WO2019186482A1 - 净水装置和净水单元 - Google Patents

净水装置和净水单元 Download PDF

Info

Publication number
WO2019186482A1
WO2019186482A1 PCT/IB2019/052588 IB2019052588W WO2019186482A1 WO 2019186482 A1 WO2019186482 A1 WO 2019186482A1 IB 2019052588 W IB2019052588 W IB 2019052588W WO 2019186482 A1 WO2019186482 A1 WO 2019186482A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
unit
water purification
photocatalyst
ultraviolet
Prior art date
Application number
PCT/IB2019/052588
Other languages
English (en)
French (fr)
Inventor
李嘉浩
Original Assignee
江苏耀群工业技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW107204142U external-priority patent/TWM563911U/zh
Priority claimed from CN201820535697.6U external-priority patent/CN208413918U/zh
Application filed by 江苏耀群工业技术有限公司 filed Critical 江苏耀群工业技术有限公司
Priority to KR2020207000055U priority Critical patent/KR20200002400U/ko
Priority to JP2021600013U priority patent/JP3233596U/ja
Publication of WO2019186482A1 publication Critical patent/WO2019186482A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3227Units with two or more lamps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Definitions

  • the present invention relates to a water purifying apparatus, and more particularly to a water purifying apparatus which provides a function of killing bacteria and decomposing organic substances by ultraviolet rays and a photocatalyst. Background technique
  • UV radiation sources In order to achieve more effective and concentrated sterilization purposes, artificial UV (Ultraviolet) radiation sources were invented, the principle is to pass current through a specific gas, through impact to turn it into an excited state, when the specific gas is excited When the state returns to its original state, it will release excess energy to produce UV (Ultraviolet).
  • UV (Ultraviolet) sterilization technology is also widely used in many fields that require clean water.
  • electronic semiconductors, optoelectronics, precision machinery and other industries need to use a large amount of pure in the process.
  • the water is stained with dirt after washing the drug.
  • the process can be divided into an array (Array), a panel assembly (Cell), and a module process (Module).
  • Array array
  • Cell panel assembly
  • Module module process
  • the water purifying device of the known technical solution is aimed at sterilization, so it is concentrated on the C-band of UV (Ultraviolet), but many organic substances are also washed in the Array process, so that the water contains a certain concentration.
  • Organic acids and bases, amine nitrogen, in addition to the nutrients that may provide bacterial growth, will also cause subsequent processes The organic stickiness, and even the problem of panel dead spots or uneven brightness (MURA).
  • the wavelength of the UV (Ultraviolet) C-band is short, the relative penetration distance is also short, so that the dead zone that is not irradiated is incompletely sterilized, and the effective amount of water that can be processed is also limited, and the known technical solutions are often Using multiple tubes or loop designs to solve them can cause more energy problems.
  • UV Ultraviolet
  • UV Ultraviolet
  • OIT hydroxyl radicals
  • Quartz glass tube has the highest transmittance to UV (Ultraviolet) C-band, has a very small thermal expansion coefficient, and can withstand severe temperature changes, and does not chemically react with other acids other than hydrofluoric acid. Therefore, it is often used as a tube of an ultraviolet lamp.
  • UV Ultraviolet
  • FIG. 1 is a schematic structural view of a water purifying device of a known technical solution.
  • the container body 10 has a water-receiving space.
  • OIT hydroxyl radicals
  • UV Ultraviolet
  • the known technical solution uses a timer to count the remaining life of the ultraviolet lamp to remind the user to replace the lamp, but there are still problems such as being inaccurate and unable to take into account the difference of the individual ultraviolet lamp. Therefore, there is an urgent need for a novel net in the field. Water device. Summary of the invention
  • the surface area can expand the range of the photocatalytic reaction, and can also greatly reduce the problem of irradiating the dead zone.
  • Another object of the present invention is to disclose a water purifying device which can achieve the goal by increasing the number of photocatalyst units when processing a higher amount of water, eliminating the need to use more lamps and causing more energy consuming problems.
  • Still another object of the present invention is to provide a water purifying apparatus having an ultraviolet light intensity detecting unit capable of providing a reminder replacement function when an irradiation intensity value of an ultraviolet lamp tube is lower than a default value.
  • a further object of the present invention is to disclose a water purifying apparatus having a particle counting unit capable of providing a reminder replacement function when the photocatalyst unit of the water containing space is deteriorated such that the photocatalyst particle concentration value is higher than a default value.
  • the present invention provides a water purification device, comprising: a housing having a tube body, at least one ultraviolet lamp tube, and a power unit, the tube body having a cylindrical structure and having a receiving space. ???said at least one ultraviolet lamp tube is disposed in the accommodating space, the power unit is coupled to the at least one ultraviolet lamp tube to provide electric power; and at least one photocatalyst unit is in a fiber shape; wherein, when the purified water When the device is disposed in a water-receiving space defined by the interior of the container body, the at least one ultraviolet lamp tube of the housing can project ultraviolet rays toward the water-receiving space, and the at least one photocatalyst unit floats in the water-receiving space And maintaining a certain distance from the at least one ultraviolet lamp tube, the photo-purifying device is provided to provide a function of sterilizing and decomposing organic matter by photocatalytic reaction.
  • the tubular body is a quartz glass tube.
  • the ultraviolet light has a wavelength of 185 nm or / and 254 nm.
  • the power unit is a disposable battery, a rechargeable battery, or an alternating current power source.
  • the at least one photocatalyst unit has a solid cylindrical shape, a hollow cylindrical shape, a hollow cylindrical internal thread, a hollow cylindrical surface vent, or a hollow cylindrical internal thread and surface. Stomata.
