WO2019184962A1 - 一种电源和电源系统 - Google Patents

一种电源和电源系统 Download PDF

Info

Publication number
WO2019184962A1
WO2019184962A1 PCT/CN2019/079956 CN2019079956W WO2019184962A1 WO 2019184962 A1 WO2019184962 A1 WO 2019184962A1 CN 2019079956 W CN2019079956 W CN 2019079956W WO 2019184962 A1 WO2019184962 A1 WO 2019184962A1
Authority
WO
WIPO (PCT)
Prior art keywords
power source
power
efficiency
parameters
parameter
Prior art date
Application number
PCT/CN2019/079956
Other languages
English (en)
French (fr)
Inventor
熊立群
冯金礼
罗英坤
李金峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19777273.4A priority Critical patent/EP3764532A4/en
Publication of WO2019184962A1 publication Critical patent/WO2019184962A1/zh
Priority to US17/034,180 priority patent/US11546844B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/625Regulating voltage or current wherein it is irrelevant whether the variable actually regulated is ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the utility model relates to the field of information technology, in particular to a power source and a power source system.
  • a base station power system provides power to a base station.
  • the base station power system includes a primary power source to convert the commercial power in the AC state to DC power.
  • the base station power system further includes a secondary power source for performing direct current-direct current (DC-DC) conversion on the direct current output from the primary power source.
  • DC-DC direct current-direct current
  • the efficiency adjustment of the primary power supply is independent of the efficiency adjustment of the secondary power supply, and the adjustment of the two does not affect each other.
  • the efficiency of the base station power system is the product of the efficiency of the primary power supply and the efficiency of the secondary power supply.
  • the efficiency of the base station power system cannot be optimized, thereby reducing the power supply efficiency of the base station power system.
  • the embodiment of the present application discloses a power supply and a power supply system, which can improve the power supply efficiency of the power supply system.
  • the embodiment of the present application provides a power supply system, where the power supply system includes a first power source and a second power source, and an output end of the first power source is electrically connected to an input end of the second power source, and is used for The first power source supplies power to the second power source; the second power source establishes a communication connection with the first power source, wherein: the first power source is configured to set the output voltage of the first power source to multiple a voltage value; the second power source is configured to send a plurality of first parameters to the first power source; the first parameter is used to identify power efficiency of the second power source; The plurality of voltage values are in one-to-one correspondence; the first parameter corresponding to a voltage value is a first parameter of the second power source when an output voltage of the first power source is the voltage value; the first The power source is further configured to acquire a plurality of second parameters, wherein the plurality of second parameters are in one-to-one correspondence with the plurality of voltage values; the second parameter is used to identify a
  • the output voltage of the first power source can be determined by setting the output voltage of the first power source to a plurality of voltage values to determine the power efficiency of the power system to be the maximum power efficiency. Therefore, the power system works under a large power efficiency, thereby improving the power efficiency of the power system.
  • the power system further includes a third power source, the output of the second power source is electrically connected to the input end of the third power source, and the second power source is configured to supply power to the third power source
  • the third power source establishes a communication connection with the first power source, wherein: the third power source is configured to send a plurality of third parameters to the first power source, and the third parameter is used to identify the first a power efficiency of the three power sources; the plurality of third parameters are in one-to-one correspondence with the plurality of voltage values; and the third parameter corresponding to the one voltage value is when the output voltage of the first power source is the voltage value a third parameter of the third power source, where the first power source is specifically configured to: according to at least one of the plurality of first parameters and the plurality of third parameters, and the plurality of second parameters Determining, by the maximum power efficiency of the power system, the voltage value corresponding to the maximum power efficiency.
  • the first parameter includes at least one of the following parameters: output power of the second power source; power efficiency of the second power source; output voltage and output current of the second power source;
  • the third parameter includes at least one of the following parameters: an output power of the third power source; a power supply efficiency of the third power source; an output voltage and an output current of the third power source.
  • the second parameter comprises at least one of the following parameters: input power of the first power source; power efficiency of the first power source; input voltage and input current of the first power source.
  • the first power source is further configured to set an output voltage of the first power source to the voltage value corresponding to the maximum power efficiency.
  • the plurality of output voltage values may be obtained according to a fixed step size within a preset voltage range.
  • the power system can include more or less power than the three power supplies. These power supplies are connected in series.
  • the embodiment of the present application provides a first power source, where the first power source is used in a power system, the power system includes the first power source and a second power source, and an output end of the first power source is The input end of the second power source is electrically connected to the first power source to supply power to the second power source; the second power source establishes a communication connection with the first power source, the first power source includes a control module, a communication module, wherein: the control module is configured to set an output voltage of the first power source to a plurality of voltage values; and the communication module is configured to receive a plurality of first parameters sent by the second power source; The first parameter is used to identify the power efficiency of the second power source; the plurality of first parameters are in one-to-one correspondence with the plurality of voltage values; the first parameter corresponding to a voltage value is when the first power source is The first parameter of the second power source when the output voltage is the voltage value; the control module is further configured to acquire a plurality of second parameters, the plurality
  • the output voltage value of the corresponding first power source is determined by setting the output voltage of the first power source to a plurality of voltage values to determine the power efficiency of the power system to be the maximum power efficiency. Therefore, the power system works under a large power efficiency, thereby improving the power efficiency of the power system.
  • the power system further includes a third power source, the output of the second power source is electrically connected to the input end of the third power source, and the second power source is configured to supply power to the third power source
  • the third power source establishes a communication connection with the first power source, wherein: the communication module is further configured to receive a plurality of third parameters sent by the third power source, and the third parameter is used to identify the third a power efficiency of the power source; the plurality of third parameters are in one-to-one correspondence with the plurality of voltage values; and the third parameter corresponding to a voltage value is when the output voltage of the first power source is the voltage value a third parameter of the third power source; the control module is specifically configured to determine, according to at least one of the plurality of first parameters and the plurality of third parameters, and the plurality of second parameters The maximum power efficiency of the power system and the voltage value corresponding to the maximum power efficiency.
  • the first parameter includes at least one of the following parameters: output power of the second power source; power efficiency of the second power source; output voltage and output current of the second power source;
  • the third parameter includes at least one of the following parameters: an output power of the third power source; a power supply efficiency of the third power source; an output voltage and an output current of the third power source.
  • the second parameter comprises at least one of the following parameters: input power of the first power source; power efficiency of the first power source; input voltage and input current of the first power source.
  • control module is further configured to set an output voltage of the first power source to the voltage value corresponding to the maximum power efficiency.
  • the embodiment of the present application provides a second power source, where the second power source is used in a power system, where the power system includes a first power source and the second power source, and the input end of the second power source is The output end of the first power source is electrically connected, the second power source receives power supply of the first power source; the second power source establishes a communication connection with the first power source, and the second power source includes a communication module The communication module, configured to send a plurality of first parameters to the first power source; the first parameter is used to identify power efficiency of the second power source; and the plurality of first parameters and multiple The first value of the voltage value corresponds to a first parameter of the second power source when the output voltage of the first power source is the voltage value; the plurality of voltage values are a value of an output voltage of the first power source set by the first power source; the plurality of first parameters being used by the first power source to determine the according to the plurality of first parameters and the plurality of second parameters Maximum power efficiency of the power system and the
  • the output voltage value of the corresponding first power source is determined by setting the output voltage of the first power source to a plurality of voltage values to determine the power efficiency of the power system to be the maximum power efficiency. Therefore, the power system works under a large power efficiency, thereby improving the power efficiency of the power system.
  • the first parameter comprises at least one of the following: an output power of the second power source; a power supply efficiency of the second power source; an output voltage and an output current of the second power source.
  • the embodiment of the present application provides a first power source, where the first power source includes a module or unit for implementing the first power source provided by the second aspect or any possible implementation manner of the second aspect.
  • the embodiment of the present application provides a second power source, where the second power source includes a module or unit for implementing the second power source provided by the third aspect or any possible implementation manner of the third aspect.
  • the embodiment of the present application provides a first power source, including: a processor, a memory, a communication interface, and a bus; a processor, a communication interface, and a memory communicate with each other through a bus; and a communication interface, configured to receive and transmit data; a memory for storing instructions; a processor for invoking instructions in the memory to implement the first power supply provided by any one of the possible implementations of the second aspect or the second aspect.
  • the embodiment of the present application provides a second power source, including: a processor, a memory, a communication interface, and a bus; a processor, a communication interface, and a memory communicate with each other through a bus; and a communication interface, configured to receive and transmit data; a memory for storing instructions; a processor for invoking instructions in the memory to implement the second power supply provided by any of the possible implementations of the third aspect or the third aspect.
  • the embodiment of the present application provides a computer readable storage medium, where the storage medium includes an instruction, when the instruction is executed, causing the first power source to perform the second aspect or any possible implementation manner of the second aspect.
  • the function of the first power supply provided.
  • the embodiment of the present application provides a computer readable storage medium, where the storage medium includes an instruction, when the instruction is executed, causing the second power source to perform any of the possible implementations of the third aspect or the third aspect.
  • the function of the second power supply provided.
  • the embodiment of the present application provides a computer program, where the computer program includes an instruction, when the instruction is executed, causing the first power source to perform the second aspect or the second aspect of the second aspect A power supply function.
  • the embodiment of the present application provides a computer program, where the computer program includes instructions, when the instruction is executed, causing the second power source to perform the third aspect or any of the possible implementation manners of the third aspect.
  • the function of the second power source is not limited to the eleventh aspect.
  • the embodiment of the present application provides a chip product to implement the first power source in the second aspect or any possible implementation manner of the second aspect.
  • the embodiment of the present application provides a chip product to implement the second power source in any possible implementation manner of the third aspect or the third aspect.
  • the output voltage value of the corresponding first power source is determined by setting the output voltage of the first power source to a plurality of voltage values to determine the power efficiency of the power system to be the maximum power efficiency. Therefore, the power system works under a large power efficiency, thereby improving the power efficiency of the power system.
