WO2019186746A1 - Led display system, led display control device, and led display device - Google Patents

Led display system, led display control device, and led display device Download PDF

Info

Publication number
WO2019186746A1
WO2019186746A1 PCT/JP2018/012654 JP2018012654W WO2019186746A1 WO 2019186746 A1 WO2019186746 A1 WO 2019186746A1 JP 2018012654 W JP2018012654 W JP 2018012654W WO 2019186746 A1 WO2019186746 A1 WO 2019186746A1
Authority
WO
WIPO (PCT)
Prior art keywords
led display
correction coefficient
unit
led
sub
Prior art date
Application number
PCT/JP2018/012654
Other languages
French (fr)
Japanese (ja)
Inventor
勲 米岡
浅村 吉範
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/012654 priority Critical patent/WO2019186746A1/en
Publication of WO2019186746A1 publication Critical patent/WO2019186746A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present invention includes an LED display control device and an LED display device that displays video by controlling blinking of individual LEDs (Light Emitting Diodes) based on video signals distributed from the LED display control device.
  • the present invention relates to an LED display system provided, and more particularly to an LED brightness control technique.
  • the LED display device includes a plurality of LEDs as display pixels, and is widely used for advertisement display indoors and outdoors due to the technological development and cost reduction of the LEDs.
  • LED display devices have mainly displayed moving images such as natural images and animations.
  • the viewing distance is shortened as the pixel pitch becomes narrower, so conferences and monitoring are possible in indoor applications. It is also used for such applications.
  • LED display devices often display images that are close to still images input from, for example, a personal computer.
  • LEDs of three primary colors of R, G, and B are used as display pixels of the LED display device.
  • color tone is expressed by PWM (Pulse Width Modulation) control of the light emission time of each of the R, G, and B LEDs.
  • PWM Pulse Width Modulation
  • the LED consumes the maximum power in the lighting state and consumes almost no power in the non-lighting state, for example, in the case of a 20% gray signal with respect to a full-bit all white signal, the power consumption of the LED is about 20%.
  • power consumption varies greatly depending on the content of the video signal.
  • the full-bit all white signal the R, G, and B color LEDs emit light at a duty ratio of 100%
  • the R, G, and B color LEDs emit light at a duty ratio of 20%.
  • Patent Document 1 discloses a display device that realizes power saving by suppressing an increase in power supply capacity.
  • the current value flowing through the display panel is predicted based on the input video signal.
  • the display device performs video signal processing for correcting the contrast and brightness of the image, and the current value flowing through the display panel reaches a predetermined maximum value. Control not to exceed the value.
  • a large screen is configured using a plurality of LED display devices. For example, a full HD (1920 ⁇ 1080 pixels) image is displayed by combining an LED display device of 320 ⁇ 180 pixels with a total of 36 units of 6 units in the horizontal direction and 6 units in the vertical direction. Each LED display device consumes the maximum power when displaying a full-bit all white signal, and the amount of power consumption becomes a rated value. Therefore, in the system having the FullHD resolution as described above, it is necessary to prepare a power capacity equivalent to the power consumption amount of the LED display device ⁇ 36 units.
  • Patent Document 1 controls power consumption by adjusting the dynamic range of the entire video from the total or average value of one frame of the video signal displayed on the monitor.
  • the present invention provides an LED display system including an LED display control device and an LED display device that displays an image based on a video signal distributed from the LED display control device. It aims at suppressing the power consumption for every display system, and the power consumption of the whole LED display system.
  • the LED display system supplies power to n (n is an integer of 2 or more) sub-display systems each having a plurality of LED display devices and to the plurality of LED display devices included in each of the sub-display systems.
  • N power supply devices to supply, and at least one LED display control device that distributes video signals to the plurality of LED display devices of each of the sub-display systems, and at least one LED display control
  • the apparatus calculates an average luminance value of pixels in a display area included in each of the sub display systems in the video signal, and based on the average luminance value, power consumption of each of the sub display systems is equal to or less than a predetermined value.
  • N sub-area correction coefficient calculating units for calculating a luminance correction coefficient for each display area for correcting the luminance of the video signal so that An average luminance value of pixels of one entire screen in the video signal is calculated, and based on the average luminance value, the power consumption of the n sub-display systems as a whole is less than or equal to a predetermined value. Based on the calculation results of the entire area correction coefficient calculation unit for calculating the luminance correction coefficient for the entire screen, n sub-area correction coefficient calculation units, and the entire area correction coefficient calculation unit for correcting the luminance.
  • a common correction coefficient calculation unit that calculates a common luminance correction coefficient, and a video signal distribution unit that distributes the video signal and the common luminance correction coefficient to the plurality of LED display devices included in the n sub display systems.
  • Each of the LED display devices includes a plurality of LEDs serving as display pixels and the video signal distribution based on the common luminance correction coefficient distributed from the video signal distribution unit.
  • a luminance adjusting unit that adjusts the luminance of the video signal distributed from the LED, and an LED driving unit that drives the plurality of LEDs based on the video signal whose luminance is adjusted by the luminance adjusting unit. is there.
  • the LED display device can display an image based on a common luminance correction coefficient calculated based on the luminance correction coefficient for each display area and the luminance correction coefficient for the entire screen calculated in the LED display control apparatus. Since the luminance of the signal is adjusted, it is possible to suppress power consumption for each sub display system and power consumption of the entire LED display system.
  • FIG. 1 is a configuration diagram of an LED display system according to Embodiment 1.
  • FIG. It is a block diagram which shows an example of a structure of a unit LED unit. It is a block diagram which shows an example of a structure of a LED display control apparatus. It is a timing chart of the signal processing in an LED display system. It is explanatory drawing for demonstrating the display pattern of a LED display system. It is a block diagram of LED display system 300A which concerns on Embodiment 2.
  • FIG. It is explanatory drawing for demonstrating the timing which calculates a common luminance correction coefficient based on the average luminance value input via the signal line. It is a circuit diagram around the average luminance value communication unit.
  • Embodiment 1 of the present invention will be described below with reference to the drawings.
  • FIG. 1 is a configuration diagram of an LED display system 300.
  • the LED display system 300 includes an LED unit 101, an LED display control device 200, and power supply devices 301, 302, and 303.
  • the LED unit 101 displays a video based on a video signal distributed from the LED display control device 200.
  • the LED unit 101 includes a plurality of LED display devices (hereinafter also referred to as “unit LED units”) 100, and one LED display unit 5 (see FIG. 2) included in each of the plurality of unit LED units 100 has one unit.
  • the screen is configured.
  • the LED unit 101 includes one unit LED unit 100 of a total of 18 units of 6 units in the horizontal direction ⁇ 3 units in the vertical direction.
  • the unit LED unit 100 is indicated by an outer square frame and an inner square frame, the outer square frame indicates the whole, and the inner square frame indicates a portion that handles an electric signal.
  • the pixel configuration of the unit LED unit 100 is 320 pixels in the horizontal direction ⁇ 180 pixels in the vertical direction, and the LED unit 101 displays Full HD (1920 ⁇ 1080 pixels) by the unit LED unit 100 of 18 units.
  • power is supplied to the LED unit 101 from three units of power supply devices 301, 302, and 303. Specifically, power is supplied from each power supply device 301, 302, 303 to a total of 6 unit LED units 100.
  • the LED display control device 200 performs distribution of video signals to the LED unit 101 and control of the LED unit 101.
  • the LED display control device 200 controls the plurality of unit LED units 100
  • the plurality of unit LED units 100 are divided into three sub display systems, and a video signal and a control signal from the control device 200 are divided.
  • Each sub-display system has 6 unit LED units 100. The method by which the LED display control device 200 controls each unit LED unit 100 will be described in detail later.
  • FIG. 2 is a block diagram showing an example of the configuration of the unit LED unit 100 according to Embodiment 1 of the present invention.
  • the unit LED unit 100 includes a video input terminal 2, a video output terminal 3, an input circuit 51, a video signal processing circuit 4, a frame memory 50, a luminance adjustment unit 5, an LED drive unit 6, and an LED display unit. 7, a microcomputer 8, a memory 9, a control terminal 10, a power input terminal 11, a power output terminal 12, and a power circuit 52.
  • the power supplied from the power supply device 301 is supplied to the power circuit 52 in the unit LED unit 100 via the power input terminal 11 of each unit LED unit 100, and each circuit in the unit LED unit 100 via the power circuit 52. Is supplied with power. Further, the power supplied through the power input terminal 11 is supplied to the unit LED unit 100 at the next stage through the power output terminal 12, whereby a daisy chain of power supply is performed.
  • the video signal is converted into a serial signal and output, and input to the video input terminal 2.
  • the serial signal input via the video input terminal 2 is decoded and output to the video signal processing circuit 4, and further, the serial signal is buffered and output via the video output terminal 3.
  • the video signal output from the video output terminal 3 is connected to the video input terminal 2 of each unit LED unit 100 in the next stage as a daisy chain signal.
  • the video signal processing circuit 4 uses the frame memory 50 to perform signal processing such as processing for selecting an area necessary for display from the video signal decoded by the input circuit 51.
  • the luminance adjusting unit 5 adjusts the luminance of the video signal that has been subjected to signal processing by the video signal processing circuit 4 based on a luminance correction coefficient distributed from the LED display control device 200, which will be described later.
  • the LED driving unit 6 PWM drives the LED display unit 7 based on the video signal whose luminance has been adjusted by the luminance adjusting unit 5.
  • the LED display unit 7 is configured by arranging LEDs 1 serving as display pixels in a matrix of 320 horizontal pixels ⁇ 360 vertical pixels.
  • the LED 1 includes three red (R), green (G), and blue (B) LEDs per pixel.
  • the LED display unit 7 is driven by the LED driving unit 6 based on the video signal, and displays an image.
  • the control terminal 10 is an input / output terminal for a communication control signal between the LED display control device 200 and the unit LED unit 100.
  • the microcomputer 8 controls the video signal processing circuit 4, the luminance adjustment unit 5, and the LED driving unit 6, and stores setting information distributed from the LED display control device 200 through the control terminal 10 in the memory 9.
  • FIG. 3 is a block diagram showing an example of the configuration of the LED display control device 200 according to Embodiment 1 of the present invention.
  • the LED display control device 200 includes a video input terminal 30, a video signal processing circuit 31, a video signal distribution unit 34, a memory 35, a control circuit 33, video output terminals 17, 18 and 19, and a control terminal 21. , 22, 23, and an external terminal 20, an external synchronization signal input / output terminal 36, an average luminance value communication unit 43, and an average luminance value input / output terminal 42.
  • a video signal from an external device such as a PC is input to the video input terminal 30.
  • the video signal processing circuit 31 performs video signal processing such as gamma correction of the video signal input from the video input terminal 30.
  • the video signal distribution unit 34 divides the video signal that has been subjected to signal processing by the video signal processing circuit 31 and distributes it to the LED unit 101 via the video output terminals 17 to 19. In this case, the video signal is converted to a serial signal and output in order to reduce the number of signal lines constituting the transmission path.
  • the video signal processing circuit 31 has a function of synchronizing with an external synchronization signal input / output from the external synchronization signal input / output terminal 36.
  • the operation of the external synchronization function will be described in detail later.
  • the control circuit 33 includes an overall area correction coefficient calculation unit 37, a first sub area correction coefficient calculation unit 38, a second sub area correction coefficient calculation unit 39, a third sub area correction coefficient calculation unit 40, a common correction coefficient calculation unit 41, An external communication unit 26, a communication unit 27, and a setting unit 28 are provided.
  • the external communication unit 26 receives a control signal for controlling the LED display control device 200 and the unit LED unit 100 input from an external device such as a PC via the external terminal 20.
  • the received control signal is stored in the setting unit 28 as a control parameter of the control circuit 33.
  • the communication unit 27 transmits and receives control signals to and from the unit LED unit 100 via the control terminals 21 to 23.
  • the whole area correction coefficient calculating unit 37 calculates the average luminance value of the pixels of one frame of the video signal that has been subjected to the signal processing by the video signal processing circuit 31, that is, the entire screen. Then, the entire area correction coefficient calculation unit 37 corrects the luminance of the video signal based on the calculated average luminance value so that the power consumption of the LED unit 101 that is the entire sub display system is equal to or less than a predetermined value.
  • the luminance correction coefficient Cyall for one entire screen is calculated.
  • the common correction coefficient calculation unit 41 calculates a common luminance correction coefficient Cy based on the luminance correction coefficients Cyall, Cys1, Cys2, and Cys3.
  • the operations of the entire area correction coefficient calculation unit 37, the first sub area correction coefficient calculation unit 38, the second sub area correction coefficient calculation unit 39, the third sub area correction coefficient calculation unit 40, and the common correction coefficient calculation unit 41 will be described later. Will be described in detail.
  • the calculation result of the common correction coefficient calculation unit 41 can synchronize the power consumption control of the LED display control devices 200 of a plurality of units via the average luminance value communication unit 43 and the average luminance value input / output terminal 42.
  • LED brightness correction method Next, a method for correcting the brightness of LED 1 in LED display system 300 according to the present embodiment will be described in detail.
  • the video signal input from the video input terminal 30 is subjected to processing such as gamma correction in the video signal processing circuit 31, to the resolution of the LED unit 101 that is the output destination. Converted. In the present embodiment, this resolution is 1920 ⁇ 1080 pixels (FullHD).
  • the video signal processed by the video signal processing circuit 31 is delivered to the LED unit 101 by the video signal delivery unit 34.
  • the entire area correction coefficient calculation unit 37, the first sub-area correction coefficient calculation unit 38, the second sub-area correction coefficient calculation unit 39, and the third sub-area correction coefficient calculation unit 40 the average luminance value of the pixels in each display area and A luminance correction coefficient is calculated.
  • the resolution of the video signal processed by the video signal processing circuit 4 as described above is 1920 ⁇ 1080 pixels.
  • R, G, and B luminance values are output for each pixel.
  • the average value of Yg is YG_av_all
  • the average value of Yb is YB_av_all.
  • the average luminance value of each of R, G, and B is added for three colors and divided by the number of pixels, but the method is not limited to this.
  • the average luminance value may be obtained using the sum of one frame of Yr, Yg, Yb.
  • the average value of Yg is the average of YG_av_S1
  • Yb the average luminance value Y_av_S1 for one frame of the first sub-area
  • the average value of Yg is YG_av_S2
  • the average of Yb is calculated by Expression (3).
  • the luminance values Yr (h, v), Yg (h, v), and Yb (h, v) of the R, G, and B colors are 8 bits (values from 0 to 255), that is, 256 gradations.
  • the average luminance values Y_av_all, Y_av_S1, Y_av_S2, and Y_av_S3 for one frame in the entire area and the first to third sub areas are in the range of 0 to 255.
  • the setting unit 28 stores the power control adjustment value P_all for the entire area and the power control adjustment values P_S1, P_S2, and P_S3 for the first to third sub areas.
  • the entire area power control adjustment value P_all and the first to third sub-area power control adjustment values P_S1, P_S2, and P_S3 can be set in advance by the user from the external terminal 20 through the external communication unit 26.
  • the entire area correction coefficient calculation unit 37 distributes the luminance correction coefficient Cyall to the unit LED unit 100 based on the entire area power control adjustment value P_all set in the setting unit 28 and the average luminance value Y_av_all calculated for each frame. To decide. Specifically, the overall area correction coefficient calculation unit 37 uses, for example, 127.5 which is 50% of the maximum value 255 that Y_av_all can take as a threshold, and the average luminance value Y_av_all for each frame exceeds 127.5. Then, a luminance correction coefficient Cyall that reduces the average luminance of the one frame below the threshold value is calculated.
  • the common correction coefficient calculation unit 41 selects the minimum value of the luminance correction coefficients Cyall, CyS1, CyS2, and CyS3 by the equation (9), and the common luminance correction coefficient Cy (hereinafter simply referred to as “brightness correction”) for one frame. (Also referred to as coefficient Cy).
  • the video signal output from the video signal processing circuit 31 is an entire area correction coefficient.
  • the calculation unit 37, the first sub-area correction coefficient calculation unit 38, the second sub-area correction coefficient calculation unit 39, the third sub-area correction coefficient calculation unit 40, and the video signal distribution unit 34 are simultaneously input in time series. Therefore, when the luminance correction coefficient Cy for one frame is determined, the video signal is distributed to the LED unit 100 via the video signal distribution unit 34.