  • the material of the at least one photocatalyst unit is titanium dioxide, zinc oxide, tin dioxide, or cadmium sulfide.
  • the water purifying device includes at least one fixing bracket disposed inside the container body, the at least one fixing bracket for placing the at least one photocatalyst unit.
  • the inside of the tube body further has an ultraviolet light intensity detecting unit for detecting an irradiation intensity value of the at least one ultraviolet light tube.
  • the water purifying device further includes a water outlet disposed at the container body, And a particle counting unit disposed at the water outlet, wherein the particle counting unit is configured to detect a photocatalyst particle concentration value of the water receiving space.
  • the invention also discloses a water purification unit having a photocatalyst unit, wherein the photocatalyst unit is fibrous, floats in a water-contained space and maintains a certain distance from the ultraviolet light source, and the purified water is generated by photocatalytic reaction.
  • the unit provides the function of sterilizing and decomposing organic matter.
  • the photocatalyst unit has a solid cylindrical shape, a hollow cylindrical shape, a hollow cylindrical internal thread, a hollow cylindrical surface vent, or a hollow cylindrical internal thread and surface vent.
  • the photocatalyst unit is made of titanium dioxide, zinc oxide, tin dioxide, or cadmium sulfide.
  • FIG. 1 is a schematic structural view of a water purifying device of a known technical solution.
  • FIG. 2 is a schematic structural view of a water purifying device according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a water purifying device according to another preferred embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a water purifying device according to a preferred embodiment of the present invention.
  • the water purifying apparatus of the present invention comprises: a casing 100; and at least one photocatalyst unit 200.
  • the housing 100 has a tubular body 110, at least one ultraviolet light tube 120, and a power unit 130.
  • the tube body 110 has a cylindrical structure and has an accommodating space.
  • the at least one ultraviolet lamp tube 120 is disposed in the accommodating space, and the power unit 130 is coupled to the at least one ultraviolet lamp tube 120 to provide electric power.
  • the at least one photocatalyst unit 200 is fibrous.
  • the at least one ultraviolet lamp tube 120 of the housing 100 can project ultraviolet rays toward the water receiving space 510 when the water purifying device is disposed in the water receiving space 510 defined inside the container body 500.
  • At least one photocatalyst unit 200 floats in the water-receiving space 510 and maintains a certain distance from the at least one ultraviolet lamp tube 120, and the water purifying device provides a function of sterilizing and decomposing organic matter by photocatalytic reaction.
  • the tube body 110 is, for example but not limited to, a quartz glass tube; the ultraviolet light has a wavelength of 185 nm or / and 254 nm; and the power unit 130 is, for example but not limited to, a disposable battery, a rechargeable battery or an alternating current power source.
  • the at least one photocatalyst unit 200 of the present invention may be in the form of a hollow cylinder, the whole of which is a high-density photocatalyst material, the surface of which is evenly dispersed with a photocatalyst material, and the interior also has an uneven size.
  • the hollow structure penetrates the water body (not shown) for facilitating the water-receiving space.
  • the shape of the at least one photocatalyst unit 200 is, for example but not limited to, a solid cylindrical shape, a hollow cylindrical shape, a hollow cylindrical internal thread, a hollow cylindrical surface air hole, or a hollow cylindrical internal thread and a surface air hole.
  • the material of the at least one photocatalyst unit 200 is, for example but not limited to, titanium dioxide (Ti0 2 ), zinc oxide (ZnO), tin dioxide (Sn0 2 ), or cadmium sulfide (CdS).
  • the water purifying device of the present invention can increase the efficiency of the photocatalytic reaction and the hydroxyl radical (OIT) by increasing the surface area of the at least one photocatalyst unit 200 and the water body (not shown).
  • the concentration further expands the range of treatment for sterilizing and decomposing organic matter in water.
  • a photocatalyst material such as titanium dioxide (Ti0 2 )
  • Ti0 2 has an energy gap of about 3.2 electron volts, which corresponds to the energy carried by a light wave having a wavelength of 387.5 nm, that is, a UV having a wavelength of at least 387.5 nm must be provided (Ultraviolet). ; UV) to produce photocatalytic reaction of titanium dioxide (Ti0 2 ).
  • UV Ultraviolet
  • the known technical solution uses a timer to provide the reciprocal function of the remaining life of the ultraviolet lamp, which is used to remind the user to replace the ultraviolet lamp, but still has insufficient accuracy and cannot take into account the difference of individual ultraviolet lamps.
  • FIG. 3 is a schematic structural view of a water purifying device according to another preferred embodiment of the present invention.
  • the tube body 110 of the water purification device of the present invention further has an ultraviolet light intensity detecting unit 300 for detecting the irradiation intensity value of the at least one ultraviolet lamp tube 120, thereby enabling a more accurate understanding.
  • the current situation of the at least one ultraviolet lamp 120 can provide a reminder replacement function when the illumination intensity value is lower than a default value, and the principle of action is a known technique, and thus will not be repeatedly described herein.
  • the water purifying device further includes, for example, but not limited to, at least one fixing bracket (not shown) disposed inside the container body 500 for placing the at least one photocatalyst unit 200.
  • the water purifying device further includes a water outlet 520 disposed in the container body 500, and a particle counting unit 400 disposed at the water outlet 520 for detecting a photocatalyst particle concentration value of the water receiving space 510,
  • the photocatalyst is degraded such that the photocatalyst particle concentration value is higher than a default value to provide a reminder replacement function
