WO2019184013A1 - 一种双模成像系统及其成像方法 - Google Patents

一种双模成像系统及其成像方法 Download PDF

Info

Publication number
WO2019184013A1
WO2019184013A1 PCT/CN2018/083116 CN2018083116W WO2019184013A1 WO 2019184013 A1 WO2019184013 A1 WO 2019184013A1 CN 2018083116 W CN2018083116 W CN 2018083116W WO 2019184013 A1 WO2019184013 A1 WO 2019184013A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
ultrasonic
optical
imaging
dual
Prior art date
Application number
PCT/CN2018/083116
Other languages
English (en)
French (fr)
Inventor
韩雅玲
白晓淞
徐凯
李学铭
李毅
黄赞力
李晶
甄小宝
Original Assignee
深圳英美达医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳英美达医疗技术有限公司 filed Critical 深圳英美达医疗技术有限公司
Publication of WO2019184013A1 publication Critical patent/WO2019184013A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5261Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data

Definitions

  • the invention belongs to the technical field of medical instruments, relates to a dual-mode imaging system and an imaging method thereof, and particularly to a combined ultrasound and optical coherence tomography system and a method thereof.
  • Intravascular imaging technology is widely used in image diagnosis and image guidance treatment in various fields such as cardiovascular and cerebrovascular, digestive tract, urinary system and respiratory tract, which greatly promotes the accuracy of disease examination.
  • Intravascular imaging technology the integration of optical or ultrasound imaging components into the lumen of the catheter to expand the imaging, can obtain the geometric shape of vascular tissue, has become the "gold standard" for the diagnosis and treatment evaluation of intravascular lesions.
  • Common intravascular imaging techniques include intravascular ultrasound imaging (IVUS) and optical coherence tomography (OCT).
  • IVUS can realize ultra-large depth imaging of several millimeters to several centimeters, and obtain the overall structural image information of biological tissues or organs.
  • the image resolution of the ultrasound imaging technique is low, the fine structure of the tissue cannot be obtained, and the diagnostic ability for the microscopic changes of the early lesions of the tissue is insufficient.
  • Optical imaging technology especially OCT, can achieve image resolution 10 to 100 times higher than that of ultrasound technology by optical focusing, and can obtain fine structure of tissue, and can clearly detect early changes of tissue, but through optical focusing.
  • the imaging method can only achieve an imaging depth of 1-2 mm, and the overall structural features of the diseased tissue cannot be obtained. Therefore, ultrasound technology and optical imaging technology have obvious advantages and complementary features, and the development of ultrasound and optical combined dual-mode imaging technology has become a trend.
  • the invention discloses a dual-mode imaging system and an imaging method thereof, which realize simultaneous acquisition and real-time display of ultrasound and optical images, support simultaneous ultrasound and optical imaging, or ultrasound single modal imaging, or optical single modal imaging. Reduced costs and facilitated industrialization.
  • a dual-mode imaging system includes an imaging probe, an ultrasound component, an optical component, and a signal acquisition unit, the imaging probe being respectively coupled to an ultrasound component, an optical component; and a distal end of the imaging probe is provided for transmitting and receiving an ultrasound signal Ultrasonic transducer and/or optical focusing member for transmitting and receiving optical signals, the ultrasonic assembly comprising an ultrasonic transmitting and receiving module, the ultrasonic transmitting and receiving module being coupled to an ultrasonic transducer; the optical component comprising a light source, an interferometer a reference beam, a photodetector, the light emitted by the light source enters an optical focusing member of the imaging probe via a part of the light of the interferometer, the optical focusing member focuses the light onto the object to be imaged, and the reflected light signal enters the interferometer And forming an interference signal with another portion of the light (returned by the reference arm), the interference signal being converted into an electrical signal by the photodetector;
  • the signal acquisition unit includes an ultrasonic signal analog digital sampling module and an optical signal analog digital sampling module; the ultrasonic signal analog digital sampling module is coupled to the ultrasonic transmitting and receiving module, and the optical signal analog digital sampling module is coupled to the photodetector.
  • the one-dimensional signal of the ultrasonic signal is controlled by the ultrasonic transmitting and receiving module to output a synchronous trigger signal to control the analog digital collecting module for synchronous acquisition; the one-dimensional signal of the optical signal is triggered by the light source A to output a synchronous trigger signal. Control the analog digital acquisition module for synchronous acquisition. Or: the ultrasonic signal analog digital sampling module and the optical signal sampling module one-dimensional signal are synchronously acquired by the same A trigger signal, and the A trigger signal may be provided by the light source or the ultrasonic transmitting and receiving module.
  • the ultrasonic signal analog digital sampling module performs analog digital sampling using a frequency constant clock source
  • the optical signal sampling module performs analog digital sampling using a K clock provided by a light source
  • the signal acquisition unit will dual mode The signal is sent back to the computer for image reconstruction.
  • the sampling clock frequency of the ultrasonic signal acquisition channel in the signal acquisition unit may be set, and the sampling clock is generated internally by the acquisition unit or input by an external device.
  • the ultrasonic signal analog digital sampling module and the optical signal sampling module perform analog digital sampling using a constant frequency clock source, the optical signal is calibrated by a late K space, and the signal acquisition unit transmits the dual mode signal back to the computer Perform image reconstruction.
  • the dual-mode imaging system comprises a three-dimensional scanning system, which is respectively composed of a computer, a motion control unit and a three-dimensional scanning unit, the computer is connected to a motion control unit, and the motion control unit is connected to the three-dimensional scanning unit.
  • the three-dimensional scanning unit is connected to the imaging probe, and the three-dimensional scanning control signal is sent by the computer and controls the imaging probe to perform three-dimensional scanning.
  • the three-dimensional scanning control signal can also be emitted by the light source and/or the ultrasonic transmitting and receiving module and control the imaging probe to perform three-dimensional scanning.
  • the signal acquisition unit transmits the dual mode signal back to the computer for image reconstruction.
  • the three-dimensional scanning control signal may be emitted by the light source and/or the ultrasonic transmitting and receiving module and control the imaging probe to perform three-dimensional scanning for synchronously controlling the movement of the three-dimensional scanning unit, thereby realizing synchronization between the dual-mode probe detection and the dual-mode probe signal acquisition.
