WO2019184552A1 - Procédé de traitement thermique pour matériau composite à matrice en acier renforcée de céramique - Google Patents

Procédé de traitement thermique pour matériau composite à matrice en acier renforcée de céramique Download PDF

Info

Publication number
WO2019184552A1
WO2019184552A1 PCT/CN2019/070805 CN2019070805W WO2019184552A1 WO 2019184552 A1 WO2019184552 A1 WO 2019184552A1 CN 2019070805 W CN2019070805 W CN 2019070805W WO 2019184552 A1 WO2019184552 A1 WO 2019184552A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
reinforced steel
ceramic reinforced
matrix composite
ceramic
Prior art date
Application number
PCT/CN2019/070805
Other languages
English (en)
Chinese (zh)
Inventor
蒋业华
韦鸿铭
冯晶
张孝足
薛达
卢德宏
李祖来
Original Assignee
昆明理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆明理工大学 filed Critical 昆明理工大学
Priority to AU2019240977A priority Critical patent/AU2019240977B2/en
Publication of WO2019184552A1 publication Critical patent/WO2019184552A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the invention belongs to the technical field of composite materials, and in particular relates to a heat treatment process of a ceramic reinforced steel matrix composite material.
  • the ceramic metal wear-resistant composite material combines the high hardness, high wear resistance and good toughness of the ceramic, and solves the problem of high hardness and toughness in the traditional steel materials.
  • the preparation process of ceramic metal composite materials at home and abroad The research is getting deeper and deeper, and the heat treatment process is the key link to maximize the potential of the composite material. Because the physical and chemical properties of ceramics and metals vary greatly, if the ceramic metal composite composite is treated by metal heat treatment, ceramics and metals The thermal expansion coefficient and shrinkage coefficient are greatly different.
  • the ceramic particles are easy to fall off, the ceramic metal composite material is prone to cracking, and the mechanical properties such as wear resistance, impact toughness and hardness of the composite material after heat treatment are not obvious. Improvement, how to obtain composite parts with excellent wear resistance is the focus of research on heat treatment of composite materials.
  • the object of the present invention is to provide a heat treatment process for a ceramic reinforced steel matrix composite material, which improves the wear resistance and toughness of the composite material, and can effectively prevent the composite material from cracking during the heat treatment process.
  • the basic solution of the present invention is: a heat treatment process of a ceramic reinforced steel matrix composite material, comprising the following steps:
  • the ceramic reinforced steel-based composite material is heated to 200-400 ° C at 20-35 ° C / h, and incubated for 2-3 hours, then cooled with the furnace.
  • the working principle of the basic scheme is that the heat treatment process not only ensures the comprehensive mechanical properties of the steel base, but also has a good anti-wear effect, and effectively reduces the steel base and ceramic particles during the heat treatment temperature rise and fall process due to the two
  • the thermal stress generated by the difference in thermal expansion coefficient reduces the possibility of cracking in the ceramic reinforced steel matrix composite, which results in better mechanical properties and wear resistance.
  • the heat treatment process of the present invention effectively improves the wear resistance and toughness of the composite.
  • the invention achieves the reduction of thermal stress caused by the difference of the thermal expansion coefficients of the ceramic particles and the steel base during the heat treatment process by the pretreatment of the step (1) and the determination of the appropriate heat treatment temperature rise and fall speed, thereby effectively avoiding The problem of ceramic particles falling off and composite cracking due to inconsistent expansion and shrinkage coefficients of ceramics and metals.
  • the ceramic reinforced steel-based composite material is heated to 400-410 ° C at a temperature increase rate of 38-42 ° C / h, and kept for 0.6 h. According to repeated experiments by the applicant, it is found that the parameters of the heat treatment are controlled within the above range, and the obtained product has the best comprehensive performance.
  • the ceramic reinforced steel matrix composite material is heated to a temperature of 698-710 ° C at a temperature increase rate of 68-74 ° C / h, and the temperature is maintained for 0.8 h. According to repeated experiments by the applicant, it is found that the parameters of the heat treatment are controlled within the above range, and the obtained product has the best comprehensive performance.
  • the ceramic reinforced steel-based composite material is heated to 936-945 ° C at a heating rate of 53-58 ° C / h, and kept for 4 h, and the ceramic reinforced steel-based composite material is taken out in the air and cooled to room temperature. . According to repeated experiments by the applicant, it is found that the parameters of the heat treatment are controlled within the above range, and the obtained product has the best comprehensive performance.