  • FIG. 1 is a schematic structural diagram of a power supply system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a power supply system according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another power supply system according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a first power source and a second power source according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of another first power source and a second power source provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a power supply system according to an embodiment of the present application.
  • the power system can be a base station power system for powering the base station.
  • the power system may include a first power source 10 and a second power source 20, the output end of the first power source 10 being electrically connected to the input end of the second power source 20 for supplying power to the second power source 20 by the first power source 10;
  • a base station power system For a base station power system, where:
  • the first power source 10 is configured to perform alternating current-direct current (AC-DC) conversion, receive alternating current, and convert the alternating current into direct current.
  • the received AC power can be the mains.
  • the voltage input to the first power source 10 is U1, the current is I1, and the DC voltage output by the first power source 10 is U2 and the current is I2.
  • the output voltage U2 can be, for example, -48V.
  • the direct current output from the first power source 10 can be used to supply power to the second power source 20. As shown in FIG. 1, the input voltage of the second power source 20 is U3, and the input current is I3.
  • the input U3*I3 of the second power source 20 may be slightly smaller than the output U2*I2 of the first power source 10 due to the voltage drop of the cable.
  • the second power source 20 is configured to perform DC-DC conversion on the DC power to supply a power amplifier (PA) or a circuit board. Specifically, as shown in FIG. 1, the second power source 20 is configured to receive a direct current having a voltage value of U3 and convert it into a direct current having a voltage of U4.
  • PA power amplifier
  • the second power source 20 may be included in a Radio Radio Unit (RRU) 30 .
  • the output U4*I4 of the second power source 20 can supply power to the power amplifier.
  • the output of the second power source 20 can also supply power to the board after DC-DC conversion by another power source.
  • the power efficiency ⁇ of the power supply refers to the ratio of the output power of the power supply to the input power. Specifically, as shown in FIG. 1, the power efficiency of the first power source 10 is The power efficiency of the second power source 20 is The power efficiency of the power system is
  • the power efficiency of the first power source 10 is related to the output power of the first power source 10.
  • the power efficiency of the second power source 20 is related to the output power of the second power source 20. In the case where the power efficiency of the first power source 10 is the largest, generally, the power source efficiency of the second power source 20 is not maximum, and the power source efficiency of the power source system is low.
  • the embodiment of the present application provides a power supply and a power supply system, which can improve power supply efficiency of the power system.
  • FIG. 2 is a schematic structural diagram of a power supply system according to an embodiment of the present application.
  • the power system may include a first power source 10 and a second power source 20.
  • the output end of the first power source 10 is electrically connected to the input end of the second power source 20 for the first power source 10 to the second power source 20.
  • Power supply where:
  • the second power source 20 establishes a communication connection with the first power source 10.
  • the electrical connection between the first power source 10 and the second power source 20 can be established through a cable, and the communication connection established between the second power source 20 and the first power source 10 can be a power line communication (PLC).
  • PLC power line communication
  • the communication connection established between the second power source 20 and the first power source 10 may also be other wired communication or wireless communication.
  • the communication connection established between the second power source 20 and the first power source 10 can be, for example, a controller area network (CAN) connection, an RS485 interface connection, a WIFI connection, or a Bluetooth connection.
  • the first power source 10 can set the output voltage U2 of the first power source 10 to a plurality of voltage values.
  • U2 is U2 a , U2 b , U2 c ....
  • the power source efficiency of the power source system can be sequentially obtained. Please refer to Table 1.
  • Table 1 is the correspondence between the output voltage of the first power source 10 and the power efficiency of the power system provided by the embodiment of the present application.
  • the first power supply output voltage U2 10 of U2 a corresponding to the power supply system efficiency is ⁇ 3 a.
  • the power efficiency of the first power source 10 is The input voltage of the second power source 20 is U3 a .
  • the output voltage of the second power source 20 is U4 a and the output current is I4 a .
  • the power efficiency of the second power source 20 is The efficiency of the power system is A first power supply voltage output U2 U2 10 were B, C — when U2, the efficiency of the power supply system of calculating the similarity, is not repeated here.
  • the second power source 20 can send a plurality of first parameters of the second power source to the first power source 10.
  • the first parameter for identifying the second power efficiency of the power supply 20; a first plurality of parameters and a plurality of voltage values (U2 a, U2 b, U2 c >) one correspondence.
  • the first parameter corresponding to a voltage value is a first parameter of the second power source when the output voltage of the first power source 10 is the voltage value.
  • the first power source 10 can acquire a plurality of second parameters.
  • the plurality of second parameters are in one-to-one correspondence with the plurality of voltage values (U2 a , U2 b , U2 c ...); the second parameter is used to identify the power efficiency of the first power source 10; the second parameter corresponding to a voltage value is when The second parameter of the first power source 10 when the output voltage of the first power source 10 is the voltage value.
  • the first power source 10 can determine a maximum power efficiency of the power system and a voltage value of the output voltage of the first power source 10 corresponding to the maximum power efficiency according to the plurality of first parameters and the plurality of second parameters. Specifically, the first power source 10 may determine, according to the plurality of first parameters and the plurality of second parameters, a power efficiency of the power system corresponding to each of the plurality of voltage values (U2 a , U2 b , U2 c , . . . ), That is, the power efficiency of a plurality of power systems is obtained, and the power efficiency of the plurality of power systems is in one-to-one correspondence with a plurality of voltage values. Then, the maximum power efficiency of the power supply efficiency of the plurality of power systems and the output voltage value of the first power source 10 corresponding to the maximum power efficiency are found.
  • the first power source 10 can set the output voltage of the first power source 10 to a voltage value corresponding to the maximum power source efficiency.
  • the output voltage value of the corresponding first power source 10 is determined by setting the output voltage of the first power source 10 to a plurality of voltage values to determine the power source efficiency of the power system to be the maximum power source efficiency. Therefore, the power system works under a large power efficiency, thereby improving the power efficiency of the power system.
  • the first parameter may include: output power U4*I4 of the second power source 20; power efficiency of the second power source 20 The output voltage U4 of the second power source 20 and the output current I4.
  • the process of determining the power efficiency of the power supply system by the first power source 10 by setting the output voltage of the first power source 10 to the first power source 10 is U2 a .
  • the output voltage of the first power source 10 is other voltages. The value is similar. The following are described separately:
  • the case (1) comprises a first parameter output power of the second power supply 20 U4 a * I4 a second power supply 20 outputs the power of the second power supply 20 U4 a * I4 a 10 to a first power source.
  • the first power source 10 can acquire the input power U1*I1 of the first power source 10.
  • the first power source 10 calculates the power efficiency of the power system based on the input power (U1*I1) of the first power source 10 and the output power (U4 a *I4 a ) of the second power source 20
  • the second power source 20 acquires the power efficiency of the second power source 20 And sent to the first power source 10.
  • the first power source 10 can obtain the power efficiency of the first power source 10
  • the first power source 10 calculates the power source efficiency ⁇ 3 a ⁇ ⁇ 2 a * ⁇ 1 a of the power source system based on the power source efficiency ⁇ 1 a of the first power source 10 and the power source efficiency ⁇ 2 a of the second power source 20 .
  • Case (3) comprises a first parameter output voltage of the second power supply 20 and the output of U4 a current I4 a second output voltage of the second power supply 20 to power supply 20 and the output of U4 a current I4 a power source 10 to a first .
  • the first power source 10 can acquire the input power U1*I1 of the first power source 10.
  • the plurality of second parameters acquired by the first power source 10 may include at least one of the following parameters: the input power U1*I1 of the first power source 10; the power efficiency of the first power source 10. The input voltage U1 of the first power source 10 and the input current I1.
  • the plurality of output voltage values of the first power source 10 provided by the first power source 10 may be obtained according to a fixed step value within a certain voltage range.
  • the voltage range is set to 48 to 57V depending on the power system requirements.
  • the fixed step size is 1V
  • the plurality of output voltage values of the first power source 10 provided by the first power source 10 are: 48V, 49V, 50V, ... 57V.
  • the first power source 10 can find the voltage value corresponding to the power efficiency of the corresponding power system (the voltage value corresponding to the maximum power efficiency) from the ten voltage values, and the first power source 10 can set the output voltage of the first power source to be the maximum power source.
  • the voltage value corresponding to the efficiency In the voltage range of 48 to 57V, the power supply efficiency of the power system can be maximized, thereby improving the power efficiency of the power system.
  • Table 2 is an example of the output voltage value and power system efficiency of the first power source 10 provided by the embodiment of the present application.
  • the output voltage values of the first power supply are 48V, 49V, 50V, ... 57V, respectively, and the power efficiency of the corresponding power supply system is different.
  • the first device 10 can find the maximum power supply efficiency of the largest power system 86.42%, and the maximum voltage efficiency value 86.42% corresponds to the output voltage value 49V of the first power supply 10.
  • the first device 10 can then set the output voltage of the first device to be 49V.
  • the power system may further include a third power source 40.
  • FIG. 3 is a schematic structural diagram of another power supply system according to an embodiment of the present application. As shown in FIG. 3, the output end of the second power source 20 is electrically connected to the input end of the third power source 40 for the second power source 20 to supply power to the third power source 40; the third power source 40 establishes a communication connection with the first power source 10, among them:
  • the third power source 40 is configured to send a plurality of third parameters to the first power source 10, the third parameter is used to identify the power efficiency of the third power source 40; and the plurality of third parameters and the output voltage values of the plurality of first power sources 10 are A third parameter corresponding to a voltage value is a third parameter of the third power source 40 when the output voltage of the first power source 10 is the voltage value.
  • the first power source 10 is specifically configured to determine, according to at least one of the plurality of first parameters and the plurality of third parameters, and the plurality of second parameters, the first power source 10 corresponding to the maximum power efficiency of the power system and the maximum power efficiency.
  • the output voltage value is specifically configured to determine, according to at least one of the plurality of first parameters and the plurality of third parameters, and the plurality of second parameters, the first power source 10 corresponding to the maximum power efficiency of the power system and the maximum power efficiency.
  • the communication connection between the first power source 10 and the third power source 40 may also be power line communication, wired communication or wireless communication.
  • power line communication wired communication or wireless communication.
  • the output voltage of the first power source 10 is U2 U2 A, corresponding to the power supply system efficiency is ⁇ 3 a.
  • the power source of the first power source 10 Efficiency is The input voltage of the second power source 20 is U3 a , the input current is I3 a , the output voltage of the second power source 20 is U4 a , the output current is I4 a , and the power efficiency of the second power source 20 is The input voltage of the third power source 40 is U5 a , the input current is I5 a , the output voltage of the third power source 40 is U6 a , the output current is I6 a , and the power efficiency of the third power source 40 is The efficiency of the power system is A first power supply voltage output U2 U2
  • the third parameter may include: output power U6*I6 of the third power source 40; power efficiency of the third power source 40 The output voltage U6 of the third power source 40 and the output current I6.
  • the process of determining the power efficiency of the power supply system by the first power source 10 by setting the output voltage of the first power source 10 to the first power source 10 is U2 a .
  • the output voltage of the first power source 10 is other voltages. The value is similar. The following are described separately:
  • a first output voltage of the first power source 10 is provided is U2 a power supply 10
  • the third parameter may include a third power supply output 40 of U6 a * I6 a
