WO2019184160A1 - 一种超声换能器及其制备方法 - Google Patents

一种超声换能器及其制备方法 Download PDF

Info

Publication number
WO2019184160A1
WO2019184160A1 PCT/CN2018/097184 CN2018097184W WO2019184160A1 WO 2019184160 A1 WO2019184160 A1 WO 2019184160A1 CN 2018097184 W CN2018097184 W CN 2018097184W WO 2019184160 A1 WO2019184160 A1 WO 2019184160A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
layer
frequency
ultrasonic transducer
array element
Prior art date
Application number
PCT/CN2018/097184
Other languages
English (en)
French (fr)
Inventor
邱维宝
孙武
苏敏
梁素姿
张志强
郑海荣
Original Assignee
中国科学院深圳先进技术研究院
中国科学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院, 中国科学院大学 filed Critical 中国科学院深圳先进技术研究院
Priority to US16/607,839 priority Critical patent/US20200187907A1/en
Publication of WO2019184160A1 publication Critical patent/WO2019184160A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
    • B06B1/0614Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile for generating several frequencies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0629Square array
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B3/04Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency involving focusing or reflecting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0056Beam shaping elements
    • A61N2007/006Lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0073Ultrasound therapy using multiple frequencies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0078Ultrasound therapy with multiple treatment transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/50Application to a particular transducer type
    • B06B2201/55Piezoelectric transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/76Medical, dental