  • the luminance correction coefficient Cy is the head of the next frame of the frame in which the average luminance values Y_av_all, Y_av_S1, Y_av_S2, and Y_av_S3 are calculated as described above, that is, Yr (1,1), Yg (1,1), Yb (1,1). And is distributed to the LED unit 100 via the video signal distribution unit 34.
  • the luminance correction coefficient Cy is distributed to the LED unit 100 in a form delayed by one frame with respect to the video data.
  • FIG. 4 is a timing chart of signal processing in the LED display system 300.
  • Yr (n) (h, v), Yg (n) (h, v), Yb (n) are used as the video signals of the nth frame.
  • the LED driving unit 6 needs to control the LED display unit 7 by PWM driving the video signal in a time division manner. Therefore, the video signal processing circuit 4 rearranges the video signals input in time series at the timing required by the LED drive unit 6 via the frame memory 50. That is, the video signal processing circuit 4 causes a delay of one frame when rearranging the video signals.
  • the video information of the (n + 1) th frame is distributed as data distributed from the LED display control device 200 to the video signal processing circuit 4, and the luminance correction coefficient Cy (n) relating to the video signal of the nth frame is at the head. It has been added.
  • the microcomputer 8 reads the luminance correction coefficient Cy (n) relating to the video signal of the nth frame and outputs Yr (n) (h, v), which is output as a video signal after being delayed by one frame from the video signal processing circuit 4.
  • the luminance adjustment unit 5 is caused to perform luminance correction according to the equation (10) for Yg (n) (h, v) and Yb (n) (h, v).
  • Yro (n), Ygo (n), Ybo (n) on which the above-described processing is performed by the brightness adjusting unit 5 is output to the LED driving unit 6 and displayed on the LED display unit 7 as an image.
  • the video signal is delayed by one frame by the frame memory 50 of the unit LED unit 100.
  • the video data input to the unit LED unit 100 and the luminance correction coefficient Cy (n) are controlled so as to coincide with each other in time.
  • a frame memory is added to the LED display control device 200 in order to match the timing of one frame delay in the LED display control device 200 using the frame delay in the unit LED unit 100. And power control in units of frames can be performed.
  • the LED display system 300 shown in FIG. 1 has the maximum power consumption when an all white signal is displayed and the minimum when the all black signal is displayed. For example, if the power consumption when displaying all white in each sub-area is 1500 VA and the power consumption when displaying all black is 300 VA, the power consumption of the entire area is 4500 VA when displaying all white.
  • the power consumption at the time is 900VA.
  • the brightness average value is obtained when the brightness average of the entire area is 50% or more of all white.
  • Luminance correction is performed so as to be 50%.
  • the luminance correction is performed so that the average luminance value becomes 70% when the average luminance in the area is 70% or more of the total white.
  • the power consumption of the LED display system 300 as a whole is 3000 VA or less, and the allowable power that can be supplied by each of the power supply devices 301 to 303 that supplies power to each sub-area is 1200 VA or less.
  • FIG. 5 is an explanatory diagram for explaining a display pattern of the LED display system 300.
  • the first power consumption is concentrated only in the first subarea as shown in FIG. 5 even if the overall power consumption is limited to 50%. No subarea power limitation. Therefore, the first sub area needs a power capacity of 1500 VA, and the power capacity is insufficient. However, usually, the power capacity is often secured for the entire system or for each of the power supply devices 301 to 303. When the entire power consumption capacity is controlled to a certain value or less, it is necessary to secure the power capacity so that the maximum power can be supplied to each of the power supply devices 301 to 303, and thus the effect of the power saving control is hardly exhibited.
  • the power control for the entire screen and the power supply devices 301 to 303 are performed separately.
  • the LED display control device 200 calculates an average luminance value for each frame, and distributes the luminance correction coefficient selected from the average luminance value and a desired power control adjustment value at the head of the next frame.
  • the unit LED unit 100 performs luminance adjustment using the luminance correction coefficient added to the head of the next frame while delaying one frame in order to perform processing such as cutting out the distributed video signal, so that each frame without delay. It becomes possible to suppress the power consumption below the desired power control adjustment value for each time.
  • the power consumption can be reduced in units of frames, and the LED display system 300 is controlled so that the power consumption is always below a certain level. It becomes possible. For this reason, it is not necessary to unnecessarily reduce the luminance even for a video signal with low power consumption, and it is possible to suppress a decrease in luminance of the LED display system 300 as a whole.
  • the LED display system 300 according to Embodiment 1 is based on the luminance correction coefficients CyS1, CyS2, CyS3 for each display area and the luminance correction coefficient Cyall for one entire screen, which are calculated by the LED display control device 200. Since the luminance of the video signal is adjusted based on the common luminance correction coefficient Cy calculated in this way, it is possible to suppress the power consumption of each sub display system and the power consumption of the LED display system 300 as a whole. As described above, energy consumption in the LED display system 300 can be reduced.
  • the common luminance correction coefficient Cy is calculated by the luminance correction coefficients CyS1, CyS2, and CyS3 calculated by the first, second, and third sub-area correction coefficient calculating units 38, 39, and 40, and the entire area correction coefficient calculating unit 37.
  • this is the minimum brightness correction coefficient. Therefore, the power control for each sub display system and the power control for the entire LED display system 300 can be efficiently made compatible.
  • the power supply devices 301 to 303 that supply power to the unit LED units 100 of 6 units, that is, the power saving control for each sub display system is used together, power is supplied to some sub display systems. Power saving control functions even if there is a concentration. Therefore, it is not necessary to supply the maximum power consumption for each of the power supply devices 301 to 304, and the efficiency of power control in the entire LED display system 300 is improved.
  • the power is supplied to the unit LED unit 100 of 6 units by the power supply device of 1 unit, but it is not necessarily 6 units.
  • a configuration may be adopted in which power is supplied to the unit LED units 100 having an arbitrary number of units, and the number of unit LED units 100 supplied by each of the power supply devices 301 to 303 does not have to be the same.
  • the 18 unit LED units 100 constituting one screen are supplied with power by the three units of power supply devices 301 to 303.
  • the unit LED unit 100 is not necessarily required to have three units. What is necessary is just to supply power.
  • the number of sub display systems is not necessarily three, but may be two or more.
  • FIG. 6 is a configuration diagram of an LED display system 300A according to the second embodiment.
  • FIG. 7 is an explanatory diagram for explaining the timing for calculating the common luminance correction coefficient Cy based on the average luminance value Yave input via the signal line.
  • FIG. 8 is a circuit diagram around the average luminance value communication unit 43.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • LED display control devices 200a, 200b, 200c, and 200d and 4 units of LED units 101a, 101b, 101c, and 101d are connected to each other, so that an LED having a size of 7680 ⁇ 1080 pixels is obtained.
  • a display system 300A is configured.
  • power supply devices 301, 302, and 303 are connected to the LED unit 101a. The same applies to the LED units 101b, 101c, and 101d.
  • each of the LED display control devices 200a, 200b, 200c, and 200d is synchronized with the external synchronization signal input via the external synchronization signal input / output terminal 36 (see FIG. 3) in the video signal processing circuit 31.
  • the signal is processed to control each LED unit 101a, 101b, 101c, 101d.
  • the average luminance value Yave calculated by each of the LED display control devices 200a, 200b, 200c, and 200d is obtained by connecting the signal line to the wired OR connection via the average luminance value input / output terminal 42 (see FIG. 3).
  • the average luminance value Yave is shared between the LED display control devices 200a, 200b, 200c, and 200d.
  • the external synchronization signal input via the external synchronization signal input / output terminal 36 outputs, for example, the external synchronization signal generated by the LED display control device 200a to the remaining three units of the LED display control devices 200b, 200c, and 200d. By doing so, the outputs of the four units of the LED display control devices 200a, 200b, 200c, and 200d can be synchronized.
  • each video signal processing circuit 4 when a common external synchronization signal is input to each of the LED display control devices 200a, 200b, 200c, and 200d via the external synchronization signal input / output terminal 36, each video signal processing circuit 4 generates a vertical synchronizing signal Vsync and a horizontal synchronizing signal Hsync.
  • the average luminance value communication unit 43 includes an average luminance value Y_av_all calculated by the entire area correction coefficient calculating unit 37, an average luminance value Y_av_S1 calculated by the first subarea correction coefficient calculating unit 38, and the second subarea.
  • An average luminance value Yave that is the maximum value of the average luminance value Y_av_S2 calculated by the correction coefficient calculation unit 39 and the average luminance value Y_av_S3 calculated by the third sub-area correction coefficient calculation unit 40 is input.
  • the average luminance value Yave is determined when all the effective images are output.
  • the average luminance value communication unit 43 transmits the average luminance value Yave in 8 bits.
  • the average luminance value Yave which is the maximum value of the average luminance values Y_av_all, Y_av_S1, Y_av_S2, and Y_av_S3, is calculated by, for example, the entire area correction coefficient calculation unit 37.
  • the average luminance value communication unit 43 transmits the average luminance value Yave [7: 0] by dividing it into four in the front porch 4H period of the video signal. That is, the average luminance value communication unit 43 transmits Yave [7: 6] to the first line of the front porch, and sequentially transmits Yave [5: 4], Yave [3: 2], and Yave [1: 0] in this order. To do.
  • the average luminance value communication unit 43 encodes and transmits 2-bit data to the three signal lines Mul_o [2: 0].
  • a signal line corresponding to each bit of the signal line Mul_o [2: 0] is a signal corresponding to each bit of the signal line Mul_o [2: 0] of another LED display control device via the average luminance value input / output terminal 42.
  • Each wire is connected with a wired OR.
  • a digital transistor 45 and a pull-up resistor 46 are connected to the signal line corresponding to each bit of the signal line Mul_o [2: 0].
  • the signal of “L” is input, “L” is output, and when the signal of “L” is input, the impedance becomes high impedance. Therefore, the LED display control devices 200a, 200b, 200c, If “L” is output even in one unit of 200d, the signal line becomes “L”. In other cases, the signal line is “H”.
  • the average luminance value communication unit 43 encodes 2-bit data in accordance with three signal lines Mul_o [2: 0] as follows.
  • Mul_o [2: 0] “100”
  • Yave [7: 6] 10
  • Mul_o [2: 0] “010”
  • Yave [7: 6] 01
  • Mul_o [2: 0] “001”
  • Yave [7: 6] 00
  • Mul_o [2: 0] “000”
  • Yave [7: 6] the case of Yave [7: 6] is shown.
  • the average luminance value communication unit 43 sets the average luminance value Yave [7: 0] to the signal line Mul_o [2: 0] at a timing delayed by 1 ⁇ 4 cycle from Hsync in the front porch.
  • the transmission result Mul_i [2: 0] by the four units of LED display control devices 200a, 200b, 200c, and 200d is fetched at the next Hsync timing.
  • the transmission result by the four units of LED display control devices 200a, 200b, 200c, and 200d is the maximum value of the average luminance value Yave [7: 0] of the four units of LED display control devices 200a, 200b, 200c, and 200d. is there.
  • Yave [7: 0] which is the maximum in each LED display control device 200a, 200b, 200c, 200d by repeating transmission in units of 2 bits, is set to each LED display control device 200a, 200b, 200c, 200d. Can be shared within. Further, as shown in FIG. 7, the luminance correction coefficient Cy is changed after Yave [7: 0] is determined in Hsync on the fifth line of the front porch.
  • the luminance correction coefficient Cy is changed in each of the LED display control devices 200a, 200b, 200c, and 200d.
  • the luminance correction coefficient Cy is calculated based on the common average luminance value Yave [7: 0]. Therefore, the luminance correction coefficient Cy is the same. That is, the luminance correction coefficient Cy common to the LED display control devices 200a, 200b, 200c, and 200d is calculated.
  • the 8-bit average luminance value Yave [7: 0] is divided and transmitted four times between the LED display control devices 200a, 200b, 200c, and 200d, but the number of transmission lines shown in FIG.
  • the accuracy of the average luminance value Yave may be performed with an arbitrary number of bits.
  • the average luminance value Yave may be divided into two portions in units of 4 bits with an 8-bit accuracy and 15 transmission lines.
  • a luminance correction coefficient Cy may be transmitted.
  • the average luminance value Yave [7: 0] is transmitted in synchronization with the horizontal synchronization signal Hsync in the vertical front porch. However, it is not always necessary to synchronize with the horizontal synchronization signal Hsync. Control may be performed so that the average luminance value Yave [7: 0] is transmitted at a timing determined between the LED display control devices 200a, 200b, 200c, and 200d within the vertical front porch.
  • the LED display control devices 200a, 200b, 200c, and 200d are wired OR connected to the other LED display control devices 200a, 200b, 200c, and 200d.
  • the average luminance value Yave [7: 0] is shared with the other LED display control devices 200a, 200b, 200c, and 200d via the signal line.
  • a common synchronizing signal is input to each of the LED display control devices 200a, 200b, 200c, and 200d, and the maximum average luminance value Yave [7: 7] is obtained on the signal line Mul_o [2: 0] that is wired OR connected. 0] can be controlled with the luminance correction coefficient Cy common to the LED display control devices 200a, 200b, 200c, and 200d. Therefore, power control is different for each of the LED display control devices 200a, 200b, 200c, and 200d, and the brightness control of the unit LED units 100 connected thereto is dispersed, thereby suppressing the occurrence of a brightness difference in the entire LED display system 300A. it can.
  • the LED display control devices 200a, 200b, and 200c are formed with a small number of signal lines. , 200d can be connected. Further, when the number of bits of the average luminance value Yave is small, the power saving control interval becomes rough. Therefore, when the average luminance value Yave is switched, the luminance of the unit LED unit 100 after the correction greatly changes, so that the flicker of the screen can be visually recognized.
  • the average luminance value Yave is 8 bits, it is possible to perform control in 256 steps, and to suppress flickering of the screen when switching the power saving control.
  • Transmission of the average luminance value Yave between the LED display control devices 200a, 200b, 200c, and 200d can be controlled by a microcomputer or other communication means such as a LAN, but the algorithm for synchronizing the average luminance value Yave is complicated. Become. However, when the transmission is performed using the signal line Mul_o [2: 0] that is wired-OR connected as in the second embodiment, the average luminance value Yave can be easily and reliably synchronized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

The purpose of the present invention is to minimize power consumption in each sub display system to which power is supplied by each power supply device and minimize the power consumption in the entire LED display system which includes an LED display control device and an LED display device for displaying a video on the basis of a video signal delivered by the LED display control device. An LED display system 300 comprises sub display systems, power supply devices 301, 302, 303, and an LED display control device 200. The LED display control device 200 comprises correction coefficient calculation units 38, 39, 40 for first, second and third sub areas, a correction coefficient calculation unit 37 for the entire area, a common correction coefficient calculation unit 41, and a video signal delivery unit 34. Each basic LED unit 100 includes a plurality of LEDs 1 that serve as pixels, a luminance adjustment section 5, and an LED driver 6.

Description

LED表示システム、LED表示制御装置およびLED表示装置LED display system, LED display control device, and LED display device
 本発明は、LED表示制御装置と、LED表示制御装置から配信される映像信号に基づいて個々のLED(Light Emitting Diode:発光ダイオード)の点滅を制御することにより映像を表示するLED表示装置とを備えるLED表示システムに関し、特にLEDの輝度制御技術に関するものである。 The present invention includes an LED display control device and an LED display device that displays video by controlling blinking of individual LEDs (Light Emitting Diodes) based on video signals distributed from the LED display control device. The present invention relates to an LED display system provided, and more particularly to an LED brightness control technique.
 LED表示装置は、表示画素として複数のLEDを備え、LEDの技術発展と低コスト化により、屋内外での広告表示などに多く使用されている。LED表示装置はこれまで、自然画像、およびアニメーションなどの動画像を表示することが主であったが、画素ピッチの狭ピッチ化に伴い視認距離が短くなることで、屋内用途においては会議および監視などの用途にも使用されている。特に監視用途においては、LED表示装置は、例えばパソコンなどから入力される静止画に近い画像を表示することが多くなっている。 The LED display device includes a plurality of LEDs as display pixels, and is widely used for advertisement display indoors and outdoors due to the technological development and cost reduction of the LEDs. Until now, LED display devices have mainly displayed moving images such as natural images and animations. However, the viewing distance is shortened as the pixel pitch becomes narrower, so conferences and monitoring are possible in indoor applications. It is also used for such applications. Especially in monitoring applications, LED display devices often display images that are close to still images input from, for example, a personal computer.