  • the output power of the third power source 40 of the third power source 40 U6 a *I6 a is sent to the first power source 10.
  • the first power source 10 can acquire the input power U1*I1 of the first power source 10.
  • the first power source 10 calculates the power efficiency of the power system based on the input power (U1*I1) of the first power source 10 and the output power (U6 a *I6 a ) of the third power source 40.
  • the third power source 40 acquires the power efficiency of the third power source 40 And sent to the first power source 10.
  • the first power source 10 can obtain the power efficiency of the first power source 10
  • the first power source 10 can obtain the power efficiency ⁇ 2 a of the second power source 20
  • ⁇ 2 a transmitted by the second power source can be received through the PLC connection.
  • the first power source 10 calculates the power source efficiency ⁇ 3 a ⁇ 2 a * ⁇ 1 a * ⁇ 4 of the power source system based on the power source efficiency ⁇ 1 a of the first power source 10, the power source efficiency ⁇ 2 a of the second power source 20, and the power source efficiency ⁇ 4 a of the third power source 40 a .
  • Case (3) comprises a first parameter of an output voltage of the third power source 40 and U6 a I6 a current output, the output voltage of the third power source 40 of U6 a third power supply 40 and the output current to a first power source I6 a 10 .
  • the first power source 10 can acquire the input power U1*I1 of the first power source 10.
  • the third power source 40 can be used to power the board.
  • the output power of the third power source 40 can be replaced by the top output power.
  • the top output power refers to the radiated power of the base station antenna.
  • the power system can include more or less power than the three power sources. These power supplies are connected in series.
  • the first power source can set a plurality of output voltage values, obtain corresponding parameters of the other series connected power sources, and select an output voltage value of the first power source corresponding to the power efficiency of the entire power system, thereby improving power supply efficiency of the power system.
  • the embodiment of the present application does not limit the number of power sources included in the power system.
  • the second power source 20 or the third power source 40 may calculate a power efficiency of the power system corresponding to the plurality of output voltage values in the power system, and determine a first power supply efficiency and a maximum power efficiency corresponding to the power system.
  • the first power source 10 may have a plurality of second parameters (including at least one item: input power U1*I1 of the first power source 10; power efficiency ⁇ 1 of the first power source 10; input voltage U1 and input of the first power source 10; The current I1) is sent to the second power source 20.
  • the second power source 20 acquires a plurality of first parameters (including at least one item: output power U4*I4 of the second power source 20; power efficiency of the second power source 20 The output voltage U4 of the second power source 20 and the output current I4).
  • the second power source 20 may determine a maximum power efficiency of the power system and a voltage value of the output voltage of the first power source 10 corresponding to the maximum power efficiency according to the plurality of first parameters and the plurality of second parameters.
  • the second power source 20 can transmit the maximum power efficiency of the power system and the voltage value of the output voltage of the first power source 10 corresponding to the maximum power efficiency to the first power source 10. After the first power source 10 receives the output voltage of the first power source 10, the output voltage value corresponding to the maximum power efficiency is set.
  • the output power is fixed, by calculating the power efficiency of the power system under the output voltage of the different first power source 10, when the power source efficiency is maximized, the output voltage value of the corresponding first power source 10 is used to output the first power source 10.
  • the voltage is set to the output voltage value corresponding to the maximum power efficiency.
  • FIG. 4 is a test result of power supply efficiency of a power supply system according to an embodiment of the present application. As shown in FIG. 4, when the power supply system described in FIG. 2 or FIG. 3 is used to set the output voltage of the first power source to the output voltage value corresponding to the maximum power supply efficiency of the power system, the same output power can be improved. Power efficiency of the power system.
  • FIG. 5 is a schematic structural diagram of a first power source and a second power source according to an embodiment of the present application.
  • the first power source 10 and the second power source 20 are used in the power supply system described in FIG. 2 or FIG.
  • the first power source 10 includes a control module 101 and a circuit module 102 and a communication module 103, wherein:
  • the circuit module 102 is configured to receive the input power U1*I1 and convert the output power U2*I2 through the circuit.
  • the control module 101 is configured to set the output voltage U2 of the first power source to a plurality of voltage values
  • the communication module 103 is configured to receive a plurality of first parameters sent by the second power source 20; the first parameter is used to identify the power efficiency of the second power source 20; the plurality of first parameters are in one-to-one correspondence with the plurality of voltage values; The corresponding first parameter is a first parameter of the second power source 20 when the output voltage of the first power source is a voltage value;
  • the control module 101 is further configured to acquire a plurality of second parameters, where the plurality of second parameters are in one-to-one correspondence with the plurality of voltage values; the second parameter is used to identify the power efficiency of the first power source 10; and the second parameter corresponding to the one voltage value Is a second parameter of the first power source 10 when the output voltage of the first power source is a voltage value;
  • the control module 101 is further configured to determine, according to the plurality of first parameters and the plurality of second parameters, a voltage value corresponding to a maximum power efficiency of the power system and a maximum power efficiency.
  • the power system may further include a third power source 40, the output end of the second power source 20 is electrically connected to the input end of the third power source 40, and the second power source 20 is powered to the third power source 40; the third power source 40 is The first power source 10 establishes a communication connection, wherein:
  • the communication module 103 is further configured to receive a plurality of third parameters sent by the third power source 40, where the third parameter is used to identify the power efficiency of the third power source; the plurality of third parameters are in one-to-one correspondence with the plurality of voltage values; Corresponding third parameter is a third parameter of the third power source 40 when the output voltage of the first power source is a voltage value;
  • the control module 101 is specifically configured to determine, according to at least one of the plurality of first parameters and the plurality of third parameters, and the plurality of second parameters, a voltage value corresponding to a maximum power efficiency of the power system and a maximum power efficiency.
  • the first parameter includes at least one of the following parameters: an output power of the second power source; a power efficiency of the second power source; an output voltage and an output current of the second power source;
  • the third parameter includes at least one of the following parameters: an output power of the third power source; a power source efficiency of the third power source; an output voltage and an output current of the third power source.
  • the second parameter includes at least one of the following parameters: input power of the first power source; power efficiency of the first power source; input voltage and input current of the first power source.
  • control module 101 is further configured to set the output voltage U1 of the first power source 10 to a voltage value corresponding to the maximum power efficiency.
  • the second power source 40 includes a second power source including a circuit module 201, a control module 202, and a communication module 203, where:
  • the circuit module 201 is configured to receive the power U3*I3 of the first power output, and convert the output power U4*I4 through the circuit.
  • the control module 202 is configured to instruct the communication module 203 to send a plurality of first parameters to the first power source 10; the first parameter is used to identify the power efficiency of the second power source 20; the plurality of first parameters are in one-to-one correspondence with the plurality of voltage values; The first parameter corresponding to a voltage value is a first parameter of the second power source when the output voltage of the first power source is a voltage value;
  • the plurality of voltage values are values of the output voltage of the first power source 10 set by the first power source 10; the plurality of first parameters are used by the first power source 10 to determine the maximum of the power system according to the plurality of first parameters and the plurality of second parameters a voltage value corresponding to the power efficiency and the maximum power efficiency; the plurality of second parameters are in one-to-one correspondence with the plurality of voltage values; the second parameter is used to identify the power efficiency of the first power source 10; and the second parameter corresponding to the one voltage value is the first parameter The second parameter of the first power source 10 when the output voltage of a power source is a voltage value.
  • the first parameter includes at least one of the following parameters: an output power of the second power source 20; a power source efficiency of the second power source 20; an output voltage and an output current of the second power source 20.
  • the first power source 10 and the second power source 20 may be connected by a cable.
  • the functions of the modules may be corresponding to the corresponding descriptions of the power system embodiment shown in FIG. 2 or FIG. 3, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of another first power source and a second power source according to an embodiment of the present application.
  • the first power source 10 and the second power source 20 are used in the power supply system described in FIG. 2 or FIG. As shown in FIG. 6, the first power source 10 and the second power source 20 are connected by a cable for supplying power to the second power source 20 from the first power source 10.
  • the first power supply 10 provided by the embodiment of the present application includes one or more controllers 601 , a communication interface 602 , a memory 603 , and a circuit module 605 .
  • the embodiment of the present application is connected by a bus 604 as an example. among them:
  • the controller 601 can be composed of one or more general-purpose controllers, such as a Central Processing Unit (CPU). Controller 601 can be used to run programs in associated program code 11.
  • CPU Central Processing Unit
  • Communication interface 602 can be a wired interface (e.g., an Ethernet interface) or a wireless interface (e.g., a cellular network interface or a wireless local area network interface) for communicating with other nodes.
  • the communication interface may also be a communication interface of power line communication.
  • the memory 603 may include a Volotile Memory, such as a Random Access Memory (RAM); the memory may also include a Non-Volatile Memory, such as a Read-Only Memory (Read-Only). Memory, ROM), Flash Memory, Hard Disk Drive (HDD), or Solid-State Drive (SSD); the memory 603 may also include a combination of the above types of memories.
  • the memory 603 can be used to store a set of program codes 11 so that the controller 601 can call the program code 11 stored in the memory 603 to implement the functions of the first power source 10 of the embodiment of the present application.
  • first power supply 10 shown in FIG. 6 is only one implementation of the embodiment of the present application. In practical applications, the first power supply 10 may further include more or fewer components, which are not limited herein.
  • the second power supply 20 provided by the embodiment of the present application includes one or more controllers 701 , a communication interface 702 , a memory 703 , and a circuit module 705 .
  • the embodiment of the present application is connected by a bus 704 as an example. among them:
  • the controller 701 can be composed of one or more general-purpose controllers, such as a Central Processing Unit (CPU). Controller 701 can be used to run programs in associated program code 13.
  • CPU Central Processing Unit
  • Communication interface 702 can be a wired interface (e.g., an Ethernet interface) or a wireless interface (e.g., a cellular network interface or a wireless local area network interface) for communicating with other nodes.
  • the communication interface may also be a communication interface of power line communication.
  • the memory 703 may include a Volotile Memory, such as a Random Access Memory (RAM); the memory may also include a Non-Volatile Memory, such as a Read-Only Memory (Read-Only). Memory, ROM), Flash Memory, Hard Disk Drive (HDD), or Solid-State Drive (SSD); the memory 703 may also include a combination of the above types of memories.
  • the memory 703 can be used to store a set of program codes 13 so that the controller 701 can call the program code 13 stored in the memory 703 to implement the functions of the second power source 20 provided by the embodiment of the present application.
  • the second power supply 20 shown in FIG. 6 is only one implementation of the embodiment of the present application. In actual applications, the second power supply 20 may further include more or fewer components, which are not limited herein.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions can be from a website site, computer, server or data center to another website site by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Transfer from a computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a Solid State Disk (SSD)) or the like.
  • the program can be stored in a computer readable storage medium, when the program is executed
  • the flow of the method embodiments as described above may be included.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM or a random access memory RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请公开了一种电源和电源系统,第一电源,用于设置第一电源的输出电压为多个电压值;第二电源,用于向第一电源发送多个第一参数;第一参数用于标识第二电源的电源效率;多个第一参数与多个电压值一一对应;一个电压值对应的第一参数是当第一电源的输出电压为电压值时,第二电源的第一参数;第一电源,还用于获取多个第二参数,多个第二参数与多个电压值一一对应;第二参数用于标识第一电源的电源效率;一个电压值对应的第二参数是当第一电源的输出电压为电压值时,第一电源的第二参数;第一电源,还用于根据多个第一参数和多个第二参数,确定电源系统的最大电源效率和最大电源效率对应的电压值。上述方案可以提高电源系统的电源效率。

