WO2019184431A1 - 一种pucch功率控制偏移量的确定方法及装置 - Google Patents

一种pucch功率控制偏移量的确定方法及装置 Download PDF

Info

Publication number
WO2019184431A1
WO2019184431A1 PCT/CN2018/119419 CN2018119419W WO2019184431A1 WO 2019184431 A1 WO2019184431 A1 WO 2019184431A1 CN 2018119419 W CN2018119419 W CN 2018119419W WO 2019184431 A1 WO2019184431 A1 WO 2019184431A1
Authority
WO
WIPO (PCT)
Prior art keywords
uci
pucch
pucch format
determining
occupies
Prior art date
Application number
PCT/CN2018/119419
Other languages
English (en)
French (fr)
Inventor
张荻
郑方政
林祥利
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020207030962A priority Critical patent/KR102358163B1/ko
Priority to EP18912041.3A priority patent/EP3780774B1/en
Priority to US16/977,086 priority patent/US11540226B2/en
Priority to EP22213771.3A priority patent/EP4178276A1/en
Publication of WO2019184431A1 publication Critical patent/WO2019184431A1/zh
Priority to US17/993,974 priority patent/US12022403B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and a device for determining a physical uplink control channel (PUCCH) power control offset.
  • PUCCH physical uplink control channel
  • the P 0_PUCCH,c (b) is the PUCCH target power configured on the upper layer of the carrier c, and is obtained by combining the exclusive part of the cell and the exclusive part of the user equipment (User Equipment, UE);
  • PL c (k) is a path loss compensation parameter, and k is a pilot resource sequence number used in path loss measurement configured by Radio Resource Control (RRC);
  • RRC Radio Resource Control
  • ⁇ F_PUCCH, c (F) is a power offset value of a PUCCH format configured in a higher layer, and F is an index of a PUCCH formant;
  • g c (i, l) is a closed loop power adjustment parameter
  • ⁇ PUCCH_TF,c (i) is an offset used to reflect the system coding performance.
  • PUCCH uses a new polarization code coding scheme, and its performance is compared with the Long Term Evolution (LTE) Tail Biting CC (TBCC) coding scheme.
  • LTE Long Term Evolution
  • TBCC Tail Biting CC
  • PUCCH format is supported in the NR, such as PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, and PUCCH format 4.
  • An embodiment of the present application provides a method and a device for determining a PUCCH power control offset, which are used to provide a new PUCCH power control offset determination manner, so as to solve the problem that the existing PUCCH power control offset determination mode cannot adapt to the new Technical issues with wireless communication systems.
  • a method for determining a PUCCH power control offset including:
  • First uplink needs to be transmitted on the PUCCH control information (Uplink Control Information, UCI) number of bits O UCI, and determining the PUCCH resource units carrying the first of UCI (Resource Element, RE) number N RE;
  • UCI Uplink Control Information
  • RE Resource Element
  • the offset ⁇ PUCCH_TF,c (i) for the PUCCH power control calculation is determined, where g(O UCI /N RE ) is a function with O UCI and N RE as variables.
  • determining the number of REs carrying RE in the PUCCH, N RE includes:
  • the UCI defined in PUCCH format 2 occupies the number of symbols of the PUCCH, The UCI defined in PUCCH format 2 occupies the bandwidth of the PUCCH;
  • the UCI defined in PUCCH format 3/4 occupies the number of symbols of the PUCCH, The number of symbols of the PUCCH is occupied by a Demodulation Reference Signal (DMRS) defined in PUCCH format 3/4.
  • DMRS Demodulation Reference Signal
  • the UCI defined in PUCCH format 3/4 occupies the bandwidth of the PUCCH.
  • g(O UCI /N RE ) is a linear fitting function with O UCI and N RE as variables.
  • g(O UCI /N RE ) is specifically a*(O UCI /N RE )+b, wherein a and b are parameter adjustment coefficients, 1.5 ⁇ a ⁇ 2.5, -1 ⁇ b ⁇ 1.
  • a and b respectively include multiple preset values, according to the formula Determining the offset ⁇ PUCCH_TF,c (i) for the PUCCH power control calculation, including:
  • a terminal in a second aspect, includes:
  • a memory for storing instructions
  • First uplink needs to be transmitted on the PUCCH number of bits of the control information UCI O UCI, and determining the number of resource elements RE N RE PUCCH carries the first in the UCI; according to the formula
  • the offset ⁇ PUCCH_TF,c (i) for the PUCCH power control calculation is determined, where g(O UCI /N RE ) is a function with O UCI and N RE as variables.
  • the processor determines the number of RE N RE PUCCH carried UCI, comprising:
  • the UCI defined in PUCCH format 2 occupies the number of symbols of the PUCCH, The UCI defined in PUCCH format 2 occupies the bandwidth of the PUCCH;
  • the UCI defined in PUCCH format 3/4 occupies the number of symbols of the PUCCH
  • the demodulation reference signal DMRS defined in PUCCH format 3/4 occupies the number of symbols of the PUCCH
  • the UCI defined in PUCCH format 3/4 occupies the bandwidth of the PUCCH.
  • g(O UCI /N RE ) is a linear fitting function with O UCI and N RE as variables.
  • g(O UCI /N RE ) is specifically a*(O UCI /N RE )+b, wherein a and b are parameter adjustment coefficients, 1.5 ⁇ a ⁇ 2.5, -1 ⁇ b ⁇ 1.
  • a and b respectively include a plurality of preset values, and the processor executes according to a formula. Determining the offset ⁇ PUCCH_TF,c (i) for the PUCCH power control calculation, including:
  • a terminal where the terminal includes:
  • a first determination means for determining a first uplink needs to be transmitted on the PUCCH number of bits of the control information UCI UCI O, and determining the PUCCH carries the first number of resource elements UCI RE N RE;
  • a second determining module for using a formula
  • the offset ⁇ PUCCH_TF,c (i) for the PUCCH power control calculation is determined, where g(O UCI /N RE ) is a function with O UCI and N RE as variables.
  • the first determining module is configured to:
  • the UCI defined in PUCCH format 2 occupies the number of symbols of the PUCCH, The UCI defined in PUCCH format 2 occupies the bandwidth of the PUCCH;
  • the UCI defined in PUCCH format 3/4 occupies the number of symbols of the PUCCH
  • the demodulation reference signal DMRS defined in PUCCH format 3/4 occupies the number of symbols of the PUCCH
  • the UCI defined in PUCCH format 3/4 occupies the bandwidth of the PUCCH.
  • g(O UCI /N RE ) is a linear fitting function with O UCI and N RE as variables.
  • g(O UCI /N RE ) is specifically a*(O UCI /N RE )+b, wherein a and b are parameter adjustment coefficients, 1.5 ⁇ a ⁇ 2.5, -1 ⁇ b ⁇ 1.