  • the particle counting unit 400 is, for example but not limited to, an optical sensor for performing particle detection and counting, and the principle of action is Known techniques are not repeated here.
  • the present invention also discloses a water purification unit having the photocatalyst unit, wherein the photocatalyst unit is fibrous, floats in a water-storing space and maintains a certain distance from the ultraviolet light source, and causes a photocatalytic reaction to occur.
  • the water purification unit provides a function of sterilizing and decomposing organic matter (all not shown in the drawings). The principle of the invention will be explained below:
  • UV Ultraviolet
  • UV Ultraviolet refers to an electromagnetic wave having a wavelength of 10 nm to 400 nm, which has a shorter wavelength than visible light. UV (Ultraviolet; UV) was discovered in 1801 AD. In 1877, British scientists used UV (Ultraviolet; UV) to kill Bacillus subtilis and Bacillus, confirming its bactericidal ability. In 1965, Sykes et al. also found wavelengths. UV (Ultraviolet; UV) between 240 and 280 nm is the most bactericidal.
  • UV Ultraviolet
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • the molecular bond causes it to lose its activity and die, thereby achieving the purpose of sterilization.
  • gram negative rods are most sensitive to UV (Ultraviolet) and are most likely to be killed, followed by Staphylococcus spp. C Streptococcus spp and Bacterial spores.
  • the bactericidal ability of 254 nm ultraviolet light is about 1600 times that of strong direct sunlight, so it is generally considered to be the most bactericidal wavelength.
  • the relative penetration distance is also short, so that the dead zone that is not irradiated is not completely sterilized.
  • UV (Ultraviolet) UV (Vucuum) band wavelength between 100nm and 200nm of which 185nm UV light sterilization effect is less than 254nm ultraviolet light, but because of the high energy of 647 kJ / mole, can be used
  • the chemical bond of the organic matter in the water is broken and then decomposed into carbon dioxide and water, as shown in the reaction formula (1).
  • Ultraviolet light of 185 nm can also be used to reinforce the dissociation energy that 254 nm ultraviolet light can only reach with 471 kJ/mole.
  • the chemical bonds and their dissociation energies are shown in Table 1. Table 1
  • the ultraviolet light at 185 nm is not only represented by the reaction formula (1), but also can generate hydrogen radicals (OH_) directly from water molecules to dissociate the chemical bonds of organic substances in water, and when combined with 254 nm ultraviolet light, can make the water Oxygen molecules form ozone (0 3 ) and oxygen radicals (00, which in turn form hydroxyl radicals (0H-), as shown in reaction formula (2).
  • OH_ hydrogen radicals
  • the oxidation potential of each oxide is shown in Table 2. It can be seen that the hydroxyl radical (0H_) and ozone (0 3 ) generated by the interaction of 185 nm ultraviolet light and 254 nm ultraviolet light, because the oxidation potential is high, The stronger the ability to dissociate the chemical bonds of organic matter in water, the more effective it is to decompose organic matter in water. Table 2
  • both the 185 nm and 254 nm ultraviolet light have a short wavelength and a short penetration distance, so that the range of action is also limited.
  • an electron valence band (valence band) is raised to the conduction band (conduction band) to; photocatalyst (photo catalyst) can be provided via UV (ultraviolet Ultraviolet)
  • UV ultraviolet Ultraviolet
  • a pair of free electron-holes are produced.
  • the electrons and the oxygen molecules generate peroxidic free radicals (0 2 ), and the holes and the water molecules form hydroxyl radicals (OH).
  • the above radicals can decompose the organic matter in the water into carbon dioxide and water to purify. .
  • OH_ hydroxyl radical
  • semiconductor materials have the characteristics of photocatalysts, some semiconductor materials are prone to deterioration in acidic or alkaline environments, causing chemical or photochemical corrosiveness, and the required driving energy is generally high, and is not suitable for use as water purification. .
  • the photocatalyst unit of the present invention is fibrous and is a polymer composed of a photocatalyst material, which is not coated on the surface of a quartz glass tube as in the prior art, but is separated from the quartz glass tube. It flutters in the direction of water flow over a distance, and can also be placed on a fixed bracket, which is not in contact with the quartz glass tube.
  • the photocatalyst unit of the present invention can increase the surface area in contact with the water body, thereby increasing the treatment range of sterilizing and decomposing organic substances in the water, and can also greatly reduce the problem of the known technical solution irradiating the dead zone.
  • the present invention can also increase the amount of photocatalyst (photo catalyst) means to achieve the object, the lamp is no longer necessary to use more and more energy is causing problems.
  • the present invention has the following advantages:
  • the water purifying device of the present invention has a photocatalyst unit which is fibrous and spaced apart from the quartz glass tube so that the photocatalytic reaction is no longer limited to the surface of the quartz glass tube and increases the surface area in contact with the water body. It can increase the range of photocatalytic reactions, and can also greatly reduce the problem of irradiating dead zones.
  • the water purifying device of the present invention can achieve the object by increasing the number of photocatalyst units when processing a higher amount of water, and no longer needs to use more lamps to cause more energy consumption.
  • the water purifying device of the present invention which has an ultraviolet light intensity detecting unit, can provide a reminder replacement function when the ultraviolet light tube illumination intensity value is lower than a default value.
  • the water purifying device of the present invention which has a particle counting unit capable of providing a reminder replacement function when the photocatalyst unit in the water containing space is deteriorated such that the photocatalyst particle concentration value is higher than a default value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Water Treatments (AREA)
  • Catalysts (AREA)