Description

一种电源和电源系统 技术领域
本实用新型涉及信息技术领域,尤其涉及一种电源和电源系统。
背景技术
在通信系统中,基站电源系统为基站提供供电电源。一般地,基站电源系统包含一次电源来将交流状态的市电转换为直流电。基站电源系统还包括二次电源,用于将一次电源输出的直流电进行高低压直流(direct current-direct current,DC-DC)转换。
在对基站电源系统进行效率调节时,一次电源的效率调节与二次电源的效率调节相互独立,二者的调节互不影响。基站电源系统的效率为一次电源的效率和二次电源的效率的乘积。然而,当调节一次电源的效率和二次电源的效率均达到最高时,基站电源系统的效率并不能达到最优,从而降低了基站电源系统的供电效率。
实用新型内容
本申请实施例公开了一种电源和电源系统,可以提高电源系统的电源效率。
第一方面,本申请实施例提供了一种电源系统,所述电源系统包括第一电源和第二电源,所述第一电源的输出端与所述第二电源的输入端电连接,用于所述第一电源向所述第二电源供电;所述第二电源与所述第一电源建立通信连接,其中:所述第一电源,用于设置所述第一电源的输出电压为多个电压值;所述第二电源,用于向所述第一电源发送多个第一参数;所述第一参数用于标识所述第二电源的电源效率;所述多个第一参数与所述多个电压值一一对应;一个电压值对应的所述第一参数是当所述第一电源的输出电压为所述电压值时,所述第二电源的第一参数;所述第一电源,还用于获取多个第二参数,所述多个第二参数与所述多个电压值一一对应;所述第二参数用于标识所述第一电源的电源效率;一个电压值对应的所述第二参数是当所述第一电源的输出电压为所述电压值时,所述第一电源的第二参数;所述第一电源,还用于根据所述多个第一参数和所述多个第二参数,确定所述电源系统的最大电源效率和所述最大电源效率对应的所述电压值。上述的电源系统,可以通过设置第一电源的输出电压为多个电压值,来确定电源系统的电源效率为最大的电源效率时,对应的第一电源的输出电压值。从而使电源系统工作在较大的电源效率下,从而可以提高电源系统的电源效率。
在一个实施例中,所述电源系统还包括第三电源,所述第二电源的输出端与所述第三电源的输入端电连接,用于所述第二电源向所述第三电源供电;所述第三电源与所述第一电源建立通信连接,其中:所述第三电源,用于向所述第一电源发送多个第三参数,所述第三参数用于标识所述第三电源的电源效率;所述多个第三参数与所述多个电压值一一对应;一个电压值对应的所述第三参数是当所述第一电源的输出电压为所述电压值时,所述第三电源的第三参数;所述第一电源,具体用于根据所述多个第一参数和所述多个第三参数中的至少一项、以及所述多个第二参数,确定所述电源系统的最大电源效率和所述最大电源效率对应的所述电压值。
在一个实施例中,所述第一参数包括以下参数中的至少一个:所述第二电源的输出功率;所述第二电源的电源效率;所述第二电源的输出电压和输出电流;所述第三参数包括以下参数中的至少一个:所述第三电源的输出功率;所述第三电源的电源效率;所述第三电源的输出电压和输出电流。
在一个实施例中,所述第二参数包括以下参数中的至少一个:所述第一电源的输入功率;所述第一电源的电源效率;所述第一电源的输入电压和输入电流。
在一个实施例中,所述第一电源,还用于将所述第一电源的输出电压设置为所述最大电源效率对应的所述电压值。
可选的,多个输出电压值可以是在预设的电压范围内按照固定步长取值得到的。
可选的,电源系统可以包含与三个电源相比更多或更少的电源。这些电源通过串联连接。
第二方面,本申请实施例提供了一种第一电源,所述第一电源用于电源系统,所述电源系统包括所述第一电源和第二电源,所述第一电源的输出端与所述第二电源的输入端电连接,用于所述第一电源向所述第二电源供电;所述第二电源与所述第一电源建立通信连接,所述第一电源包括控制模块、通信模块,其中:所述控制模块,用于设置所述第一电源的输出电压为多个电压值;所述通信模块,用于接收所述第二电源发送的多个第一参数;所述第一参数用于标识所述第二电源的电源效率;所述多个第一参数与所述多个电压值一一对应;一个电压值对应的所述第一参数是当所述第一电源的输出电压为所述电压值时,所述第二电源的第一参数;所述控制模块,还用于获取多个第二参数,所述多个第二参数与所述多个电压值一一对应;所述第二参数用于标识所述第一电源的电源效率;一个电压值对应的所述第二参数是当所述第一电源的输出电压为所述电压值时,所述第一电源的第二参数;所述控制模块,还用于根据所述多个第一参数和所述多个第二参数,确定所述电源系统的最大电源效率和所述最大电源效率对应的所述电压值。通过设置第一电源的输出电压为多个电压值,来确定电源系统的电源效率为最大的电源效率时,对应的第一电源的输出电压值。从而使电源系统工作在较大的电源效率下,从而可以提高电源系统的电源效率。
在一个实施例中,所述电源系统还包括第三电源,所述第二电源的输出端与所述第三电源的输入端电连接,用于所述第二电源向所述第三电源供电;所述第三电源与所述第一电源建立通信连接,其中:所述通信模块,还用于接收所述第三电源发送的多个第三参数,第三参数用于标识所述第三电源的电源效率;所述多个第三参数与所述多个电压值一一对应;一个电压值对应的所述第三参数是当所述第一电源的输出电压为所述电压值时,所述第三电源的第三参数;所述控制模块,具体用于根据所述多个第一参数和所述多个第三参数中的至少一项、以及所述多个第二参数,确定所述电源系统的最大电源效率和所述最大电源效率对应的所述电压值。
在一个实施例中,所述第一参数包括以下参数中的至少一个:所述第二电源的输出功率;所述第二电源的电源效率;所述第二电源的输出电压和输出电流;所述第三参数包括以下参数中的至少一个:所述第三电源的输出功率;所述第三电源的电源效率;所述第三电源的输出电压和输出电流。
在一个实施例中,所述第二参数包括以下参数中的至少一个:所述第一电源的输入功率;所述第一电源的电源效率;所述第一电源的输入电压和输入电流。
在一个实施例中,所述控制模块,还用于将所述第一电源的输出电压设置为所述最大电源效率对应的所述电压值。
第三方面,本申请实施例提供了一种第二电源,所述第二电源用于电源系统,所述电源系统包括第一电源和所述第二电源,所述第二电源的输入端与所述第一电源的输出端电连接,用于所述第二电源接收所述第一电源的供电;所述第二电源与所述第一电源建立通信连接,所述第二电源包括通信模块,其中:所述通信模块,用于向所述第一电源发送多个第一参数;所述第一参数用于标识所述第二电源的电源效率;所述多个第一参数与多个电压值一一对应;一个电压值对应的所述第一参数是当所述第一电源的输出电压为所述电压值时,所述第二电源的第一参数;所述多个电压值是所述第一电源设置的所述第一电源的输出电压的值;所述多个第一参数用于所述第一电源根据所述多个第一参数和多个第二参数,确定所述电源系统的最大电源效率和所述最大电源效率对应的所述电压值;所述多个第二参数与所述多个电压值一一对应;第二参数用于标识所述第一电源的电源效率;一个电压值对应的所述第二参数是当所述第一电源的输出电压为所述电压值时,所述第一电源的第二参数。通过设置第一电源的输出电压为多个电压值,来确定电源系统的电源效率为最大的电源效率时,对应的第一电源的输出电压值。从而使电源系统工作在较大的电源效率下,从而可以提高电源系统的电源效率。
在一个实施例中,所述第一参数包括以下参数中的至少一个:所述第二电源的输出功率;所述第二电源的电源效率;所述第二电源的输出电压和输出电流。
第四方面,本申请实施例提供了一种第一电源,该第一电源包括用于实现第二方面或第二方面的任一种可能实现方式所提供的第一电源的模块或单元。
第五方面,本申请实施例提供了一种第二电源,该第二电源包括用于实现第三方面或第三方面的任一种可能实现方式所提供的第二电源的模块或单元。
第六方面,本申请实施例提供了一种第一电源,包括:处理器,存储器,通信接口和总线;处理器、通信接口、存储器通过总线相互通信;通信接口,用于接收和发送数据;存储器,用于存储指令;处理器,用于调用存储器中的指令,实现第二方面或第二方面的任一种可能实现方式所提供的第一电源。
第七方面,本申请实施例提供了一种第二电源,包括:处理器,存储器,通信接口和总线;处理器、通信接口、存储器通过总线相互通信;通信接口,用于接收和发送数据;存储器,用于存储指令;处理器,用于调用存储器中的指令,实现第三方面或第三方面的任一种可能实现方式所提供的第二电源。
第八方面,本申请实施例提供了一种计算机可读存储介质,该存储介质包括指令,当该指令运行时,使得第一电源执行第二方面或第二方面的任一种可能实现方式所提供的第一电源的功能。
第九方面,本申请实施例提供了一种计算机可读存储介质,该存储介质包括指令,当该指令运行时,使得第二电源执行第三方面或第三方面的任一种可能实现方式所提供的第二电源的功能。
第十方面,本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该指令运行时,使得第一电源执行第二方面或第二方面的任一种可能实现方式所提供的第一电源的功能。
第十一方面,本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该指令运行时,使得第二电源执行第三方面或第三方面的任一种可能实现方式所提供的第二电源的功能。
第十二方面,本申请实施例提供了一种芯片产品,以实现第二方面或第二方面的任意可能的实现方式中的第一电源。
第十三方面,本申请实施例提供了一种芯片产品,以实现第三方面或第三方面的任意可能的实现方式中的第二电源。
通过设置第一电源的输出电压为多个电压值,来确定电源系统的电源效率为最大的电源效率时,对应的第一电源的输出电压值。从而使电源系统工作在较大的电源效率下,从而可以提高电源系统的电源效率。
附图说明
下面对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种电源系统的架构示意图;
图2是本申请实施例提供的一种电源系统的结构示意图;
图3是本申请实施例提供的另一种电源系统的结构示意图;
图4是本申请实施例提供的一种电源系统的电源效率的测试结果;
图5是本申请实施例提供的一种第一电源和第二电源的结构示意图;
图6是本申请实施例提供的另一种第一电源和第二电源的结构示意图。
具体实施方式
请参见图1,图1是本申请实施例提供的一种电源系统的架构示意图。该电源系统可以是基站电源系统,用于为基站供电。该电源系统可以包括第一电源10和第二电源20,第一电源10的输出端与第二电源20的输入端电连接,用于第一电源10向第二电源20供电;当该电源系统为基站电源系统时,其中:
第一电源10,用于进行交流直流(alternating current-direct current,AC-DC)转换,接收交流电,并将交流电转换为直流电。接收的交流电可以是市电。输入第一电源10的电压为U1、电流为I1,第一电源10输出的直流电电压为U2、电流为I2。其中,输出电压U2例如可以是-48V。第一电源10输出的直流电可以用于为第二电源20供电,如图1所示,第二电源20的输入电压为U3,输入电流为I3。由于电缆线的压降,第二电源20的输入U3*I3可以略小于第一电源10的输出U2*I2。