  • the present invention also provides a dual mode imaging method for a dual mode imaging system according to any of the preceding claims, comprising the steps of:
  • Step S1 the light source and/or the ultrasonic transmitting and receiving module emits infrared light and/or an excitation signal under the synchronization of the A trigger signal, wherein a part of the infrared light passes through the interferometer and reaches the ultrasonic-optical probe, and is focused by the concentrating member. Then projecting onto the object to be tested, and/or the excitation signal reaches the ultrasonic-optical probe, and is converted into ultrasonic waves by the ultrasonic transducer and then projected onto the object to be tested;
  • Step S2 after the infrared light signal and/or the ultrasonic signal reflected from the object to be tested are respectively collected by the optical focusing component and/or the ultrasonic transducer of the ultrasonic-optical probe, the infrared light signal enters the interferometer to form an interference signal, and then Converted into an optical electrical signal by a photodetector, and/or the ultrasonic signal is converted into an ultrasonic electrical signal via an ultrasonic transducer, and transmitted to the ultrasonic transmitting and receiving module;
  • Step S3 the signal acquisition unit collects an optical signal transmitted by the photodetector and/or an ultrasonic signal transmitted by the ultrasonic transmission receiving module;
  • step S4 the signal acquisition unit transmits the dual mode signal or the single modal signal back to the computer for image reconstruction.
  • the advantages of complementary advantages of ultrasound and optical imaging techniques can not only obtain sufficient depth image information of the tissue, but also acquire the fine structure of the tissue, and can improve the diagnostic precision of the microscopic changes of the early lesions.
  • simultaneous real-time imaging of ultrasound and optics can be realized, and at the same time, it can support ultrasound single modal imaging or optical single modal imaging, which is flexible and convenient to use.
  • FIG. 1 is a schematic view showing the structure of a dual mode imaging system of the present invention.
  • a dual-mode imaging system includes an imaging probe, an ultrasound component, an optical component, and a signal acquisition unit, and the imaging probe is respectively connected to an ultrasound component and an optical component, and the distal end of the imaging probe is provided.
  • An ultrasonic transducer for transmitting and receiving an ultrasonic signal and/or an optical focusing member for transmitting and receiving an optical signal, the ultrasonic component comprising an ultrasonic transmitting and receiving module (abbreviated as an IVUS transmitting and receiving module), the IVUS ultrasonic transmitting receiving module and An ultrasonic transducer is coupled;
  • the optical component includes a light source, an interferometer, a reference arm, a photodetector, and light emitted by the light source (ie, an OCT source) enters an optical focusing member of the imaging probe via a portion of the light of the interferometer, The optical focusing member focuses the light onto the object to be imaged, and the reflected light signal enters the interferometer and forms an interference signal with another portion
  • the signal acquisition unit includes an ultrasonic signal analog digital sampling module, abbreviated as AD (IVUS), and optical No. analog to digital sampling module, abbreviated as AD (OCT); the ultrasound signals and analog to digital sampling module connected to the ultrasonic transmitter receiver module, the optical signal is analog to digital sampling module connected to the photodetector.
  • AD ultrasonic signal analog digital sampling module
  • OCT optical No. analog to digital sampling module
  • the dual-mode imaging system further includes a computer, a motion control unit, and a three-dimensional scanning unit, the computer is coupled to the motion control unit, and the motion control unit is coupled to the three-dimensional scanning unit, the three-dimensional scanning unit and Imaging probe connection.
  • the imaging probe is driven to perform high-speed three-dimensional motion, and a three-dimensional image of the human diseased tissue can be presented.
  • a three-dimensional scanning control signal is emitted by the light source and/or the ultrasonic transmitting and receiving module and controls the imaging probe to perform three-dimensional scanning.
  • the ultrasonic signal analog digital sampling and the optical signal sampling one-dimensional signal are synchronously acquired by the A trigger signal.
  • Ultrasonic Signal Analog Digital Sampling and Optical Signal Sampling can be synchronized using the same A trigger signal or using separate A trigger signals, either internally or within the ultrasound transmit/receive module, or externally.
  • the ultrasonic signal analog digital sampling module performs analog digital sampling using a frequency constant clock source, and the optical signal sampling module performs analog digital sampling using a K clock provided by the light source; the signal acquisition unit transmits the dual mode signal back to the computer for image reconstruction.
  • the ultrasonic signal analog digital sampling module and the optical signal sampling module perform analog digital sampling using a constant frequency clock source, the optical signal is calibrated by a late K space, and the signal acquisition unit transmits the dual mode signal back to the computer Perform image reconstruction.
  • the dual mode imaging method using the dual mode imaging system described above includes the following steps:
  • Step S1 the light source and/or the ultrasonic transmitting and receiving module emits infrared light and/or an excitation signal under the synchronization of the A trigger signal, wherein a part of the infrared light passes through the interferometer and reaches the ultrasonic-optical probe, and is focused by the concentrating member. Then projecting onto the object to be tested, and/or the excitation signal reaches the ultrasonic-optical probe, and is converted into ultrasonic waves by the ultrasonic transducer and then projected onto the object to be tested;
  • Step S2 after the infrared light signal and/or the ultrasonic signal reflected from the object to be tested are respectively collected by the optical focusing component and/or the ultrasonic transducer of the ultrasonic-optical probe, the infrared light signal enters the interferometer to form an interference signal, and then Converted into an optical electrical signal by a photodetector, and/or the ultrasonic signal is converted into an ultrasonic electrical signal via an ultrasonic transducer, and transmitted to the ultrasonic transmitting and receiving module;
  • Step S3 the signal acquisition unit collects an optical signal transmitted by the photodetector and/or an ultrasonic signal transmitted by the ultrasonic transmission receiving module;
  • step S4 the signal acquisition unit transmits the dual mode signal or the single modal signal back to the computer for image reconstruction.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种双模成像系统及双模成像方法,双模成像系统包括成像探头、超声组件、光学组件以及信号采集单元,成像探头分别与超声组件、光学组件连接,成像探头的远端设有用于发射和接收超声信号的超声换能器和发射和接收光信号的光学聚焦构件,超声组件包括超声发射接收模块,超声发射接收模块与超声换能器连接;光学组件包括光源、干涉仪、参考臂、光电探测器;信号采集单元与超声发射接收模块、光电探测器连接。双模成像系统及双模成像方法实现超声和光学图像的同时采集和实时显示,降低了成本,利于产业化;支持超声和光学同时成像,或者单一超声成像,或者单一光学成像,临床诊断和治疗更加精准。