Abstract

种净水装置,包括:壳体(100),其具有管体(110)、至少一紫外线灯管(120)、及电力单元(130),所述管体(110)为圆筒状结构且具有容置空间,所述至少一紫外线灯管(120)设置于所述容置空间,所述电力单元(130)与所述至少一紫外线灯管(120)耦接以提供电力;以及至少一个光催化剂单元(200),呈纤维状;其中,当所述净水装置设置于容器主体(500)内部所定义的容水空间(510)时,所述壳体(100)的所述至少一紫外线灯管(120)能朝所述容水空间(510)投射紫外线,所述至少一个光催化剂单元(200)漂浮于所述容水空间(510)且与所述至少一个紫外线灯管(120)维持一定距离,通过产生光催化反应以使所述净水装置提供杀菌及分解有机物之功能。此外,还有一种净水单元,其包括上述的光催化剂单元(200)。

Description

净水装置和净水单元 相关申请的交叉引用
本申请主张 2018年 3月 30日在中国台湾提交的申请号 107204142、 以 及 2018年 4月 16日在中国提交的中国专利申请号 No. 201820535697.6的优 先权, 其全部内容通过引用包含于此。 技术领域
本发明涉及一种净水装置, 尤其涉及一种通过紫外线及光催化剂提供杀 菌及分解有机物功能的净水装置。 背景技术
自古以来, 日晒法就是众所皆知最方便、 最便宜的消毒方式, 然而其缺 点为必需在良好的天候环境下才能取得。 此外, 阳光中具有杀菌效果为 UV (Ultraviolet; 紫外线) 的 C波段, 然而地球的臭氧层阻绝了约 99%紫外线辐 射, 使得能够到达地面的 C波段非常微量。
为了更有效与集中的达到杀菌目的, 人造的 UV (Ultraviolet; 紫外线) 幅射源于是被发明出来, 原理是将电流通过特定气体, 通过撞击将其变成激 发状态, 当所述特定气体从激发状态回到原来状态时会把多余能量释出而产 生出 UV (Ultraviolet; 紫外线)。
由于杀菌快速、 简便且无化学药物残留, UV (Ultraviolet; 紫外线) 杀 菌技术也普遍地被应用在很多需要洁净用水的领域,例如电子半导体、光电、 精密机械等产业均需在工艺中使用大量纯水以洗净药品处理后所沾粘的脏污。
以面板制造产业为例, 其工艺可分为阵列 (Array)、 面板组装(Cell)及 模块工艺 (Module) 等工序, 业者大多以中央供水的方式提供洁净用水给工 艺端使用, 然而因管路绵长极易成为污染的温床。 已知技术方案的净水装置 均以杀菌为目的, 因此集中在以 UV (Ultraviolet; 紫外线) 的 C波段进行照 射, 但是在阵列 (Array) 工序时也会洗下许多有机物, 使得水中含有一定浓 度的有机酸碱、 胺氮, 除了可能提供细菌增长的养分外, 还会造成后续工艺 的有机沾粘、 甚至产生面板坏点或画质亮度不均 (MURA) 等问题。
此外, 因为 UV (Ultraviolet; 紫外线) C波段的波长短, 相对地穿透距 离也较短, 使得照射不到的死角区域杀菌不完全, 能够处理的有效水量也因 此受限, 已知技术方案常使用多个灯管或循环设计来解决, 却也会造成耗能 更多的问题。
UV (Ultraviolet; 紫外线) 的真空 (Vacuum) 波段, 虽然杀菌能力不及 C波段, 却因为能使水分子断键成为氢氧自由基(OIT)而被使用来分解水中 的有机物, 然而其波长较 C波段更短, 穿透距离也更短, 使用上常搭配光催 化齐 ll ( photo catalyst)。
石英玻璃管由于对 UV (Ultraviolet; 紫外线) C波段的穿透率最高, 热 膨胀系数极小, 且能承受剧烈的温度变化, 并且不会与除氢氟酸外的其他酸 类物质发生化学反应, 因而常被用来作为紫外线灯管的管体。
请参照图 1,其为已知技术方案的净水装置的结构示意图。如图 1所示, 容器主体 10具有容水空间, 已知技术方案在石英玻璃管 20的表面涂布光催 化剂(photo catalyst)来提高 UV分解有机物的效能,但由于氢氧自由基(OIT) 仅发生在光催化剂(photo catalyst)表面, 因此能够分解有机物的范围也受限 于石英玻璃管 20附近。 因此已知技术方案使用多个灯管或循环设计来解决, 却也同样造成耗能以及仍有处理不到的照射死角区域等问题。
另外, UV (Ultraviolet; 紫外线) 为非可见光, 使用者常会以使用日光 灯的习惯来评估其是否运作正常, 造成因继续使用已失效的灯管而无法达成 杀菌或分解有机物的需求。 已知技术方案使用定时器进行紫外线灯管剩余使 用寿命的倒数以提醒使用者更换灯管的时间, 却仍有不够精确与无法顾及个 别紫外线灯管的差异等问题, 因此本领域急需新颖的净水装置。 发明内容
本发明的目的在于提供一种净水装置, 其光催化剂单元呈纤维状, 且与 石英玻璃管相隔一段距离, 使得光催化反应不再仅限于发生在石英玻璃管表 面, 并通过增加与水体接触的表面积而能扩大光催化反应的范围, 也能大幅 减少照射死角区域的问题。 本发明的另一目的在于揭露一种净水装置, 其在处理更高水量时, 能通 过增加光催化剂单元的数量来达成目的, 不再需使用更多灯管而造成更多耗 能问题。
本发明的又一目的在于揭露一种净水装置,其具有紫外光强度检测单元, 能在紫外线灯管的照射强度值低于默认值时提供提醒更换功能。
本发明的再一目的在于揭露一种净水装置, 其具有微粒计数单元, 能在 所述容水空间的光催化剂单元劣化使得光催化剂微粒浓度值高于默认值时提 供提醒更换功能。