 LED表示装置の表示画素としては、一般的にはR,G,Bの3原色のLEDが使用されている。LED表示装置では、R,G,B各色のLEDの発光時間をPWM(Pulse Width Modulation)制御することによって色調を表現している。しかしながら、LEDは点灯状態で最大電力を消費し、非点灯状態ではほぼ電力を消費しないため、例えばフルビット全白信号に対し20%グレー信号では、LEDの消費電力は20%程度となる。このように、LED表示装置では映像信号の内容により消費電力が大きく変動する。なお、フルビット全白信号では、R,G,B各色のLEDがDuty比100%で発光し、20%グレー信号では、R,G,B各色のLEDがDuty比20%で発光するものとする。 In general, LEDs of three primary colors of R, G, and B are used as display pixels of the LED display device. In the LED display device, color tone is expressed by PWM (Pulse Width Modulation) control of the light emission time of each of the R, G, and B LEDs. However, since the LED consumes the maximum power in the lighting state and consumes almost no power in the non-lighting state, for example, in the case of a 20% gray signal with respect to a full-bit all white signal, the power consumption of the LED is about 20%. Thus, in the LED display device, power consumption varies greatly depending on the content of the video signal. In the full-bit all white signal, the R, G, and B color LEDs emit light at a duty ratio of 100%, and in the 20% gray signal, the R, G, and B color LEDs emit light at a duty ratio of 20%. To do.
 そこで、特許文献1には、電源容量の増大を抑えて省電力を実現する表示装置が開示されている。特許文献1に記載の表示装置では、入力される映像信号に基づいて表示パネルに流れる電流値を予測する。そして、フレーム単位での電流値の総和等が所定のしきい値以上となった場合、表示装置は画像のコントラストおよびブライトネスを補正する映像信号処理を行い、表示パネルに流れる電流値が所定の最大値を超えないように制御する。 Therefore, Patent Document 1 discloses a display device that realizes power saving by suppressing an increase in power supply capacity. In the display device described in Patent Document 1, the current value flowing through the display panel is predicted based on the input video signal. When the sum of current values in units of frames exceeds a predetermined threshold value, the display device performs video signal processing for correcting the contrast and brightness of the image, and the current value flowing through the display panel reaches a predetermined maximum value. Control not to exceed the value.
特開2004-30981号公報JP 2004-30981 A
 一般的にLED表示装置を複数用いて大画面を構成している。例えば320×180画素のLED表示装置を水平方向6ユニット×垂直方向6ユニットの計36ユニット組み合わせることによって、FullHD(1920×1080画素)の映像を表示する。各LED表示装置はフルビット全白信号を表示する際に最大の電力を消費し、その消費電力量が定格値となる。そのため、上記のようなFullHDの解像度を持つシステムにおいてはLED表示装置の消費電力量×36ユニット分の電力容量を用意する必要があった。 Generally, a large screen is configured using a plurality of LED display devices. For example, a full HD (1920 × 1080 pixels) image is displayed by combining an LED display device of 320 × 180 pixels with a total of 36 units of 6 units in the horizontal direction and 6 units in the vertical direction. Each LED display device consumes the maximum power when displaying a full-bit all white signal, and the amount of power consumption becomes a rated value. Therefore, in the system having the FullHD resolution as described above, it is necessary to prepare a power capacity equivalent to the power consumption amount of the LED display device × 36 units.
 しかしながら、監視用途などで表示する画像はグレーバックまたは淡色などの比較的少ない消費電力で表示できるような画像が多く、定格値より算出された最大電力容量を有するLED表示装置を用意することは過剰となることが多い。また、過剰であるにも関わらず、既存の設備容量が不足する場合には、追加の電源工事が必要になるなどの問題があった。 However, there are many images that can be displayed with relatively low power consumption such as gray background or light color for monitoring purposes, and it is excessive to prepare an LED display device having the maximum power capacity calculated from the rated value. Often. In addition, there is a problem that additional power construction is required when the existing equipment capacity is insufficient in spite of being excessive.
 ここで、特許文献1に記載の技術は、モニタに表示される映像信号の1フレーム分の総和または平均値から映像全体のダイナミックレンジを調整することにより消費電力を制御する。これに対して複数のLED表示装置を組み合わせて1画面の映像を表示する場合、LED表示装置に供給する電源を分割して供給する必要がある。例えば1ユニットの電源供給装置で6ユニットのLED表示装置に電源を供給する場合は6ユニットの電源供給装置が必要になり、1画面全体で電力容量を制限しても、表示エリアごとに電源を供給する電源供給装置単位で電力容量を超えてしまう場合がある。 Here, the technique described in Patent Document 1 controls power consumption by adjusting the dynamic range of the entire video from the total or average value of one frame of the video signal displayed on the monitor. On the other hand, when one screen image is displayed by combining a plurality of LED display devices, it is necessary to divide the power supplied to the LED display device. For example, when supplying power to a 6-unit LED display device using a 1-unit power supply device, a 6-unit power supply device is required. In some cases, the power capacity exceeds the power supply unit to be supplied.
 そこで、本発明は、LED表示制御装置と、LED表示制御装置から配信される映像信号に基づいて映像を表示するLED表示装置を備えるLED表示システムにおいて、各電源供給装置により電源が供給されるサブ表示システムごとの消費電力とLED表示システム全体の消費電力とを抑制することを目的とする。 Therefore, the present invention provides an LED display system including an LED display control device and an LED display device that displays an image based on a video signal distributed from the LED display control device. It aims at suppressing the power consumption for every display system, and the power consumption of the whole LED display system.
 本発明に係るLED表示システムは、各々が複数のLED表示装置を有するn(nは2以上の整数)個のサブ表示システムと、各前記サブ表示システムが有する複数の前記LED表示装置に電源を供給するn個の電源供給装置と、各前記サブ表示システムが有する複数の前記LED表示装置に映像信号を配信する少なくとも1個のLED表示制御装置と、を備え、少なくとも1個の前記LED表示制御装置は、前記映像信号における各前記サブ表示システムが構成する表示エリアの画素の平均輝度値を算出し、当該平均輝度値に基づいて、各前記サブ表示システムの消費電力が予め定められた値以下となるように前記映像信号の輝度を補正するための、前記表示エリアごとの輝度補正係数を算出するn個のサブエリア補正係数算出部と、前記映像信号における1画面全体の画素の平均輝度値を算出し、当該平均輝度値に基づいて、n個の前記サブ表示システム全体の消費電力が予め定められた値以下となるように前記映像信号の輝度を補正するための、前記1画面全体の輝度補正係数を算出する全体エリア補正係数算出部と、n個の前記サブエリア補正係数算出部および前記全体エリア補正係数算出部の算出結果に基づいて、共通の輝度補正係数を算出する共通補正係数算出部と、前記映像信号と前記共通の輝度補正係数とをn個の前記サブ表示システムが有する複数の前記LED表示装置に配信する映像信号配信部とを備え、各前記LED表示装置は、表示画素となる複数のLEDと、前記映像信号配信部から配信された前記共通の輝度補正係数に基づいて、前記映像信号配信部から配信された前記映像信号の輝度を調整する輝度調整部と、前記輝度調整部で前記輝度が調整された前記映像信号に基づいて、複数の前記LEDを駆動するLED駆動部とを備えるものである。 The LED display system according to the present invention supplies power to n (n is an integer of 2 or more) sub-display systems each having a plurality of LED display devices and to the plurality of LED display devices included in each of the sub-display systems. N power supply devices to supply, and at least one LED display control device that distributes video signals to the plurality of LED display devices of each of the sub-display systems, and at least one LED display control The apparatus calculates an average luminance value of pixels in a display area included in each of the sub display systems in the video signal, and based on the average luminance value, power consumption of each of the sub display systems is equal to or less than a predetermined value. N sub-area correction coefficient calculating units for calculating a luminance correction coefficient for each display area for correcting the luminance of the video signal so that An average luminance value of pixels of one entire screen in the video signal is calculated, and based on the average luminance value, the power consumption of the n sub-display systems as a whole is less than or equal to a predetermined value. Based on the calculation results of the entire area correction coefficient calculation unit for calculating the luminance correction coefficient for the entire screen, n sub-area correction coefficient calculation units, and the entire area correction coefficient calculation unit for correcting the luminance. A common correction coefficient calculation unit that calculates a common luminance correction coefficient, and a video signal distribution unit that distributes the video signal and the common luminance correction coefficient to the plurality of LED display devices included in the n sub display systems. Each of the LED display devices includes a plurality of LEDs serving as display pixels and the video signal distribution based on the common luminance correction coefficient distributed from the video signal distribution unit. A luminance adjusting unit that adjusts the luminance of the video signal distributed from the LED, and an LED driving unit that drives the plurality of LEDs based on the video signal whose luminance is adjusted by the luminance adjusting unit. is there.
 本発明によれば、LED表示装置は、LED表示制御装置において算出される、表示エリアごとの輝度補正係数および1画面全体の輝度補正係数に基づいて算出された共通の輝度補正係数に基づいて映像信号の輝度を調整することから、サブ表示システムごとの消費電力とLED表示システム全体の消費電力とを抑制することができる。 According to the present invention, the LED display device can display an image based on a common luminance correction coefficient calculated based on the luminance correction coefficient for each display area and the luminance correction coefficient for the entire screen calculated in the LED display control apparatus. Since the luminance of the signal is adjusted, it is possible to suppress power consumption for each sub display system and power consumption of the entire LED display system.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
実施の形態1に係るLED表示システムの構成図である。1 is a configuration diagram of an LED display system according to Embodiment 1. FIG. 単位LEDユニットの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of a unit LED unit. LED表示制御装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of a LED display control apparatus. LED表示システムにおける信号処理のタイミングチャートである。It is a timing chart of the signal processing in an LED display system. LED表示システムの表示パターンを説明するための説明図である。It is explanatory drawing for demonstrating the display pattern of a LED display system. 実施の形態2に係るLED表示システム300Aの構成図である。It is a block diagram of LED display system 300A which concerns on Embodiment 2. FIG. 信号線を介して入力された平均輝度値に基づいて共通の輝度補正係数を算出するタイミングを説明するための説明図である。It is explanatory drawing for demonstrating the timing which calculates a common luminance correction coefficient based on the average luminance value input via the signal line. 平均輝度値通信部の周辺の回路図である。It is a circuit diagram around the average luminance value communication unit.
 <実施の形態1>
 本発明の実施の形態1について、図面を用いて以下に説明する。
<Embodiment 1>
Embodiment 1 of the present invention will be described below with reference to the drawings.
 (LED表示システムの構成)
 最初に、本発明の実施の形態1に係るLED表示システム300の全体構成について説明する。図1は、LED表示システム300の構成図である。
(Configuration of LED display system)
Initially, the whole structure of the LED display system 300 which concerns on Embodiment 1 of this invention is demonstrated. FIG. 1 is a configuration diagram of an LED display system 300.
 図1に示すように、LED表示システム300は、LEDユニット101、LED表示制御装置200、および電源供給装置301,302,303を備える。LEDユニット101は、LED表示制御装置200から配信される映像信号に基づいて映像を表示する。 As shown in FIG. 1, the LED display system 300 includes an LED unit 101, an LED display control device 200, and power supply devices 301, 302, and 303. The LED unit 101 displays a video based on a video signal distributed from the LED display control device 200.
 LEDユニット101は、複数のLED表示装置(以下、「単位LEDユニット」ともいう)100を備えており、複数の単位LEDユニット100がそれぞれ有する複数のLED表示部5(図2参照)によって1つの画面が構成されている。図1の例では、LEDユニット101は、水平方向6ユニット×垂直方向3ユニットの計18ユニットの単位LEDユニット100によって1つの画面が構成されている。なお、図1では単位LEDユニット100は外側の四角枠と内側の四角枠とで示され、外側の四角枠は全体を示し、内側の四角枠は電気信号を扱う部分を示す。 The LED unit 101 includes a plurality of LED display devices (hereinafter also referred to as “unit LED units”) 100, and one LED display unit 5 (see FIG. 2) included in each of the plurality of unit LED units 100 has one unit. The screen is configured. In the example of FIG. 1, the LED unit 101 includes one unit LED unit 100 of a total of 18 units of 6 units in the horizontal direction × 3 units in the vertical direction. In FIG. 1, the unit LED unit 100 is indicated by an outer square frame and an inner square frame, the outer square frame indicates the whole, and the inner square frame indicates a portion that handles an electric signal.
 本実施の形態1では、単位LEDユニット100の画素構成を水平方向320画素×垂直方向180画素とし、LEDユニット101は18ユニットの単位LEDユニット100によってFullHD(1920×1080画素)を表示する。 In the first embodiment, the pixel configuration of the unit LED unit 100 is 320 pixels in the horizontal direction × 180 pixels in the vertical direction, and the LED unit 101 displays Full HD (1920 × 1080 pixels) by the unit LED unit 100 of 18 units.
 さらに、LEDユニット101に対して電源は3ユニットの電源供給装置301,302,303から供給されている。具体的には、各電源供給装置301,302,303からは合計6ユニットの単位LEDユニット100に対して電源が供給されている。 Furthermore, power is supplied to the LED unit 101 from three units of power supply devices 301, 302, and 303. Specifically, power is supplied from each power supply device 301, 302, 303 to a total of 6 unit LED units 100.
 LED表示制御装置200は、LEDユニット101への映像信号の配信、およびLEDユニット101の制御を行う。本実施の形態では、LED表示制御装置200が複数の単位LEDユニット100を制御するため、複数の単位LEDユニット100を3個のサブ表示システムに分けて、制御装置200からの映像信号および制御信号を各サブ表示システム内の単位LEDユニット100にディジーチェーン接続する。各サブ表示システムは6ユニットの単位LEDユニット100を有する。LED表示制御装置200が各単位LEDユニット100を制御する方法については、後で詳細に説明する。 The LED display control device 200 performs distribution of video signals to the LED unit 101 and control of the LED unit 101. In the present embodiment, since the LED display control device 200 controls the plurality of unit LED units 100, the plurality of unit LED units 100 are divided into three sub display systems, and a video signal and a control signal from the control device 200 are divided. Are daisy chain connected to the unit LED units 100 in each sub display system. Each sub-display system has 6 unit LED units 100. The method by which the LED display control device 200 controls each unit LED unit 100 will be described in detail later.
 (単位LEDユニットの構成)
 図2は、本発明の実施の形態1に係る単位LEDユニット100の構成の一例を示すブロック図である。図2に示すように、単位LEDユニット100は、映像入力端子2、映像出力端子3、入力回路51、映像信号処理回路4、フレームメモリ50、輝度調整部5、LED駆動部6、LED表示部7、マイコン8、メモリ9、制御端子10、電源入力端子11、電源出力端子12、および電源回路52を備える。
(Configuration of unit LED unit)
FIG. 2 is a block diagram showing an example of the configuration of the unit LED unit 100 according to Embodiment 1 of the present invention. As shown in FIG. 2, the unit LED unit 100 includes a video input terminal 2, a video output terminal 3, an input circuit 51, a video signal processing circuit 4, a frame memory 50, a luminance adjustment unit 5, an LED drive unit 6, and an LED display unit. 7, a microcomputer 8, a memory 9, a control terminal 10, a power input terminal 11, a power output terminal 12, and a power circuit 52.
 電源供給装置301から供給される電源は各単位LEDユニット100の電源入力端子11を介して単位LEDユニット100内の電源回路52に供給され、電源回路52を介して単位LEDユニット100内の各回路に電源が供給される。また、電源入力端子11を介して供給される電源は、電源出力端子12を介して次段の単位LEDユニット100に電源供給することにより、電源供給のディジーチェーンが行われる。 The power supplied from the power supply device 301 is supplied to the power circuit 52 in the unit LED unit 100 via the power input terminal 11 of each unit LED unit 100, and each circuit in the unit LED unit 100 via the power circuit 52. Is supplied with power. Further, the power supplied through the power input terminal 11 is supplied to the unit LED unit 100 at the next stage through the power output terminal 12, whereby a daisy chain of power supply is performed.