第二电源20,用于将直流电进行DC-DC转换,来为功率放大器(power amplifier,PA)或者电路板供电。具体地,如图1所示,第二电源20用于接收电压值为U3的直流电,并转换为电压为U4的直流电。
其中,如图1所示,在基站电源系统中,第二电源20可以包含在射频拉远单元(Remote  Radio Unit,RRU)30中。第二电源20的输出U4*I4可以为功率放大器供电。第二电源20的输出也可以通过另一个电源进行DC-DC转换之后,为电路板供电。
电源的电源效率η是指电源的输出功率与输入功率的比值。具体地,如图1所示,第一电源10的电源效率为
Figure PCTCN2019079956-appb-000001
第二电源20的电源效率为
Figure PCTCN2019079956-appb-000002
电源系统的电源效率为
Figure PCTCN2019079956-appb-000003
在上述的电源系统设计完成之后,第一电源10的电源效率与第一电源10的输出功率相关。第二电源20的电源效率与第二电源20的输出功率相关。第一电源10的电源效率最大的情况下,一般地第二电源20的电源效率不是最大,从而电源系统的电源效率较低。
基于上述图1所描述的电源系统的架构示意图,本申请实施例提供一种电源和电源系统,可以提高电源系统的电源效率。
请参阅图2,图2是本申请实施例提供的一种电源系统的结构示意图。如图2所示,该电源系统可以包括第一电源10和第二电源20,第一电源10的输出端与第二电源20的输入端电连接,用于第一电源10向第二电源20供电,其中:
第二电源20与第一电源10建立通信连接。第一电源10与第二电源20之间可以通过电缆线建立电连接,则第二电源20与第一电源10之间建立的通信连接可以是电力线通信(power line communication,PLC)。另外,第二电源20与第一电源10之间建立的通信连接还可以是其他有线通信或者无线通信。具体地,第二电源20与第一电源10之间建立的通信连接例如可以是控制器局域网络(controller area network,CAN)连接、RS485接口连接、WIFI连接或者蓝牙连接。
第一电源10,可以设置第一电源10的输出电压U2为多个电压值。例如U2依次为U2 a、U2 b、U2 c……。第一电源10设置第一电源10的输出电压U2为上述多个电压值时,可以依次获得电源系统的电源效率。请参阅表1,表1是本申请实施例提供的第一电源10的输出电压与电源系统的电源效率的对应关系。
表1 第一电源10的输出电压与电源系统的电源效率的对应关系
Figure PCTCN2019079956-appb-000004
如表1所示,第一电源10的输出电压U2为U2 a时,对应的电源系统的效率为η3 a。具体地,第一电源10设置第一电源10的输出电压U2为U2 a时,第一电源10的电源效率为
Figure PCTCN2019079956-appb-000005
第二电源20的输入电压为U3 a。第二电源20的输出电压为U4 a,输出 电流为I4 a。第二电源20的电源效率为
Figure PCTCN2019079956-appb-000006
电源系统的效率为
Figure PCTCN2019079956-appb-000007
第一电源10的输出电压U2依次为U2 b、U2 c……时,电源系统的效率计算类似,这里不再赘述。
第二电源20,可以将第二电源的多个第一参数发送给第一电源10。该第一参数用于标识第二电源20的电源效率;多个第一参数与多个电压值(U2 a、U2 b、U2 c……)一一对应。其中,一个电压值对应的第一参数是当第一电源10的输出电压为该电压值时,第二电源的第一参数。
第一电源10,可以获取多个第二参数。多个第二参数与多个电压值(U2 a、U2 b、U2 c……)一一对应;第二参数用于标识第一电源10的电源效率;一个电压值对应的第二参数是当第一电源10的输出电压为该电压值时,所述第一电源10的第二参数。
第一电源10,可以根据多个第一参数和多个第二参数,确定电源系统的最大电源效率和该最大电源效率对应的第一电源10的输出电压的电压值。具体地,第一电源10可以根据多个第一参数和多个第二参数确定多个电压值(U2 a、U2 b、U2 c……)中每个电压值对应的电源系统的电源效率,即得到多个电源系统的电源效率,这多个电源系统的电源效率与多个电压值一一对应。然后找出多个电源系统的电源效率中最大的电源效率和最大的电源效率对应的第一电源10的输出电压值。
第一电源10,可以设置第一电源10的输出电压为该最大电源效率对应的电压值。
通过设置第一电源10的输出电压为多个电压值,来确定电源系统的电源效率为最大的电源效率时,对应的第一电源10的输出电压值。从而使电源系统工作在较大的电源效率下,从而可以提高电源系统的电源效率。
具体地,该第一参数可以包括:第二电源20的输出功率U4*I4;第二电源20的电源效率
Figure PCTCN2019079956-appb-000008
第二电源20的输出电压U4和输出电流I4。针对上三种情况,以第一电源10设置第一电源10的输出电压是U2 a为例对第一电源10确定电源系统的电源效率的过程进行介绍,第一电源10的输出电压为其他电压值的情况类似。以下分别进行描述:
(1)第一参数包括第二电源20的输出功率U4 a*I4 a的情况下,第二电源20将第二电源20的输出功率U4 a*I4 a发送给第一电源10。第一电源10可以获取第一电源10的输入功率U1*I1。第一电源10根据第一电源10的输入功率(U1*I1)和第二电源20的输出功率(U4 a*I4 a)计算电源系统的电源效率
Figure PCTCN2019079956-appb-000009
(2)第一参数包括第二电源20的电源效率η2 a的情况下,第二电源20获取第二电源20的电源效率
Figure PCTCN2019079956-appb-000010
并发送给第一电源10。第一电源10可以获取第一电源10的电源效率
Figure PCTCN2019079956-appb-000011
第一电源10根据第一电源10的电源效率η1 a和第二电 源20的电源效率η2 a计算电源系统的电源效率η3 a≈η2 a*η1 a
(3)第一参数包括第二电源20的输出电压U4 a和输出电流I4 a的情况下,第二电源20将第二电源20的输出电压U4 a和输出电流I4 a发送给第一电源10。第一电源10可以获取第一电源10的输入功率U1*I1。第一电源10根据第一电源10的输入功率U1*I1和第二电源20的输出电压U4 a、输出电流I4 a计算电源系统的电源效率
Figure PCTCN2019079956-appb-000012
其中,第一电源10获取的多个第二参数可以包括以下参数中的至少一个:第一电源10的输入功率U1*I1;第一电源10的电源效率
Figure PCTCN2019079956-appb-000013
第一电源10的输入电压U1和输入电流I1。
在一种可能的实施例中,第一电源10设置的第一电源10的多个输出电压值可以是在一定的电压范围内按照固定步长取值得到的。例如,根据电源系统需求设置电压范围为48~57V。固定步长为1V,则第一电源10设置的第一电源10的多个输出电压值为:48V、49V、50V……57V。第一电源10可以从上述十个电压值中找出对应的电源系统的电源效率最大的电压值(最大电源效率对应的电压值),第一电源10可以设置第一电源的输出电压为最大电源效率对应的电压值。则在电压范围48~57V内,电源系统的电源效率可以达到最高,从而可以提高电源系统的电源效率。
具体地,如表2所示,表2是本申请实施例提供的一种第一电源10的输出电压值与电源系统效率示例。
表2 一种第一电源10的输出电压值与电源系统效率示例
Figure PCTCN2019079956-appb-000014
如表2所示,在负载功率为400W的情况下,第一电源的输出电压值依次为48V、49V、50V……57V时,对应的电源系统的电源效率均不相同。第一设备10可以找出最大的电源 系统的电源效率最大值86.42%,以及该最大电压效率值86.42%对应的第一电源10的输出电压值49V。之后第一设备10可以设置第一设备的输出电压为49V。
可以理解的,上述电压固定步长可以根据需求选取更大或者更小的数值,本申请实施例对此不作限定。
在一种可能的实施例中,电源系统还可以包括第三电源40。请参阅图3,图3是本申请实施例提供的另一种电源系统的结构示意图。如图3所示,第二电源20的输出端与第三电源40的输入端电连接,用于第二电源20向第三电源40供电;第三电源40与第一电源10建立通信连接,其中:
第三电源40,用于向第一电源10发送多个第三参数,第三参数用于标识第三电源40的电源效率;多个第三参数与多个第一电源10的输出电压值一一对应;一个电压值对应的第三参数是当第一电源10的输出电压为该电压值时,第三电源40的第三参数。
第一电源10,具体用于根据多个第一参数和多个第三参数中的至少一项、以及多个第二参数,确定电源系统的最大电源效率和最大电源效率对应的第一电源10的输出电压值。
第一电源10与第三电源40之间的通信连接也可以是电力线通信、有线通信或者无线通信,具体可以参考第一电源10与第二电源20之间的通信连接的具体描述,这里不再赘述。
如表1所示,当电源系统包括第三电源40时,第一电源10的输出电压U2为U2 a时,对应的电源系统的效率为η3 a。具体地,第一电源10设置第一电源10的输出电压U2为U2 a时,对于电源系统(包含第一电源10、第二电源20和第三电源40)来说,第一电源10的电源效率为
Figure PCTCN2019079956-appb-000015
第二电源20的输入电压为U3 a,输入电流为I3 a,第二电源20的输出电压为U4 a,输出电流为I4 a,第二电源20的电源效率为
Figure PCTCN2019079956-appb-000016
第三电源40的输入电压为U5 a,输入电流为I5 a,第三电源40的输出电压为U6 a,输出电流为I6 a,第三电源40的电源效率为
Figure PCTCN2019079956-appb-000017
电源系统的效率为
Figure PCTCN2019079956-appb-000018
第一电源10的输出电压U2依次为U2 b、U2 c……时,电源系统的效率计算类似,这里不再赘述。
具体地,该第三参数可以包括:第三电源40的输出功率U6*I6;第三电源40的电源效率
Figure PCTCN2019079956-appb-000019