为达上述目的, 本发明提出一种净水装置, 其包括: 壳体, 其具有管体、 至少一个紫外线灯管及电力单元, 所述管体为圆筒状结构且具有容置空间, 所述至少一个紫外线灯管设置于所述容置空间, 所述电力单元与所述至少一 个紫外线灯管耦接以提供电力; 以及至少一个光催化剂单元, 呈纤维状; 其 中, 当所述净水装置设置于容器主体内部所定义的容水空间时, 所述壳体的 所述至少一个紫外线灯管能朝所述容水空间投射紫外线, 所述至少一个光催 化剂单元漂浮于所述容水空间且与所述至少一个紫外线灯管维持一定距离, 通过发生光催化反应以使所述净水装置提供杀菌及分解有机物的功能。
在一个实施例中, 所述管体为石英玻璃管。
在一个实施例中, 所述紫外线的波长为 185nm或 /及 254nm。
在一个实施例中,所述电力单元为一次性电池、充电电池或交流电电源。 在一个实施例中, 所述至少一个光催化剂单元的形状为实心圆筒状、 空 心圆筒状、 空心圆筒状具内部螺纹、 空心圆筒具表面气孔、 或空心圆筒具内 部螺纹及表面气孔。
在一个实施例中, 所述至少一个光催化剂单元的材料为二氧化钛、 氧化 锌、 二氧化锡、 或硫化镉。
在一个实施例中, 所述净水装置包括设置于所述容器主体内部的至少一 个固定支架, 所述至少一个固定支架用于放置所述至少一个光催化剂单元。
在一个实施例中, 所述管体内部还具有紫外光强度检测单元, 用于检测 所述至少一个紫外线灯管的照射强度值。
在一个实施例中, 所述净水装置还包括设置于所述容器主体的出水口, 以及设置于所述出水口的微粒计数单元, 所述微粒计数单元用于检测所述容 水空间的光催化剂微粒浓度值。
本发明还揭露了一种净水单元, 其具有光催化剂单元, 所述光催化剂单 元呈纤维状, 漂浮于容水空间且与紫外线光源维持一定距离, 通过发生光催 化反应以使所述净水单元提供杀菌及分解有机物的功能。
在一个实施例中,所述光催化剂单元的形状为实心圆筒状、空心圆筒状、 空心圆筒状具内部螺纹、 空心圆筒具表面气孔、 或空心圆筒具内部螺纹及表 面气孔。
在一个实施例中, 所述光催化剂单元的材料为二氧化钛、 氧化锌、 二氧 化锡、 或硫化镉。 附图说明
图 1为已知技术方案的净水装置的结构示意图。
图 2为本发明一个优选实施例的净水装置的结构示意图。
图 3为为本发明另一优选实施例的净水装置的结构示意图。
附图标记说明
容器主体 10
石英玻璃管 20
壳体 100
管体 110
紫外线灯管 120
电力单元 130
光催化剂单元 200
紫外光强度检测单元 300
微粒计数单元 400
容器主体 500
容水空间 510
出水口 520 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下结合具体实施 例, 并参照附图, 对本本发明作进一步的详细说明。
请参照图 2 , 其为本发明一个优选实施例的净水装置的结构示意图。 如图 2所示, 本发明的净水装置包括: 壳体 100; 以及至少一个光催化 剂单元 200。
所述壳体 100具有管体 110、至少一个紫外线灯管 120、及电力单元 130。 所述管体 110为圆筒状结构且具有容置空间, 所述至少一个紫外线灯管 120 设置于所述容置空间, 所述电力单元 130与所述至少一个紫外线灯管 120耦 接以提供电力。
所述至少一个光催化剂单元 200呈纤维状。
其中, 当所述净水装置设置于容器主体 500 内部所定义的容水空间 510 时, 所述壳体 100的所述至少一个紫外线灯管 120能朝所述容水空间 510投 射紫外线, 所述至少一个光催化剂单元 200漂浮于所述容水空间 510且与所 述至少一个紫外线灯管 120维持一定距离, 通过发生光催化反应使得所述净 水装置提供杀菌及分解有机物的功能。
其中, 所述管体 110 例如但不限为石英玻璃管; 所述紫外线的波长为 185nm或 /及 254nm; 所述电力单元 130例如但不限为一次性电池、 充电电池 或交流电电源。
在一个实施例中, 本发明的所述至少一个光催化剂单元 200可以为空心 圆筒状,整根均为高密度的光催化剂材料,表面也均匀散布着光催化剂材料, 内部还具有大小不均的空洞结构以利于所述容水空间的水体 (图中未示出) 穿透。
所述至少一个光催化剂单元 200的形状例如但不限为实心圆筒状、 空心 圆筒状、 空心圆筒状具内部螺纹、 空心圆筒具表面气孔、 或空心圆筒具内部 螺纹及表面气孔; 所述至少一个光催化剂单元 200的材料例如但不限为二氧 化钛 (Ti02)、 氧化锌 (ZnO)、 二氧化锡 (Sn02)、 或硫化镉 (CdS)。
本发明的净水装置能通过提高所述至少一个光催化剂单元 200 和水体 (图中未示出) 接触的表面积, 增加光催化反应的效率及氢氧自由基 (OIT) 的浓度, 进而扩大杀菌和分解水中有机物的处理范围。
另夕卜, 光催化剂(photo catalyst)材料, 例如二氧化钛( Ti02) 的能隙约 3.2电子伏特, 相当于波长为 387.5nm光波所携带的能量, 即必须提供波长至 少小于 387.5nm的 UV (Ultraviolet; 紫外线) 才能使二氧化钛 (Ti02) 产生 光催化反应。
此外, 由于 UV (Ultraviolet; 紫外线) 并非可见光, 使用者习惯以使用 日光灯的标准来评估是否运作正常,造成已失效的紫外线灯管却仍继续使用、 未实时更换而无法达到需求。
已知技术方案使用定时器用于提供紫外线灯管的剩余使用寿命的倒数功 能, 用于提醒用户更换紫外线灯管, 却仍有不够精确与无法顾及个别紫外线 灯管的差异等问题。