 LED表示制御装置200からは伝送路を構成する信号線の本数を減らすため映像信号をシリアル信号に変換して出力され、映像入力端子2に入力される。入力回路51では、映像入力端子2を介して入力されるシリアル信号をデコードして映像信号処理回路4に出力し、さらにシリアル信号のままバッファして映像出力端子3を介して出力する。映像出力端子3から出力される映像信号は、ディジーチェーン用の信号として次段の各単位LEDユニット100の映像入力端子2に接続される。 From the LED display control device 200, in order to reduce the number of signal lines constituting the transmission path, the video signal is converted into a serial signal and output, and input to the video input terminal 2. In the input circuit 51, the serial signal input via the video input terminal 2 is decoded and output to the video signal processing circuit 4, and further, the serial signal is buffered and output via the video output terminal 3. The video signal output from the video output terminal 3 is connected to the video input terminal 2 of each unit LED unit 100 in the next stage as a daisy chain signal.
 映像信号処理回路4は、フレームメモリ50を用いて、入力回路51にてデコードされた映像信号から表示に必要な領域の選択処理などの信号処理を行う。輝度調整部5は、後述する、LED表示制御装置200から配信される輝度補正係数に基づいて、映像信号処理回路4にて信号処理が行われた映像信号の輝度を調整する。 The video signal processing circuit 4 uses the frame memory 50 to perform signal processing such as processing for selecting an area necessary for display from the video signal decoded by the input circuit 51. The luminance adjusting unit 5 adjusts the luminance of the video signal that has been subjected to signal processing by the video signal processing circuit 4 based on a luminance correction coefficient distributed from the LED display control device 200, which will be described later.
 LED駆動部6は、輝度調整部5で輝度が調整された映像信号に基づいて、LED表示部7をPWM駆動する。LED表示部7は、表示画素となるLED1が水平方向320画素×垂直方向360画素のマトリクス状に配置されて構成されている。LED1は1画素あたりそれぞれ赤(R)、緑(G)、青(B)3個のLEDを含む。LED表示部7は、映像信号に基づいてLED駆動部6によって駆動され、映像を表示する。 The LED driving unit 6 PWM drives the LED display unit 7 based on the video signal whose luminance has been adjusted by the luminance adjusting unit 5. The LED display unit 7 is configured by arranging LEDs 1 serving as display pixels in a matrix of 320 horizontal pixels × 360 vertical pixels. The LED 1 includes three red (R), green (G), and blue (B) LEDs per pixel. The LED display unit 7 is driven by the LED driving unit 6 based on the video signal, and displays an image.
 制御端子10は、LED表示制御装置200と単位LEDユニット100との間での通信制御信号の入出力端子となる。マイコン8は、映像信号処理回路4、輝度調整部5およびLED駆動部6の制御を行い、制御端子10を介してLED表示制御装置200から配信される設定情報などをメモリ9に記憶させる。 The control terminal 10 is an input / output terminal for a communication control signal between the LED display control device 200 and the unit LED unit 100. The microcomputer 8 controls the video signal processing circuit 4, the luminance adjustment unit 5, and the LED driving unit 6, and stores setting information distributed from the LED display control device 200 through the control terminal 10 in the memory 9.
 (LED表示制御装置の構成)
 図3は、本発明の実施の形態1に係るLED表示制御装置200の構成の一例を示すブロック図である。図3に示すように、LED表示制御装置200は、映像入力端子30、映像信号処理回路31、映像信号配信部34、メモリ35、制御回路33、映像出力端子17,18,19、制御端子21,22,23、および外部端子20、外部同期信号入出力端子36、平均輝度値通信部43、および平均輝度値入出力端子42を備える。
(Configuration of LED display control device)
FIG. 3 is a block diagram showing an example of the configuration of the LED display control device 200 according to Embodiment 1 of the present invention. As shown in FIG. 3, the LED display control device 200 includes a video input terminal 30, a video signal processing circuit 31, a video signal distribution unit 34, a memory 35, a control circuit 33, video output terminals 17, 18 and 19, and a control terminal 21. , 22, 23, and an external terminal 20, an external synchronization signal input / output terminal 36, an average luminance value communication unit 43, and an average luminance value input / output terminal 42.
 映像入力端子30には、PCなどの外部装置からの映像信号が入力される。映像信号処理回路31は、映像入力端子30から入力される映像信号のガンマ補正などの映像信号処理を行う。映像信号配信部34は、映像信号処理回路31で信号処理が行われた映像信号を分割し、映像出力端子17~19を介してLEDユニット101に配信する。この場合、伝送路を構成する信号線の本数を減らすため映像信号をシリアル信号に変換して出力する。 A video signal from an external device such as a PC is input to the video input terminal 30. The video signal processing circuit 31 performs video signal processing such as gamma correction of the video signal input from the video input terminal 30. The video signal distribution unit 34 divides the video signal that has been subjected to signal processing by the video signal processing circuit 31 and distributes it to the LED unit 101 via the video output terminals 17 to 19. In this case, the video signal is converted to a serial signal and output in order to reduce the number of signal lines constituting the transmission path.
 また、複数ユニットのLED表示制御装置200の出力を同期させるために、映像信号処理回路31は外部同期信号入出力端子36から入出力される外部同期信号に同期する機能を有する。外部同期機能の動作については後で詳細に説明する。 Also, in order to synchronize the outputs of the LED display control devices 200 of a plurality of units, the video signal processing circuit 31 has a function of synchronizing with an external synchronization signal input / output from the external synchronization signal input / output terminal 36. The operation of the external synchronization function will be described in detail later.
 制御回路33は、全体エリア補正係数算出部37、第1サブエリア補正係数算出部38、第2サブエリア補正係数算出部39、第3サブエリア補正係数算出部40、共通補正係数算出部41、外部通信部26、通信部27、および設定部28を備える。 The control circuit 33 includes an overall area correction coefficient calculation unit 37, a first sub area correction coefficient calculation unit 38, a second sub area correction coefficient calculation unit 39, a third sub area correction coefficient calculation unit 40, a common correction coefficient calculation unit 41, An external communication unit 26, a communication unit 27, and a setting unit 28 are provided.
 外部通信部26は、外部端子20を介して、PCなどの外部装置から入力されるLED表示制御装置200および単位LEDユニット100を制御するための制御信号を受信する。受信された制御信号は制御回路33の制御パラメータとして設定部28に保存される。通信部27は、制御端子21~23を介して、単位LEDユニット100との間での制御信号の送受信を行う。 The external communication unit 26 receives a control signal for controlling the LED display control device 200 and the unit LED unit 100 input from an external device such as a PC via the external terminal 20. The received control signal is stored in the setting unit 28 as a control parameter of the control circuit 33. The communication unit 27 transmits and receives control signals to and from the unit LED unit 100 via the control terminals 21 to 23.
 全体エリア補正係数算出部37は、映像信号処理回路31にて信号処理が行われた映像信号1フレーム分、すなわち1画面全体の画素の平均輝度値を算出する。そして全体エリア補正係数算出部37は、算出した平均輝度値に基づいて、サブ表示システム全体であるLEDユニット101の消費電力が予め定められた値以下となるように映像信号の輝度を補正するための、1画面全体の輝度補正係数Cyallを算出する。 The whole area correction coefficient calculating unit 37 calculates the average luminance value of the pixels of one frame of the video signal that has been subjected to the signal processing by the video signal processing circuit 31, that is, the entire screen. Then, the entire area correction coefficient calculation unit 37 corrects the luminance of the video signal based on the calculated average luminance value so that the power consumption of the LED unit 101 that is the entire sub display system is equal to or less than a predetermined value. The luminance correction coefficient Cyall for one entire screen is calculated.
 第1サブエリア補正係数算出部38は、電源供給装置301によって電源供給されるサブ表示システムであるID=1~6の単位LEDユニット100が構成する表示エリアである第1サブエリアの画素の平均輝度値を算出する。そして第1サブエリア補正係数算出部38は、算出した平均輝度値に基づいて、第1サブエリアの消費電力が予め定められた値以下となるように映像信号の輝度を補正するための、第1サブエリアの輝度補正係数Cys1を算出する。 The first sub-area correction coefficient calculation unit 38 averages pixels in the first sub-area that is a display area formed by the unit LED units 100 with ID = 1 to 6 that are sub-display systems that are powered by the power supply device 301. A luminance value is calculated. The first sub-area correction coefficient calculation unit 38 corrects the luminance of the video signal based on the calculated average luminance value so that the power consumption of the first sub-area is not more than a predetermined value. The luminance correction coefficient Cys1 for one subarea is calculated.
 同様に第2サブエリア補正係数算出部39は、電源供給装置302によって電源供給されるサブ表示システムであるID=7~12が構成する表示エリアである第2サブエリアを構成する画素の平均輝度値を計算する。そして第2サブエリア補正係数算出部39は、第2サブエリアの消費電力が予め定められた値以下となるように映像信号の輝度を補正するための輝度補正係数Cys2を算出する。 Similarly, the second sub-area correction coefficient calculation unit 39 calculates the average luminance of the pixels constituting the second sub-area that is the display area constituted by ID = 7 to 12 that is the sub-display system supplied with power by the power supply device 302. Calculate the value. Then, the second sub-area correction coefficient calculation unit 39 calculates a luminance correction coefficient Cys2 for correcting the luminance of the video signal so that the power consumption of the second sub-area is not more than a predetermined value.
 第3サブエリア補正係数算出部40は、電源供給装置303によって電源供給されるサブ表示システムであるID=13~18が構成する表示エリアである第3サブエリアを構成する画素の平均輝度値を計算する。そして第3サブエリア補正係数算出部40は、第3サブエリアの消費電力が予め定められた値以下となるように映像信号の輝度を補正するための輝度補正係数Cys3を算出する。 The third sub-area correction coefficient calculation unit 40 calculates the average luminance value of the pixels constituting the third sub-area which is a display area constituted by ID = 13 to 18 which is a sub-display system supplied with power by the power supply device 303. calculate. Then, the third sub-area correction coefficient calculation unit 40 calculates a luminance correction coefficient Cys3 for correcting the luminance of the video signal so that the power consumption of the third sub-area is not more than a predetermined value.
 共通補正係数算出部41は、輝度補正係数Cyall,Cys1,Cys2,Cys3に基づいて、共通の輝度補正係数Cyを算出する。全体エリア補正係数算出部37、第1サブエリア補正係数算出部38、第2サブエリア補正係数算出部39、第3サブエリア補正係数算出部40、および共通補正係数算出部41の動作については後で詳細に説明する。共通補正係数算出部41の算出結果は、平均輝度値通信部43および平均輝度値入出力端子42を介して複数ユニットのLED表示制御装置200の消費電力制御を同期させることができる。 The common correction coefficient calculation unit 41 calculates a common luminance correction coefficient Cy based on the luminance correction coefficients Cyall, Cys1, Cys2, and Cys3. The operations of the entire area correction coefficient calculation unit 37, the first sub area correction coefficient calculation unit 38, the second sub area correction coefficient calculation unit 39, the third sub area correction coefficient calculation unit 40, and the common correction coefficient calculation unit 41 will be described later. Will be described in detail. The calculation result of the common correction coefficient calculation unit 41 can synchronize the power consumption control of the LED display control devices 200 of a plurality of units via the average luminance value communication unit 43 and the average luminance value input / output terminal 42.
 (LEDの輝度補正方法)
 次に、本実施の形態に係るLED表示システム300におけるLED1の輝度補正方法について詳細に説明する。
(LED brightness correction method)
Next, a method for correcting the brightness of LED 1 in LED display system 300 according to the present embodiment will be described in detail.
 図1に示すように、LED表示制御装置200と、18ユニットの単位LEDユニット100によって構成されるLEDユニット101とを備えるLED表示システム300を構成する場合、LED表示制御装置200が個別に単位LEDユニット100を制御するために各単位LEDユニット100にID番号を設定しておく。図1の例では18ユニットの単位LEDユニット100にID=1~18がそれぞれ設定される。単位LEDユニット100のID番号については各単位LEDユニット100内のメモリ9に記憶される。 As shown in FIG. 1, when configuring an LED display system 300 including an LED display control device 200 and an LED unit 101 composed of 18 unit LED units 100, the LED display control device 200 is individually unit LED. In order to control the unit 100, an ID number is set in each unit LED unit 100. In the example of FIG. 1, ID = 1 to 18 are set in the unit LED unit 100 of 18 units. The ID number of the unit LED unit 100 is stored in the memory 9 in each unit LED unit 100.
 また、図1の例では、LEDユニット101をID=1~6の単位LEDユニット100からなるサブ表示システム、ID=7~12の単位LEDユニット100からなるサブ表示システム、ID=13~18の単位LEDユニット100からなるサブ表示システムの3個のサブ表示システムに分割され、ID=3、ID=9、ID=15の3ユニットの単位LEDユニット100がLED表示制御装置200と接続される。 In the example of FIG. 1, the LED unit 101 is divided into a sub-display system composed of unit LED units 100 with ID = 1-6, a sub-display system composed of unit LED units 100 with ID = 7-12, and ID = 13-18 The unit LED unit 100 is divided into three sub display systems, and the unit LED units 100 having ID = 3, ID = 9, and ID = 15 are connected to the LED display control device 200.
 具体的には、LED表示制御装置200の映像出力端子17~19は、それぞれ、ID=3,9,15の単位LEDユニット100の映像入力端子2に接続される。同様に、LED表示制御装置200の制御端子21~23は、それぞれ、ID=3,9,15の単位LEDユニット100の制御端子10に接続される。 Specifically, the video output terminals 17 to 19 of the LED display control device 200 are connected to the video input terminal 2 of the unit LED unit 100 with ID = 3, 9, 15 respectively. Similarly, the control terminals 21 to 23 of the LED display control device 200 are connected to the control terminal 10 of the unit LED unit 100 of ID = 3, 9, 15 respectively.
 また、図1に示すように、電源供給装置301はID=1~6の単位LEDユニット100に電源を供給し、電源供給装置302はID=7~12の単位LEDユニット100に電源を供給する。電源供給装置303は、ID=13~18の単位LEDユニット100に電源を供給する。具体的には、電源供給装置301,302,303から供給される電源出力はそれぞれID=1,7,13の単位LEDユニット100の電源入力端子11に接続され、電源出力端子12を介して次段の単位LEDユニット100の電源入力端子11に接続されることによりそれぞれ6ユニットの単位LEDユニット100に電源が供給される。 Further, as shown in FIG. 1, the power supply device 301 supplies power to the unit LED units 100 with ID = 1 to 6, and the power supply device 302 supplies power to the unit LED units 100 with ID = 7 to 12. . The power supply device 303 supplies power to the unit LED units 100 with ID = 13 to 18. Specifically, the power output supplied from the power supply devices 301, 302, and 303 is connected to the power input terminal 11 of the unit LED unit 100 with ID = 1, 7, and 13, respectively, and the next through the power output terminal 12 By connecting to the power input terminal 11 of the unit LED unit 100 of the stage, power is supplied to the unit LED units 100 of 6 units.
 図3に示すように、LED表示制御装置200において、映像入力端子30から入力された映像信号は映像信号処理回路31にてガンマ補正などの処理を行い、出力先となるLEDユニット101の解像度へ変換される。本実施の形態ではこの解像度は1920×1080画素(FullHD)となる。 As shown in FIG. 3, in the LED display control device 200, the video signal input from the video input terminal 30 is subjected to processing such as gamma correction in the video signal processing circuit 31, to the resolution of the LED unit 101 that is the output destination. Converted. In the present embodiment, this resolution is 1920 × 1080 pixels (FullHD).
 映像信号処理回路31で信号処理された映像信号は、映像信号配信部34にて、640×1080画素の3つの表示エリアに分割された後に、それぞれ、ID=1~6、7~12、13~18の単位LEDユニット100からなる3つのサブ表示システムに配信される。 The video signal processed by the video signal processing circuit 31 is divided into three display areas of 640 × 1080 pixels by the video signal distribution unit 34 and then ID = 1 to 6, 7 to 12, and 13 respectively. It is distributed to three sub-display systems consisting of ˜18 unit LED units 100.