第三电源40的输出电压U6和输出电流I6。针对上三种情况,以第一电源10设置第一电源10的输出电压是U2 a为例对第一电源10确定电源系统的电源效率的过程进行介绍,第一电源10的输出电压为其他电压值的情况类似。以下分别进行描述:
(1)第一电源10设置第一电源10的输出电压是U2 a时,第三参数可以包括第三电源40的输出功率U6 a*I6 a,第三电源40将第三电源40的输出功率U6 a*I6 a发送给第一电源10。第一电源10可以获取第一电源10的输入功率U1*I1。第一电源10根据第一电源10的输 入功率(U1*I1)和第三电源40的输出功率(U6 a*I6 a)计算电源系统的电源效率
Figure PCTCN2019079956-appb-000020
(2)第三参数包括第三电源40的电源效率η4 a的情况下,第三电源40获取第三电源40的电源效率
Figure PCTCN2019079956-appb-000021
并发送给第一电源10。第一电源10可以获取第一电源10的电源效率
Figure PCTCN2019079956-appb-000022
第一电源10可以获取第二电源20的电源效率η2 a
Figure PCTCN2019079956-appb-000023
例如,可以通过PLC连接接收第二电源发送的η2 a。第一电源10根据第一电源10的电源效率η1 a、第二电源20的电源效率η2 a和第三电源40的电源效率η4 a计算电源系统的电源效率η3 a≈η2 a*η1 a*η4 a
(3)第一参数包括第三电源40的输出电压U6 a和输出电流I6 a的情况下,第三电源40将第三电源40的输出电压U6 a和输出电流I6 a发送给第一电源10。第一电源10可以获取第一电源10的输入功率U1*I1。第一电源10根据第一电源10的输入功率U1*I1和第三电源40的输出电压U6 a、输出电流I6 a计算电源系统的电源效率
Figure PCTCN2019079956-appb-000024
在电源系统是基站电源系统的情况下,第三电源40可以用于为电路板供电。第三电源40的输出功率可以用机顶输出功率代替。机顶输出功率是指基站天线的辐射功率。
可以理解的,在电源系统是基站电源系统以外的电源系统中,电源系统可以包含与三个电源相比更多或更少的电源。这些电源通过串联连接。第一电源可以设置多个输出电压值,获取对应的其他相串联的电源的参数,来选取整个电源系统的电源效率最大时对应的第一电源的输出电压值,从而可以提高电源系统的电源效率。本申请实施例对电源系统包含的电源数量不作限定。
可选的,电源系统中也可以是第二电源20或者第三电源40计算多个输出电压值对应的电源系统的电源效率,并确定出电源系统最大的电源效率以及最大电源效率对应的第一电源10的输出电压值。具体地,第一电源10可以将多个第二参数(包含至少一项:第一电源10的输入功率U1*I1;第一电源10的电源效率η1;第一电源10的输入电压U1和输入电流I1)发送给第二电源20。第二电源20获取多个第一参数(包含至少一项:第二电源20的输出功率U4*I4;第二电源20的电源效率
Figure PCTCN2019079956-appb-000025
第二电源20的输出电压U4和输出电流I4)。第二电源20可以根据多个第一参数和多个第二参数,确定电源系统的最大电源效率和该最大电源效率对应的第一电源10的输出电压的电压值。第二电源20可以将电源系统的最大电源效率和该最大电源效率对应的第一电源10的输出电压的电压值发送给第一电源10。第一电源10接收到之后设置第一电源10的输出电压为该最大电源效 率对应的输出电压值。
在输出功率固定的情况下,通过计算不同的第一电源10的输出电压下电源系统的电源效率,选取电源效率最大时,对应的第一电源10的输出电压值,将第一电源10的输出电压设置为该最大电源效率对应的输出电压值。从而可以提高电源系统的电源效率。
请参阅图4,图4是本申请实施例提供的一种电源系统的电源效率的测试结果。如图4所示,在使用图2或图3所描述的电源系统来将第一电源的输出电压设置为电源系统电源效率最大时对应的输出电压值的情况下,相同的输出功率下可以提高电源系统的电源效率。
请参阅图5,图5是本申请实施例提供的一种第一电源和第二电源的结构示意图。该第一电源10和第二电源20用于图2或者图3所描述的电源系统。如图5所示,该第一电源10包括控制模块101和电路模块102和通信模块103,其中:
电路模块102,用于接收输入的功率U1*I1,并通过电路转换输出功率U2*I2。
控制模块101,用于设置第一电源的输出电压U2为多个电压值;
通信模块103,用于接收第二电源20发送的多个第一参数;第一参数用于标识第二电源20的电源效率;多个第一参数与多个电压值一一对应;一个电压值对应的第一参数是当第一电源的输出电压为电压值时,第二电源20的第一参数;
控制模块101,还用于获取多个第二参数,多个第二参数与多个电压值一一对应;第二参数用于标识第一电源10的电源效率;一个电压值对应的第二参数是当第一电源的输出电压为电压值时,第一电源10的第二参数;
控制模块101,还用于根据多个第一参数和多个第二参数,确定电源系统的最大电源效率和最大电源效率对应的电压值。
可选的,电源系统还可以包括第三电源40,第二电源20的输出端与第三电源40的输入端电连接,用于第二电源20向第三电源40供电;第三电源40与第一电源10建立通信连接,其中:
通信模块103,还用于接收第三电源40发送的多个第三参数,第三参数用于标识第三电源的电源效率;多个第三参数与多个电压值一一对应;一个电压值对应的第三参数是当第一电源的输出电压为电压值时,第三电源40的第三参数;
控制模块101,具体用于根据多个第一参数和多个第三参数中的至少一项、以及多个第二参数,确定电源系统的最大电源效率和最大电源效率对应的电压值。
可选的,第一参数包括以下参数中的至少一个:第二电源的输出功率;第二电源的电源效率;第二电源的输出电压和输出电流;
第三参数包括以下参数中的至少一个:第三电源的输出功率;第三电源的电源效率;第三电源的输出电压和输出电流。
可选的,第二参数包括以下参数中的至少一个:第一电源的输入功率;第一电源的电源效率;第一电源的输入电压和输入电流。
可选的,控制模块101,还用于将第一电源10的输出电压U1设置为最大电源效率对应的电压值。
如图5所示,该第二电源40包括第二电源包括电路模块201、控制模块202和通信模块203,其中:
电路模块201,用于接收第一电源输出的功率U3*I3,并通过电路转换输出功率U4*I4。
控制模块202,用于指令通信模块203向第一电源10发送多个第一参数;第一参数用于标识第二电源20的电源效率;多个第一参数与多个电压值一一对应;一个电压值对应的第一参数是当第一电源的输出电压为电压值时,第二电源的第一参数;
多个电压值是第一电源10设置的第一电源10的输出电压的值;多个第一参数用于第一电源10根据多个第一参数和多个第二参数,确定电源系统的最大电源效率和最大电源效率对应的电压值;多个第二参数与多个电压值一一对应;第二参数用于标识第一电源10的电源效率;一个电压值对应的第二参数是当第一电源的输出电压为电压值时,第一电源10的第二参数。
可选的,第一参数包括以下参数中的至少一个:第二电源20的输出功率;第二电源20的电源效率;第二电源20的输出电压和输出电流。
其中,第一电源10和第二电源20可以通过电缆线连接。
在该实施例中,各模块的功能可以对应参照图2或图3所示的电源系统实施例的相应描述,这里不再赘述。
请参阅图6,图6是本申请实施例提供的另一种第一电源和第二电源的结构示意图。该第一电源10和第二电源20用于图2或者图3所描述的电源系统。如图6所示,第一电源10和第二电源20之间通过电缆线连接,用于第一电源10向第二电源20供电。
如图6所示,本申请实施例提供的第一电源10包括一个或多个控制器601、通信接口602、存储器603和电路模块605,控制器601、通信接口602、存储器603和电路模块605可通过总线或者其它方式连接,本申请实施例以通过总线604连接为例。其中:
控制器601可以由一个或者多个通用控制器构成,例如中央控制器(Central Processing Unit,CPU)。控制器601可用于运行相关的程序代码11中的程序。
通信接口602可以为有线接口(例如以太网接口)或无线接口(例如蜂窝网络接口或使用无线局域网接口),用于与其他节点进行通信。本申请实施例中,通信接口也可以是电力线通信的通信接口。
存储器603可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器也可以包括非易失性存储器(Non-Volatile Memory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器603还可以包括上述种类的存储器的组合。存储器603可用于存储一组程序代码11,以便于控制器601调用存储器603中存储的程序代码11以实现本申请实施例的第一电源10的功能。
需要说明的,图6所示的第一电源10仅仅是本申请实施例的一种实现方式,实际应用中,第一电源10还可以包括更多或更少的部件,这里不作限制。
如图6所示,本申请实施例提供的第二电源20包括一个或多个控制器701、通信接口702、存储器703和电路模块705,控制器701、通信接口702、存储器703和电路模块705可通过总线或者其它方式连接,本申请实施例以通过总线704连接为例。其中:
控制器701可以由一个或者多个通用控制器构成,例如中央控制器(Central Processing Unit,CPU)。控制器701可用于运行相关的程序代码13中的程序。
通信接口702可以为有线接口(例如以太网接口)或无线接口(例如蜂窝网络接口或使用无线局域网接口),用于与其他节点进行通信。本申请实施例中,通信接口也可以是电力线通信的通信接口。
存储器703可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器也可以包括非易失性存储器(Non-Volatile Memory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器703还可以包括上述种类的存储器的组合。存储器703可用于存储一组程序代码13,以便于控制器701调用存储器703中存储的程序代码13以实现本申请实施例提供的第二电源20的功能。
需要说明的,图6所示的第二电源20仅仅是本申请实施例的一种实现方式,实际应用中,第二电源20还可以包括更多或更少的部件,这里不作限制。
可以理解的是,在本申请中,不同实施例之间的技术术语、技术方案可以依据其内在的逻辑相互参考、相互引用,本申请并不对技术术语和技术方案所适用的实施例进行限定。对不同实施例中的技术方案相互组合,还可以形成新的实施例。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (12)