Definitions

  • the invention relates to the technical field of medical ultrasound, in particular to an ultrasonic transducer and a preparation method thereof.
  • Ultrasound diagnosis mainly uses ultrasound echo to obtain imaging information of the tissue, providing clinicians with the necessary diagnostic reference.
  • Ultrasound therapy utilizes the mechanical, thermal, and cavitation effects of ultrasound for the treatment of disease. Specifically, it can be divided into high-dose ultrasonic thermal ablation technology and low-dose ultrasonic regulation technology.
  • High-intensity focused ultrasound (HIFU) is a typical ultrasonic thermal ablation technique. HIFU can penetrate the tissue, reach the target area, destroy the tumor in the body, and finally absorb the damaged tumor through the body's own immune system. To achieve the efficacy of non-invasive treatment.
  • ultrasound vascular thrombolysis that is, the use of ultrasound to destroy, dredge blood spots, in order to achieve the purpose of treatment.
  • the blood-brain barrier is a barrier that selectively blocks certain substances from entering the brain between blood vessels and the brain. This is usually beneficial for the protection of the body. However, it also weakens the therapeutic effect of the drug on the patient. Focused ultrasound can temporarily remove the blood-brain barrier, allowing drugs to pass through the barrier to the brain, effectively improving the effectiveness of drug treatment.
  • Ultrasound neuromodulation which stimulates the nerve by ultrasound, causes the nervous system to excite or inhibit, regulates the nerve activity of the organism, and changes the response of the neural circuit, thereby contributing to the treatment of neuropsychiatric diseases.
  • Ultrasound neuromodulation is an effective means by human intervention in the neural circuits of living organisms, and then the study of brain functions (such as cognition, feeling, etc.).
  • the performance of the ultrasonic transducer plays a decisive role in the treatment effect.
  • the electroacoustic conversion efficiency will be reduced at the non-resonant frequency point, and the impedance matching circuit is also higher requirement.
  • power compensation is required on the non-resonant frequency excitation signal.
  • Ultrasound treatment based on single-element transducer This method is simple to implement, and can be connected by using existing signal generators, signal amplifiers, etc., and can also be customized according to the needs of a single-element ultrasound.
  • the transducer is used.
  • stimulation detection a method based on detecting a bioelectric signal or a method of MRI imaging can usually be combined.
  • Ultrasonic treatment based on single excitation frequency phased array transducer Image Guided Therapy, France, designed and developed a phased array ultrasonic neuromodulation device based on a single sinusoidal excitation frequency.
  • the device can realize phased array electronic focusing of 128 array elements, combined with MRI imaging guidance, for HIFU, neuromodulation and other applications.
  • these common methods are not over-designed in terms of transducers, and typically use a single-frequency single-element or array-type ultrasonic transducer.
  • Dual-frequency ultrasound transducer (Patent No.: US20120267986A1) designed a dual-frequency ultrasonic transducer capable of supporting one low frequency (100KHz) and one high frequency (1-3MHz).
  • low frequency 100KHz
  • high frequency 1-3MHz.
  • the transducer can enhance the penetration depth of the ultrasound, but can not improve the cavitation effect of the ultrasound without increasing the power loss of the excitation system.
  • Chinese invention patent a dual-frequency double-layer power-enhanced ring-shaped high-intensity focused ultrasound transducer (Patent No.: CN201510169324.2), which discloses a ring-shaped high-intensity focused ultrasound transducer with high-frequency piezoelectric inner ring
  • the wafer and the outer ring are low frequency piezoelectric wafers, and the two piezoelectric films are annular concave self-focusing structures.
  • the high-frequency piezoelectric wafers are on the same spherical surface and are confocal.
  • the two-layer annular concave wafer nesting structure is difficult to ensure two in the actual preparation process of the transducer.
  • the wafers are on the same spherical surface, so the focus points of the two are difficult to ensure at the same position.
  • a novel ultrasonic transducer with dual frequency and multiple frequencies is designed in the invention, and the transducer can simultaneously receive two or more frequency component excitation signals, and the two frequencies can be relatively close. With different excitation sequences, the cavitation effect of ultrasound can be enhanced without increasing power loss.
  • the invention adopts two or more piezoelectric array elements with different frequencies to form ultrasonic transducers of two or more frequencies, and the piezoelectric elements of different frequencies are focused by the acoustic lens at the same focus.
  • the structure is easy to prepare and low in cost. It has been tested and verified that the dual-frequency, multi-frequency integrated ultrasonic transducer can enhance the therapeutic effect, and the feasibility is better. It can obtain better therapeutic effects in applications such as blood-brain barrier opening and ultrasonic thrombolysis.
  • the invention provides an ultrasonic transducer, comprising a casing, wherein a piezoelectric layer is disposed in the casing, the piezoelectric layer is composed of at least two piezoelectric array elements, and the frequency between the piezoelectric array elements is different.
  • the frequency interval between the piezoelectric elements is 50 kHz to 1.2 MHz.
  • the piezoelectric layer is composed of a low frequency piezoelectric array element and a high frequency piezoelectric array element, and a frequency interval between the low frequency piezoelectric array element and the high frequency piezoelectric array element is 50 kHz to 1.2 MHz.
  • the piezoelectric layer is composed of a low frequency piezoelectric array element, an intermediate frequency piezoelectric array element and a high frequency piezoelectric array element, the low frequency piezoelectric array element, the intermediate frequency piezoelectric array element and the high frequency voltage
  • the frequency interval between the electrical elements is 50 kHz to 1.2 MHz.
  • the piezoelectric element is planar or concave.
  • the piezoelectric array elements are arranged in a symmetric arrangement along a central axis or in a linear array.
  • the piezoelectric layer has an axial cross section that is circular, triangular or square.
  • the front end of the piezoelectric layer is provided with at least one matching layer, the front end of the matching layer is provided with an acoustic lens, and the acoustic lens is used to ensure a common focus of the piezoelectric array elements of different frequencies;
  • the back end is provided with a backing layer; the electrodes on the upper and lower surfaces of the respective piezoelectric elements of the piezoelectric layer are respectively connected to the positive and negative electrodes of the cable.
  • the invention also provides a method for preparing an ultrasonic transducer, comprising the following steps:
  • the upper and lower surfaces of the piezoelectric array element are respectively plated with electrodes to form an anode of the array element and the anode of the array element, and the positive electrode of the array element is connected to the positive electrode of the cable; the negative electrode of the array element is connected to the negative electrode of the cable.
  • the backing material is an epoxy resin filler
  • the matching material is an epoxy resin filler
  • a new type of ultrasonic transducer which can support simultaneous excitation of dual-frequency and multi-frequency signals and maintain high electro-acoustic conversion efficiency.
  • the combination of dual-frequency and multi-frequency transducers can improve the frequency bandwidth of the ultrasonic transducer and reduce the design difficulty of the broadband impedance matching circuit, and facilitate the transmission and reception of ultrasonic signals and post-processing;
  • FIG. 1 is a schematic view of a novel ultrasonic transducer in an embodiment
  • FIG. 2 is a cross-sectional view of a novel ultrasonic transducer in an embodiment
  • FIG. 3 is an exploded view of a novel ultrasonic transducer in an embodiment
  • Fig. 5 is a diagram showing the arrangement of piezoelectric array elements of three frequencies in an embodiment.
  • 1-matching layer 2-acoustic lens, 3-piezoelectric layer, 31-low frequency piezoelectric array element, 32-high frequency piezoelectric array element, 33-intermediate voltage array element, 4-backing layer, 5- Housing, 6-cable.
  • the present embodiment provides an ultrasonic transducer including a housing 5 in which a piezoelectric layer 3 is disposed, and the piezoelectric layer 3 is composed of at least two piezoelectric arrays.
  • the element is composed of a frequency different between each of the piezoelectric elements, and the frequency interval between the piezoelectric elements is 50 kHz to 1.2 MHz. In other embodiments, preferably, the frequency spacing between the piezoelectric elements is 50 kHz to 1 MHz. More preferably, the frequency spacing between the piezoelectric elements is 50 kHz to 0.8 MHz.
  • the piezoelectric array element is a concave surface. In other embodiments, the piezoelectric array element may be a flat surface.
  • the acoustic lens is used for confocal, which is easier to ensure the confocal with respect to the concave wafer nesting structure, and can be reduced. Difficulty in the preparation of ultrasonic transducers.
  • the piezoelectric array elements are arranged in a symmetrical arrangement along a central axis of the circle. In other embodiments, the piezoelectric array elements may be arranged in a linear array arrangement.
  • the piezoelectric layer 3 has a circular cross section in an axial direction, in other embodiments. The axial cross section of the piezoelectric layer 3 may be triangular or square.
  • the housing 5 can be arranged in a circular, triangular or square shape.
  • the ultrasonic transducer includes a housing 5 in which a piezoelectric layer 3 is disposed, the piezoelectric layer is composed of a low frequency piezoelectric array element 31 and a high frequency piezoelectric array element 32, the low frequency
  • the frequency interval between the piezoelectric element 31 and the high-frequency piezoelectric element 32 is 50 kHz to 1.2 MHz; the piezoelectric layer 3 is provided with a low frequency piezoelectric element 31 and the high frequency.
  • the piezoelectric lens element 32 has a confocal acoustic lens 2.