 映像信号処理回路31で信号処理された映像信号は、映像信号配信部34によってLEDユニット101へ配信される。そして全体エリア補正係数算出部37、第1サブエリア補正係数算出部38、第2サブエリア補正係数算出部39、および第3サブエリア補正係数算出部40において各表示エリアの画素の平均輝度値および輝度補正係数が算出される。 The video signal processed by the video signal processing circuit 31 is delivered to the LED unit 101 by the video signal delivery unit 34. In the entire area correction coefficient calculation unit 37, the first sub-area correction coefficient calculation unit 38, the second sub-area correction coefficient calculation unit 39, and the third sub-area correction coefficient calculation unit 40, the average luminance value of the pixels in each display area and A luminance correction coefficient is calculated.
 (輝度補正係数の算出方法)
 以下、輝度補正係数の算出方法について詳細に説明する。本実施の形態では、上記のように映像信号処理回路4で信号処理された映像信号の解像度は1920×1080画素である。この各画素に対してR,G,B各色の輝度値が出力される。LEDユニット101の表示エリアの左上座標を(h,v)=(1,1)、右下座標を(h,v)=(1920,1080)として各画素に対するR,G,B各色の輝度値をYr(h,v),Yg(h,v),Yb(h,v)と表すこととする。
(Brightness correction coefficient calculation method)
Hereinafter, a method for calculating the luminance correction coefficient will be described in detail. In the present embodiment, the resolution of the video signal processed by the video signal processing circuit 4 as described above is 1920 × 1080 pixels. R, G, and B luminance values are output for each pixel. The luminance value of each color of R, G, B for each pixel with the upper left coordinate of the display area of the LED unit 101 being (h, v) = (1, 1) and the lower right coordinate being (h, v) = (1920, 1080). Is represented as Yr (h, v), Yg (h, v), Yb (h, v).
 全体エリア補正係数算出部37においては(h,v)=(1,1)、から(1920,1080)までのYrの平均値をYR_av_all, Ygの平均値をYG_av_all, Ybの平均値をYB_av_allとすると、全体エリアの1フレーム分の平均輝度値Y_av_allは式(1)により算出される。 In the whole area correction coefficient calculation unit 37, the average value of Yr from (h, v) = (1, 1) to (1920, 1080) is YR_av_all, the average value of Yg is YG_av_all, and the average value of Yb is YB_av_all. Then, the average luminance value Y_av_all for one frame in the entire area is calculated by Expression (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、上記の計算式ではR,G,Bそれぞれの平均輝度値を3色分加算し画素数で除算することで平均輝度値を求めているが、手法はこの限りではない。例えばYr,Yg,Ybの1フレーム分の総和を用いて平均輝度値を求めても良い。 In the above calculation formula, the average luminance value of each of R, G, and B is added for three colors and divided by the number of pixels, but the method is not limited to this. For example, the average luminance value may be obtained using the sum of one frame of Yr, Yg, Yb.
 同様に第1サブエリア補正係数算出部38においては(h,v)=(1,1)、から(640,1080)までのYrの平均値をYR_av_S1、Ygの平均値をYG_av_S1、Ybの平均値をYB_av_S1とすると、第1サブエリアの1フレーム分の平均輝度値Y_av_S1は式(2)により算出される。 Similarly, in the first sub-area correction coefficient calculation unit 38, the average value of Yr from (h, v) = (1, 1) to (640, 1080) is YR_av_S1, the average value of Yg is the average of YG_av_S1, and Yb. Assuming that the value is YB_av_S1, the average luminance value Y_av_S1 for one frame of the first sub-area is calculated by equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 同様に第2サブエリア補正係数算出部39においては(h,v)=(641,1)、から(1280,1080)までのYrの平均値をYR_av_S2、Ygの平均値をYG_av_S2、Ybの平均値をYB_av_S2とすると、第2サブエリアの1フレーム分の平均輝度値Y_av_S2は式(3)により算出される。 Similarly, in the second sub-area correction coefficient calculation unit 39, the average value of Yr from (h, v) = (641, 1) to (1280, 1080) is YR_av_S2, the average value of Yg is YG_av_S2, and the average of Yb. Assuming that the value is YB_av_S2, the average luminance value Y_av_S2 for one frame of the second sub-area is calculated by Expression (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 同様に第3サブエリア補正係数算出部40においては(h,v)=(1281,1)、から(1920,1080)までのYrの平均値をYR_av_S3、Ygの平均値をYG_av_S3、Ybの平均値をYB_av_S3とすると、第3サブエリアの1フレーム分の平均輝度値Y_av_S3は式(4)により算出される。 Similarly, in the third sub-area correction coefficient calculator 40, the average value of Yr from (h, v) = (1281, 1) to (1920, 1080) is YR_av_S3, the average value of Yg is YG_av_S3, and the average of Yb. Assuming that the value is YB_av_S3, the average luminance value Y_av_S3 for one frame of the third sub-area is calculated by Expression (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、R,G,B各色の輝度値Yr(h,v),Yg(h,v),Yb(h,v)が8ビット(0~255の値)、すなわち256階調であるとすると、全体エリアおよび第1~第3サブエリアの1フレーム分の平均輝度値Y_av_all,Y_av_S1,Y_av_S2,Y_av_S3は0~255の範囲となる。 Here, the luminance values Yr (h, v), Yg (h, v), and Yb (h, v) of the R, G, and B colors are 8 bits (values from 0 to 255), that is, 256 gradations. Then, the average luminance values Y_av_all, Y_av_S1, Y_av_S2, and Y_av_S3 for one frame in the entire area and the first to third sub areas are in the range of 0 to 255.
 設定部28には、全体エリア用電力制御調整値P_allおよび第1~第3サブエリア用電力制御調整値P_S1,P_S2,P_S3が記憶されている。全体エリア用電力制御調整値P_allおよび第1~第3サブエリア用電力制御調整値P_S1,P_S2,P_S3は、外部端子20から外部通信部26を通じて予め使用者にて設定することが可能である。 The setting unit 28 stores the power control adjustment value P_all for the entire area and the power control adjustment values P_S1, P_S2, and P_S3 for the first to third sub areas. The entire area power control adjustment value P_all and the first to third sub-area power control adjustment values P_S1, P_S2, and P_S3 can be set in advance by the user from the external terminal 20 through the external communication unit 26.
 例えば、全体エリア用電力制御調整値P_allには、最大輝度値(R=255,G=255,B=255)にて全画素を点灯させた場合、すなわち製品定格値である全白フルビット信号の最大消費電力に対し、何%以下で使用可能とするかが設定される。例えば、P_all=50%と設定される。 For example, the power control adjustment value P_all for the entire area is an all white full bit signal that is a product rated value when all pixels are lit at the maximum luminance value (R = 255, G = 255, B = 255). It is set to what percentage or less of the maximum power consumption can be used. For example, P_all = 50% is set.
 全体エリア補正係数算出部37は、設定部28に設定されている全体エリア用電力制御調整値P_allと、1フレームごとに算出された平均輝度値Y_av_allにより単位LEDユニット100へ配信する輝度補正係数Cyallを決定する。具体的には、全体エリア補正係数算出部37は、例えばY_av_allの取りうる最大値255の50%である127.5を閾値とし、1フレームごとの平均輝度値Y_av_allが127.5を超えた場合に該1フレームの平均輝度を閾値以下に引き下げる輝度補正係数Cyallを算出する。 The entire area correction coefficient calculation unit 37 distributes the luminance correction coefficient Cyall to the unit LED unit 100 based on the entire area power control adjustment value P_all set in the setting unit 28 and the average luminance value Y_av_all calculated for each frame. To decide. Specifically, the overall area correction coefficient calculation unit 37 uses, for example, 127.5 which is 50% of the maximum value 255 that Y_av_all can take as a threshold, and the average luminance value Y_av_all for each frame exceeds 127.5. Then, a luminance correction coefficient Cyall that reduces the average luminance of the one frame below the threshold value is calculated.
 ここで、輝度補正係数Cyallを9bitの精度とすると、
 Y_av_all ≦ 255×P_all の場合は Cyall=256、
 Y_av_all > 255×P_all の場合は式(5)により輝度補正係数Cyallが算出される。
Here, assuming that the luminance correction coefficient Cyall is an accuracy of 9 bits,
If Y_av_all ≤ 255 x P_all, Cyall = 256,
In the case of Y_av_all> 255 × P_all, the luminance correction coefficient Cyall is calculated by equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 例えば、P_all =0.5、Y_av_all=255の場合はCyall=128となる。 For example, when P_all = 0.5 and Y_av_all = 255, Cyall = 128.
 同様にして第1サブエリアに対しては、
 Y_av_S1 ≦ 255×P_S1 の場合は CyS1=256
 Y_av_S1 > 255×P_S1 の場合は式(6)により輝度補正係数CyS1が算出される。
Similarly for the first sub-area,
If Y_av_S1 ≤ 255 x P_S1, CyS1 = 256
In the case of Y_av_S1> 255 × P_S1, the luminance correction coefficient CyS1 is calculated by the equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
  同様にして第2サブエリアに対しては、
 Y_av_S2 ≦ 255×P_S2 の場合は CyS2=256
 Y_av_S2 > 255×P_S2 の場合は式(7)により輝度補正係数CyS2が算出される。
Similarly, for the second subarea,
If Y_av_S2 ≤ 255 x P_S2, CyS2 = 256
In the case of Y_av_S2> 255 × P_S2, the luminance correction coefficient CyS2 is calculated by Expression (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
  同様にして第3サブエリアに対しては、
 Y_av_S3 ≦ 255×P_S3 の場合は CyS3=256
 Y_av_S3 > 255×P_S3 の場合は式(8)により輝度補正係数CyS3が算出される。
Similarly for the third sub-area,
If Y_av_S3 ≤ 255 x P_S3, CyS3 = 256
In the case of Y_av_S3> 255 × P_S3, the luminance correction coefficient CyS3 is calculated by Expression (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
  次に、共通補正係数算出部41は輝度補正係数Cyall,CyS1,CyS2,CyS3の最小値を式(9)により選択して、1フレーム全体の共通の輝度補正係数Cy(以下、単に「輝度補正係数Cy」ともいう)として算出する。 Next, the common correction coefficient calculation unit 41 selects the minimum value of the luminance correction coefficients Cyall, CyS1, CyS2, and CyS3 by the equation (9), and the common luminance correction coefficient Cy (hereinafter simply referred to as “brightness correction”) for one frame. (Also referred to as coefficient Cy).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 以上のように、1フレーム全体の共通の輝度補正係数Cyを算出するためには、1フレーム分の映像データが必要となるが、映像信号処理回路31から出力される映像信号は全体エリア補正係数算出部37、第1サブエリア補正係数算出部38、第2サブエリア補正係数算出部39、第3サブエリア補正係数算出部40、および映像信号配信部34に時系列で同時に入力される。したがって、1フレーム分の輝度補正係数Cyが確定した時点で、映像信号は映像信号配信部34を介してLEDユニット100に配信されている。 As described above, in order to calculate the common luminance correction coefficient Cy for one entire frame, video data for one frame is required. However, the video signal output from the video signal processing circuit 31 is an entire area correction coefficient. The calculation unit 37, the first sub-area correction coefficient calculation unit 38, the second sub-area correction coefficient calculation unit 39, the third sub-area correction coefficient calculation unit 40, and the video signal distribution unit 34 are simultaneously input in time series. Therefore, when the luminance correction coefficient Cy for one frame is determined, the video signal is distributed to the LED unit 100 via the video signal distribution unit 34.
 輝度補正係数Cyは、上記にて平均輝度値Y_av_all,Y_av_S1,Y_av_S2,Y_av_S3が算出されたフレームの次フレーム先頭、すなわちYr(1,1),Yg(1,1),Yb(1,1)の前に付加され、映像信号配信部34を介してLEDユニット100へ配信される。 The luminance correction coefficient Cy is the head of the next frame of the frame in which the average luminance values Y_av_all, Y_av_S1, Y_av_S2, and Y_av_S3 are calculated as described above, that is, Yr (1,1), Yg (1,1), Yb (1,1). And is distributed to the LED unit 100 via the video signal distribution unit 34.
 輝度補正係数Cyは、映像データに対して1フレーム遅延する形でLEDユニット100に配信される。図4は、LED表示システム300における信号処理のタイミングチャートである。 The luminance correction coefficient Cy is distributed to the LED unit 100 in a form delayed by one frame with respect to the video data. FIG. 4 is a timing chart of signal processing in the LED display system 300.
 ID=1~ID=6の単位LEDユニット100の映像信号処理回路4ではnフレーム目の映像信号としてYr(n)(h,v),Yg(n)(h,v),Yb(n)(h,v)を(h,v)=(1,1)~(640,1080)まで順次受信する。また、映像信号処理回路4は、メモリ9に記憶された自身のID番号に基づいて、配信された映像信号から表示する部分を選択する。 In the video signal processing circuit 4 of the unit LED unit 100 with ID = 1 to ID = 6, Yr (n) (h, v), Yg (n) (h, v), Yb (n) are used as the video signals of the nth frame. (H, v) is sequentially received from (h, v) = (1, 1) to (640, 1080). Further, the video signal processing circuit 4 selects a portion to be displayed from the distributed video signal based on its own ID number stored in the memory 9.
 具体的には、例えばID=1の単位LEDユニット100では、映像信号処理回路4により(h,v)=(1,1)~(320,360)の信号領域が選択される。同様に、ID=2の単位LEDユニット100では、(h,v)=(1,361)~(320,720)の信号領域が、ID=3の単位LEDユニット100では、(h,v)=(1,721)~(320,1080)の信号領域が、ID=4の単位LEDユニット100では(h,v)=(321,1)~(640,360)の信号領域が、ID=5の単位LEDユニット100では(h,v)=(321,361)~(640,720)の信号領域が、ID=6の単位LEDユニット100では(h,v)=(321,721)~(640,1080)の信号領域がそれぞれ選択される。 Specifically, for example, in the unit LED unit 100 with ID = 1, the video signal processing circuit 4 selects signal areas (h, v) = (1, 1) to (320, 360). Similarly, in the unit LED unit 100 with ID = 2, the signal area of (h, v) = (1,361) to (320,720) is (h, v) in the unit LED unit 100 with ID = 3. = (1,721) to (320,1080), the signal area of (h, v) = (321,1) to (640,360) is ID = 4 in the unit LED unit 100 with ID = 4. 5 unit LED units 100 (h, v) = (321, 361) to (640, 720) signal areas are ID = 6 unit LED units 100 (h, v) = (321, 721) to The signal regions (640, 1080) are respectively selected.
 ID=7~12およびID=13~18の単位LEDユニット100においても上記と同様の処理が行われる。 In the unit LED units 100 with ID = 7-12 and ID = 13-18, the same processing as described above is performed.
 また、LED駆動部6は、時分割で映像信号をPWM駆動してLED表示部7を制御する必要がある。このため、映像信号処理回路4は、時系列で入力される映像信号を、フレームメモリ50を介して、LED駆動部6で必要となるタイミングに並び替えを行う。すなわち、映像信号処理回路4では映像信号の並び換えの際に1フレーム分の遅延が発生する。 Further, the LED driving unit 6 needs to control the LED display unit 7 by PWM driving the video signal in a time division manner. Therefore, the video signal processing circuit 4 rearranges the video signals input in time series at the timing required by the LED drive unit 6 via the frame memory 50. That is, the video signal processing circuit 4 causes a delay of one frame when rearranging the video signals.
 LED表示制御装置200から映像信号処理回路4に配信されるデータとしてn+1フレーム目の映像情報が配信されるが、その先頭にはnフレーム目の映像信号に関する輝度補正係数Cy(n)が付加されている。 The video information of the (n + 1) th frame is distributed as data distributed from the LED display control device 200 to the video signal processing circuit 4, and the luminance correction coefficient Cy (n) relating to the video signal of the nth frame is at the head. It has been added.