  1. 一种电源系统,其特征在于,所述电源系统包括第一电源和第二电源,所述第一电源的输出端与所述第二电源的输入端电连接,用于所述第一电源向所述第二电源供电;所述第二电源与所述第一电源建立通信连接,其中:
    所述第一电源,用于设置所述第一电源的输出电压为多个电压值;
    所述第二电源,用于向所述第一电源发送多个第一参数;所述第一参数用于标识所述第二电源的电源效率;所述多个第一参数与所述多个电压值一一对应;一个电压值对应的所述第一参数是当所述第一电源的输出电压为所述电压值时,所述第二电源的第一参数;
    所述第一电源,还用于获取多个第二参数,所述多个第二参数与所述多个电压值一一对应;所述第二参数用于标识所述第一电源的电源效率;一个电压值对应的所述第二参数是当所述第一电源的输出电压为所述电压值时,所述第一电源的第二参数;
    所述第一电源,还用于根据所述多个第一参数和所述多个第二参数,确定所述电源系统的最大电源效率和所述最大电源效率对应的所述电压值。
  2. 根据权利要求1所述的系统,其特征在于,所述电源系统还包括第三电源,所述第二电源的输出端与所述第三电源的输入端电连接,用于所述第二电源向所述第三电源供电;所述第三电源与所述第一电源建立通信连接,其中:
    所述第三电源,用于向所述第一电源发送多个第三参数,所述第三参数用于标识所述第三电源的电源效率;所述多个第三参数与所述多个电压值一一对应;一个电压值对应的所述第三参数是当所述第一电源的输出电压为所述电压值时,所述第三电源的第三参数;
    所述第一电源,具体用于根据所述多个第一参数和所述多个第三参数中的至少一项、以及所述多个第二参数,确定所述电源系统的最大电源效率和所述最大电源效率对应的所述电压值。
  3. 根据权利要求1或2所述的系统,其特征在于,所述第一参数包括以下参数中的至少一个:所述第二电源的输出功率;所述第二电源的电源效率;所述第二电源的输出电压和输出电流;
    所述第三参数包括以下参数中的至少一个:所述第三电源的输出功率;所述第三电源的电源效率;所述第三电源的输出电压和输出电流。
  4. 根据权利要求1至3任一项所述的系统,其特征在于,所述第二参数包括以下参数中的至少一个:所述第一电源的输入功率;所述第一电源的电源效率;所述第一电源的输入电压和输入电流。
  5. 根据权利要求1至4任一项所述的系统,其特征在于,所述第一电源,还用于将所述第一电源的输出电压设置为所述最大电源效率对应的所述电压值。
  6. 一种第一电源,其特征在于,所述第一电源用于电源系统,所述电源系统包括所述 第一电源和第二电源,所述第一电源的输出端与所述第二电源的输入端电连接,用于所述第一电源向所述第二电源供电;所述第二电源与所述第一电源建立通信连接,所述第一电源包括控制模块、通信模块,其中:
    所述控制模块,用于设置所述第一电源的输出电压为多个电压值;
    所述通信模块,用于接收所述第二电源发送的多个第一参数;所述第一参数用于标识所述第二电源的电源效率;所述多个第一参数与所述多个电压值一一对应;一个电压值对应的所述第一参数是当所述第一电源的输出电压为所述电压值时,所述第二电源的第一参数;
    所述控制模块,还用于获取多个第二参数,所述多个第二参数与所述多个电压值一一对应;所述第二参数用于标识所述第一电源的电源效率;一个电压值对应的所述第二参数是当所述第一电源的输出电压为所述电压值时,所述第一电源的第二参数;
    所述控制模块,还用于根据所述多个第一参数和所述多个第二参数,确定所述电源系统的最大电源效率和所述最大电源效率对应的所述电压值。
  7. 根据权利要求6所述的第一电源,其特征在于,所述电源系统还包括第三电源,所述第二电源的输出端与所述第三电源的输入端电连接,用于所述第二电源向所述第三电源供电;所述第三电源与所述第一电源建立通信连接,其中:
    所述通信模块,还用于接收所述第三电源发送的多个第三参数,第三参数用于标识所述第三电源的电源效率;所述多个第三参数与所述多个电压值一一对应;一个电压值对应的所述第三参数是当所述第一电源的输出电压为所述电压值时,所述第三电源的第三参数;
    所述控制模块,具体用于根据所述多个第一参数和所述多个第三参数中的至少一项、以及所述多个第二参数,确定所述电源系统的最大电源效率和所述最大电源效率对应的所述电压值。
  8. 根据权利要求6或7所述的第一电源,其特征在于,所述第一参数包括以下参数中的至少一个:所述第二电源的输出功率;所述第二电源的电源效率;所述第二电源的输出电压和输出电流;
    所述第三参数包括以下参数中的至少一个:所述第三电源的输出功率;所述第三电源的电源效率;所述第三电源的输出电压和输出电流。
  9. 根据权利要求6至8任一项所述的第一电源,其特征在于,所述第二参数包括以下参数中的至少一个:所述第一电源的输入功率;所述第一电源的电源效率;所述第一电源的输入电压和输入电流。
  10. 根据权利要求6至9任一项所述的第一电源,其特征在于,所述控制模块,还用于将所述第一电源的输出电压设置为所述最大电源效率对应的所述电压值。
  11. 一种第二电源,其特征在于,所述第二电源用于电源系统,所述电源系统包括第 一电源和所述第二电源,所述第二电源的输入端与所述第一电源的输出端电连接,用于所述第二电源接收所述第一电源的供电;所述第二电源与所述第一电源建立通信连接,所述第二电源包括通信模块,其中:
    所述通信模块,用于向所述第一电源发送多个第一参数;所述第一参数用于标识所述第二电源的电源效率;所述多个第一参数与多个电压值一一对应;一个电压值对应的所述第一参数是当所述第一电源的输出电压为所述电压值时,所述第二电源的第一参数;
    所述多个电压值是所述第一电源设置的所述第一电源的输出电压的值;所述多个第一参数用于所述第一电源根据所述多个第一参数和多个第二参数,确定所述电源系统的最大电源效率和所述最大电源效率对应的所述电压值;所述多个第二参数与所述多个电压值一一对应;第二参数用于标识所述第一电源的电源效率;一个电压值对应的所述第二参数是当所述第一电源的输出电压为所述电压值时,所述第一电源的第二参数。
  12. 根据权利要求11所述的第二电源,其特征在于,所述第一参数包括以下参数中的至少一个:所述第二电源的输出功率;所述第二电源的电源效率;所述第二电源的输出电压和输出电流。
PCT/CN2019/079956 2018-03-30 2019-03-27 一种电源和电源系统 WO2019184962A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19777273.4A EP3764532A4 (en) 2018-03-30 2019-03-27 POWER SUPPLY AND POWER SUPPLY SYSTEM
US17/034,180 US11546844B2 (en) 2018-03-30 2020-09-28 Power supply and power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820449201.3U CN208489801U (zh) 2018-03-30 2018-03-30 一种电源和电源系统
CN201820449201.3 2018-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/034,180 Continuation US11546844B2 (en) 2018-03-30 2020-09-28 Power supply and power system