  • the focal length is 5 to 10 cm.
  • the frequencies of the low frequency piezoelectric array element 31 and the high frequency piezoelectric array element 32 are respectively 0.5 MHz to 2 MHz.
  • the front end of the piezoelectric layer 3 is provided with at least one matching layer 1 , and the main function is to improve the sound propagation efficiency of the transducer, and the number of the matching layers is one or more layers.
  • the front end of the matching layer is provided with an acoustic lens 2.
  • the back end of the piezoelectric layer 3 is provided with a backing layer 4.
  • the electrodes on the upper and lower surfaces of the respective piezoelectric elements of the piezoelectric layer 3 are connected to the core and the ground of the cable 6, respectively.
  • Each piezoelectric element of the ultrasonic transducer is led out by a coaxial cable.
  • the ultrasonic transducer is a dual-frequency transducer composed of a low-frequency piezoelectric element 31 and a high-frequency piezoelectric element 32, so that it has two coaxial cables, each of which has The core wire and the negative ground wire of the coaxial cable are respectively connected to the upper and lower surfaces of the low frequency piezoelectric array element 31 and the high frequency piezoelectric array element 32.
  • the positive poles of the two cables 6 are respectively connected to the positive poles of the two piezoelectric array elements
  • the negative poles of the two cables 6 are respectively connected to the negative poles of the two piezoelectric array elements.
  • the upper surface of the piezoelectric layer 3 is provided with a matching layer 1.
  • a matching layer 1 Above the upper surface of the matching layer 1, an acoustic lens 2 is provided, and the acoustic lens 2 is used for Ensure that the piezoelectric elements of different frequencies have a common focus.
  • the lower surface of the piezoelectric layer 3 is provided with a backing layer 4; the electrodes on the upper and lower surfaces of the piezoelectric elements of the piezoelectric layer 3 are respectively connected to the positive electrode and the negative electrode of the cable 6; one end of the cable 6 is connected to the The piezoelectric layer 3, the other end of the cable 6 passes through the backing layer 4 and extends to the outside of the casing 5.
  • the piezoelectric layer 3 is composed of a low frequency piezoelectric array element 31 and a high frequency piezoelectric array element 32.
  • the frequency interval between the low frequency piezoelectric array element 31 and the high frequency piezoelectric array element 32 is 50 kHz to 1.2 MHz.
  • the high frequency and the low frequency are relatively speaking, and preferably, the difference between the high frequency and the low frequency is small.
  • the ultrasonic transducer is a dual-frequency ultrasonic transducer comprising two semi-circular piezoelectric elements of different frequencies, which together form a circular piezoelectric layer 3.
  • the low frequency piezoelectric array element 31 is 650 KHz
  • the high frequency piezoelectric array element 32 is 1 MHz. Two piezoelectric elements with different frequencies are combined in one plane, and the sound field of the dual-frequency transducer is focused to the same position through the acoustic lens 2, thereby improving the sound field intensity at the focus position.
  • the operation of the acoustic lens ensures that different piezoelectric wafers are common. focus.
  • the low-frequency piezoelectric array element 31 and the high-frequency piezoelectric array element 32 may not be in the same plane, and the combination of the piezoelectric array elements may be specifically designed according to the design of the acoustic lens.
  • the dual frequency ultrasonic transducer of the present embodiment is excited for thrombus ablation using a combination of 650 KHz and 1 MHz sinusoidal signals, respectively.
  • a single frequency group alone used a 650 KHz or 1 MHz sinusoidal signal to separately excite a conventional ultrasonic transducer.
  • the parameters of the dual frequency group and the single frequency group are respectively set, and the parameter settings such as the action time, the pulse repetition frequency, the duty ratio of the excitation signal, and the power are the same.
  • the experimental results show that the dual frequency stimulation can reduce the cavitation threshold of ultrasound thrombolysis in the application of ultrasound thrombolysis, which is about double the single-frequency thrombolysis efficiency.
  • dual-frequency thrombolysis can shorten the treatment time to half the single frequency.
  • the dual-frequency ultrasonic transducer can increase the sound pressure generated by the conventional ultrasonic transducer by 30%, which can further reduce the energy of the ultrasonic transducer device, which can reduce the accumulation of heat for transcranial ultrasound applications. Reduce the risk of heat buildup.
  • the difference between the high frequency and the low frequency is small, and the cavitation effect of the ultrasonic wave can be improved without increasing the power loss of the excitation system, and the thrombolysis effect is good.
  • the piezoelectric layer 3 is composed of a low frequency piezoelectric array element 31, an intermediate frequency piezoelectric array element 33 and a high frequency piezoelectric array element 32, the low frequency piezoelectric array element 31, and the intermediate frequency piezoelectric element.
  • the frequency interval between the array element 33 and the high frequency piezoelectric array element 32 is 50 kHz to 1.2 MHz.
  • the high frequency, the intermediate frequency and the low frequency are relatively speaking, and preferably, the difference between the high frequency, the intermediate frequency and the low frequency is small.
  • the frequencies of the low frequency piezoelectric array element 31, the intermediate frequency piezoelectric array element 33, and the high frequency piezoelectric array element 32 are respectively 0.5 MHz to 2 MHz.
  • the ultrasonic transducer is a three-frequency ultrasonic transducer comprising three sector-shaped piezoelectric elements of different frequencies, which together form a circular piezoelectric layer 3, the three sector pressures.
  • the electric array elements can be the same or different.
  • the low frequency piezoelectric array element 31, the intermediate frequency piezoelectric array element 33 and the high frequency piezoelectric array element 32 may be disposed on the same plane or may not be disposed in the same plane, and may be specifically designed according to the design of the acoustic lens.
  • the combination of electric array elements are examples of electric array elements.
  • the low frequency piezoelectric array element 31 is 1.4 MHz
  • the intermediate frequency piezoelectric array element 33 is 1.45 MHz
  • the high frequency piezoelectric array element 32 is 1.5 MHz. It has been experimentally verified that when three kinds of frequency combination excitation are used, the efficiency of ultrasonic thrombolysis is slightly improved compared with the efficiency of dual frequency, and the efficiency of 5% can be improved.
  • the high frequency, intermediate frequency and low frequency difference in the embodiment are small, and the cavitation effect of the ultrasonic wave can be improved without increasing the power loss of the excitation system, and the thrombolysis effect is good. In practical applications, it is not limited to two or three piezoelectric elements of different frequencies, and can be set according to actual needs.
  • piezoelectric transducers of different frequencies are used to combine ultrasonic transducers of two or more frequencies, and piezoelectric array elements of different frequencies are combined to produce mixed-frequency ultrasound.
  • the combination of dual-frequency and multi-frequency transducers can increase the bandwidth of the transducer and reduce the design difficulty of the broadband impedance matching circuit, facilitating the transmission and reception of ultrasonic signals and post-processing.
  • Two or more piezoelectric elements with different frequencies are combined in one plane, and the sound field of the dual-frequency, multi-frequency transducer is focused to the same position through the acoustic lens 2, thereby improving the sound field intensity at the focus position.
  • the embodiment further provides a method for preparing an ultrasonic transducer, which comprises the following steps:
  • the piezoelectric layer 3 is formed by bonding the side faces of the low frequency piezoelectric element 31 and the high frequency piezoelectric element 32. Specifically, the low frequency piezoelectric array element 31 and the high frequency piezoelectric array element 32 are bonded together using an epoxy resin or other bonding material.
  • each piezoelectric array element is respectively plated with electrodes to form an array element positive electrode and an array element negative electrode, and the positive electrode of each array element is connected to the positive electrode (core line) of the cable 6.
  • the cable 6 is a coaxial cable.
  • Each piezoelectric element of the ultrasonic transducer is led out by a coaxial cable.
  • the connection of the negative pole of the transducer is divided into two ways, the negative pole of each array element is connected to the negative pole of each coaxial cable (ground), or the negative pole of each array element is connected to the metal casing 5 by using a conductive material.
  • the metal casing 5 is connected to each coaxial cable negative (ground).
  • the conductive material is preferably a conductive silver paste.
  • the piezoelectric layer 3 to which the cable 6 is attached is fixed to the inside of the casing 5, and a backing material is poured on the lower surface of the piezoelectric layer 3 to form a backing layer 4 fixed to the inside of the casing 5.
  • the backing material is preferably an epoxy resin filler.
  • a matching material is poured on the upper surface of the piezoelectric layer 3 to form a matching layer 1 fixed to the inside of the casing 5.
  • the matching material is preferably an epoxy resin filler.
  • a sound lens 2 is formed on the upper surface of the matching layer 1 for ensuring a common focus of the piezoelectric elements of different frequencies, and each piezoelectric element is calculated by the radius of curvature and the speed of sound of the acoustic lens 2
  • the propagation time of the acoustic wave can be overlapped by adjusting the excitation time of each piezoelectric element.
  • the present embodiment combines two or more planar piezoelectric elements with different frequencies and focuses with the acoustic lens 2, and the nesting is focused with respect to the concave wafer, which can reduce the preparation difficulty.