 マイコン8は上記のnフレーム目の映像信号に関する輝度補正係数Cy(n)を読み取り、映像信号処理回路4から1フレーム分遅延して映像信号として出力されるYr(n)(h,v),Yg(n)(h,v),Yb(n)(h,v)に対し輝度調整部5に式(10)による輝度補正を行わせる。 The microcomputer 8 reads the luminance correction coefficient Cy (n) relating to the video signal of the nth frame and outputs Yr (n) (h, v), which is output as a video signal after being delayed by one frame from the video signal processing circuit 4. The luminance adjustment unit 5 is caused to perform luminance correction according to the equation (10) for Yg (n) (h, v) and Yb (n) (h, v).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 輝度調整部5にて上記の処理が行われたYro(n),Ygo(n),Ybo(n)はLED駆動部6へ出力され、LED表示部7に映像として表示される。 Yro (n), Ygo (n), Ybo (n) on which the above-described processing is performed by the brightness adjusting unit 5 is output to the LED driving unit 6 and displayed on the LED display unit 7 as an image.
 なお、本実施の形態では、単位LEDユニット100のフレームメモリ50により映像信号を1フレーム分遅延させていたが、必ずしも1フレーム分遅延させる必要はない。単位LEDユニット100に入力される映像データと輝度補正係数Cy(n)が時間的に合致するように制御されていればよい。 In this embodiment, the video signal is delayed by one frame by the frame memory 50 of the unit LED unit 100. However, it is not always necessary to delay the video signal by one frame. It is only necessary that the video data input to the unit LED unit 100 and the luminance correction coefficient Cy (n) are controlled so as to coincide with each other in time.
 以上のように、1フレームの平均輝度値を算出するためにはすべての映像データが必要となるため、1フレーム分の遅延が発生する。そのため、輝度補正係数Cyと映像信号を同一のタイミングで配信するためには、LED表示制御装置200内で映像信号を1フレーム分遅延させる必要がある。しかしながら本実施の形態では、LED表示制御装置200内の1フレーム遅延に対して、単位LEDユニット100内のフレーム遅延を使ってタイミングを合わせるため、LED表示制御装置200内にフレームメモリを追加することなく、フレーム単位での電力制御を行うことができる。 As described above, in order to calculate the average luminance value of one frame, all the video data is necessary, so that a delay of one frame occurs. Therefore, in order to distribute the luminance correction coefficient Cy and the video signal at the same timing, it is necessary to delay the video signal by one frame in the LED display control device 200. However, in the present embodiment, a frame memory is added to the LED display control device 200 in order to match the timing of one frame delay in the LED display control device 200 using the frame delay in the unit LED unit 100. And power control in units of frames can be performed.
 次に、電力制御の動作について説明する。図1に示すLED表示システム300は全白信号が表示された場合に消費電力が最大となり、全黒信号の場合に最小となる。例えば、各サブエリアにて全白表示時の消費電力がそれぞれ1500VA、全黒表示時の消費電力がそれぞれ300VAの場合、全体エリアの消費電力は全白表示時の消費電力が4500VA、全黒表示時の消費電力が900VAとなる。この場合、各サブエリアでは輝度補正値(Cy/256)によって1500-300=1200VA分を制御することができ、全体エリアでは4500-900=3600VA分を制御することができる。 Next, the operation of power control will be described. The LED display system 300 shown in FIG. 1 has the maximum power consumption when an all white signal is displayed and the minimum when the all black signal is displayed. For example, if the power consumption when displaying all white in each sub-area is 1500 VA and the power consumption when displaying all black is 300 VA, the power consumption of the entire area is 4500 VA when displaying all white. The power consumption at the time is 900VA. In this case, 1500-300 = 1200 VA can be controlled by the luminance correction value (Cy / 256) in each sub-area, and 4500-900 = 3600 VA can be controlled in the entire area.
 ここで、全体エリアの輝度補正を50%以下、各サブエリアの輝度補正を70%以下に制御すると、全体エリアでは輝度平均が全白時の50%以上となった場合に、輝度平均値が50%となるように輝度補正が行われる。一方、各サブエリアではエリア内の輝度平均が全白時の70%以上となった場合に、輝度平均値が70%となるように輝度補正が行われる。 Here, when the brightness correction of the entire area is controlled to 50% or less and the brightness correction of each sub-area is controlled to 70% or less, the brightness average value is obtained when the brightness average of the entire area is 50% or more of all white. Luminance correction is performed so as to be 50%. On the other hand, in each sub-area, the luminance correction is performed so that the average luminance value becomes 70% when the average luminance in the area is 70% or more of the total white.
 例えば、LED表示システム300全体の消費電力を3000VA以下、各サブエリアに電源を供給する各電源供給装置301~303が供給できる電力許容量が1200VA以下のシステムを想定する。この場合、図5に示すように、第1サブエリアのみが全白で表示されると、全体エリアでは画素の平均値は
255/3=85<127.5
となるため、輝度補正係数Cyallは式(5)より Cyall/256=1となる。一方、第1サブエリアでは画素の平均値は255となるため輝度補正係数CyS1は式(6)よりCyS1/256=0.7となる。第2,第3サブエリアでは画素平均値が0となるため輝度補正係数CyS2は式(7)、(8)よりCyS2/256=補正係数CyS3/256=1となる。図5は、LED表示システム300の表示パターンを説明するための説明図である。
For example, a system is assumed in which the power consumption of the LED display system 300 as a whole is 3000 VA or less, and the allowable power that can be supplied by each of the power supply devices 301 to 303 that supplies power to each sub-area is 1200 VA or less. In this case, as shown in FIG. 5, when only the first sub area is displayed in all white, the average value of the pixels in the entire area is 255/3 = 85 <127.5.
Therefore, the luminance correction coefficient Cyall is Cyall / 256 = 1 from Equation (5). On the other hand, since the average value of the pixels is 255 in the first sub-area, the luminance correction coefficient CyS1 is CyS1 / 256 = 0.7 from Equation (6). Since the pixel average value is 0 in the second and third sub-areas, the luminance correction coefficient CyS2 is CyS2 / 256 = correction coefficient CyS3 / 256 = 1 from Expressions (7) and (8). FIG. 5 is an explanatory diagram for explaining a display pattern of the LED display system 300.
 したがって、全体エリアおよび第2,第3サブエリアの輝度補正係数は100%、第1サブエリアの輝度補正係数は70%になっているため、共通の輝度補正係数CyはCy/256=0.7が選択され全体の消費電力は、1140+300×2=1740VAとなる。 Therefore, the luminance correction coefficient of the entire area and the second and third sub areas is 100%, and the luminance correction coefficient of the first sub area is 70%. Therefore, the common luminance correction coefficient Cy is Cy / 256 = 0. 7 is selected and the overall power consumption is 1140 + 300 × 2 = 1740 VA.
 この場合、第1サブエリアの消費電力は70%に制御され、1200×0.7+300=1140VAとなり、1200VA以下に制御される。 In this case, the power consumption of the first sub-area is controlled to 70% and 1200 × 0.7 + 300 = 1140 VA, which is controlled to 1200 VA or less.
 ここで、サブエリア毎の省電力制御を行わない場合、全体の消費電力を50%に制限しても、図5に示すように第1サブエリアのみに消費電力が集中する場合は、第1サブエリアの電力制限が行われない。そのため、第1サブエリアには1500VAの電力容量が必要となり電力容量が不足することになる。しかしながら、通常はシステム全体または各電源供給装置301~303毎に電力容量が確保されることが多い。全体の消費電力容量を一定値以下に制御する場合は、各電源供給装置301~303ごとに最大電力が供給できるように電力容量を確保する必要があるため、省電力制御の効果が表れにくい。 Here, when the power saving control for each subarea is not performed, the first power consumption is concentrated only in the first subarea as shown in FIG. 5 even if the overall power consumption is limited to 50%. No subarea power limitation. Therefore, the first sub area needs a power capacity of 1500 VA, and the power capacity is insufficient. However, usually, the power capacity is often secured for the entire system or for each of the power supply devices 301 to 303. When the entire power consumption capacity is controlled to a certain value or less, it is necessary to secure the power capacity so that the maximum power can be supplied to each of the power supply devices 301 to 303, and thus the effect of the power saving control is hardly exhibited.
 これに対して本実施の形態1のように、1画面を構成する単位LEDユニット100に対する電源供給を分割して行った場合、1画面全体での電力制御と各電源供給装置301~303ごとでの電力制御を併用することにより、一部のサブ表示システムに消費電力が集中しても電力オーバーになることがなく効率よく消費電力を行うことができる。 On the other hand, when the power supply to the unit LED unit 100 constituting one screen is divided and performed as in the first embodiment, the power control for the entire screen and the power supply devices 301 to 303 are performed separately. By using this power control together, even if power consumption is concentrated in some sub-display systems, power consumption can be performed efficiently without power over.
 さらに、LED表示制御装置200にて、1フレームごとに平均輝度値を算出し、平均輝度値と所望の電力制御調整値より選択した輝度補正係数を次フレームの先頭に付加して配信する。単位LEDユニット100では、配信された映像信号の切り出し処理等を行うために1フレーム遅延する間に次フレーム先頭に付加された輝度補正係数を使用して輝度調整を行うことにより、遅延なく毎フレームごとに所望の電力制御調整値以下での消費電力に抑えることが可能となる。 Further, the LED display control device 200 calculates an average luminance value for each frame, and distributes the luminance correction coefficient selected from the average luminance value and a desired power control adjustment value at the head of the next frame. The unit LED unit 100 performs luminance adjustment using the luminance correction coefficient added to the head of the next frame while delaying one frame in order to perform processing such as cutting out the distributed video signal, so that each frame without delay. It becomes possible to suppress the power consumption below the desired power control adjustment value for each time.
 したがって、瞬間的に消費電力が高くなるような映像信号が入力されても、フレーム単位で消費電力を下げることが可能であり、常に一定以下の消費電力となるようにLED表示システム300を制御することが可能となる。そのため、消費電力が大きくない映像信号に対しても不必要に輝度を下げる必要がなくLED表示システム300全体の輝度低下を抑えることが可能となる。 Therefore, even if a video signal that instantaneously increases power consumption is input, the power consumption can be reduced in units of frames, and the LED display system 300 is controlled so that the power consumption is always below a certain level. It becomes possible. For this reason, it is not necessary to unnecessarily reduce the luminance even for a video signal with low power consumption, and it is possible to suppress a decrease in luminance of the LED display system 300 as a whole.
 (効果)
 以上のように、実施の形態1に係るLED表示システム300は、LED表示制御装置200において算出される、表示エリアごとの輝度補正係数CyS1,CyS2,CyS3および1画面全体の輝度補正係数Cyallに基づいて算出された共通の輝度補正係数Cyに基づいて映像信号の輝度を調整することから、サブ表示システム単位の消費電力とLED表示システム300全体の消費電力とを抑制することができる。以上より、LED表示システム300におけるエネルギー消費量の削減を図ることができる。
(effect)
As described above, the LED display system 300 according to Embodiment 1 is based on the luminance correction coefficients CyS1, CyS2, CyS3 for each display area and the luminance correction coefficient Cyall for one entire screen, which are calculated by the LED display control device 200. Since the luminance of the video signal is adjusted based on the common luminance correction coefficient Cy calculated in this way, it is possible to suppress the power consumption of each sub display system and the power consumption of the LED display system 300 as a whole. As described above, energy consumption in the LED display system 300 can be reduced.
 3個のサブ表示システムに電源供給が行われる場合、1画面全体で省電力制御が行われると一部のサブ表示システムに電力が集中した場合に電力制御が行われなくなる。そのため、サブ表示システムごとにサブ表示システムが有する複数の単位LEDユニット100の最大消費電力の電源を供給する必要がある。本実施の形態1に係るLED表示システム300では、サブ表示システムごとの省電力制御と1画面全体の省電力制御を組み合わせることにより、一部のサブ表示システムに電力が集中しても電力制御を行うことができる。これにより、サブ表示システムが有する複数の単位LEDユニット100の最大消費電力の電源を供給する必要がなくなり、効率よく省電力制御を行うことができる。 When power is supplied to three sub display systems, if power saving control is performed on the entire screen, power control is not performed when power is concentrated on some sub display systems. For this reason, it is necessary to supply the power of the maximum power consumption of the plurality of unit LED units 100 included in the sub display system for each sub display system. In the LED display system 300 according to the first embodiment, by combining the power saving control for each sub display system and the power saving control for the entire screen, power control can be performed even if power is concentrated in some sub display systems. It can be carried out. Thereby, it is not necessary to supply the power of the maximum power consumption of the plurality of unit LED units 100 included in the sub display system, and the power saving control can be performed efficiently.
 共通の輝度補正係数Cyは、第1,第2,第3サブエリア補正係数算出部38,39,40で算出された輝度補正係数CyS1,CyS2,CyS3および全体エリア補正係数算出部37で算出された輝度補正係数Cyallのうち、最小の輝度補正係数である。したがって、サブ表示システムごとの電力制御とLED表示システム300全体の電力制御とを効率的に両立することができる。 The common luminance correction coefficient Cy is calculated by the luminance correction coefficients CyS1, CyS2, and CyS3 calculated by the first, second, and third sub-area correction coefficient calculating units 38, 39, and 40, and the entire area correction coefficient calculating unit 37. Among the brightness correction coefficients Cyall, this is the minimum brightness correction coefficient. Therefore, the power control for each sub display system and the power control for the entire LED display system 300 can be efficiently made compatible.
 さらにLED表示システム300では、6ユニットの単位LEDユニット100に電源を供給する電源供給装置301~303ごと、すなわち、サブ表示システムごとの省電力制御を併用するため、一部のサブ表示システムに電力が集中しても省電力制御が機能する。そのため、電源供給装置301~304ごとに最大消費電力を供給する必要がなくなりLED表示システム300全体での電力制御の効率がよくなる。 Further, in the LED display system 300, since the power supply devices 301 to 303 that supply power to the unit LED units 100 of 6 units, that is, the power saving control for each sub display system is used together, power is supplied to some sub display systems. Power saving control functions even if there is a concentration. Therefore, it is not necessary to supply the maximum power consumption for each of the power supply devices 301 to 304, and the efficiency of power control in the entire LED display system 300 is improved.
 なお、本実施の形態1では、1ユニットの電源供給装置で6ユニットの単位LEDユニット100に電源を供給していたが、必ずしも6ユニットである必要はない。任意のユニット数の単位LEDユニット100に電源を供給する構成としてもよいし、各電源供給装置301~303が供給する単位LEDユニット100のユニット数が同じである必要もない。さらに1画面を構成する18ユニットの単位LEDユニット100を3ユニットの電源供給装置301~303で電源供給しているが、必ずしも3ユニットである必要はなく、2ユニット以上の電源供給装置を用いて電源供給すればよい。また、サブ表示システムは必ずしも3個である必要はなく2個以上であればよい。 In the first embodiment, the power is supplied to the unit LED unit 100 of 6 units by the power supply device of 1 unit, but it is not necessarily 6 units. A configuration may be adopted in which power is supplied to the unit LED units 100 having an arbitrary number of units, and the number of unit LED units 100 supplied by each of the power supply devices 301 to 303 does not have to be the same. Further, the 18 unit LED units 100 constituting one screen are supplied with power by the three units of power supply devices 301 to 303. However, the unit LED unit 100 is not necessarily required to have three units. What is necessary is just to supply power. Further, the number of sub display systems is not necessarily three, but may be two or more.
 <実施の形態2>
 次に、実施の形態2に係るLED表示システム300Aについて説明する。図6は、実施の形態2に係るLED表示システム300Aの構成図である。図7は、信号線を介して入力された平均輝度値Yaveに基づいて共通の輝度補正係数Cyを算出するタイミングを説明するための説明図である。図8は、平均輝度値通信部43の周辺の回路図である。なお、実施の形態2において、実施の形態1で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 2>
Next, an LED display system 300A according to Embodiment 2 will be described. FIG. 6 is a configuration diagram of an LED display system 300A according to the second embodiment. FIG. 7 is an explanatory diagram for explaining the timing for calculating the common luminance correction coefficient Cy based on the average luminance value Yave input via the signal line. FIG. 8 is a circuit diagram around the average luminance value communication unit 43. In the second embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 (複数ユニットのLED表示制御装置と複数ユニットのLEDユニットによる構成)
 次に複数ユニットのLED表示制御装置200と複数ユニットのLEDユニット100により1920×1080以上の画素数となるLED表示システム300Aを構成する場合の省電力制御方法について説明する。
(Configuration with multiple unit LED display controller and multiple unit LED unit)
Next, a description will be given of a power saving control method in the case where an LED display system 300A having a pixel number of 1920 × 1080 or more is configured by the plurality of LED display control devices 200 and the plurality of LED units 100.