  • the ceramic reinforced steel-based composite material is heated to 220-230 ° C at 26-32 ° C / h, and after cooling for 2.5 h, it is cooled with the furnace. According to repeated experiments by the applicant, it is found that the parameters of the heat treatment are controlled within the above range, and the obtained product has the best comprehensive performance.
  • the anti-oxidation coating in the step (1) is a SG-JD high-temperature anti-oxidation coating, and the coating has a thickness of 0.2-0.5 mm.
  • SG-JD high temperature resistant anti-oxidation coating is the most suitable for ceramic reinforced steel matrix composites. It has good adhesion after coating and is not easy to fall off.
  • SG-JD high temperature anti-oxidation coating effectively improves ceramic reinforced steel.
  • the base composite is resistant to corrosion and oxidation and prolongs the service life of the ceramic reinforced steel matrix composite.
  • FIG. 1 is a graph showing an embodiment of a heat treatment process of a ceramic reinforced steel matrix composite material of the present invention
  • Example 2 is a structural comparison diagram of the ceramic reinforced steel matrix composite material of Example 1 before heat treatment
  • Example 3 is a structural comparison diagram of the ceramic reinforced steel matrix composite material after heat treatment in Example 1;
  • Example 4 is a structural comparison diagram of the ceramic reinforced steel matrix composite substrate of Example 1 before heat treatment
  • Figure 5 is a structural comparison diagram of the ceramic reinforced steel matrix composite substrate of Example 1 after heat treatment.
  • the ceramic reinforced steel matrix composite materials used in Examples 1-4 were all ZTA ceramic particle reinforced ZG50Cr5Mo composite materials.
  • a heat treatment process for a ceramic reinforced steel matrix composite material the specific steps are as follows:
  • the ceramic reinforced steel matrix composite material is heated to 700 ° C at a heating rate of 60 ° C / h, held for 0.5 h;
  • the ceramic reinforced steel-based composite material was heated to 250 ° C at 20 ° C / h for 2 h and then cooled with the furnace.
  • the heat treatment process flow chart of the ceramic reinforced steel matrix composite material is shown in Fig. 1.
  • the microstructure of the ceramic reinforced steel matrix composite is shown in Fig. 2.
  • the ceramic reinforced steel matrix composite substrate is shown in Fig. 4.
  • the tempered martensite, the granule and the matrix are obtained in the ceramic reinforced steel matrix composite.
  • the combination is good, no heat treatment crack, the microstructure of the ceramic reinforced steel matrix composite is shown in Fig. 3, and the ceramic reinforced steel matrix composite substrate is shown in Fig. 5.
  • the wear resistance and toughness of the composite after heat treatment are shown in Table 1.
  • a heat treatment process for a ceramic reinforced steel matrix composite material the specific steps are as follows:
  • the ceramic reinforced steel matrix composite material was heated to 700 ° C at a heating rate of 68 ° C / h, held for 0.6 h;
  • the ceramic reinforced steel-based composite material was heated at 25 ° C / h to 240 ° C for 2.3 h and then cooled with the furnace.
  • a heat treatment process for a ceramic reinforced steel matrix composite material the specific steps are as follows:
  • the ceramic reinforced steel-based composite material was heated to 300 ° C for 2 hours at 28 ° C / h and then cooled with the furnace.
  • a heat treatment process for a ceramic reinforced steel matrix composite material the specific steps are as follows:
  • the ceramic reinforced steel matrix composite material was heated to 700 ° C at a heating rate of 80 ° C / h, and kept for 1 h;
  • the ceramic reinforced steel matrix composite was heated to 400 ° C for 3 h at 35 ° C / h and then cooled with the furnace.
  • Table 1 The data in Table 1 are the performance test results of the as-cast ceramic reinforced steel matrix composite material without heat treatment and the ceramic reinforced steel matrix composite material after heat treatment of Examples 1-4.
  • Relative wear resistance refers to the comparison of wear resistance between the heat-treated ceramic reinforced steel matrix composite and the unheated as-cast ceramic reinforced steel matrix composite under the same working conditions. The comparison is based on the as-cast condition. Its wear resistance is 1.
  • Examples 1-4 are heat-treated ceramic reinforced steel-based composite materials, and as-cast unheated ceramic reinforced steel-based composite materials. It can be clearly seen from the data in Table 1 that the heat treatment by this scheme After that, the mechanical properties such as hardness, toughness and wear resistance of the ceramic reinforced steel matrix composite material are obviously improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

L'invention appartient au domaine technique des matériaux composites et concerne en particulier un procédé de traitement thermique d'un matériau composite à matrice en acier renforcée de céramique, le procédé de traitement thermique comprenant les étapes suivantes consistant à : (1) appliquer un revêtement antioxydant sur une surface d'un matériau composite à matrice en acier renforcée de céramique à traiter thermiquement, puis placer le matériau composite dans un four électrique, évacuer celui-ci, et charger le four en azote de sorte que la teneur en oxygène dans le four électrique est inférieure ou égale à 5 % et que la pression du four est maintenue à 60 à 70 mbar ; (2) chauffer le matériau composite à 380 à 430 °C à une vitesse de chauffage de 30 à 50 °C/h, et maintenir la température pendant 0,5 à 1 h ; (3) chauffer le matériau composite à 680 à 730 °C à une vitesse de chauffage de 60 à 80 °C/h, et maintenir la température pendant 0,5 à 1 h ; (4) chauffer le matériau composite à 930 à 950 °C à une vitesse de chauffage de 50 à 60 °C/h, maintenir la température pendant 2 à 6 h, et retirer et refroidir à l'air le matériau composite jusqu'à température ambiante ; et (5) chauffer le matériau composite à 200 à 400 °C à une vitesse de chauffage de 20 à 35 °C/h, maintenir la température pendant 2 à 3 h, et réaliser un refroidissement du four sur le matériau composite. En traitant le matériau composite à matrice en acier renforcée de céramique à l'aide du procédé fourni par la solution technique de l'invention, la résistance à l'abrasion et la ténacité du matériau composite peuvent être améliorées, et le craquage du matériau composite peut être efficacement évité pendant le traitement thermique.
PCT/CN2019/070805 2018-03-29 2019-01-08 Procédé de traitement thermique pour matériau composite à matrice en acier renforcée de céramique WO2019184552A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019240977A AU2019240977B2 (en) 2018-03-29 2019-01-08 Heat Treatment Process for Ceramic-Reinforced Steel-Matrix Composite Material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810269477.8A CN108374078B (zh) 2018-03-29 2018-03-29 一种陶瓷增强钢基复合材料的热处理工艺
CN201810269477.8 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019184552A1 true WO2019184552A1 (fr) 2019-10-03

Family

ID=63031820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070805 WO2019184552A1 (fr) 2018-03-29 2019-01-08 Procédé de traitement thermique pour matériau composite à matrice en acier renforcée de céramique

Country Status (3)

Country Link
CN (1) CN108374078B (fr)
AU (1) AU2019240977B2 (fr)
WO (1) WO2019184552A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108374078B (zh) * 2018-03-29 2019-07-02 昆明理工大学 一种陶瓷增强钢基复合材料的热处理工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946513A (fr) * 1972-09-12 1974-05-04
CN101215664A (zh) * 2008-01-07 2008-07-09 吉林大学 不同比例TiC/TiB2双相颗粒混杂局部增强锰钢复合材料的制备方法
CN102672144A (zh) * 2012-03-28 2012-09-19 泰州市永昌冶金科技有限公司 一种碳化钨陶瓷/耐热合金基耐热、耐磨复合材料的制备方法
CN104439192A (zh) * 2014-11-04 2015-03-25 昆明理工大学 一种蜂窝状陶瓷-金属复合材料立磨磨辊制备方法
CN108374078A (zh) * 2018-03-29 2018-08-07 昆明理工大学 一种陶瓷增强钢基复合材料的热处理工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403032B (zh) * 2008-11-12 2010-06-23 中国科学院金属研究所 一种高速钢复合轧辊的热处理工艺
CN104372254B (zh) * 2014-10-29 2017-01-25 重庆华孚粉末冶金有限公司 碳化硅颗粒增强铁基复合材料及其制备方法
CN104480261B (zh) * 2015-01-05 2016-11-23 云南昆钢新型复合材料开发有限公司 一种抗磨双金属层压复合材料的球化退火工艺
CN107345287A (zh) * 2016-05-05 2017-11-14 黄毅 一种钢基金属陶瓷复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946513A (fr) * 1972-09-12 1974-05-04
CN101215664A (zh) * 2008-01-07 2008-07-09 吉林大学 不同比例TiC/TiB2双相颗粒混杂局部增强锰钢复合材料的制备方法
CN102672144A (zh) * 2012-03-28 2012-09-19 泰州市永昌冶金科技有限公司 一种碳化钨陶瓷/耐热合金基耐热、耐磨复合材料的制备方法
CN104439192A (zh) * 2014-11-04 2015-03-25 昆明理工大学 一种蜂窝状陶瓷-金属复合材料立磨磨辊制备方法
CN108374078A (zh) * 2018-03-29 2018-08-07 昆明理工大学 一种陶瓷增强钢基复合材料的热处理工艺

Also Published As

Publication number Publication date
CN108374078B (zh) 2019-07-02
AU2019240977A1 (en) 2020-10-22
AU2019240977B2 (en) 2022-04-14
CN108374078A (zh) 2018-08-07

Similar Documents

Publication Publication Date Title
CN105369189A (zh) 一种用于h13模具钢的氮化工艺
CN102560037B (zh) 高强度钢制薄壁件真空热处理工艺
WO2019184552A1 (fr) Procédé de traitement thermique pour matériau composite à matrice en acier renforcée de céramique
CN110306139B (zh) 一种提高tc4钛合金室温塑性的连续多步热氢处理工艺
US20050104266A1 (en) Vacuum furnace with pressurized intensive water quench tank
CN101423925B (zh) 镁铬耐火制品模具碳、硼复合渗处理工艺
CN106637063A (zh) 一种提高h13热作模具热疲劳性离子渗氮表面改性方法
CN109182957B (zh) 一种多合金耐磨铸钢件的热处理工艺
CN109338286A (zh) 一种冲压模具的硼铝共渗处理工艺
CN110144532B (zh) 一种中高碳锯片用钢淬火工艺及其中高碳钢锯片
RU2387716C2 (ru) Способ подготовки фурмы доменной печи
CN104928562A (zh) 一种低铬白口铸铁及其去应力热处理工艺
CN107245681B (zh) 一种高耐蚀性镁合金的优化热处理工艺
CN109022726B (zh) 一种中碳钢的热处理方法
CN106091791B (zh) 一种耐腐蚀板式换热器复合表面涂层及其制备方法
TWI535857B (zh) Carburized Vos Tempering Slider for Linear Slide and Its Manufacturing Method
CN108504839A (zh) 一种高碳铬轴承钢管的热处理工艺
CN113930713B (zh) 一种热处理渗碳工艺
CN104372352A (zh) 一种压铸模的热处理方法
CN104480270A (zh) 一种高锰钢及部分合金钢余热热处理方法
CN105648394A (zh) 一种碳氮共渗热处理工艺方法
WO2023236135A1 (fr) Procédé et équipement de traitement de renforcement de surface de matériau gcr15
CN104372353A (zh) 一种压铸模的热处理方法
CN117210784A (zh) 一种1Cr17Ni2不锈钢氰化的工艺方法
JP2833051B2 (ja) 真空熱処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019240977

Country of ref document: AU

Date of ref document: 20190108

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19776536

Country of ref document: EP

Kind code of ref document: A1