Abstract

一种超声换能器,包括壳体(5),壳体(5)内设置有压电层(3),压电层(3)由至少两个压电阵元组成,压电阵元之间的频率间隔为50kHz~1.2MHz;压电层(3)的前端设置有声透镜(2),声透镜(2)用于保证不同频率的压电阵元共焦点。还公开了一种超声换能器的制备方法。

Description

一种超声换能器及其制备方法 技术领域
本发明涉及医学超声的技术领域,特别涉及一种超声换能器及其制备方法。
背景技术
医学超声技术已经广泛应用于临床诊断与治疗。超声诊断主要是利用超声回波获取组织的影像学信息,为临床医生提供必要的诊断参考。超声治疗则是利用了超声波的力学效应、热效应以及空化效应,用于疾病的治疗。具体而言,又可以分为高剂量的超声热消融技术和低剂量的超声波调控技术。高强度聚焦超声(HIFU)就是一种典型的超声热消融技术,HIFU可以穿透组织,到达设定的目标区域,用来破坏体内的肿瘤,最后通过机体自身的免疫系统吸收掉被破坏的肿瘤,达到无创治疗的功效。低剂量超声治疗主要应用有:超声血管溶栓、基于超声波的血脑屏障开启以及超声神经调控。所谓的超声血管溶栓,即利用超声波来破坏、疏通血斑,以达到治疗的目的。血脑屏障是指在血管和脑之间有选择性地阻止某些物质由血液进入脑的屏障,通常这对于机体的保护,是有益的。但是,同样会削弱药物对病人的治疗效果。而聚焦超声波可以暂时解除血脑屏障,令药物可以穿过屏障到达脑部,有效提高药物治疗的效果。超声神经调控,即通过超声刺激神经,引起神经系统兴奋或抑制,调节生物体的神经活动,改变神经环路的响应,从而有助于神经性精神疾病的治疗。超声神经调控,通过人为干预生物活体的神经环路,进而开展大脑机能(如认知、感受等)的研究,而成为一种有效的手段。
超声换能器作为其中的关键部件,超声换能器的性能对治疗效果在很大程度上起着决定性的作用。目前,已有文献报道基于单频率、双频率激励单阵元超声换能器用于超声溶栓。而实际上,受到换能器带宽限制,使用双频率、多频率信号激励单阵元超声换能器时,在非谐振频率点时,电声转化效 率将会降低,并且,对阻抗匹配电路也有更高的要求。在使用时,为了达到较好的效果,需要在非谐振频率激励信号上做功率补偿。
神经类疾病一直以来都是医学界的难题,传统化学药物的方法奏效很难。神经调控的方法越来越受到重视。心血管类疾病,传统的外科介入治疗手段需要在血管内植入导管,存在大出血的风险。基于超声的治疗方法,由于其无创、高分辨率等优点,更是得到了格外的重视。目前领域内已经提出的基于超声治疗的方法主要有以下几种:
基于单阵元换能器超声治疗方法:这类方法实现较为简单,可以使用市场已有的信号发生器、信号放大器等设备连接组成,亦可以根据需求定制一个专用的设备,配合单阵元超声换能器使用。在刺激检测方面,通常可以结合基于检测生物电信号的方法或者MRI成像的方法。
基于单一激励频率相控阵换能器超声治疗方法:法国Image Guided Therapy公司,设计开发了一套基于单一正弦激励频率的相控阵超声神经调控设备。当前,该设备可以实现128阵元的相控阵电子聚焦,结合MRI成像引导,用于HIFU、神经调控等应用。当前,这些常见的方法在换能器方面并没有过多设计,通常均采用单一频率的单阵元或者阵列式超声换能器。
美国发明专利:Dual-frequency ultrasound transducer(专利号:US20120267986A1)设计一种可以支持一个低频(100KHz)、一个高频(1-3MHz)的双频率超声换能器。当换能器在被低频振荡分量的电压激励时,发生低频谐振;当换能器在被高频率振荡分量的电压激励时,发生高频谐振。该换能器可以增强超声的穿透深度,但无法在不增加激励系统的功率损耗的前提下,提高超声的空化效应。目前,其主要用于医疗美容领域,增加皮肤的穿透性,降低皮肤外角质层的阻碍作用,提升皮肤美容治疗的效果,不适用于诸如神经调控、血脑屏障打开、超声给药、血管溶栓等应用中。
在传统的治疗超声应用中,均使用单一频率的单阵元或者阵列式的超声换能器,考虑到换能器的带宽限制,直接使用双频率或者多频率激励信号驱动超声换能器会有较大的能量损失,不利于最大程度上发挥换能器的性能, 此外,由于激励信号中包含多个频率成分,对激励系统的阻抗匹配电路提出更高的要求,存在反射信号功率较大的风险。
中国发明专利:一种双频双层功率增强的环形高强度聚焦超声换能器(专利号:CN201510169324.2),公开一种环形的高强度聚焦超声换能器,内环为高频压电晶片,外环为低频压电晶片,两层压电晶片均为环形凹面自聚焦结构。所述高频压电晶片处于同一球面且共焦,但是,因为频率差别较大,晶片厚度不同,这种两层环形凹面晶片嵌套结构,在换能器实际制备过程中,难以保证两个晶片处于同一球面,因此两者的聚焦点难以保证在同一位置。
发明内容
针对上述现有技术的不足,本发明中设计了双频率、多频率一体的新型超声换能器,该换能器可以同时接收两种或多种频率成分激励信号,两种频率可以较为接近,配合不同的激励序列,可以在不增加功率损耗的前提下,增强超声的空化效应。本发明采用频率不同的两个或多个压电阵元组合,形成二种及以上频率的超声换能器,通过声透镜实现不同频率压电阵元聚焦在同一个焦点处。该结构便于制备,成本较低。经过试验验证双频率、多频率一体的新型超声换能器可以增强治疗效果,可行性较好,在诸如血脑屏障打开、超声溶栓等应用可以获得更佳的治疗效果。
本发明的技术方案是这样实施的:
本发明提供一种超声换能器,包括壳体,壳体内设置有压电层,所述压电层由至少两个压电阵元组成,所述压电阵元之间的频率不同,所述压电阵元之间的频率间隔为50kHz~1.2MHz。