 例えば、図6に示すように、4ユニットのLED表示制御装置200a,200b,200c,200dと4ユニットのLEDユニット101a,101b,101c,101dがそれぞれ接続されることにより7680×1080画素サイズのLED表示システム300Aが構成される。なお、図6においては図示しないが、LEDユニット101aには電源供給装置301,302,303が接続される。LEDユニット101b,101c,101dについても同様である。 For example, as shown in FIG. 6, 4 units of LED display control devices 200a, 200b, 200c, and 200d and 4 units of LED units 101a, 101b, 101c, and 101d are connected to each other, so that an LED having a size of 7680 × 1080 pixels is obtained. A display system 300A is configured. Although not shown in FIG. 6, power supply devices 301, 302, and 303 are connected to the LED unit 101a. The same applies to the LED units 101b, 101c, and 101d.
 この場合、各LED表示制御装置200a,200b,200c,200dは、映像信号処理回路31にて外部同期信号入出力端子36(図3参照)を介して入力された外部同期信号に同期して映像信号を処理して各LEDユニット101a,101b,101c,101dを制御する。さらに、各LED表示制御装置200a,200b,200c,200dで算出される平均輝度値Yaveは、信号線が平均輝度値入出力端子42(図3参照)を介してワイヤードOR接続されることにより各LED表示制御装置200a,200b,200c,200dの間で平均輝度値Yaveが共有される。 In this case, each of the LED display control devices 200a, 200b, 200c, and 200d is synchronized with the external synchronization signal input via the external synchronization signal input / output terminal 36 (see FIG. 3) in the video signal processing circuit 31. The signal is processed to control each LED unit 101a, 101b, 101c, 101d. Further, the average luminance value Yave calculated by each of the LED display control devices 200a, 200b, 200c, and 200d is obtained by connecting the signal line to the wired OR connection via the average luminance value input / output terminal 42 (see FIG. 3). The average luminance value Yave is shared between the LED display control devices 200a, 200b, 200c, and 200d.
 ここで、外部同期信号入出力端子36を介して入力される外部同期信号は、例えばLED表示制御装置200aで生成された外部同期信号を残る3ユニットのLED表示制御装置200b,200c,200dに出力することにより4ユニットのLED表示制御装置200a,200b,200c,200dの出力を同期させることができる。実際には、図7に示すように、外部同期信号入出力端子36を介して各LED表示制御装置200a,200b,200c,200dに共通の外部同期信号が入力されると、各映像信号処理回路4内で垂直同期信号Vsyncと水平同期信号Hsyncが生成される。 Here, the external synchronization signal input via the external synchronization signal input / output terminal 36 outputs, for example, the external synchronization signal generated by the LED display control device 200a to the remaining three units of the LED display control devices 200b, 200c, and 200d. By doing so, the outputs of the four units of the LED display control devices 200a, 200b, 200c, and 200d can be synchronized. Actually, as shown in FIG. 7, when a common external synchronization signal is input to each of the LED display control devices 200a, 200b, 200c, and 200d via the external synchronization signal input / output terminal 36, each video signal processing circuit 4 generates a vertical synchronizing signal Vsync and a horizontal synchronizing signal Hsync.
 図6の場合は、例えばLED表示制御装置200aで生成した外部同期信号を残る3ユニットのLED表示制御装置200b,200c,200dに出力することにより4ユニットのLED表示制御装置200a,200b,200c,200d全ての出力を図7に示すタイミングで同期させている。 In the case of FIG. 6, for example, by outputting the external synchronization signal generated by the LED display control device 200a to the remaining three units of LED display control devices 200b, 200c, and 200d, four units of LED display control devices 200a, 200b, 200c, All outputs 200d are synchronized at the timing shown in FIG.
 次に、平均輝度値通信部43の動作を説明する。平均輝度値通信部43には全体エリア補正係数算出部37にて算出される平均輝度値Y_av_allと、第1サブエリア補正係数算出部38にて算出される平均輝度値Y_av_S1と、第2サブエリア補正係数算出部39にて算出される平均輝度値Y_av_S2と、第3サブエリア補正係数算出部40にて算出される平均輝度値Y_av_S3との最大値である平均輝度値Yaveが入力される。図7に示すように、平均輝度値Yaveは有効画像が全て出力された時点で確定する。平均輝度値通信部43は、平均輝度値Yaveを8bitで伝送する。なお、平均輝度値Y_av_all,Y_av_S1,Y_av_S2,Y_av_S3の最大値である平均輝度値Yaveは、例えば全体エリア補正係数算出部37により算出される。 Next, the operation of the average luminance value communication unit 43 will be described. The average luminance value communication unit 43 includes an average luminance value Y_av_all calculated by the entire area correction coefficient calculating unit 37, an average luminance value Y_av_S1 calculated by the first subarea correction coefficient calculating unit 38, and the second subarea. An average luminance value Yave that is the maximum value of the average luminance value Y_av_S2 calculated by the correction coefficient calculation unit 39 and the average luminance value Y_av_S3 calculated by the third sub-area correction coefficient calculation unit 40 is input. As shown in FIG. 7, the average luminance value Yave is determined when all the effective images are output. The average luminance value communication unit 43 transmits the average luminance value Yave in 8 bits. Note that the average luminance value Yave, which is the maximum value of the average luminance values Y_av_all, Y_av_S1, Y_av_S2, and Y_av_S3, is calculated by, for example, the entire area correction coefficient calculation unit 37.
 図7に示すように、平均輝度値通信部43は平均輝度値Yave[7:0]を映像信号のフロントポーチ4H期間に4分割して伝送する。すなわち、平均輝度値通信部43はフロントポーチ1ライン目にYave[7:6]を伝送し、順次Yave[5:4]、Yave[3:2]、Yave[1:0]の順番で伝送する。 As shown in FIG. 7, the average luminance value communication unit 43 transmits the average luminance value Yave [7: 0] by dividing it into four in the front porch 4H period of the video signal. That is, the average luminance value communication unit 43 transmits Yave [7: 6] to the first line of the front porch, and sequentially transmits Yave [5: 4], Yave [3: 2], and Yave [1: 0] in this order. To do.
 また、平均輝度値通信部43は、2bitのデータを3本の信号線Mul_o[2:0]にエンコードして伝送する。信号線Mul_o[2:0]の各bitに対応する信号線は、平均輝度値入出力端子42を介して他のLED表示制御装置の信号ラインMul_o[2:0]の各bitに対応する信号線にそれぞれワイヤードOR接続されている。 Also, the average luminance value communication unit 43 encodes and transmits 2-bit data to the three signal lines Mul_o [2: 0]. A signal line corresponding to each bit of the signal line Mul_o [2: 0] is a signal corresponding to each bit of the signal line Mul_o [2: 0] of another LED display control device via the average luminance value input / output terminal 42. Each wire is connected with a wired OR.
 実際には図8に示すように、信号線Mul_o[2:0]の各bitに対応する信号線には、デジタルトランジスタ45とプルアップ抵抗46が接続されており、デジタルトランジスタ45に“H”の信号が入力されると”L“を出力し、”L“の信号が入力されるとハイインピーダンスとなるため、あるbitに対応する信号線に対してLED表示制御装置200a,200b,200c,200dの1ユニットでも”L“を出力すれば当該信号線は”L“となる。それ以外の場合、当該信号線は”H“となる。 Actually, as shown in FIG. 8, a digital transistor 45 and a pull-up resistor 46 are connected to the signal line corresponding to each bit of the signal line Mul_o [2: 0]. When the signal of “L” is input, “L” is output, and when the signal of “L” is input, the impedance becomes high impedance. Therefore, the LED display control devices 200a, 200b, 200c, If “L” is output even in one unit of 200d, the signal line becomes “L”. In other cases, the signal line is “H”.
 平均輝度値通信部43は、2bitのデータを3本の信号ラインMul_o[2:0]に合わせて以下のようにエンコードする。
Yave[7:6]=11の場合はMul_o[2:0]=“100”
Yave[7:6]=10の場合はMul_o[2:0]=“010”
Yave[7:6]=01の場合はMul_o[2:0]=“001”
Yave[7:6]=00の場合はMul_o[2:0]=“000”
ここでは、Yave[7:6]の場合を示す。
The average luminance value communication unit 43 encodes 2-bit data in accordance with three signal lines Mul_o [2: 0] as follows.
When Yave [7: 6] = 11, Mul_o [2: 0] = “100”
When Yave [7: 6] = 10, Mul_o [2: 0] = “010”
When Yave [7: 6] = 01, Mul_o [2: 0] = “001”
When Yave [7: 6] = 00, Mul_o [2: 0] = “000”
Here, the case of Yave [7: 6] is shown.
 また、平均輝度値通信部43は、例えば図7に示すようにフロントポーチ内のHsyncから1/4周期遅れるタイミングで、平均輝度値Yave[7:0]を信号ラインMul_o[2:0]に出力し、4ユニットのLED表示制御装置200a,200b,200c,200dによる伝送結果Mul_i[2:0]を次のHsyncのタイミングで取り込む。なお、4ユニットのLED表示制御装置200a,200b,200c,200dによる伝送結果とは、4ユニットのLED表示制御装置200a,200b,200c,200dの平均輝度値Yave[7:0]の最大値である。 Further, for example, as shown in FIG. 7, the average luminance value communication unit 43 sets the average luminance value Yave [7: 0] to the signal line Mul_o [2: 0] at a timing delayed by ¼ cycle from Hsync in the front porch. And the transmission result Mul_i [2: 0] by the four units of LED display control devices 200a, 200b, 200c, and 200d is fetched at the next Hsync timing. The transmission result by the four units of LED display control devices 200a, 200b, 200c, and 200d is the maximum value of the average luminance value Yave [7: 0] of the four units of LED display control devices 200a, 200b, 200c, and 200d. is there.
 ここで、各LED表示制御装置200a,200b,200c,200dでは、フロントポーチ1ライン目で確定したMul_o[2:0]からデコードしたYave‘[7:6]と自身のYave[7:6]とを比較する。
Yave[7:6]<Yave‘[7:6]の場合は
Yave[7:6]=Yave‘[7:6]、Yave[5:0]=“000000”とし、
Yave[7:6]≧Yave‘[7:6]の場合はYave[7:0]を変更しない。すなわち、自身のYave[7:6]よりデコードしたYave‘[7:6]が大きい場合は自身のYave[5:0]=0とすることにより、[5:0]bitの比較で正しい最大値を得ることができる。なお、デコードの際に、Yave‘[7:6]が“100”、”010”、”001”、および”000”のいずれかになるように端数処理が行われる。
Here, in each LED display control device 200a, 200b, 200c, 200d, Yave '[7: 6] decoded from Mul_o [2: 0] determined in the first line of the front porch and its own Yave [7: 6] And compare.
If Yave [7: 6] <Yave ′ [7: 6], then Yave [7: 6] = Yave ′ [7: 6], Yave [5: 0] = “000000”,
When Yave [7: 6] ≧ Yave ′ [7: 6], Yave [7: 0] is not changed. That is, when Yave '[7: 6] decoded is larger than its own Yave [7: 6], the maximum value correct by comparing [5: 0] bits is set by setting its own Yave [5: 0] = 0. A value can be obtained. During decoding, fraction processing is performed so that Yave '[7: 6] is any one of “100”, “010”, “001”, and “000”.
 同様にフロントポーチ2ライン目で、
Yave[5:4]<Yave‘[5:4]の場合は
Yave[5:4]=Yave‘[5:4]、Yave[3:0]=“0000”とし、
Yave[5:4]≧Yave‘[5:4]の場合はYave[5:0]を変更しない。
Similarly, in the second line of the front porch,
If Yave [5: 4] <Yave ′ [5: 4], then Yave [5: 4] = Yave ′ [5: 4], Yave [3: 0] = “0000”
When Yave [5: 4] ≧ Yave ′ [5: 4], Yave [5: 0] is not changed.
 フロントポーチ3ライン目で、
Yave[3:2]<Yave‘[3:2]の場合は
Yave[3:2]=Yave‘[3:2]、Yave[1:0]=“00”とし
Yave[3:2]≧Yave‘[3:2]の場合はYave[3:0]を変更しない。
In the third line of the front porch,
If Yave [3: 2] <Yave ′ [3: 2], then Yave [3: 2] = Yave ′ [3: 2], Yave [1: 0] = “00”, and Yave [3: 2] ≧ In the case of Yave ′ [3: 2], Yave [3: 0] is not changed.
 最後にフロントポーチ4ライン目で、
Yave[1:0]<Yave‘[1:0]の場合は
Yave[1:0]=Yave‘[1:0]
Yave[1:0]≧Yave‘[1:0]の場合はYave[1:0]を変更しない。
Finally, on the 4th line of the front porch,
If Yave [1: 0] <Yave ′ [1: 0], Yave [1: 0] = Yave ′ [1: 0]
When Yave [1: 0] ≧ Yave ′ [1: 0], Yave [1: 0] is not changed.
 以上のように、2bit単位での伝送を繰り返すことにより各LED表示制御装置200a,200b,200c,200d内で最大となるYave[7:0]を各LED表示制御装置200a,200b,200c,200d内で共有することが可能となる。さらに図7に示すように、フロントポーチ5ライン目のHsyncにてYave[7:0]が確定した後に輝度補正係数Cyが変更される。 As described above, Yave [7: 0], which is the maximum in each LED display control device 200a, 200b, 200c, 200d by repeating transmission in units of 2 bits, is set to each LED display control device 200a, 200b, 200c, 200d. Can be shared within. Further, as shown in FIG. 7, the luminance correction coefficient Cy is changed after Yave [7: 0] is determined in Hsync on the fifth line of the front porch.
 上記のように、各LED表示制御装置200a,200b,200c,200dにおいて輝度補正係数Cyの変更が行われるが、輝度補正係数Cyは共通の平均輝度値Yave[7:0]に基づいて算出されるため、輝度補正係数Cyは同一となる。すなわち、LED表示制御装置200a,200b,200c,200dに共通の輝度補正係数Cyが算出される。 As described above, the luminance correction coefficient Cy is changed in each of the LED display control devices 200a, 200b, 200c, and 200d. The luminance correction coefficient Cy is calculated based on the common average luminance value Yave [7: 0]. Therefore, the luminance correction coefficient Cy is the same. That is, the luminance correction coefficient Cy common to the LED display control devices 200a, 200b, 200c, and 200d is calculated.
 なお、上記では、LED表示制御装置200a,200b,200c,200dの間で8bitの平均輝度値Yave[7:0]を4回に分割して伝送していたが、図8に示す伝送ライン数および平均輝度値Yaveの精度を任意のbit数で行ってもよい。例えば平均輝度値Yaveを8bit精度で、伝送ライン数を15本として4bit単位で2回に分割して送信してもよい。さらに、LED表示制御装置200a,200b,200c,200dの間で伝送する伝送データとして平均輝度値Yaveを伝送していたが、輝度補正係数Cyを伝送してもよい。ただし、輝度補正係数Cyの場合、LED表示制御装置200a,200b,200c,200dの間で最小となる輝度補正係数Cyを選択する必要がある。 In the above description, the 8-bit average luminance value Yave [7: 0] is divided and transmitted four times between the LED display control devices 200a, 200b, 200c, and 200d, but the number of transmission lines shown in FIG. The accuracy of the average luminance value Yave may be performed with an arbitrary number of bits. For example, the average luminance value Yave may be divided into two portions in units of 4 bits with an 8-bit accuracy and 15 transmission lines. Furthermore, although the average luminance value Yave is transmitted as transmission data transmitted between the LED display control devices 200a, 200b, 200c, and 200d, a luminance correction coefficient Cy may be transmitted. However, in the case of the luminance correction coefficient Cy, it is necessary to select the luminance correction coefficient Cy that is the smallest among the LED display control devices 200a, 200b, 200c, and 200d.
