WO2019184874A1 - Transmitter, aerial vehicle, method for instructing flight control, flight control method, program, and storage medium - Google Patents

Transmitter, aerial vehicle, method for instructing flight control, flight control method, program, and storage medium Download PDF

Info

Publication number
WO2019184874A1
WO2019184874A1 PCT/CN2019/079525 CN2019079525W WO2019184874A1 WO 2019184874 A1 WO2019184874 A1 WO 2019184874A1 CN 2019079525 W CN2019079525 W CN 2019079525W WO 2019184874 A1 WO2019184874 A1 WO 2019184874A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitter
orientation
flying body
control
unmanned aircraft
Prior art date
Application number
PCT/CN2019/079525
Other languages
French (fr)
Chinese (zh)
Inventor
刘光耀
周杰旻
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980003190.3A priority Critical patent/CN110785724A/en
Publication of WO2019184874A1 publication Critical patent/WO2019184874A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions

Abstract

A transmitter (50) for instructing flight control of an aerial vehicle comprises a processing portion. The processing portion acquires operation information used to instruct orientation control of an aerial vehicle (100). Upon acquisition of the operation information, an orientation or a position of the transmitter (50) is acquired, and orientation control of the aerial vehicle (100) is instructed on the basis of the orientation or the position of the transmitter (50). Also disclosed are an aerial vehicle, a method for instructing flight control, a flight control method, a program, and a storage medium