Publications (1)

Publication Number Publication Date
WO2019184962A1 true WO2019184962A1 (zh) 2019-10-03

Family

ID=65255190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079956 WO2019184962A1 (zh) 2018-03-30 2019-03-27 一种电源和电源系统

Country Status (4)

Country Link
US (1) US11546844B2 (zh)
EP (1) EP3764532A4 (zh)
CN (1) CN208489801U (zh)
WO (1) WO2019184962A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208489801U (zh) * 2018-03-30 2019-02-12 华为技术有限公司 一种电源和电源系统
CN113923062B (zh) 2020-07-10 2024-04-02 中兴通讯股份有限公司 供电方法、装置、网络设备和可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203562823U (zh) * 2013-11-12 2014-04-23 北京信威通信技术股份有限公司 一种基站电源管理系统
CN104065281A (zh) * 2014-06-10 2014-09-24 华为技术有限公司 一种供电设备及基站
CN105472786A (zh) * 2014-09-04 2016-04-06 华为技术有限公司 一种分布式基站和通信系统
US9543758B1 (en) * 2013-11-22 2017-01-10 Sprint Communications Company L.P. Adaptive battery power distribution to remote radio heads in long term evolution (LTE) networks
CN107181252A (zh) * 2016-03-11 2017-09-19 华为技术有限公司 供电控制装置、供电系统、负载和基站
CN208489801U (zh) * 2018-03-30 2019-02-12 华为技术有限公司 一种电源和电源系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179705B2 (en) * 2008-05-27 2012-05-15 Power-One, Inc. Apparatus and method of optimizing power system efficiency using a power loss model
DE102008044662A1 (de) * 2008-08-28 2010-03-04 Aptronic Ag Schaltnetzteil mit selbst optimierendem Wirkungsgrad
KR101189768B1 (ko) * 2008-12-22 2012-10-15 한국전자통신연구원 전력선 통신을 이용한 다중 가변 출력 직류전원 공급장치 및 방법
US8184455B2 (en) * 2008-12-30 2012-05-22 Fsp Technology Inc. Power adapter having power factor correction circuit, switch voltage regulation circuit and voltage stabilization circuit controlled by feedback signal
US8004260B2 (en) * 2009-03-26 2011-08-23 Delta Electronics, Inc. Method and apparatus for multi-stage power supplies
US8134848B2 (en) * 2009-08-12 2012-03-13 Alcatel Lucent Closed-loop efficiency modulation for use in AC powered applications
US10271391B2 (en) * 2014-06-25 2019-04-23 Soraa, Inc. Light emitting diode driver
JP6731607B2 (ja) 2016-03-25 2020-07-29 パナソニックIpマネジメント株式会社 電力変換システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203562823U (zh) * 2013-11-12 2014-04-23 北京信威通信技术股份有限公司 一种基站电源管理系统
US9543758B1 (en) * 2013-11-22 2017-01-10 Sprint Communications Company L.P. Adaptive battery power distribution to remote radio heads in long term evolution (LTE) networks
CN104065281A (zh) * 2014-06-10 2014-09-24 华为技术有限公司 一种供电设备及基站
CN105472786A (zh) * 2014-09-04 2016-04-06 华为技术有限公司 一种分布式基站和通信系统
CN107181252A (zh) * 2016-03-11 2017-09-19 华为技术有限公司 供电控制装置、供电系统、负载和基站
CN208489801U (zh) * 2018-03-30 2019-02-12 华为技术有限公司 一种电源和电源系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3764532A4 *

Also Published As

Publication number Publication date
US11546844B2 (en) 2023-01-03
EP3764532A1 (en) 2021-01-13
EP3764532A4 (en) 2021-04-07
US20210014783A1 (en) 2021-01-14
CN208489801U (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
US10103574B2 (en) Controlled concurrent utilization of multiple power supplies
JP6595615B2 (ja) フライバックコントローラとバックコンバータとを含む電源装置
WO2019184962A1 (zh) 一种电源和电源系统
WO2020192205A9 (zh) 一种供电方法、控制方法、供电电源和检测装置
US20210313822A1 (en) Wireless charging method and device to be charged
WO2014180442A1 (zh) 信号反馈方法及装置、供电方法及设备、控制方法及系统
US9648706B2 (en) Systems and methods for customized load control
US11196294B2 (en) Power management method, power management server, local control apparatus, and power management system
US10069309B2 (en) Controlling redundant power supplies in an information handling system
WO2020124549A1 (zh) 一种无线充电方法、待充电设备、电源设备及存储介质
US11251624B2 (en) Energy efficiency control method, control apparatus, and communications device
JP2020149239A (ja) 太陽光発電システム、太陽光発電処理装置、太陽光発電処理装置の制御方法及びプログラム
WO2023082531A1 (zh) Avs调节系统、方法、装置、设备及存储介质
CN113347194B (zh) 数据传输方法、装置、电子设备、存储介质和程序产品
US10663937B2 (en) Adjusting voltage settings based on electrical components
US20130339768A1 (en) Ip power controller
CN107844185B (zh) 一种电源管理方法及装置
WO2019202494A1 (en) A system and a method for predicting failure risk of appliances
CN105224059A (zh) 远端存取数据的方法以及本地端装置
WO2022051921A1 (zh) 网络供电系统
CN114336873A (zh) 功率控制电路及其控制方法
CN115589037A (zh) 并机配置方法、装置、设备及介质
CN202167032U (zh) 无线数据终端
WO2016165232A1 (zh) 瘦终端供电方法、装置、系统及瘦终端电源主板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019777273

Country of ref document: EP

Effective date: 20201005