  • a and b respectively include a plurality of preset values
  • the second determining module is configured to:
  • a computer readable storage medium wherein:
  • the computer readable storage medium stores computer instructions that, when executed on a computer device, cause the computer device to perform the method of the first aspect.
  • a first number of bits O UCI UCI embodiment, when calculating the PUCCH power control offset is determined to be transmitted on PUCCH embodiment of the present application, and determining the PUCCH resource units carrying a first number of the UCI RE N RE, and According to the formula
  • the offset ⁇ PUCCH_TF,c (i) for the PUCCH power control calculation is determined, where g(O UCI /N RE ) is a function with O UCI and N RE as variables.
  • a new PUCCH power control offset determination method is provided. The experimental results show that the scheme can obtain a more accurate PUCCH power control offset and ensure the transmission performance of the PUCCH channel in the new wireless communication system. .
  • FIG. 1 is a schematic flowchart of a method for determining a PUCCH power control offset according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a terminal in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a g(O UCI /N RE ) function in an embodiment of the present application
  • FIG. 4 is a schematic diagram of a g(O UCI /N RE ) function in an embodiment of the present application
  • FIG. 5 is a schematic diagram of a g(O UCI /N RE ) function in an embodiment of the present application.
  • the base station adjusts the power of the user terminal by using an open-loop and closed-loop power control mode, and the base station feeds back the power control information to the UE according to the measurement result of the uplink of the UE, and the uplink obtained by the UE through the open loop power control.
  • the transmit power is adjusted to enable more precise control of the transmit power of the UE.
  • PUSCH physical uplink shared channel
  • BPRE O CQI /N RE
  • O CQI is a Channel Quality Indicator (CQI)/Precoding Matrix Indicator (PMI) including a cyclic redundancy check (Cyclic Redundancy Checksum, CRC) bit length
  • CRC Cyclic Redundancy Checksum
  • the PUCCH format used in LTE is different from the PUCCH format in NR, and five new PUCCH formats are supported in the NR: PUCCH format 0 is a short PUCCH format of 2 bits or less; PUCCH format 1 is a long PUCCH format of 2 bits or less; PUCCH format 2 is a short PUCCH format of 2 bits or more; PUCCH format 3 is a short PUCCH format of 2 bits or more, and does not support multiplexing of multiple users; PUCCH format 4 is a short PUCCH format of 2 bits or more, and supports multiplexing of multiple users. .
  • TBCC coding is used in LTE, and CA-Polar and PC CA-Polar coding combination schemes are used in NR.
  • the performance of NR scheme is much better than LTE. Since the PUCCH format, the bit range, the encoding method, and the like used in the NR are different, reusing ⁇ PUCCH_TF in LTE , c (i) may reduce the PUCCH transmission performance in the NR.
  • the offset used in the power control calculation for NR PUCCH format 2/3/4 also needs to be different from LTE in order to adapt to the new power control method and coding method in NR.
  • the core idea of the embodiment of the present application is to consider the calculation method of the signal to noise ratio (SNR) in the information theory.
  • SNR signal to noise ratio
  • the O UCI and the N RE are used as parameters.
  • the formula form of the corresponding ⁇ PUCCH_TF,c (i) and the range of values applicable to the 5G Polar coding scheme are given.
  • the embodiment of the present application provides a method for determining a PUCCH power control offset, which may be applied to a terminal, such as a mobile phone, a tablet computer, a personal computer, a notebook computer, a wearable electronic device, and the like.
  • a terminal such as a mobile phone, a tablet computer, a personal computer, a notebook computer, a wearable electronic device, and the like.
  • FIG. 1 a flow of a method for determining a PUCCH power control offset in the embodiment of the present application is described below.
  • Step 101 Determine the number of bits O UCI of the first UCI that needs to be transmitted on the PUCCH, and determine the number of REs that carry the first UCI in the PUCCH, N RE .
  • Step 102 According to the formula The offset ⁇ PUCCH_TF,c (i) for the PUCCH power control calculation is determined, where g(O UCI /N RE ) is a function with O UCI and N RE as variables.
  • O UCI may mean that the UCI includes the number of bits including the CRC.
  • the formula for calculating ⁇ PUCCH_TF, c (i) in the embodiment of the present application can be set to be used only in the case of O UCI > 17 bits .
  • the UCI defined in PUCCH format 2 occupies the number of symbols of the PUCCH,
  • the UCI defined in PUCCH format 2 occupies the bandwidth of the PUCCH.
  • the UCI defined in PUCCH format 3 occupies the number of symbols of the PUCCH
  • the demodulation reference signal DMRS defined in PUCCH format 3 occupies the number of symbols of the PUCCH
  • the UCI defined in PUCCH format 3 occupies the bandwidth of the PUCCH.
  • the UCI defined in PUCCH format 4 occupies the number of symbols of the PUCCH
  • the demodulation reference signal DMRS defined in PUCCH format 4 occupies the number of symbols of the PUCCH
  • the UCI defined in PUCCH format 4 occupies the bandwidth of the PUCCH.
  • ⁇ PUCCH_TF,c (i) is calculated using different parameters for PUCCH format 2 and PUCCH format 3/4.
  • the formula The g(O UCI /N RE ) in the equation is a linear fitting function with O UCI and N RE as variables.
  • the value range of a may be [1.5, 2.5]
  • the value range of b may be [-1, 1], that is, 1.5 ⁇ a ⁇ 2.5, -1 ⁇ b ⁇ 1.
  • the PUCCH format, the UCI length range, and whether the frequency hopping is used may affect the transmission performance, and the SNR required to meet the Block Error Rate (BLER) is different. Therefore, different embodiments may be used in different embodiments.
  • the a and b values are used to more accurately reflect the effect of performance changes on the power control offset.
  • Eight cases can be obtained by combining the three conditions of the PUCCH format, the UCI length range, and whether or not the frequency hopping (that is, the frequency modulation condition is used), and the corresponding a value and b can be preset for any of the eight cases. value.