Description

发送器、飞行体、飞行控制指示方法、飞行控制方法、程序及存储介质Transmitter, flight body, flight control indication method, flight control method, program, and storage medium 技术领域Technical field
本公开涉及一种对飞行体的飞行的控制进行指示的发送器、飞行控制指示方法、程序及存储介质。此外,本公开涉及一种对飞行体的飞行进行控制的飞行体、飞行控制方法。The present disclosure relates to a transmitter, a flight control indication method, a program, and a storage medium that indicate control of flight of a flying body. Further, the present disclosure relates to a flying body, flight control method for controlling flight of a flying body.
背景技术Background technique
以往,作为控制无人驾驶航空器的飞行的方法,存在有无人驾驶航空器按照预先设定的飞行路径飞行的方法(自动控制飞行)和无人驾驶航空器按照遥控器的操作飞行的方法(手动控制飞行)。例如在专利文献1中公开了一种用户操作遥控器来控制无人驾驶航空器的飞行的方法。In the past, as a method of controlling the flight of an unmanned aerial vehicle, there are a method in which an unmanned aircraft flies according to a preset flight path (automatic control flight) and a method in which an unmanned aircraft flies according to an operation of a remote controller (manual control) flight). For example, Patent Document 1 discloses a method in which a user operates a remote controller to control the flight of an unmanned aircraft.
现有技术文献Prior art literature
专利文献Patent literature
专利文献1日本特开2017-228111号公报Patent Document 1 JP-A-2017-228111
发明内容Summary of the invention
发明所要解决的技术问题Technical problem to be solved by the invention
当无人驾驶航空器按照遥控器的操作飞行时,难以判别无人驾驶航空器的朝向,对用户来说可能存在遥控器操作困难的情况。例如,在无人驾驶航空器处于远离操纵遥控器的用户的位置的状况、天气不好等状况中,用户难以通过目视来确认无人驾驶航空器的朝向。When the unmanned aircraft flies according to the operation of the remote controller, it is difficult to discriminate the orientation of the unmanned aircraft, and there may be a case where the remote controller is difficult to operate for the user. For example, in a situation where the unmanned aircraft is in a position away from the position of the user who manipulates the remote controller, the weather is not good, and the like, it is difficult for the user to visually confirm the orientation of the unmanned aircraft.
在用户操作遥控器来对无人驾驶航空器的飞行的控制进行指示时,无人驾驶航空器的朝向成为机体的前后、左右的移动操作的基准。因此,对用户来说当无人驾驶航空器的朝向难以判别时,难以利用遥控器进行移动操作。When the user operates the remote controller to instruct the control of the flight of the unmanned aircraft, the orientation of the unmanned aircraft becomes the reference for the front, rear, left and right movement operations of the body. Therefore, it is difficult for the user to perform the moving operation using the remote controller when the orientation of the unmanned aircraft is difficult to discriminate.
用于解决课题的手段Means for solving problems
在一个方面中,一种对飞行体的飞行的控制进行指示的发送器,具备处理部,处理部获取用于对飞行体的朝向的控制进行指示的操作信息,当获取到操作信息时,获取发送器的朝向或位置的信息,并根据发送器的朝向或位置,对飞行体的朝向的控制进行指示。In one aspect, a transmitter for instructing control of flight of a flying body includes a processing unit that acquires operation information for instructing control of the orientation of the flying body, and when the operation information is acquired, acquires Information on the orientation or position of the transmitter, and an indication of the orientation of the flying body based on the orientation or position of the transmitter.
处理部可以指示飞行体的旋转,使得发送器的朝向与飞行体的朝向成为同一方向。The processing portion may indicate the rotation of the flying body such that the orientation of the transmitter is in the same direction as the orientation of the flying body.
处理部可以获取发送器的位置信息,获取飞行体的位置信息,计算连结发送器的位置和 飞行体的位置的直线,并基于直线的朝向,对飞行体的朝向的控制进行指示。The processing unit may acquire position information of the transmitter, acquire position information of the flying body, calculate a straight line connecting the position of the transmitter and the position of the flying body, and instruct the control of the orientation of the flying body based on the direction of the straight line.
处理部可以指示飞行体的旋转,使得直线的朝向与飞行体的朝向成为同一方向。The processing unit may instruct the rotation of the flying body such that the orientation of the straight line is in the same direction as the orientation of the flying body.
处理部可以指示飞行体向顺时针的旋转方向和逆时针的旋转方向中飞行体旋转量较少的旋转方向旋转。The processing portion may instruct the flying body to rotate in a rotational direction in which the flying body rotates in a clockwise direction and a counterclockwise direction.
处理部可以获取飞行体的朝向的控制的完成信息,并基于完成信息,提示表示飞行体的朝向的控制已完成的信息。The processing unit may acquire completion information of the control of the orientation of the flying body, and based on the completion information, present information indicating that the control of the orientation of the flying body has been completed.
在一个方面中,一种基于发送器对于飞行的控制的指示来控制飞行的飞行体,具备处理部,处理部从发送器接收用于对飞行体的朝的控制进行指示的操作信息以及发送器的位置信息,当接收到操作信息时,获取飞行体的位置信息,计算连结发送器的位置和飞行体的位置的直线,并基于直线的朝向,控制飞行体的朝向。In one aspect, a flight body that controls flight based on an indication of a transmitter's control of flight includes a processing unit that receives operation information for indicating control of a flying body from a transmitter and a transmitter The position information, when receiving the operation information, acquires the position information of the flying body, calculates a straight line connecting the position of the transmitter and the position of the flying body, and controls the orientation of the flying body based on the orientation of the straight line.
在一个方面中,一种对飞行体的飞行的控制进行指示的发送器中的飞行控制指示方法,具有:获取用于对飞行体的朝向的控制进行指示的操作信息的步骤;当获取到操作信息时,获取发送器的朝向或位置的信息的步骤;以及基于发送器的朝向或位置来对飞行体的朝向的控制进行指示的步骤。In one aspect, a flight control indication method in a transmitter that indicates control of flight of a flying body has a step of acquiring operation information for indicating control of the orientation of the flying body; when the operation is acquired The step of acquiring information of the orientation or position of the transmitter at the time of information; and the step of indicating the control of the orientation of the flying body based on the orientation or position of the transmitter.
对飞行体的朝向的控制进行指示的步骤可以包括指示飞行体的旋转,使得发送器的朝向与飞行体的朝向成为同一方向的步骤。The step of indicating the control of the orientation of the flying body may include the step of indicating the rotation of the flying body such that the orientation of the transmitter is in the same direction as the orientation of the flying body.
飞行控制指示方法还可以包括:获取飞行体的位置信息的步骤;以及计算连结发送器的位置和飞行体的位置的直线的步骤。获取发送器的朝向或位置的信息的步骤可以包括获取发送器的位置信息的步骤。对飞行体的朝向的控制进行指示的步骤可以包括基于直线的朝向来对飞行体的朝向的控制进行指示的步骤。The flight control indicating method may further include the steps of: acquiring position information of the flying body; and calculating a straight line connecting the position of the transmitter and the position of the flying body. The step of obtaining information of the orientation or position of the transmitter may include the step of acquiring location information of the transmitter. The step of indicating the control of the orientation of the flying body may include the step of indicating the control of the orientation of the flying body based on the orientation of the straight line.
对飞行体的朝向的控制进行指示的步骤可以包括指示飞行体的旋转,使得直线的朝向与飞行体的朝向成为同一方向的步骤。The step of indicating the control of the orientation of the flying body may include the step of indicating the rotation of the flying body such that the orientation of the straight line is in the same direction as the orientation of the flying body.
对飞行体的朝向的控制进行指示的步骤可以包括指示飞行体向顺时针的旋转方向和逆时针的旋转方向中飞行体的旋转量较少的旋转方向旋转的步骤。The step of indicating the control of the orientation of the flying body may include the step of indicating a rotation direction in which the flying body rotates in a clockwise direction and a counterclockwise direction in which the amount of rotation of the flying body is less.
飞行控制指示方法还可以包括:获取飞行体的朝向的控制的完成信息的步骤;以及基于完成信息,提示表示飞行体的朝向的控制已完成的信息的步骤。The flight control instructing method may further include: a step of acquiring completion information of the control of the orientation of the flying body; and a step of prompting information indicating that the control of the orientation of the flying body has been completed based on the completion information.
在一个方面中,一种基于发送器对于飞行的控制的指示来控制飞行的飞行体中的飞行控制方法,具有:从发送器接收用于对飞行体的朝向的控制进行指示的操作信息以及发送器的位置信息的步骤;当获取到操作信息时,获取飞行体的位置信息的步骤;计算连结发送器的位置与飞行体的位置的直线的步骤;以及基于直线的朝向来控制飞行体的朝向的步骤。In one aspect, a flight control method in a flying body that controls flight based on an indication of a transmitter's control of flight, having: receiving operational information indicating a control of a direction of a flying body from a transmitter, and transmitting a step of acquiring position information of the aircraft; a step of acquiring position information of the flying body when acquiring the operation information; a step of calculating a straight line connecting the position of the transmitter with the position of the flying body; and controlling the orientation of the flying body based on the orientation of the straight line A step of.
在一个方面中,一种程序,用于使对飞行体的飞行的控制进行指示的发送器执行以下步 骤:获取用于对飞行体的朝向的控制进行指示的操作信息的步骤;当获取到操作信息时,获取发送器的朝向或位置的信息的步骤;以及基于发送器的朝向或位置来对飞行体的朝向的控制进行指示的步骤。In one aspect, a program for causing a transmitter that directs control of flight of a flying body to perform the steps of: obtaining operation information for indicating control of the orientation of the flying body; when the operation is acquired The step of acquiring information of the orientation or position of the transmitter at the time of information; and the step of indicating the control of the orientation of the flying body based on the orientation or position of the transmitter.
在一个方面中,一种记录介质,其是计算机可读记录介质并记录有用于使对飞行体的飞行的控制进行指示的发送器执行以下步骤的程序:获取用于对飞行体的朝向的控制进行指示的操作信息的步骤;当获取到操作信息时,获取发送器的朝向或位置的信息的步骤;以及基于发送器的朝向或位置来对飞行体的朝向的控制进行指示的步骤。In one aspect, a recording medium which is a computer readable recording medium and which records a program for causing a control of flight of a flying body to perform the following steps: acquiring control for the orientation of the flying body a step of performing the indicated operation information; a step of acquiring information of the orientation or position of the transmitter when the operation information is acquired; and a step of indicating control of the orientation of the flying body based on the orientation or position of the transmitter.
此外,上述的发明内容中并未穷举本公开的所有特征。此外,这些特征组的子组合也可以构成发明。Moreover, not all features of the present disclosure are exhausted in the foregoing summary. Furthermore, sub-combinations of these feature sets may also constitute an invention.
附图说明DRAWINGS
图1是示出第一实施方式中的飞行系统的构成示例的示意图。FIG. 1 is a schematic view showing a configuration example of a flight system in the first embodiment.
图2是示出无人驾驶航空器的具体的外观的一个示例的图。FIG. 2 is a diagram showing an example of a specific appearance of an unmanned aerial vehicle.
图3是示出无人驾驶航空器的硬件构成的一个示例的框图。FIG. 3 is a block diagram showing one example of a hardware configuration of an unmanned aerial vehicle.
图4是示出安装有发送器的便携式终端的外观的一个示例的立体图。4 is a perspective view showing an example of an appearance of a portable terminal mounted with a transmitter.
图5是示出发送器的硬件构成的一个示例的框图。FIG. 5 is a block diagram showing one example of a hardware configuration of a transmitter.
图6是示出便携式终端的硬件构成的一个示例的框图。FIG. 6 is a block diagram showing one example of a hardware configuration of a portable terminal.
图7是对使无人驾驶航空器的朝向发送器的正面方向一致的动作的概要进行说明的图。FIG. 7 is a view for explaining an outline of an operation of causing the unmanned aircraft to face the front direction of the transmitter.
图8是示出使无人驾驶航空器的朝向与发送器的正面方向一致的动作过程的顺序图。Fig. 8 is a sequence diagram showing an operation procedure for causing the orientation of the unmanned aircraft to coincide with the front direction of the transmitter.
图9是示出在正面方向的朝向对准完成后,在从上方观察的情况下用户握持的发送器与无人驾驶航空器的位置关系的图。FIG. 9 is a view showing a positional relationship between a transmitter held by a user and an unmanned aerial vehicle when viewed from above when the alignment in the front direction is completed.
图10是对使第二实施方式中的无人驾驶航空器的朝向与轴线方向一致的动作的概要进行说明的图。FIG. 10 is a view for explaining an outline of an operation of causing the orientation of the unmanned aerial vehicle in the second embodiment to coincide with the axial direction.
图11是示出使无人驾驶航空器的朝向与轴线方向一致的动作过程的顺序图。Fig. 11 is a sequence diagram showing an operation procedure for causing the orientation of the unmanned aircraft to coincide with the axial direction.
图12是示出在轴线方向的朝向对准完成后,在从上方观察的情况下用户握持的发送器与无人驾驶航空器的位置关系的图。Fig. 12 is a view showing the positional relationship between the transmitter and the unmanned aerial vehicle that the user holds when viewed from above when the alignment in the axial direction is completed.
图13是示出使无人驾驶航空器的朝向与轴线方向一致的动作过程的另一示例的顺序图。FIG. 13 is a sequence diagram showing another example of an operation procedure for causing the orientation of the unmanned aircraft to coincide with the axial direction.
具体实施方式detailed description
以下,通过本发明的实施方式来对本公开进行说明,但是以下实施方式并非限制权利要求书所涉及的发明。实施方式中说明的特征的所有组合未必是发明的解决方案所必须的。Hereinafter, the present disclosure will be described by way of embodiments of the present invention, but the following embodiments do not limit the invention according to the claims. All combinations of features described in the embodiments are not necessarily required for the inventive solution.
权利要求书、说明书、说明书附图以及说明书摘要中包含作为著作权所保护对象的事项。任何人只要如专利局的文档或者记录所表示的那样进行这些文件的复制,著作权人就无法异议。但是,在除此以外的情况下,保留一切的著作权。The claims, the description, the drawings, and the abstract of the specification contain matters that are protected by copyright. Anyone who makes copies of these documents as indicated in the documents or records of the Patent Office cannot be objected to by the copyright owner. However, in other cases, all copyrights are reserved.
在以下实施方式中,飞行体以无人驾驶航空器(UAV:Unmanned Aerial Vehicle)为例。无人驾驶航空器包括在空中移动的航空器。在本说明书的附图中,无人驾驶航空器标记为“UAV”。飞行控制指示方法规定了对无人驾驶航空器的飞行的控制进行指示的发送器(例如,比例控制器(proportional controller)、便携式终端)中的动作。飞行控制方法规定了无人驾驶航空器中的动作。此外,记录介质记录有程序(例如,使发送器或无人驾驶航空器执行各种处理的程序)。In the following embodiments, the flying body is exemplified by an unmanned aerial vehicle (UAV). Unmanned aircraft include aircraft that move in the air. In the drawings of the present specification, the unmanned aircraft is labeled "UAV". The flight control instruction method specifies an action in a transmitter (for example, a proportional controller, a portable terminal) that instructs control of the flight of the unmanned aircraft. The flight control method specifies the action in the unmanned aircraft. Further, the recording medium is recorded with a program (for example, a program that causes the transmitter or the unmanned aircraft to perform various processes).
(第一实施方式)(First embodiment)
图1是示出第一实施方式中的飞行系统10的构成示例的示意图。飞行系统10具备无人驾驶航空器100、发送器50和便携式终端80。无人驾驶航空器100、发送器50和便携式终端80互相之间可以通过有线通信或无线通信(例如,无线LAN(Local Area Network))进行通信。FIG. 1 is a schematic diagram showing a configuration example of the flight system 10 in the first embodiment. The flight system 10 includes an unmanned aircraft 100, a transmitter 50, and a portable terminal 80. The unmanned aircraft 100, the transmitter 50, and the portable terminal 80 can communicate with each other by wired communication or wireless communication (for example, a wireless LAN (Local Area Network)).
接着,对无人驾驶航空器100的构成示例进行说明。图2是示出无人驾驶航空器的具体的外观的一个示例的图。在图2中示出了无人驾驶航空器100在移动方向STV0上飞行时的立体图。无人驾驶航空器100为飞行体的一个示例。Next, a configuration example of the unmanned aircraft 100 will be described. FIG. 2 is a diagram showing an example of a specific appearance of an unmanned aerial vehicle. A perspective view of the unmanned aerial vehicle 100 when flying in the moving direction STV0 is shown in FIG. The unmanned aircraft 100 is an example of a flying body.
如图2所示,将与地面平行且沿着移动方向STV0的方向定义为滚转轴(参照x轴)。在此情况下,将与地面相平行且与滚转轴垂直的方向确定为俯仰轴(参照y轴),进而,将与地面垂直且与滚转轴以及俯仰轴垂直的方向确定为偏航轴(参照z轴)。As shown in FIG. 2, a direction parallel to the ground and along the moving direction STV0 is defined as a rolling axis (refer to the x-axis). In this case, the direction parallel to the ground and perpendicular to the roll axis is determined as the pitch axis (refer to the y-axis), and further, the direction perpendicular to the ground and perpendicular to the roll axis and the pitch axis is determined as the yaw axis (refer to Z axis).
无人驾驶航空器100的构成为包括UAV主体102、万向节200、摄像装置220和多个摄像装置230。UAV主体102是无人驾驶航空器100的壳体的一个示例。摄像装置220、230是摄像部的一个示例。The unmanned aerial vehicle 100 is configured to include a UAV main body 102, a universal joint 200, an imaging device 220, and a plurality of imaging devices 230. The UAV main body 102 is one example of a housing of the unmanned aerial vehicle 100. The imaging devices 220 and 230 are an example of an imaging unit.
UAV主体102具备多个旋翼(螺旋浆)。UAV主体102通过控制多个旋翼的旋转而使无人驾驶航空器100飞行。UAV主体102使用例如四个旋翼使无人驾驶航空器100飞行。旋翼的数量并不限于四个。另外,无人驾驶航空器100可以是没有旋翼的固定翼飞机。The UAV main body 102 is provided with a plurality of rotors (spiral). The UAV main body 102 causes the unmanned aerial vehicle 100 to fly by controlling the rotation of a plurality of rotors. The UAV body 102 causes the unmanned aerial vehicle 100 to fly using, for example, four rotors. The number of rotors is not limited to four. Additionally, the unmanned aerial vehicle 100 can be a fixed-wing aircraft without a rotor.
摄像装置220是对包含在期望的摄像范围内的被摄体(例如,作为航拍对象的上空的情况、山川、河流等的景色、地上的建筑物)进行拍摄的拍摄用相机。The imaging device 220 is an imaging camera that captures a subject included in a desired imaging range (for example, a situation as an aerial object, a scene of a mountain, a river, or the like, or a building on the ground).
多个摄像装置230是为了控制无人驾驶航空器100的飞行而对无人驾驶航空器100的周围进行拍摄的传感用相机。两个摄像装置230可以设置于无人驾驶航空器100的机头即正面。进而,其他两个摄像装置230可以设置于无人驾驶航空器100的底面。正面侧的两个摄像装 置230可以成对,起到所谓的立体相机的作用。底面侧的两个摄像装置230也可以成对,起到立体相机的作用。可以基于由多个摄像装置230拍摄到的图像来生成无人驾驶航空器100周围的三维空间数据。另外,无人驾驶航空器100所具备的摄像装置230的数量不限于四个。无人驾驶航空器100具备至少一个摄像装置230即可。无人驾驶航空器100可以在无人驾驶航空器100的机头、机尾、侧面、底面及顶面分别具备至少一个摄像装置230。摄像装置230中可设定的视角可大于摄像装置220中可设定的视角。摄像装置230可以具有单焦点镜头或鱼眼镜头。The plurality of imaging devices 230 are sensing cameras that image the surroundings of the unmanned aircraft 100 in order to control the flight of the unmanned aircraft 100. The two camera devices 230 may be disposed on the front side of the hand of the unmanned aircraft 100. Further, the other two imaging devices 230 may be disposed on the bottom surface of the unmanned aerial vehicle 100. The two camera units 230 on the front side can be paired to function as a so-called stereo camera. The two imaging devices 230 on the bottom side may also be paired to function as a stereo camera. The three-dimensional spatial data around the unmanned aerial vehicle 100 can be generated based on images captured by the plurality of imaging devices 230. Further, the number of imaging devices 230 included in the unmanned aerial vehicle 100 is not limited to four. The unmanned aerial vehicle 100 may include at least one imaging device 230. The unmanned aerial vehicle 100 may be provided with at least one imaging device 230 on the nose, the tail, the side, the bottom surface, and the top surface of the unmanned aircraft 100, respectively. The angle of view that can be set in the camera 230 can be larger than the angle of view that can be set in the camera 220. The camera 230 may have a single focus lens or a fisheye lens.
图3是示出无人驾驶航空器100的硬件构成的一个示例的框图。无人驾驶航空器100的构成为包括UAV控制部110、通信接口150、内存160、存储器170、万向节200、旋翼机构210、摄像装置220、摄像装置230、GPS接收器240、惯性测量装置(IMU:Inertial Measurement Unit)250、磁罗盘260、气压高度计270、超声波传感器280、激光测量仪290。通信接口150是通信部的一个示例。FIG. 3 is a block diagram showing one example of the hardware configuration of the unmanned aircraft 100. The unmanned aerial vehicle 100 is configured to include a UAV control unit 110, a communication interface 150, a memory 160, a memory 170, a universal joint 200, a rotor mechanism 210, an imaging device 220, an imaging device 230, a GPS receiver 240, and an inertial measurement device ( IMU: Inertial Measurement Unit 250, magnetic compass 260, barometric altimeter 270, ultrasonic sensor 280, laser measuring instrument 290. The communication interface 150 is an example of a communication section.
UAV控制部110例如由CPU(Central Processing Unit:中央处理器)、MPU(Micro Processing Unit:微处理器)或DSP(Digital Signal Processor:数字信号处理器)构成。UAV控制部110执行用于总体控制无人驾驶航空器100的各部分的动作的信号处理、与其它各部分之间的数据的输入输出处理、数据的运算处理以及数据的存储处理。The UAV control unit 110 is configured by, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a DSP (Digital Signal Processor). The UAV control unit 110 performs signal processing for overall controlling the operation of each part of the unmanned aircraft 100, input/output processing of data with other parts, arithmetic processing of data, and storage processing of data.
UAV控制部110按照存储于内存160中的程序来控制无人驾驶航空器100的飞行。UAV控制部110按照通过通信接口150从远程的发送器50接收到的指令来控制无人驾驶航空器100的飞行。内存160也可以从无人驾驶航空器100上拆卸下来。The UAV control unit 110 controls the flight of the unmanned aircraft 100 in accordance with a program stored in the memory 160. The UAV control unit 110 controls the flight of the unmanned aerial vehicle 100 in accordance with an instruction received from the remote transmitter 50 through the communication interface 150. The memory 160 can also be detached from the unmanned aerial vehicle 100.
UAV控制部110可以通过对由多个摄像装置230拍摄到的多个图像进行解析,来确定无人驾驶航空器100周围的环境。UAV控制部110基于无人驾驶航空器100周围的环境,例如避开障碍物来控制飞行。The UAV control unit 110 can determine the environment around the unmanned aircraft 100 by analyzing a plurality of images captured by the plurality of imaging devices 230. The UAV control unit 110 controls the flight based on the environment around the unmanned aircraft 100, for example, avoiding an obstacle.
UAV控制部110获取表示当前日期的日期信息。UAV控制部110可以从GPS接收器240获取表示当前日期的日期信息。UAV控制部110可以从搭载于无人驾驶航空器100的计时器(未图示)获取表示当前日期的日期信息。The UAV control unit 110 acquires date information indicating the current date. The UAV control section 110 can acquire date information indicating the current date from the GPS receiver 240. The UAV control unit 110 can acquire date information indicating the current date from a timer (not shown) mounted on the unmanned aircraft 100.
UAV控制部110获取表示无人驾驶航空器100的位置的位置信息。UAV控制部110可以从GPS接收器240获取表示无人驾驶航空器100所在的纬度、经度以及高度的位置信息。UAV控制部110可以分别从GPS接收器240获取表示无人驾驶航空器100所在的纬度以及经度的纬度经度信息、并从气压高度计270获取表示无人驾驶航空器100所在的高度的高度信息,作为位置信息。UAV控制部110可以获取超声波传感器280产生的超声波的放射点与超声波的反射点之间的距离,作为高度信息。The UAV control unit 110 acquires position information indicating the position of the unmanned aircraft 100. The UAV control unit 110 can acquire position information indicating the latitude, longitude, and altitude at which the unmanned aircraft 100 is located from the GPS receiver 240. The UAV control unit 110 can acquire latitude and longitude information indicating the latitude and longitude of the unmanned aircraft 100 from the GPS receiver 240, respectively, and acquire height information indicating the height of the unmanned aircraft 100 from the barometric altimeter 270 as position information. . The UAV control unit 110 can acquire the distance between the radiation point of the ultrasonic wave generated by the ultrasonic sensor 280 and the reflection point of the ultrasonic wave as the height information.
UAV控制部110从磁罗盘260获取表示无人驾驶航空器100的朝向的朝向信息。朝向信息表示例如与无人驾驶航空器100的机头的朝向对应的方位。The UAV control unit 110 acquires orientation information indicating the orientation of the unmanned aircraft 100 from the magnetic compass 260. The orientation information indicates, for example, an orientation corresponding to the orientation of the nose of the unmanned aerial vehicle 100.
UAV控制部110可以获取表示在摄像装置220对应拍摄的摄像范围进行拍摄时无人驾驶航空器100所应该存在的位置的位置信息。UAV控制部110可以从内存160获取表示无人驾驶航空器100所应该存在的位置的位置信息。UAV控制部110可以通过通信接口150从发送器50等的其他装置获取表示无人驾驶航空器100所应该存在的位置的位置信息。UAV控制部110可以参照三维地图数据库,来指定无人驾驶航空器100可存在的位置,以便对应拍摄的摄像范围进行拍摄,并获取该位置作为表示无人驾驶航空器100所应该存在的位置的位置信息。The UAV control unit 110 can acquire position information indicating a position where the unmanned aircraft 100 should exist when the imaging device 220 captures an imaging range corresponding to the imaging. The UAV control unit 110 can acquire position information indicating the position where the unmanned aircraft 100 should exist from the memory 160. The UAV control unit 110 can acquire position information indicating a position where the unmanned aircraft 100 should exist from the other device such as the transmitter 50 via the communication interface 150. The UAV control unit 110 can refer to the three-dimensional map database to specify a position where the unmanned aerial vehicle 100 can exist, to take a picture corresponding to the captured imaging range, and acquire the position as position information indicating a position where the unmanned aircraft 100 should exist. .
UAV控制部110获取表示摄像装置220以及摄像装置230各自的摄像范围的摄像信息。UAV控制部110从摄像装置220以及摄像装置230获取表示摄像装置220以及摄像装置230的视角的视角信息,作为用于指定摄像范围的参数。UAV控制部110获取表示摄像装置220以及摄像装置230的摄像方向的信息,作为用于指定摄像范围的参数。UAV控制部110从万向节200获取表示摄像装置220的姿势状态的姿势信息,作为例如表示摄像装置220的摄像方向的信息。UAV控制部110获取表示无人驾驶航空器100的朝向的信息。表示摄像装置220的姿势状态的信息表示万向节200从俯仰轴和偏航轴的基准旋转角度旋转的角度。UAV控制部110获取表示无人驾驶航空器100所在的位置的位置信息,作为用于指定摄像范围的参数。UAV控制部110可以基于摄像装置220以及摄像装置230的视角和摄像方向、以及无人驾驶航空器100所在的位置,来划定表示摄像装置220拍摄的地理范围的摄像范围并生成表示摄像范围的摄像信息,从而获取摄像信息。The UAV control unit 110 acquires imaging information indicating an imaging range of each of the imaging device 220 and the imaging device 230. The UAV control unit 110 acquires angle of view information indicating the angles of view of the imaging device 220 and the imaging device 230 from the imaging device 220 and the imaging device 230 as parameters for specifying the imaging range. The UAV control unit 110 acquires information indicating the imaging directions of the imaging device 220 and the imaging device 230 as parameters for specifying the imaging range. The UAV control unit 110 acquires posture information indicating the posture state of the imaging device 220 from the universal joint 200 as, for example, information indicating the imaging direction of the imaging device 220. The UAV control unit 110 acquires information indicating the orientation of the unmanned aircraft 100. The information indicating the posture state of the imaging device 220 indicates the angle at which the universal joint 200 is rotated from the reference rotation angles of the pitch axis and the yaw axis. The UAV control unit 110 acquires position information indicating the position where the unmanned aircraft 100 is located as a parameter for specifying the imaging range. The UAV control unit 110 can define an imaging range indicating the geographical range captured by the imaging device 220 based on the angle of view and the imaging direction of the imaging device 220 and the imaging device 230, and the position of the unmanned aerial vehicle 100, and generate an image indicating the imaging range. Information to obtain camera information.
UAV控制部110可以获取表示摄像装置220应该拍摄的摄像范围的摄像信息。UAV控制部110可以从内存160获取摄像装置220应该拍摄的摄像信息。UAV控制部110可以通过通信接口150从发送器50等其他装置获取摄像装置220应该拍摄的摄像信息。The UAV control unit 110 can acquire imaging information indicating an imaging range that the imaging device 220 should capture. The UAV control unit 110 can acquire imaging information that the imaging device 220 should take from the memory 160. The UAV control unit 110 can acquire imaging information that the imaging device 220 should capture from the other device such as the transmitter 50 via the communication interface 150.
UAV控制部110可以获取表示存在于无人驾驶航空器100周围的对象的立体形状(三维形状)的立体信息(三维信息)。对象是例如建筑物、道路、车辆、树木等风景的一部分。立体信息例如是三维空间数据。UAV控制部110可以根据由多个摄像装置230得到的各个图像,生成表示存在于无人驾驶航空器100的周围的对象的立体形状的立体信息,从而获取立体信息。UAV控制部110可以通过参照存储在内存160中的三维地图数据库,来获取表示存在于无人驾驶航空器100的周围的对象的立体形状的立体信息。UAV控制部110可以通过参照由网络上存在的服务器所管理的三维地图数据库,来获取与存在于无人驾驶航空器100的周围的对象的立体形状相关的立体信息。The UAV control unit 110 can acquire stereoscopic information (three-dimensional information) indicating a three-dimensional shape (three-dimensional shape) of an object existing around the unmanned aircraft 100. The object is a part of a landscape such as a building, a road, a vehicle, or a tree. The stereoscopic information is, for example, three-dimensional spatial data. The UAV control unit 110 can generate stereoscopic information indicating a three-dimensional shape of an object existing around the unmanned aircraft 100 based on each image obtained by the plurality of imaging devices 230, thereby acquiring stereoscopic information. The UAV control unit 110 can acquire stereoscopic information indicating a three-dimensional shape of an object existing around the unmanned aircraft 100 by referring to the three-dimensional map database stored in the memory 160. The UAV control unit 110 can acquire stereoscopic information related to the three-dimensional shape of the object existing around the unmanned aircraft 100 by referring to the three-dimensional map database managed by the server existing on the network.
UAV控制部110获取由摄像装置220和摄像装置230拍摄到的图像数据。The UAV control unit 110 acquires image data captured by the imaging device 220 and the imaging device 230.
UAV控制部110控制万向节200、旋翼机构210、摄像装置220和摄像装置230。UAV控制部110通过变更摄像装置220的摄像方向或视角来控制摄像装置220的摄像范围。UAV控制部110通过控制万向节200的旋转机构来控制万向节200所支持的摄像装置220的摄像范围。The UAV control unit 110 controls the universal joint 200, the rotor mechanism 210, the imaging device 220, and the imaging device 230. The UAV control unit 110 controls the imaging range of the imaging device 220 by changing the imaging direction or the angle of view of the imaging device 220. The UAV control unit 110 controls the imaging range of the imaging device 220 supported by the universal joint 200 by controlling the rotation mechanism of the universal joint 200.
本说明书中,摄像范围是指由摄像装置220或摄像装置230所拍摄的地理范围。摄像范围由纬度、经度和高度定义。摄像范围可以是由纬度、经度和高度定义的三维空间数据的范围。摄像范围基于摄像装置220或摄像装置230的视角和摄像方向、以及无人驾驶航空器100所在的位置而指定。摄像装置220以及摄像装置230的摄像方向由摄像装置220以及摄像装置230的设置有摄像镜头的正面所朝的方位和俯角来定义。摄像装置220的摄像方向是由无人驾驶航空器100的机头的方位和摄像装置220相对于万向节200的姿势状态而指定的方向。摄像装置230的摄像方向是由无人驾驶航空器100的机头的方位和设置有摄像装置230的位置而指定的方向。In the present specification, the imaging range refers to a geographical range captured by the imaging device 220 or the imaging device 230. The camera range is defined by latitude, longitude and altitude. The imaging range can be a range of three-dimensional spatial data defined by latitude, longitude, and altitude. The imaging range is specified based on the angle of view and the imaging direction of the imaging device 220 or the imaging device 230, and the position of the unmanned aircraft 100. The imaging directions of the imaging device 220 and the imaging device 230 are defined by the orientation and depression angle of the imaging device 220 and the imaging device 230 on the front side where the imaging lens is provided. The imaging direction of the imaging device 220 is a direction specified by the orientation of the head of the unmanned aerial vehicle 100 and the posture state of the imaging device 220 with respect to the universal joint 200. The imaging direction of the imaging device 230 is a direction specified by the orientation of the head of the unmanned aircraft 100 and the position where the imaging device 230 is provided.
UAV控制部110通过控制旋翼机构210来控制无人驾驶航空器100的飞行。即,UAV控制部110通过控制旋翼机构210来对包括无人驾驶航空器100的纬度、经度以及高度的位置进行控制。UAV控制部110可以通过控制无人驾驶航空器100的飞行来控制摄像装置220以及摄像装置230的摄像范围。UAV控制部110可以通过控制摄像装置220所具备的变焦镜头来控制摄像装置220的视角。UAV控制部110可以利用摄像装置220的数字变焦功能,通过数字变焦来控制摄像装置220的视角。The UAV control unit 110 controls the flight of the unmanned aircraft 100 by controlling the rotor mechanism 210. That is, the UAV control unit 110 controls the position including the latitude, longitude, and altitude of the unmanned aircraft 100 by controlling the rotor mechanism 210. The UAV control unit 110 can control the imaging ranges of the imaging device 220 and the imaging device 230 by controlling the flight of the unmanned aircraft 100. The UAV control unit 110 can control the angle of view of the imaging device 220 by controlling the zoom lens provided in the imaging device 220. The UAV control unit 110 can control the angle of view of the imaging device 220 by digital zoom using the digital zoom function of the imaging device 220.
在摄像装置220固定于无人驾驶航空器100,不移动摄像装置220的情况下,UAV控制部110可以通过使无人驾驶航空器100在特定的日期移动到特定的位置,来使摄像装置220在期望的环境下拍摄期望的摄像范围。或者在摄像装置220没有变焦功能,无法改变摄像装置220视角的情况下,UAV控制部110也可以通过使无人驾驶航空器100在特定的日期移动到特定的位置,来使摄像装置220在期望的环境下拍摄期望的摄像范围。When the imaging device 220 is fixed to the unmanned aircraft 100 and the imaging device 220 is not moved, the UAV control unit 110 can cause the imaging device 220 to be desired by moving the unmanned aircraft 100 to a specific position on a specific date. The desired imaging range is taken in the environment. Alternatively, when the imaging device 220 has no zoom function and cannot change the angle of view of the imaging device 220, the UAV control unit 110 may cause the imaging device 220 to be desired by moving the unmanned aircraft 100 to a specific position on a specific date. The desired imaging range is taken under the environment.
通信接口150与发送器50进行通信。通信接口150从远程的发送器50接收对UAV控制部110的各种指令、信息。 Communication interface 150 is in communication with transmitter 50. The communication interface 150 receives various instructions and information from the remote transmitter 50 to the UAV control unit 110.
内存160存储UAV控制部110对万向节200、旋翼机构210、摄像装置220、摄像装置230、GPS接收器240、惯性测量装置250、磁罗盘260、气压高度计270、超声波传感器280以及激光测量仪290进行控制所需的程序等。内存160可以是计算机可读记录介质,可以包括SRAM(Static Random Access Memory:静态随机存取存储器)、DRAM(Dynamic Random Access Memory:动态随机存取存储器)、EPROM(Erasable Programmable Read Only Memory: 可擦除可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory:电可擦除可编程只读存储器)以及USB存储器等闪存中的至少一个。内存160可以设置在UAV主体102的内部。其可以设置成可从UAV主体102上拆卸下来。The memory 160 stores the UAV control unit 110 for the universal joint 200, the rotor mechanism 210, the imaging device 220, the imaging device 230, the GPS receiver 240, the inertial measurement device 250, the magnetic compass 260, the barometric altimeter 270, the ultrasonic sensor 280, and the laser measuring instrument. 290 Programs required for control, etc. The memory 160 may be a computer readable recording medium, and may include an SRAM (Static Random Access Memory), a DRAM (Dynamic Random Access Memory), and an EPROM (Erasable Programmable Read Only Memory: Erasable). At least one of a flash memory such as a programmable read only memory, an EEPROM (Electrically Erasable Programmable Read-Only Memory), and a USB memory. The memory 160 can be disposed inside the UAV body 102. It can be configured to be detachable from the UAV body 102.
万向节200以至少一个轴为中心可旋转地支撑摄像装置220。万向节200可以以偏航轴、俯仰轴以及滚转轴为中心可旋转地支持摄像装置220。万向节200可以通过使摄像装置220以偏航轴、俯仰轴以及滚转轴中的至少一个为中心旋转,来变更摄像装置220的摄像方向。The universal joint 200 rotatably supports the image pickup device 220 around at least one of the axes. The universal joint 200 can rotatably support the image pickup device 220 centering on the yaw axis, the pitch axis, and the roll axis. The universal joint 200 can change the imaging direction of the imaging device 220 by rotating the imaging device 220 around at least one of the yaw axis, the pitch axis, and the roll axis.
旋翼机构210具有:多个旋翼211、使多个旋翼211旋转的多个驱动电机212、以及测量用于驱动驱动电机212的驱动电流的电流值(实测值)的电流传感器213。驱动电流被供给至驱动电机212。The rotor mechanism 210 includes a plurality of rotors 211, a plurality of drive motors 212 that rotate the plurality of rotors 211, and a current sensor 213 that measures a current value (actual measurement value) of a drive current for driving the drive motor 212. The drive current is supplied to the drive motor 212.
摄像装置220对期望的摄像范围的被摄体进行拍摄并生成摄像图像的数据。通过摄像装置220的拍摄而得到的图像数据保存于摄像装置220所具有的内存、或内存160中。The imaging device 220 captures a subject of a desired imaging range and generates data of the captured image. The image data obtained by the imaging by the imaging device 220 is stored in a memory of the imaging device 220 or in the memory 160.
摄像装置230对无人驾驶航空器100的周围进行拍摄并生成摄像图像的数据。摄像装置230的图像数据存储于内存160中。The imaging device 230 captures the surroundings of the unmanned aircraft 100 and generates data of the captured image. The image data of the imaging device 230 is stored in the memory 160.
GPS接收器240接收表示从多个导航卫星(即GPS卫星)发送的时间以及各GPS卫星的位置(坐标)的多个信号。GPS接收器240根据接收到的多个信号,计算出GPS接收器240的位置(即无人驾驶航空器100的位置)。GPS接收器240将无人驾驶航空器100的位置信息输出到UAV控制部110。另外,可以由UAV控制部110代替GPS接收器240来进行GPS接收器240的位置信息的计算。在此情况下,在UAV控制部110中输入有GPS接收器240所接收到的多个信号中包含的表示时间以及各GPS卫星的位置的信息。The GPS receiver 240 receives a plurality of signals indicating the time transmitted from a plurality of navigation satellites (i.e., GPS satellites) and the position (coordinates) of each GPS satellite. The GPS receiver 240 calculates the position of the GPS receiver 240 (i.e., the position of the unmanned aircraft 100) based on the received plurality of signals. The GPS receiver 240 outputs the position information of the unmanned aircraft 100 to the UAV control unit 110. In addition, the calculation of the position information of the GPS receiver 240 may be performed by the UAV control unit 110 instead of the GPS receiver 240. In this case, the UAV control unit 110 inputs information indicating the time and the position of each GPS satellite included in the plurality of signals received by the GPS receiver 240.
惯性测量装置250检测无人驾驶航空器100的姿势,并将检测结果输出到UAV控制部110。惯性测量装置IMU 250检测无人驾驶航空器100的前后、左右和上下的3轴方向的加速度以及俯仰轴、滚转轴和偏航轴的3轴方向的角速度,作为无人驾驶航空器100的姿势。The inertial measurement device 250 detects the posture of the unmanned aircraft 100 and outputs the detection result to the UAV control unit 110. The inertial measurement device IMU 250 detects the acceleration in the three-axis direction of the front, rear, left and right, and up and down of the unmanned aircraft 100 and the angular velocity in the three-axis directions of the pitch axis, the roll axis, and the yaw axis as the posture of the unmanned aircraft 100.
磁罗盘260检测无人驾驶航空器100的机头的方位,并将检测结果输出到UAV控制部110。The magnetic compass 260 detects the orientation of the nose of the unmanned aircraft 100, and outputs the detection result to the UAV control unit 110.
气压高度计270检测无人驾驶航空器100的飞行高度,并将检测结果输出到UAV控制部110。The barometric altimeter 270 detects the flying height of the unmanned aircraft 100 and outputs the detection result to the UAV control section 110.
超声波传感器280发射超声波,检测地面、物体反射的超声波,并将检测结果输出到UAV控制部110。检测结果可以示出从无人驾驶航空器100到地面的距离,即高度。检测结果可以表示从无人驾驶航空器100到物体的距离。The ultrasonic sensor 280 emits ultrasonic waves, detects ultrasonic waves reflected from the ground and the objects, and outputs the detection results to the UAV control unit 110. The detection result may show the distance from the unmanned aircraft 100 to the ground, that is, the altitude. The detection result may indicate the distance from the unmanned aircraft 100 to the object.
激光测量仪290将激光照射在物体上,接收物体反射的反射光,并通过反射光来测量无人驾驶航空器100与物体之间的距离。作为基于激光的距离测量方法的一个示例,可以为飞 行时间法。The laser measuring instrument 290 irradiates the laser light onto the object, receives the reflected light reflected by the object, and measures the distance between the unmanned aircraft 100 and the object by the reflected light. As an example of the laser-based distance measuring method, it may be a time-of-flight method.
接着,对发送器50以及便携式终端80的构成示例进行说明。图4是示出安装有发送器50的便携式终端80的外观的一个示例的立体图。在图4中,示出了智能手机80S,作为便携式终端80的一个示例。相对于发送器50的上下、前后、左右的方向分别按照图4所示的箭头的方向。发送器50是在例如使用发送器50的人(以下称为“操作者”)用两手握持的状态下进行使用。发送器50是发送器的一个示例。Next, a configuration example of the transmitter 50 and the portable terminal 80 will be described. FIG. 4 is a perspective view showing one example of the appearance of the portable terminal 80 on which the transmitter 50 is mounted. In FIG. 4, a smartphone 80S is shown as an example of the portable terminal 80. The directions of the upper and lower, front and rear, and left and right directions of the transmitter 50 are respectively in accordance with the direction of the arrow shown in FIG. The transmitter 50 is used in a state in which, for example, a person who uses the transmitter 50 (hereinafter referred to as an "operator") holds with both hands. Transmitter 50 is an example of a transmitter.
发送器50具有树脂材质的壳体50B,其具有例如大致正方形的底面,且呈高度比底面的一边短的大致长方体(换言之即大致箱形)的形状。在发送器50的壳体表面的大致中央突出设置有左控制杆53L和右控制杆53R。The transmitter 50 has a resin case 50B having, for example, a substantially square bottom surface and a substantially rectangular parallelepiped shape (in other words, a substantially box shape) having a height shorter than one side of the bottom surface. A left control lever 53L and a right control lever 53R are protruded from substantially the center of the housing surface of the transmitter 50.
左控制杆53L、右控制杆53R分别用于操作者对无人驾驶航空器100的移动进行远程控制(例如,无人驾驶航空器100的前后移动、左右移动、上下移动、朝向变更)的操作(移动控制操作)中。在图4中,左控制杆53L和右控制杆53R示出的是未由操作者的双手分别施加外力的初始状态的位置。左控制杆53L和右控制杆53R在由操作者施加的外力被释放后,自动地恢复到预定位置(例如图4所示的初始位置)。The left control lever 53L and the right control lever 53R are respectively used for an operation of the operator to remotely control the movement of the unmanned aircraft 100 (for example, the forward and backward movement, the left and right movement, the up and down movement, and the orientation change of the unmanned aircraft 100) (moving) Control operation). In FIG. 4, the left control lever 53L and the right control lever 53R show positions of an initial state in which an external force is not separately applied by the operator's hands. The left lever 53L and the right lever 53R are automatically restored to a predetermined position (for example, the initial position shown in FIG. 4) after the external force applied by the operator is released.
在左控制杆53L的近前侧(换言之即操作者侧)配置有发送器50的电源按钮B1。当操作者按一次电源按钮B1时,则例如内置于发送器50的电池(未图示)的容量的余量显示在电池余量显示部L2中。当操作者再次按下电源按钮B1时,则例如发送器50的电源接通,发送器50的各部分被供给电源并能够使用。The power button B1 of the transmitter 50 is disposed on the near side (in other words, the operator side) of the left control lever 53L. When the operator presses the power button B1 once, for example, the remaining amount of the capacity of the battery (not shown) built in the transmitter 50 is displayed on the remaining battery amount display unit L2. When the operator presses the power button B1 again, for example, the power of the transmitter 50 is turned on, and each part of the transmitter 50 is supplied with power and can be used.
在右控制杆53R的近前侧(换言之即操作者侧)配置有RTH(Return To Home)按钮B2。当操作者按下RTH按钮B2时,则发送器50向无人驾驶航空器100发送用于使其自动恢复到预定位置的信号。由此,发送器50能够使无人驾驶航空器100自动返回到预定位置(例如无人驾驶航空器100所存储的起飞位置)。在例如在室外的利用无人驾驶航空器100的航拍中操作者看不到无人驾驶航空器100的机体的情况下,或者遭遇电波干扰或无法预期的故障而不能操作等情况下,能够利用RTH按钮B2。An RTH (Return To Home) button B2 is disposed on the near side (in other words, the operator side) of the right lever 53R. When the operator presses the RTH button B2, the transmitter 50 transmits a signal to the unmanned aircraft 100 for automatically returning it to the predetermined position. Thus, the transmitter 50 can cause the unmanned aerial vehicle 100 to automatically return to a predetermined position (eg, the takeoff position stored by the unmanned aerial vehicle 100). The RTH button can be utilized in the case where the operator does not see the body of the unmanned aircraft 100 in the aerial photography using the unmanned aerial vehicle 100 outdoors, or if it is unable to operate due to radio wave interference or unexpected failure. B2.
在电源按钮B1以及RTH按钮B2的近前侧(换言之即操作者侧)配置有远程状态显示部L1以及电池余量显示部L2。远程状态显示部L1例如由LED(Light Emission Diode)构成,显示发送器50与无人驾驶航空器100的无线连接状态。电池余量显示部L2例如由LED构成,显示内置于发送器50的电池(未图示)的容量的余量。The remote state display unit L1 and the battery remaining amount display unit L2 are disposed on the near side (in other words, the operator side) of the power button B1 and the RTH button B2. The remote state display unit L1 is configured by, for example, an LED (Light Emission Diode), and displays the wireless connection state between the transmitter 50 and the unmanned aircraft 100. The battery remaining amount display unit L2 is configured by, for example, an LED, and displays the remaining capacity of the battery (not shown) built in the transmitter 50.
自左控制杆53L和右控制杆53R的后侧且发送器50的壳体50B的后方侧面突出设置有两个天线AN1、AN2。天线AN1、AN2基于操作者的左控制杆53L和右控制杆53R的操作,将由发送器控制部61生成的信号(即,用于控制无人驾驶航空器100的移动的信号)发送到 无人驾驶航空器100。该信号是由发送器50输入的操作输入信号之一。天线AN1、AN2能够覆盖例如2km的收发范围。此外,在从无人驾驶航空器100发送了由同发送器50无线连接中的无人驾驶航空器100所具有的摄像装置220拍摄到的图像、或者无人驾驶航空器100获取到的各种数据时,天线AN1、AN2能够接收这些图像或各种数据。Two antennas AN1, AN2 are protruded from the rear side of the left control lever 53L and the right control lever 53R and the rear side surface of the housing 50B of the transmitter 50. The antennas AN1, AN2 transmit signals generated by the transmitter control section 61 (i.e., signals for controlling the movement of the unmanned aircraft 100) to the driverless based on the operations of the operator's left and right levers 53L, 53R. Aircraft 100. This signal is one of the operational input signals input by the transmitter 50. The antennas AN1, AN2 can cover, for example, a transmission range of 2 km. Further, when the image captured by the imaging device 220 included in the unmanned aircraft 100 wirelessly connected to the transmitter 50 or the various data acquired by the unmanned aircraft 100 is transmitted from the unmanned aircraft 100, The antennas AN1, AN2 are capable of receiving these images or various data.
在图4中,发送器50虽然不具备显示部,但也可以具备显示部。In FIG. 4, the transmitter 50 does not include a display unit, but may include a display unit.
便携式终端80可以装载安装在支架HLD上。支架HLD可以附接安装在发送器50上。由此,便携式终端80通过支架HLD安装在发送器50上。便携式终端80和发送器50可以通过有线电缆(例如USB电缆)连接。也可以不将便携式终端80安装在发送器50上,而是将便携式终端80和发送器50分别独立设置。The portable terminal 80 can be loaded and mounted on the bracket HLD. The bracket HLD can be attached and mounted on the transmitter 50. Thereby, the portable terminal 80 is mounted on the transmitter 50 via the bracket HLD. The portable terminal 80 and the transmitter 50 can be connected by a wired cable such as a USB cable. It is also possible not to install the portable terminal 80 on the transmitter 50, but to separately set the portable terminal 80 and the transmitter 50.
图5是示出发送器50的硬件构成的一个示例的框图。发送器50的构成为包括左控制杆53L、右控制杆53R、发送器控制部61、无线通信部63、接口部65、磁罗盘66、电源按钮B1、RTH按钮B2、朝向对准按钮B3、操作部组OPS、振动器67、GPS接收器68、远程状态显示部L1、电池余量显示部L2、显示部DP。FIG. 5 is a block diagram showing one example of the hardware configuration of the transmitter 50. The transmitter 50 is configured to include a left control lever 53L, a right control lever 53R, a transmitter control unit 61, a wireless communication unit 63, an interface unit 65, a magnetic compass 66, a power button B1, an RTH button B2, an orientation button B3, The operation unit group OPS, the vibrator 67, the GPS receiver 68, the remote state display unit L1, the battery remaining amount display unit L2, and the display unit DP.
左控制杆53L例如用于通过操作者的左手远程控制无人驾驶航空器100的移动的操作。右控制杆53R例如用于通过操作者的右手远程控制无人驾驶航空器100的移动的操作。无人驾驶航空器100的移动为例如前进的方向的移动、后退的方向的移动、左方向的移动、右方向的移动、上升的方向的移动、下降方向的移动、向左方向旋转无人驾驶航空器100的移动、向右方向旋转无人驾驶航空器100的移动中的任一个或它们的组合,以下相同。The left control lever 53L is used, for example, for an operation of remotely controlling the movement of the unmanned aircraft 100 by the operator's left hand. The right lever 53R is used, for example, for an operation of remotely controlling the movement of the unmanned aircraft 100 by the right hand of the operator. The movement of the unmanned aircraft 100 is, for example, a movement in a forward direction, a movement in a backward direction, a movement in the left direction, a movement in the right direction, a movement in a rising direction, a movement in a descending direction, and a rotation in the left direction of an unmanned aircraft. Any one of the movement of 100 and the movement of the unmanned aircraft 100 in the right direction or a combination thereof is the same as the following.
可以例如使用左控制杆53L进行前后移动和左右旋转的移动操作,使用右控制杆53R进行上升下降和左右移动的移动操作(操作模式1)。另外,也可以例如使用左控制杆53L进行上升下降和左右旋转的移动操作,使用右控制杆53R进行前后移动和左右移动的移动操作(操作模式2)。操作模式可以由发送器控制部61设定,设定信息保存在内存(未图示)中,也可以预先设定任意一个操作模式,设定信息保存在内存(未图示)中。For example, the left-hand lever 53L can be used to perform the movement operation of the forward-backward movement and the right-and-left rotation, and the right control lever 53R can be used to perform the movement operation of the ascending and descending and the left-right movement (operation mode 1). Further, for example, the left control lever 53L may be used to perform a movement operation of the ascending and descending and the right and left rotation, and the right control lever 53R may be used to perform the movement operation of the forward and backward movement and the right and left movement (operation mode 2). The operation mode can be set by the transmitter control unit 61, the setting information is stored in a memory (not shown), or any one of the operation modes can be set in advance, and the setting information is stored in a memory (not shown).
当按一次电源按钮B1时,表示被按下一次的信号被输入到发送器控制部61。发送器控制部61根据该信号将内置于发送器50的电池(未图示)的容量的余量显示于电池余量显示部L2。由此,操作者能够简单地确认内置于发送器50的电池的容量的余量。另外,当两次按下电源按钮B1时,表示被按下两次的信号则被传递给发送器控制部61。发送器控制部61根据该信号,指示内置于发送器50的电池(未图示)向发送器50内的各部分供给电源。由此,操作者接通发送器50的电源,能够简单地开始发送器50的使用。When the power button B1 is pressed once, a signal indicating that it has been pressed once is input to the transmitter control unit 61. The transmitter control unit 61 displays the remaining amount of the capacity of the battery (not shown) built in the transmitter 50 on the remaining battery amount display unit L2 based on the signal. Thereby, the operator can easily check the remaining amount of the capacity of the battery built in the transmitter 50. Further, when the power button B1 is pressed twice, a signal indicating that it has been pressed twice is transmitted to the transmitter control unit 61. The transmitter control unit 61 instructs a battery (not shown) built in the transmitter 50 to supply power to each part in the transmitter 50 based on the signal. Thereby, the operator turns on the power of the transmitter 50, and the use of the transmitter 50 can be easily started.
当按下RTH按钮B2时,表示被按下的信号则被输入到发送器控制部61。发送器控制部61按照该信号生成用于使无人驾驶航空器100自动恢复到预定位置(例如无人驾驶航空器100 的起飞位置)的信号,并通过无线通信部63以及天线AN1、AN2发送到无人驾驶航空器100。由此,操作者能够通过对发送器50的简单的操作,使无人驾驶航空器100自动地恢复(返回)到预定位置。When the RTH button B2 is pressed, a signal indicating that it is pressed is input to the transmitter control unit 61. The transmitter control unit 61 generates a signal for automatically returning the unmanned aircraft 100 to a predetermined position (for example, a take-off position of the unmanned aircraft 100) in accordance with the signal, and transmits it to the wireless communication unit 63 and the antennas AN1 and AN2. The person drives the aircraft 100. Thereby, the operator can automatically return (return) the unmanned aircraft 100 to the predetermined position by a simple operation of the transmitter 50.
当按下朝向对准按钮B3时,表示被按下的信号则被输入到发送器控制部61。When the orientation toward the alignment button B3 is pressed, a signal indicating that the signal is pressed is input to the transmitter control portion 61.
发送器控制部61根据该信号获取由磁罗盘66检测到的方位的信息,以便使无人驾驶航空器100的正面方向与发送器50的正面方向一致。发送器控制部61将获取的方位的信息通过无线通信部63以及天线AN1、AN2发送给无人驾驶航空器100。The transmitter control unit 61 acquires information on the orientation detected by the magnetic compass 66 based on the signal so that the front direction of the unmanned aircraft 100 coincides with the front direction of the transmitter 50. The transmitter control unit 61 transmits the acquired information of the orientation to the unmanned aircraft 100 via the wireless communication unit 63 and the antennas AN1 and AN2.
操作部组OPS由多个操作部OP(例如操作部OP1、…、操作部OPn)(n:大于等于2的整数)构成。操作部组OPS由除了图3所示的左控制杆53L、右控制杆53R、电源按钮B1以及RTH按钮B2以外的其他操作部(例如,用于辅助发送器50对于无人驾驶航空器100的远程控制的各种操作部)构成。这里所说的各种操作部相当于例如对使用无人驾驶航空器100的摄像装置220的静态图像拍摄进行指示的按钮、对使用无人驾驶航空器100的摄像装置220的动态图像录像的开始以及结束进行指示的按钮、调整无人驾驶航空器100的万向节200(参照图2)的纵摇方向的倾斜度的拨盘、切换无人驾驶航空器100的飞行模式的按钮、进行无人驾驶航空器100的摄像装置220的设定的拨盘。The operation unit group OPS is composed of a plurality of operation units OP (for example, operation units OP1, . . . , operation unit OPn) (n: an integer of 2 or more). The operation unit group OPS is operated by an operation unit other than the left control lever 53L, the right control lever 53R, the power button B1, and the RTH button B2 shown in FIG. 3 (for example, for assisting the transmitter 50 to remotely drive the unmanned aircraft 100). The various operating units of the control are configured. The various operation units referred to here correspond to, for example, a button for instructing still image shooting using the image pickup device 220 of the unmanned aircraft 100, and a start and end of moving image recording of the image pickup device 220 using the unmanned aircraft 100. A button for instructing, a dial for adjusting the inclination of the universal joint 200 (see FIG. 2) of the unmanned aircraft 100, a button for switching the flight mode of the unmanned aircraft 100, and the unmanned aircraft 100 are provided. The set dial of the camera 220.
振动器67按照来自发送器控制部61的指示进行振动,向用户hm通知例如无人驾驶航空器100的旋转完成等信息。The vibrator 67 vibrates in accordance with an instruction from the transmitter control unit 61, and notifies the user hm of information such as completion of rotation of the unmanned aircraft 100.
GPS接收器68接收从多个导航卫星(即GPS卫星)发送的表示时间以及各GPS卫星的位置(坐标)的多个信号。GPS接收器68基于所接收到的多个信号来计算出GPS接收器68的位置(即,发送器50的位置)。GPS接收器68将无人驾驶航空器100的位置信息输出到发送器控制部61。The GPS receiver 68 receives a plurality of signals indicating time and position (coordinates) of each GPS satellite transmitted from a plurality of navigation satellites (i.e., GPS satellites). The GPS receiver 68 calculates the position of the GPS receiver 68 (i.e., the position of the transmitter 50) based on the received plurality of signals. The GPS receiver 68 outputs the position information of the unmanned aircraft 100 to the transmitter control unit 61.
由于远程状态显示部L1以及电池余量显示部L2参照图4进行了说明,故此处不再赘述。Since the remote state display unit L1 and the battery remaining amount display unit L2 have been described with reference to FIG. 4, they will not be described again.
发送器控制部61由处理器(例如CPU、MPU或DSP)构成。发送器控制部61执行用于总体控制发送器50各部分的动作的信号处理、与其它各部分之间的数据的输入输出处理、数据的运算处理以及数据的存储处理。发送器控制部61为处理部的一个示例。The transmitter control unit 61 is constituted by a processor (for example, a CPU, an MPU, or a DSP). The transmitter control unit 61 performs signal processing for overall controlling the operation of each part of the transmitter 50, input/output processing of data with other parts, arithmetic processing of data, and storage processing of data. The transmitter control unit 61 is an example of a processing unit.
发送器控制部61可以通过无线通信部63获取无人驾驶航空器100的摄像装置220拍摄到的摄像图像的数据并保存到内存(未图示),并通过接口部65输出到便携式终端80。换言之,发送器控制部61可以将由无人驾驶航空器100的摄像装置220拍摄到的航拍图像的数据显示在便携式终端80上。由此,由无人驾驶航空器100的摄像装置220拍摄到的航拍图像能够在便携式终端80中显示。The transmitter control unit 61 can acquire the data of the captured image captured by the imaging device 220 of the unmanned aircraft 100 by the wireless communication unit 63 and store the data in a memory (not shown), and output it to the portable terminal 80 via the interface unit 65. In other words, the transmitter control unit 61 can display the data of the aerial image captured by the imaging device 220 of the unmanned aerial vehicle 100 on the portable terminal 80. Thereby, the aerial image captured by the imaging device 220 of the unmanned aerial vehicle 100 can be displayed on the portable terminal 80.
发送器控制部61可以通过操作者对左控制杆53L和右控制杆53R的操作,生成用于对 通过该操作指定的无人驾驶航空器100的飞行进行控制的指示信号。发送器控制部61可以通过无线通信部63以及天线AN1、AN2向无人驾驶航空器100发送此指示信号来远程控制无人驾驶航空器100。由此,发送器50能够远程控制无人驾驶航空器100的移动。The transmitter control unit 61 can generate an instruction signal for controlling the flight of the unmanned aircraft 100 designated by the operation by the operation of the left control lever 53L and the right control lever 53R by the operator. The transmitter control unit 61 can remotely control the unmanned aircraft 100 by transmitting the instruction signal to the unmanned aircraft 100 via the wireless communication unit 63 and the antennas AN1 and AN2. Thereby, the transmitter 50 can remotely control the movement of the unmanned aircraft 100.
无线通信部63与两个天线AN1、AN2连接。无线通信部63通过两个天线AN1、AN2,与无人驾驶航空器100之间执行使用预定的无线通信方式(例如Wifi(注册商标))的信息、数据的收发。The wireless communication unit 63 is connected to the two antennas AN1 and AN2. The wireless communication unit 63 performs transmission and reception of information and data using a predetermined wireless communication method (for example, Wifi (registered trademark)) with the unmanned aircraft 100 via the two antennas AN1 and AN2.
接口部65执行发送器50与便携式终端80之间的信息、数据的输入输出。接口部65可以是例如设置在发送器50上的USB端口(未图示)。接口部65也可以是USB端口以外的接口。The interface unit 65 performs input and output of information and data between the transmitter 50 and the portable terminal 80. The interface unit 65 may be, for example, a USB port (not shown) provided on the transmitter 50. The interface unit 65 may be an interface other than the USB port.
磁罗盘66检测发送器50所朝向的方位,并将检测结果输出到发送器控制部61。发送器50所朝向的方位例如可以是左控制杆53L和右控制杆53R的前方操作方向、在天线AN1、AN2伸出的情况下天线AN1、AN2延伸的方向。The magnetic compass 66 detects the orientation in which the transmitter 50 is oriented, and outputs the detection result to the transmitter control unit 61. The orientation in which the transmitter 50 is oriented may be, for example, a forward operation direction of the left control lever 53L and the right control lever 53R, and a direction in which the antennas AN1, AN2 extend when the antennas AN1, AN2 are extended.
图6是示出便携式终端80的硬件构成的一个示例的框图。便携式终端80可以具备终端控制部81、接口部82、操作部83、无线通信部85、内存87以及显示部88。便携式终端80是显示装置的一个示例。FIG. 6 is a block diagram showing one example of the hardware configuration of the portable terminal 80. The mobile terminal 80 may include a terminal control unit 81, an interface unit 82, an operation unit 83, a wireless communication unit 85, a memory 87, and a display unit 88. The portable terminal 80 is an example of a display device.
终端控制部81例如采用CPU、MPU或DSP构成。终端控制部81执行用于总体控制便携式终端80各部分的动作的信号处理、与其它各部分之间的数据的输入输出处理、数据的运算处理以及数据的存储处理。The terminal control unit 81 is configured by, for example, a CPU, an MPU, or a DSP. The terminal control unit 81 performs signal processing for overall controlling the operation of each part of the portable terminal 80, input/output processing of data with other parts, arithmetic processing of data, and storage processing of data.
终端控制部81可以通过无线通信部85获取来自无人驾驶航空器100的数据、信息。终端控制部81可以通过接口部82获取来自发送器50的数据、信息。终端控制部81可以获取通过操作部83输入的数据、信息。终端控制部81可以获取保存在内存87中的数据、信息。终端控制部81可以将数据、信息发送至显示部88,将基于此数据、信息的显示信息显示在显示部88上。The terminal control unit 81 can acquire data and information from the unmanned aircraft 100 via the wireless communication unit 85. The terminal control unit 81 can acquire data and information from the transmitter 50 via the interface unit 82. The terminal control unit 81 can acquire data and information input through the operation unit 83. The terminal control unit 81 can acquire data and information stored in the memory 87. The terminal control unit 81 can transmit data and information to the display unit 88, and display display information based on the data and information on the display unit 88.
终端控制部81可以执行用于对无人驾驶航空器100的控制进行指示的应用程序。终端控制部81可以生成应用程序中使用的各种数据。The terminal control section 81 can execute an application for instructing control of the unmanned aircraft 100. The terminal control unit 81 can generate various data used in the application.
接口部82执行发送器50与便携式终端80之间的信息、数据的输入输出。接口部82例如可以是设置于便携式终端80的USB连接器(未图示)。接口部65也可以是USB连接器以外的接口。The interface unit 82 performs input and output of information and data between the transmitter 50 and the portable terminal 80. The interface unit 82 may be, for example, a USB connector (not shown) provided in the portable terminal 80. The interface unit 65 may be an interface other than the USB connector.
操作部83接受由便携式终端80的操作者输入的数据、信息。操作部83可以包括按钮、按键、触控显示屏、话筒等。这里主要示出了操作部83和显示部88由触控显示屏构成。在此情况下,操作部83可以接受触控操作、点击操作、拖动操作等。The operation unit 83 accepts data and information input by the operator of the portable terminal 80. The operation unit 83 may include a button, a button, a touch display screen, a microphone, and the like. Here, it is mainly shown that the operation portion 83 and the display portion 88 are constituted by a touch display screen. In this case, the operation unit 83 can accept a touch operation, a click operation, a drag operation, and the like.
无线通信部85通过各种无线通信方式与无人驾驶航空器100之间进行通信。该无线通信方式例如可以包括通过无线LAN、Bluetooth(注册商标)、近距离无线通信、或公共无线电线路络进行的通信。The wireless communication unit 85 communicates with the unmanned aircraft 100 by various wireless communication methods. The wireless communication method may include, for example, communication via a wireless LAN, Bluetooth (registered trademark), short-range wireless communication, or a public radio network.
内存87例如可以具有,保存有对便携式终端80的动作进行规定的程序、设定值的数据的ROM、以及暂时保存终端控制部81进行处理时所使用的各种信息、数据的RAM。内存87可以包括ROM和RAM以外的内存。内存87可以设置在便携式终端80的内部。内存87可以设置成可从便携式终端80上拆卸下来。程序可以包括应用程序。The memory 87 may have, for example, a ROM that stores data specifying a program and a setting value for the operation of the mobile terminal 80, and a RAM that temporarily stores various information and data used when the terminal control unit 81 performs processing. The memory 87 may include memory other than the ROM and the RAM. The memory 87 can be disposed inside the portable terminal 80. The memory 87 can be set to be detachable from the portable terminal 80. The program can include an application.
显示部88例如由LCD(Liquid Crystal Display:液晶显示器)构成,显示从终端控制部81输出的各种信息、数据。显示部88可以显示由无人驾驶航空器100的摄像装置220拍摄到的航拍图像的数据。The display unit 88 is configured by, for example, an LCD (Liquid Crystal Display), and displays various kinds of information and data output from the terminal control unit 81. The display unit 88 can display data of an aerial image captured by the imaging device 220 of the unmanned aerial vehicle 100.
此外,飞行系统10也可以不具备便携式终端80。另外,发送器50也可以具有便携式终端80的功能。Further, the flight system 10 may not include the portable terminal 80. In addition, the transmitter 50 may also have the function of the portable terminal 80.
示出具有上述结构的飞行系统10的动作。在此,无人驾驶航空器100的正面方向是无人驾驶航空器100通过发送器50的例如左控制杆53L的前后操作而向前移动的方向。另外,无人驾驶航空器100的正面方向可以作为搭载于无人驾驶航空器100的摄像装置220的基准的摄像方向。发送器50的正面方向是将发送器50的例如左控制杆53L向前推倒操作的方向。另外,发送器50的正面方向可以将安装有天线AN1、AN2的方向、或者在从天线发射的电波具有指向性的情况下其指向方向的中心方向作为正面方向。The action of the flight system 10 having the above structure is shown. Here, the front direction of the unmanned aerial vehicle 100 is a direction in which the unmanned aircraft 100 moves forward by the forward and backward operations of the transmitter 50, for example, the left control lever 53L. Further, the front direction of the unmanned aircraft 100 can be used as the imaging direction of the reference of the imaging device 220 mounted on the unmanned aircraft 100. The front direction of the transmitter 50 is a direction in which the left control lever 53L of the transmitter 50 is pushed forward. Further, the front direction of the transmitter 50 may be the direction in which the antennas AN1 and AN2 are mounted, or the direction in which the radio waves emitted from the antenna have directivity, as the front direction.
图7是对使无人驾驶航空器100的朝向与发送机50的正面方向d1一致的动作的概要进行说明的图。FIG. 7 is a view for explaining an outline of an operation of matching the orientation of the unmanned aircraft 100 with the front direction d1 of the transmitter 50.
在用户hm按下发送器50的朝向对准按钮B3之前,无人驾驶航空器100处于无人驾驶航空器100的正面方向d2相对于发送器50的正面方向d1以预定的倾斜度飞行的状况。当用户hm按下朝向对准按钮B3时,无人驾驶航空器100以机体的中心为旋转轴进行旋转(自转),使得无人驾驶航空器100的正面方向d2与发送器50的正面方向d1一致。此时,无人驾驶航空器100可以向旋转量少的方向旋转。其结果是,发送器50的正面方向的方位与无人驾驶航空器100的正面方向的方位一致。方位例如可以是东西南北之类的方位。Before the user hm presses the orientation alignment button B3 of the transmitter 50, the unmanned aircraft 100 is in a state where the front direction d2 of the unmanned aircraft 100 is flying at a predetermined inclination with respect to the front direction d1 of the transmitter 50. When the user hm presses the orientation alignment button B3, the unmanned aircraft 100 rotates (rotates) with the center of the body as a rotation axis, so that the front direction d2 of the unmanned aircraft 100 coincides with the front direction d1 of the transmitter 50. At this time, the unmanned aircraft 100 can rotate in a direction in which the amount of rotation is small. As a result, the orientation of the front direction of the transmitter 50 coincides with the orientation of the front direction of the unmanned aircraft 100. The orientation can be, for example, an orientation such as east, west, north, and south.
图8是示出使无人驾驶航空器100的朝向与发送器50的正面方向一致的动作过程的一个示例的顺序图。FIG. 8 is a sequence diagram showing an example of an operation procedure for causing the orientation of the unmanned aircraft 100 to coincide with the front direction of the transmitter 50.
在发送器50中,发送器控制部61接受由用户hm发出的朝向对准按钮B3的按下(T1)。当按下朝向对准按钮B3时,发送器控制部61开始朝向对准处理,以使无人驾驶航空器100的正面方向d2与发送器50的正面方向d1一致。发送器控制部61获取由磁罗盘66检测到的 方位(发送器50的朝向)的信息作为本机(发送器50)的正面方向d1(T2)。In the transmitter 50, the transmitter control unit 61 accepts depression (T1) by the user hm toward the alignment button B3. When the orientation toward the alignment button B3 is pressed, the transmitter control portion 61 starts the alignment processing so that the front direction d2 of the unmanned aircraft 100 coincides with the front direction d1 of the transmitter 50. The transmitter control unit 61 acquires the information of the orientation (the orientation of the transmitter 50) detected by the magnetic compass 66 as the front direction d1 (T2) of the local (transmitter 50).
发送器控制部61通过无线通信部63以及天线AN1、AN2向无人驾驶航空器100发送发送器50的方位的信息以及朝向对准指示的信息(T3)。此朝向对准指示的信息可以包括指示无人驾驶航空器100的旋转,以使无人驾驶航空器100的朝向(正面方向)与发送器50的朝向(正面方向)一致的内容。The transmitter control unit 61 transmits information on the orientation of the transmitter 50 and information on the alignment instruction to the unmanned aircraft 100 via the wireless communication unit 63 and the antennas AN1 and AN2 (T3). The information indicating the orientation indication may include content indicating the rotation of the unmanned aircraft 100 to make the orientation (front direction) of the unmanned aircraft 100 coincide with the orientation (front direction) of the transmitter 50.
在无人驾驶航空器100中,当通过通信接口150从无人驾驶航空器100接收到发送器50的方位的信息以及朝向对准指示的信息时,UAV控制部110进行使无人驾驶航空器100的朝向与发送器50的正面方向一致的朝向对准控制(T4)。在此朝向对准控制中,UAV控制部110获取由磁罗盘260检测到的方位的信息,作为本机(无人驾驶航空器100)的正面方向。UAV控制部110基于所获取的本机的方位和接收到的发送器50的方位,计算本机的旋转角度。In the unmanned aerial vehicle 100, when the information of the orientation of the transmitter 50 and the information toward the alignment instruction are received from the unmanned aircraft 100 through the communication interface 150, the UAV control section 110 performs the orientation of the unmanned aircraft 100. The orientation control (T4) coincides with the front direction of the transmitter 50. In this orientation control, the UAV control unit 110 acquires information on the orientation detected by the magnetic compass 260 as the front direction of the local (unmanned aircraft 100). The UAV control unit 110 calculates the rotation angle of the local machine based on the acquired orientation of the local machine and the received orientation of the transmitter 50.
UAV控制部110在计算本机的旋转角度时,可以计算向右(顺时针)旋转的情况下的旋转角度和向左(逆时针)旋转的情况下的旋转角度两者。UAV控制部110可以确定旋转量较小的旋转方向和旋转角度。UAV控制部110基于确定的旋转方向及旋转角度驱动旋翼机构210,使无人驾驶航空器100旋转使得无人驾驶航空器100的正面方向d2与发送器50的正面方向d1一致。When calculating the rotation angle of the own machine, the UAV control unit 110 can calculate both the rotation angle when rotating to the right (clockwise) and the rotation angle when rotating to the left (counterclockwise). The UAV control section 110 can determine a rotation direction and a rotation angle in which the amount of rotation is small. The UAV control unit 110 drives the rotor mechanism 210 based on the determined rotation direction and rotation angle to rotate the unmanned aircraft 100 such that the front direction d2 of the unmanned aircraft 100 coincides with the front direction d1 of the transmitter 50.
当无人驾驶航空器100自转并达到所确定的旋转角度时,UAV控制部110通过通信接口150向发送器50通知旋转完成(T5)。此旋转完成的通知是无人驾驶航空器100的朝向的控制完成信息的一个示例。When the unmanned aircraft 100 rotates and reaches the determined rotation angle, the UAV control section 110 notifies the transmitter 50 of the completion of the rotation through the communication interface 150 (T5). The notification of completion of this rotation is an example of control completion information of the orientation of the unmanned aircraft 100.
在发送器50中,当通过无线通信部63以及天线AN1、AN2从无人驾驶航空器100接收到旋转完成的通知时,发送器控制部61启动振动器67,向发送器50施加振动,向用户hm报告无人驾驶航空器100的旋转完成(T6)。In the transmitter 50, when the notification of the completion of the rotation is received from the unmanned aircraft 100 via the wireless communication unit 63 and the antennas AN1, AN2, the transmitter control unit 61 activates the vibrator 67, and applies vibration to the transmitter 50 to the user. Hm reports the completion of the rotation of the unmanned aircraft 100 (T6).
另外,可以不通过使发送器50振动向用户hm通知旋转完成,而是通过各种提示方法提示无人驾驶航空器100的旋转完成的信息。例如,发送器控制部61可以通过使显示器(例如LED)以预定的显示方式进行显示来通知旋转完成。另外,发送器控制部61可以通过接口部65在便携式终端80的画面上显示“旋转完成”等消息。另外,在搭载有扬声器、蜂鸣器的情况下,发送器控制部61可以通过声音通知旋转完成。在这种情况下,除了单纯的声音之外,也可以发出“旋转完成”等消息的声音。这样的无人驾驶航空器100的旋转完成的提示是对表示朝向的控制完成的信息进行提示的一个示例。In addition, it is possible to notify the user hm of the completion of the rotation without vibrating the transmitter 50, and to prompt the information of the completion of the rotation of the unmanned aircraft 100 by various presentation methods. For example, the transmitter control unit 61 can notify the completion of the rotation by causing a display (for example, an LED) to be displayed in a predetermined display manner. Further, the transmitter control unit 61 can display a message such as "rotation completed" on the screen of the portable terminal 80 via the interface unit 65. Further, when the speaker or the buzzer is mounted, the transmitter control unit 61 can notify the completion of the rotation by the sound. In this case, in addition to a simple sound, a sound such as a "rotation completion" message can be issued. Such a prompt for completion of the rotation of the unmanned aircraft 100 is an example of presenting information indicating that the control of the orientation is completed.
另外,便携式终端80的终端控制部81可以通过接口部82、无线通信部85获取发送器50的位置信息以及无人驾驶航空器100的位置信息。另外,终端控制部81可以获取地图信息。地图信息的地理范围包括无人驾驶航空器100的位置和发送器50的位置。终端控制部 81可以将地图信息保存在内存87中,并从内存87中获取。终端控制部81可以通过无线通信部85从具有地图数据库的外部服务器等获取地图信息。Further, the terminal control unit 81 of the portable terminal 80 can acquire the position information of the transmitter 50 and the position information of the unmanned aircraft 100 via the interface unit 82 and the wireless communication unit 85. In addition, the terminal control unit 81 can acquire map information. The geographic extent of the map information includes the location of the unmanned aerial vehicle 100 and the location of the transmitter 50. The terminal control unit 81 can store the map information in the memory 87 and acquire it from the memory 87. The terminal control unit 81 can acquire map information from an external server or the like having a map database via the wireless communication unit 85.
终端控制部81可以通过显示部88显示所获取的地图信息。终端控制部81可以将发送器50的位置和无人驾驶航空器100的位置重叠显示在地图信息上。另外,终端控制部81可以将表示发送器50的朝向的信息以及表示无人驾驶航空器100的朝向的信息重叠显示在地图信息上。表示发送器50的朝向的信息例如可以是表达发送器50的朝向的发送器50的图像。表示无人驾驶航空器100的朝向的信息例如可以是表示无人驾驶航空器100的朝向的无人驾驶航空器100的图像。此时,发送器50的操作者确认便携式终端80的显示部88,能够视觉确认发送器50的朝向、无人驾驶航空器100的朝向(例如朝向对准前、朝向对准后),能够直观地掌握发送器50的朝向、无人驾驶航空器100的朝向。The terminal control unit 81 can display the acquired map information on the display unit 88. The terminal control unit 81 can superimpose and display the position of the transmitter 50 and the position of the unmanned aircraft 100 on the map information. Further, the terminal control unit 81 can superimpose and display the information indicating the orientation of the transmitter 50 and the information indicating the orientation of the unmanned aircraft 100 on the map information. The information indicating the orientation of the transmitter 50 may be, for example, an image of the transmitter 50 that expresses the orientation of the transmitter 50. The information indicating the orientation of the unmanned aircraft 100 may be, for example, an image of the unmanned aerial vehicle 100 indicating the orientation of the unmanned aircraft 100. At this time, the operator of the transmitter 50 confirms the display unit 88 of the mobile terminal 80, and can visually confirm the orientation of the transmitter 50 and the orientation of the unmanned aircraft 100 (for example, before the alignment and after the alignment), and can intuitively The orientation of the transmitter 50 and the orientation of the unmanned aircraft 100 are grasped.
图9是示出在无人驾驶航空器100的正面方向的朝向对准完成后,在从上方观察的情况下用户hm握持的发送器50与无人驾驶航空器100的位置关系的一个示例的图。FIG. 9 is a diagram showing an example of the positional relationship between the transmitter 50 and the unmanned aircraft 100 held by the user hm when viewed from above when the orientation of the front direction of the unmanned aircraft 100 is completed. .
在进行无人驾驶航空器100的正面方向的朝向对准时,在无人驾驶航空器100在用户hm的前方位置F1飞行的情况下,若用户hm向前推倒发送器50的左控制杆53L,则无人驾驶航空器100朝向前方飞行以远离用户hm。另一方面,在进行正面方向的朝向对准时,在无人驾驶航空器100在用户hm的后方位置R1飞行的情况下,若用户hm向前推倒发送器50的左控制杆53L,则无人驾驶航空器100朝向前方飞行以接近用户hm。When the orientation of the front direction of the unmanned aircraft 100 is aligned, in the case where the unmanned aircraft 100 is flying at the front position F1 of the user hm, if the user hm pushes down the left lever 53L of the transmitter 50, there is no The human-driven aircraft 100 flies forward to move away from the user hm. On the other hand, in the case where the orientation of the front direction is performed, in the case where the unmanned aircraft 100 is flying at the rear position R1 of the user hm, if the user hm pushes down the left lever 53L of the transmitter 50, the driverless The aircraft 100 flies forward to approach the user hm.
通过发送器50,能够追加用于基于发送器50的朝向进行无人驾驶航空器100的朝向对准的命令,在必要时指示旋转至无人驾驶航空器的朝向与发送器50的朝向一致。另外,发送器50的操作者为了使无人驾驶航空器100移动至目标位置,无需通过目视等掌握无人驾驶航空器100的当前的朝向,能够简单地对无人驾驶航空器100进行移动操作。另外,即使发送器50的操作者远离无人驾驶航空器100或者天气不好,也能够掌握无人驾驶航空器100的朝向。The transmitter 50 can add a command for aligning the orientation of the unmanned aircraft 100 based on the orientation of the transmitter 50, and if necessary, instruct the rotation to the direction of the unmanned aircraft to coincide with the orientation of the transmitter 50. Further, in order to move the unmanned aircraft 100 to the target position, the operator of the transmitter 50 does not need to grasp the current orientation of the unmanned aircraft 100 by visual observation or the like, and can easily move the unmanned aircraft 100. In addition, even if the operator of the transmitter 50 is away from the unmanned aircraft 100 or the weather is bad, the orientation of the unmanned aircraft 100 can be grasped.
这样,发送器50具备发送器控制部61(处理部的一个示例),并对无人驾驶航空器100的飞行的控制进行指示。发送器控制部61检测用于对无人驾驶航空器100的朝向的控制进行指示的朝向对准按钮B3是否按下(获取操作信息的一个示例)。发送器控制部61在检测到朝向对准按钮B3已按下时,通过磁罗盘66获取发送器50的朝向的信息。发送器控制部61基于发送器50的朝向,对无人驾驶航空器100的朝向的控制进行指示。In this way, the transmitter 50 includes the transmitter control unit 61 (an example of the processing unit) and instructs the control of the flight of the unmanned aircraft 100. The transmitter control unit 61 detects whether or not the orientation guide button B3 for instructing the control of the orientation of the unmanned aircraft 100 is pressed (an example of acquisition operation information). When the transmitter control unit 61 detects that the orientation button B3 has been pressed, the information of the orientation of the transmitter 50 is acquired by the magnetic compass 66. The transmitter control unit 61 instructs control of the orientation of the unmanned aircraft 100 based on the orientation of the transmitter 50.
由此,通过用户进行按下朝向对准按钮B3这样的简单的操作,发送器50能够以发送器50的朝向为基准来规定无人驾驶航空器100的朝向。因此,发送器50能够使无人驾驶航空器100的朝向成为用户直观易懂的朝向。由此,发送器50能够调整无人驾驶航空器100的基 准的朝向,能够使利用发送器50的无人驾驶航空器100的移动操作变得容易。另外,即使在用户难以通过目视直接确认无人驾驶航空器100的情况下,发送器50也能够提高无人驾驶航空器100的移动操作的操作精度。Thereby, the simple operation of the user pressing the alignment button B3 allows the transmitter 50 to specify the orientation of the unmanned aircraft 100 based on the orientation of the transmitter 50. Therefore, the transmitter 50 can make the orientation of the unmanned aircraft 100 an intuitive and understandable orientation of the user. Thereby, the transmitter 50 can adjust the orientation of the unmanned aircraft 100, and the movement operation of the unmanned aircraft 100 using the transmitter 50 can be facilitated. Further, even in the case where it is difficult for the user to directly confirm the unmanned aircraft 100 by visual observation, the transmitter 50 can improve the operational accuracy of the moving operation of the unmanned aircraft 100.
发送器控制部61可以指示无人驾驶航空器100的旋转,使得发送器50的朝向和无人驾驶航空器100的朝向成为同一方向。The transmitter control unit 61 can instruct the rotation of the unmanned aircraft 100 such that the orientation of the transmitter 50 and the orientation of the unmanned aircraft 100 are in the same direction.
由此,发送器50能够使发送器50的朝向与无人驾驶航空器100的朝向一致。因此,用户若确认发送器50的朝向,则能够掌握无人驾驶航空器100的朝向,能够容易地进行无人驾驶航空器100的移动操作。Thereby, the transmitter 50 can make the orientation of the transmitter 50 coincide with the orientation of the unmanned aircraft 100. Therefore, when the user confirms the orientation of the transmitter 50, the orientation of the unmanned aircraft 100 can be grasped, and the movement operation of the unmanned aircraft 100 can be easily performed.
发送器控制部61可以指示无人驾驶航空器100向顺时针的旋转方向和逆时针的旋转方向中无人驾驶航空器100的旋转量较少的旋转方向旋转。The transmitter control unit 61 can instruct the unmanned aircraft 100 to rotate in a rotational direction in which the amount of rotation of the unmanned aircraft 100 is small in a clockwise rotation direction and a counterclockwise rotation direction.
由此,无人驾驶航空器100能够尽可能减少旋转量,能够缩短旋转所需的时间。因此,用户hm能够以调整好的无人驾驶航空器100的朝向为基准,较早地实施所希望的移动操作。Thereby, the unmanned aircraft 100 can reduce the amount of rotation as much as possible, and the time required for the rotation can be shortened. Therefore, the user hm can perform the desired moving operation earlier based on the orientation of the adjusted unmanned aircraft 100.
发送器控制部61可以通过无线通信部63以及天线AN1、AN2从无人驾驶航空器100接收旋转完成的通知。发送器控制部61可以基于旋转完成的通知,通过进行显示器的显示、振动器的振动、声音输出,来提示无人驾驶航空器100的旋转完成。The transmitter control unit 61 can receive the notification of completion of the rotation from the unmanned aircraft 100 via the wireless communication unit 63 and the antennas AN1 and AN2. The transmitter control unit 61 can prompt the completion of the rotation of the unmanned aircraft 100 by performing display of the display, vibration of the vibrator, and sound output based on the notification of completion of the rotation.
由此,例如即使在难以通过目视确认无人驾驶航空器100的朝向的控制的完成的情况下,用户hm也能够容易地识别无人驾驶航空器100的朝向的控制的完成。由此,用户hm在确认无人驾驶航空器100的朝向的控制完成之后,能够实施期望的移动操作,并能够提高移动操作的精度。Thereby, for example, even in the case where it is difficult to visually confirm the completion of the control of the orientation of the unmanned aircraft 100, the user hm can easily recognize the completion of the control of the orientation of the unmanned aircraft 100. Thereby, after confirming that the control of the orientation of the unmanned aircraft 100 is completed, the user hm can perform a desired moving operation and can improve the accuracy of the moving operation.
另外,无人驾驶航空器100基于发送器50对于飞行的控制的指示来控制飞行,具备UAV控制部110(处理部的一个示例)。UAV控制部110通过通信接口150从发送器50接收无人驾驶航空器100的朝向的控制的指示。UAV控制部110基于此指示控制无人驾驶航空器100的朝向。Further, the unmanned aircraft 100 controls the flight based on the instruction of the transmitter 50 to control the flight, and includes the UAV control unit 110 (an example of the processing unit). The UAV control unit 110 receives an instruction of the control of the orientation of the unmanned aircraft 100 from the transmitter 50 via the communication interface 150. The UAV control unit 110 controls the orientation of the unmanned aircraft 100 based on this instruction.
由此,无人驾驶航空器100从发送器50接受无人驾驶航空器100的朝向的控制的指示,能够容易地控制无人驾驶航空器100的朝向。Thereby, the unmanned aircraft 100 receives an instruction to control the orientation of the unmanned aircraft 100 from the transmitter 50, and can easily control the orientation of the unmanned aircraft 100.
在本实施方式中,虽然示出了使无人驾驶航空器100的朝向与发送器50的正面方向一致的情况,但发送器控制部61也可以使无人驾驶航空器100的朝向与相对于发送器50的正面方向倾斜预定角度的方向一致。例如,发送器控制部61可以使无人驾驶航空器旋转,以使其不是与发送器50的正面方向一致,而是与右侧面方向(从正面方向向右旋转90度的方向)、左侧侧面方向(从正面方向左旋转90度的方向)、背面方向(从正面方向旋转180度的方向)一致。另外,发送器控制部61虽然在按下朝向对准按钮B3时使无人驾驶航空器100的朝向 一致,但也可以在飞行系统5的起动初期,发送器控制部61自动地使朝向一致。In the present embodiment, the case where the orientation of the unmanned aircraft 100 coincides with the front direction of the transmitter 50 is shown, but the transmitter control unit 61 may also make the orientation of the unmanned aircraft 100 relative to the transmitter. The direction in which the front direction of 50 is inclined is the same as the direction of the predetermined angle. For example, the transmitter control unit 61 may rotate the unmanned aircraft so as not to coincide with the front direction of the transmitter 50, but with the right side direction (direction rotated 90 degrees from the front direction), left side The side direction (the direction rotated 90 degrees to the left from the front direction) and the back direction (the direction rotated 180 degrees from the front direction) match. Further, although the transmitter control unit 61 matches the orientation of the unmanned aircraft 100 when the vehicle is pressed toward the align button B3, the transmitter control unit 61 may automatically make the directions coincide with each other at the initial stage of the flight system 5.
另外,发送器控制部61可以不根据朝向对准按钮B3的按下的检测,而在检测到预定的事件的情况下,对无人驾驶航空器100的朝向的控制进行指示。Further, the transmitter control unit 61 can instruct the control of the orientation of the unmanned aircraft 100 without detecting the predetermined event based on the detection of the depression of the alignment button B3.
例如,发送器控制部61可以通过计时器等获取当前时间,在当前时间包含在预定的时间段内的情况下,对无人驾驶航空器100的朝向的控制进行指示。由此,发送器50例如在预定的时间段内预定了利用发送器50的手动飞行控制的情况下,不进行特别的操作就能调整无人驾驶航空器100的朝向,能够使手动飞行控制中的移动操作变得容易。For example, the transmitter control unit 61 can acquire the current time by a timer or the like, and instructs the control of the orientation of the unmanned aircraft 100 when the current time is included in the predetermined time period. Thereby, the transmitter 50 can adjust the orientation of the unmanned aircraft 100 without performing special operations, for example, in the case where the manual flight control by the transmitter 50 is predetermined within a predetermined period of time, and can be made in manual flight control. Mobile operations are easy.
例如,发送器控制部61可以在检测到无人驾驶航空器100进入了预定的区域的情况下对无人驾驶航空器100的朝向的控制进行指示。由此,发送器50例如在预定的飞行区域内预定了利用发送器50的手动飞行控制的情况下,不进行特别的操作就能调整无人驾驶航空器100的朝向,能够使手动飞行控制中的移动操作变得容易。For example, the transmitter control unit 61 may instruct control of the orientation of the unmanned aircraft 100 upon detecting that the unmanned aircraft 100 has entered a predetermined area. Thereby, the transmitter 50 can adjust the orientation of the unmanned aircraft 100 without performing a special operation, for example, in the case where the manual flight control by the transmitter 50 is predetermined in a predetermined flight area, and the manual flight control can be performed. Mobile operations are easy.
例如,发送器控制部61可以设定飞行控制模式,并将设定信息保存在内存(未图示)中。在飞行控制模式从进行自动飞行控制的第一飞行控制模式切换到进行手动飞行控制的第二飞行控制模式的情况下,发送器控制部61可以对无人驾驶航空器100的朝向的控制进行指示。由此,在开始手动飞行控制时,发送器50不进行特别的操作就能调整无人驾驶航空器100的朝向,能够使手动飞行控制中的移动操作变得容易。For example, the transmitter control unit 61 can set the flight control mode and store the setting information in a memory (not shown). In the case where the flight control mode is switched from the first flight control mode in which the automatic flight control is performed to the second flight control mode in which the manual flight control is performed, the transmitter control portion 61 can instruct the control of the orientation of the unmanned aircraft 100. Thereby, when the manual flight control is started, the transmitter 50 can adjust the orientation of the unmanned aircraft 100 without performing a special operation, and the movement operation in the manual flight control can be facilitated.
另外,代替发送器50(比例控制器),便携式终端80也可以对无人驾驶航空器100的朝向的控制进行指示。此时,朝向对准按钮B3可以设置为操作部83的一部分。另外,代替发送器控制部61,终端控制部81进行各种处理(例如图8所示的发送器50的处理)。便携式终端80是对飞行体的飞行的控制进行指示的发送器的一个示例。Further, instead of the transmitter 50 (proportional controller), the portable terminal 80 may also instruct control of the orientation of the unmanned aircraft 100. At this time, the orientation alignment button B3 may be provided as a part of the operation portion 83. Further, the terminal control unit 81 performs various processes (for example, processing of the transmitter 50 shown in FIG. 8) instead of the transmitter control unit 61. The portable terminal 80 is an example of a transmitter that instructs control of flight of a flying body.
(第二实施方式)(Second embodiment)
在第一实施方式中,示出了当按下朝向对准按钮B3时,无人驾驶航空器100自转,以使无人驾驶航空器100的朝向与发送器50的正面方向一致的情形。在第二实施方式中,示出了当按下朝向对准按钮B3时,无人驾驶航空器100旋转,以使无人驾驶航空器100的朝向相对于连结无人驾驶航空器100的位置和发送器50的位置的线(以下称为轴线)与从发送器50的位置朝向无人驾驶航空器100的位置的轴线方向一致的情形。In the first embodiment, the case where the unmanned aircraft 100 rotates when the direction toward the alignment button B3 is pressed to make the orientation of the unmanned aircraft 100 coincide with the front direction of the transmitter 50 is shown. In the second embodiment, it is shown that the unmanned aircraft 100 rotates when the orientation toward the alignment button B3 is pressed, so that the orientation of the unmanned aircraft 100 is relative to the position of the unmanned aircraft 100 and the transmitter 50. The line of the position (hereinafter referred to as the axis) coincides with the direction of the axis from the position of the transmitter 50 toward the position of the unmanned aircraft 100.
第二实施方式的飞行系统5具有与第一实施方式大致相同的结构。对于与第一实施方式相同的构成要素使用相同的符号,从而省略或简化其说明。The flight system 5 of the second embodiment has substantially the same configuration as the first embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted or simplified.
图10是对使第二实施方式中的无人驾驶航空器100的朝向与轴线方向一致的动作的概要进行说明的图。FIG. 10 is a view for explaining an outline of an operation of causing the orientation of the unmanned aircraft 100 in the second embodiment to coincide with the axial direction.
在用户hm按下发送器50的朝向对准按钮B3之前,无人驾驶航空器100处于以与第一 实施方式相同的朝向飞行的状况。当用户hm按下朝向对准按钮B3时,无人驾驶航空器100使机体的朝向旋转,使得相对于连结无人驾驶航空器100的位置(中心位置、重心位置等)和发送器50的位置的轴线AX,与从发送器50朝向无人驾驶航空器100的方向一致。此时,无人驾驶航空器100可以向旋转量少的方向旋转。其结果是,无人驾驶航空器100的朝向与从发送器50朝向无人驾驶航空器100的轴线AX的方向(轴线方向)一致。Before the user hm presses the orientation of the transmitter 50 toward the alignment button B3, the unmanned aircraft 100 is in a state of flying in the same orientation as the first embodiment. When the user hm presses the orientation alignment button B3, the unmanned aircraft 100 rotates the orientation of the body so as to be relative to the position (center position, center of gravity position, etc.) of the unmanned aircraft 100 and the position of the position of the transmitter 50. AX coincides with the direction from the transmitter 50 toward the unmanned aerial vehicle 100. At this time, the unmanned aircraft 100 can rotate in a direction in which the amount of rotation is small. As a result, the orientation of the unmanned aerial vehicle 100 coincides with the direction (axial direction) from the transmitter 50 toward the axis AX of the unmanned aerial vehicle 100.
在此,将从发送器50朝向无人驾驶航空器100的轴线方向称为正轴线方向,将从无人驾驶航空器100朝向发送器50的轴线方向称为负轴线方向。在此,虽然示出了发送器50使无人驾驶航空器100向正轴线方向旋转的情形,但也可以向负轴线方向旋转。另外,朝向对准按钮B3可以是与第一实施方式相同的按钮,但也可以是不同的按钮。Here, the axial direction from the transmitter 50 toward the unmanned aircraft 100 is referred to as a positive axis direction, and the axial direction from the unmanned aircraft 100 toward the transmitter 50 is referred to as a negative axis direction. Here, although the case where the transmitter 50 rotates the unmanned aircraft 100 in the normal axis direction is shown, it may rotate in the negative axis direction. Further, the orientation alignment button B3 may be the same button as the first embodiment, but may be a different button.
图11是示出使无人驾驶航空器100的朝向与轴线方向一致的动作过程的一个示例的顺序图。FIG. 11 is a sequence diagram showing an example of an operation procedure for causing the orientation of the unmanned aircraft 100 to coincide with the axial direction.
发送器控制部61接受用户hm按下朝向对准按钮B3(T11)。当按下朝向对准按钮B3时,发送器控制部61开始朝向对准处理,以使无人驾驶航空器100的朝向与正轴线方向一致。发送器控制部61获取由GPS接收器68检测的位置信息作为本机、即发送器50的位置(T12)。The transmitter control unit 61 accepts that the user hm is pressed toward the alignment button B3 (T11). When the orientation toward the alignment button B3 is pressed, the transmitter control portion 61 starts the alignment processing so that the orientation of the unmanned aircraft 100 coincides with the direction of the positive axis. The transmitter control unit 61 acquires the position information detected by the GPS receiver 68 as the position of the local device, that is, the transmitter 50 (T12).
发送器控制部61通过无线通信部63以及天线AN1、AN2向无人驾驶航空器100发送无人驾驶航空器100的位置信息的请求(T13)。The transmitter control unit 61 transmits a request for the position information of the unmanned aircraft 100 to the unmanned aircraft 100 via the wireless communication unit 63 and the antennas AN1 and AN2 (T13).
在无人驾驶航空器100中,当通过通信接口150接收到来自发送器50的位置信息的请求时,UAV控制部110获取由GPS接收器240检测的位置信息。UAV控制部110通过通信接口150向发送器50发送(响应)检测到的本机的位置信息(T14)。In the unmanned aerial vehicle 100, when a request for positional information from the transmitter 50 is received through the communication interface 150, the UAV control section 110 acquires positional information detected by the GPS receiver 240. The UAV control unit 110 transmits (responds to) the detected position information of the own device to the transmitter 50 via the communication interface 150 (T14).
在发送器50中,发送器控制部61通过无线通信部63以及天线AN1、AN2,接收(获取)无人驾驶航空器100的位置信息(T15)。发送器控制部61基于本机的位置信息和无人驾驶航空器100的位置信息,计算轴线AX(T16)。连结发送器50的中心和无人驾驶航空器100的中心的直线即轴线AX是连结发送器50和无人驾驶航空器100的直线的一个示例。此直线不限于连结中心的线,也可以是连结距发送器50的中心位置预定距离的位置和距无人驾驶航空器100的中心位置距预定距离的位置的直线。In the transmitter 50, the transmitter control unit 61 receives (acquires) the position information of the unmanned aircraft 100 via the wireless communication unit 63 and the antennas AN1 and AN2 (T15). The transmitter control unit 61 calculates the axis AX based on the position information of the own device and the position information of the unmanned aircraft 100 (T16). An axis AX that is a line connecting the center of the transmitter 50 and the center of the unmanned aircraft 100 is an example of a line connecting the transmitter 50 and the unmanned aircraft 100. This straight line is not limited to the line connecting the centers, and may be a line connecting a position at a predetermined distance from the center position of the transmitter 50 and a position at a predetermined distance from the center position of the unmanned aircraft 100.
发送器控制部61通过无线通信部63以及天线AN1、AN2将计算出的轴线AX的信息通知给无人驾驶航空器100(T17)。另外,在此通知中,发送器控制部61对无人驾驶航空器100指示无人驾驶航空器100的旋转,以使无人驾驶航空器100的朝向(正面方向)与轴线AX的信息一致。The transmitter control unit 61 notifies the unmanned aircraft 100 of the calculated information on the axis AX via the wireless communication unit 63 and the antennas AN1 and AN2 (T17). Further, in this notification, the transmitter control unit 61 instructs the unmanned aircraft 100 to rotate the unmanned aircraft 100 such that the orientation (front direction) of the unmanned aircraft 100 coincides with the information of the axis AX.
在无人驾驶航空器100中,当通过通信接口150接收到轴线AX的信息时,UAV控制部110进行使本机的朝向与轴线AX的方向一致的朝向对准控制(T18)。在此朝向对准控制中, UAV控制部110基于本机的正面方向d2与轴线AX的方向的角度来计算旋转角度。In the unmanned aerial vehicle 100, when the information of the axis AX is received through the communication interface 150, the UAV control unit 110 performs the orientation control (T18) of making the orientation of the own machine coincide with the direction of the axis AX. In this orientation control, the UAV control unit 110 calculates the rotation angle based on the angle of the front direction d2 of the machine and the direction of the axis AX.
UAV控制部110在计算本机的旋转角度时,可以计算右向(顺时针)旋转的情况下的旋转角度和左向(逆时针)旋转的情况下的旋转角度两者。UAV控制部110可以确定旋转量较小的旋转方向和旋转角度。UAV控制部110基于所确定的旋转方向及旋转角度,驱动旋翼机构210,使无人驾驶航空器100旋转,使得无人驾驶航空器100的朝向与轴线方向一致。When calculating the rotation angle of the own machine, the UAV control unit 110 can calculate both the rotation angle in the case of the rightward (clockwise) rotation and the rotation angle in the case of the leftward (counterclockwise) rotation. The UAV control section 110 can determine a rotation direction and a rotation angle in which the amount of rotation is small. The UAV control unit 110 drives the rotor mechanism 210 based on the determined rotation direction and rotation angle to rotate the unmanned aircraft 100 such that the orientation of the unmanned aircraft 100 coincides with the axial direction.
当无人驾驶航空器100自转、无人驾驶航空器100的旋转达到所确定的旋转角度时,UAV控制部110通过通信接口150向发送器50通知旋转完成(T19)。When the unmanned aircraft 100 rotates and the rotation of the unmanned aircraft 100 reaches the determined rotation angle, the UAV control section 110 notifies the transmitter 50 of the completion of the rotation via the communication interface 150 (T19).
在发送器50中,当通过无线通信部63以及天线AN1、AN2从无人驾驶航空器100接收到旋转完成的通知时,发送器控制部61启动振动器67,向发送器50施加振动,向用户hm报告无人驾驶航空器100的旋转完成(T20)。另外,旋转完成的报告与第一实施方式同样,也可以用其他提示方法代替振动器67的振动来提示(例如显示、声音输出)。In the transmitter 50, when the notification of the completion of the rotation is received from the unmanned aircraft 100 via the wireless communication unit 63 and the antennas AN1, AN2, the transmitter control unit 61 activates the vibrator 67, and applies vibration to the transmitter 50 to the user. Hm reports the completion of the rotation of the unmanned aircraft 100 (T20). Further, the report of the completion of the rotation may be similar to that of the first embodiment, and other presentation methods may be used instead of the vibration of the vibrator 67 (for example, display and sound output).
图12是示出在轴线方向的朝向对准完成后,在从上方观察的情况下用户hm握持的发送器50与无人驾驶航空器100的位置关系的一个示例的图。FIG. 12 is a diagram showing an example of the positional relationship between the transmitter 50 held by the user hm and the unmanned aircraft 100 in the case where the alignment in the axial direction is completed.
在进行轴线方向的朝向对准时,在无人驾驶航空器100在用户hm的前方位置F1飞行的情况下,若用户hm向前推倒发送器50的左控制杆53L,则无人驾驶航空器100朝向前方飞行以远离用户hm。另一方面,在进行轴线方向的朝向对准动作时,在无人驾驶航空器100在用户hm的后方位置R1飞行的情况下,若用户hm向前推倒发送器50的左控制杆53L,则无人驾驶航空器100此时同样朝向后方飞行以远离用户hm。即,若发送器50指示向前方向的移动,则无人驾驶航空器100远离发送器50,若发送器50指示向后方向的移动,则无人驾驶航空器100接近发送器50。When the orientation in the axial direction is aligned, in the case where the unmanned aircraft 100 is flying at the front position F1 of the user hm, if the user hm pushes down the left lever 53L of the transmitter 50, the unmanned aircraft 100 faces forward. Fly away from the user hm. On the other hand, when the unmanned aircraft 100 is flying at the rear position R1 of the user hm while the orientation operation in the axial direction is being performed, if the user hm pushes down the left control lever 53L of the transmitter 50, there is no The human-driven aircraft 100 now also flies backwards away from the user hm. That is, if the transmitter 50 indicates the movement in the forward direction, the unmanned aircraft 100 is away from the transmitter 50, and if the transmitter 50 indicates the movement in the backward direction, the unmanned aircraft 100 approaches the transmitter 50.
另外,发送器50的发送器控制部61可以仅获取一次作为用于计算轴线AX的基础的位置信息(例如发送器50的位置信息以及无人驾驶航空器100的位置信息),也可以定期地(例如始终)进行获取。在仅获取一次位置信息的情况下,发送器控制部61也仅进行一次轴线AX的计算,因此,由于轴线AX的朝向不变化,所以无人驾驶航空器100的朝向也不变化。因此,在发送器控制部61从左控制杆53L或者右控制杆53R获取了左右方向的移动操作时,无人驾驶航空器100以在左右方向上直线前进的方式飞行。另一方面,在定期地获取位置信息的情况下,发送器控制部61定期地进行轴线AX的计算,因此轴线AX的朝向定期地变化,无人驾驶航空器100的朝向也定期地变化。因此,在始终获取位置信息的情况下,在发送器控制部61从左控制杆53L或者右控制杆53R获取了左右方向的移动操作时,以顺时针或逆时针画圆的方式飞行。In addition, the transmitter control unit 61 of the transmitter 50 may acquire the position information (for example, the position information of the transmitter 50 and the position information of the unmanned aircraft 100) as a basis for calculating the axis AX, or may be periodically ( For example, always) to get. When only the position information is acquired once, the transmitter control unit 61 also performs calculation of the axis AX only once. Therefore, since the orientation of the axis AX does not change, the orientation of the unmanned aircraft 100 does not change. Therefore, when the transmitter control unit 61 acquires the movement operation in the left-right direction from the left control lever 53L or the right control lever 53R, the unmanned aircraft 100 flies in a straight line in the left-right direction. On the other hand, when the position information is periodically acquired, the transmitter control unit 61 periodically calculates the axis AX. Therefore, the direction of the axis AX periodically changes, and the orientation of the unmanned aircraft 100 also periodically changes. Therefore, when the positional information is always acquired, when the transmitter control unit 61 acquires the movement operation in the left-right direction from the left control lever 53L or the right control lever 53R, it flies in a clockwise or counterclockwise circle.
根据发送器50,可以追加基于发送器50与无人驾驶航空器100的相对位置变更无人驾 驶航空器100的方向的指令,在必要时,指示旋转至与轴线AX的朝向一致。According to the transmitter 50, a command for changing the direction of the unmanned aircraft 100 based on the relative position of the transmitter 50 and the unmanned aircraft 100 can be added, and if necessary, the instruction is rotated to match the direction of the axis AX.
如此,在发送器50中,发送器控制部61检测用于对无人驾驶航空器100的朝向的控制进行指示的朝向对准按钮B3是否按下。在检测到朝向对准按钮B3已按下的情况下,发送器控制部61通过GPS接收器68获取发送器50的位置信息。另外,发送器控制部61通过无线通信部63以及天线AN1、AN2获取无人驾驶航空器100的位置信息。发送器控制部61基于发送器50的位置以及无人驾驶航空器100的位置来计算轴线AX。发送器控制部61通过无线通信部63以及天线AN1、AN2将计算出的轴线AX的信息通知给无人驾驶航空器100,并对无人驾驶航空器100的朝向的控制进行指示,使其与轴线AX的方向一致。As described above, in the transmitter 50, the transmitter control unit 61 detects whether or not the orientation align button B3 for instructing the control of the orientation of the unmanned aircraft 100 is pressed. In the case where it is detected that the orientation button B3 has been pressed, the transmitter control section 61 acquires the position information of the transmitter 50 through the GPS receiver 68. Further, the transmitter control unit 61 acquires the position information of the unmanned aircraft 100 via the wireless communication unit 63 and the antennas AN1 and AN2. The transmitter control unit 61 calculates the axis AX based on the position of the transmitter 50 and the position of the unmanned aircraft 100. The transmitter control unit 61 notifies the unmanned aircraft 100 of the calculated axis AX information by the wireless communication unit 63 and the antennas AN1 and AN2, and instructs the control of the orientation of the unmanned aircraft 100 to be aligned with the axis AX. The direction is the same.
由此,通过用户hm进行按下朝向对准按钮B3这样的简单的操作,发送器50能够以发送器50的位置为基准来规定无人驾驶航空器100的朝向。因此,发送器50能够使无人驾驶航空器100的朝向成为用户hm直观易懂的朝向。由此,发送器50能够调整无人驾驶航空器100的基准的朝向,能够使使用发送器50的无人驾驶航空器100的移动操作变得容易。另外,即使在用户hm难以通过目视直接确认无人驾驶航空器100的情况下,发送器50也能够提高无人驾驶航空器100的移动操作、特别是接近或远离用户hm的操作的操作精度。Thereby, the simple operation of pressing the user toward the alignment button B3 by the user hm allows the transmitter 50 to specify the orientation of the unmanned aircraft 100 based on the position of the transmitter 50. Therefore, the transmitter 50 can make the orientation of the unmanned aircraft 100 an intuitive and understandable orientation of the user hm. Thereby, the transmitter 50 can adjust the orientation of the reference of the unmanned aircraft 100, and the movement operation of the unmanned aircraft 100 using the transmitter 50 can be facilitated. In addition, even in the case where it is difficult for the user hm to directly confirm the unmanned aircraft 100 by visual observation, the transmitter 50 can improve the operation accuracy of the movement operation of the unmanned aircraft 100, particularly, the operation close to or away from the user hm.
另外,用户hm在进行无人驾驶航空器100的移动操作的情况下,容易朝向无人驾驶航空器100飞行的方向进行移动操作,在此情况下,能够在正面确认无人驾驶航空器100,因此容易进行移动操作。因此,通过发送器50以从发送器50朝向无人驾驶航空器100的方向为基准来规定无人驾驶航空器100的朝向,用户hm容易直观地识别发送器50的朝向。Further, when the user hm performs the moving operation of the unmanned aircraft 100, it is easy to move in the direction in which the unmanned aircraft 100 is flying. In this case, the unmanned aircraft 100 can be confirmed on the front side, and thus it is easy to perform. Move operation. Therefore, the orientation of the unmanned aircraft 100 is specified by the transmitter 50 with respect to the direction from the transmitter 50 toward the unmanned aircraft 100, and the user hm can easily visually recognize the orientation of the transmitter 50.
发送器控制部61可以指示无人驾驶航空器100的旋转,使得轴线AX的方向与无人驾驶航空器100的朝向成为同一方向。The transmitter control unit 61 can instruct the rotation of the unmanned aircraft 100 such that the direction of the axis AX is in the same direction as the orientation of the unmanned aircraft 100.
由此,例如发送器50指示的向前方向成为无人驾驶航空器100远离发送器50的方向,发送器50指示的向后方向成为无人驾驶航空器100接近发送器50的方向。因此,用户hm容易直观地识别发送器50的朝向。另外,发送器50能够将无人驾驶航空器100以一直线拉近到发送器50的下方。例如,在电池余量减少的情况下,发送器50能够以最短距离使无人驾驶航空器100返回。另外,发送器50能够使无人驾驶航空器100自发送器50沿一直线远离。例如,在使无人驾驶航空器100去往期望的目的地时,发送器50仅通过使发送器50的朝向与目的地一致,就能够易于视觉观察地且以最短距离到达目的地。Thereby, for example, the forward direction indicated by the transmitter 50 becomes the direction in which the unmanned aircraft 100 is away from the transmitter 50, and the backward direction indicated by the transmitter 50 becomes the direction in which the unmanned aircraft 100 approaches the transmitter 50. Therefore, the user hm can easily and intuitively recognize the orientation of the transmitter 50. Additionally, the transmitter 50 can pull the unmanned aerial vehicle 100 in a straight line below the transmitter 50. For example, in the case where the battery remaining amount is reduced, the transmitter 50 can return the unmanned aircraft 100 at the shortest distance. Additionally, the transmitter 50 can move the unmanned aerial vehicle 100 away from the transmitter 50 in a straight line. For example, when the unmanned aircraft 100 is made to a desired destination, the transmitter 50 can easily reach the destination with a shortest distance visually by merely making the orientation of the transmitter 50 coincide with the destination.
在本实施方式中,示出了发送器控制部61使无人驾驶航空器100的朝向与从发送器50朝向无人驾驶航空器100的轴线方向一致的情形,但也可以使之与相对于轴线AX倾斜预定的角度的方向一致。例如,发送器控制部61可以使之与从无人驾驶航空器100朝向发送器50的轴线方向一致,也可以使之与垂直于轴线方向的方向一致。另外,在此,发送器控制部 61可以在朝向对准按钮B3按下时使无人驾驶航空器100的朝向一致,但也可以在飞行系统5的起动初期自动使之一致。In the present embodiment, the transmitter control unit 61 has shown that the orientation of the unmanned aircraft 100 coincides with the direction from the transmitter 50 toward the axis of the unmanned aerial vehicle 100, but it may be made to be relative to the axis AX. The direction in which the predetermined angle is tilted is uniform. For example, the transmitter control unit 61 may be aligned with the direction from the unmanned aircraft 100 toward the transmitter 50, or may be aligned with the direction perpendicular to the axial direction. Here, the transmitter control unit 61 may cause the directions of the unmanned aircraft 100 to coincide when the align button B3 is pressed, but may automatically match the flight system 5 at the initial stage of starting.
另外,与第一实施方式相同,发送器控制部61可以不根据朝向对准按钮B3的按下的检测,而在检测到预定的事件的情况下,对无人驾驶航空器100的朝向的控制进行指示。预定的事件可以包括:当前时间包含在预定时间段内、无人驾驶航空器100进入到预定的区域、从进行自动飞行控制的第一飞行控制模式切换至进行手动飞行控制的第二飞行控制模式等。Further, as in the first embodiment, the transmitter control unit 61 may perform control of the orientation of the unmanned aircraft 100 without detecting the predetermined event based on the detection of the depression of the alignment button B3. Instructions. The predetermined event may include: the current time is included in the predetermined time period, the unmanned aircraft 100 enters the predetermined area, switches from the first flight control mode in which automatic flight control is performed to the second flight control mode in which manual flight control is performed, and the like. .
另外,代替发送器50(比例控制器),便携式终端80也可以对无人驾驶航空器100的朝向的控制进行指示。此时,朝向对准按钮B3可以设置为操作部83的一部分。另外,代替发送器控制部61,终端控制部81进行各种处理(例如图11所示的发送器50的处理)。便携式终端80是对飞行体的飞行的控制进行指示的发送器的一个示例。Further, instead of the transmitter 50 (proportional controller), the portable terminal 80 may also instruct control of the orientation of the unmanned aircraft 100. At this time, the orientation alignment button B3 may be provided as a part of the operation portion 83. Further, the terminal control unit 81 performs various processes (for example, processing of the transmitter 50 shown in FIG. 11) instead of the transmitter control unit 61. The portable terminal 80 is an example of a transmitter that instructs control of flight of a flying body.
另外,也可以由无人驾驶航空器100进行与发送器50进行的无人驾驶航空器100的朝向对准有关的处理的一部分。In addition, a part of the process related to the orientation of the unmanned aircraft 100 performed by the transmitter 50 may be performed by the unmanned aircraft 100.
图13是示出使无人驾驶航空器100的朝向与轴线方向一致的动作过程的另一个示例的顺序图。另外,图13对与图11相同的处理标注相同的步骤编号,从而省略或简化其说明。FIG. 13 is a sequence diagram showing another example of an operation procedure for causing the orientation of the unmanned aircraft 100 to coincide with the axial direction. Incidentally, the same steps as those in FIG. 11 are denoted by the same step numbers, and the description thereof will be omitted or simplified.
在发送器50中,发送器控制部61进行T11、T12的处理。发送器控制部61通过无线通信部63以及天线AN1、AN2向无人驾驶航空器100发送发送器50的位置信息和表示按下了朝向对准按钮B3的按下信息(T21)。此按下信息成为指示无人驾驶航空器100的朝向对准的指示信息。In the transmitter 50, the transmitter control unit 61 performs processing of T11 and T12. The transmitter control unit 61 transmits the position information of the transmitter 50 and the depression information indicating that the alignment button B3 is pressed to the unmanned aircraft 100 via the wireless communication unit 63 and the antennas AN1 and AN2 (T21). This pressed information becomes indication information indicating the orientation of the unmanned aircraft 100.
在无人驾驶航空器100中,当通过通信接口150从发送器50接收发送器50的位置信息和按下信息时,UAV控制部110获取由GPS接收器240检测的位置信息(T22)。In the unmanned aerial vehicle 100, when the position information of the transmitter 50 and the pressed information are received from the transmitter 50 through the communication interface 150, the UAV control section 110 acquires the position information detected by the GPS receiver 240 (T22).
UAV控制部110基于发送器50的位置信息和无人驾驶航空器100的位置信息,计算轴线AX(T23)。The UAV control unit 110 calculates the axis AX based on the position information of the transmitter 50 and the position information of the unmanned aircraft 100 (T23).
UAV控制部110进行使本机的朝向与轴线AX的方向一致的朝向对准控制(T24)。在此朝向对准控制中,UAV控制部110基于本机的正面方向d2与轴线AX的方向的角度来计算旋转角度。UAV控制部110在计算本机的旋转角度时,可以计算右旋(顺时针)的旋转角度和左旋(逆时针)的旋转角度两者。UAV控制部110可以确定旋转量较小的旋转方向和旋转角度。UAV控制部110基于所确定的旋转方向及旋转角度,驱动旋翼机构210,使无人驾驶航空器100旋转,使得无人驾驶航空器100的朝向与轴线方向一致。The UAV control unit 110 performs orientation control (T24) of matching the orientation of the unit with the direction of the axis AX. In this orientation control, the UAV control unit 110 calculates the rotation angle based on the angle of the front direction d2 of the machine and the direction of the axis AX. The UAV control unit 110 can calculate both the right-handed (clockwise) rotation angle and the left-handed (counterclockwise) rotation angle when calculating the rotation angle of the machine. The UAV control section 110 can determine a rotation direction and a rotation angle in which the amount of rotation is small. The UAV control unit 110 drives the rotor mechanism 210 based on the determined rotation direction and rotation angle to rotate the unmanned aircraft 100 such that the orientation of the unmanned aircraft 100 coincides with the axial direction.
接着,无人驾驶航空器100进行T19的处理,发送器50进行T20的处理。Next, the unmanned aircraft 100 performs the processing of T19, and the transmitter 50 performs the processing of T20.
如此,在无人驾驶航空器100中,UAV控制部110接收用于对无人驾驶航空器100的朝向的控制进行指示的朝向对准按钮B3的按下信息(操作信息的一个示例)和发送器50的位 置信息。UAV控制部110在接收到朝向对准按钮B3的按下信息时,获取无人驾驶航空器100的位置信息。UAV控制部110对连结发送器50的位置和无人驾驶航空器100的位置的轴线AX进行计算。UAV控制部110基于直线的朝向来控制无人驾驶航空器100的朝向。As described above, in the unmanned aerial vehicle 100, the UAV control section 110 receives the depression information (an example of the operation information) and the transmitter 50 for the alignment button B3 for instructing the control of the orientation of the unmanned aircraft 100. Location information. The UAV control unit 110 acquires the position information of the unmanned aircraft 100 upon receiving the pressing information toward the align button B3. The UAV control unit 110 calculates the axis AX that connects the position of the transmitter 50 and the position of the unmanned aircraft 100. The UAV control unit 110 controls the orientation of the unmanned aircraft 100 based on the orientation of the straight line.
由此,通过用户进行按下朝向对准按钮B3这样的简单的操作,无人驾驶航空器100能够以发送器50的朝向为基准来规定无人驾驶航空器100的朝向。因此,无人驾驶航空器100能够使无人驾驶航空器100的朝向成为用户直观易懂的朝向。由此,无人驾驶航空器100能够调整无人驾驶航空器100的基准的朝向,能够使使用发送器50的无人驾驶航空器100的移动操作变得容易。另外,即使在用户难以通过目视直接确认无人驾驶航空器100的情况下,无人驾驶航空器100也能够提高无人驾驶航空器100的移动操作的操作精度。另外,从到图13的朝向对准控制(T24)为止的处理比图11的朝向对准控制(T18)少中可以理解,与由发送器50主导来指示无人驾驶航空器100的朝向对准相比,无人驾驶航空器100能够更迅速地完成无人驾驶航空器100的朝向对准。Thereby, the simple operation of the user pressing the alignment button B3 allows the unmanned aircraft 100 to specify the orientation of the unmanned aircraft 100 based on the orientation of the transmitter 50. Therefore, the unmanned aerial vehicle 100 can make the orientation of the unmanned aircraft 100 an intuitive and understandable orientation of the user. Thereby, the unmanned aircraft 100 can adjust the orientation of the reference of the unmanned aircraft 100, and the movement operation of the unmanned aircraft 100 using the transmitter 50 can be facilitated. In addition, even in the case where it is difficult for the user to directly confirm the unmanned aircraft 100 by visual observation, the unmanned aerial vehicle 100 can improve the operational accuracy of the moving operation of the unmanned aircraft 100. In addition, the processing from the orientation control (T24) to the orientation control (T24) of FIG. 13 is less than that of the orientation control (T18) of FIG. 11, and is directed by the transmitter 50 to indicate the orientation of the unmanned aircraft 100. In contrast, the unmanned aerial vehicle 100 is able to accomplish the orientation alignment of the unmanned aircraft 100 more quickly.
以上使用实施方式对本公开进行了说明,但是本公开的技术范围并不限于上述实施方式所描述的范围。对本领域普通技术人员来说,显然可对上述实施方式加以各种变更或改良。从权利要求书的描述即可明白,加以了这样的变更或改良的方式都可包含在本公开的技术范围之内。The present disclosure has been described above using the embodiments, but the technical scope of the present disclosure is not limited to the scope described in the above embodiments. It will be obvious to those skilled in the art that various changes and modifications may be made to the above described embodiments. It is to be understood that the modifications and improvements may be included in the technical scope of the present disclosure.
权利要求书、说明书以及说明书附图中所示的装置、系统、程序和方法中的动作、顺序、步骤、以及阶段等各项处理的执行顺序,只要没有特别明示“在…之前”、“事先”等,且只要前面处理的输出并不用在后面的处理中,即可以以任意顺序实现。关于权利要求书、说明书以及附图中的操作流程,为方便起见而使用“首先”、“接着”等进行了说明,但并不意味着必须按照这样的顺序实施。The order of execution of the processes, the procedures, the steps, the stages, and the like in the devices, the systems, the procedures, and the steps in the claims, the description, and the drawings, unless specifically stated as "before", "previously" "etc., and as long as the previously processed output is not used in subsequent processing, it can be implemented in any order. The operation flow in the claims, the description, and the drawings has been described using "first", "continued", etc. for convenience, but it does not mean that it must be implemented in this order.
在上述实施方式中,虽然例示了发送器控制部61使无人驾驶航空器100旋转,以使发送器50与无人驾驶航空器100的方位一致,即在二维平面上朝向一致的情形,但也可以在三维空间上使发送器50和无人驾驶航空器100的朝向一致。In the above-described embodiment, the transmitter control unit 61 is exemplified by rotating the unmanned aircraft 100 so that the transmitter 50 and the unmanned aircraft 100 have the same orientation, that is, the two-dimensional planes are aligned, but also The orientation of the transmitter 50 and the unmanned aircraft 100 can be made uniform in three dimensions.
符号说明Symbol Description
10 飞行系统10 flight system
50 发送器50 transmitter
50B 壳体50B housing
53L 左控制杆53L left joystick
53R 右控制杆53R right lever
61 发送器控制部61 Transmitter Control
63 无线通信部63 Wireless Communication Department
65 接口部65 interface department
66 磁罗盘66 magnetic compass
67 振动器67 vibrator
68 GPS接收器68 GPS receiver
80 便携式终端80 portable terminal
81 终端控制部81 Terminal Control Department
82 接口部82 interface department
83 操作部83 Operation Department
85 无线通信部85 Wireless Communication Department
87 内存87 memory
88 显示部88 display
100 无人驾驶航空器100 unmanned aircraft
102 UAV主体102 UAV body
103 电池103 battery
110 UAV控制部110 UAV Control Department
150 通信接口150 communication interface
160 内存160 memory
200 万向节2 million joints
210 旋翼机构210 rotor mechanism
211 旋翼211 rotor
212 驱动电机212 drive motor
213 电流传感器213 current sensor
220 摄像装置220 camera
240 GPS接收器240 GPS receiver
250 惯性测量装置250 inertial measurement device
260 磁罗盘260 magnetic compass
270 气压高度计270 barometer
280 超声波传感器280 ultrasonic sensor
290 激光测量仪290 laser measuring instrument
AN1,AN2天线AN1, AN2 antenna
AX 轴线AX axis
B1 电源按扭B1 power button
B2 RTH 按扭B2 RTH button
B3 朝向对准按钮B3 orientation button
d1,d2 正面方向D1, d2 front direction
F1 前方位置F1 front position
hm 用户Hm user
L1 远程状态显示部L1 remote status display
L2 电池余量显示部L2 battery remaining amount display
OPS 操作部组OPS Operations Group
R1 后方位置R1 rear position

Claims (16)

  1. 一种对飞行体的飞行的控制进行指示的发送器,其特征在于,A transmitter for indicating control of flight of a flying body, characterized in that
    具备处理部,With a processing department,
    所述处理部获取用于对所述飞行体的朝向的控制进行指示的操作信息,The processing unit acquires operation information for indicating control of the orientation of the flying body,
    当获取到所述操作信息时,获取所述发送器的朝向或位置,Obtaining the orientation or position of the transmitter when the operation information is obtained,
    并基于所述发送器的朝向或位置,对所述飞行体的朝向的控制进行指示。And controlling the orientation of the flying body based on the orientation or position of the transmitter.
  2. 如权利要求1所述的发送器,其中,所述处理部指示所述飞行体的旋转,使得所述发送器的朝向与所述飞行体的朝向成为同一方向。The transmitter according to claim 1, wherein the processing unit instructs rotation of the flying body such that an orientation of the transmitter and a direction of the flying body are in the same direction.
  3. 如权利要求1所述的发送器,其中,所述处理部获取所述发送器的位置信息,获取所述飞行体的位置信息,计算连结所述发送器的位置和所述飞行体的位置的直线,并根据所述直线的朝向,对所述飞行体的朝向的控制进行指示。The transmitter according to claim 1, wherein said processing section acquires position information of said transmitter, acquires position information of said flying body, and calculates a position connecting said transmitter and a position of said flying body A straight line is used to indicate the control of the orientation of the flying body based on the orientation of the straight line.
  4. 如权利要求3所述的发送器,其中,所述处理部指示所述飞行体的旋转,使得所述直线的朝向与所述飞行体的朝向成为同一方向。The transmitter according to claim 3, wherein the processing unit instructs rotation of the flying body such that an orientation of the straight line and a direction of the flying body are in the same direction.
  5. 如权利要求1至4中任一项所述的发送器,其中,所述处理部指示所述飞行体向顺时针的旋转方向和逆时针的旋转方向中所述飞行体的旋转量较少的旋转方向旋转。The transmitter according to any one of claims 1 to 4, wherein the processing unit instructs the flying body to rotate in a clockwise direction and a counterclockwise direction in which the amount of rotation of the flying body is small. Rotate in the direction of rotation.
  6. 如权利要求1至5中任一项所述的发送器,其中,所述处理部获取所述飞行体的朝向的控制的完成信息,并基于所述完成信息,提示表示所述飞行体的朝向的控制已完成的信息。The transmitter according to any one of claims 1 to 5, wherein the processing unit acquires completion information of control of the orientation of the flying body, and presents a direction indicating the flying body based on the completion information The control has completed the information.
  7. 一种基于发送器对于飞行的控制的指示来控制飞行的飞行体,其特征在于,A flight body that controls flight based on an indication of a transmitter's control of flight, characterized in that
    具备处理部,With a processing department,
    所述处理部从所述发送器接收用于对所述飞行体的朝向的控制进行指示的操作信息以及所述发送器的位置信息,The processing unit receives, from the transmitter, operation information for indicating control of the orientation of the flying body and position information of the transmitter,
    当获取到所述操作信息时,获取所述飞行体的位置信息,Obtaining location information of the flying body when the operation information is acquired,
    计算连结所述发送器的位置和所述飞行体的位置的直线,Calculating a line connecting the position of the transmitter and the position of the flying body,
    并基于所述直线的朝向,控制所述飞行体的朝向。And controlling the orientation of the flying body based on the orientation of the straight line.
  8. 一种对飞行体的飞行的控制进行指示的发送器中的飞行控制指示方法,其特征在于,具有:A flight control indication method in a transmitter for indicating control of flight of a flying body, characterized by having:
    获取用于对所述飞行体的朝向的控制进行指示的操作信息的步骤;Obtaining operation information for indicating control of the orientation of the flying body;
    获取所述发送器的朝向或位置的信息的步骤;以及Obtaining information of the orientation or location of the transmitter;
    当获取到所述操作信息时,基于所述发送器的朝向或位置来对所述飞行体的朝向的控制进行指示的步骤。The step of indicating the control of the orientation of the flying body based on the orientation or position of the transmitter when the operation information is acquired.
  9. 如权利要求8所述的飞行控制指示方法,其中,所述对所述飞行体的朝向的控制进行指示的步骤包括指示所述飞行体的旋转,使得所述发送器的朝向与所述飞行体的朝向成为同一方向的步骤。The flight control instructing method according to claim 8, wherein said step of indicating control of an orientation of said flying body includes indicating rotation of said flying body such that an orientation of said transmitter and said flying body The orientation of the orientation becomes the same direction.
  10. 如权利要求8所述的飞行控制指示方法,其中,The flight control instructing method according to claim 8, wherein
    进一步包括:获取所述飞行体的位置信息的步骤,以及Further comprising: a step of acquiring location information of the flying body, and
    计算连结所述发送器的位置和所述飞行体的位置的直线的步骤,Calculating a step of connecting a line connecting the position of the transmitter and the position of the flying body,
    所述获取所述发送器的朝向或位置的信息的步骤包括获取所述发送器的位置信息的步骤,The step of acquiring information of an orientation or a position of the transmitter includes the step of acquiring location information of the transmitter,
    所述对所述飞行体的朝向的控制进行指示的步骤包括基于所述直线的朝向来对所述飞行体的朝向的控制进行指示的步骤。The step of indicating control of the orientation of the flying body includes the step of indicating control of the orientation of the flying body based on the orientation of the straight line.
  11. 如权利要求10所述的飞行控制指示方法,其中,所述对所述飞行体的朝向的控制进行指示的步骤包括指示所述飞行体的旋转,使得所述直线的朝向与所述飞行体的朝向成为同一方向的步骤。The flight control instructing method according to claim 10, wherein said step of instructing control of an orientation of said flying body includes indicating rotation of said flying body such that an orientation of said straight line is opposite to said flying body The steps toward the same direction.
  12. 如权利要求8至11任一项所述的飞行控制指示方法,其中,所述对所述飞行体的朝向的控制进行指示的步骤包括指示所述飞行体向顺时针的旋转方向和逆时针的旋转方向中所述飞行体的旋转量较少的旋转方向旋转的步骤。The flight control instructing method according to any one of claims 8 to 11, wherein the step of indicating the control of the orientation of the flying body includes indicating a direction of rotation of the flying body clockwise and counterclockwise The step of rotating in the rotation direction in which the amount of rotation of the flying body is small in the rotation direction.
  13. 如权利要求8至12任一项所述的飞行控制指示方法,其中,进一步包括:获取所述飞行体的朝向的控制完成信息的步骤;以及The flight control instructing method according to any one of claims 8 to 12, further comprising: a step of acquiring control completion information of an orientation of the flying body;
    基于所述完成信息,提示表示所述飞行体的朝向的控制已完成的信息的步骤。Based on the completion information, a step of presenting information indicating that the control of the orientation of the flying body has been completed is presented.
  14. 一种基于发送器对于飞行的控制的指示来控制飞行的飞行体中的飞行控制方法,其特征在于,具有:A flight control method in a flying body based on an indication of a transmitter's control of flight, characterized in that it has:
    从所述发送器接收用于对所述飞行体的朝向的控制进行指示的操作信息以及所述发送器的位置信息的步骤;Receiving, from the transmitter, operation information for indicating control of the orientation of the flying body and position information of the transmitter;
    当接收到所述操作信息时,获取所述飞行体的位置信息的步骤;Obtaining, when the operation information is received, the location information of the flying body;
    计算连结所述发送器的位置与所述飞行体的位置的直线的步骤;以及Calculating a step of connecting a line connecting the position of the transmitter to the position of the flying body;
    基于所述直线的朝向来控制所述飞行体的朝向的步骤。The step of controlling the orientation of the flying body based on the orientation of the straight line.
  15. 一种程序,其特征在于,用于使对飞行体的飞行的控制进行指示的发送器执行以下步骤:A program characterized in that a transmitter for instructing control of flight of a flying body performs the following steps:
    获取用于对所述飞行体的朝向的控制进行指示的操作信息的步骤;Obtaining operation information for indicating control of the orientation of the flying body;
    当获取到所述操作信息时,获取所述发送器的朝向或位置的信息的步骤;以及a step of acquiring information of an orientation or a position of the transmitter when the operation information is acquired;
    基于所述发送器的朝向或位置来对所述飞行体的朝向的控制进行指示的步骤。A step of indicating control of the orientation of the flying body based on the orientation or position of the transmitter.
  16. 一种记录介质,其特征在于,其是计算机可读记录介质并记录有用于使对飞行体的飞行的控制进行指示的发送器执行以下步骤的程序:A recording medium characterized by being a computer readable recording medium and recording a program for causing a transmitter for instructing flight of a flying body to perform the following steps:
    获取用于对所述飞行体的朝向的控制进行指示的操作信息的步骤;Obtaining operation information for indicating control of the orientation of the flying body;
    当获取到所述操作信息时,获取所述发送器的朝向或位置的信息的步骤;以及a step of acquiring information of an orientation or a position of the transmitter when the operation information is acquired;
    基于所述发送器的朝向或位置来对所述飞行体的朝向的控制进行指示的步骤。A step of indicating control of the orientation of the flying body based on the orientation or position of the transmitter.
PCT/CN2019/079525 2018-03-30 2019-03-25 Transmitter, aerial vehicle, method for instructing flight control, flight control method, program, and storage medium WO2019184874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980003190.3A CN110785724A (en) 2018-03-30 2019-03-25 Transmitter, flight body, flight control instruction method, flight control method, program, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-069910 2018-03-30
JP2018069910A JP6921026B2 (en) 2018-03-30 2018-03-30 Transmitters, flying objects, flight control instruction methods, flight control methods, programs, and storage media

Publications (1)

Publication Number Publication Date
WO2019184874A1 true WO2019184874A1 (en) 2019-10-03

Family

ID=68059445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079525 WO2019184874A1 (en) 2018-03-30 2019-03-25 Transmitter, aerial vehicle, method for instructing flight control, flight control method, program, and storage medium

Country Status (3)

Country Link
JP (1) JP6921026B2 (en)
CN (1) CN110785724A (en)
WO (1) WO2019184874A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7428461B2 (en) 2020-01-21 2024-02-06 アルパイン株式会社 Unmanned aircraft system and flight control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205334106U (en) * 2015-11-30 2016-06-22 无锡觅睿恪科技有限公司 Remote controller for unmanned aerial vehicle
CN205353629U (en) * 2015-11-30 2016-06-29 无锡觅睿恪科技有限公司 Unmanned aerial vehicle uses novel remote controller
CN105992980A (en) * 2015-05-18 2016-10-05 深圳市大疆创新科技有限公司 Unmanned aerial vehicle control method and device based on headless mode
CN106227224A (en) * 2016-07-28 2016-12-14 零度智控(北京)智能科技有限公司 Flight control method, device and unmanned plane
JP2017228111A (en) * 2016-06-23 2017-12-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Unmanned aircraft, control method of unmanned aircraft and control program of unmanned aircraft

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854348B2 (en) * 2011-08-02 2016-02-09 株式会社マイスタジオ Remote control method and remote control system
JP6682379B2 (en) * 2015-08-06 2020-04-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Unmanned aerial vehicle, flight control method, flight control program and controller
JP6767802B2 (en) * 2015-11-30 2020-10-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Unmanned aerial vehicle and its flight control method
CN105717930A (en) * 2016-01-19 2016-06-29 深圳一电科技有限公司 Method, device and system for controlling drone
CN106406331A (en) * 2016-11-25 2017-02-15 广州亿航智能技术有限公司 Flight control method, device and system for aircraft
CN106774390A (en) * 2016-12-09 2017-05-31 深圳市道通智能航空技术有限公司 A kind of aircraft course control method, device and electronic equipment
CN106843266B (en) * 2016-12-30 2024-04-05 歌尔科技有限公司 Remote controller, orientation control system and azimuth indication method of aircraft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992980A (en) * 2015-05-18 2016-10-05 深圳市大疆创新科技有限公司 Unmanned aerial vehicle control method and device based on headless mode
CN205334106U (en) * 2015-11-30 2016-06-22 无锡觅睿恪科技有限公司 Remote controller for unmanned aerial vehicle
CN205353629U (en) * 2015-11-30 2016-06-29 无锡觅睿恪科技有限公司 Unmanned aerial vehicle uses novel remote controller
JP2017228111A (en) * 2016-06-23 2017-12-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Unmanned aircraft, control method of unmanned aircraft and control program of unmanned aircraft
CN106227224A (en) * 2016-07-28 2016-12-14 零度智控(北京)智能科技有限公司 Flight control method, device and unmanned plane

Also Published As

Publication number Publication date
JP2019179507A (en) 2019-10-17
CN110785724A (en) 2020-02-11
JP6921026B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
US11377211B2 (en) Flight path generation method, flight path generation system, flight vehicle, program, and storage medium
JP6878567B2 (en) 3D shape estimation methods, flying objects, mobile platforms, programs and recording media
CN110249281B (en) Position processing device, flight object, and flight system
JP6765512B2 (en) Flight path generation method, information processing device, flight path generation system, program and recording medium
JP6899846B2 (en) Flight path display methods, mobile platforms, flight systems, recording media and programs
US11082639B2 (en) Image display method, image display system, flying object, program, and recording medium
US11122209B2 (en) Three-dimensional shape estimation method, three-dimensional shape estimation system, flying object, program and recording medium
WO2018214155A1 (en) Method, device and system for device posture adjustment, and computer-readable storage medium
WO2019227289A1 (en) Time-lapse photography control method and device
US20210034052A1 (en) Information processing device, instruction method for prompting information, program, and recording medium
WO2019184874A1 (en) Transmitter, aerial vehicle, method for instructing flight control, flight control method, program, and storage medium
JP6329219B2 (en) Operation terminal and moving body
JP6856670B2 (en) Aircraft, motion control methods, motion control systems, programs and recording media
WO2022205294A1 (en) Method and apparatus for controlling unmanned aerial vehicle, unmanned aerial vehicle, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774289

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19774289

Country of ref document: EP

Kind code of ref document: A1