请参照图 3 , 其为本发明另一个优选实施例的净水装置的结构示意图。 如图 3所示, 本发明的净水装置的所述管体 110内部还具有紫外光强度 检测单元 300, 用于检测所述至少一个紫外线灯管 120 的照射强度值, 因此 能更精确地了解所述至少一个紫外线灯管 120的当前情形, 并能在所述照射 强度值低于默认值时能提供提醒更换功能, 其作用原理为已知技术, 故在此 不做重复叙述。
所述净水装置还包括例如但不限于设置于所述容器主体 500内部的至少 一个固定支架 (未示于图中), 用于放置所述至少一个光催化剂单元 200。
所述净水装置还包括设置于所述容器主体 500的出水口 520, 以及设置 于所述出水口 520的微粒计数单元 400用于检测所述容水空间 510的光催化 剂微粒浓度值, 能在所述光催化剂劣化使得所述光催化剂微粒浓度值高于默 认值时能提供提醒更换功能, 所述微粒计数单元 400例如但不限于为用于进 行微粒检测与计数的光学传感器, 其作用原理为已知技术, 故在此不做重复 叙述。
此外, 本发明还揭示一种净水单元, 其具有所述的光催化剂单元, 所述 光催化剂单元呈纤维状, 漂浮于容水空间且与紫外线光源维持一定距离, 通 过发生光催化反应以使所述净水单元提供杀菌及分解有机物的功能 (均未示 于图中)。 以下将针对本发明的原理进行说明:
UV(Ultraviolet; 紫外线) 的作用原理:
UV (Ultraviolet; 紫外线) 指波长在 10nm至 400nm的电磁波, 其波长 比可见光短。 UV(Ultraviolet; 紫外线)被发现于公元 1801年, 1877年英国 科学家用 UV (Ultraviolet; 紫外线) 进行杀灭枯草杆菌、 芽孢菌的实验, 证 实其具有杀菌的能力, 1965年 Sykes等人还发现波长介于 240至 280nm之间 的 UV (Ultraviolet; 紫外线) 杀菌作用最强。
UV (Ultraviolet; 紫外线) 的杀菌机制为利用其游离辐射的能量穿透微 生物的细胞膜时,被微生物的核酸、脱氧核糖核酸(DNA)、核糖核酸(RNA) 等所吸收, 通过破坏其结构及核酸分子键使其失去活性而死亡, 从而达到杀 菌的目的。
在所有的微生物中, 革兰氏阴性杆菌 ( gram negative rods) 对 UV ( Ultraviolet; 紫外线) 最敏感, 也最容易被杀死, 其次是葡萄球菌属 (Staphylococcus spp. 链球菌属 C Streptococcus spp) 及细菌孢子。
因为 DNA在 C波段的 254nm波长具有最大的吸收峰, 254nm紫外光的 杀菌能力约为强烈阳光直射的 1600倍,因此被普遍认为是最具备杀菌效果的 波长。 然而却也因为波长较短, 相对地穿透距离也较短, 使得照射不到的死 角区域杀菌不完全。
UV( Ultraviolet;紫外线)真空(Vacuum)波段的波长介于 100nm至 200nm 之间, 其中 185nm的紫外光虽然杀菌效果不及于 254nm的紫外光, 但由于具 有 647 kJ/mole的高能量, 能用来打断水中有机物的化学键进而分解成二氧化 碳及水, 如反应式 (1) 所示。
H20 (经 UV 185nm照射) H+ + OH
有机物 +OIT C02 + H20 ( 1)
185nm的紫外光也能用来补强 254nm紫外光仅具有 471kJ/mole而无法达 到的解离能量, 各化学键及其解离能量如表 1所示。 表 1
Figure imgf000010_0002
此外, 185nm的紫外光不只如反应式(1)所示, 能直接由水分子生成氢 氧自由基 (OH_) 以解离水中的有机物的化学键, 当与 254nm紫外光共同作 用时能使水中的氧分子形成臭氧(03) 与氧自由基(00, 进而生成氢氧自由 基 (0H—), 如反应式 (2) 所示。
Figure imgf000010_0001
各氧化物的氧化电位如表 2所示,可以得知,经由 185nm紫外光与 254nm 紫外光共同作用所生成的氢氧自由基 (0H_) 与臭氧 (03), 因为氧化电位较 高, 所以能解离水中有机物的化学键的能力越强, 越能有效分解水中的有机 物。 表 2
Figure imgf000011_0001
然而, 185nm和 254nm的紫外光均具有波长短、 穿透距离短的特性, 使 得其作用范围也受限制。
光催化剂的作用原理:
光催化剂 (photo catalyst) 能经由 UV (Ultraviolet; 紫外线) 照射后, 吸 收其能量电子从基态被激发至较高能级, 将共价带 (valence band) 的一个电 子提升到传导带 (conduction band) 以产生一对自由电子-空穴。 其中电子会 与氧分子生成过氧化自由基 ( 02 ) ,空穴则与水分子生成氢氧自由基 (OH ) , 上述自由基均能将水中的有机物分解成二氧化碳及水以达到净化的功效。
此外, 经由光催化反应后产生大量的氢氧自由基 (OH_)也会在细菌表面 产生氧化还原反应而达到杀菌效用, 其为已知技术, 故在此不予重复叙述。
虽然, 半导体材料均具有光催化剂的特性, 但部分半导体材料在酸性或 碱性的环境中容易变质、 产生化学或光化学腐蚀性, 加上需要的驱动能量普 遍较高, 而不适宜作为净水用。
常用的光催化剂材料有氧化锌 (ZnO)、二氧化锡 ( Sn02 )、硫化镉 (CdS ) 等, 其中二氧化钛 ( TI02 ) 由于具有低溶解性、 高稳定性、 无毒性、 便宜及 可在室温下作业等优点, 而被广泛使用。