 また、上記では、平均輝度値Yave[7:0]を垂直方向のフロントポーチ内の水平同期信号Hsyncに同期して伝送していたが、必ずしも水平同期信号Hsyncに同期させる必要はない。垂直方向のフロントポーチ内で、各LED表示制御装置200a,200b,200c,200dの間で決められたタイミングで平均輝度値Yave[7:0]の伝送を行うように制御すればよい。 In the above description, the average luminance value Yave [7: 0] is transmitted in synchronization with the horizontal synchronization signal Hsync in the vertical front porch. However, it is not always necessary to synchronize with the horizontal synchronization signal Hsync. Control may be performed so that the average luminance value Yave [7: 0] is transmitted at a timing determined between the LED display control devices 200a, 200b, 200c, and 200d within the vertical front porch.
 (効果)
 以上のように、実施の形態2に係るLED表示システム300Aでは、各LED表示制御装置200a,200b,200c,200dは、他のLED表示制御装置200a,200b,200c,200dとワイヤードOR接続された信号線をさらに備え、サブエリア補正係数算出部38,39,40で算出された平均輝度値Y_av_S1,Y_av_S2,Y_av_S3および全体エリア補正係数算出部37で算出された平均輝度値Y_av_allのうち、最大の平均輝度値Yave[7:0]を、信号線を介して他のLED表示制御装置200a,200b,200c,200dと共有する。
(effect)
As described above, in the LED display system 300A according to the second embodiment, the LED display control devices 200a, 200b, 200c, and 200d are wired OR connected to the other LED display control devices 200a, 200b, 200c, and 200d. A signal line, and the largest of the average luminance values Y_av_S1, Y_av_S2, Y_av_S3 calculated by the sub-area correction coefficient calculation units 38, 39, and 40 and the average luminance value Y_av_all calculated by the whole area correction coefficient calculation unit 37 The average luminance value Yave [7: 0] is shared with the other LED display control devices 200a, 200b, 200c, and 200d via the signal line.
 具体的には、各LED表示制御装置200a,200b,200c,200dに共通の同期信号を入力しかつ、ワイヤードOR接続された信号線Mul_o[2:0]で最大の平均輝度値Yave[7:0]を伝送することにより、LED表示制御装置200a,200b,200c,200dに共通の輝度補正係数Cyでこれらを制御することができる。そのため、LED表示制御装置200a,200b,200c,200dごとに電力制御が異なり、これらに接続される単位LEDユニット100の輝度制御がバラバラになりLED表示システム300A全体で輝度差が発生することを抑制できる。 Specifically, a common synchronizing signal is input to each of the LED display control devices 200a, 200b, 200c, and 200d, and the maximum average luminance value Yave [7: 7] is obtained on the signal line Mul_o [2: 0] that is wired OR connected. 0] can be controlled with the luminance correction coefficient Cy common to the LED display control devices 200a, 200b, 200c, and 200d. Therefore, power control is different for each of the LED display control devices 200a, 200b, 200c, and 200d, and the brightness control of the unit LED units 100 connected thereto is dispersed, thereby suppressing the occurrence of a brightness difference in the entire LED display system 300A. it can.
 また、ワイヤードOR接続された信号線Mul_o[2:0]を用いて平均輝度値Yave[7:0]を分割して伝送するため、少ない信号線の本数でLED表示制御装置200a,200b,200c,200dの間を接続することが可能である。また、平均輝度値Yaveのbit数が小さい場合、省電力制御の間隔が粗くなる。そのため、平均輝度値Yaveの切り替わり時に補正後の単位LEDユニット100の輝度が大きく変化することにより画面のフリッカ等が視認できる。しかし、本実施の形態2によれば平均輝度値Yaveを8bitとした場合256段階の制御が可能となり省電力制御の切り替え時に画面がフリッカすることを抑制できる。 Further, since the average luminance value Yave [7: 0] is divided and transmitted using the signal line Mul_o [2: 0] connected by the wired OR, the LED display control devices 200a, 200b, and 200c are formed with a small number of signal lines. , 200d can be connected. Further, when the number of bits of the average luminance value Yave is small, the power saving control interval becomes rough. Therefore, when the average luminance value Yave is switched, the luminance of the unit LED unit 100 after the correction greatly changes, so that the flicker of the screen can be visually recognized. However, according to the second embodiment, when the average luminance value Yave is 8 bits, it is possible to perform control in 256 steps, and to suppress flickering of the screen when switching the power saving control.
 各LED表示制御装置200a,200b,200c,200dの間の平均輝度値Yaveの伝送はマイコン等により、LAN等の通信手段により制御することもできるが、平均輝度値Yaveを同期させるアルゴリズムが複雑になる。しかし、本実施の形態2のようにワイヤードOR接続された信号線Mul_o[2:0]で伝送する場合は簡単かつ確実に平均輝度値Yaveを同期させることができる。 Transmission of the average luminance value Yave between the LED display control devices 200a, 200b, 200c, and 200d can be controlled by a microcomputer or other communication means such as a LAN, but the algorithm for synchronizing the average luminance value Yave is complicated. Become. However, when the transmission is performed using the signal line Mul_o [2: 0] that is wired-OR connected as in the second embodiment, the average luminance value Yave can be easily and reliably synchronized.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.
 1 LED、5 輝度調整部、6 LED駆動部、34 映像信号配信部、37 全体エリア補正係数算出部、38 第1サブエリア補正係数算出部、39 第2サブエリア補正係数算出部、40 第3サブエリア補正係数算出部、41 共通補正係数算出部、100 単位LEDユニット、200,200a,200b,200c,200d LED表示制御装置、300,300A LED表示システム、301,302,303 電源供給装置。 1 LED, 5 brightness adjustment section, 6 LED drive section, 34 video signal distribution section, 37 overall area correction coefficient calculation section, 38 first subarea correction coefficient calculation section, 39 second subarea correction coefficient calculation section, 40 third Sub area correction coefficient calculation unit, 41 common correction coefficient calculation unit, 100 unit LED unit, 200, 200a, 200b, 200c, 200d LED display control device, 300, 300A LED display system, 301, 302, 303 power supply device.

Claims (5)

  1.  各々が複数のLED表示装置(100)を有するn(nは2以上の整数)個のサブ表示システムと、
     各前記サブ表示システムが有する複数の前記LED表示装置(100)に電源を供給するn個の電源供給装置(301,302,303)と、
     各前記サブ表示システムが有する複数の前記LED表示装置(100)に映像信号を配信する少なくとも1個のLED表示制御装置(200,200a,200b,200c,200d)と、
     を備え、
     少なくとも1個の前記LED表示制御装置(200,200a,200b,200c,200d)は、
     前記映像信号における各前記サブ表示システムが構成する表示エリアの画素の平均輝度値を算出し、当該平均輝度値に基づいて、各前記サブ表示システムの消費電力が予め定められた値以下となるように前記映像信号の輝度を補正するための、前記表示エリアごとの輝度補正係数を算出するn個のサブエリア補正係数算出部(38,39,40)と、
     前記映像信号における1画面全体の画素の平均輝度値を算出し、当該平均輝度値に基づいて、n個の前記サブ表示システム全体の消費電力が予め定められた値以下となるように前記映像信号の輝度を補正するための、前記1画面全体の輝度補正係数を算出する全体エリア補正係数算出部(37)と、
      n個の前記サブエリア補正係数算出部(38,39,40)および前記全体エリア補正係数算出部(37)の算出結果に基づいて、共通の輝度補正係数を算出する共通補正係数算出部(41)と、
     前記映像信号と前記共通の輝度補正係数とをn個の前記サブ表示システムが有する複数の前記LED表示装置(100)に配信する映像信号配信部(34)と、
     を備え、
     各前記LED表示装置(100)は、
     表示画素となる複数のLED(1)と、
     前記映像信号配信部から配信された前記共通の輝度補正係数に基づいて、前記映像信号配信部から配信された前記映像信号の輝度を調整する輝度調整部(5)と、
     前記輝度調整部(5)で前記輝度が調整された前記映像信号に基づいて、複数の前記LED(1)を駆動するLED駆動部(6)と、
     を備える、LED表示システム。
    N (n is an integer greater than or equal to 2) sub-display systems each having a plurality of LED display devices (100);
    N power supply devices (301, 302, 303) for supplying power to the plurality of LED display devices (100) of each of the sub-display systems;
    At least one LED display control device (200, 200a, 200b, 200c, 200d) for distributing a video signal to the plurality of LED display devices (100) included in each of the sub-display systems;
    With
    At least one of the LED display control devices (200, 200a, 200b, 200c, 200d)
    An average luminance value of pixels in a display area formed by each of the sub display systems in the video signal is calculated, and based on the average luminance value, power consumption of each of the sub display systems is equal to or less than a predetermined value. N sub-area correction coefficient calculation units (38, 39, 40) for calculating a luminance correction coefficient for each display area for correcting the luminance of the video signal;
    An average luminance value of pixels of one screen in the video signal is calculated, and based on the average luminance value, the video signal so that power consumption of the n sub-display systems as a whole is equal to or less than a predetermined value. An overall area correction coefficient calculation unit (37) for calculating a luminance correction coefficient for the entire one screen for correcting the brightness of
    A common correction coefficient calculation unit (41) that calculates a common luminance correction coefficient based on the calculation results of the n sub-area correction coefficient calculation units (38, 39, 40) and the entire area correction coefficient calculation unit (37). )When,
    A video signal distribution unit (34) for distributing the video signal and the common luminance correction coefficient to the plurality of LED display devices (100) included in the n sub-display systems;
    With
    Each of the LED display devices (100)
    A plurality of LEDs (1) serving as display pixels;
    A luminance adjustment unit (5) for adjusting the luminance of the video signal distributed from the video signal distribution unit based on the common luminance correction coefficient distributed from the video signal distribution unit;
    An LED driving unit (6) for driving the plurality of LEDs (1) based on the video signal whose luminance has been adjusted by the luminance adjusting unit (5);
    An LED display system comprising:
  2.  前記共通の輝度補正係数は、n個の前記サブエリア補正係数算出部(38,39,40)で算出された前記輝度補正係数および全体エリア補正係数算出部(37)で算出された前記輝度補正係数のうち、最小の輝度補正係数である、請求項1記載のLED表示システム。 The common luminance correction coefficient is calculated by the luminance correction coefficient calculated by the n sub area correction coefficient calculation units (38, 39, 40) and the luminance correction calculated by the whole area correction coefficient calculation unit (37). The LED display system according to claim 1, which is a minimum luminance correction coefficient among the coefficients.
  3.  少なくとも1個の前記LED表示制御装置(200a,200b,200c,200d)は複数の前記LED表示制御装置(200a,200b,200c,200d)を備え、
     各前記LED表示制御装置(200a,200b,200c,200d)は、他のLED表示制御装置(200a,200b,200c,200d)とワイヤードOR接続された信号線をさらに備え、n個の前記サブエリア補正係数算出部(38,39,40)で算出された前記平均輝度値および全体エリア補正係数算出部(37)で算出された前記平均輝度値のうち、最大の平均輝度値を、前記信号線を介して他の前記LED表示制御装置(200a,200b,200c,200d)と共有する、請求項1または請求項2記載のLED表示システム。
    At least one of the LED display control devices (200a, 200b, 200c, 200d) includes a plurality of the LED display control devices (200a, 200b, 200c, 200d),
    Each of the LED display control devices (200a, 200b, 200c, 200d) further includes a signal line that is wired OR connected to the other LED display control devices (200a, 200b, 200c, 200d), and the n sub-areas Of the average luminance value calculated by the correction coefficient calculation unit (38, 39, 40) and the average luminance value calculated by the overall area correction coefficient calculation unit (37), the maximum average luminance value is determined as the signal line. The LED display system according to claim 1 or 2, which is shared with the other LED display control devices (200a, 200b, 200c, 200d) via a terminal.
  4.  請求項1から請求項3のいずれか1項に記載のLED表示システム(300,300A)が備えるLED表示制御装置。 An LED display control device provided in the LED display system (300, 300A) according to any one of claims 1 to 3.
  5.  請求項1から請求項3のいずれか1項に記載のLED表示システム(300,300A)が備えるLED表示装置。 An LED display device provided in the LED display system (300, 300A) according to any one of claims 1 to 3.
PCT/JP2018/012654 2018-03-28 2018-03-28 Led display system, led display control device, and led display device WO2019186746A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012654 WO2019186746A1 (en) 2018-03-28 2018-03-28 Led display system, led display control device, and led display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012654 WO2019186746A1 (en) 2018-03-28 2018-03-28 Led display system, led display control device, and led display device

Publications (1)

Publication Number Publication Date
WO2019186746A1 true WO2019186746A1 (en) 2019-10-03

Family

ID=68062597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012654 WO2019186746A1 (en) 2018-03-28 2018-03-28 Led display system, led display control device, and led display device

Country Status (1)

Country Link
WO (1) WO2019186746A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021184079A (en) * 2020-05-21 2021-12-02 緯創資通股▲ふん▼有限公司Wistron Corporation Light-emitting diode display system and module
WO2022029875A1 (en) * 2020-08-04 2022-02-10 三菱電機株式会社 Led display system, led display control device, and led display device
EP4174837A4 (en) * 2020-11-19 2023-11-15 Samsung Electronics Co., Ltd. Display module, display apparatus and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226513A (en) * 2003-01-21 2004-08-12 Pioneer Electronic Corp Multi-display video display system
JP2010527043A (en) * 2007-05-16 2010-08-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Dynamic power control of display screen
JP2010228420A (en) * 2009-03-30 2010-10-14 Brother Ind Ltd Drive control apparatus
WO2012108337A1 (en) * 2011-02-10 2012-08-16 シャープ株式会社 Multi-display device and image display device
WO2012157649A1 (en) * 2011-05-18 2012-11-22 シャープ株式会社 Display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226513A (en) * 2003-01-21 2004-08-12 Pioneer Electronic Corp Multi-display video display system
JP2010527043A (en) * 2007-05-16 2010-08-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Dynamic power control of display screen
JP2010228420A (en) * 2009-03-30 2010-10-14 Brother Ind Ltd Drive control apparatus
WO2012108337A1 (en) * 2011-02-10 2012-08-16 シャープ株式会社 Multi-display device and image display device
WO2012157649A1 (en) * 2011-05-18 2012-11-22 シャープ株式会社 Display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021184079A (en) * 2020-05-21 2021-12-02 緯創資通股▲ふん▼有限公司Wistron Corporation Light-emitting diode display system and module
JP7149316B2 (en) 2020-05-21 2022-10-06 緯創資通股▲ふん▼有限公司 Light emitting diode display system and module
WO2022029875A1 (en) * 2020-08-04 2022-02-10 三菱電機株式会社 Led display system, led display control device, and led display device
EP4174837A4 (en) * 2020-11-19 2023-11-15 Samsung Electronics Co., Ltd. Display module, display apparatus and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP6804659B2 (en) LED display system and LED display device
US10410565B2 (en) Display device, image processing device, and image processing method
US9349333B2 (en) Control circuit and display device equipped with the same
JP5270730B2 (en) Video display device
US20140340437A1 (en) Video display device
WO2019186746A1 (en) Led display system, led display control device, and led display device
JP2003241714A (en) Method for driving display device, and display device
US8749473B2 (en) Video display device
CN104900188B (en) LED display uniformity correcting method
JP2008216560A (en) Display device
US20140028739A1 (en) Display device and control method for display device
JP6727047B2 (en) Display device
US20120056561A1 (en) Backlight apparatus, display apparatus and lighting apparatus
US10957244B2 (en) LED display system and LED display device
JP2018180423A (en) Led display system and led display device
WO2019138543A1 (en) Display device
WO2022029875A1 (en) Led display system, led display control device, and led display device
JP6789829B2 (en) Display system
JP2010250193A (en) Image display device
WO2020157849A1 (en) Led display system and display control method
JP2019191202A (en) Display device
US11967608B1 (en) Pixel integrate scanning (PIS) distributed type automatic power-saving electronic display board
JP5039218B1 (en) Video display device
JP2012194240A (en) Image display
Miller et al. 19.2: Adaptive Luminance and Saturation Control for RGBW OLED Displays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP