WO2019184762A1 - 波束失败的处理方法和终端 - Google Patents

波束失败的处理方法和终端 Download PDF

Info

Publication number
WO2019184762A1
WO2019184762A1 PCT/CN2019/078633 CN2019078633W WO2019184762A1 WO 2019184762 A1 WO2019184762 A1 WO 2019184762A1 CN 2019078633 W CN2019078633 W CN 2019078633W WO 2019184762 A1 WO2019184762 A1 WO 2019184762A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
beam failure
failure recovery
scell
recovery process
Prior art date
Application number
PCT/CN2019/078633
Other languages
English (en)
French (fr)
Inventor
陈力
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19777240.3A priority Critical patent/EP3780886A4/en
Priority to RU2020135270A priority patent/RU2756840C1/ru
Priority to CA3095360A priority patent/CA3095360C/en
Priority to UAA202006902A priority patent/UA127950C2/uk
Publication of WO2019184762A1 publication Critical patent/WO2019184762A1/zh
Priority to US17/035,080 priority patent/US12081388B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and a terminal for processing a beam failure.
  • the current beam failure recovery process includes: beam failure detection, new candidate beam identification, beam failure recovery request transmission, and base station response of the terminal monitoring beam failure recovery request. That is to say, in the current beam failure processing, as long as the beam fails, beam failure recovery is performed without considering other factors, and in practical applications, it is found that such beam failure processing may be wrong. Therefore, the processing performance of the terminal for beam failure is currently poor.
  • the embodiments of the present disclosure provide a method and a terminal for processing a beam failure, so as to solve the problem that the processing performance of the terminal for beam failure is relatively poor.
  • an embodiment of the present disclosure provides a method for processing a beam failure, which is applied to a terminal, including:
  • Determining a beam failure recovery event including: an abnormality occurs in a beam failure recovery process or beam failure recovery occurs in at least two cells;
  • a specific operation is performed according to the beam failure recovery event.
  • an embodiment of the present disclosure provides a terminal, including:
  • a determining module configured to determine a beam failure recovery event, where the beam failure event includes: an abnormality occurs during beam failure recovery or beam failure recovery occurs in at least two cells;
  • An execution module is configured to perform a specific operation according to the beam failure recovery event.
  • an embodiment of the present disclosure provides a terminal, including: a memory, a processor, and a program stored on the memory and executable on the processor, where the program is implemented by the processor.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a program, and when the program is executed by the processor, the beam failure processing method provided by the embodiment of the present disclosure is implemented. A step of.
  • a beam failure recovery event is determined, where the beam failure event includes: an abnormality occurs in a beam failure recovery process or beam failure recovery occurs in at least two cells; performing a specific operation according to the beam failure recovery event . Since the specific operation is performed according to the beam failure recovery event, the processing performance of the terminal for the beam failure can be improved.
  • FIG. 1 is a structural diagram of a network system to which an embodiment of the present disclosure is applicable;
  • FIG. 2 is a flowchart of a method for processing a beam failure according to an embodiment of the present disclosure
  • FIG. 3 is a structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 4 is a structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure.
  • the terminal includes a terminal and at least one cell, where the terminal may be a user equipment (User Equipment, UE) or Other terminal devices, such as mobile phones, tablet personal computers, laptop computers, personal digital assistants (PDAs), mobile Internet devices (MIDs), or wearable devices.
  • UE User Equipment
  • PDAs personal digital assistants
  • MIDs mobile Internet devices
  • a terminal device such as a device (Wearable Device), it should be noted that the specific type of the terminal is not limited in the embodiment of the present disclosure.
  • the terminal may be within the coverage of one or more cells and may simultaneously establish a connection with one or more cells.
  • the at least one cell may include a secondary cell (SCell), and may further include a primary cell, where the Scell may be an Scell in a Carrier Aggregation (CA) scenario, or may be a dual connectivity (Dual Connectivity, DC)
  • the Scell in the Master Cell Group (MCG) or the Secondary Cell Group (SCG) in the architecture.
  • the primary cell may be a primary cell (Pcell) in the CA scenario, or may be a Pcell in the MCG in the DC architecture, or may be a primary secondary cell (PScell) in the SCG, or may be A special cell (Spcial Cell, Spcell), in which both Pcell and PScell can be called Spcell.
  • the Scell and the primary cell may correspond to the same base station, or in some scenarios, the Scell and the primary cell may also correspond to different base stations, which is not limited. It should be noted that, in the accompanying drawings, at least one cell includes a Pcell and an Scell.
  • FIG. 2 is a flowchart of a method for processing a beam failure according to an embodiment of the present disclosure. The method is applied to a terminal, as shown in FIG. 2, and includes steps 201 to 202.
  • Step 201 Determine a beam failure recovery event, where the beam failure event includes: an abnormality occurs in a beam failure recovery process or beam failure recovery occurs in at least two cells.
  • the abnormality may occur during the beam failure recovery process, in the process of beam failure recovery, or during the trigger beam failure recovery process, where the abnormality may be a cell beam failure, or the abnormality may be a beam failure recovery. Blocked or ignored, etc., this is not limited.
  • the beam failure recovery of the at least two cells may be that at least two cells trigger beam failure recovery, or may be overlapped in a beam failure recovery process performed on at least two cells, and the like.
  • the foregoing determining the beam failure recovery event may be that the abnormality is detected when an abnormality occurs in the beam failure recovery process, for example, detecting a cell beam failure.
  • the determining the beam failure recovery event may be that the terminal determines that beam failure recovery occurs in at least two cells.
  • Step 202 Perform a specific operation according to the beam failure recovery event.
  • the performing the specific operation according to the beam failure recovery event may be performed by performing the operation corresponding to the beam failure recovery event, for example, the terminal pre-configures the correspondence between the beam failure recovery event and the operation, so that the correspondence may be Perform the specific actions above.
  • it may also be pre-defined in the protocol, for example: a predefined beam failure recovery event in the protocol and its corresponding specific operation.
  • performing a specific operation may be performed by the beam failure recovery event to trigger the specific operation.
  • the foregoing specific operations may include, but are not limited to, stopping the beam failure recovery process, reporting the first cell beam failure to the upper layer, performing another beam failure recovery, ignoring the occurrence of the abnormality, and not triggering the primary cell.
  • the beam failure recovery indication is for the upper layer, the upper layer does not trigger the radio link failure (RLF), does not start the radio link monitoring (RLM) or the timer corresponding to the RLF, or does not perform the out-of-step counting accumulation on the upper layer. and many more.
  • the timer corresponding to the RLM or the RLF may be an out-of-step timer T310.
  • the foregoing steps may be implemented to perform a specific operation according to the beam failure recovery event, so that the beam failure recovery is performed as long as the beam fails, and the other embodiments are not considered.
  • the embodiment of the present disclosure may improve the processing of the terminal for the beam failure. Performance, for example: can avoid some beam failure recovery that may be wrong, or avoid some wrong counting or timing.
  • the occurrence of the abnormality in the beam failure recovery process includes: when the first cell performs beam failure recovery, the first cell beam fails, or the beam is performed in the first cell. During the failure recovery process, the second cell beam fails.
  • the first cell beam failure may be: sending a preamble message (msg1), sending msg1, monitoring msg2, sending msg3, and listening to msg4.
  • msg1 preamble message
  • the first cell beam fails, that is, when at least one of msg1, msg2, msg3, and msg4 is transmitting or listening on the first cell, the first cell beam fails.
  • the second cell beam failure is not described in detail.
  • msg1, msg2, msg3, and msg4 are messages in a random access procedure, for example, a Contention-Free Random Access (CFRA) process or a Contention Based Random Access (Contention Based Random Access, CBRA) The message in the process.
  • CFRA Contention-Free Random Access
  • CBRA Contention Based Random Access
  • the beam failure recovery in the first cell may be a beam failure recovery on the first cell for the beam failure of the second cell.
  • the beam failure of the first cell may also be Beam failure recovery on the first cell.
  • the specific operation may include at least one of the following:
  • the first cell beam failure is ignored.
  • the beam failure recovery process that is being performed on the first cell is stopped, the beam failure recovery process that is being performed on the first cell is stopped, and the process is stopped.
  • the beam failure recovery process on the cell fails to improve the processing performance of the terminal for beam failure.
  • the first cell beam failure may be reported to the upper layer, so that the beam failure may be accurately detected.
  • the RLF may be triggered, or the out-of-synchronization count may be accumulated, or the timer corresponding to the RLM or the RLF may be started, so that the beam failure may be accurately detected.
  • the timer corresponding to the RLM or the RLF may be an out-of-step timer T310.
  • the beam failure recovery of the first cell beam failure may be performed on the first cell, and the ongoing beam failure recovery process on the first cell continues, so that beam failure recovery can be quickly implemented.
  • there are multiple RACH processes on the first cell that is, a Random Access Procedure.
  • the first cell beam failure may also be ignored, so that the beam failure recovery that can be performed in the first cell can be completed quickly, and the second cell beam failure recovery can be quickly completed, because the first cell is in progress.
  • Beam failure recovery may be a recovery for a second cell beam failure.
  • the foregoing neglecting the first cell beam failure may include the following:
  • a beam failure recovery procedure in which the first cell beam fails is not triggered on the first cell and the second cell.
  • the specific operation includes at least one of the following:
  • beam failure recovery is performed on the second cell.
  • the foregoing neglecting the second cell beam failure may include at least one of the following:
  • a beam failure recovery procedure in which the second cell beam fails is not triggered on the first cell and the second cell.
  • beam failure recovery of the second cell beam failure may also be performed, so that the second cell beam failure may be quickly recovered.
  • the beam failure recovery of the foregoing second cell beam failure may include the following:
  • the first cell is a primary cell, and the second cell is an Scell;
  • the first cell is an Scell, and the second cell is a primary cell; or
  • the first cell is an Scell
  • the second cell is another Scell.
  • the primary cell may include: at least one of a Pcell, a Pcell in the MCG, a PScell in the SCG, and a Spcell.
  • BFR Beam Failure Recovery
  • msg1 is being sent; msg1 has been sent, Monitoring msg2; is sending msg3; is monitoring msg4, that is, when at least one of msg1, msg2, msg3, and msg4 is being sent or listening on the Pcell,
  • the behavior of the UE includes at least one of the following:
  • Pcell+Scell refers to msg1, msg2.
  • Msg3 and msg4 may be sent and received on Pcell and SCell respectively);
  • the beam failure recovery on the Scell needs to be stopped. Specifically, the RACH process on the Scell needs to be stopped.
  • the upper layer is used for one of the following: triggering the RLF, performing the out-of-step counting out-of-step counter T3xx+1, and starting the timer corresponding to the RLM/RLF;
  • Beam failure recovery is performed on the Pcell, and the original beam failure recovery continues. At this point, there need to be multiple RACH processes on the Pcell;
  • Beam failure recovery is performed on the Pcell, and the original beam failure recovery fails or succeeds. There is no need to have multiple RACH processes on the Pcell at this time.
  • the behavior of the UE includes at least one of the following:
  • the UE ignores the beam failure of the Scell, and does not trigger the beam failure recovery process on the Scell. Specifically, the RACh process of beam failure recovery is not performed on the Scell;
  • the UE ignores the beam failure of the Scell, and does not trigger the beam failure recovery process on the Pcell. Specifically, the RACH process that does not perform beam failure recovery on the Pcell;
  • the UE ignores the beam failure of the Scell, and does not trigger the beam failure recovery process on the Pcell and the Scell. Specifically, the RACH process for beam failure recovery is not performed on the Pcell+Scell;
  • the beam failure recovery is performed on the Scell, and the original beam failure recovery on the Pcell continues. In this case, multiple RACH processes need to be performed on the Pcell and the Scell.
  • the beam failure recovery is performed on the Scell, and the original beam failure recovery on the Pcell fails or succeeds. In this case, there is no need to have multiple RACH processes on the Pcell and the Scell.
  • the foregoing is only a case where the first cell is a Pcell, and the second cell is an Scell.
  • the first cell is a Scell
  • the second cell is a Pcell, that is, in another scenario.
  • the Scell and the Pcell in the above example may be reversed, and details are not described herein.
  • the first cell may be a cell of the MCG
  • the second cell may be a cell of the SCG
  • the first cell may be a Pscell or a Spcell
  • the second cell is an Scell.
  • the first cell is a Pcell and the second cell is a Scell, and the same beneficial effect can be achieved.
  • the occurrence of the abnormality in the beam failure recovery process includes: before the first cell sends a preamble, the second cell generates a beam failure, where the preamble is in the a preamble in a beam failure recovery process performed by the first cell after a beam failure occurs in the first cell;
  • the beam failure recovery of the at least two cells includes: beam failure recovery occurs in both the first cell and the second cell.
  • the beam failure of the second cell may be that the first cell has a beam failure, and the second cell also fails to transmit a beam before the preamble is transmitted in the beam failure recovery process. For example, the recovery of the first cell beam failure is triggered, but the second cell has another beam failure before the preamble is sent.
  • the beam failure recovery may occur in the first cell and the second cell, where there is overlap between the first cell and the second cell, or both of the beams fail to recover.
  • the foregoing specific operations include at least one of the following:
  • the first cell is the primary cell
  • the second cell is the Scell
  • the first cell is the Scell
  • the second cell is the primary cell
  • the performing beam failure recovery of the primary cell on the primary cell may include: transmitting a preamble corresponding to a primary cell candidate beam (for example, a Pcell candidate beam) on the primary cell.
  • the performing beam failure recovery of the Scell on the primary cell may include: transmitting a preamble corresponding to an Scell candidate beam (eg, an Scell candidate beam) on the primary cell. In this way, the recovery of the beam failure of the primary cell and/or the Scell on the primary cell can be implemented.
  • the performing the beam failure recovery of the Scell on the Scell may include: transmitting a preamble corresponding to an Scell candidate beam (for example, an Scell candidate beam) on the Scell, where the foregoing is performed on the Scell.
  • the beam failure recovery of the cell may include: transmitting a preamble corresponding to a primary cell candidate beam (eg, a Pcell candidate beam) on the Scell. In this way, the recovery of the beam failure of the primary cell and/or the Scell on the Scell can be implemented.
  • the beam failure recovery of the cell is performed by using the CFRA resource to perform beam failure recovery of the cell, and the beam failure recovery is quickly implemented.
  • the random access resource may be a physical random access channel (PRACH) resource.
  • beam failure recovery may be performed on the primary cell and the Scell at the same time, or beam failure recovery of the primary cell may be performed on the primary cell, after the beam failure recovery ends, in the Scell The beam failure recovery of the Scell is performed, so that beam failure recovery can be completed quickly.
  • the performing beam failure recovery of the primary cell on the primary cell includes:
  • the beam failure recovery of the primary cell is performed on the primary cell.
  • Performing beam failure recovery of the Scell on the Scell including:
  • the beam failure recovery of the Scell is performed on the Scell.
  • the beam failure recovery of the primary cell can be performed on the primary cell, so that the beam failure of the primary cell can be quickly implemented.
  • the random access resource corresponding to the candidate beam is used as the CFRA resource in the multiple cells, the beam failure recovery of the Scell can be performed on the Scell, so that the beam failure recovery of the Scell can be quickly implemented.
  • the foregoing specific operations may include: performing beam failure recovery of the primary cell on the primary cell, performing beam failure recovery of the Scell on the primary cell, performing beam failure recovery of the cell on the cell with the specific candidate beam, Performing beam failure recovery of the Scell on the Scell, performing beam failure recovery of the primary cell on the Scell, or performing beam failure recovery of the primary cell on the primary cell, where the beam failure recovery ends. Afterwards, beam failure recovery of the Scell is performed on the Scell.
  • the specific operation is described.
  • the uplink transmit power of the terminal cannot support sending a preamble on two cells, only one cell in the specific operation is performed. Beam failure recovery. In this way, it is possible to perform beam failure recovery on only one cell in the above specific operation, so that beam failure of one cell can be quickly recovered.
  • the foregoing specific operations may include: performing beam failure recovery of the primary cell on the primary cell, performing beam failure recovery of the Scell on the primary cell, performing beam failure recovery of the cell on the cell with the specific candidate beam, Performing beam failure recovery of the Scell on the Scell, performing beam failure recovery of the primary cell on the Scell, or performing beam failure recovery of the primary cell on the primary cell, where the beam failure recovery ends. Afterwards, beam failure recovery of the Scell is performed on the Scell.
  • the specific operation is described.
  • the specific operation if the uplink transmit power of the terminal supports sending a preamble on two cells, the specific operation is performed on two cells simultaneously. Beam failure recovery. In this way, beam failure of two cells can be completed quickly, for example, beam failure recovery is performed on the primary cell and the Scell at the same time.
  • Beam failure recovery occurs simultaneously between Pcell and Scell (or PScell/SpCell and Scell, or cell on MCG and Cell on SCG), or one cell fails and another cell is sent before preamble is sent during beam failure recovery.
  • a beam failure also occurs, in which case the behavior of the UE includes one of the following:
  • Performing beam failure recovery of the Pcell on the Pcell including transmitting a preamble corresponding to the Pcell candidate beam on the Pcell;
  • the beam failure recovery of the Pcell is performed first, and the beam failure recovery of the Pcell fails or the Scell beam failure recovery is performed after the success of the beam failure. In this case, there is no need to have multiple RACH processes on the Pcell and the Scell.
  • the method further includes blocking/ignoring beam failure recovery triggered by another cell after performing beam failure recovery of the corresponding cell. Or, for the above 1-7, further comprising selecting any one of 1-7 when the uplink transmission power of the UE is not enough to transmit a preamble on the two cells. For the above 8, further comprising allowing the UE behavior of 8 when the uplink transmission power of the UE is sufficient to transmit a preamble on the two cells, otherwise any one of 1-7 and 9 is allowed.
  • the foregoing abnormality in the beam failure recovery process includes: the beam failure recovery on the primary cell is blocked or ignored, and the specific operation includes canceling at least one of the following operations:
  • the upper layer triggers the RLF
  • the upper layer performs the out-of-step counting.
  • the above-mentioned cancellation of the at least one operation may also be understood as not performing the above-mentioned one less operation, for example, the beam failure recovery failure indication of the primary cell is not triggered, the upper layer and the upper layer are not triggered by the RLF, and the upper layer does not start the RLM/RLF.
  • the timer or the upper layer does not perform out-of-sync counting.
  • the primary cell may be at least one of a Pcell, a Pscell, and a Spcell.
  • the foregoing method may be applied to a 5G system or a 4G system, but is not limited thereto, as long as substantially the same function can be implemented, and is applicable to other communication systems, for example, a 6G system or other application beam failure detection or beam can be applied. Failure to recover the communication system and so on.
  • a beam failure recovery event is determined, where the beam failure event includes: an abnormality occurs in a beam failure recovery process or beam failure recovery occurs in at least two cells; performing a specific operation according to the beam failure recovery event . Since the specific operation is performed according to the beam failure recovery event, the processing performance of the terminal for the beam failure can be improved.
  • FIG. 3 is a structural diagram of a terminal according to an embodiment of the present disclosure. As shown in FIG. 3, the terminal 300 includes:
  • the determining module 301 is configured to determine a beam failure recovery event, where the beam failure event includes: an abnormality occurs during beam failure recovery or beam failure recovery occurs in at least two cells;
  • the executing module 302 is configured to perform a specific operation according to the beam failure recovery event.
  • the abnormality occurs in the beam failure recovery process, in the process of performing beam failure recovery in the first cell, the first cell beam fails, or in the process of performing beam failure recovery in the first cell, The second cell beam fails.
  • the specific operation includes at least one of the following:
  • the specific operation includes at least one of the following:
  • beam failure recovery is performed on the second cell.
  • the RLF is triggered, or the out-of-synchronization count is accumulated, or the timer corresponding to the RLM or the RLF is started.
  • the ignoring the second cell beam failure includes at least one of the following:
  • the failure to ignore the first cell beam includes the following:
  • the beam failure recovery for performing the second cell beam failure includes the following:
  • the first cell is a primary cell
  • the second cell is an Scell
  • the first cell is an Scell, and the second cell is a primary cell; or
  • the first cell is an Scell
  • the second cell is another Scell.
  • the primary cell includes: at least one of a Pcell, a Pcell in the MCG, a PScell in the SCG, and a Spcell.
  • the abnormality occurs in the beam failure recovery process, where the second cell generates a beam failure before the first cell sends the preamble, where the preamble is after the beam failure occurs in the first cell.
  • the beam failure recovery of the at least two cells includes: beam failure recovery occurs in both the first cell and the second cell.
  • the specific operation includes at least one of the following:
  • the first cell is the primary cell
  • the second cell is the Scell
  • the first cell is the Scell
  • the second cell is the primary cell
  • the performing beam failure recovery of the primary cell on the primary cell includes:
  • the beam failure recovery of the primary cell is performed on the primary cell.
  • Performing beam failure recovery of the Scell on the Scell including:
  • the beam failure recovery of the Scell is performed on the Scell.
  • the uplink transmit power of the terminal supports transmitting a preamble on two cells, beam failure recovery on two cells is simultaneously performed in the specific operation.
  • the occurrence of the abnormality in the beam failure recovery process includes: the beam failure recovery on the primary cell is blocked or ignored, and the specific operation includes canceling at least one of the following operations:
  • the upper layer triggers the RLF
  • the upper layer performs the out-of-step counting.
  • the terminal provided by the embodiment of the present disclosure can implement various processes implemented by the terminal in the method embodiment of FIG. 2 (to avoid repetition, and details are not described herein again), and the processing performance of the terminal for beam failure can be improved.
  • FIG. 4 is a schematic structural diagram of hardware of a terminal that implements various embodiments of the present disclosure
  • the terminal 400 includes, but is not limited to, a radio frequency unit 401, a network module 402, an audio output unit 403, an input unit 404, a sensor 405, a display unit 406, a user input unit 407, an interface unit 408, a memory 409, a processor 410, and a power supply. 411 and other components.
  • the terminal structure shown in FIG. 4 does not constitute a limitation to the terminal, and the terminal may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, and a pedometer.
  • the processor 410 is configured to determine a beam failure recovery event, where the beam failure event includes: an abnormality occurs during beam failure recovery or beam failure recovery occurs in at least two cells;
  • a specific operation is performed according to the beam failure recovery event.
  • the abnormality occurs in the beam failure recovery process, in the process of performing beam failure recovery in the first cell, the first cell beam fails, or in the process of performing beam failure recovery in the first cell, The second cell beam fails.
  • the specific operation includes at least one of the following:
  • the specific operation includes at least one of the following:
  • beam failure recovery is performed on the second cell.
  • the radio link fails the RLF, or performs an out-of-synchronization count accumulation, or starts a radio link to monitor a timer corresponding to the RLM or the RLF;
  • the ignoring the second cell beam failure includes at least one of the following:
  • the failure to ignore the first cell beam includes the following:
  • the beam failure recovery for performing the second cell beam failure includes the following:
  • the first cell is a primary cell
  • the second cell is a secondary cell Scell
  • the first cell is an Scell, and the second cell is a primary cell; or
  • the first cell is an Scell
  • the second cell is another Scell.
  • the primary cell includes: at least one of a Pcell, a Pcell in an MCG, a PScell in an SCG, and a Spcell.
  • the abnormality occurs in the beam failure recovery process, where the second cell generates a beam failure before the first cell sends the preamble, where the preamble is after the beam failure occurs in the first cell.
  • the beam failure recovery of the at least two cells includes: beam failure recovery occurs in both the first cell and the second cell.
  • the specific operation includes at least one of the following:
  • the first cell is the primary cell
  • the second cell is the Scell
  • the first cell is the Scell
  • the second cell is the primary cell
  • the performing beam failure recovery of the primary cell on the primary cell includes:
  • the beam failure recovery of the primary cell is performed on the primary cell.
  • Performing beam failure recovery of the Scell on the Scell including:
  • the beam failure recovery of the Scell is performed on the Scell.
  • the uplink transmit power of the terminal supports transmitting a preamble on two cells, beam failure recovery on two cells is simultaneously performed in the specific operation.
  • the occurrence of the abnormality in the beam failure recovery process includes: the beam failure recovery on the primary cell is blocked or ignored, and the specific operation includes canceling at least one of the following operations:
  • the upper layer triggers the RLF
  • the upper layer performs the out-of-step counting.
  • the above terminal can improve the processing performance of the terminal for beam failure.
  • the radio frequency unit 401 can be used for receiving and transmitting signals during the transmission and reception of information or during a call, and specifically, after receiving downlink data from the base station, processing the data to the processor 410; The uplink data is sent to the base station.
  • radio frequency unit 401 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio unit 401 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides wireless broadband Internet access to the user through the network module 402, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 403 can convert the audio data received by the radio frequency unit 401 or the network module 402 or stored in the memory 409 into an audio signal and output as a sound. Moreover, the audio output unit 403 can also provide audio output (eg, call signal reception sound, message reception sound, etc.) associated with a particular function performed by the terminal 400.
  • the audio output unit 403 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 404 is for receiving an audio or video signal.
  • the input unit 404 may include a graphics processing unit (GPU) 4041 and a microphone 4042 that images an still picture or video obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode.
  • the data is processed.
  • the processed image frame can be displayed on the display unit 406.
  • Image frames processed by graphics processor 4041 may be stored in memory 409 (or other storage medium) or transmitted via radio unit 401 or network module 402.
  • the microphone 4042 can receive sound and can process such sound as audio data.
  • the processed audio data can be converted to a format output that can be transmitted to the mobile communication base station via the radio unit 401 in the case of a telephone call mode.
  • Terminal 400 also includes at least one type of sensor 405, such as a light sensor, motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 4061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 4061 and/or when the terminal 400 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • sensor 405 may also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be described here.
  • the display unit 406 is for displaying information input by the user or information provided to the user.
  • the display unit 406 can include a display panel 4061.
  • the display panel 4061 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 407 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 407 includes a touch panel 4071 and other input devices 4072.
  • the touch panel 4071 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 4071 or near the touch panel 4071. operating).
  • the touch panel 4071 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 410 receives the commands from the processor 410 and executes them.
  • the touch panel 4071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 407 may also include other input devices 4072.
  • the other input devices 4072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, and a joystick, which are not described herein.
  • the touch panel 4071 can be overlaid on the display panel 4061.
  • the touch panel 4071 detects a touch operation thereon or nearby, the touch panel 4071 transmits to the processor 410 to determine the type of the touch event, and then the processor 410 according to the touch.
  • the type of event provides a corresponding visual output on display panel 4061.
  • the touch panel 4071 and the display panel 4061 are two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 4071 can be integrated with the display panel 4061.
  • the input and output functions of the terminal are implemented, and are not limited herein.
  • the interface unit 408 is an interface in which an external device is connected to the terminal 400.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the interface unit 408 can be configured to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more components within the terminal 400 or can be used at the terminal 400 and external devices Transfer data between.
  • Memory 409 can be used to store software programs as well as various data.
  • the memory 409 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 409 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 410 is a control center of the terminal, which connects various parts of the entire terminal using various interfaces and lines, and executes by executing or executing software programs and/or modules stored in the memory 409, and calling data stored in the memory 409.
  • the processor 410 may include one or more processing units; optionally, the processor 410 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, an application, etc., and a modulation solution
  • the processor mainly handles wireless communication. It can be understood that the above modem processor may not be integrated into the processor 410.
  • the terminal 400 may further include a power source 411 (such as a battery) for supplying power to the various components.
  • a power source 411 such as a battery
  • the power source 411 may be logically connected to the processor 410 through the power management system to manage charging, discharging, and power management through the power management system. And other functions.
  • the terminal 400 includes some functional modules not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 410, a memory 409, a computer program stored on the memory 409 and executable on the processor 410, when the computer program is executed by the processor 410.
  • a terminal including a processor 410, a memory 409, a computer program stored on the memory 409 and executable on the processor 410, when the computer program is executed by the processor 410.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements each of the embodiments of the beam failure configuration method provided by the embodiments of the present disclosure. Process, and can achieve the same technical effect, in order to avoid duplication, no longer repeat here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Thyristors (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

本公开提供一种波束失败的处理方法和终端,该方法包括:确定波束失败恢复事件,波束失败事件包括:在波束失败恢复过程中出现异常或者至少两个小区均发生波束失败恢复;根据波束失败恢复事件,执行特定操作。

Description

波束失败的处理方法和终端
相关申请的交叉引用
本申请主张在2018年3月28日在中国提交的中国专利申请号No.201810266175.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种波束失败的处理方法和终端。
背景技术
在第五代(5th generation,5G)通信系统中,由于链路的脆弱性,高频通信中会出现波束失败的情况。目前是通过计数器和计时器中的至少一项来统计波束失败实例(beam failure instance),以实现波束失败检测的。目前波束失败恢复过程包括:波束失败检测,新候选波束识别,波束失败恢复请求发送,以及终端监测波束失败恢复请求的基站响应。也就是说,在目前的波束失败处理中,只要波束失败,则进行波束失败恢复,而未考虑其他因素,且在实际应用中发现,这种波束失败的处理方式可能会出现错误。因此,目前终端针对波束失败的处理性能比较差。
发明内容
本公开实施例提供一种波束失败的处理方法和终端,以解决终端针对波束失败的处理性能比较差的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种波束失败的处理方法,应用于终端,包括:
确定波束失败恢复事件,所述波束失败事件包括:在波束失败恢复过程中出现异常或者至少两个小区均发生波束失败恢复;
根据所述波束失败恢复事件,执行特定操作。
第二方面,本公开实施例提供了一种终端,包括:
确定模块,用于确定波束失败恢复事件,所述波束失败事件包括:在波束失败恢复过程中出现异常或者至少两个小区均发生波束失败恢复;
执行模块,用于根据所述波束失败恢复事件,执行特定操作。
第三方面,本公开实施例提供了一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现本公开实施例提供的波束失败的处理方法中的步骤。
第四方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现本公开实施例提供的波束失败的处理方法的步骤。
在本公开实施例中,确定波束失败恢复事件,所述波束失败事件包括:在波束失败恢复过程中出现异常或者至少两个小区均发生波束失败恢复;根据所述波束失败恢复事件,执行特定操作。由于会根据所述波束失败恢复事件,执行特定操作,从而可以提高终端针对波束失败的处理性能。
附图说明
图1是本公开实施例可应用的一种网络系统的结构图;
图2是本公开实施例提供的一种波束失败的处理方法的流程图;
图3是本公开实施例提供的一种终端的结构图;
图4是本公开实施例提供的另一种终端的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
请参见图1,图1是本公开实施例可应用的一种网络系统的结构图,如图1所示,包括终端和至少一个小区,其中,终端可以是用户设备(User Equipment,UE)或者其他终端设备,例如:手机、平板电脑(Tablet Personal  Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定终端的具体类型。终端可以处于一个或者多个小区的覆盖范围内,且同时可以与一个或者多个小区建立连接。另外,上述至少一个小区可以包括辅小区(Secondary Cell,SCell),还可以包括主小区,其中,Scell可以是载波聚合(Carrier Aggregation,CA)场景中的Scell,或者可以是双连接(Dual Connectivity,DC)架构中主小区组(Master Cell Group,MCG)或者辅小区组(Secondary Cell Group,SCG)中的Scell。而上述主小区可以是CA场景中的主小区(Primary Cell,Pcell),或者可以是DC架构中MCG中的Pcell,或者可以是SCG中的主辅小区(Primary Secondary Cell,PScell),或者可以是特殊小区(Sepcial Cell,Spcell),其中,Pcell和PScell均可以称作Spcell。另外,Scell和主小区可以对应同一个基站,或者在一些场景中,Scell和主小区也可以对应不同的基站,对此不作限定。需要说明的是,附图中,以至少一个小区包括Pcell和Scell进行举例。
请参见图2,图2是本公开实施例提供的一种波束失败的处理方法的流程图,该方法应用于终端,如图2所示,包括步骤201至202。
步骤201、确定波束失败恢复事件,所述波束失败事件包括:在波束失败恢复过程中出现异常或者至少两个小区均发生波束失败恢复。
其中,上述在波束失败恢复过程中出现异常可以是,在波束失败恢复过程中,或者触发波束失败恢复过程中,出现异常,该异常可以是小区波束失败,或者上述出现异常可以是波束失败恢复被阻止或者被忽略等等,对此不作限定。
而上述至少两个小区均发生波束失败恢复可以是,至少两个小区均触发了波束失败恢复,或者可以是在至少两个小区上进行的波束失败恢复过程中存在重叠的时间等等。
而上述确定波束失败恢复事件可以是,在波束失败恢复过程中出现异常时,检测到该异常,例如:检测到某小区波束失败。或者上述确定波束失败恢复事件可以是,终端确定至少两个小区均发生波束失败恢复。
步骤202、根据所述波束失败恢复事件,执行特定操作。
其中,上述根据所述波束失败恢复事件,执行特定操作可以是,执行与上述波束失败恢复事件对应的操作,例如:终端预先配置好波束失败恢复事件与操作的对应关系,从而可以根据该对应关系执行上述特定操作。当然,也可以是协议中预先定义的,例如:协议中预先定义的波束失败恢复事件和其对应的特定操作。或者上述根据所述波束失败恢复事件,执行特定操作可以是,通过该波束失败恢复事件来触发上述特定操作。
本公开实施例中,上述特定操作可以包括但不限于:停止波束失败恢复过程、向上层上报所述第一小区波束失败、进行另一个波束失败恢复、忽略发生的异常、不触发所述主小区的波束失败恢复指示给上层、上层不触发无线链路失败(Radio Link Failure,RLF)、不启动无线链路监测(Radio Link Monitoring,RLM)或者RLF对应的定时器或者不上层进行失步计数累加等等。其中,上述RLM或者RLF对应的定时器可以是失步计时器T310。
通过上述步骤可以实现根据所述波束失败恢复事件,执行特定操作,从而相比相关技术只要波束失败,则进行波束失败恢复,而未考虑其他因素,本公开实施例可以提高终端针对波束失败的处理性能,例如:可以避免一些可能会出现错误的波束失败恢复,或者避免一些错误的计数或者计时等。
作为一种可选的实施方式,所述在波束失败恢复过程中出现异常包括:在第一小区进行波束失败恢复过程中,所述第一小区波束失败,或者,在所述第一小区进行波束失败恢复过程中,第二小区波束失败。
其中,上述在第一小区进行波束失败恢复过程中,所述第一小区波束失败可以是,正在发送preamble消息(msg1)、已发送msg1、正在监听(monitoring)msg2、正在发送msg3和正在监听msg4中至少一项在进行时,第一小区波束失败,也就是说有msg1、msg2、msg3和msg4其中至少一项正在第一小区上发送或者监听时,第一小区波束失败。在所述第一小区进行波束失败恢复过程中,第二小区波束失败不作赘述。需要说明的是,上述msg1、msg2、msg3和msg4为随机接入过程中的消息,例如:非竞争随机接入(Contention-Free Random Access,CFRA)过程或者竞争随机接入(Contention Based Random Access,CBRA)过程中的消息。
另外,上述在第一小区进行波束失败恢复可以是为第二小区的波束失败而在第一小区上进行的波束失败恢复,当然,在一些场景中,也可以是为第一小区的波束失败而在第一小区上进行的波束失败恢复。
可选的,若在第一小区进行波束失败恢复过程中,所述第一小区波束失败,则所述特定操作可以包括如下至少一项:
停止在所述第一小区上正在进行的波束失败恢复过程;
停止在所述第二小区上正在进行的波束失败恢复过程;
停止在所述第一小区上和第二小区上正在进行的波束失败恢复过程;
在所述第一小区上进行所述第一小区波束失败的波束失败恢复;
向上层上报所述第一小区波束失败;
在所述第一小区上进行所述第一小区波束失败的波束失败恢复,且在所述第一小区上正在进行的波束失败恢复过程继续进行;
在所述第一小区上正在进行的波束失败恢复过程结束后,在所述第一小区上进行所述第一小区波束失败的波束失败恢复;
忽略所述第一小区波束失败。
该实施方式中,可以实现若第一小区波束失败,则停止在所述第一小区上正在进行的波束失败恢复过程,停止在所述第一小区上正在进行的波束失败恢复过程,停止在所述第二小区上正在进行的波束失败恢复过程,以及停止在所述第一小区上和第二小区上正在进行的波束失败恢复过程中的至少一项,这样可以避免在第一小区和第二小区上波束失败恢复过程失败,以提高终端针对波束失败的处理性能。
另外,由于若第一小区波束失败,则可以向上层上报所述第一小区波束失败,从而可以准确地检测到波束失败。可选的,若向上层上报所述第一小区波束失败,则可以触发RLF,或者,可以进行失步计数累加,或者,可以启动RLM或者RLF对应的定时器,从而可以准确地检测到波束失败。其中,上述RLM或者RLF对应的定时器可以是失步计时器T310。
另外,可以在所述第一小区上进行所述第一小区波束失败的波束失败恢复,且在所述第一小区上正在进行的波束失败恢复过程继续进行,这样可以快速地实现波束失败恢复。当然,该情况下,需要在第一小区上有多个RACH 过程,即,随机接入过程(Random Access Procedure)。以及还可以在所述第一小区上正在进行的波束失败恢复过程结束后,在所述第一小区上进行所述第一小区波束失败的波束失败恢复,这样可以实现及时在进行波束失败的恢复,该情况下,不需要在第一小区上有多个RACH过程。
另外,还可以忽略所述第一小区波束失败,从而可以在第一小区正在进行的波束失败恢复可以快速完成,进而可以快速完成第二小区波束失败的恢复,因为,在第一小区正在进行的波束失败恢复可以是为第二小区波束失败而进行的恢复。可选的,上述忽略所述第一小区波束失败可以包括如下一项:
不在所述第一小区上触发波束失败恢复;
不在所述第二小区上触发所述第一小区波束失败的波束失败恢复流程;
不在所述第一小区和所述第二小区上触发所述第一小区波束失败的波束失败恢复流程。
可选的,若在第一小区进行波束失败恢复过程中,所述第二小区波束失败,则所述特定操作包括如下至少一项:
忽略所述第二小区波束失败;
进行所述第二小区波束失败的波束失败恢复;
在所述第二小区上进行波束失败恢复,且在所述第一小区上正在进行的波束失败恢复过程继续进行;
在所述第一小区上正在进行的波束失败恢复过程结束后,在所述第二小区上进行波束失败恢复。
该实施方式中,可以实现忽略所述第二小区波束失败,从而可以在第一小区正在进行的波束失败恢复可以快速完成,进而可以快速完成第一小区波束失败的恢复,因为,在第一小区正在进行的波束失败恢复可以是为第一小区波束失败而进行的恢复。可选的,上述忽略所述第二小区波束失败可以包括如下至少一项:
不在所述第二小区上触发波束失败恢复流程;
不在所述第一小区上触发所述第二小区波束失败的波束失败恢复流程;
不在所述第一小区和所述第二小区上触发所述第二小区波束失败的波束失败恢复流程。
另外,该实施方式中,还可以进行所述第二小区波束失败的波束失败恢复,从而可以实现快速恢复第二小区波束失败。可选的,上述进行所述第二小区波束失败的波束失败恢复可以包括如下一项:
在所述第一小区上触发所述第二小区波束失败的波束失败恢复流程;
在所述第二小区上触发所述第二小区波束失败的波束失败恢复流程;
在所述第一小区和所述第二小区所述第二小区波束失败的波束失败恢复流程。
可选的,本公开实施例中,所述第一小区为主小区,所述第二小区为Scell;或者
所述第一小区为Scell,所述第二小区为主小区;或者
所述第一小区为Scell,所述第二小区为另一个Scell。
进一步,所述主小区可以包括:Pcell、MCG中的Pcell、所述SCG中的PScell和Spcell中的至少一项。
下面以第一小区为Pcell对上述实施方式进行举例说明:
当Pcell上正在进行波束失败恢复(Beam Failure Recovery,BFR)时(包括Pcell的波束失败(Beam Failure,BF),或者Scell的BF),比如如下之一情况:正在发送msg1;已发送msg1,正在monitoring msg2;正在发送msg3;正在monitoring msg4,即,有msg1、msg2、msg3和msg4其中至少一项正在Pcell上发送或者监听时,
此时,如果Pcell波束失败,UE的行为包括如下至少一项:
需要停止Pcell上正在进行的波束失败恢复(无论是Pcell波束失败还是Scell波束失败),具体地,需要停止Pcell上的RACH过程或者Pcell+Scell上的RACH过程(Pcell+Scell是指msg1、msg2、msg3和msg4可能分别在Pcell和SCell上收发);
需要停止Scell上正在进行的波束失败恢复,具体地,需要停止Scell上的RACH过程;
进一步,可以将此失败指示上层。上层用于如下之一:触发RLF,进行失步计数失步计数器T3xx+1,启动RLM/RLF对应的定时器;
在Pcell上进行波束失败恢复,且原波束失败恢复继续进行。此时需要在 Pcell上有多个RACH过程;
在Pcell上进行波束失败恢复,且等原波束失败恢复失败或者成功后再进行。此时不需要在Pcell上有多个RACH过程。
此时,如果Scell波束失败,UE的行为包括如下至少一项:
UE忽略Scell的波束失败,不在Scell上触发波束失败恢复流程,具体地,不在Scell上进行波束失败恢复的RACh过程;
UE忽略Scell的波束失败,不在Pcell上触发波束失败恢复流程,具体地,不在Pcell上进行波束失败恢复的RACH过程;
UE忽略Scell的波束失败,不在Pcell和Scell上触发波束失败恢复流程,具体地,不在Pcell+Scell上进行波束失败恢复的RACH过程;
在Scell上进行波束失败恢复,且Pcell上原波束失败恢复继续进行,此时需要在Pcell上和Scell上有多个RACH过程;
在Scell上进行波束失败恢复,且等Pcell上原波束失败恢复失败或者成功后再进行,此时不需要在Pcell上和Scell上有多个RACH过程。
当然,上述仅是以第一小区为Pcell,第二小区为Scell进行举例,本公开实施例中,还可以是第一小区为Scell,第二小区为Pcell,也就说,在另一个场景中可以将上述举例中的Scell和Pcell对调,此处不作赘述。当然,在另一些场景,上述第一小区可以为MCG的cell,第二小区可以为SCG的cell,或者在其他场景中,上述第一小区可以为Pscell或者Spcell,而第二小区为Scell。关于这些场景,此处不作赘述,具体可以参见上述第一小区为Pcell,第二小区为Scell的相应说明,且可以达到相同有益效果。
作为另一种可选的实施方式,所述在波束失败恢复过程中出现异常包括:在第一小区发送前导码(preamble)之前,第二小区发生波束失败,其中,所述前导码为在所述第一小区发生波束失败后,在所述第一小区进行波束失败恢复过程中的前导码;
所述至少两个小区均发生波束失败恢复包括:所述第一小区和所述第二小区均发生波束失败恢复。
其中,上述在第一小区发送前导码之前,第二小区发生波束失败可以是,第一小区发生波束失败,且在进行波束失败恢复过程中发送前导码之前,第 二小区也发生波束失败。例如:触发了针对第一小区波束失败的恢复,但还未发送前导码之前,第二小区又发生了波束失败。
而上述第一小区和所述第二小区均发生波束失败恢复可以是,第一小区和第二小区发生的波束失败恢复之间存在重叠的时间,或者二者同时发生了波束失败恢复。
可选的,该实施方式中,上述特定操作包括如下至少一项:
在主小区上进行主小区的波束失败恢复;
在所述主小区上进行Scell的波束失败恢复;
在有特定候选波束的小区上进行该小区的波束失败恢复,所述特定候选波束对应的随机接入资源为CFRA资源;
在所述Scell上进行所述Scell的波束失败恢复;
在所述Scell上进行所述主小区的波束失败恢复;
同时在所述主小区和所述Scell上进行波束失败恢复;
在所述主小区上进行所述主小区的波束失败恢复,在该波束失败恢复结束后,在所述Scell上进行所述Scell的波束失败恢复;
其中,所述第一小区为所述主小区,所述第二小区为所述Scell,或者,所述第一小区为所述Scell,所述第二小区为所述主小区。
上述在主小区上进行主小区的波束失败恢复可以包括:在主小区上发送对应主小区候选波束(例如:Pcell candidate beam)的前导码(preamble)。而上述在所述主小区上进行Scell的波束失败恢复可以包括:在主小区上发送对应Scell候选波束(例如:Scell candidate beam)的前导码(preamble)。这样可以实现在主小区上进行主小区和/或Scell的波束失败的恢复。
而上述在所述Scell上进行所述Scell的波束失败恢复可以包括:在Scell上发送对应Scell候选波束(例如:Scell candidate beam)的前导码(preamble),上述在所述Scell上进行所述主小区的波束失败恢复可以包括:在Scell上发送对应主小区候选波束(例如:Pcell candidate beam)的前导码(preamble)。这样可以实现在Scell上进行主小区和/或Scell的波束失败的恢复。
而通过上述在有特定候选波束的小区上进行该小区的波束失败恢复可以实现使用CFRA资源进行该小区的波束失败恢复,快速实现波束失败恢复。 其中,上述随机接入资源可以是物理随机接入信道(Physical Random Access Channel,PRACH)资源。
另外,还可以实现同时在所述主小区和所述Scell上进行波束失败恢复,或者在所述主小区上进行所述主小区的波束失败恢复,在该波束失败恢复结束后,在所述Scell上进行所述Scell的波束失败恢复,从而可以实现快速完成波束失败恢复。
需要说明的是,本公开实施例中,波束失败恢复结束可以存在两种情况,一种波束失败恢复失败,另一种波束失败恢复成功。
可选的,所述在主小区上进行主小区的波束失败恢复,包括:
若存在多个小区上均有候选波束对应的随机接入资源为CFRA资源,则在主小区上进行主小区的波束失败恢复;
所述在所述Scell上进行所述Scell的波束失败恢复,包括:
若存在多个小区上均有候选波束对应的随机接入资源为CFRA资源,则在所述Scell上进行所述Scell的波束失败恢复。
该实施方式中,可以实现在多个小区上均有候选波束对应的随机接入资源为CFRA资源,则可以在主小区上进行主小区的波束失败恢复,从而可以快速实现对主小区的波束失败的恢复。以及可以实现在多个小区上均有候选波束对应的随机接入资源为CFRA资源,则可以在所述Scell上进行所述Scell的波束失败恢复,从而可以快速实现对Scell的波束失败的恢复。
可选的,在上述描述特定操作的实施方式,在上述特定操作中,若执行一个小区上的波束失败恢复,则忽略另一个小区上的波束失败或者阻止另一个小区上的波束失败恢复。这样可以实现在上述特定操作时,只进行一个小区上的波束失败恢复,从而可以实现快速恢复一个小区的波束失败。例如:上述特定操作可以包括:在主小区上进行主小区的波束失败恢复、在所述主小区上进行Scell的波束失败恢复、在有特定候选波束的小区上进行该小区的波束失败恢复、在所述Scell上进行所述Scell的波束失败恢复、在所述Scell上进行所述主小区的波束失败恢复或者在所述主小区上进行所述主小区的波束失败恢复,在该波束失败恢复结束后,在所述Scell上进行所述Scell的波束失败恢复。
可选的,在上述描述特定操作的实施方式,在上述特定操作中,若所述终端的上行发射功率无法支持在两个小区上发送前导码,则所述特定操作中只进行一个小区上的波束失败恢复。这样可以实现在上述特定操作时,只进行一个小区上的波束失败恢复,从而可以实现快速恢复一个小区的波束失败。例如:上述特定操作可以包括:在主小区上进行主小区的波束失败恢复、在所述主小区上进行Scell的波束失败恢复、在有特定候选波束的小区上进行该小区的波束失败恢复、在所述Scell上进行所述Scell的波束失败恢复、在所述Scell上进行所述主小区的波束失败恢复或者在所述主小区上进行所述主小区的波束失败恢复,在该波束失败恢复结束后,在所述Scell上进行所述Scell的波束失败恢复。
可选的,在上述描述特定操作的实施方式,在上述特定操作中,若所述终端的上行发射功率支持在两个小区上发送前导码,则所述特定操作中同时进行两个小区上的波束失败恢复。这样可以实现快速完成两个小区的波束失败,例如:同时在所述主小区和所述Scell上进行波束失败恢复。
下面,以Pcell和Scell对上述描述特定操作的实施方式进行举例说明:
当Pcell和Scell(或者PScell/SpCell和Scell,或者MCG上的cell和SCG上的Cell)上同时发生波束失败恢复,或者一者发生波束失败且在进行波束失败恢复过程中发送preamble之前另一个cell也发生了波束失败,此时UE的行为包括如下之一:
1.在Pcell上执行Pcell的波束失败恢复,包括在Pcell上发送对应Pcell候选波束(candidate beam)的前导码(preamble);
2.在Pcell上执行Scell的波束失败恢复,包括在Pcell上发送对应Scell候选波束(candidate beam)的前导码(preamble);
3.在有候选波束(candidate beam)对应的PRACH资源是CFRA的cell上执行对应的波束失败恢复;
4.如果在多个cell上都有候选波束(candidate beam)对应的PRACH资源是CFRA,则在Pcell上执行对应的波束失败恢复;
5.在Scell上执行Scell的波束失败恢复,包括在Scell上发送对应Scell候选波束(candidate beam)的前导码(preamble);
6.在Scell上执行Pcell的波束失败恢复,包括在Scell上发送对应Pcell候选波束(candidate beam)的前导码(preamble);
7.如果在多个cell上都有候选波束(candidate beam)对应的PRACH资源是CFRA,则在Scell上执行对应的波束失败恢复;
8.同时在Pcell和Scell进行波束失败恢复,此时需要在Pcell上和Scell上有多个RACH过程;
9.先进行Pcell的波束失败恢复,且等Pcell上波束失败恢复失败或者成功后再进行Scell的波束失败恢复,此时不需要在Pcell上和Scell上有多个RACH过程。
其中,对于上述1-7,进一步包括,在执行对应的cell的波束失败恢复后,阻止/忽略另一个cell触发的波束失败恢复。或者对于上述1-7,进一步包括,在UE的上行发送功率不足够在两个cell上发送前导码(preamble)的情况时,选择1-7中任意一个。而对于上述8,进一步包括,在UE的上行发送功率足够在两个cell上发送前导码(preamble)的情况才允许8的UE行为,否则允许1-7和9中任意一个。
作为另一种可选的实施方式,上述在波束失败恢复过程中出现异常包括:在主小区上的波束失败恢复被阻止或者被忽略,则所述特定操作包括取消如下至少一项操作:
触发所述主小区的波束失败恢复指示给上层;
上层触发RLF;
启动RLM或者RLF对应的定时器;
上层进行失步计数。
其中,上述取消上述至少一项操作也可以理解为,不进行上述少一项操作,例如:不触发主小区的波束失败恢复失败指示给上层、上层不触发RLF、上层不启动RLM/RLF对应的定时器或者上层不进行失步计数(out-of-sync)。
其中,上述主小区可以是Pcell、Pscell和Spcell中的至少一项。
该实施方式中,由于取消上述操作,从而可以避免错误的检测、计数和计时,以提高终端针对波束失败的处理性能。
需要说明的是,上述方法可以应用于5G系统或者4G系统,但对此不作 限定,只要能够实现基本相同的功能,适用于其他通信系统,例如:可以应用6G系统或者其他应用波束失败检测或者波束失败恢复的通信系统等等。
在本公开实施例中,确定波束失败恢复事件,所述波束失败事件包括:在波束失败恢复过程中出现异常或者至少两个小区均发生波束失败恢复;根据所述波束失败恢复事件,执行特定操作。由于会根据所述波束失败恢复事件,执行特定操作,从而可以提高终端针对波束失败的处理性能。
请参见图3,图3是本公开实施例提供的一种终端的结构图,如图3所示,终端300,包括:
确定模块301,用于确定波束失败恢复事件,所述波束失败事件包括:在波束失败恢复过程中出现异常或者至少两个小区均发生波束失败恢复;
执行模块302,用于根据所述波束失败恢复事件,执行特定操作。
可选的,所述在波束失败恢复过程中出现异常包括:在第一小区进行波束失败恢复过程中,所述第一小区波束失败,或者,在所述第一小区进行波束失败恢复过程中,第二小区波束失败。
可选的,若在第一小区进行波束失败恢复过程中,所述第一小区波束失败,则所述特定操作包括如下至少一项:
停止在所述第一小区上正在进行的波束失败恢复过程;
停止在所述第二小区上正在进行的波束失败恢复过程;
停止在所述第一小区上和第二小区上正在进行的波束失败恢复过程;
在所述第一小区上进行所述第一小区波束失败的波束失败恢复;
向上层上报所述第一小区波束失败;
在所述第一小区上进行所述第一小区波束失败的波束失败恢复,且在所述第一小区上正在进行的波束失败恢复过程继续进行;
在所述第一小区上正在进行的波束失败恢复过程结束后,在所述第一小区上进行所述第一小区波束失败的波束失败恢复;
忽略所述第一小区波束失败;
若在第一小区进行波束失败恢复过程中,所述第二小区波束失败,则所述特定操作包括如下至少一项:
忽略所述第二小区波束失败;
进行所述第二小区波束失败的波束失败恢复;
在所述第二小区上进行波束失败恢复,且在所述第一小区上正在进行的波束失败恢复过程继续进行;
在所述第一小区上正在进行的波束失败恢复过程结束后,在所述第二小区上进行波束失败恢复。
可选的,若向上层上报所述第一小区波束失败,则触发RLF,或者,进行失步计数累加,或者,启动RLM或者RLF对应的定时器;
所述忽略所述第二小区波束失败包括如下至少一项:
不在所述第二小区上触发波束失败恢复流程;
不在所述第一小区上触发所述第二小区波束失败的波束失败恢复流程;
不在所述第一小区和所述第二小区上触发所述第二小区波束失败的波束失败恢复流程;
所述忽略所述第一小区波束失败包括如下一项:
不在所述第一小区上触发波束失败恢复;
不在所述第二小区上触发所述第一小区波束失败的波束失败恢复流程;
不在所述第一小区和所述第二小区上触发所述第一小区波束失败的波束失败恢复流程;
所述进行所述第二小区波束失败的波束失败恢复包括如下一项:
在所述第一小区上触发所述第二小区波束失败的波束失败恢复流程;
在所述第二小区上触发所述第二小区波束失败的波束失败恢复流程;
在所述第一小区和所述第二小区所述第二小区波束失败的波束失败恢复流程。
可选的,所述第一小区为主小区,所述第二小区为Scell;或者
所述第一小区为Scell,所述第二小区为主小区;或者
所述第一小区为Scell,所述第二小区为另一个Scell。
可选的,所述主小区包括:Pcell、MCG中的Pcell、所述SCG中的PScell和Spcell中的至少一项。
可选的,所述在波束失败恢复过程中出现异常包括:在第一小区发送前导码之前,第二小区发生波束失败,其中,所述前导码为在所述第一小区发 生波束失败后,在所述第一小区进行波束失败恢复过程中的前导码;
所述至少两个小区均发生波束失败恢复包括:所述第一小区和所述第二小区均发生波束失败恢复。
可选的,所述特定操作包括如下至少一项:
在主小区上进行主小区的波束失败恢复;
在所述主小区上进行Scell的波束失败恢复;
在有特定候选波束的小区上进行该小区的波束失败恢复,所述特定候选波束对应的随机接入资源为非竞争随机接入CFRA资源;
在所述Scell上进行所述Scell的波束失败恢复;
在所述Scell上进行所述主小区的波束失败恢复;
同时在所述主小区和所述Scell上进行波束失败恢复;
在所述主小区上进行所述主小区的波束失败恢复,在该波束失败恢复结束后,在所述Scell上进行所述Scell的波束失败恢复;
其中,所述第一小区为所述主小区,所述第二小区为所述Scell,或者,所述第一小区为所述Scell,所述第二小区为所述主小区。
可选的,所述在主小区上进行主小区的波束失败恢复,包括:
若存在多个小区上均有候选波束对应的随机接入资源为CFRA资源,则在主小区上进行主小区的波束失败恢复;
所述在所述Scell上进行所述Scell的波束失败恢复,包括:
若存在多个小区上均有候选波束对应的随机接入资源为CFRA资源,则在所述Scell上进行所述Scell的波束失败恢复。
可选的,在所述特定操作中,若执行一个小区上的波束失败恢复,则忽略另一个小区上的波束失败或者阻止另一个小区上的波束失败恢复;或者
若所述终端的上行发射功率无法支持在两个小区上发送前导码,则所述特定操作中只进行一个小区上的波束失败恢复;或者
若所述终端的上行发射功率支持在两个小区上发送前导码,则所述特定操作中同时进行两个小区上的波束失败恢复。
可选的,所述在波束失败恢复过程中出现异常包括:在主小区上的波束失败恢复被阻止或者被忽略,则所述特定操作包括取消如下至少一项操作:
触发所述主小区的波束失败恢复指示给上层;
上层触发RLF;
启动RLM或者RLF对应的定时器;
上层进行失步计数。
本公开实施例提供的终端能够实现图2的方法实施例中终端实现的各个过程(为避免重复,这里不再赘述),可以提高终端针对波束失败的处理性能。
图4为实现本公开各个实施例的一种终端的硬件结构示意图,
该终端400包括但不限于:射频单元401、网络模块402、音频输出单元403、输入单元404、传感器405、显示单元406、用户输入单元407、接口单元408、存储器409、处理器410、以及电源411等部件。本领域技术人员可以理解,图4中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备,以及计步器等。
处理器410,用于确定波束失败恢复事件,所述波束失败事件包括:在波束失败恢复过程中出现异常或者至少两个小区均发生波束失败恢复;
根据所述波束失败恢复事件,执行特定操作。
可选的,所述在波束失败恢复过程中出现异常包括:在第一小区进行波束失败恢复过程中,所述第一小区波束失败,或者,在所述第一小区进行波束失败恢复过程中,第二小区波束失败。
可选的,若在第一小区进行波束失败恢复过程中,所述第一小区波束失败,则所述特定操作包括如下至少一项:
停止在所述第一小区上正在进行的波束失败恢复过程;
停止在所述第二小区上正在进行的波束失败恢复过程;
停止在所述第一小区上和第二小区上正在进行的波束失败恢复过程;
在所述第一小区上进行所述第一小区波束失败的波束失败恢复;
向上层上报所述第一小区波束失败;
在所述第一小区上进行所述第一小区波束失败的波束失败恢复,且在所述第一小区上正在进行的波束失败恢复过程继续进行;
在所述第一小区上正在进行的波束失败恢复过程结束后,在所述第一小区上进行所述第一小区波束失败的波束失败恢复;
忽略所述第一小区波束失败;
若在第一小区进行波束失败恢复过程中,所述第二小区波束失败,则所述特定操作包括如下至少一项:
忽略所述第二小区波束失败;
进行所述第二小区波束失败的波束失败恢复;
在所述第二小区上进行波束失败恢复,且在所述第一小区上正在进行的波束失败恢复过程继续进行;
在所述第一小区上正在进行的波束失败恢复过程结束后,在所述第二小区上进行波束失败恢复。
可选的,若向上层上报所述第一小区波束失败,则触发无线链路失败RLF,或者,进行失步计数累加,或者,启动无线链路监测RLM或者RLF对应的定时器;
所述忽略所述第二小区波束失败包括如下至少一项:
不在所述第二小区上触发波束失败恢复流程;
不在所述第一小区上触发所述第二小区波束失败的波束失败恢复流程;
不在所述第一小区和所述第二小区上触发所述第二小区波束失败的波束失败恢复流程;
所述忽略所述第一小区波束失败包括如下一项:
不在所述第一小区上触发波束失败恢复;
不在所述第二小区上触发所述第一小区波束失败的波束失败恢复流程;
不在所述第一小区和所述第二小区上触发所述第一小区波束失败的波束失败恢复流程;
所述进行所述第二小区波束失败的波束失败恢复包括如下一项:
在所述第一小区上触发所述第二小区波束失败的波束失败恢复流程;
在所述第二小区上触发所述第二小区波束失败的波束失败恢复流程;
在所述第一小区和所述第二小区所述第二小区波束失败的波束失败恢复流程。
可选的,所述第一小区为主小区,所述第二小区为辅小区Scell;或者
所述第一小区为Scell,所述第二小区为主小区;或者
所述第一小区为Scell,所述第二小区为另一个Scell。
可选的,所述主小区包括:Pcell、MCG中的Pcell、SCG中的PScell和Spcell中的至少一项。
可选的,所述在波束失败恢复过程中出现异常包括:在第一小区发送前导码之前,第二小区发生波束失败,其中,所述前导码为在所述第一小区发生波束失败后,在所述第一小区进行波束失败恢复过程中的前导码;
所述至少两个小区均发生波束失败恢复包括:所述第一小区和所述第二小区均发生波束失败恢复。
可选的,所述特定操作包括如下至少一项:
在主小区上进行主小区的波束失败恢复;
在所述主小区上进行Scell的波束失败恢复;
在有特定候选波束的小区上进行该小区的波束失败恢复,所述特定候选波束对应的随机接入资源为非竞争随机接入CFRA资源;
在所述Scell上进行所述Scell的波束失败恢复;
在所述Scell上进行所述主小区的波束失败恢复;
同时在所述主小区和所述Scell上进行波束失败恢复;
在所述主小区上进行所述主小区的波束失败恢复,在该波束失败恢复结束后,在所述Scell上进行所述Scell的波束失败恢复;
其中,所述第一小区为所述主小区,所述第二小区为所述Scell,或者,所述第一小区为所述Scell,所述第二小区为所述主小区。
可选的,所述在主小区上进行主小区的波束失败恢复,包括:
若存在多个小区上均有候选波束对应的随机接入资源为CFRA资源,则在主小区上进行主小区的波束失败恢复;
所述在所述Scell上进行所述Scell的波束失败恢复,包括:
若存在多个小区上均有候选波束对应的随机接入资源为CFRA资源,则在所述Scell上进行所述Scell的波束失败恢复。
可选的,在所述特定操作中,若执行一个小区上的波束失败恢复,则忽 略另一个小区上的波束失败或者阻止另一个小区上的波束失败恢复;或者
若所述终端的上行发射功率无法支持在两个小区上发送前导码,则所述特定操作中只进行一个小区上的波束失败恢复;或者
若所述终端的上行发射功率支持在两个小区上发送前导码,则所述特定操作中同时进行两个小区上的波束失败恢复。
可选的,所述在波束失败恢复过程中出现异常包括:在主小区上的波束失败恢复被阻止或者被忽略,则所述特定操作包括取消如下至少一项操作:
触发所述主小区的波束失败恢复指示给上层;
上层触发RLF;
启动RLM或者RLF对应的定时器;
上层进行失步计数。
上述终端可以提高终端针对波束失败的处理性能。
应理解的是,本公开实施例中,射频单元401可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器410处理;另外,将上行的数据发送给基站。通常,射频单元401包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元401还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块402为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元403可以将射频单元401或网络模块402接收的或者在存储器409中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元403还可以提供与终端400执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元403包括扬声器、蜂鸣器以及受话器等。
输入单元404用于接收音频或视频信号。输入单元404可以包括图形处理器(Graphics Processing Unit,GPU)4041和麦克风4042,图形处理器4041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元406上。经图形处理器4041处理后的图像帧可以存储在存储器409(或其它存储 介质)中或者经由射频单元401或网络模块402进行发送。麦克风4042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元401发送到移动通信基站的格式输出。
终端400还包括至少一种传感器405,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板4061的亮度,接近传感器可在终端400移动到耳边时,关闭显示面板4061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器405还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元406用于显示由用户输入的信息或提供给用户的信息。显示单元406可包括显示面板4061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板4061。
用户输入单元407可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元407包括触控面板4071以及其他输入设备4072。触控面板4071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板4071上或在触控面板4071附近的操作)。触控面板4071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器410,接收处理器410发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板4071。除了触控面板4071,用户输入单元407还可以包括其他输入设备4072。具体地,其他输入设备4072可以包括但不限于物理键盘、功能键(比如音量控制按键、 开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板4071可覆盖在显示面板4061上,当触控面板4071检测到在其上或附近的触摸操作后,传送给处理器410以确定触摸事件的类型,随后处理器410根据触摸事件的类型在显示面板4061上提供相应的视觉输出。虽然在图4中,触控面板4071与显示面板4061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板4071与显示面板4061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元408为外部装置与终端400连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元408可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端400内的一个或多个元件或者可以用于在终端400和外部装置之间传输数据。
存储器409可用于存储软件程序以及各种数据。存储器409可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器409可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器410是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器409内的软件程序和/或模块,以及调用存储在存储器409内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器410可包括一个或多个处理单元;可选的,处理器410可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器410中。
终端400还可以包括给各个部件供电的电源411(比如电池),可选的,电源411可以通过电源管理系统与处理器410逻辑相连,从而通过电源管理 系统实现管理充电、放电,以及功耗管理等功能。
另外,终端400包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器410、存储器409、存储在存储器409上并可在所述处理器410上运行的计算机程序,该计算机程序被处理器410执行时实现上述针对波束失败的配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供的针对波束失败的配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (24)

  1. 一种波束失败的处理方法,应用于终端,包括:
    确定波束失败恢复事件,所述波束失败事件包括:在波束失败恢复过程中出现异常或者至少两个小区均发生波束失败恢复;
    根据所述波束失败恢复事件,执行特定操作。
  2. 如权利要求1所述的方法,其中,所述在波束失败恢复过程中出现异常包括:在第一小区进行波束失败恢复过程中,所述第一小区波束失败,或者,在所述第一小区进行波束失败恢复过程中,第二小区波束失败。
  3. 如权利要求2所述的方法,其中,若在第一小区进行波束失败恢复过程中,所述第一小区波束失败,则所述特定操作包括如下至少一项:
    停止在所述第一小区上正在进行的波束失败恢复过程;
    停止在所述第二小区上正在进行的波束失败恢复过程;
    停止在所述第一小区上和第二小区上正在进行的波束失败恢复过程;
    在所述第一小区上进行所述第一小区波束失败的波束失败恢复;
    向上层上报所述第一小区波束失败;
    在所述第一小区上进行所述第一小区波束失败的波束失败恢复,且在所述第一小区上正在进行的波束失败恢复过程继续进行;
    在所述第一小区上正在进行的波束失败恢复过程结束后,在所述第一小区上进行所述第一小区波束失败的波束失败恢复;
    忽略所述第一小区波束失败;
    若在第一小区进行波束失败恢复过程中,所述第二小区波束失败,则所述特定操作包括如下至少一项:
    忽略所述第二小区波束失败;
    进行所述第二小区波束失败的波束失败恢复;
    在所述第二小区上进行波束失败恢复,且在所述第一小区上正在进行的波束失败恢复过程继续进行;
    在所述第一小区上正在进行的波束失败恢复过程结束后,在所述第二小区上进行波束失败恢复。
  4. 如权利要求3所述的方法,其中,若向上层上报所述第一小区波束失败,则触发无线链路失败RLF,或者,进行失步计数累加,或者,启动无线链路监测RLM或者RLF对应的定时器;
    所述忽略所述第二小区波束失败包括如下至少一项:
    不在所述第二小区上触发波束失败恢复流程;
    不在所述第一小区上触发所述第二小区波束失败的波束失败恢复流程;
    不在所述第一小区和所述第二小区上触发所述第二小区波束失败的波束失败恢复流程;
    所述忽略所述第一小区波束失败包括如下一项:
    不在所述第一小区上触发波束失败恢复;
    不在所述第二小区上触发所述第一小区波束失败的波束失败恢复流程;
    不在所述第一小区和所述第二小区上触发所述第一小区波束失败的波束失败恢复流程;
    所述进行所述第二小区波束失败的波束失败恢复包括如下一项:
    在所述第一小区上触发所述第二小区波束失败的波束失败恢复流程;
    在所述第二小区上触发所述第二小区波束失败的波束失败恢复流程;
    在所述第一小区和所述第二小区所述第二小区波束失败的波束失败恢复流程。
  5. 如权利要求2至4中任一项的所述的方法,其中,所述第一小区为主小区,所述第二小区为辅小区Scell;或者
    所述第一小区为Scell,所述第二小区为主小区;或者
    所述第一小区为Scell,所述第二小区为另一个Scell。
  6. 如权利要求5所述的方法,其中,所述主小区包括:主小区Pcell、主小区组MCG中的Pcell、辅小区组SCG中的主辅小区PScell和特殊小区Spcell中的至少一项。
  7. 如权利要求1所述的方法,其中,所述在波束失败恢复过程中出现异常包括:在第一小区发送前导码之前,第二小区发生波束失败,其中,所述前导码为在所述第一小区发生波束失败后,在所述第一小区进行波束失败恢复过程中的前导码;
    所述至少两个小区均发生波束失败恢复包括:所述第一小区和所述第二小区均发生波束失败恢复。
  8. 如权利要求7所述的方法,其中,所述特定操作包括如下至少一项:
    在主小区上进行主小区的波束失败恢复;
    在所述主小区上进行Scell的波束失败恢复;
    在有特定候选波束的小区上进行该小区的波束失败恢复,所述特定候选波束对应的随机接入资源为非竞争随机接入CFRA资源;
    在所述Scell上进行所述Scell的波束失败恢复;
    在所述Scell上进行所述主小区的波束失败恢复;
    同时在所述主小区和所述Scell上进行波束失败恢复;
    在所述主小区上进行所述主小区的波束失败恢复,在该波束失败恢复结束后,在所述Scell上进行所述Scell的波束失败恢复;
    其中,所述第一小区为所述主小区,所述第二小区为所述Scell,或者,所述第一小区为所述Scell,所述第二小区为所述主小区。
  9. 如权利要求8所述的方法,其中,所述在主小区上进行主小区的波束失败恢复,包括:
    若存在多个小区上均有候选波束对应的随机接入资源为CFRA资源,则在主小区上进行主小区的波束失败恢复;
    所述在所述Scell上进行所述Scell的波束失败恢复,包括:
    若存在多个小区上均有候选波束对应的随机接入资源为CFRA资源,则在所述Scell上进行所述Scell的波束失败恢复。
  10. 如权利要求8所述的方法,其中,在所述特定操作中,若执行一个小区上的波束失败恢复,则忽略另一个小区上的波束失败或者阻止另一个小区上的波束失败恢复;或者
    若所述终端的上行发射功率无法支持在两个小区上发送前导码,则所述特定操作中只进行一个小区上的波束失败恢复;或者
    若所述终端的上行发射功率支持在两个小区上发送前导码,则所述特定操作中同时进行两个小区上的波束失败恢复。
  11. 如权利要求1所述的方法,其中,所述在波束失败恢复过程中出现 异常包括:在主小区上的波束失败恢复被阻止或者被忽略,则所述特定操作包括取消如下至少一项操作:
    触发所述主小区的波束失败恢复指示给上层;
    上层触发RLF;
    启动RLM或者RLF对应的定时器;
    上层进行失步计数。
  12. 一种终端,包括:
    确定模块,用于确定波束失败恢复事件,所述波束失败事件包括:在波束失败恢复过程中出现异常或者至少两个小区均发生波束失败恢复;
    执行模块,用于根据所述波束失败恢复事件,执行特定操作。
  13. 如权利要求12所述的终端,其中,所述在波束失败恢复过程中出现异常包括:在第一小区进行波束失败恢复过程中,所述第一小区波束失败,或者,在所述第一小区进行波束失败恢复过程中,第二小区波束失败。
  14. 如权利要求13所述的终端,其中,若在第一小区进行波束失败恢复过程中,所述第一小区波束失败,则所述特定操作包括如下至少一项:
    停止在所述第一小区上正在进行的波束失败恢复过程;
    停止在所述第二小区上正在进行的波束失败恢复过程;
    停止在所述第一小区上和第二小区上正在进行的波束失败恢复过程;
    在所述第一小区上进行所述第一小区波束失败的波束失败恢复;
    向上层上报所述第一小区波束失败;
    在所述第一小区上进行所述第一小区波束失败的波束失败恢复,且在所述第一小区上正在进行的波束失败恢复过程继续进行;
    在所述第一小区上正在进行的波束失败恢复过程结束后,在所述第一小区上进行所述第一小区波束失败的波束失败恢复;
    忽略所述第一小区波束失败;
    若在第一小区进行波束失败恢复过程中,所述第二小区波束失败,则所述特定操作包括如下至少一项:
    忽略所述第二小区波束失败;
    进行所述第二小区波束失败的波束失败恢复;
    在所述第二小区上进行波束失败恢复,且在所述第一小区上正在进行的波束失败恢复过程继续进行;
    在所述第一小区上正在进行的波束失败恢复过程结束后,在所述第二小区上进行波束失败恢复。
  15. 如权利要求14所述的终端,其中,若向上层上报所述第一小区波束失败,则触发RLF,或者,进行失步计数累加,或者,启动RLM或者RLF对应的定时器;
    所述忽略所述第二小区波束失败包括如下至少一项:
    不在所述第二小区上触发波束失败恢复流程;
    不在所述第一小区上触发所述第二小区波束失败的波束失败恢复流程;
    不在所述第一小区和所述第二小区上触发所述第二小区波束失败的波束失败恢复流程;
    所述忽略所述第一小区波束失败包括如下一项:
    不在所述第一小区上触发波束失败恢复;
    不在所述第二小区上触发所述第一小区波束失败的波束失败恢复流程;
    不在所述第一小区和所述第二小区上触发所述第一小区波束失败的波束失败恢复流程;
    所述进行所述第二小区波束失败的波束失败恢复包括如下一项:
    在所述第一小区上触发所述第二小区波束失败的波束失败恢复流程;
    在所述第二小区上触发所述第二小区波束失败的波束失败恢复流程;
    在所述第一小区和所述第二小区所述第二小区波束失败的波束失败恢复流程。
  16. 如权利要求13至15中任一项的所述的终端,其中,所述第一小区为主小区,所述第二小区为Scell;或者
    所述第一小区为Scell,所述第二小区为主小区;或者
    所述第一小区为Scell,所述第二小区为另一个Scell。
  17. 如权利要求16所述的终端,其中,所述主小区包括:Pcell、MCG中的Pcell、SCG中的PScell和Spcell中的至少一项。
  18. 如权利要求12所述的终端,其中,所述在波束失败恢复过程中出现 异常包括:在第一小区发送前导码之前,第二小区发生波束失败,其中,所述前导码为在所述第一小区发生波束失败后,在所述第一小区进行波束失败恢复过程中的前导码;
    所述至少两个小区均发生波束失败恢复包括:所述第一小区和所述第二小区均发生波束失败恢复。
  19. 如权利要求18所述的终端,其中,所述特定操作包括如下至少一项:
    在主小区上进行主小区的波束失败恢复;
    在所述主小区上进行Scell的波束失败恢复;
    在有特定候选波束的小区上进行该小区的波束失败恢复,所述特定候选波束对应的随机接入资源为非竞争随机接入CFRA资源;
    在所述Scell上进行所述Scell的波束失败恢复;
    在所述Scell上进行所述主小区的波束失败恢复;
    同时在所述主小区和所述Scell上进行波束失败恢复;
    在所述主小区上进行所述主小区的波束失败恢复,在该波束失败恢复结束后,在所述Scell上进行所述Scell的波束失败恢复;
    其中,所述第一小区为所述主小区,所述第二小区为所述Scell,或者,所述第一小区为所述Scell,所述第二小区为所述主小区。
  20. 如权利要求19所述的终端,其中,所述在主小区上进行主小区的波束失败恢复,包括:
    若存在多个小区上均有候选波束对应的随机接入资源为CFRA资源,则在主小区上进行主小区的波束失败恢复;
    所述在所述Scell上进行所述Scell的波束失败恢复,包括:
    若存在多个小区上均有候选波束对应的随机接入资源为CFRA资源,则在所述Scell上进行所述Scell的波束失败恢复。
  21. 如权利要求19所述的终端,其中,在所述特定操作中,若执行一个小区上的波束失败恢复,则忽略另一个小区上的波束失败或者阻止另一个小区上的波束失败恢复;或者
    若所述终端的上行发射功率无法支持在两个小区上发送前导码,则所述特定操作中只进行一个小区上的波束失败恢复;或者
    若所述终端的上行发射功率支持在两个小区上发送前导码,则所述特定操作中同时进行两个小区上的波束失败恢复。
  22. 如权利要求12所述的终端,其中,所述在波束失败恢复过程中出现异常包括:在主小区上的波束失败恢复被阻止或者被忽略,则所述特定操作包括取消如下至少一项操作:
    触发所述主小区的波束失败恢复指示给上层;
    上层触发RLF;
    启动RLM或者RLF对应的定时器;
    上层进行失步计数。
  23. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至11中任一项所述的波束失败的处理方法中的步骤。
  24. 一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1至11中任一项所述的波束失败的处理方法的步骤。
PCT/CN2019/078633 2018-03-28 2019-03-19 波束失败的处理方法和终端 WO2019184762A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19777240.3A EP3780886A4 (en) 2018-03-28 2019-03-19 BEAM FAILURE AND TERMINAL TREATMENT PROCESS
RU2020135270A RU2756840C1 (ru) 2018-03-28 2019-03-19 Способ работы при потере связи и абонентское оборудование
CA3095360A CA3095360C (en) 2018-03-28 2019-03-19 Method for processing beam failure, and terminal
UAA202006902A UA127950C2 (uk) 2018-03-28 2019-03-19 Спосіб роботи у випадку втрати зв'язку та абонентське обладнання
US17/035,080 US12081388B2 (en) 2018-03-28 2020-09-28 Method for processing beam failure, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810266175.5 2018-03-28
CN201810266175.5A CN110324914B (zh) 2018-03-28 2018-03-28 波束失败的处理方法和终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/035,080 Continuation US12081388B2 (en) 2018-03-28 2020-09-28 Method for processing beam failure, and terminal

Publications (1)

Publication Number Publication Date
WO2019184762A1 true WO2019184762A1 (zh) 2019-10-03

Family

ID=68059285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078633 WO2019184762A1 (zh) 2018-03-28 2019-03-19 波束失败的处理方法和终端

Country Status (7)

Country Link
US (1) US12081388B2 (zh)
EP (1) EP3780886A4 (zh)
CN (1) CN110324914B (zh)
CA (1) CA3095360C (zh)
RU (1) RU2756840C1 (zh)
UA (1) UA127950C2 (zh)
WO (1) WO2019184762A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11350477B2 (en) * 2019-03-29 2022-05-31 Qualcomm Incorporated Control signaling after primary cell link failure
CN112929921B (zh) * 2019-12-05 2023-01-13 维沃移动通信有限公司 波束失败恢复方法、终端及网络侧设备
WO2021164030A1 (en) * 2020-02-21 2021-08-26 Nokia Shanghai Bell Co., Ltd. Beam failure recovery mechanism
WO2021243512A1 (en) * 2020-06-01 2021-12-09 Qualcomm Incorporated Beam failure recovery response optimization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160183233A1 (en) * 2014-12-19 2016-06-23 Electronics And Telecommunications Research Institute Method and apparatus for operating system in cellular mobile communication system
CN107005858A (zh) * 2015-02-13 2017-08-01 联发科技(新加坡)私人有限公司 MmW系统中间歇性断开的处理
CN107079459A (zh) * 2015-08-11 2017-08-18 瑞典爱立信有限公司 从波束故障中恢复

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2522851C2 (ru) * 2012-10-25 2014-07-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли (Минпромторг России) Способ динамической реконфигурации сетей связи с многомерными маршрутами передачи сообщений
US11088747B2 (en) * 2016-04-13 2021-08-10 Qualcomm Incorporated System and method for beam management
US10728950B2 (en) * 2016-08-26 2020-07-28 Qualcomm Incorporated Beam training for discontinuous reception (DRX) mode operation
CN110447180B (zh) * 2017-03-23 2023-06-02 苹果公司 无线电链路监测、波束恢复和无线电链路故障处理
AU2018289632A1 (en) * 2017-06-23 2020-01-30 Huawei Technologies Co., Ltd. Unified RLF detection, multi-beam RLM, and full-diversity BFR mechanisms in NR
US10893540B2 (en) * 2017-07-28 2021-01-12 Qualcomm Incorporated Random access channel procedures with multiple carriers
CN111149306A (zh) * 2017-08-09 2020-05-12 Idac控股公司 用于波束恢复和管理的方法和系统
WO2019028736A1 (en) * 2017-08-10 2019-02-14 Mediatek Singapore Pte. Ltd. APPARATUS AND MECHANISM FOR TRANSMITTING A REQUEST FOR BEHAVIOR FAULT RECOVERY IN A NR SYSTEM OPERATING WITH MULTIPLE BEAMS
WO2019028734A1 (en) * 2017-08-10 2019-02-14 Mediatek Singapore Pte. Ltd. APPARATUS AND MECHANISM FOR PERFORMING BEAM MANAGEMENT AND BEAM FAILURE RECOVERY IN A NR SYSTEM
WO2019034146A1 (en) * 2017-08-18 2019-02-21 Telefonaktiebolaget Lm Ericsson (Publ) METHOD AND APPARATUS FOR RANDOM ACCESS FOR BEAM FAILURE RECOVERY
CN107612602B (zh) * 2017-08-28 2020-04-21 清华大学 毫米波通信系统的波束恢复方法及装置
PE20210141A1 (es) * 2017-11-29 2021-01-22 Ntt Docomo Inc Aparato de usuario
CN109982442A (zh) * 2017-12-27 2019-07-05 夏普株式会社 一种在用户设备上运行的方法及用户设备
US20210058133A1 (en) * 2017-12-27 2021-02-25 Ntt Docomo, Inc. User terminal and radio communication method
EP3737138A4 (en) * 2018-01-04 2021-03-31 Fujitsu Limited CONFIGURATION AND INDICATION PROCESS AND DEVICE INTENDED FOR RECOVERING FAILURE OF HARNESS AND COMMUNICATION SYSTEM
JP7026796B2 (ja) * 2018-01-04 2022-02-28 サムスン エレクトロニクス カンパニー リミテッド 半永続的なチャネル状態情報レポート
KR20200096997A (ko) * 2018-01-05 2020-08-14 삼성전자주식회사 이차 셀 상의 빔 복구 장치 및 방법
CN110022565B (zh) * 2018-01-09 2023-12-29 夏普株式会社 用户设备及其执行的方法
US10784944B2 (en) * 2018-01-09 2020-09-22 Ofinno, Llc Timing advance in beam failure recovery request transmission
KR102472292B1 (ko) * 2018-01-10 2022-11-30 삼성전자 주식회사 무선 통신 시스템에서 경쟁 및 비경쟁 기반 빔 실패 복구를 수행하는 방법 및 장치
CN110034799B (zh) * 2018-01-11 2023-09-01 华为技术有限公司 通信方法和通信设备
US11540150B2 (en) * 2018-01-19 2022-12-27 Qualcomm Incorporated Beam recovery procedure using a second component carrier
CN111919504B (zh) * 2018-01-26 2024-04-02 株式会社Ntt都科摩 用户终端以及无线通信方法
US10798622B2 (en) * 2018-02-09 2020-10-06 Comcast Cable Communications, Llc Beam failure recovery in carrier aggregation
CN110167147B (zh) * 2018-02-12 2021-07-23 大唐移动通信设备有限公司 一种波束失败恢复方法及用户终端
CN110167055B (zh) * 2018-02-13 2021-12-14 华为技术有限公司 一种用于波束失败检测的方法、装置及系统
US10659983B2 (en) * 2018-03-09 2020-05-19 FG Innovation Company Limited Beam failure detection and recovery
WO2019174036A1 (en) * 2018-03-16 2019-09-19 Lenovo (Beijing) Limited Beam failure recovery
CN110299977A (zh) * 2018-03-22 2019-10-01 夏普株式会社 在用户设备上运行的方法及用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160183233A1 (en) * 2014-12-19 2016-06-23 Electronics And Telecommunications Research Institute Method and apparatus for operating system in cellular mobile communication system
CN107005858A (zh) * 2015-02-13 2017-08-01 联发科技(新加坡)私人有限公司 MmW系统中间歇性断开的处理
CN107079459A (zh) * 2015-08-11 2017-08-18 瑞典爱立信有限公司 从波束故障中恢复

Also Published As

Publication number Publication date
CA3095360A1 (en) 2019-10-03
EP3780886A1 (en) 2021-02-17
US12081388B2 (en) 2024-09-03
CN110324914A (zh) 2019-10-11
US20210014104A1 (en) 2021-01-14
RU2756840C1 (ru) 2021-10-06
CN110324914B (zh) 2021-03-23
EP3780886A4 (en) 2021-05-19
CA3095360C (en) 2023-09-12
UA127950C2 (uk) 2024-02-21

Similar Documents

Publication Publication Date Title
WO2019184629A1 (zh) 针对波束失败的配置方法和终端
WO2019184621A1 (zh) 条件切换结果的检测方法及终端
US11343855B2 (en) Method and device for random access and terminal
WO2019184762A1 (zh) 波束失败的处理方法和终端
WO2019137276A1 (zh) 通信业务过程冲突的处理方法及终端
US11671854B2 (en) Cell beam failure processing method, mobile communication terminal and network side device
WO2019096119A1 (zh) 业务处理方法及移动通信终端
WO2019157938A1 (zh) 条件切换取消方法及通信设备
WO2019134644A1 (zh) 数据传输方法和用户终端
WO2019210817A1 (zh) 无线链路恢复方法和终端
WO2019154023A1 (zh) 波束失败恢复请求发送方法及用户设备
WO2019192514A1 (zh) 连接重建方法及相关设备
WO2019137368A1 (zh) 系统信息的传输方法和用户终端
US20210092766A1 (en) Random Access Resource Selection Method And Terminal Device
WO2021036943A1 (zh) 发生波束失败的处理方法和终端
CN110475372B (zh) 一种上行传输方法及终端
CN113079581A (zh) 随机接入报告的上报方法、终端及网络侧设备
WO2019076319A1 (zh) 波束失败恢复的处理方法及终端
KR102589489B1 (ko) 랜덤 액세스 방법 및 단말 장치
WO2021088791A1 (zh) 波束失败恢复的确认方法、终端设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3095360

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019777240

Country of ref document: EP

Effective date: 20201028