage detected by the angle sensor 4. As will be described later, the output angle changes according to the rotational speed of the motor 3 and the target torque.
  • the control unit 10 performs on / off control of the semiconductor switches Q1 to Q6 of the power conversion unit 30 using the PWM signal. Thereby, the DC power supplied from the battery 2 is converted into AC power.
  • the U-phase low-side switch (semiconductor switch Q2) is PWM-controlled at the output stages 6, 1, 2, and 3.
  • the V-phase low-side switch (semiconductor switch Q4) is PWM-controlled at the output stages 2, 3, 4, and 5, and the W-phase low-side switch (semiconductor switch Q6) is PWM-controlled at the output stages 4, 5, 6, and 1. .
  • the stage on which PWM control is performed is determined by the energization method or the like, and is not limited to this example.
  • the on / off control of the low-side switch instead of the high-side switch can prevent the current generated by the regenerative operation of the motor 3 from flowing into the battery 2.
  • the high-side switch may be controlled on and off.
  • the semiconductor switch Q1 which is a U-phase high-side switch, is turned on at predetermined time intervals in the output stages 1 and 2.
  • heat generation of the power conversion unit 30 can be suppressed by turning on the high-side switch.
  • the corresponding low-side switch ie, in the same arm is controlled to be off.
  • the accelerator position sensor 5 detects an operation amount (hereinafter referred to as “accelerator operation amount”) with respect to the accelerator of the electric vehicle 100 and transmits it to the control unit 10 as an electric signal.
  • the accelerator operation amount corresponds to the throttle opening of the engine vehicle.
  • the accelerator operation amount increases when the user wants to accelerate, and the accelerator operation amount decreases when the user wants to decelerate.
  • the assist switch 6 is a switch that is operated when the user requests assistance from the electric vehicle 100.
  • the assist switch 6 transmits an assist request signal to the control unit 10 when operated by the user. Then, the control unit 10 controls the motor 3 to generate assist torque.
  • the meter (display unit) 7 is a display (for example, a liquid crystal panel) provided in the electric vehicle 100 and displays various information.
  • the meter 7 is provided, for example, on a handle (not shown) of the electric vehicle 100.
  • the meter 7 displays information such as the traveling speed of the electric vehicle 100, the remaining amount of the battery 2, the current time, the total traveling distance, and the remaining traveling distance.
  • the remaining travel distance indicates how far the electric vehicle 100 can travel.
  • the charger 9 has a power plug (not shown) and a converter circuit (not shown) for converting an AC power supplied via the power plug into a DC power.
  • the battery 2 is charged by the DC power converted by the converter circuit.
  • the charger 9 is connected to the electric vehicle control device 1 through a communication network (CAN or the like) in the electric vehicle 100 so as to be communicable.
  • control unit 10 of the electric vehicle control device 1 will be described in detail.
  • control unit 10 includes a signal reception unit 11, a rotation speed calculation unit 12, and a motor control unit 13.
  • the processing in each unit of the control unit 10 can be realized by software (program).
  • the signal receiving unit 11 receives signals that arrive at intervals corresponding to the rotation speed of the motor 3. A plurality of signals are output from the angle sensor 4 while the motor 3 rotates once. More specifically, the signal receiving unit 11 receives sensor signals (that is, rising edge signals or falling edge signals of pulse signals) output from the U-phase angle sensor 4u, the V-phase angle sensor 4v, and the W-phase angle sensor 4w. To do. In the present embodiment, the signal receiving unit 11 receives a sensor signal every time the rotor 3r of the motor 3 rotates 60 degrees in electrical angle. Therefore, the signal receiving unit 11 receives six sensor signals while the motor 3 makes one rotation at an electrical angle. As the rotational speed of the motor 3 increases, the time interval at which the sensor signal arrives decreases.
  • the signal receiving unit 11 checks whether or not a sensor signal is received from the angle sensor 4 at every monitoring time interval ⁇ tm.
  • the monitor time interval ⁇ tm is a control time interval of the motor 3, for example.
  • the sensor signal may be received by an interrupt process from the angle sensor 4.
  • the monitoring time interval ⁇ tm is shorter than the time interval of the sensor signal received by the signal receiving unit 11 when the electric vehicle 100 travels at the maximum speed, for example, 50 microseconds. More generally speaking, the monitoring time interval ⁇ tm is shorter than the time interval of the sensor signal received by the signal receiving unit 11 when the rotation speed of the motor 3 is maximum.
  • Rotational speed calculation unit 12 calculates the instantaneous rotational speed of motor 3 based on the signal interval (also called inter-sensor time).
  • the signal interval is a time interval between the reception time of the first signal most recently received by the signal receiving unit 11 and the reception time of the second signal received before the first signal. is there.
  • the second signal is a signal received immediately before the first signal.
  • the second signal is not limited to this, and is a signal received two or more times before the first signal. May be.
  • the signal interval ⁇ T is determined by the reception time of the sensor signal S1 most recently received by the signal receiving unit 11 and the sensor signal S2 received immediately before this sensor signal S1. This is the time interval from the reception time.
  • the rotation speed calculation unit 12 calculates the instantaneous rotation speed of the motor 3 according to Equation (1).
  • n 60000 / ( ⁇ T ⁇ Np) (1)
  • n is the instantaneous rotational speed [rpm] of the motor 3
  • ⁇ T is the signal interval [mSec]
  • Np is the sensor signal received by the signal receiving unit 11 while the motor 3 makes one electrical rotation. Is a number.
  • the rotation speed calculation unit 12 uses a count number counted every monitoring time interval ⁇ tm as the signal interval ⁇ T.
  • the signal receiving unit 11 or the rotation speed calculation unit 12 increases the count number at every monitoring time interval ⁇ tm. This count number indicates the time that has elapsed since the most recent sensor signal was received. The initial value of the count number is zero.
  • the count number N is reset (that is, returns to the initial value).
  • the rotation speed calculation unit 12 calculates the signal interval ⁇ T by multiplying the count number N counted between the reception of the sensor signal S1 and the reception of the sensor signal S2 by the monitoring time interval ⁇ tm.
  • the rotation speed calculation unit 12 calculates the instantaneous rotation speed of the motor 3 using Equation (2).
  • n 60000 / (N ⁇ tm ⁇ Np) (2)
  • n is an instantaneous rotational speed [rpm] of the motor 3
  • N is a count number counted from the reception of the sensor signal S2 to the reception of the sensor signal S1
  • ⁇ tm is a monitoring time interval [mSec].
  • Np is the number of sensor signals received by the signal receiver 11 while the motor 3 makes one rotation at an electrical angle.
  • the motor control unit 13 generates a PWM signal for causing the motor 3 to generate a desired torque based on the instantaneous rotation speed calculated by the rotation speed calculation unit 12. Then, the motor control unit 13 controls the motor 3 by transmitting the generated PWM signal to the power conversion unit 30.
  • the motor control unit 13 calculates a duty ratio and an output angle (energization timing) based on the instantaneous rotation speed and the target torque, and outputs a PWM signal having the calculated duty ratio at the calculated output angle.
  • the power is output to the power conversion unit 30.
  • the motor 3 is controlled to generate the target torque.
  • the generation of the PWM signal is performed every monitoring time interval, but may be performed every time the sensor signal is received or may be performed every time the motor 3 rotates once.
  • the motor control unit 13 acquires the target torque by searching the torque map M1 using the accelerator operation amount received from the accelerator position sensor 5 and the instantaneous rotation speed calculated by the rotation speed calculation unit 12.
  • the torque map M1 is a map showing the relationship among the accelerator operation amount, the rotational speed of the motor 3, and the target torque of the motor 3, as shown in FIG.
  • the motor control unit 13 acquires the duty ratio by searching the duty ratio map M2 using the target torque acquired from the torque map M1 and the instantaneous rotation speed calculated by the rotation speed calculation unit 12.
  • the duty ratio map M2 is a map showing the relationship among the target torque of the motor 3, the rotational speed of the motor 3, and the duty ratio of the PWM signal, as shown in FIG. 9B.
  • the motor control unit 13 acquires the output angle by searching the output angle map M3 using the target torque acquired from the torque map M1 and the instantaneous rotation speed calculated by the rotation speed calculation unit 12.
  • the output angle map M3 is a map showing the relationship among the target torque of the motor 3, the rotational speed of the motor 3, and the output angle of the PWM signal, as shown in FIG. 9C.
  • the duty ratio map M2 and the output angle map M3 correspond to each energization method. Used. That is, when the 120 ° energization method is used, the duty ratio and the output angle are obtained using the duty ratio map and the output angle map for the 120 ° energization method, and when the 180 ° energization method is used, the 180 ° energization method is used. The duty ratio and the output angle are acquired using the duty ratio map and the output angle map.
  • the PWM signal having the duty ratio acquired as described above is output to the power conversion unit 30 at the output angle acquired as described above, and the semiconductor switches Q1 to Q6 are on / off controlled. Thereby, the motor 3 is controlled to generate a desired torque.
  • the motor control unit 13 corrects the duty ratio of the PWM signal based on the instantaneous rotation speed when the change amount of the instantaneous rotation speed calculated by the rotation speed calculation unit 12 is equal to or greater than a specified value. As will be described in detail later, the duty ratio is corrected so that the output voltage of the inverter (power conversion unit 30) becomes a value corresponding to the instantaneous rotation speed. That is, the duty ratio is corrected so that the output voltage of the inverter becomes a value corresponding to the motor induced voltage.
  • the motor control unit 13 corrects the duty ratio of the PWM signal based on the instantaneous rotational speed.
  • the output voltage of the inverter is lowered, so that the voltage difference is reduced (the voltage difference is V1 in the steady state). Since the voltage difference is suppressed from increasing by instantaneously correcting the duty ratio in this way, a current that matches the target torque flows to the motor 3 and the output torque can be prevented from becoming excessive.
  • the voltage difference was V1 until time t3. Thereafter, the instantaneous rotation speed increased instantaneously from time t3, and the increase amount of the instantaneous rotation speed reached the specified value ⁇ n2 at time t4. As the instantaneous rotational speed increases, the motor induced voltage also increases. As a result, the voltage difference temporarily decreases between times t3 and t4.
  • the motor control unit 13 corrects the duty ratio of the PWM signal based on the instantaneous rotational speed.
  • the output voltage of the inverter rises, so that the voltage difference increases (the voltage difference becomes V2 in the steady state).
  • a current that matches the target torque flows through the motor 3, and the output torque can be suppressed from becoming too small.
  • the specified value ⁇ n1 and the specified value ⁇ n2 are determined by the amount of change in the count number. For example, in FIG. 7, the count number counted between the sensor signal S1 and the sensor signal S2 is more than a specified value (or less) than the count number counted between the sensor signal S2 and the sensor signal S3. In this case, instantaneous correction of the duty ratio is performed.
  • a characteristic line L indicating the relationship between the instantaneous rotation speed and the corrected duty ratio is used.
  • the characteristic line L is a straight line connecting the points A and B.
  • the point A is a point defined by the lower limit value X1 of the rotation speed range R centering on the average rotation speed Nav and the duty ratio Y1 corresponding to the instantaneous rotation speed of the lower limit value X1.
  • the average rotation speed Nav is a rotation speed calculated from the time for which the motor 3 rotates once.
  • Point B is a point defined by an upper limit value X2 of the rotation speed range R and a duty ratio Y2 corresponding to the instantaneous rotation speed of the upper limit value X2.
  • the duty ratios Y1 and Y2 are acquired from the duty ratio map M2. That is, the duty ratio Y1 is obtained by searching the duty ratio map M2 using the instantaneous rotation speed at the lower limit value X1 and the target torque at that time, and the duty ratio Y2 is obtained by calculating the instantaneous rotation speed at the upper limit value X2. Then, it is acquired by searching the duty ratio map M2 using the target torque at that time.
  • the fluctuation range f is the maximum value at which the instantaneous rotational speed deviates from the average rotational speed Nav due to the condition of the road surface on which the electric vehicle 100 travels, the accuracy of the angle sensor 4, and the like.
  • the fluctuation range f is, for example, 500 rpm.
  • the characteristic line L is updated every time the average rotation speed is calculated by the rotation speed calculation unit 12. That is, every time the average rotation speed is calculated, the rotation speed range R is updated, and the duty ratios corresponding to the instantaneous rotation speeds of the lower limit value and the upper limit value of the rotation speed range R are respectively set in the torque map M1 and the duty ratio map M2.
  • the characteristic straight line L is updated by obtaining using. Thereby, linear interpolation using the characteristic straight line L suitable for the running state of the electric vehicle 100 can be performed, and the accuracy of instantaneous correction of the duty ratio can be maintained high.
  • the characteristic line L may be updated in accordance with the change in the accelerator operation amount received from the accelerator position sensor 5. Thereby, the duty ratio can be corrected with higher accuracy.
  • linear interpolation is performed using the characteristic straight line L connecting the points A and B, and the duty ratio is corrected. That is, as shown in FIG. 11, the value of the characteristic line L corresponding to the instantaneous rotation speed Nm calculated by the rotation speed calculation unit 12 is obtained as the corrected duty ratio. Linear interpolation is performed every time the rotational speed calculation unit 12 calculates the instantaneous rotational speed.
  • the signal receiving unit 11 is a sensor signal output from the angle sensor 4 while the motor 3 makes one rotation, and the rotation speed of the motor 3.
  • the rotation speed calculation unit 12 calculates the instantaneous rotation speed of the motor 3 based on the signal interval ⁇ T between the sensor signal S1 and the sensor signal S2, and receives a sensor signal that arrives at an interval according to the motor control unit. 13 corrects the duty ratio of the PWM signal based on the instantaneous rotational speed when the calculated change amount of the instantaneous rotational speed is equal to or greater than a specified value.
  • the duty ratio is corrected so that the output voltage of the power conversion unit 30 (inverter) becomes a value corresponding to the instantaneous rotation speed (that is, the motor induced voltage). That is, the duty ratio of the PWM signal is instantaneously corrected according to instantaneous fluctuations in the rotation speed of the motor 3 so that the voltage difference between the inverter and the motor induced voltage does not deviate from the value based on the target torque.
  • variation of the output torque of the motor 3 is suppressed, and appropriate motor control is performed. It can be performed.
  • the signal receiving unit 11 determines whether or not the monitor time interval ⁇ tm has elapsed (step S11). When the monitoring time interval ⁇ tm has elapsed (S11: Yes), it is determined whether a sensor signal has been received from the angle sensor 4 (step S12). When the sensor signal is not received (S12: No), the count number is increased by 1 (step S13), and the process returns to step S11.
  • the rotation speed calculation unit 12 calculates the instantaneous rotation speed of the motor 3 based on the count number counted between the sensor signal S1 and the sensor signal S2. (Step S14). Then, the rotation speed calculation unit 12 resets the count number to an initial value (step S15). The count number may be reset at any timing of steps S15 to S19.
  • the motor control unit 13 obtains the duty ratio and output angle of the PWM signal based on the instantaneous rotation speed calculated in step S14 and the accelerator operation amount received from the accelerator position sensor 5 (step S16). Specifically, as described with reference to FIG. 8, the duty ratio and output angle of the PWM signal are obtained by using the torque map M1, the duty ratio map M2, and the output angle map M3.
  • the motor control unit 13 determines whether or not the amount of change in the instantaneous rotation speed calculated in step S14 is equal to or greater than a specified value (step S17). In this step, for example, the current count (the count between the sensor signal S1 and the sensor signal S2) is greater than the previous count (the count between the sensor signal S2 and the sensor signal S3). This is done by determining whether it is greater (or less) than a specified value.
  • step S18 the duty ratio obtained in step S16 is corrected (step S18).
  • the correction in this step is performed by, for example, linear interpolation using the characteristic line L described above.
  • the PWM signal having the corrected duty ratio is transmitted to the inverter to control the motor 3 (step S19).
  • step S17: No when the change amount of the instantaneous rotational speed is less than the specified value (S17: No), the process proceeds to step S19 without correcting the duty ratio, and the PWM signal having the duty ratio obtained in step S16 is transmitted to the inverter.
  • the count number is used, but the signal interval may be calculated using the reception time of the sensor signal to calculate the instantaneous rotation speed. Further, when the sensor signal is not received (S12: No), the duty ratio may be acquired from the duty ratio map M2 using the latest accelerator operation amount and the instantaneous rotation speed calculated last time. Then, the characteristic straight line L may be updated using the acquired duty ratio, or the PWM signal transmitted to the power conversion unit 30 may be updated.
  • the motor 3 directly drives the wheels 8 (a so-called direct drive system), and a so-called hub damper is not provided.
  • the present invention can also be applied to such an electric vehicle.
  • the motor control unit 13 it is preferable that the motor control unit 13 gradually increase the duty ratio of the PWM signal when the electric vehicle 100 is started (at the time of low rotation) as shown in FIG. Thereby, even if it is a case of a direct drive system, the electric vehicle 100 can be started smoothly.
  • At least a part of the electric vehicle control device 1 (control unit 10) described in the above-described embodiment may be configured by hardware or software.
  • a program for realizing at least a part of the functions of the control unit 10 may be stored in a recording medium such as a flexible disk or a CD-ROM, and read and executed by a computer.
  • the recording medium is not limited to a removable medium such as a magnetic disk or an optical disk, but may be a fixed recording medium such as a hard disk device or a memory.
  • a program that realizes at least a part of functions of the control unit 10 may be distributed via a communication line (including wireless communication) such as the Internet. Further, the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.
  • a communication line including wireless communication
  • the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.

Abstract

An electric vehicle control device 1 is provided with: a signal receiving unit 11 for receiving a signal coming at intervals in accordance with the rotational speed of a motor 3; a rotational speed calculation unit 12 for calculating an instantaneous rotational speed of the motor 3 on the basis of the signal interval ΔT between a sensor signal S1 and a sensor signal S2; and a motor control unit 13 for generating a PWM signal on the basis of the calculated instantaneous rotational speed. When the variation of the instantaneous rotational speed is greater than or equal to a specific value, the motor control unit 13 corrects the duty ratio of the PWM signal on the basis of the instantaneous rotational speed so that the output voltage of a power conversion unit 30 becomes a value in accordance with the instantaneous rotational speed.

Description

駆動装置、駆動方法、駆動プログラムおよび電動車両Drive device, drive method, drive program, and electric vehicle
 本発明は、駆動装置、駆動方法、駆動プログラムおよび電動車両に関する。 The present invention relates to a drive device, a drive method, a drive program, and an electric vehicle.
 二輪EV等の電動車両は、車輪を駆動するためのモータと、モータを制御する制御部を有する駆動装置とを備えている。電動車両では、ギヤ固定の場合でも低回転域から高回転域にわたって所要のトルクを得ることが可能である。このため、クラッチを設けない電動車両が検討されている。このようなクラッチレスの電動車両の場合、モータは、従来の電動車両ではクラッチにより遮断されていた車輪からの外力を直接受けることになる。 An electric vehicle such as a two-wheel EV includes a motor for driving wheels and a driving device having a control unit for controlling the motor. In an electric vehicle, a required torque can be obtained from a low rotation range to a high rotation range even when the gear is fixed. For this reason, the electric vehicle which does not provide a clutch is examined. In the case of such a clutchless electric vehicle, the motor directly receives an external force from a wheel that has been cut off by the clutch in the conventional electric vehicle.
 なお、特許文献1には、エンジンの回転数を制御するとともに、スロットルバルブを開閉駆動するモータをPWM制御するエンジン回転数制御装置が記載されている。また、目標エンジン回転数変化量に応じて、PWM信号のデューティ比を補正するためのPWMデューティ補正値を算出することが記載されている。 Patent Document 1 describes an engine speed control device that controls the engine speed and performs PWM control of a motor that drives the opening and closing of a throttle valve. Further, it is described that a PWM duty correction value for correcting the duty ratio of the PWM signal is calculated according to the target engine speed change amount.
特開2005-207416号公報JP 2005-207416 A
 電動車両のモータのステータには、ロータの回転位置を検出するための回転位置センサが設けられる。駆動装置の制御部は、回転位置センサから、所定の電気角ごとに立ち上がりエッジ信号または立ち下がりエッジ信号(以下、まとめて「センサ信号」ともいう。)を受信する。このセンサ信号に基づいて制御部はモータの回転速度を把握し、モータの制御を行う。 Rotational position sensor for detecting the rotational position of the rotor is provided in the stator of the motor of the electric vehicle. The control unit of the driving device receives a rising edge signal or a falling edge signal (hereinafter, also collectively referred to as “sensor signal”) for each predetermined electrical angle from the rotational position sensor. Based on the sensor signal, the control unit grasps the rotation speed of the motor and controls the motor.
 上記のようにクラッチレスの電動車両においては、路面状態等に応じた外力がモータに直接加わることになる。このため、モータの回転速度が路面状態に応じて瞬時的に変動することがある。このような回転速度の瞬時的な変動に対してインバータの出力は追随できないことから、モータの出力トルクが目標値から外れてしまうおそれがある。これについて、以下、図14を参照して具体的に説明する。 As described above, in the clutchless electric vehicle, an external force corresponding to the road surface condition is directly applied to the motor. For this reason, the rotational speed of the motor may fluctuate instantaneously depending on the road surface condition. Since the output of the inverter cannot follow such instantaneous fluctuations in the rotational speed, the motor output torque may deviate from the target value. This will be specifically described below with reference to FIG.
 図14に示すように、モータの瞬時回転速度が低下した場合、モータの回転により誘起される電圧(モータ誘起電圧)は電圧Vaだけ瞬時的に小さくなる。一方、モータ誘起電圧が低下している間、モータに交流電力を供給するインバータの出力は一定のままである。このため、インバータの出力電圧とモータ誘起電圧との電圧差はV0からVb(=V0+Va)に拡大する。ここで、電圧差V0は、目標トルクが得られるように設定される値である。電圧差が拡大する結果、目標トルクを得るために必要な電流よりも大きい電流がモータに供給されてしまい、モータは目標トルクよりも大きなトルクを出力することとなる。 As shown in FIG. 14, when the instantaneous rotation speed of the motor decreases, the voltage induced by the rotation of the motor (motor induced voltage) decreases instantaneously by the voltage Va. On the other hand, while the motor induced voltage is decreasing, the output of the inverter that supplies AC power to the motor remains constant. For this reason, the voltage difference between the output voltage of the inverter and the motor induced voltage increases from V0 to Vb (= V0 + Va). Here, the voltage difference V0 is a value set so as to obtain the target torque. As a result of the increase in the voltage difference, a current larger than the current necessary for obtaining the target torque is supplied to the motor, and the motor outputs a torque larger than the target torque.
 一方、回転速度が瞬時的に上昇した場合、モータ誘起電圧は瞬時的に大きくなる一方、インバータの出力が一定のままなので、図14に示すように、インバータの出力電圧とモータ誘起電圧との差はVbからVcに縮小する。その結果、目標トルクを得るために必要な電流よりも小さい電流しかモータに供給されず、モータの出力トルクが過小となってしまう。 On the other hand, when the rotational speed increases instantaneously, the motor induced voltage increases instantaneously, while the output of the inverter remains constant, so that the difference between the inverter output voltage and the motor induced voltage is shown in FIG. Decreases from Vb to Vc. As a result, only a current smaller than the current necessary for obtaining the target torque is supplied to the motor, and the output torque of the motor becomes too small.
 上記のようにモータ回転速度の瞬時的な変動により、モータの出力トルクが目標トルクに対して変動するため、適切なモータ制御を行うことが困難であるという課題があった。 As described above, since the motor output torque fluctuates with respect to the target torque due to an instantaneous fluctuation of the motor rotation speed, there is a problem that it is difficult to perform appropriate motor control.
 そこで、本発明は、モータの回転速度が外力により瞬時的に変動した場合でも、適切なモータ制御を行うことが可能な駆動装置、電動車両制御方法、電動車両制御プログラムおよび電動車両を提供することを目的とする。 Therefore, the present invention provides a drive device, an electric vehicle control method, an electric vehicle control program, and an electric vehicle capable of performing appropriate motor control even when the rotational speed of the motor instantaneously varies due to an external force. With the goal.
 本発明に係る駆動装置は、
 負荷を駆動するモータが一回転する間に回転位置センサから複数出力される信号であり且つ前記モータの回転速度に応じた間隔で到来する信号を受信する信号受信部と、
 前記信号受信部により直近に受信された第1の信号の受信時刻と当該第1の信号の前に受信された第2の信号の受信時刻との間の信号間隔に基づいて、前記モータの瞬時回転速度を算出する回転速度算出部と、
 前記瞬時回転速度に基づいてPWM信号を生成し、前記PWM信号を前記モータに交流電力を供給するインバータに送信して前記モータを制御するモータ制御部と、を備え、
 前記モータ制御部は、前記瞬時回転速度の変化量が規定値以上の場合、前記瞬時回転速度に基づいて、前記PWM信号のデューティ比を、前記インバータの出力電圧が前記瞬時回転速度に応じた値になるように補正することを特徴とする。
The drive device according to the present invention is
A signal receiving unit that receives a plurality of signals output from the rotational position sensor during one rotation of the motor that drives the load and that arrives at an interval corresponding to the rotational speed of the motor;
Based on the signal interval between the reception time of the first signal most recently received by the signal receiving unit and the reception time of the second signal received before the first signal, the instantaneous moment of the motor A rotation speed calculation unit for calculating the rotation speed;
A motor control unit that generates a PWM signal based on the instantaneous rotational speed and transmits the PWM signal to an inverter that supplies AC power to the motor to control the motor;
When the amount of change in the instantaneous rotation speed is equal to or greater than a predetermined value, the motor control unit determines the duty ratio of the PWM signal based on the instantaneous rotation speed, and the output voltage of the inverter corresponds to the instantaneous rotation speed. The correction is made so that
 また、前記駆動装置において、
 前記モータ制御部は、前記瞬時回転速度と補正されたデューティ比との関係を示す特性直線を用いた線形補間により前記デューティ比を補正するようにしてもよい。
In the driving device,
The motor control unit may correct the duty ratio by linear interpolation using a characteristic straight line indicating a relationship between the instantaneous rotation speed and the corrected duty ratio.
 また、前記駆動装置において、
 前記線形補間は、前記瞬時回転速度が算出されるたびに行われるようにしてもよい。
In the driving device,
The linear interpolation may be performed every time the instantaneous rotational speed is calculated.
 また、前記駆動装置において、
 前記特性直線は、
 前記モータが一回転する時間から算出される平均回転速度を中心とした回転速度範囲の下限値と、前記下限値に対応するデューティ比とで規定される第1の点と、
 前記回転速度範囲の上限値と、前記上限値に対応するデューティ比とで規定される第2の点と、を結ぶ直線であるようにしてもよい。
In the driving device,
The characteristic line is
A first point defined by a lower limit value of a rotation speed range centered on an average rotation speed calculated from a time during which the motor makes one rotation, and a duty ratio corresponding to the lower limit value;
A straight line connecting the upper limit value of the rotation speed range and the second point defined by the duty ratio corresponding to the upper limit value may be used.
 また、前記駆動装置において、
 前記回転速度範囲は、前記モータの瞬時回転速度の変動幅を考慮して定められたものであるようにしてもよい。
In the driving device,
The rotation speed range may be determined in consideration of the fluctuation range of the instantaneous rotation speed of the motor.
 また、前記駆動装置において、
 前記特性直線は、前記平均回転速度が算出されるたびに更新されるようにしてもよい。
In the driving device,
The characteristic line may be updated each time the average rotation speed is calculated.
 また、前記駆動装置において、
 前記回転速度算出部は、前記第2の信号が受信されてから前記第1の信号が受信されるまで間モニタ時間間隔ごとにカウントされたカウント数に、前記モニタ時間間隔を乗じることにより前記信号間隔を算出するようにしてもよい。
In the driving device,
The rotation speed calculation unit is configured to multiply the count number counted for each monitoring time interval from when the second signal is received until the first signal is received by multiplying the signal by the monitoring time interval. The interval may be calculated.
 また、前記駆動装置において、
 前記回転速度算出部は、前記第2の信号が前記第1の信号の一つ前に受信された信号である場合、下式により前記瞬時回転速度を算出するようにしてもよい。 
       n = 60000/(ΔT×Np)   
 ここで、nは前記瞬時回転速度[rpm]であり、ΔTは前記信号間隔[mSec]であり、Npは前記モータが電気角で一回転する間に前記信号受信部が受信する前記信号の数を示す値である。
In the driving device,
When the second signal is a signal received immediately before the first signal, the rotation speed calculation unit may calculate the instantaneous rotation speed according to the following equation.
n = 60000 / (ΔT × Np)
Here, n is the instantaneous rotational speed [rpm], ΔT is the signal interval [mSec], and Np is the number of the signals received by the signal receiving unit while the motor makes one electrical rotation. Is a value indicating
 また、前記駆動装置において、
 前記モータ制御部は、前記モータの目標トルクと、前記モータの回転速度と、前記PWM信号のデューティ比との関係を示すデューティ比マップを、前記モータの目標トルクおよび前記瞬時回転速度を用いて検索することによりデューティ比を取得するようにしてもよい。
In the driving device,
The motor control unit searches a duty ratio map indicating a relationship among the target torque of the motor, the rotational speed of the motor, and the duty ratio of the PWM signal, using the target torque of the motor and the instantaneous rotational speed. By doing so, the duty ratio may be acquired.
 また、前記駆動装置において、
 前記負荷は、電動車両の車輪であり、
 前記モータ制御部は、前記モータが前記車輪を直接駆動する場合において、前記電動車両の始動時に前記PWM信号のデューティ比を徐々に上昇させるようにしてもよい。
In the driving device,
The load is a wheel of an electric vehicle,
The motor control unit may gradually increase the duty ratio of the PWM signal when the electric vehicle is started when the motor directly drives the wheels.
 また、前記駆動装置において、
 前記信号受信部が受信する前記信号は、前記モータに設けられた回転位置センサから出力されたパルス信号の立ち上がりエッジ信号または立ち下がりエッジ信号であるようにしてもよい。
In the driving device,
The signal received by the signal receiving unit may be a rising edge signal or a falling edge signal of a pulse signal output from a rotational position sensor provided in the motor.
 本発明に係る電動車両は、
 前記駆動装置であって、前記負荷が電動車両の車輪である、駆動装置を備えることを特徴とする。
The electric vehicle according to the present invention is
It is the said drive device, Comprising: The said load is a drive device which is a wheel of an electric vehicle, It is characterized by the above-mentioned.
 また、前記電動車両において、
 前記車輪と前記モータがクラッチを介さずに機械的に接続されていてもよい。
In the electric vehicle,
The wheel and the motor may be mechanically connected without a clutch.
 本発明に係る駆動方法は、
 信号受信部が、負荷を駆動するモータが一回転する間に回転位置センサから複数出力される信号であり且つ前記モータの回転速度に応じた間隔で到来する信号を受信するステップと、
 回転速度算出部が、前記信号受信部により直近に受信された第1の信号の受信時刻と当該第1の信号の前に受信された第2の信号の受信時刻との間の信号間隔に基づいて、前記モータの瞬時回転速度を算出するステップと、
 モータ制御部が、前記瞬時回転速度に基づいてPWM信号を生成し、前記PWM信号を前記モータに交流電力を供給するインバータに送信して前記モータを制御するステップと、を備え、
 前記モータ制御部は、前記瞬時回転速度の変化量が規定値以上の場合、前記瞬時回転速度に基づいて、前記PWM信号のデューティ比を、前記インバータの出力電圧が前記瞬時回転速度に応じた値になるように補正することを特徴とする。
The driving method according to the present invention includes:
A signal receiving unit that receives a plurality of signals output from the rotational position sensor while the motor driving the load makes one rotation and that arrives at an interval corresponding to the rotational speed of the motor;
The rotation speed calculation unit is based on a signal interval between the reception time of the first signal most recently received by the signal reception unit and the reception time of the second signal received before the first signal. Calculating the instantaneous rotational speed of the motor;
A motor control unit that generates a PWM signal based on the instantaneous rotational speed, and transmits the PWM signal to an inverter that supplies AC power to the motor to control the motor, and
When the amount of change in the instantaneous rotation speed is equal to or greater than a predetermined value, the motor control unit determines the duty ratio of the PWM signal based on the instantaneous rotation speed, and the output voltage of the inverter corresponds to the instantaneous rotation speed. The correction is made so that
 本発明に係る駆動プログラムは、
 信号受信部が、負荷を駆動するモータが一回転する間に回転位置センサから複数出力される信号であり且つ前記モータの回転速度に応じた間隔で到来する信号を受信するステップと、
 回転速度算出部が、前記信号受信部により直近に受信された第1の信号の受信時刻と当該第1の信号の前に受信された第2の信号の受信時刻との間の信号間隔に基づいて、前記モータの瞬時回転速度を算出するステップと、
 モータ制御部が、前記瞬時回転速度に基づいてPWM信号を生成し、前記PWM信号を前記モータに交流電力を供給するインバータに送信して前記モータを制御するステップと、をコンピュータに実行させる駆動プログラムであって、
 前記モータ制御部は、前記瞬時回転速度の変化量が規定値以上の場合、前記瞬時回転速度に基づいて、前記PWM信号のデューティ比を、前記インバータの出力電圧が前記瞬時回転速度に応じた値になるように補正することを特徴とする。
The drive program according to the present invention is:
A signal receiving unit that receives a plurality of signals output from the rotational position sensor while the motor driving the load makes one rotation and that arrives at an interval corresponding to the rotational speed of the motor;
The rotation speed calculation unit is based on a signal interval between the reception time of the first signal most recently received by the signal reception unit and the reception time of the second signal received before the first signal. Calculating the instantaneous rotational speed of the motor;
A motor control unit that generates a PWM signal based on the instantaneous rotation speed, and transmits the PWM signal to an inverter that supplies AC power to the motor to control the motor; Because
When the amount of change in the instantaneous rotation speed is equal to or greater than a predetermined value, the motor control unit determines the duty ratio of the PWM signal based on the instantaneous rotation speed, and the output voltage of the inverter corresponds to the instantaneous rotation speed. The correction is made so that
 本発明では、信号受信部が、モータが一回転する間に回転位置センサから複数出力される信号であり且つモータの回転速度に応じた間隔で到来する信号を受信し、回転速度算出部が、第1の信号と第2の信号との間の信号間隔に基づいてモータの瞬時回転速度を算出し、モータ制御部が、算出された瞬時回転速度の変化量が規定値以上の場合、瞬時回転速度に基づいてPWM信号のデューティ比を補正する。デューティ比は、電力変換部の出力電圧が瞬時回転速度に応じた値になるように補正される。これにより、本発明によれば、路面状態等に応じてモータに加わる外力によりモータの回転速度が瞬時的に変動した場合でも、モータの出力トルクの変動を抑制し、適切なモータ制御を行うことができる。 In the present invention, the signal receiving unit receives a plurality of signals output from the rotational position sensor during one rotation of the motor and arrives at an interval corresponding to the rotational speed of the motor, and the rotational speed calculating unit The instantaneous rotation speed of the motor is calculated based on the signal interval between the first signal and the second signal, and the motor control unit instantaneously rotates when the calculated change amount of the instantaneous rotation speed is equal to or greater than a specified value. The duty ratio of the PWM signal is corrected based on the speed. The duty ratio is corrected so that the output voltage of the power converter becomes a value corresponding to the instantaneous rotation speed. Thus, according to the present invention, even when the rotational speed of the motor varies instantaneously due to an external force applied to the motor in accordance with the road surface condition or the like, the fluctuation of the output torque of the motor is suppressed and appropriate motor control is performed. Can do.
本発明の実施形態に係る電動車両100の概略的構成を示す図である。1 is a diagram showing a schematic configuration of an electric vehicle 100 according to an embodiment of the present invention. 電力変換部30およびモータ3の概略的構成を示す図である。FIG. 3 is a diagram illustrating a schematic configuration of a power conversion unit 30 and a motor 3. モータ3のロータ3rに設けられた磁石と、アングルセンサ4を示す図である。3 is a diagram showing a magnet provided on a rotor 3r of a motor 3 and an angle sensor 4. FIG. ロータアングルと、アングルセンサの出力との関係を示す図である。It is a figure which shows the relationship between a rotor angle and the output of an angle sensor. 実施形態に係るPWM制御を説明するためのタイミングチャートである。It is a timing chart for demonstrating the PWM control which concerns on embodiment. 電動車両制御装置1の制御部10の機能ブロック図である。2 is a functional block diagram of a control unit 10 of the electric vehicle control device 1. FIG. センサ信号とカウント数の関係等を説明するための図である。It is a figure for demonstrating the relationship between a sensor signal, and a count number. PWM信号のデューティ比や出力角度の算出処理を説明するための図である。It is a figure for demonstrating the calculation process of the duty ratio of a PWM signal, or an output angle. (a)はトルクマップの構成を示し、(b)はデューティ比マップの構成を示し、(c)は出力角度マップの構成を示す図である。(A) shows the configuration of the torque map, (b) shows the configuration of the duty ratio map, and (c) shows the configuration of the output angle map. 本実施形態に係るインバータの出力電圧の時間変化を説明するための図である。It is a figure for demonstrating the time change of the output voltage of the inverter which concerns on this embodiment. 線形補間によるデューティ比の瞬時的な補正を説明するための図である。It is a figure for demonstrating the instantaneous correction | amendment of the duty ratio by linear interpolation. 実施形態に係る電動車両制御方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the electric vehicle control method which concerns on embodiment. ダイレクト駆動の場合におけるデューティ比の時間変化を示すグラフである。It is a graph which shows the time change of the duty ratio in the case of direct drive. 従来技術の課題を説明するための図である。It is a figure for demonstrating the subject of a prior art.
 以下、図面を参照しつつ本発明の実施形態について説明する。以下の実施形態では、本発明に係る駆動装置の一実施形態として、電動車両を駆動制御する電動車両制御装置について説明する。なお、本発明に係る駆動装置は、電動車両の車輪以外の負荷を駆動するものであってもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, an electric vehicle control device that drives and controls an electric vehicle will be described as an embodiment of the drive device according to the present invention. The drive device according to the present invention may drive a load other than the wheels of the electric vehicle.
 まず、図1を参照して、実施形態に係る電動車両100について説明する。 First, an electric vehicle 100 according to the embodiment will be described with reference to FIG.
 電動車両100は、バッテリから供給される電力を用いてモータを駆動することで走行する車両である。本実施形態では、電動車両100は、電動バイク等の電動二輪車であり、より詳しくは、図1に示すように、モータ3と車輪8がクラッチを介さずに機械的に直接接続された電動二輪車である。なお、本発明に係る電動車両は、モータ3と車輪8がクラッチを介して接続された車両であってもよい。また、二輪車に限定されるものではなく、例えば三輪または四輪の電動車両であってもよい。 The electric vehicle 100 is a vehicle that travels by driving a motor using electric power supplied from a battery. In the present embodiment, the electric vehicle 100 is an electric motorcycle such as an electric motorcycle. More specifically, as shown in FIG. 1, the electric motorcycle 100 in which the motor 3 and the wheels 8 are mechanically directly connected without using a clutch. It is. The electric vehicle according to the present invention may be a vehicle in which the motor 3 and the wheels 8 are connected via a clutch. Moreover, it is not limited to a two-wheeled vehicle, For example, a three-wheeled or four-wheeled electric vehicle may be sufficient.
 電動車両100は、図1に示すように、電動車両制御装置1と、バッテリ2と、モータ3と、アングルセンサ(回転位置センサ)4と、アクセルポジションセンサ5と、アシストスイッチ6と、メータ(表示部)7と、車輪8と、充電器9と、を備えている。 As shown in FIG. 1, the electric vehicle 100 includes an electric vehicle control device 1, a battery 2, a motor 3, an angle sensor (rotational position sensor) 4, an accelerator position sensor 5, an assist switch 6, a meter ( Display portion) 7, wheels 8, and charger 9.
 以下、電動車両100の各構成要素について詳しく説明する。 Hereinafter, each component of the electric vehicle 100 will be described in detail.
 電動車両制御装置1は、電動車両100を制御する装置であり、制御部10と、記憶部20と、電力変換部(ドライバ)30とを有している。なお、電動車両制御装置1は、電動車両100全体を統御するECU(Electronic Control Unit)として構成されてもよい。 The electric vehicle control device 1 is a device that controls the electric vehicle 100, and includes a control unit 10, a storage unit 20, and a power conversion unit (driver) 30. The electric vehicle control apparatus 1 may be configured as an ECU (Electronic Control Unit) that controls the entire electric vehicle 100.
 次に、電動車両制御装置1の各構成要素について詳しく説明する。 Next, each component of the electric vehicle control device 1 will be described in detail.
 制御部10は、電動車両制御装置1に接続された各種装置から情報を入力する。具体的には、制御部10は、バッテリ2、アングルセンサ(回転位置センサ)4、アクセルポジションセンサ5、アシストスイッチ6、充電器9から出力される各種信号を受信する。制御部10は、メータ7に表示する信号を出力する。また、制御部10は、電力変換部30を介してモータ3を制御する。制御部10の詳細については後述する。 The control unit 10 inputs information from various devices connected to the electric vehicle control device 1. Specifically, the control unit 10 receives various signals output from the battery 2, the angle sensor (rotational position sensor) 4, the accelerator position sensor 5, the assist switch 6, and the charger 9. The control unit 10 outputs a signal to be displayed on the meter 7. In addition, the control unit 10 controls the motor 3 through the power conversion unit 30. Details of the control unit 10 will be described later.
 記憶部20は、制御部10が用いる情報(後述の各種マップなど)や、制御部10が動作するためのプログラムを記憶する。この記憶部20は、例えば不揮発性の半導体メモリであるが、これに限定されない。なお、記憶部20は制御部10の一部として組み込まれていてもよい。 The storage unit 20 stores information (such as various maps described later) used by the control unit 10 and a program for operating the control unit 10. The storage unit 20 is, for example, a nonvolatile semiconductor memory, but is not limited to this. Note that the storage unit 20 may be incorporated as a part of the control unit 10.
 電力変換部30は、バッテリ2から出力される直流電力を交流電力に変換してモータ3に供給する。本実施形態では、電力変換部30は、図2に示すように、3相のフルブリッジ回路で構成されたインバータを有する。半導体スイッチQ1,Q3,Q5はハイサイドスイッチであり、半導体スイッチQ2,Q4,Q6はローサイドスイッチである。半導体スイッチQ1~Q6の制御端子は、制御部10に電気的に接続されている。半導体スイッチQ1~Q6は、例えばMOSFETまたはIGBT等である。 The power converter 30 converts the DC power output from the battery 2 into AC power and supplies it to the motor 3. In the present embodiment, the power conversion unit 30 includes an inverter configured by a three-phase full bridge circuit as shown in FIG. Semiconductor switches Q1, Q3, and Q5 are high-side switches, and semiconductor switches Q2, Q4, and Q6 are low-side switches. The control terminals of the semiconductor switches Q1 to Q6 are electrically connected to the control unit 10. The semiconductor switches Q1 to Q6 are, for example, MOSFETs or IGBTs.
 図2に示すように、電源端子30aと電源端子30bとの間には平滑コンデンサCが設けられている。 As shown in FIG. 2, a smoothing capacitor C is provided between the power supply terminal 30a and the power supply terminal 30b.
 入力端子3aはモータ3のU相の入力端子であり、入力端子3bはモータ3のV相の入力端子であり、入力端子3cはモータ3のW相の入力端子である。 The input terminal 3 a is a U-phase input terminal of the motor 3, the input terminal 3 b is a V-phase input terminal of the motor 3, and the input terminal 3 c is a W-phase input terminal of the motor 3.
 半導体スイッチQ1は、図2に示すように、バッテリ2の正極が接続された電源端子30aと、モータ3の入力端子3aとの間に接続されている。同様に、半導体スイッチQ3は、電源端子30aと、モータ3の入力端子3bとの間に接続されている。半導体スイッチQ5は、電源端子30aと、モータ3の入力端子3cとの間に接続されている。 As shown in FIG. 2, the semiconductor switch Q <b> 1 is connected between a power supply terminal 30 a to which the positive electrode of the battery 2 is connected and an input terminal 3 a of the motor 3. Similarly, the semiconductor switch Q3 is connected between the power supply terminal 30a and the input terminal 3b of the motor 3. The semiconductor switch Q5 is connected between the power supply terminal 30a and the input terminal 3c of the motor 3.
 半導体スイッチQ2は、モータ3の入力端子3aと、バッテリ2の負極が接続された電源端子30bとの間に接続されている。同様に、半導体スイッチQ4は、モータ3の入力端子3bと、電源端子30bとの間に接続されている。半導体スイッチQ6は、モータ3の入力端子3cと、電源端子30bとの間に接続されている。 The semiconductor switch Q2 is connected between the input terminal 3a of the motor 3 and the power supply terminal 30b to which the negative electrode of the battery 2 is connected. Similarly, the semiconductor switch Q4 is connected between the input terminal 3b of the motor 3 and the power supply terminal 30b. The semiconductor switch Q6 is connected between the input terminal 3c of the motor 3 and the power supply terminal 30b.
 バッテリ2は、電動車両100の車輪8を回転させるモータ3に電力を供給する。このバッテリ2は電力変換部30に直流電力を供給する。バッテリ2は、例えばリチウムイオン電池であるが、他の種類のバッテリであってもよい。なお、バッテリ2の数は一つに限らず、複数であってもよい。すなわち、電動車両100には、互いに並列または直列に接続された複数のバッテリ2が設けられてもよい。また、バッテリ2には、制御部10に動作電圧を供給するための鉛電池が含まれてもよい。 The battery 2 supplies power to the motor 3 that rotates the wheels 8 of the electric vehicle 100. The battery 2 supplies DC power to the power conversion unit 30. The battery 2 is, for example, a lithium ion battery, but may be another type of battery. Note that the number of the batteries 2 is not limited to one and may be plural. That is, the electric vehicle 100 may be provided with a plurality of batteries 2 connected in parallel or in series with each other. Further, the battery 2 may include a lead battery for supplying an operating voltage to the control unit 10.
 バッテリ2は、バッテリ管理ユニット(BMU)を含む。バッテリ管理ユニットは、バッテリ2の電圧やバッテリ2の状態(充電率等)に関するバッテリ情報を制御部10に送信する。 Battery 2 includes a battery management unit (BMU). The battery management unit transmits battery information regarding the voltage of the battery 2 and the state of the battery 2 (charge rate, etc.) to the control unit 10.
 モータ3は、電力変換部30から供給される交流電力により、車輪8等の負荷を駆動するモータである。本実施形態では、モータ3は、車輪8に機械的に接続されており、所望の方向に車輪8を回転させる。モータ3は、U相、V相およびW相を有する三相交流モータである。前述のように、モータ3は、クラッチを介さずに車輪8に機械的に直接接続されている。なお、本実施形態では三相交流モータとして三相ブラシレスモータを使用するが、モータ3の種類はこれに限定されない。 The motor 3 is a motor that drives a load such as the wheel 8 by AC power supplied from the power conversion unit 30. In the present embodiment, the motor 3 is mechanically connected to the wheel 8 and rotates the wheel 8 in a desired direction. The motor 3 is a three-phase AC motor having a U phase, a V phase, and a W phase. As described above, the motor 3 is mechanically directly connected to the wheel 8 without using a clutch. In this embodiment, a three-phase brushless motor is used as the three-phase AC motor, but the type of the motor 3 is not limited to this.
 アングルセンサ4は、モータ3のロータ3rの回転位置を検出するセンサである。図3に示すように、ロータ3rの周面には、N極とS極の磁石(センサマグネット)が交互に取り付けられている。アングルセンサ4は、例えばホール素子により構成されており、モータ3の回転に伴う磁場の変化を検出する。なお、図3に示す磁石の数は一例であってこれに限られない。また、磁石はフライホイール(図示せず)の内側に設けられてもよい。 The angle sensor 4 is a sensor that detects the rotational position of the rotor 3r of the motor 3. As shown in FIG. 3, N-pole and S-pole magnets (sensor magnets) are alternately attached to the circumferential surface of the rotor 3r. The angle sensor 4 is constituted by a Hall element, for example, and detects a change in the magnetic field accompanying the rotation of the motor 3. In addition, the number of the magnets shown in FIG. 3 is an example, and is not limited to this. Further, the magnet may be provided inside a flywheel (not shown).
 図3に示すように、アングルセンサ4は、モータ3のU相に対応付けられたU相アングルセンサ4uと、モータ3のV相に対応付けられたV相アングルセンサ4vと、モータ3のW相に対応付けられたW相アングルセンサ4wとを有している。各相のアングルセンサ4u,4v,4wは、モータ3に設けられている。本実施形態では、U相アングルセンサ4uとV相アングルセンサ4vとはロータ3rに対して30°の角度をなすように配置されている。同様に、V相アングルセンサ4vとW相アングルセンサ4wとはモータ3のロータ3rに対して30°の角度をなすように配置されている。 As shown in FIG. 3, the angle sensor 4 includes a U-phase angle sensor 4 u associated with the U-phase of the motor 3, a V-phase angle sensor 4 v associated with the V-phase of the motor 3, and the W of the motor 3. And a W-phase angle sensor 4w associated with the phase. The angle sensors 4u, 4v, 4w for each phase are provided in the motor 3. In the present embodiment, the U-phase angle sensor 4u and the V-phase angle sensor 4v are arranged so as to form an angle of 30 ° with respect to the rotor 3r. Similarly, the V-phase angle sensor 4v and the W-phase angle sensor 4w are arranged to form an angle of 30 ° with respect to the rotor 3r of the motor 3.
 図4に示すように、U相アングルセンサ4u、V相アングルセンサ4vおよびW相アングルセンサ4wは、ロータ3rの回転位置に応じた位相のパルス信号を出力する。このパルス信号の幅(あるいは、センサ信号の時間間隔)は、モータ3(すなわち、車輪8)の回転速度が高いほど狭くなる。 As shown in FIG. 4, the U-phase angle sensor 4u, the V-phase angle sensor 4v, and the W-phase angle sensor 4w output a pulse signal having a phase corresponding to the rotational position of the rotor 3r. The width of this pulse signal (or the time interval of the sensor signal) becomes narrower as the rotational speed of the motor 3 (ie, the wheel 8) is higher.
 図4に示すように、所定の回転位置ごとに、モータステージを示す番号(モータステージ番号)が割り振られている。モータステージはロータ3rの回転位置を示しており、本実施形態では、電気角60°ごとにモータステージ番号1,2,3,4,5,6が割り振られている。 As shown in FIG. 4, a number (motor stage number) indicating a motor stage is assigned to each predetermined rotational position. The motor stage indicates the rotational position of the rotor 3r. In this embodiment, motor stage numbers 1, 2, 3, 4, 5, and 6 are assigned for each electrical angle of 60 °.
 出力ステージは、通電ステージとも呼ばれ、アングルセンサ4により検出されたモータステージに、出力角度に基づく時間を加えたものである。出力角度は、後述のように、モータ3の回転速度や目標トルクに応じて変化する。 The output stage is also called an energization stage, and is obtained by adding a time based on the output angle to the motor stage detected by the angle sensor 4. As will be described later, the output angle changes according to the rotational speed of the motor 3 and the target torque.
 制御部10は、PWM信号を用いて、電力変換部30の半導体スイッチQ1~Q6をオンオフ制御する。これにより、バッテリ2から供給される直流電力が交流電力に変換される。本実施形態では、図5に示すように、U相ローサイドスイッチ(半導体スイッチQ2)は、出力ステージ6,1,2,3においてPWM制御される。V相ローサイドスイッチ(半導体スイッチQ4)は、出力ステージ2,3,4,5においてPWM制御され、W相ローサイドスイッチ(半導体スイッチQ6)は、出力ステージ4,5,6,1においてPWM制御される。なお、PWM制御が行われるステージは、通電方式等により決まるもので、この例に限られない。 The control unit 10 performs on / off control of the semiconductor switches Q1 to Q6 of the power conversion unit 30 using the PWM signal. Thereby, the DC power supplied from the battery 2 is converted into AC power. In the present embodiment, as shown in FIG. 5, the U-phase low-side switch (semiconductor switch Q2) is PWM-controlled at the output stages 6, 1, 2, and 3. The V-phase low-side switch (semiconductor switch Q4) is PWM-controlled at the output stages 2, 3, 4, and 5, and the W-phase low-side switch (semiconductor switch Q6) is PWM-controlled at the output stages 4, 5, 6, and 1. . The stage on which PWM control is performed is determined by the energization method or the like, and is not limited to this example.
 上記のようにハイサイドスイッチではなく、ローサイドスイッチをオンオフ制御することにより、モータ3の回生動作により発生した電流がバッテリ2に流入することが回避できる。なお、バッテリ2への回生電流の流入が許容される場合には、ハイサイドスイッチをオンオフ制御してもよい。 As described above, the on / off control of the low-side switch instead of the high-side switch can prevent the current generated by the regenerative operation of the motor 3 from flowing into the battery 2. In addition, when inflow of the regenerative current to the battery 2 is permitted, the high-side switch may be controlled on and off.
 図5に示すように、ハイサイドスイッチもオンになるタイミングがある。例えば、U相ハイサイドスイッチである半導体スイッチQ1は出力ステージ1,2において所定の時間間隔でオン制御される。このようにハイサイドスイッチをオン制御することによって電力変換部30の発熱を抑制することができる。なお、電流ショートを防止するため、ハイサイドスイッチがオンに制御されるとき、対応する(すなわち、同じアームの)ローサイドスイッチはオフに制御される。 As shown in FIG. 5, there is a timing when the high side switch is also turned on. For example, the semiconductor switch Q1, which is a U-phase high-side switch, is turned on at predetermined time intervals in the output stages 1 and 2. Thus, heat generation of the power conversion unit 30 can be suppressed by turning on the high-side switch. Note that when a high-side switch is controlled to be turned on to prevent a current short circuit, the corresponding low-side switch (ie, in the same arm) is controlled to be off.
 アクセルポジションセンサ5は、電動車両100のアクセルに対する操作量(以下、「アクセル操作量」という。)を検知し、電気信号として制御部10に送信する。アクセル操作量は、エンジン車のスロットル開度に相当する。ユーザが加速したい場合にアクセル操作量は大きくなり、ユーザが減速したい場合にアクセル操作量は小さくなる。 The accelerator position sensor 5 detects an operation amount (hereinafter referred to as “accelerator operation amount”) with respect to the accelerator of the electric vehicle 100 and transmits it to the control unit 10 as an electric signal. The accelerator operation amount corresponds to the throttle opening of the engine vehicle. The accelerator operation amount increases when the user wants to accelerate, and the accelerator operation amount decreases when the user wants to decelerate.
 アシストスイッチ6は、ユーザが電動車両100のアシストを要求する際に操作されるスイッチである。アシストスイッチ6は、ユーザにより操作されると、アシスト要求信号を制御部10に送信する。そして、制御部10は、モータ3を制御して、アシストトルクを発生させる。 The assist switch 6 is a switch that is operated when the user requests assistance from the electric vehicle 100. The assist switch 6 transmits an assist request signal to the control unit 10 when operated by the user. Then, the control unit 10 controls the motor 3 to generate assist torque.
 メータ(表示部)7は、電動車両100に設けられたディスプレイ(例えば液晶パネル)であり、各種情報を表示する。メータ7は、例えば、電動車両100のハンドル(図示せず)に設けられる。メータ7には、電動車両100の走行速度、バッテリ2の残量、現在時刻、総走行距離、および残走行距離などの情報が表示される。残走行距離は、電動車両100があとどれくらいの距離を走行できるのかを示す。 The meter (display unit) 7 is a display (for example, a liquid crystal panel) provided in the electric vehicle 100 and displays various information. The meter 7 is provided, for example, on a handle (not shown) of the electric vehicle 100. The meter 7 displays information such as the traveling speed of the electric vehicle 100, the remaining amount of the battery 2, the current time, the total traveling distance, and the remaining traveling distance. The remaining travel distance indicates how far the electric vehicle 100 can travel.
 充電器9は、電源プラグ(図示せず)と、この電源プラグを介して供給される交流電源を直流電源に変換するコンバータ回路(図示せず)とを有する。コンバータ回路で変換された直流電力によりバッテリ2は充電される。充電器9は、例えば、電動車両100内の通信ネットワーク(CAN等)を介して電動車両制御装置1に通信可能に接続されている。 The charger 9 has a power plug (not shown) and a converter circuit (not shown) for converting an AC power supplied via the power plug into a DC power. The battery 2 is charged by the DC power converted by the converter circuit. The charger 9 is connected to the electric vehicle control device 1 through a communication network (CAN or the like) in the electric vehicle 100 so as to be communicable.
 次に、電動車両制御装置1の制御部10について詳しく説明する。 Next, the control unit 10 of the electric vehicle control device 1 will be described in detail.
 図6に示すように、制御部10は、信号受信部11と、回転速度算出部12と、モータ制御部13とを有している。なお、制御部10の各部における処理は、ソフトウェア(プログラム)により実現することが可能である。 As shown in FIG. 6, the control unit 10 includes a signal reception unit 11, a rotation speed calculation unit 12, and a motor control unit 13. The processing in each unit of the control unit 10 can be realized by software (program).
 信号受信部11は、モータ3の回転速度に応じた間隔で到来する信号を受信する。信号は、モータ3が一回転する間にアングルセンサ4から複数出力される。より詳しくは、信号受信部11は、U相アングルセンサ4u、V相アングルセンサ4vおよびW相アングルセンサ4wから出力されたセンサ信号(すなわち、パルス信号の立ち上がりエッジ信号または立ち下がりエッジ信号)を受信する。本実施形態では、信号受信部11は、モータ3のロータ3rが電気角で60°回転するごとにセンサ信号を受信する。よって、信号受信部11は、モータ3が電気角で一回転する間に6つのセンサ信号を受信する。モータ3の回転速度が高くなるにつれて、センサ信号が到来する時間間隔は短くなる。 The signal receiving unit 11 receives signals that arrive at intervals corresponding to the rotation speed of the motor 3. A plurality of signals are output from the angle sensor 4 while the motor 3 rotates once. More specifically, the signal receiving unit 11 receives sensor signals (that is, rising edge signals or falling edge signals of pulse signals) output from the U-phase angle sensor 4u, the V-phase angle sensor 4v, and the W-phase angle sensor 4w. To do. In the present embodiment, the signal receiving unit 11 receives a sensor signal every time the rotor 3r of the motor 3 rotates 60 degrees in electrical angle. Therefore, the signal receiving unit 11 receives six sensor signals while the motor 3 makes one rotation at an electrical angle. As the rotational speed of the motor 3 increases, the time interval at which the sensor signal arrives decreases.
 図7に示すように、信号受信部11は、アングルセンサ4からセンサ信号を受信したか否かをモニタ時間間隔Δtmごとに確認する。モニタ時間間隔Δtmは、例えばモータ3の制御時間間隔である。なお、センサ信号の受信は、アングルセンサ4からの割り込み処理により行われてもよい。 As shown in FIG. 7, the signal receiving unit 11 checks whether or not a sensor signal is received from the angle sensor 4 at every monitoring time interval Δtm. The monitor time interval Δtm is a control time interval of the motor 3, for example. The sensor signal may be received by an interrupt process from the angle sensor 4.
 モニタ時間間隔Δtmは、電動車両100が最高速度で走行したときに信号受信部11が受信するセンサ信号の時間間隔よりも短く、例えば50マイクロ秒である。より一般的に言えば、モニタ時間間隔Δtmは、モータ3の回転速度が最大のときに信号受信部11が受信するセンサ信号の時間間隔よりも短い。 The monitoring time interval Δtm is shorter than the time interval of the sensor signal received by the signal receiving unit 11 when the electric vehicle 100 travels at the maximum speed, for example, 50 microseconds. More generally speaking, the monitoring time interval Δtm is shorter than the time interval of the sensor signal received by the signal receiving unit 11 when the rotation speed of the motor 3 is maximum.
 回転速度算出部12は、信号間隔(センサ間時間とも呼ばれる。)に基づいて、モータ3の瞬時回転速度を算出する。ここで、信号間隔は、信号受信部11により直近に受信された第1の信号の受信時刻と、第1の信号の前に受信された第2の信号の受信時刻との間の時間間隔である。なお、第2の信号は、本実施形態では第1の信号の一つ前に受信された信号であるが、これに限られず、第1の信号の二つ以上前に受信された信号であってもよい。 Rotational speed calculation unit 12 calculates the instantaneous rotational speed of motor 3 based on the signal interval (also called inter-sensor time). Here, the signal interval is a time interval between the reception time of the first signal most recently received by the signal receiving unit 11 and the reception time of the second signal received before the first signal. is there. In the present embodiment, the second signal is a signal received immediately before the first signal. However, the second signal is not limited to this, and is a signal received two or more times before the first signal. May be.
 本実施形態では図7に示すように、信号間隔ΔTは、信号受信部11により直近に受信されたセンサ信号S1の受信時刻と、このセンサ信号S1の一つ前に受信されたセンサ信号S2の受信時刻との間の時間間隔である。この場合、回転速度算出部12は、式(1)によりモータ3の瞬時回転速度を算出する。 
       n = 60000/(ΔT×Np)     ・・・(1)
 ここで、nはモータ3の瞬時回転速度[rpm]であり、ΔTは信号間隔[mSec]であり、Npはモータ3が電気角で一回転する間に信号受信部11が受信するセンサ信号の数である。
In this embodiment, as shown in FIG. 7, the signal interval ΔT is determined by the reception time of the sensor signal S1 most recently received by the signal receiving unit 11 and the sensor signal S2 received immediately before this sensor signal S1. This is the time interval from the reception time. In this case, the rotation speed calculation unit 12 calculates the instantaneous rotation speed of the motor 3 according to Equation (1).
n = 60000 / (ΔT × Np) (1)
Here, n is the instantaneous rotational speed [rpm] of the motor 3, ΔT is the signal interval [mSec], and Np is the sensor signal received by the signal receiving unit 11 while the motor 3 makes one electrical rotation. Is a number.
 本実施形態では、回転速度算出部12は、信号間隔ΔTとして、モニタ時間間隔Δtmごとにカウントされるカウント数を用いる。信号受信部11がセンサ信号を受信していない場合、信号受信部11または回転速度算出部12は、モニタ時間間隔Δtmごとにカウント数を増やす。このカウント数は、直近のセンサ信号を受信してから経過した時間を示す。カウント数の初期値は0である。信号受信部11がセンサ信号を受信すると、カウント数Nはリセットされる(すなわち、初期値に戻る)。 In the present embodiment, the rotation speed calculation unit 12 uses a count number counted every monitoring time interval Δtm as the signal interval ΔT. When the signal receiving unit 11 has not received the sensor signal, the signal receiving unit 11 or the rotation speed calculation unit 12 increases the count number at every monitoring time interval Δtm. This count number indicates the time that has elapsed since the most recent sensor signal was received. The initial value of the count number is zero. When the signal receiving unit 11 receives the sensor signal, the count number N is reset (that is, returns to the initial value).
 回転速度算出部12は、センサ信号S1が受信されてからセンサ信号S2が受信されるまで間にカウントされたカウント数Nにモニタ時間間隔Δtmを乗じることにより信号間隔ΔTを算出する。 The rotation speed calculation unit 12 calculates the signal interval ΔT by multiplying the count number N counted between the reception of the sensor signal S1 and the reception of the sensor signal S2 by the monitoring time interval Δtm.
 カウント数で信号間隔を測る場合、回転速度算出部12は、式(2)によりモータ3の瞬時回転速度を算出する。 
       n = 60000/(NΔtm×Np)   ・・・(2)
 ここで、nはモータ3の瞬時回転速度[rpm]であり、Nはセンサ信号S2を受信してからセンサ信号S1を受信するまでにカウントされたカウント数であり、Δtmはモニタ時間間隔[mSec]であり、Npはモータ3が電気角で一回転する間に信号受信部11が受信するセンサ信号の数である。
When measuring the signal interval by the number of counts, the rotation speed calculation unit 12 calculates the instantaneous rotation speed of the motor 3 using Equation (2).
n = 60000 / (NΔtm × Np) (2)
Here, n is an instantaneous rotational speed [rpm] of the motor 3, N is a count number counted from the reception of the sensor signal S2 to the reception of the sensor signal S1, and Δtm is a monitoring time interval [mSec]. Np is the number of sensor signals received by the signal receiver 11 while the motor 3 makes one rotation at an electrical angle.
 モータ制御部13は、回転速度算出部12により算出された瞬時回転速度に基づいて、モータ3に所望のトルクを発生させるためのPWM信号を生成する。そして、モータ制御部13は、生成されたPWM信号を電力変換部30に送信してモータ3を制御する。 The motor control unit 13 generates a PWM signal for causing the motor 3 to generate a desired torque based on the instantaneous rotation speed calculated by the rotation speed calculation unit 12. Then, the motor control unit 13 controls the motor 3 by transmitting the generated PWM signal to the power conversion unit 30.
 本実施形態では、モータ制御部13は、瞬時回転速度および目標トルクに基づいてデューティ比および出力角度(通電タイミング)を算出し、算出されたデューティ比を有するPWM信号を、算出された出力角度で電力変換部30に出力する。これにより、モータ3は目標トルクを発生するように制御される。なお、PWM信号の生成は、モニタ時間間隔ごとに行われるが、センサ信号を受信するたびに行われてもよいし、あるいはモータ3が一回転するたびに行われてもよい。 In the present embodiment, the motor control unit 13 calculates a duty ratio and an output angle (energization timing) based on the instantaneous rotation speed and the target torque, and outputs a PWM signal having the calculated duty ratio at the calculated output angle. The power is output to the power conversion unit 30. Thereby, the motor 3 is controlled to generate the target torque. The generation of the PWM signal is performed every monitoring time interval, but may be performed every time the sensor signal is received or may be performed every time the motor 3 rotates once.
 図8および図9を参照して、デューティ比および出力角度の算出について詳しく説明する。モータ制御部13は、アクセルポジションセンサ5から受信したアクセル操作量と、回転速度算出部12により算出された瞬時回転速度とを用いてトルクマップM1を検索することにより、目標トルクを取得する。ここで、トルクマップM1は、図9(a)に示すように、アクセル操作量と、モータ3の回転速度と、モータ3の目標トルクとの間の関係を示すマップである。 The calculation of the duty ratio and the output angle will be described in detail with reference to FIGS. The motor control unit 13 acquires the target torque by searching the torque map M1 using the accelerator operation amount received from the accelerator position sensor 5 and the instantaneous rotation speed calculated by the rotation speed calculation unit 12. Here, the torque map M1 is a map showing the relationship among the accelerator operation amount, the rotational speed of the motor 3, and the target torque of the motor 3, as shown in FIG.
 次に、モータ制御部13は、トルクマップM1から取得された目標トルクと、回転速度算出部12により算出された瞬時回転速度を用いてデューティ比マップM2を検索することにより、デューティ比を取得する。ここで、デューティ比マップM2は、図9(b)に示すように、モータ3の目標トルクと、モータ3の回転速度と、PWM信号のデューティ比との間の関係を示すマップである。 Next, the motor control unit 13 acquires the duty ratio by searching the duty ratio map M2 using the target torque acquired from the torque map M1 and the instantaneous rotation speed calculated by the rotation speed calculation unit 12. . Here, the duty ratio map M2 is a map showing the relationship among the target torque of the motor 3, the rotational speed of the motor 3, and the duty ratio of the PWM signal, as shown in FIG. 9B.
 さらに、モータ制御部13は、トルクマップM1から取得された目標トルクと、回転速度算出部12により算出された瞬時回転速度を用いて出力角度マップM3を検索することにより、出力角度を取得する。ここで、出力角度マップM3は、図9(c)に示すように、モータ3の目標トルクと、モータ3の回転速度と、PWM信号の出力角度との間の関係を示すマップである。 Further, the motor control unit 13 acquires the output angle by searching the output angle map M3 using the target torque acquired from the torque map M1 and the instantaneous rotation speed calculated by the rotation speed calculation unit 12. Here, the output angle map M3 is a map showing the relationship among the target torque of the motor 3, the rotational speed of the motor 3, and the output angle of the PWM signal, as shown in FIG. 9C.
 なお、制御部10が複数の通電方式(例えば、120°通電方式と180°通電方式)を用いて電力変換部30を制御する場合、デューティ比マップM2と出力角度マップM3は各通電方式に対応したものが用いられる。すなわち、120°通電方式を用いる場合は、120°通電方式用のデューティ比マップと出力角度マップを用いてデューティ比と出力角度が取得され、180°通電方式を用いる場合は、180°通電方式用のデューティ比マップと出力角度マップを用いてデューティ比と出力角度が取得される。 When the control unit 10 controls the power conversion unit 30 using a plurality of energization methods (for example, 120 ° energization method and 180 ° energization method), the duty ratio map M2 and the output angle map M3 correspond to each energization method. Used. That is, when the 120 ° energization method is used, the duty ratio and the output angle are obtained using the duty ratio map and the output angle map for the 120 ° energization method, and when the 180 ° energization method is used, the 180 ° energization method is used. The duty ratio and the output angle are acquired using the duty ratio map and the output angle map.
 上記のようにして取得されたデューティ比を有するPWM信号が、上記のようにして取得された出力角度で電力変換部30に出力され、半導体スイッチQ1~Q6がオンオフ制御される。これにより、モータ3は所望のトルクを発生するように制御される。 The PWM signal having the duty ratio acquired as described above is output to the power conversion unit 30 at the output angle acquired as described above, and the semiconductor switches Q1 to Q6 are on / off controlled. Thereby, the motor 3 is controlled to generate a desired torque.
 次に、図10および図11を参照して、モータ制御部13によるデューティ比の瞬時的な補正について詳しく説明する。 Next, the instantaneous correction of the duty ratio by the motor control unit 13 will be described in detail with reference to FIG. 10 and FIG.
 モータ制御部13は、回転速度算出部12により算出される瞬時回転速度の変化量が規定値以上の場合に、瞬時回転速度に基づいてPWM信号のデューティ比を補正する。詳しくは後述するが、デューティ比は、インバータ(電力変換部30)の出力電圧が瞬時回転速度に応じた値になるように補正される。すなわち、インバータの出力電圧がモータ誘起電圧に応じた値になるようにデューティ比が補正される。 The motor control unit 13 corrects the duty ratio of the PWM signal based on the instantaneous rotation speed when the change amount of the instantaneous rotation speed calculated by the rotation speed calculation unit 12 is equal to or greater than a specified value. As will be described in detail later, the duty ratio is corrected so that the output voltage of the inverter (power conversion unit 30) becomes a value corresponding to the instantaneous rotation speed. That is, the duty ratio is corrected so that the output voltage of the inverter becomes a value corresponding to the motor induced voltage.
 図10に示す例では、時刻t1まで、インバータの出力電圧とモータ誘起電圧(モータ3の回転により誘起される電圧)との差(以下、単に「電圧差」という。)はV0であった。その後、時刻t1から瞬時回転速度が瞬時的に低下し、時刻t2において瞬時回転速度の低下量が規定値Δn1に達した。瞬時回転速度の低下に伴ってモータ誘起電圧が低下する結果、図10に示すように、時刻t1からt2の間は電圧差が一時的に拡大する。 In the example shown in FIG. 10, until time t1, the difference between the output voltage of the inverter and the motor induced voltage (voltage induced by the rotation of the motor 3) (hereinafter simply referred to as “voltage difference”) was V0. Thereafter, the instantaneous rotational speed decreased instantaneously from time t1, and the amount of decrease in the instantaneous rotational speed reached the specified value Δn1 at time t2. As a result of the motor induced voltage decreasing with the decrease in the instantaneous rotational speed, the voltage difference temporarily increases between times t1 and t2, as shown in FIG.
 しかし、瞬時回転速度の低下量が規定値Δn1に達すると、モータ制御部13は、瞬時回転速度に基づいてPWM信号のデューティ比を補正する。補正されたデューティ比のPWM信号でインバータを駆動することで、図10に示すように、インバータの出力電圧は低下するため、電圧差が縮小する(定常状態では電圧差はV1となる)。このようにデューティ比を瞬時的に補正することにより電圧差の拡大が抑制されるため、目標トルクに整合した電流がモータ3に流れることになり、出力トルクが過大になることを抑制できる。 However, when the amount of decrease in the instantaneous rotational speed reaches the specified value Δn1, the motor control unit 13 corrects the duty ratio of the PWM signal based on the instantaneous rotational speed. By driving the inverter with the PWM signal having the corrected duty ratio, as shown in FIG. 10, the output voltage of the inverter is lowered, so that the voltage difference is reduced (the voltage difference is V1 in the steady state). Since the voltage difference is suppressed from increasing by instantaneously correcting the duty ratio in this way, a current that matches the target torque flows to the motor 3 and the output torque can be prevented from becoming excessive.
 瞬時回転速度が上昇する場合も同様である。図10に示す例では、時刻t3まで電圧差はV1であった。その後、時刻t3から瞬時回転速度が瞬時的に上昇し、時刻t4において瞬時回転速度の上昇量が規定値Δn2に達した。瞬時回転速度の上昇に伴ってモータ誘起電圧も上昇する結果、時刻t3からt4の間は電圧差が一時的に縮小する。 The same applies when the instantaneous rotation speed increases. In the example shown in FIG. 10, the voltage difference was V1 until time t3. Thereafter, the instantaneous rotation speed increased instantaneously from time t3, and the increase amount of the instantaneous rotation speed reached the specified value Δn2 at time t4. As the instantaneous rotational speed increases, the motor induced voltage also increases. As a result, the voltage difference temporarily decreases between times t3 and t4.
 しかし、瞬時回転速度の上昇量が規定値Δn2に達すると、モータ制御部13は、瞬時回転速度に基づいてPWM信号のデューティ比を補正する。補正されたデューティ比のPWM信号でインバータを駆動することで、図10に示すように、インバータの出力電圧は上昇するため、電圧差が拡大する(定常状態では電圧差はV2となる)。これにより、目標トルクに整合した電流がモータ3に流れることになり、出力トルクが過小になることを抑制できる。 However, when the increase amount of the instantaneous rotational speed reaches the specified value Δn2, the motor control unit 13 corrects the duty ratio of the PWM signal based on the instantaneous rotational speed. By driving the inverter with the PWM signal having the corrected duty ratio, as shown in FIG. 10, the output voltage of the inverter rises, so that the voltage difference increases (the voltage difference becomes V2 in the steady state). As a result, a current that matches the target torque flows through the motor 3, and the output torque can be suppressed from becoming too small.
 なお、規定値Δn1と規定値Δn2は、本実施形態では、カウント数の変化量で定められる。例えば、図7において、センサ信号S1とセンサ信号S2との間にカウントされたカウント数が、センサ信号S2とセンサ信号S3との間にカウントされたカウント数よりも規定値以上多い(または少ない)場合に、デューティ比の瞬時的な補正が行われる。 In the present embodiment, the specified value Δn1 and the specified value Δn2 are determined by the amount of change in the count number. For example, in FIG. 7, the count number counted between the sensor signal S1 and the sensor signal S2 is more than a specified value (or less) than the count number counted between the sensor signal S2 and the sensor signal S3. In this case, instantaneous correction of the duty ratio is performed.
 次に、図11を参照して、線形補間による、デューティ比の瞬時的な補正の方法について説明する。瞬時回転速度と、補正されたデューティ比との関係を示す特性直線Lを用いる。この特性直線Lは、点Aと点Bを結ぶ直線である。ここで、点Aは、平均回転速度Navを中心とした回転速度範囲Rの下限値X1と、下限値X1の瞬時回転速度に対応するデューティ比Y1とで規定される点である。平均回転速度Navは、モータ3が一回転する時間から算出される回転速度である。点Bは、回転速度範囲Rの上限値X2と、上限値X2の瞬時回転速度に対応するデューティ比Y2とで規定される点である。 Next, a method for instantaneously correcting the duty ratio by linear interpolation will be described with reference to FIG. A characteristic line L indicating the relationship between the instantaneous rotation speed and the corrected duty ratio is used. The characteristic line L is a straight line connecting the points A and B. Here, the point A is a point defined by the lower limit value X1 of the rotation speed range R centering on the average rotation speed Nav and the duty ratio Y1 corresponding to the instantaneous rotation speed of the lower limit value X1. The average rotation speed Nav is a rotation speed calculated from the time for which the motor 3 rotates once. Point B is a point defined by an upper limit value X2 of the rotation speed range R and a duty ratio Y2 corresponding to the instantaneous rotation speed of the upper limit value X2.
 なお、デューティ比Y1,Y2は、デューティ比マップM2から取得される。すなわち、デューティ比Y1は、下限値X1の瞬時回転速度と、その時点での目標トルクを用いてデューティ比マップM2を検索することにより取得され、デューティ比Y2は、上限値X2の瞬時回転速度と、その時点での目標トルクを用いてデューティ比マップM2を検索することにより取得される。 The duty ratios Y1 and Y2 are acquired from the duty ratio map M2. That is, the duty ratio Y1 is obtained by searching the duty ratio map M2 using the instantaneous rotation speed at the lower limit value X1 and the target torque at that time, and the duty ratio Y2 is obtained by calculating the instantaneous rotation speed at the upper limit value X2. Then, it is acquired by searching the duty ratio map M2 using the target torque at that time.
 回転速度範囲Rについては、以下の関係式が成り立っている。 
      X1 = Nav - f     ・・・(3)
      X2 = Nav + f     ・・・(4)
 ここで、fはモータ3の瞬時回転速度の変動幅である。
For the rotation speed range R, the following relational expression holds.
X1 = Nav−f (3)
X2 = Nav + f (4)
Here, f is the fluctuation range of the instantaneous rotation speed of the motor 3.
 変動幅fは、電動車両100が走行する路面の状態やアングルセンサ4の精度等に起因して瞬時回転速度が平均回転速度Navから乖離する最大の値である。この変動幅fは、例えば500rpmである。このようにモータ3の瞬時回転速度の変動幅fを考慮して回転速度範囲Rを定めることにより、路面状態の変動やアングルセンサ4の精度等によって瞬時回転速度が大きく変動した場合にも、確実に線形補間を行い、デューティ比を瞬時的に補正することができる。 The fluctuation range f is the maximum value at which the instantaneous rotational speed deviates from the average rotational speed Nav due to the condition of the road surface on which the electric vehicle 100 travels, the accuracy of the angle sensor 4, and the like. The fluctuation range f is, for example, 500 rpm. Thus, by defining the rotation speed range R in consideration of the fluctuation range f of the instantaneous rotation speed of the motor 3, even when the instantaneous rotation speed fluctuates greatly due to changes in road surface conditions, the accuracy of the angle sensor 4, etc. The linear interpolation can be performed to correct the duty ratio instantaneously.
 特性直線Lは、回転速度算出部12により平均回転速度が算出されるたびに更新される。すなわち、平均回転速度が算出されるたびに、回転速度範囲Rを更新し、回転速度範囲Rの下限値および上限値の瞬時回転速度に対応するデューティ比をそれぞれ、トルクマップM1とデューティ比マップM2を用いて求めることで特性直線Lを更新する。これにより、電動車両100の走行状態に適合した特性直線Lを用いた線形補間を行うことができ、デューティ比の瞬時補正の精度を高く維持することができるようになる。 The characteristic line L is updated every time the average rotation speed is calculated by the rotation speed calculation unit 12. That is, every time the average rotation speed is calculated, the rotation speed range R is updated, and the duty ratios corresponding to the instantaneous rotation speeds of the lower limit value and the upper limit value of the rotation speed range R are respectively set in the torque map M1 and the duty ratio map M2. The characteristic straight line L is updated by obtaining using. Thereby, linear interpolation using the characteristic straight line L suitable for the running state of the electric vehicle 100 can be performed, and the accuracy of instantaneous correction of the duty ratio can be maintained high.
 なお、アクセルポジションセンサ5から受信されるアクセル操作量の変化に合わせて特性直線Lを更新してもよい。これにより、デューティ比をより高精度に補正することができる。 Note that the characteristic line L may be updated in accordance with the change in the accelerator operation amount received from the accelerator position sensor 5. Thereby, the duty ratio can be corrected with higher accuracy.
 本実施形態では、点Aと点Bを結ぶ特性直線Lを用いて線形補間を行い、デューティ比を補正する。すなわち、図11に示すように、回転速度算出部12により算出された瞬時回転速度Nmに対応する特性直線Lの値が、補正されたデューティ比として求められる。線形補間は、回転速度算出部12により瞬時回転速度が算出されるたびに行われる。 In this embodiment, linear interpolation is performed using the characteristic straight line L connecting the points A and B, and the duty ratio is corrected. That is, as shown in FIG. 11, the value of the characteristic line L corresponding to the instantaneous rotation speed Nm calculated by the rotation speed calculation unit 12 is obtained as the corrected duty ratio. Linear interpolation is performed every time the rotational speed calculation unit 12 calculates the instantaneous rotational speed.
 以上説明したように、本実施形態に係る電動車両制御装置1では、信号受信部11が、モータ3が一回転する間にアングルセンサ4から複数出力されるセンサ信号であり且つモータ3の回転速度に応じた間隔で到来するセンサ信号を受信し、回転速度算出部12が、センサ信号S1とセンサ信号S2との間の信号間隔ΔTに基づいてモータ3の瞬時回転速度を算出し、モータ制御部13が、算出された瞬時回転速度の変化量が規定値以上の場合、瞬時回転速度に基づいてPWM信号のデューティ比を補正する。デューティ比は、電力変換部30(インバータ)の出力電圧が瞬時回転速度(すなわち、モータ誘起電圧)に応じた値になるように補正される。すなわち、モータ3の回転速度の瞬時的な変動に応じてPWM信号のデューティ比を瞬時的に補正することで、インバータとモータ誘起電圧との間の電圧差が目標トルクに基づく値から乖離しないようにする。これにより、本実施形態によれば、路面状態に応じてモータ3に加わる外力により回転速度が瞬時的に変動した場合であっても、モータ3の出力トルクの変動を抑制し、適切なモータ制御を行うことができる。 As described above, in the electric vehicle control device 1 according to the present embodiment, the signal receiving unit 11 is a sensor signal output from the angle sensor 4 while the motor 3 makes one rotation, and the rotation speed of the motor 3. The rotation speed calculation unit 12 calculates the instantaneous rotation speed of the motor 3 based on the signal interval ΔT between the sensor signal S1 and the sensor signal S2, and receives a sensor signal that arrives at an interval according to the motor control unit. 13 corrects the duty ratio of the PWM signal based on the instantaneous rotational speed when the calculated change amount of the instantaneous rotational speed is equal to or greater than a specified value. The duty ratio is corrected so that the output voltage of the power conversion unit 30 (inverter) becomes a value corresponding to the instantaneous rotation speed (that is, the motor induced voltage). That is, the duty ratio of the PWM signal is instantaneously corrected according to instantaneous fluctuations in the rotation speed of the motor 3 so that the voltage difference between the inverter and the motor induced voltage does not deviate from the value based on the target torque. To. Thereby, according to this embodiment, even if it is a case where a rotational speed fluctuates instantaneously with the external force added to the motor 3 according to a road surface state, the fluctuation | variation of the output torque of the motor 3 is suppressed, and appropriate motor control is performed. It can be performed.
<電動車両制御方法>
 次に、図12のフローチャートを参照して、本実施形態に係る電動車両制御方法の一例について説明する。なお、カウント数は事前に初期化されているものとする。
<Electric vehicle control method>
Next, an example of the electric vehicle control method according to the present embodiment will be described with reference to the flowchart of FIG. It is assumed that the count number has been initialized in advance.
 信号受信部11は、モニタ時間間隔Δtmが経過したかどうかを判定する(ステップS11)。モニタ時間間隔Δtmが経過した場合(S11:Yes)、アングルセンサ4からセンサ信号を受信したかどうかを判定する(ステップS12)。センサ信号を受信してない場合(S12:No)、カウント数を1つ増やして(ステップS13)、ステップS11に戻る。 The signal receiving unit 11 determines whether or not the monitor time interval Δtm has elapsed (step S11). When the monitoring time interval Δtm has elapsed (S11: Yes), it is determined whether a sensor signal has been received from the angle sensor 4 (step S12). When the sensor signal is not received (S12: No), the count number is increased by 1 (step S13), and the process returns to step S11.
 一方、センサ信号を受信している場合(S12:Yes)、回転速度算出部12は、センサ信号S1とセンサ信号S2との間にカウントされたカウント数に基づいてモータ3の瞬時回転速度を算出する(ステップS14)。そして、回転速度算出部12は、カウント数を初期値にリセットする(ステップS15)。なお、カウント数のリセットはステップS15~S19のいずれのタイミングで行ってもよい。 On the other hand, when the sensor signal is received (S12: Yes), the rotation speed calculation unit 12 calculates the instantaneous rotation speed of the motor 3 based on the count number counted between the sensor signal S1 and the sensor signal S2. (Step S14). Then, the rotation speed calculation unit 12 resets the count number to an initial value (step S15). The count number may be reset at any timing of steps S15 to S19.
 次に、モータ制御部13は、ステップS14で算出された瞬時回転速度と、アクセルポジションセンサ5から受信したアクセル操作量に基づいて、PWM信号のデューティ比と出力角度を求める(ステップS16)。具体的には、図8を参照して説明したように、トルクマップM1、デューティ比マップM2および出力角度マップM3を用いることでPWM信号のデューティ比と出力角度を求める。 Next, the motor control unit 13 obtains the duty ratio and output angle of the PWM signal based on the instantaneous rotation speed calculated in step S14 and the accelerator operation amount received from the accelerator position sensor 5 (step S16). Specifically, as described with reference to FIG. 8, the duty ratio and output angle of the PWM signal are obtained by using the torque map M1, the duty ratio map M2, and the output angle map M3.
 次に、モータ制御部13は、ステップS14で算出された瞬時回転速度の変化量が規定値以上であるか否かを判定する(ステップS17)。本ステップの判定は、例えば、今回のカウント数(センサ信号S1とセンサ信号S2との間のカウント数)が、前回のカウント数(センサ信号S2とセンサ信号S3との間のカウント数)よりも規定値以上多いか(または少ないか)を判定することにより行われる。 Next, the motor control unit 13 determines whether or not the amount of change in the instantaneous rotation speed calculated in step S14 is equal to or greater than a specified value (step S17). In this step, for example, the current count (the count between the sensor signal S1 and the sensor signal S2) is greater than the previous count (the count between the sensor signal S2 and the sensor signal S3). This is done by determining whether it is greater (or less) than a specified value.
 そして、瞬時回転速度の変化量が規定値以上の場合(S17:Yes)、ステップS16で求められたデューティ比を補正する(ステップS18)。本ステップの補正は、例えば、前述の特性直線Lを用いた線形補間により行われる。その後、補正されたデューティ比を有するPWM信号をインバータに送信してモータ3を制御する(ステップS19)。 If the change amount of the instantaneous rotation speed is equal to or greater than the specified value (S17: Yes), the duty ratio obtained in step S16 is corrected (step S18). The correction in this step is performed by, for example, linear interpolation using the characteristic line L described above. Thereafter, the PWM signal having the corrected duty ratio is transmitted to the inverter to control the motor 3 (step S19).
 一方、瞬時回転速度の変化量が規定値未満の場合(S17:No)、デューティ比を補正することなく、ステップS19に進み、ステップS16で求められたデューティ比のPWM信号をインバータに送信する。 On the other hand, when the change amount of the instantaneous rotational speed is less than the specified value (S17: No), the process proceeds to step S19 without correcting the duty ratio, and the PWM signal having the duty ratio obtained in step S16 is transmitted to the inverter.
 上記の駆動方法によれば、路面状態に応じてモータ3に加わる外力により回転速度が瞬時的に変動した場合であっても、モータ3の出力トルクの変動を抑制し、適切なモータ制御を行うことができる。 According to the above driving method, even when the rotation speed fluctuates instantaneously due to the external force applied to the motor 3 according to the road surface state, the fluctuation of the output torque of the motor 3 is suppressed and appropriate motor control is performed. be able to.
 なお、上記の処理フローではカウント数を用いたが、センサ信号の受信時刻を用いて信号間隔を算出し、瞬時回転速度を算出してもよい。また、センサ信号を受信していない場合(S12:No)に、直近のアクセル操作量と、前回算出された瞬時回転速度とを用いてデューティ比マップM2からデューティ比を取得してもよい。そして、取得されたデューティ比を用いて特性直線Lを更新したり、電力変換部30に送信するPWM信号を更新してもよい。 In the above processing flow, the count number is used, but the signal interval may be calculated using the reception time of the sensor signal to calculate the instantaneous rotation speed. Further, when the sensor signal is not received (S12: No), the duty ratio may be acquired from the duty ratio map M2 using the latest accelerator operation amount and the instantaneous rotation speed calculated last time. Then, the characteristic straight line L may be updated using the acquired duty ratio, or the PWM signal transmitted to the power conversion unit 30 may be updated.
 電動車両には、モータ3が車輪8を直接駆動するもので(いわゆるダイレクトドライブ方式)、いわゆるハブダンパーが設けられないものがある。本発明は、このような電動車両に適用することも可能である。また、この場合、モータ制御部13は、図13に示すように、電動車両100の始動時(低回転時)において、PWM信号のデューティ比を徐々に上昇させることが好ましい。これにより、ダイレクトドライブ方式の場合であっても、電動車両100をスムーズに発進させることができる。 In some electric vehicles, the motor 3 directly drives the wheels 8 (a so-called direct drive system), and a so-called hub damper is not provided. The present invention can also be applied to such an electric vehicle. In this case, it is preferable that the motor control unit 13 gradually increase the duty ratio of the PWM signal when the electric vehicle 100 is started (at the time of low rotation) as shown in FIG. Thereby, even if it is a case of a direct drive system, the electric vehicle 100 can be started smoothly.
 上述した実施形態で説明した電動車両制御装置1(制御部10)の少なくとも一部は、ハードウェアで構成してもよいし、ソフトウェアで構成してもよい。ソフトウェアで構成する場合には、制御部10の少なくとも一部の機能を実現するプログラムをフレキシブルディスクやCD-ROM等の記録媒体に収納し、コンピュータに読み込ませて実行させてもよい。記録媒体は、磁気ディスクや光ディスク等の着脱可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記録媒体でもよい。 At least a part of the electric vehicle control device 1 (control unit 10) described in the above-described embodiment may be configured by hardware or software. When configured by software, a program for realizing at least a part of the functions of the control unit 10 may be stored in a recording medium such as a flexible disk or a CD-ROM, and read and executed by a computer. The recording medium is not limited to a removable medium such as a magnetic disk or an optical disk, but may be a fixed recording medium such as a hard disk device or a memory.
 また、制御部10の少なくとも一部の機能を実現するプログラムを、インターネット等の通信回線(無線通信も含む)を介して頒布してもよい。さらに、同プログラムを暗号化したり、変調をかけたり、圧縮した状態で、インターネット等の有線回線や無線回線を介して、あるいは記録媒体に収納して頒布してもよい。 Further, a program that realizes at least a part of functions of the control unit 10 may be distributed via a communication line (including wireless communication) such as the Internet. Further, the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.
 上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した個々の実施形態に限定されるものではない。異なる実施形態にわたる構成要素を適宜組み合わせてもよい。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。 Based on the above description, those skilled in the art may be able to conceive additional effects and various modifications of the present invention, but the aspects of the present invention are not limited to the individual embodiments described above. . You may combine suitably the component covering different embodiment. Various additions, modifications, and partial deletions can be made without departing from the concept and spirit of the present invention derived from the contents defined in the claims and equivalents thereof.
1 電動車両制御装置
2 バッテリ
3 モータ
3r ロータ
4 アングルセンサ
4u U相アングルセンサ
4v V相アングルセンサ
4w W相アングルセンサ
5 アクセルポジションセンサ
6 アシストスイッチ
7 メータ
8 車輪
9 充電器
10 制御部
11 信号受信部
12 回転速度算出部
13 モータ制御部
20 記憶部
30 電力変換部
100 電動車両
f 変動幅
L 特性直線
M1 トルクマップ
M2 デューティ比マップ
M3 出力角度マップ
Nav 平均回転速度
Q1,Q2,Q3,Q4,Q5,Q6 半導体スイッチ
R 回転速度範囲
S1,S2,S3 センサ信号
DESCRIPTION OF SYMBOLS 1 Electric vehicle control apparatus 2 Battery 3 Motor 3r Rotor 4 Angle sensor 4u U-phase angle sensor 4v V-phase angle sensor 4w W-phase angle sensor 5 Accelerator position sensor 6 Assist switch 7 Meter 8 Wheel 9 Charger 10 Control part 11 Signal receiving part 12 rotational speed calculation unit 13 motor control unit 20 storage unit 30 power conversion unit 100 electric vehicle f fluctuation range L characteristic straight line M1 torque map M2 duty ratio map M3 output angle map Nav average rotational speed Q1, Q2, Q3, Q4, Q5 Q6 Semiconductor switch R Rotational speed range S1, S2, S3 Sensor signal

Claims (15)

  1.  負荷を駆動するモータが一回転する間に回転位置センサから複数出力される信号であり且つ前記モータの回転速度に応じた間隔で到来する信号を受信する信号受信部と、
     前記信号受信部により直近に受信された第1の信号の受信時刻と当該第1の信号の前に受信された第2の信号の受信時刻との間の信号間隔に基づいて、前記モータの瞬時回転速度を算出する回転速度算出部と、
     前記瞬時回転速度に基づいてPWM信号を生成し、前記PWM信号を前記モータに交流電力を供給する電力変換部に送信して前記モータを制御するモータ制御部と、を備え、
     前記モータ制御部は、前記瞬時回転速度の変化量が規定値以上の場合、前記瞬時回転速度に基づいて、前記PWM信号のデューティ比を、前記電力変換部の出力電圧が前記瞬時回転速度に応じた値になるように補正することを特徴とする駆動装置。
    A signal receiving unit that receives a plurality of signals output from the rotational position sensor during one rotation of the motor that drives the load and that arrives at an interval corresponding to the rotational speed of the motor;
    Based on the signal interval between the reception time of the first signal most recently received by the signal receiving unit and the reception time of the second signal received before the first signal, the instantaneous moment of the motor A rotation speed calculation unit for calculating the rotation speed;
    A motor control unit that generates a PWM signal based on the instantaneous rotation speed, transmits the PWM signal to a power conversion unit that supplies AC power to the motor, and controls the motor;
    When the amount of change in the instantaneous rotation speed is equal to or greater than a specified value, the motor control unit determines the duty ratio of the PWM signal based on the instantaneous rotation speed, and the output voltage of the power conversion unit depends on the instantaneous rotation speed. A drive device characterized in that the correction is made so as to obtain a correct value.
  2.  前記モータ制御部は、前記瞬時回転速度と補正されたデューティ比との関係を示す特性直線を用いた線形補間により前記デューティ比を補正することを特徴とする請求項1に記載の駆動装置。 2. The driving apparatus according to claim 1, wherein the motor control unit corrects the duty ratio by linear interpolation using a characteristic straight line indicating a relationship between the instantaneous rotation speed and the corrected duty ratio.
  3.  前記線形補間は、前記瞬時回転速度が算出されるたびに行われることを特徴とする請求項2に記載の駆動装置。 3. The driving apparatus according to claim 2, wherein the linear interpolation is performed every time the instantaneous rotation speed is calculated.
  4.  前記特性直線は、
     前記モータが一回転する時間から算出される平均回転速度を中心とした回転速度範囲の下限値と、前記下限値に対応するデューティ比とで規定される第1の点と、
     前記回転速度範囲の上限値と、前記上限値に対応するデューティ比とで規定される第2の点と、を結ぶ直線であることを特徴とする請求項2に記載の駆動装置。
    The characteristic line is
    A first point defined by a lower limit value of a rotation speed range centered on an average rotation speed calculated from a time during which the motor makes one rotation, and a duty ratio corresponding to the lower limit value;
    3. The drive device according to claim 2, wherein the drive device is a straight line connecting an upper limit value of the rotation speed range and a second point defined by a duty ratio corresponding to the upper limit value.
  5.  前記回転速度範囲は、前記モータの瞬時回転速度の変動幅を考慮して定められたものであることを特徴とする請求項4に記載の駆動装置。 The drive device according to claim 4, wherein the rotation speed range is determined in consideration of a fluctuation range of an instantaneous rotation speed of the motor.
  6.  前記特性直線は、前記平均回転速度が算出されるたびに更新されることを特徴とする請求項4に記載の駆動装置。 The driving apparatus according to claim 4, wherein the characteristic straight line is updated each time the average rotation speed is calculated.
  7.  前記回転速度算出部は、前記第2の信号が受信されてから前記第1の信号が受信されるまで間モニタ時間間隔ごとにカウントされたカウント数に、前記モニタ時間間隔を乗じることにより前記信号間隔を算出することを特徴とする請求項1に記載の駆動装置。 The rotation speed calculation unit is configured to multiply the count number counted for each monitoring time interval from when the second signal is received until the first signal is received by multiplying the signal by the monitoring time interval. The driving apparatus according to claim 1, wherein the interval is calculated.
  8.  前記回転速度算出部は、前記第2の信号が前記第1の信号の一つ前に受信された信号である場合、下式により前記瞬時回転速度を算出することを特徴とする請求項1に記載の駆動装置。
             n = 60000/(ΔT×Np)
     ここで、nは前記瞬時回転速度[rpm]であり、ΔTは前記信号間隔[mSec]であり、Npは前記モータが電気角で一回転する間に前記信号受信部が受信する前記信号の数を示す値である。
    The rotation speed calculation unit calculates the instantaneous rotation speed according to the following equation when the second signal is a signal received immediately before the first signal. The drive device described.
    n = 60000 / (ΔT × Np)
    Here, n is the instantaneous rotational speed [rpm], ΔT is the signal interval [mSec], and Np is the number of the signals received by the signal receiving unit while the motor makes one electrical rotation. Is a value indicating
  9.  前記モータ制御部は、前記モータの目標トルクと、前記モータの回転速度と、前記PWM信号のデューティ比との関係を示すデューティ比マップを、前記モータの目標トルクおよび前記瞬時回転速度を用いて検索することによりデューティ比を取得することを特徴とする請求項1に記載の駆動装置。 The motor control unit searches a duty ratio map indicating a relationship among the target torque of the motor, the rotational speed of the motor, and the duty ratio of the PWM signal, using the target torque of the motor and the instantaneous rotational speed. The drive device according to claim 1, wherein the duty ratio is acquired by performing the operation.
  10.  前記負荷は、電動車両の車輪であり、
     前記モータ制御部は、前記モータが前記車輪を直接駆動する場合において、前記電動車両の始動時に前記PWM信号のデューティ比を徐々に上昇させることを特徴とする請求項1に記載の駆動装置。
    The load is a wheel of an electric vehicle,
    2. The driving apparatus according to claim 1, wherein the motor control unit gradually increases a duty ratio of the PWM signal when the electric vehicle is started when the motor directly drives the wheels.
  11.  前記信号受信部が受信する前記信号は、前記モータに設けられた回転位置センサから出力されたパルス信号の立ち上がりエッジ信号または立ち下がりエッジ信号であることを特徴とする請求項1に記載の駆動装置。 2. The driving apparatus according to claim 1, wherein the signal received by the signal receiving unit is a rising edge signal or a falling edge signal of a pulse signal output from a rotational position sensor provided in the motor. .
  12.  請求項1に記載の駆動装置であって、前記負荷が電動車両の車輪である、駆動装置を備えることを特徴とする電動車両。 2. An electric vehicle according to claim 1, further comprising a drive device in which the load is a wheel of the electric vehicle.
  13.  前記車輪と前記モータがクラッチを介さずに機械的に接続されていることを特徴とする請求項12に記載の電動車両。 The electric vehicle according to claim 12, wherein the wheel and the motor are mechanically connected without a clutch.
  14.  信号受信部が、負荷を駆動するモータが一回転する間に回転位置センサから複数出力される信号であり且つ前記モータの回転速度に応じた間隔で到来する信号を受信するステップと、
     回転速度算出部が、前記信号受信部により直近に受信された第1の信号の受信時刻と当該第1の信号の前に受信された第2の信号の受信時刻との間の信号間隔に基づいて、前記モータの瞬時回転速度を算出するステップと、
     モータ制御部が、前記瞬時回転速度に基づいてPWM信号を生成し、前記PWM信号を前記モータに交流電力を供給する電力変換部に送信して前記モータを制御するステップと、を備え、
     前記モータ制御部は、前記瞬時回転速度の変化量が規定値以上の場合、前記瞬時回転速度に基づいて、前記PWM信号のデューティ比を、前記電力変換部の出力電圧が前記瞬時回転速度に応じた値になるように補正することを特徴とする駆動方法。
    A signal receiving unit that receives a plurality of signals output from the rotational position sensor while the motor driving the load makes one rotation and that arrives at an interval corresponding to the rotational speed of the motor;
    The rotation speed calculation unit is based on a signal interval between the reception time of the first signal most recently received by the signal reception unit and the reception time of the second signal received before the first signal. Calculating the instantaneous rotational speed of the motor;
    A motor control unit that generates a PWM signal based on the instantaneous rotation speed, and transmits the PWM signal to a power conversion unit that supplies AC power to the motor to control the motor, and
    When the amount of change in the instantaneous rotation speed is equal to or greater than a specified value, the motor control unit determines the duty ratio of the PWM signal based on the instantaneous rotation speed, and the output voltage of the power conversion unit depends on the instantaneous rotation speed. The driving method is characterized in that the correction is made so that the value becomes the same.
  15.  信号受信部が、負荷を駆動するモータが一回転する間に回転位置センサから複数出力される信号であり且つ前記モータの回転速度に応じた間隔で到来する信号を受信するステップと、
     回転速度算出部が、前記信号受信部により直近に受信された第1の信号の受信時刻と当該第1の信号の前に受信された第2の信号の受信時刻との間の信号間隔に基づいて、前記モータの瞬時回転速度を算出するステップと、
     モータ制御部が、前記瞬時回転速度に基づいてPWM信号を生成し、前記PWM信号を前記モータに交流電力を供給する電力変換部に送信して前記モータを制御するステップと、をコンピュータに実行させる駆動プログラムであって、
     前記モータ制御部は、前記瞬時回転速度の変化量が規定値以上の場合、前記瞬時回転速度に基づいて、前記PWM信号のデューティ比を、前記電力変換部の出力電圧が前記瞬時回転速度に応じた値になるように補正することを特徴とする駆動プログラム。
    A signal receiving unit that receives a plurality of signals output from the rotational position sensor while the motor driving the load makes one rotation and that arrives at an interval corresponding to the rotational speed of the motor;
    The rotation speed calculation unit is based on a signal interval between the reception time of the first signal most recently received by the signal reception unit and the reception time of the second signal received before the first signal. Calculating the instantaneous rotational speed of the motor;
    A motor control unit that generates a PWM signal based on the instantaneous rotation speed, and transmits the PWM signal to a power conversion unit that supplies AC power to the motor to control the motor; A driving program,
    When the amount of change in the instantaneous rotation speed is equal to or greater than a predetermined value, the motor control unit determines the duty ratio of the PWM signal based on the instantaneous rotation speed, and the output voltage of the power conversion unit according to the instantaneous rotation speed. A drive program characterized by correcting the value so as to obtain a correct value.
PCT/JP2018/012745 2018-03-28 2018-03-28 Drive device, drive method, drive program, and electric vehicle WO2019186757A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/012745 WO2019186757A1 (en) 2018-03-28 2018-03-28 Drive device, drive method, drive program, and electric vehicle
JP2020510290A JP6972305B2 (en) 2018-03-28 2018-03-28 Drive device, drive method, drive program and electric vehicle
CN201880091312.4A CN111869090B (en) 2018-03-28 2018-03-28 Driving device, driving method, driving program, and electric vehicle
TW108110614A TWI702338B (en) 2018-03-28 2019-03-27 Driving device, driving method, driving program and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012745 WO2019186757A1 (en) 2018-03-28 2018-03-28 Drive device, drive method, drive program, and electric vehicle

Publications (1)

Publication Number Publication Date
WO2019186757A1 true WO2019186757A1 (en) 2019-10-03

Family

ID=68059544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012745 WO2019186757A1 (en) 2018-03-28 2018-03-28 Drive device, drive method, drive program, and electric vehicle

Country Status (4)

Country Link
JP (1) JP6972305B2 (en)
CN (1) CN111869090B (en)
TW (1) TWI702338B (en)
WO (1) WO2019186757A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163281A (en) * 1986-12-26 1988-07-06 Koyo Denshi Kogyo Kk Digital speed indicator
JPH09243668A (en) * 1996-03-12 1997-09-19 Toshiba Corp Method and device for measuring instantaneous valve of pulse signal
JP2003348876A (en) * 2002-05-22 2003-12-05 Toshiba Corp Inverter, semiconductor integrated circuit, and multiplier
JP2007330037A (en) * 2006-06-07 2007-12-20 Sharp Corp Controller and control method
JP2013179833A (en) * 2007-12-10 2013-09-09 Panasonic Corp Electric compressor and household electrical appliance
US20160320205A1 (en) * 2015-04-29 2016-11-03 Freescale Semiconductor, Inc. Counter based circuit for measuring movement of an object

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3572038B2 (en) * 2001-08-30 2004-09-29 三菱電機株式会社 Steering control device
US6534938B1 (en) * 2001-09-28 2003-03-18 Delta Electronics Inc. Method and apparatus for driving a sensorless BLDC motor at PWM operation mode
WO2016098244A1 (en) * 2014-12-19 2016-06-23 日本精工株式会社 Motor control device and electric power steering device using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163281A (en) * 1986-12-26 1988-07-06 Koyo Denshi Kogyo Kk Digital speed indicator
JPH09243668A (en) * 1996-03-12 1997-09-19 Toshiba Corp Method and device for measuring instantaneous valve of pulse signal
JP2003348876A (en) * 2002-05-22 2003-12-05 Toshiba Corp Inverter, semiconductor integrated circuit, and multiplier
JP2007330037A (en) * 2006-06-07 2007-12-20 Sharp Corp Controller and control method
JP2013179833A (en) * 2007-12-10 2013-09-09 Panasonic Corp Electric compressor and household electrical appliance
US20160320205A1 (en) * 2015-04-29 2016-11-03 Freescale Semiconductor, Inc. Counter based circuit for measuring movement of an object

Also Published As

Publication number Publication date
TWI702338B (en) 2020-08-21
CN111869090A (en) 2020-10-30
JP6972305B2 (en) 2021-11-24
TW201942466A (en) 2019-11-01
JPWO2019186757A1 (en) 2021-02-12
CN111869090B (en) 2023-11-03

Similar Documents

Publication Publication Date Title
JP4896562B2 (en) Electric drive control device and electric drive control method
JP7162654B2 (en) Driving device, electric vehicle, and driving device control method
JP6972305B2 (en) Drive device, drive method, drive program and electric vehicle
JP4839119B2 (en) Electric drive control device and electric drive control method
JP2010193549A (en) Control system for alternating-current motors
TWI689427B (en) Driving device, driving method, driving program and electric vehicle
WO2019186758A1 (en) Drive device, drive method, drive program, and electric vehicle
JP6950409B2 (en) Drive device
CN111225818B (en) Electric vehicle, electric vehicle control device, and electric vehicle control method
CN111051119B (en) Electric vehicle control device, control method, storage medium, and electric vehicle
JP6862562B2 (en) Electric vehicle control device, electric vehicle control method, electric vehicle control program and electric vehicle
JP7127115B2 (en) Driving device, electric vehicle, and driving device control method
JP2022037281A (en) Control apparatus and control method
JP7135069B2 (en) Driving device, electric vehicle, and driving device control method
JP2001103783A (en) Motor controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510290

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912243

Country of ref document: EP

Kind code of ref document: A1