尽管光催化剂 (photo catalyst)加上 UV (Ultraviolet; 紫外线)照射后能 够产生杀菌和分解水中有机物的效用, 但是这些反应均只会发生在光催化剂 (photo catalyst) 表面。 因此, 如何增加光催化剂 (photo catalyst) 和水体接 触的表面积即为重要课题。
本发明的光催化剂 (photo catalyst)单元呈纤维状, 是由光催化剂 (photo catalyst)材料组成的聚合物,并非如已知技术方案涂布于石英玻璃管的表面, 而是与石英玻璃管相隔一段距离地随水流方向飘动, 也可被设置于固定支架 上, 均未与石英玻璃管接触。 虽然杀菌和分解水中有机物的光催化反应只会发生在光催化剂 (photo catalyst) 单元表面, 但本发明因为光催化剂单元能脱离石英玻璃管, 使得上 述的光催化反应不只限于发生在石英玻璃管的表面, 本发明的光催化剂 (photo catalyst)单元能通过增加其和水体接触的表面积, 因而增加杀菌和分 解水中有机物的处理范围,也能大幅减少已知技术方案照射死角区域的问题。
此外, 当需要处理更高水量时, 本发明也能通过增加光催化剂 (photo catalyst) 单元的数量来达成目的, 不再需要使用更多灯管而造成更多耗能的 问题。
通过上述所揭露的设计, 本发明才具有以下的优点:
1. 本发明的净水装置, 其光催化剂单元呈纤维状, 且与石英玻璃管相隔 一段距离, 使得光催化反应不再仅限于发生在石英玻璃管表面, 并通过增加 与水体接触的表面积而能增加光催化反应的范围, 也能大幅减少照射死角区 域的问题。
2.本发明的净水装置, 其在处理更高水量时, 能通过增加光催化剂单元 的数量来达成目的, 不再需使用更多灯管而造成更多耗能的问题。
3. 本发明的净水装置, 其具有紫外光强度检测单元, 在紫外线灯管的照 射强度值低于默认值时能提供提醒更换功能。
4. 本发明的净水装置, 其具有微粒计数单元, 能在所述容水空间的光催 化剂单元劣化使得光催化剂微粒浓度值高于默认值时能提供提醒更换功能。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进行了 进一步详细说明, 应理解的是, 以上所述仅为本发明的具体实施例而已, 并 不用于限制本发明, 凡在本发明的精神和原则之内, 所做的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利 要 求 书
1 . 一种净水装置, 包括:
壳体, 其具有管体、 至少一个紫外线灯管、 及电力单元, 所述管体为圆 筒状结构且具有容置空间, 所述至少一个紫外线灯管设置于所述容置空间, 所述电力单元与所述至少一个紫外线灯管耦接以提供电力; 以及
至少一个光催化剂单元, 呈纤维状; 其中, 当所述净水装置设置于容器 主体内部所定义的容水空间时, 所述壳体的所述至少一个紫外线灯管能朝所 述容水空间投射紫外线, 所述至少一个光催化剂单元漂浮于所述容水空间且 与所述至少一个紫外线灯管维持一定距离, 通过发生光催化反应以使所述净 水装置提供杀菌及分解有机物的功能。
2.如权利要求 1所述的净水装置,其特征在于,所述管体为石英玻璃管。
3. 如权利要求 1 所述的净水装置, 其特征在于, 所述紫外线的波长为 1 85nm或 /及 254nm。
4. 如权利要求 1所述的净水装置, 其特征在于, 所述电力单元为一次性 电池、 充电电池或交流电电源。
5. 如权利要求 1所述的净水装置, 其特征在于, 所述至少一个光催化剂 单元的形状为实心圆筒状、 空心圆筒状、 空心圆筒状具内部螺纹、 空心圆筒 具表面气孔、 或空心圆筒具内部螺纹及表面气孔。
6. 如权利要求 1所述的净水装置, 其特征在于, 所述至少一个光催化剂 单元的材料为二氧化钛、 氧化锌、 二氧化锡、 或硫化镉。
7. 如权利要求 1所述的净水装置, 其特征在于, 包括设置于所述容器主 体内部的至少一个固定支架, 所述至少一个固定支架用于放置所述至少一个 光催化剂单元。
8. 如权利要求 1所述的净水装置, 其特征在于, 所述管体内部还具有紫 外光强度检测单元。
9. 如权利要求 1〜 8中任意一项所述的净水装置, 其特征在于, 还包括设 置于所述容器主体的出水口, 以及设置于所述出水口的微粒计数单元。
10.一种净水单元,其具有光催化剂单元,所述光催化剂单元呈纤维状, 漂浮于容水空间且与紫外线光源维持一定距离, 通过发生光催化反应以使所 述净水单元提供杀菌及分解有机物的功能。
11 . 如权利要求 io所述的净水单元, 其特征在于, 所述光催化剂单元的 形状为实心圆筒状、 空心圆筒状、 空心圆筒状具内部螺纹、 空心圆筒具表面 气孔、 或空心圆筒具内部螺纹及表面气孔。
12. 如权利要求 10所述的净水单元, 其特征在于, 所述光催化剂单元的 材料为二氧化钛、 氧化锌、 二氧化锡、 或硫化镉。
PCT/IB2019/052588 2018-03-30 2019-03-29 净水装置和净水单元 WO2019186482A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR2020207000055U KR20200002400U (ko) 2018-03-30 2019-03-29 정수 장치 및 정수 유닛
JP2021600013U JP3233596U (ja) 2018-03-30 2019-03-29 浄水装置及び浄水ユニット