优选地,所述压电层由低频压电阵元及高频压电阵元组成,所述低频压电阵元与所述高频压电阵元之间的频率间隔为50kHz~1.2MHz。
优选地,所述压电层由低频压电阵元、中频压电阵元及高频压电阵元组成,所述低频压电阵元、所述中频压电阵元与所述高频压电阵元之间的频率间隔为50kHz~1.2MHz。
优选地,所述压电阵元为平面或凹面。
优选地,所述压电阵元的排列形式为沿圆心轴对称排列或线性阵列排列。
优选地,所述压电层的轴向横截面为圆形、三角形或方形。
优选地,所述压电层的前端设置有至少一层匹配层,所述匹配层前端设置有声透镜,所述声透镜用于保证不同频率的压电阵元共焦点;所述压电层的后端设置有背衬层;所述压电层的各个压电阵元上下表面的电极分别连接电缆的正极和负极。
本发明还提供一种超声换能器的制备方法,包括下述步骤:
S1:将至少两个压电阵元的侧面粘接形成压电层;
S2:将所述压电阵元的上下表面分别镀有电极,所述电极分别连接电缆的正极和负极;
S3:将连接有电缆的压电层固定在壳体内侧,将背衬材料灌注于压电层下表面,形成固定在壳体内侧的背衬层;
S4:将匹配材料灌注在压电层上表面,形成固定在壳体内侧的匹配层;
S5:在匹配层上表面上方制作一层声透镜,所述声透镜用于保证不同频率的压电阵元共焦点,通过声透镜的曲率半径和声速计算每个压电阵元声波的传播时间,再通过调整每个压电阵元的激励时间将每个压电阵元的焦点重叠在一起。
优选地,所述步骤S2中将所述压电阵元的上下表面分别镀有电极形成阵元正极和阵元负极,将所述阵元正极连接电缆正极;将所述阵元负极连接电缆负极,或者使用导电材料将所述阵元负极连接金属壳体并将所述金属壳体连接电缆负极。
优选地,所述背衬材料为环氧树脂加填料,所述匹配材料为环氧树脂加填料。
实施本发明的有益效果主要有:
1)提供了一种新型的超声换能器,可以支持双频率、多频率信号同时激励,并保持较高电声转化效率。双频、多频换能器的组合可以提高超声换能器的频带宽度,并降低宽带阻抗匹配电路的设计难度,便于超声信号的收发和后处理;
2)将两种或多种频率不同的平面压电阵元组合,并采用声透镜共聚焦,相对于凹面晶片嵌套结构更容易保证共焦点,且可以降低超声换能器的制备难度;
3)可以在不增加激励系统的功率损耗的前提下,提高超声的空化效应;
4)不同的频率组合激励超声换能器配合超声激励系统,利用不同的激励序列,在诸如神经调控、血脑屏障打开、超声给药、血管溶栓等应用中,可以显著提高治疗效果。
附图说明
为更好地理解本发明的技术方案,可参考下列的、用于对现有技术或实施例进行说明的附图。这些附图将对部分实施例或现有技术涉及的产品或方法进行简要的展示。这些附图的基本信息如下:
图1为一实施例中,一种新型超声换能器的示意图;
图2为一实施例中,一种新型超声换能器的剖视图;
图3为一实施例中,一种新型超声换能器的爆炸图;
图4为一实施例中,两种频率的压电阵元排列图;
图5为一实施例中,三种频率的压电阵元排列图。
其中,1-匹配层、2-声透镜、3-压电层、31-低频压电阵元、32-高频压电阵元、33-中频电压阵元、4-背衬层、5-壳体、6-电缆。
具体实施方式
现在对本发明实施例中的技术方案或有益效果作进一步的展开描述,显然,所描述的实施例仅是本发明的部分实施方式,而并非全部。
如图1~图3所示,本实例提供一种超声换能器,包括壳体5,所述壳体5内设置有压电层3,所述压电层3由至少两个压电阵元组成,所述每个压电阵元之间的频率不同,所述压电阵元之间的频率间隔为50kHz~1.2MHz。其它实施例中,优选地,所述压电阵元之间的频率间隔为50kHz~1MHz。更优选地,所述压电阵元之间的频率间隔为50kHz~0.8MHz。所述压电阵元为凹面,其它实施例中,所述压电阵元可以为平面。相对于现有技术,本实施例中,将两种或多种频率不同的平面压电阵元组合,并采用声透镜共聚焦,相对于凹面晶片嵌套结构更容易保证共焦点,且可以降低超声换能器的制备难度。所述压电阵元的排列形式为沿圆心轴对称排列。其它实施例中,所述压电阵元的排列形式可以为线性阵列排列。所述压电层3的轴向横截面为圆形,其它实施例中。所述压电层3的轴向横截面可以三角形或方形。相应地,所述壳体5可以设置为圆形、三角形或方形。
具体的,所述超声换能器包括壳体5,壳体5内设置有压电层3,所述压电层由低频压电阵元31及高频压电阵元32组成,所述低频压电阵元31与所述高频压电阵元32之间的频率间隔为50kHz~1.2MHz;所述压电层3上设置有用于保证所述低频压电阵元31及所述高频压电阵元32共焦点的声透镜2。优选地,所述焦距为5~10cm。本实施例中,所述低频压电阵元31及所述高频压电阵元32的频率分别为0.5MHz~2MHz。
本实施例中,所述压电层3的前端设置有至少一层匹配层1,主要功能为提高换能器的声传播效率,所述匹配层数量为一层或多层。所述匹配层前端设置有声透镜2。所述压电层3的后端设置有背衬层4。
所述压电层3的各个压电阵元上下表面的电极分别连接电缆6的芯线和地线。超声换能器的每个压电阵元分别由同轴线缆引出。作为一优选实施例,所述超声换能器为双频换能器,由一个低频压电阵元31及一个高频压电阵元32组成,所以其拥有两根同轴线缆,每根同轴线缆的芯线和负极地线分别与所述低频压电阵元31及所述高频压电阵元32的上下表面连接。具体 的,两根电缆6的正极分别和两个压电阵元的正极连接到一起,两根电缆6的负极分别和两个压电阵元的负极连接到一起。
具体的,如图2~图3所示,所述压电层3的上表面设置有一层匹配层1,所述匹配层1的上表面的上方设置有声透镜2,所述声透镜2用于保证不同频率的压电阵元共焦点。所述压电层3的下表面设置有背衬层4;所述压电层3的各个压电阵元上下表面的电极分别连接电缆6的正极和负极;所述电缆6的一端连接所述压电层3,所述电缆6的另一端穿过所述背衬层4,延伸至所述壳体5外部。
本实施例中,所述压电层3由低频压电阵元31及高频压电阵元32组成。所述低频压电阵元31与所述高频压电阵元32之间的频率间隔为50kHz~1.2MHz。其中,高频及低频是相对而言,优选的,高频及低频相差较小。如图4所示,所述超声换能器为双频率超声换能器,包括两个频率不一样的半圆形压电阵元,它们共同组成一个圆形压电层3。所述低频压电阵元31为650KHz,所述高频压电阵元32为1MHz。两种频率不同的压电阵元组合在一个平面内,通过声透镜2将双频率换能器的声场聚焦到同一位置,提高焦点位置的声场强度。
现有技术中,往往采用将不同频率压电阵元上下叠加的技术方案,而本实施例中,通过将多个频率不同的压电晶片组合,通过声透镜的作用,保证不同压电晶片共焦点。实际应用时,所述低频压电阵元31与所述高频压电阵元32可以不在同一平面,可以根据声透镜的设计,具体设计压电阵元的组合方式。
在超声溶栓应用时,分别使用650KHz和1MHz正弦信号组合激励本实施例的双频率超声换能器,用于血栓消融。作为对照组,单一频率组别使用650KHz或1MHz正弦信号单独激励普通超声换能器。将双频率组别和单频率组别分别设置参数,如作用时间、脉冲重复频率、激励信号的占空比、功率等参数设置相同。
实验结果表明,双频率刺激在超声溶栓应用中,可以降低超声溶栓的空化阈值,较单频率溶栓效率大约提高一倍。在相同的溶栓效率的前提下,双 频率溶栓可以缩短治疗时间为单频率的一半。双频率超声换能器较普通超声换能器所产生的的声压,可以提高30%,这样可以进一步减少激励超声换能器设备的能量,这对于经颅超声应用,可以减少热量的积累,降低热堆积的风险。相对于现有技术,本实施例中,所述高频及低频相差较小,可以在不增加激励系统的功率损耗的前提下,提高超声的空化效应,溶栓效果好。
作为一优选实施例,所述压电层3由低频压电阵元31、中频压电阵元33及高频压电阵元32组成,所述低频压电阵元31、所述中频压电阵元33与所述高频压电阵元32之间的频率间隔为50kHz~1.2MHz。其中,高频、中频及低频是相对而言,优选的,高频、中频及低频相差较小。本实施例中,所述低频压电阵元31、中频压电阵元33及高频压电阵元32的频率分别为0.5MHz~2MHz。如图5所示,所述超声换能器为三频率超声换能器,包括三个频率不一样的扇形压电阵元,它们共同组成一个圆形压电层3,所述三个扇形压电阵元可以一样也可以不一样。实际应用时,所述低频压电阵元31、中频压电阵元33与高频压电阵元32可以设置在同一平面也可以不设置在同一平面,可以根据声透镜的设计,具体设计压电阵元的组合方式。所述低频压电阵元31为1.4MHz,所述中频压电阵元33为1.45MHz,所述高频压电阵元32为1.5MHz。经过试验验证,当采用三种频率组合激励时,在超声溶栓应用上比双频率的效率有小幅度提高,能提高5%的效率。相对于现有技术,本实施例中所述高频、中频及低频相差较小,可以在不增加激励系统的功率损耗的前提下,提高超声的空化效应,溶栓效果好。实际应用时,不限于两种或三种不同频率的压电阵元,可以根据实际需求设置。本实施例中利用不同频率的压电阵元进行组合制作成二种及以上频率的超声换能器,不同频率的压电阵元组合产生混频超声。双频、多频换能器的组合可以提高换能器的频带宽度,并降低宽带阻抗匹配电路的设计难度,便于超声信号的收发和后处理。两种或多种频率不同的压电阵元组合在一个平面内,通过声透镜2将双频、多频换能器的声场聚焦到同一位置,提高焦点位置的声场强度。
本实施例还提供一种超声换能器的制备方法,其特征在于包括下述步骤:
S1:将低频压电阵元31及高频压电阵元32的侧面粘接形成压电层3。具体的,所述低频压电阵元31及高频压电阵元32使用环氧树脂或其他粘接材料粘接到一起。
S2:将所述压电阵元的上下表面分别镀有电极,所述电极分别连接电缆6的正极和负极。
具体的,所述步骤S2中将每个压电阵元的上下表面分别镀有电极形成阵元正极和阵元负极,将所述每个阵元正极连接电缆6正极(芯线)。本实施例中,所述电缆6为同轴线缆。超声换能器的每个压电阵元分别由同轴线缆引出。换能器负极的连接分为两种方式,将所述每个阵元负极连接每个同轴线缆负极(地线),或者使用导电材料将所述每个阵元负极连接金属壳体5并将所述金属壳体5连接每个同轴线缆负极(地线)。其中,所述导电材料优选为导电银浆。
S3:将连接有电缆6的压电层3固定在壳体5内侧,将背衬材料灌注于压电层3的下表面,形成固定在壳体5内侧的背衬层4。其中,所述背衬材料优选为环氧树脂加填料。
S4:将匹配材料灌注在压电层3的上表面,形成固定在壳体5内侧的匹配层1。其中,所述匹配材料优选为环氧树脂加填料。
S5:在匹配层1的前端制作一层声透镜2,所述声透镜用于保证不同频率的压电阵元共焦点,通过声透镜2的曲率半径和声速计算声波的传播时间,再通过调整激励时间将压电阵元的焦点重叠在一起。
具体的,在匹配层1上表面上方制作一层声透镜2,所述声透镜用于保证不同频率的压电阵元共焦点,通过声透镜2的曲率半径和声速计算每个压电阵元声波的传播时间,再通过调整每个压电阵元的激励时间可以将每个压电阵元的焦点重叠在一起。相对于现有技术,本实施例将两种或多种频率不同的平面压电阵元组合,并采用声透镜2聚焦,相对于凹面晶片嵌套聚焦,可以降低制备难度。
最后需要指出的是,上文所列举的实施例,为本发明较为典型的、较佳实施例,仅用于详细说明、解释本发明的技术方案,以便于读者理解,并不 用以限制本发明的保护范围或者应用。因此,在本发明的精神和原则之内所作的任何修改、等同替换、改进等而获得的技术方案,都应被涵盖在本发明的保护范围之内。

Claims (11)

  1. 一种超声换能器,其特征在于:包括壳体,所述壳体内设置有压电层,所述压电层由至少两个压电阵元组成,所述压电阵元之间的频率不同,所述压电阵元的频率间隔为50kHz~1.2MHz。
  2. 根据权利要求1所述的超声换能器,其特征在于:所述压电层由低频压电阵元及高频压电阵元组成,所述低频压电阵元与所述高频压电阵元之间的频率间隔为50kHz~1.2MHz。
  3. 根据权利要求1所述的超声换能器,其特征在于:所述压电层由低频压电阵元、中频压电阵元及高频压电阵元组成,所述低频压电阵元、所述中频压电阵元与所述高频压电阵元之间的频率间隔为50kHz~1.2MHz。
  4. 根据权利要求1所述的超声换能器,其特征在于:所述压电阵元为平面或凹面。
  5. 根据权利要求1所述的超声换能器,其特征在于:所述压电阵元的排列形式为沿圆心轴对称排列或线性阵列排列。
  6. 根据权利要求1所述的超声换能器,其特征在于:所述压电层的轴向横截面为圆形、三角形或方形。
  7. 根据权利要求1中任一项所述的超声换能器,其特征在于:所述压电层的前端设置有至少一层匹配层,所述匹配层前端设置有声透镜,所述声透镜用于保证不同频率的压电阵元共焦点。
  8. 根据权利要求1中任一项所述的超声换能器,其特征在于:所述压电层的后端设置有背衬层;所述压电层的各个压电阵元上下表面的电极分别连接电缆的正极和负极。
  9. 一种超声换能器的制备方法,其特征在于,包括下述步骤:
    S1:将至少两个压电阵元的侧面粘接形成压电层;
    S2:将所述压电阵元的上下表面分别镀有电极,所述电极分别连接电缆的正极和负极;
    S3:将连接有电缆的压电层固定在壳体内侧,将背衬材料灌注于压电层下表面,形成固定在壳体内侧的背衬层;
    S4:将匹配材料灌注在压电层上表面,形成固定在壳体内侧的匹配层;
    S5:在匹配层上表面上方制作一层声透镜,所述声透镜用于保证不同频率的压电阵元共焦点,通过声透镜的曲率半径和声速计算每个压电阵元声波的传播时间,再通过调整每个压电阵元的激励时间将每个压电阵元的焦点重叠在一起。
  10. 根据权利要求9所述的超声换能器的制备方法,其特征在于:所述步骤S2中将所述压电阵元的上下表面分别镀有电极形成阵元正极和阵元负极,将所述阵元正极连接电缆正极;将所述阵元负极连接电缆负极,或者使用导电材料将所述阵元负极连接金属壳体并将所述金属壳体连接电缆负极。
  11. 根据权利要求10所述的超声换能器的制备方法,其特征在于:所述背衬材料为环氧树脂加填料,所述匹配材料为环氧树脂加填料。
PCT/CN2018/097184 2018-03-28 2018-07-26 一种超声换能器及其制备方法 WO2019184160A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/607,839 US20200187907A1 (en) 2018-03-28 2018-07-26 Ultrasonic transducer and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810265439.5 2018-03-28
CN201810265439.5A CN110314834B (zh) 2018-03-28 2018-03-28 一种超声换能器及其制备方法

Publications (1)

Publication Number Publication Date
WO2019184160A1 true WO2019184160A1 (zh) 2019-10-03

Family

ID=68059222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097184 WO2019184160A1 (zh) 2018-03-28 2018-07-26 一种超声换能器及其制备方法

Country Status (3)

Country Link
US (1) US20200187907A1 (zh)
CN (1) CN110314834B (zh)
WO (1) WO2019184160A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117019608A (zh) * 2023-10-08 2023-11-10 中北大学 一种高性能空气耦合超声点聚焦换能器及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111012318B (zh) * 2020-01-18 2022-10-28 中川新迈科技有限公司 一种用于光声乳腺成像的面聚焦阵列探测器及系统
CN111012316B (zh) * 2020-01-18 2022-10-28 中川新迈科技有限公司 一种光声乳腺的图像重建系统
CN111112037A (zh) * 2020-01-20 2020-05-08 重庆医科大学 透镜式多频聚焦超声换能器、换能系统及其声焦域轴向长度的确定方法
ES2793798B2 (es) * 2020-02-13 2022-04-29 Julia Jose Manuel Saenz Aparato emisor de ultrasonidos para aplicacion de tratamientos selectivos sobre tejido adiposo en procesos de remodelacion / rejuvenecimiento corporal
WO2021189208A1 (zh) * 2020-03-23 2021-09-30 深圳市汇顶科技股份有限公司 超声换能器、超声波扫描系统及加工方法
CN111473839B (zh) * 2020-04-22 2022-02-22 中电科技集团重庆声光电有限公司 一种超声换能器及其嵌套结构
CN112137644A (zh) * 2020-07-31 2020-12-29 白春梅 一种便携式卵泡监测仪
CN112034439B (zh) * 2020-08-10 2023-09-01 上海船舶电子设备研究所(中国船舶重工集团公司第七二六研究所) 交叉式高频换能器阵
CN116213231B (zh) * 2023-05-08 2023-07-11 四川泰猷科技有限公司 一种具有多电极的超声换能器驱动控制方法及超声换能器
CN117426793B (zh) * 2023-12-20 2024-03-22 深圳英美达医疗技术有限公司 超声换能器及超声内镜探头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231529B1 (en) * 1997-01-08 2001-05-15 Richard Wolf Gmbh Electroacoustic transducer
JP2002165793A (ja) * 2000-11-29 2002-06-11 Olympus Optical Co Ltd 超音波探触子
US20140208853A1 (en) * 2013-01-28 2014-07-31 Seiko Epson Corporation Ultrasonic device, ultrasonic probe, electronic equipment, and ultrasonic imaging apparatus
CN106859700A (zh) * 2017-03-24 2017-06-20 汕头市超声仪器研究所有限公司 一种超声环形阵列换能器及其制作方法
CN106903037A (zh) * 2017-01-23 2017-06-30 中国科学院苏州生物医学工程技术研究所 超声换能器、超声阵列探头和超声成像系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027448A (en) * 1995-03-02 2000-02-22 Acuson Corporation Ultrasonic transducer and method for harmonic imaging
US20090099483A1 (en) * 2007-10-11 2009-04-16 Andrey Rybyanets Apparatus and method for ultrasound treatment
US8465427B1 (en) * 2008-10-14 2013-06-18 The Research Foundation Of State University Of New York Combined diagnostic confocal scanning and low intensity ultrasound treatment
CN201969218U (zh) * 2010-12-27 2011-09-14 天津医科大学 凹球面八圆环相控阵高强度聚焦超声换能器
JP6252130B2 (ja) * 2013-11-20 2017-12-27 セイコーエプソン株式会社 超音波デバイスおよびその製造方法並びに電子機器および超音波画像装置
KR20150118495A (ko) * 2014-04-14 2015-10-22 삼성전자주식회사 초음파 프로브, 초음파 영상 장치 및 초음파 영상 장치를 제어하는 방법
WO2015172095A1 (en) * 2014-05-08 2015-11-12 Flodesign Sonics, Inc. Acoustophoretic device with piezoelectric transducer array
CN105596027B (zh) * 2014-11-05 2018-07-17 香港理工大学深圳研究院 基于三维超声成像的二维阵列超声换能器及其制备方法
CN104874113A (zh) * 2015-01-26 2015-09-02 上海爱声生物医疗科技有限公司 多频环阵探头及包含其的超声理疗仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231529B1 (en) * 1997-01-08 2001-05-15 Richard Wolf Gmbh Electroacoustic transducer
JP2002165793A (ja) * 2000-11-29 2002-06-11 Olympus Optical Co Ltd 超音波探触子
US20140208853A1 (en) * 2013-01-28 2014-07-31 Seiko Epson Corporation Ultrasonic device, ultrasonic probe, electronic equipment, and ultrasonic imaging apparatus
CN106903037A (zh) * 2017-01-23 2017-06-30 中国科学院苏州生物医学工程技术研究所 超声换能器、超声阵列探头和超声成像系统
CN106859700A (zh) * 2017-03-24 2017-06-20 汕头市超声仪器研究所有限公司 一种超声环形阵列换能器及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117019608A (zh) * 2023-10-08 2023-11-10 中北大学 一种高性能空气耦合超声点聚焦换能器及其制备方法
CN117019608B (zh) * 2023-10-08 2024-01-05 中北大学 一种高性能空气耦合超声点聚焦换能器及其制备方法

Also Published As

Publication number Publication date
CN110314834A (zh) 2019-10-11
CN110314834B (zh) 2022-02-11
US20200187907A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2019184160A1 (zh) 一种超声换能器及其制备方法
US5558092A (en) Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously
US5906580A (en) Ultrasound system and method of administering ultrasound including a plurality of multi-layer transducer elements
US9498650B2 (en) Method of treatment with combination ultrasound-phototherapy transducer
US8162858B2 (en) Ultrasonic medical treatment device with variable focal zone
JP4677557B2 (ja) 超音波プローブ及びそれを用いたカテーテル並びにその製造方法
EP3668411B1 (en) Frequency-tunable intraluminal ultrasound device
KR20130055972A (ko) 고강도 집속 초음파용 트랜스듀서
Kim et al. Lesion generation through ribs using histotripsy therapy without aberration correction
Rahimi et al. A high-frequency phased array system for transcranial ultrasound delivery in small animals
KR20120126682A (ko) 고강도 집속 초음파용 어플리케이터
CN104001277B (zh) 一种复频超声波肿瘤治疗头
US20200330114A1 (en) Therapeutic ultrasonic device and the use thereof
JP2019150361A (ja) 超音波治療装置
TWI651109B (zh) 治療型超音波裝置及其用途
AU736153B2 (en) Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously
Yasui et al. Focused ultrasonic device for sonodynamic therapy in the human body
CN116371705A (zh) 一种螺旋排列的高频增强宽带聚焦相控阵换能器
Jiang et al. An Ultrasound Array of Emitter-receiver Stacks for Microbubble-based Therapy
Song et al. Electronically steerable large-scale ultrasound phased-array for noninvasive transcranial therapy
CN116236711A (zh) 一种频率可更换的多频聚焦超声换能器
Song et al. A 1372‐element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy
Herickhoff et al. Dual-mode intracranial catheters for minimally-invasive neuro-oncology feasibility study
Jaiswal Esophageal Damage in Response to Noninvasive Focused Ultrasound for Treatment of Atrial Fibrillation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18913190

Country of ref document: EP

Kind code of ref document: A1