  • a feasible correspondence is shown in Table 1:
  • the eight preset values of a1-a8 may include the same value.
  • the eight preset values may also be different, and the values of the eight preset values are all in [1.5]. , 2.5]; b1-b8
  • These 8 preset values can include the same value.
  • the 8 preset values can also be different, and the values of the 8 preset values are all different. In [-1,1].
  • the correspondence between the PUCCH format, the UCI length range, and the frequency hopping condition and the a and b values may be preset, and the ⁇ PUCCH_TF, c (i) used for transmitting the first UCI is calculated. And determining, according to the preset correspondence, the PUCCH format, the OUCI and the frequency hopping of the first UCI, which are required to be used for transmitting the first UCI, from the plurality of preset values respectively included in a and b. Corresponding values of a and b.
  • the formula And the preset values of a and b in the formula can be determined by simulation test.
  • an embodiment of the present application provides a terminal, where the terminal includes at least a memory and a processor, such as the terminal shown in FIG. 2.
  • the terminal shown in FIG. 2 includes a memory 201, a processor 202, and a transceiver 203, wherein the memory 201 and the transceiver 203 can be connected to the processor 202 through a bus interface, or can also be connected to the processor 202 through a dedicated connection line.
  • the transceiver 203 can be configured to receive information sent by a device such as a base station, for example, to receive high layer signaling.
  • the memory 201 can be used to store instructions, and the processor 202 can be used to read instructions in the memory 201 to perform the following processes:
  • the offset ⁇ PUCCH_TF,c (i) for the PUCCH power control calculation is determined, where g(O UCI /N RE ) is a function with O UCI and N RE as variables.
  • the processor 202 performs to determine the number of RE N RE carries the UCI in the PUCCH, comprising:
  • the UCI defined in PUCCH format 2 occupies the number of symbols of the PUCCH, The UCI defined in PUCCH format 2 occupies the bandwidth of the PUCCH;
  • the UCI defined in PUCCH format 3/4 occupies the number of symbols of the PUCCH
  • the demodulation reference signal DMRS defined in PUCCH format 3/4 occupies the number of symbols of the PUCCH
  • the UCI defined in PUCCH format 3/4 occupies the bandwidth of the PUCCH.
  • g(O UCI /N RE ) is a linear fit function with O UCI and N RE as variables.
  • g(O UCI /N RE ) is specifically a*(O UCI /N RE )+b, wherein a and b are parameter adjustment coefficients, 1.5 ⁇ a ⁇ 2.5, -1 ⁇ b ⁇ 1.
  • a and b respectively include a plurality of preset values, and the processor 202 executes according to a formula. Determining the offset ⁇ PUCCH_TF,c (i) for the PUCCH power control calculation, including:
  • an embodiment of the present application provides a terminal, where the terminal includes a first determining module and a second determining module.
  • the first determining module and the second determining module may be a whole, or a module that is independent and can perform data interaction with each other; and the first determining module and the second determining module may also be separately split.
  • a second determining module for using a formula
  • the offset ⁇ PUCCH_TF,c (i) for the PUCCH power control calculation is determined, where g(O UCI /N RE ) is a function with O UCI and N RE as variables.
  • the first determining module is configured to:
  • the UCI defined in PUCCH format 2 occupies the number of symbols of the PUCCH, The UCI defined in PUCCH format 2 occupies the bandwidth of the PUCCH;
  • the UCI defined in PUCCH format 3/4 occupies the number of symbols of the PUCCH
  • the demodulation reference signal DMRS defined in PUCCH format 3/4 occupies the number of symbols of the PUCCH
  • the UCI defined in PUCCH format 3/4 occupies the bandwidth of the PUCCH.
  • g(O UCI /N RE ) is a linear fitting function with O UCI and N RE as variables.
  • g(O UCI /N RE ) is specifically a*(O UCI /N RE )+b, wherein a and b are parameter adjustment coefficients, 1.5 ⁇ a ⁇ 2.5, -1 ⁇ b ⁇ 1.
  • a and b respectively include a plurality of preset values
  • the second determining module is configured to:
  • an embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores computer instructions, when the computer instructions are run on the computer device, causing the computer device to perform the method as described in the first embodiment. method.
  • the computer readable storage medium includes: a Universal Serial Bus flash drive (USB), a mobile hard disk, a Read-Only Memory (ROM), a random access memory ( Random Access Memory (RAM), disk or optical disc, and other storage media that can store program code.
  • USB Universal Serial Bus flash drive
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a first number of bits O UCI UCI embodiment, when calculating the PUCCH power control offset is determined to be transmitted on PUCCH embodiment of the present application, and determining the PUCCH resource units carrying a first number of the UCI RE N RE, and According to the formula
  • the offset ⁇ PUCCH_TF,c (i) for the PUCCH power control calculation is determined, where g(O UCI /N RE ) is a function with O UCI and N RE as variables.
  • a new PUCCH power control offset determination method is provided. The experimental results show that the scheme can obtain a more accurate PUCCH power control offset and ensure the transmission performance of the PUCCH channel in the new wireless communication system. .
  • N RE is determined using different manner, it can be more targeted and more accurately determine the N RE, and thus obtain a more accurate PUCCH power based on the determined N RE Control the offset.
  • the device embodiments described above are merely illustrative, wherein the units/modules described as separate components may or may not be physically separate, and the components displayed as units/modules may or may not be physical units/modules. , can be located in one place, or can be distributed to multiple network units/modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种PUCCH功率控制偏移量的确定方法及装置,用以解决现有PUCCH功率控制偏移量确定方式无法适应新的无线通信系统的技术问题。所述方法包括:确定需要在PUCCH上传输的第一上行控制信息UCI的比特数OUCI,以及确定PUCCH中承载所述第一UCI的资源单元RE个数NRE;根据公式 (I) 确定用于PUCCH功率控制计算的偏移量ΔPUCCH_TF,(i),其中,g(OUCI/NRE)为以OUCI和NRE为变量的函数。

Description

一种PUCCH功率控制偏移量的确定方法及装置
本申请要求在2018年3月30日提交中国专利局、申请号为201810296910.7、申请名称为“一种PUCCH功率控制偏移量的确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种物理上行控制信道(Physical Uplink Control Channel,PUCCH)功率控制偏移量的确定方法及装置。
背景技术
随着移动通信业务需求的发展变化,国际电信联盟(International Telecommunication Union,ITU)和第三代产业合作计划(3rd Generation Partnership Project,3GPP)等组织都开始研究新的无线通信系统,例如第五代无线通信系统(5Generation New RAT,5G NR)。
在NR的讨论过程中,假设通过如下的公式(1)对载波c上时隙(slot)i中的PUCCH进行功率控制:
Figure PCTCN2018119419-appb-000001
其中,P 0_PUCCH,c(b)为载波c上高层配置的PUCCH目标功率,由小区专属部分和用户终端(User Equipment,UE)专属部分组合得到;
PL c(k)为路损补偿参数,k为无线资源控制(Radio Resource Control,RRC)配置的路损测量中使用的导频资源序号;
Δ F_PUCCH,c(F)为高层配置的不同PUCCH格式(PUCCH format)的功率偏移值,F为PUCCH formant的索引;
g c(i,l)为闭环功率调整参数;
Δ PUCCH_TF,c(i)是一个用于反映系统编码性能的偏移量。
5G网络建设中,PUCCH使用了新的极化(Polar)码编码方案,其性能与长期演进系统(Long Term Evolution,LTE)的咬尾卷积码(Tail Biting CC,TBCC)编码方案相比有大幅提升,在相同的场景下,如果要达到同样的传输性能,使用Polar编码方案需要的功 率更小,从而降低终端的功耗。并且,相较于LTE,NR中支持新的PUCCH format,如PUCCH format 0、PUCCH format 1、PUCCH format 2、PUCCH format 3和PUCCH format 4。
由于NR中使用的PUCCH格式、比特范围、编码方式等与现有无线通信系统中的不相同,因而现有确定PUCCH功率控制偏移量Δ PUCCH_TF,c(i)的方法无法适应NR中采用的新的功率控制方法和编码方式。
发明内容
本申请实施例提供一种PUCCH功率控制偏移量的确定方法及装置,用以提供一种新的PUCCH功率控制偏移量确定方式,以解决现有PUCCH功率控制偏移量确定方式无法适应新的无线通信系统的技术问题。
第一方面,提供一种PUCCH功率控制偏移量的确定方法,包括:
确定需要在PUCCH上传输的第一上行控制信息(Uplink Control Information,UCI)的比特数O UCI,以及确定PUCCH中承载所述第一UCI的资源单元(Resource Element,RE)个数N RE
根据公式
Figure PCTCN2018119419-appb-000002
确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),其中,g(O UCI/N RE)为以O UCI和N RE为变量的函数。
在一种可能的实现方式中,确定PUCCH中承载UCI的RE个数N RE,包括:
若需要采用PUCCH format 2传输所述第一UCI,则确定N RE
Figure PCTCN2018119419-appb-000003
其中,
Figure PCTCN2018119419-appb-000004
为PUCCH format 2中定义的UCI占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000005
为PUCCH format 2中定义的UCI占用PUCCH的带宽;
和/或,
若需要采用PUCCH format 3/4传输所述第一UCI,则确定N RE
Figure PCTCN2018119419-appb-000006
其中,
Figure PCTCN2018119419-appb-000007
为PUCCH format 3/4中定义的UCI占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000008
为PUCCH format 3/4中定义的解调参考信号(Demodulation Reference Signal,DMRS)占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000009
为PUCCH format 3/4中定义的UCI占用PUCCH的带宽。
在一种可能的实现方式中,g(O UCI/N RE)为以O UCI和N RE为变量的线性拟合函数。
在一种可能的实现方式中,g(O UCI/N RE)具体为a*(O UCI/N RE)+b,其中,a、b为调参系数,1.5≤a≤2.5,-1≤b≤1。
在一种可能的实现方式中,a、b分别包括多个预设取值,根据公式
Figure PCTCN2018119419-appb-000010
确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),包括:
确定与传输所述第一UCI需要采用的PUCCH格式、所述第一UCI的O UCI和跳频情况对应的a、b取值。
第二方面,提供一种终端,所述终端包括:
存储器,用于存储指令;
处理器,用于读取所述存储器中的指令,执行下列过程:
确定需要在PUCCH上传输的第一上行控制信息UCI的比特数O UCI,以及确定PUCCH中承载所述第一UCI的资源单元RE个数N RE;根据公式
Figure PCTCN2018119419-appb-000011
确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),其中,g(O UCI/N RE)为以O UCI和N RE为变量的函数。
在一种可能的实现方式中,所述处理器执行确定PUCCH中承载UCI的RE个数N RE,包括:
若需要采用PUCCH format 2传输所述第一UCI,则确定N RE
Figure PCTCN2018119419-appb-000012
其中,
Figure PCTCN2018119419-appb-000013
为PUCCH format 2中定义的UCI占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000014
为PUCCH format 2中定义的UCI占用PUCCH的带宽;
和/或,
若需要采用PUCCH format 3/4传输所述第一UCI,则确定N RE
Figure PCTCN2018119419-appb-000015
其中,
Figure PCTCN2018119419-appb-000016
为PUCCH format 3/4中定义的UCI占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000017
为PUCCH format 3/4中定义的解调参考信号DMRS占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000018
为PUCCH format 3/4中定义的UCI占用PUCCH的带宽。
在一种可能的实现方式中,g(O UCI/N RE)为以O UCI和N RE为变量的线性拟合函数。
在一种可能的实现方式中,g(O UCI/N RE)具体为a*(O UCI/N RE)+b,其中,a、b为调参系数,1.5≤a≤2.5,-1≤b≤1。
在一种可能的实现方式中,a、b分别包括多个预设取值,所述处理器执行根据公式
Figure PCTCN2018119419-appb-000019
确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),包括:
确定与传输所述第一UCI需要采用的PUCCH格式、所述第一UCI的O UCI和跳频情况对应的a、b取值。
第三方面,提供一种终端,所述终端包括:
第一确定模块,用于确定需要在PUCCH上传输的第一上行控制信息UCI的比特数O UCI,以及确定PUCCH中承载所述第一UCI的资源单元RE个数N RE
第二确定模块,用于根据公式
Figure PCTCN2018119419-appb-000020
确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),其中,g(O UCI/N RE)为以O UCI和N RE为变量的函数。
在一种可能的实现方式中,第一确定模块用于:
若需要采用PUCCH format 2传输所述第一UCI,则确定N RE
Figure PCTCN2018119419-appb-000021
其中,
Figure PCTCN2018119419-appb-000022
为PUCCH format 2中定义的UCI占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000023
为PUCCH format 2中定义的UCI占用PUCCH的带宽;
和/或,
若需要采用PUCCH format 3/4传输所述第一UCI,则确定N RE
Figure PCTCN2018119419-appb-000024
其中,
Figure PCTCN2018119419-appb-000025
为PUCCH format 3/4中定义的UCI占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000026
为PUCCH format 3/4中定义的解调参考信号DMRS占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000027
为PUCCH format 3/4中定义的UCI占用PUCCH的带宽。
在一种可能的实现方式中,g(O UCI/N RE)为以O UCI和N RE为变量的线性拟合函数。
在一种可能的实现方式中,g(O UCI/N RE)具体为a*(O UCI/N RE)+b,其中,a、b为调参系数,1.5≤a≤2.5,-1≤b≤1。
在一种可能的实现方式中,a、b分别包括多个预设取值,第二确定模块用于:
确定与传输所述第一UCI需要采用的PUCCH格式、所述第一UCI的O UCI和跳频情况对应的a、b取值。
第四方面,提供一种计算机可读存储介质,其中:
所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机设备上运行时,使得计算机设备执行如第一方面所述的方法。
本申请实施例中,在计算PUCCH功率控制偏移量时,确定需要在PUCCH上传输的第一UCI的比特数O UCI,以及确定PUCCH中承载第一UCI的资源单元RE个数N RE,并根据公式
Figure PCTCN2018119419-appb-000028
确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),其中,g(O UCI/N RE)为以O UCI和N RE为变量的函数。基于该方案,提供了一种 新的PUCCH功率控制偏移量确定方式,试验结果表明,该方案可以得到较准确的PUCCH功率控制偏移量,保证了新的无线通信系统中PUCCH信道的传输性能。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例中一种PUCCH功率控制偏移量的确定方法的流程示意图;
图2为本申请实施例中一种终端的示意图;
图3为本申请实施例中一种g(O UCI/N RE)函数的示意图;
图4为本申请实施例中一种g(O UCI/N RE)函数的示意图;
图5为本申请实施例中一种g(O UCI/N RE)函数的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,在不做特别说明的情况下,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请实施例的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
首先,对本申请实施例的应用场景和相关知识进行介绍。
在LTE无线通信系统中,基站通过开环加闭环的功率控制方式来调整用户终端的功率,基站根据UE上行链路的测量结果向UE反馈功率控制信息,对UE通过开环功率控制得到的上行发射功率加以调整,从而能够更精确的控制UE的发送功率。
LTE使用Δ TF,c(i)作为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)功率计算中的参数,表示传输格式相关的偏移量,其计算公式为
Figure PCTCN2018119419-appb-000029
其中,K s是高层配置的值。当K s=1.25时开启该调整、当K s=0时关闭该调整。对于不包含上行数据的UCI,BPRE=O CQI/N RE,其中,O CQI为信道质量指示(Channel Quality Indicator,CQI)/预编码矩阵指示(Pre-coding Matrix Indicator,PMI)包含循环冗余校验(Cyclic Redundancy Checksum,CRC)的比特长度,N RE为PUSCH的可用资源单元(Resource Element,RE)个数;对于其它情况,
Figure PCTCN2018119419-appb-000030
Figure PCTCN2018119419-appb-000031
为UCI在PUSCH上传输时对应的资源偏移参数,此处定义为
Figure PCTCN2018119419-appb-000032
在NR中对于Δ PUCCH_TF,c(i)的定义还没有确定的方案,具体来说:
LTE中使用的PUCCH format和NR中的PUCCH format不同,NR中支持5种新的PUCCH格式:PUCCH format 0是2比特及以下的短PUCCH格式;PUCCH format 1是2比特及以下的长PUCCH格式;PUCCH format 2是2比特以上的短PUCCH格式;PUCCH format 3是2比特以上的短PUCCH格式,不支持多用户的复用;PUCCH format 4是2比特以上的短PUCCH格式,支持多用户的复用。LTE中使用TBCC编码,NR中使用CA-Polar和PC CA-Polar编码组合方案,从性能上看NR的方案性能远好于LTE。由于NR中使用的PUCCH格式、比特范围、编码方式等都不相同,因此重用LTE中的Δ PUCCH_TF,c(i)可能会降低NR中PUCCH的传输性能。针对NR PUCCH format 2/3/4进行功率控制计算中使用的偏移量也需要和LTE有所区别,才能适应NR中新的功率控制方法和编码方式。
本申请实施例的核心思想在于,考虑信息理论中对于信噪比(Signal to Noise Ratio,SNR)的计算方法,对于NR中的PUCCH format2和PUCCH format3/4,以O UCI和N RE为参数,给出相应的Δ PUCCH_TF,c(i)的公式形式和适用于5G Polar编码方案的取值范围。
实施例一
本申请实施例提供一种PUCCH功率控制偏移量的确定方法,该方法可以应用于终端,终端例如为手机、平板电脑、个人电脑、笔记本电脑、穿戴式电子设备等具有通信功能的设备。
请参见图1,本申请实施例中PUCCH功率控制偏移量的确定方法的流程描述如下。
步骤101:确定需要在PUCCH上传输的第一UCI的比特数O UCI,以及确定PUCCH中承载第一UCI的RE个数N RE
步骤102:根据公式
Figure PCTCN2018119419-appb-000033
确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),其中,g(O UCI/N RE)为以O UCI和N RE为变量的函数。
其中,O UCI可以是指UCI包括包含CRC的比特数。
在一种可能的实施方式中,可以设定本申请实施例中计算Δ PUCCH_TF,c(i)的公式仅在O UCI>17bits的情况下使用。
本申请实施例中,针对不同的PUCCH格式,确定PUCCH中承载第一UCI的RE个数N RE的方式不同,具体来说:
(1)对于PUCCH format 2,
Figure PCTCN2018119419-appb-000034
其中,
Figure PCTCN2018119419-appb-000035
为PUCCH format 2中定义的UCI占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000036
为PUCCH format 2中定义的UCI占用PUCCH的带宽。
(2)对于PUCCH format 3,
Figure PCTCN2018119419-appb-000037
其中,
Figure PCTCN2018119419-appb-000038
为PUCCH format 3中定义的UCI占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000039
为PUCCH format 3中定义的解调参考信号DMRS占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000040
为PUCCH format 3中定义的UCI占用PUCCH的带宽。
(3)对于PUCCH format 4,
Figure PCTCN2018119419-appb-000041
其中,
Figure PCTCN2018119419-appb-000042
为PUCCH format 4中定义的UCI占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000043
为PUCCH format 4中定义的解调参考信号DMRS占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000044
为PUCCH format 4中定义的UCI占用PUCCH的带宽。
也就是说,采用PUCCH format 2传输UCI时确定N RE的方式,不同于采用PUCCH format 3/4传输UCI时确定N RE的方式。也即,针对PUCCH format 2和PUCCH format 3/4使用不同的参数计算Δ PUCCH_TF,c(i)。
在一种可能的实施方式中,公式
Figure PCTCN2018119419-appb-000045
中的g(O UCI/N RE)为以O UCI和N RE为变量的线性拟合函数。
举例来说,线性拟合函数g(O UCI/N RE)的一种可能的表达式为:a*(O UCI/N RE)+b,即在这种情况下g(O UCI/N RE)=a*(O UCI/N RE)+b。
其中,a、b为调参系数,为预设值,a的取值范围可以是[1.5,2.5],b的取值范围可以是[-1,1],即,1.5≤a≤2.5,-1≤b≤1。
由于PUCCH格式、UCI长度范围和是否使用跳频都有可能影响传输性能,导致满足误块率(Block Error Rate,BLER)要求的SNR不同,因此本申请实施例中可以对不同的情况使用不同的a值和b值,以更准确地反映性能变化对功率控制偏移量的影响。
根据PUCCH格式、UCI长度范围和是否使用跳频(即调频情况)这3个条件进行组 合可以获得8种情况,而针对这8种情况中的任一种可以预先设定对应的a值和b值。一种可行的对应关系参见表1:
表1
Figure PCTCN2018119419-appb-000046
其中,a1-a8这8个预设取值中可以包括相同的值,当然,这8个预设取值也可以全不相同,而这8个预设取值的取值范围均在[1.5,2.5]内;b1-b8这8个预设取值中可以包括相同的值,当然,这8个预设取值也可以全不相同,而这8个预设取值的取值范围均在[-1,1]内。
也就是说,本申请实施例中,可以预先设定有PUCCH格式、UCI长度范围和跳频情况与a、b值之间的对应关系,在计算传输第一UCI采用的Δ PUCCH_TF,c(i)时,只需要根据该预设的对应关系,从a、b分别包括的多个预设取值中,确定与传输第一UCI需要采用的PUCCH格式、第一UCI的O UCI和跳频情况对应的a值和b取值。
在一种可能的实施方式中,公式
Figure PCTCN2018119419-appb-000047
以及公式中a、b的预设取值可以是通过仿真模拟测试确定的。
为便于理解,下面举例对PUCCH功率控制偏移量的确定方法进行说明:
例1:
假设预先为PUCCH format 2,18≤O UCI≤25,且使用跳频这一情况设定的a=2.2902,b=0.1479,即设定表1中a1=2.2902,b1=0.1479,则:
在UE获取到O UCI=18,并通过上层设置的参数计算出N RE=16时,根据公式
Figure PCTCN2018119419-appb-000048
可以计算出Δ PUCCH_TF,c(i)=7.4887,即得到适合Polar码的功率控制偏移量。
参看图3,可以看出在该种参数下不同的O UCI/N RE对应的g(O UCI/N RE)函数取值都比较接近设置的样本数据。
例2:
假设预先为PUCCH format 2,18≤O UCI≤25,且不使用跳频这一情况设定的a=2.1871, b=0.4385,即设定表1中a2=2.1871,b2=0.4385,则:
在UE获取到O UCI=20,并通过上层设置的参数计算出N RE=16时,根据公式
Figure PCTCN2018119419-appb-000049
可以计算出Δ PUCCH_TF,c(i)=9.1727,即得到适合Polar码的功率控制偏移量。
参看图4,可以看出在该种参数下不同的O UCI/N RE对应的g(O UCI/N RE)函数取值都比较接近设置的样本数据。
例3:
假设预先为PUCCH format 3,O UCI≥26(即O UCI>25),且使用跳频这一情况设定的a=1.8746,b=0.5063,即设定表1中a7=1.8746,b7=0.5063,则:
在UE获取到O UCI=32,并通过上层设置的参数计算出N RE=24时,根据公式
Figure PCTCN2018119419-appb-000050
可以计算出Δ PUCCH_TF,c(i)=8.4791,即得到适合Polar码的功率控制偏移量。
参看图5,可以看出在该种参数下不同的O UCI/N RE对应的g(O UCI/N RE)函数取值都比较接近设置的样本数据。
实施例二
基于同一发明构思,本申请实施例提供一种终端,该终端至少包括存储器和处理器,例如为图2所示的终端。图2所示的终端包括存储器201、处理器202和收发机203,其中,存储器201和收发机203可以通过总线接口与处理器202相连接,或者也可以通过专门的连接线与处理器202连接,收发机203可以用于接收基站等设备发送的信息,例如接收高层信令。
其中,存储器201可以用于存储指令,处理器202可以用于读取存储器201中的指令,执行下列过程:
确定需要在PUCCH上传输的第一UCI的比特数O UCI,以及确定PUCCH中承载该第一UCI的RE个数N RE;根据公式
Figure PCTCN2018119419-appb-000051
确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),其中,g(O UCI/N RE)为以O UCI和N RE为变量的函数。
在一种可能的实施方式中,该处理器202执行确定PUCCH中承载UCI的RE个数N RE,包括:
若需要采用PUCCH format 2传输该第一UCI,则确定N RE
Figure PCTCN2018119419-appb-000052
其中,
Figure PCTCN2018119419-appb-000053
为PUCCH format 2中定义的UCI占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000054
为PUCCH  format 2中定义的UCI占用PUCCH的带宽;
和/或,
若需要采用PUCCH format 3/4传输该第一UCI,则确定N RE
Figure PCTCN2018119419-appb-000055
其中,
Figure PCTCN2018119419-appb-000056
为PUCCH format 3/4中定义的UCI占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000057
为PUCCH format 3/4中定义的解调参考信号DMRS占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000058
为PUCCH format 3/4中定义的UCI占用PUCCH的带宽。
在一种可能的实施方式中,g(O UCI/N RE)为以O UCI和N RE为变量的线性拟合函数。
在一种可能的实施方式中,g(O UCI/N RE)具体为a*(O UCI/N RE)+b,其中,a、b为调参系数,1.5≤a≤2.5,-1≤b≤1。
在一种可能的实施方式中,a、b分别包括多个预设取值,该处理器202执行根据公式
Figure PCTCN2018119419-appb-000059
确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),包括:
确定与传输该第一UCI需要采用的PUCCH格式、该第一UCI的O UCI和跳频情况对应的a、b取值。
实施例三
基于同一发明构思,本申请实施例提供一种终端,该终端包括第一确定模块和第二确定模块。在具体的实施过程中,第一确定模块和第二确定模块可以为一个整体,或者为独立且可以相互进行数据交互的模块;并且,第一确定模块和第二确定模块还可以分别拆分为多个子模块,各子模块用于实现第一确定模块或第二确定模块的具体的功能。其中:
第一确定模块,用于确定需要在PUCCH上传输的第一UCI的比特数O UCI,以及确定PUCCH中承载该第一UCI的RE个数N RE
第二确定模块,用于根据公式
Figure PCTCN2018119419-appb-000060
确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),其中,g(O UCI/N RE)为以O UCI和N RE为变量的函数。
在一种可能的实现方式中,第一确定模块用于:
若需要采用PUCCH format 2传输该第一UCI,则确定N RE
Figure PCTCN2018119419-appb-000061
其中,
Figure PCTCN2018119419-appb-000062
为PUCCH format 2中定义的UCI占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000063
为PUCCH format 2中定义的UCI占用PUCCH的带宽;
和/或,
若需要采用PUCCH format 3/4传输该第一UCI,则确定N RE
Figure PCTCN2018119419-appb-000064
其中,
Figure PCTCN2018119419-appb-000065
为PUCCH format 3/4中定义的UCI占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000066
为PUCCH format 3/4中定义的解调参考信号DMRS占用PUCCH的符号个数,
Figure PCTCN2018119419-appb-000067
为PUCCH format 3/4中定义的UCI占用PUCCH的带宽。
在一种可能的实现方式中,g(O UCI/N RE)为以O UCI和N RE为变量的线性拟合函数。
在一种可能的实现方式中,g(O UCI/N RE)具体为a*(O UCI/N RE)+b,其中,a、b为调参系数,1.5≤a≤2.5,-1≤b≤1。
在一种可能的实现方式中,a、b分别包括多个预设取值,第二确定模块用于:
确定与传输该第一UCI需要采用的PUCCH格式、该第一UCI的O UCI和跳频情况对应的a、b取值。
实施例四
基于同一发明构思,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机指令,当计算机指令在计算机设备上运行时,使得计算机设备执行如实施例一所述的方法。
在具体的实施过程中,计算机可读存储介质包括:通用串行总线闪存盘(Universal Serial Bus flash drive,USB)、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的存储介质。
上述的一个或多个技术方案,至少具有如下的有益效果:
本申请实施例中,在计算PUCCH功率控制偏移量时,确定需要在PUCCH上传输的第一UCI的比特数O UCI,以及确定PUCCH中承载第一UCI的资源单元RE个数N RE,并根据公式
Figure PCTCN2018119419-appb-000068
确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),其中,g(O UCI/N RE)为以O UCI和N RE为变量的函数。基于该方案,提供了一种新的PUCCH功率控制偏移量确定方式,试验结果表明,该方案可以得到较准确的PUCCH功率控制偏移量,保证了新的无线通信系统中PUCCH信道的传输性能。
进一步地,针对PUCCH format 2和PUCCH format 3/4采用不同的确定N RE的方式,能够更有针对性且更准确地确定出N RE,进而基于确定出的N RE获得更为准确的PUCCH功率控制偏移量。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元/模块可以是或者也可以不是物理上分开的,作为单元/模块显示的部件可以是或者也可以不是物理单元/模块,即可以位于一个地方,或者也可以分布到多个网络单元/模块上。可以根据实际的 需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (12)

  1. 一种物理上行控制信道PUCCH功率控制偏移量的确定方法,其特征在于,包括:
    确定需要在PUCCH上传输的第一上行控制信息UCI的比特数O UCI,以及确定PUCCH中承载所述第一UCI的资源单元RE个数N RE
    根据公式
    Figure PCTCN2018119419-appb-100001
    确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),其中,g(O UCI/N RE)为以O UCI和N RE为变量的函数。
  2. 如权利要求1所述的方法,其特征在于,确定PUCCH中承载UCI的RE个数N RE,包括:
    若需要采用PUCCH format 2传输所述第一UCI,则确定N RE
    Figure PCTCN2018119419-appb-100002
    其中,
    Figure PCTCN2018119419-appb-100003
    为PUCCH format 2中定义的UCI占用PUCCH的符号个数,
    Figure PCTCN2018119419-appb-100004
    为PUCCH format 2中定义的UCI占用PUCCH的带宽;
    和/或,
    若需要采用PUCCH format 3/4传输所述第一UCI,则确定N RE
    Figure PCTCN2018119419-appb-100005
    其中,
    Figure PCTCN2018119419-appb-100006
    为PUCCH format 3/4中定义的UCI占用PUCCH的符号个数,
    Figure PCTCN2018119419-appb-100007
    为PUCCH format 3/4中定义的解调参考信号DMRS占用PUCCH的符号个数,
    Figure PCTCN2018119419-appb-100008
    为PUCCH format 3/4中定义的UCI占用PUCCH的带宽。
  3. 如权利要求1或2所述的方法,其特征在于,g(O UCI/N RE)为以O UCI和N RE为变量的线性拟合函数。
  4. 如权利要求3所述的方法,其特征在于,g(O UCI/N RE)具体为a*(O UCI/N RE)+b,其中,a、b为调参系数,1.5≤a≤2.5,-1≤b≤1。
  5. 如权利要求4所述的方法,其特征在于,a、b分别包括多个预设取值,根据公式
    Figure PCTCN2018119419-appb-100009
    确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),包括:
    确定与传输所述第一UCI需要采用的PUCCH格式、所述第一UCI的O UCI和跳频情况对应的a、b取值。
  6. 一种终端,其特征在于,所述终端包括:
    存储器,用于存储指令;
    处理器,用于读取所述存储器中的指令,执行下列过程:
    确定需要在PUCCH上传输的第一上行控制信息UCI的比特数O UCI,以及确定PUCCH中承载所述第一UCI的资源单元RE个数N RE;根据公式
    Figure PCTCN2018119419-appb-100010
    确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),其中,g(O UCI/N RE)为以O UCI和N RE为变量的函数。
  7. 如权利要求6所述的终端,其特征在于,所述处理器执行确定PUCCH中承载UCI的RE个数N RE,包括:
    若需要采用PUCCH format 2传输所述第一UCI,则确定N RE
    Figure PCTCN2018119419-appb-100011
    其中,
    Figure PCTCN2018119419-appb-100012
    为PUCCH format 2中定义的UCI占用PUCCH的符号个数,
    Figure PCTCN2018119419-appb-100013
    为PUCCH format 2中定义的UCI占用PUCCH的带宽;
    和/或,
    若需要采用PUCCH format 3/4传输所述第一UCI,则确定N RE
    Figure PCTCN2018119419-appb-100014
    其中,
    Figure PCTCN2018119419-appb-100015
    为PUCCH format 3/4中定义的UCI占用PUCCH的符号个数,
    Figure PCTCN2018119419-appb-100016
    为PUCCH format 3/4中定义的解调参考信号DMRS占用PUCCH的符号个数,
    Figure PCTCN2018119419-appb-100017
    为PUCCH format 3/4中定义的UCI占用PUCCH的带宽。
  8. 如权利要求6或7所述的终端,其特征在于,g(O UCI/N RE)为以O UCI和N RE为变量的线性拟合函数。
  9. 如权利要求8所述的终端,其特征在于,g(O UCI/N RE)具体为a*(O UCI/N RE)+b,其中,a、b为调参系数,1.5≤a≤2.5,-1≤b≤1。
  10. 如权利要求9所述的终端,其特征在于,a、b分别包括多个预设取值,所述处理器执行根据公式
    Figure PCTCN2018119419-appb-100018
    确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),包括:
    确定与传输所述第一UCI需要采用的PUCCH格式、所述第一UCI的O UCI和跳频情况对应的a、b取值。
  11. 一种终端,其特征在于,所述终端包括:
    第一确定模块,用于确定需要在PUCCH上传输的第一上行控制信息UCI的比特数O UCI,以及确定PUCCH中承载所述第一UCI的资源单元RE个数N RE
    第二确定模块,用于根据公式
    Figure PCTCN2018119419-appb-100019
    确定用于PUCCH功率控制计算的偏移量Δ PUCCH_TF,c(i),其中,g(O UCI/N RE)为以O UCI和N RE为变量的函数。
  12. 一种计算机可读存储介质,其特征在于:
    所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机设备上运行时,使得计算机设备执行如权利要求1-5中任一项所述的方法。
PCT/CN2018/119419 2018-03-30 2018-12-05 一种pucch功率控制偏移量的确定方法及装置 WO2019184431A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207030962A KR102358163B1 (ko) 2018-03-30 2018-12-05 Pucch에 대한 전력 제어 오프셋을 결정하는 방법 및 장치
EP18912041.3A EP3780774B1 (en) 2018-03-30 2018-12-05 Method and device for determining power control offset for pucch
US16/977,086 US11540226B2 (en) 2018-03-30 2018-12-05 Method and device for determining power control offset for PUCCH
EP22213771.3A EP4178276A1 (en) 2018-03-30 2018-12-05 Determining power control offset for pucch
US17/993,974 US12022403B2 (en) 2018-03-30 2022-11-24 Method and device for determining power control offset for pucch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810296910.7A CN110324887B (zh) 2018-03-30 2018-03-30 一种pucch功率控制偏移量的确定方法及装置
CN201810296910.7 2018-03-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/977,086 A-371-Of-International US11540226B2 (en) 2018-03-30 2018-12-05 Method and device for determining power control offset for PUCCH
US17/993,974 Continuation US12022403B2 (en) 2018-03-30 2022-11-24 Method and device for determining power control offset for pucch

Publications (1)

Publication Number Publication Date
WO2019184431A1 true WO2019184431A1 (zh) 2019-10-03

Family

ID=68060913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119419 WO2019184431A1 (zh) 2018-03-30 2018-12-05 一种pucch功率控制偏移量的确定方法及装置

Country Status (5)

Country Link
US (2) US11540226B2 (zh)
EP (2) EP3780774B1 (zh)
KR (1) KR102358163B1 (zh)
CN (1) CN110324887B (zh)
WO (1) WO2019184431A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466138A (zh) * 2008-12-31 2009-06-24 华为技术有限公司 功率配置方法、装置和系统
CN102348269A (zh) * 2011-09-27 2012-02-08 电信科学技术研究院 一种上行功率控制的方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876623B2 (en) * 2014-12-22 2018-01-23 Samsung Electronics Co., Ltd. Transmission of uplink control information in carrier aggregation with a large number of cells
US9985742B2 (en) 2015-04-06 2018-05-29 Samsung Electronics Co., Ltd. Transmission power control for an uplink control channel
CN106257856B (zh) * 2015-06-19 2021-02-02 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
CN107888267B (zh) * 2016-09-30 2023-11-10 华为技术有限公司 上行功率控制方法和装置
CN109104761B (zh) * 2017-06-21 2020-08-18 维沃移动通信有限公司 一种信息配置方法、功率调整方法、基站及移动终端

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466138A (zh) * 2008-12-31 2009-06-24 华为技术有限公司 功率配置方法、装置和系统
CN102348269A (zh) * 2011-09-27 2012-02-08 电信科学技术研究院 一种上行功率控制的方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Correction on NR PUCCH Power Control Formula", 3GPP TSG RAN WG1 MEETING #92 R1-1801746, 17 February 2018 (2018-02-17), XP051397727 *
See also references of EP3780774A4
ZTE: "Offline summary for A1 7. 1.6. 1 NR UL power control in non- CA aspects", 3GPP TSG RAN WG1 MEETING #92 R1-1803356, 28 February 2018 (2018-02-28), XP051398526 *

Also Published As

Publication number Publication date
EP4178276A1 (en) 2023-05-10
CN110324887B (zh) 2021-07-23
KR20200135868A (ko) 2020-12-03
KR102358163B1 (ko) 2022-02-08
US20230104435A1 (en) 2023-04-06
EP3780774A1 (en) 2021-02-17
US20210007056A1 (en) 2021-01-07
US11540226B2 (en) 2022-12-27
US12022403B2 (en) 2024-06-25
EP3780774A4 (en) 2021-05-26
EP3780774B1 (en) 2023-02-15
CN110324887A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
US11218974B2 (en) Method, terminal device and network device for transmitting signals
US11330530B2 (en) Power control method and terminal device
JP6999811B2 (ja) 信号伝送の方法、端末装置、及びネットワーク装置
CN110167126B (zh) 一种多波束传输时pucch功率的控制方法及装置
CN109196790B (zh) 无线网络中确定信道状态信息的方法、设备及存储介质
EP3866518A1 (en) Uplink power control method, terminal device, and network device
US11343807B2 (en) PUCCH transmission method, user equipment and apparatus
KR102469602B1 (ko) Srs 전력 잔여량 보고 방법, 단말 기기 및 컴퓨터 저장 매체
US8521210B2 (en) Transmission power control method and system for a physical uplink shared channel
CN101448308A (zh) 一种物理上行共享信道发送功率控制方法
CN107005943A (zh) 上行控制信道功率控制方法及装置
CN109842929B (zh) 一种功率控制偏移量的获取方法及装置
WO2019184431A1 (zh) 一种pucch功率控制偏移量的确定方法及装置
EP4195567A1 (en) Signal transmission method and apparatus, and storage medium
US11855726B2 (en) Method and apparatus for determining transmit power
TW201924408A (zh) 上行功率控制方法及移動通信終端
WO2022226885A1 (en) Methods, devices and computer storage media for communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207030962

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018912041

Country of ref document: EP