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW107204142 2018-03-30
TW107204142U TWM563911U (zh) 2018-03-30 2018-03-30 一種淨水裝置及淨水單元
CN201820535697.6U CN208413918U (zh) 2018-04-16 2018-04-16 净水装置
CN201820535697.6 2018-04-16

Publications (1)

Publication Number Publication Date
WO2019186482A1 true WO2019186482A1 (zh) 2019-10-03

Family

ID=68058608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/052588 WO2019186482A1 (zh) 2018-03-30 2019-03-29 净水装置和净水单元

Country Status (3)

Country Link
JP (1) JP3233596U (zh)
KR (1) KR20200002400U (zh)
WO (1) WO2019186482A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550696A (zh) * 2019-10-09 2019-12-10 王森在 一种水净化装置及应用
CN110790341A (zh) * 2019-10-17 2020-02-14 上海市政工程设计研究总院(集团)有限公司 一种削减排水管网污染物的光催化反应系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1978333A (zh) * 2005-12-05 2007-06-13 王顺忠 净水杀菌装置
CN101780996A (zh) * 2009-01-19 2010-07-21 唐树东 一种高效光催化治理污水废水cod装置
JP2015061729A (ja) * 2014-11-05 2015-04-02 株式会社 シリコンプラス 浄水器及び浄水システム
CN105347431A (zh) * 2015-11-30 2016-02-24 无锡工源机械有限公司 一种用于污水处理的光催化储水池
CN206486389U (zh) * 2017-02-27 2017-09-12 榆林学院 废水光催化降解装置
CN208413918U (zh) * 2018-04-16 2019-01-22 苏州耀群净化科技有限公司 净水装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1978333A (zh) * 2005-12-05 2007-06-13 王顺忠 净水杀菌装置
CN101780996A (zh) * 2009-01-19 2010-07-21 唐树东 一种高效光催化治理污水废水cod装置
JP2015061729A (ja) * 2014-11-05 2015-04-02 株式会社 シリコンプラス 浄水器及び浄水システム
CN105347431A (zh) * 2015-11-30 2016-02-24 无锡工源机械有限公司 一种用于污水处理的光催化储水池
CN206486389U (zh) * 2017-02-27 2017-09-12 榆林学院 废水光催化降解装置
CN208413918U (zh) * 2018-04-16 2019-01-22 苏州耀群净化科技有限公司 净水装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550696A (zh) * 2019-10-09 2019-12-10 王森在 一种水净化装置及应用
CN110790341A (zh) * 2019-10-17 2020-02-14 上海市政工程设计研究总院(集团)有限公司 一种削减排水管网污染物的光催化反应系统

Also Published As

Publication number Publication date
JP3233596U (ja) 2021-08-19
KR20200002400U (ko) 2020-10-30

Similar Documents

Publication Publication Date Title
US7541509B2 (en) Photocatalytic nanocomposites and applications thereof
Chen et al. Photocatalytic oxidation for antimicrobial control in built environment: a brief literature overview
CN1362886A (zh) 净化含氧气体的方法和设备
KR102184694B1 (ko) 가시광선 여기형 광촉매를 이용한 공기청정필터 및 이의 제조방법
WO2019186482A1 (zh) 净水装置和净水单元
CN203155090U (zh) 紫外光解废气除臭净化器
KR20030089194A (ko) 광촉매 자외선을 이용한 실내공기 정화장치
CN106673121A (zh) 一种光催化法净化污水中四环素的方法
CN201616891U (zh) 自洁话筒
KR100480347B1 (ko) 광촉매 및 자외선램프 모듈을 이용한 살균 및 정화장치
CN101417832A (zh) 饮用水安全消毒的脉冲等离子体催化装置及方法
EP1491218A1 (en) Illuminator capable of cleaning air
CN101659503A (zh) 膜生物反应-纳米固定态光催化反应装置
CN204051436U (zh) Uv光解废气处理设备
CN208413918U (zh) 净水装置
GB2498541A (en) Apparatus and method for all-around dry disinfection
JP2008302308A (ja) 光触媒及びその製造方法、それを用いた水処理方法及び装置
JP2001259620A (ja) マイクロ波および紫外線を併用した半導体光触媒による水処理装置
TWM563911U (zh) 一種淨水裝置及淨水單元
CN103657401A (zh) 光触媒空气滤清器及其制造方法
CN2490148Y (zh) 光触纳米水、空气处理器
Arya et al. Visible and solar light photocatalytic disinfection of bacteria by N-doped TiO2
Darko et al. Photocatalytic activity of TiO2 nanofilms deposited onto polyvinyl chloride and glass substrates
CN201351129Y (zh) 饮用水安全消毒的脉冲等离子体催化装置
CN101041082A (zh) 一种双子效应医用消毒剂的制备装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207000055

Country of ref document: KR

Kind code of ref document: U

ENP Entry into the national phase

Ref document number: 2021600013

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19777036

Country of ref document: EP

Kind code of ref document: A1