Description

一种双模成像系统及其成像方法 技术领域
本发明属于医疗器械技术领域,涉及一种双模成像系统及其成像方法,尤其涉及一种结合超声和光学相干断层成像系统及其方法。
背景技术
内窥成像技术被广泛应用于心脑血管系、消化道、泌尿系统以及呼吸道等多个领域的影像诊断和图像引导治疗,极大地促进了疾病的检查精度。血管内成像技术,将光学或者超声成像元件集成在导管内伸进血管内部展开成像,可以获取血管组织的几何结构形态,已经成为血管内病变诊断和治疗评估的“金标准”。常见的血管内成像技术包括血管内超声成像(IVUS)以及光学相干断层(OCT)。其中,由于组织对超声的散射和衰减极小,对生物组织具有极好的穿透能力,IVUS能够实现几毫米至几厘米的超大深度成像,获得生物组织或器官的整体结构图像信息。但是超声成像技术的图像分辨率较低、无法获得组织的精细结构,针对组织早期病变的微细变化诊断能力不足。而光学成像技术,特别是OCT等技术,利用光学聚焦手段能够获得比超声技术高10~100倍的图像分辨率,能够获得组织的精细结构,能够清晰地发现组织的早期变化,但是通过光学聚焦的成像方法只能实现1-2毫米的成像深度,无法获得病变组织的整体结构特征。因此,超声技术和光学成像技术具有明显的优势互补的特点,发展超声和光学结合的双模成像技术成为一种趋势。
技术问题
在此处键入技术问题描述段落。
技术解决方案
本发明公开了一种双模成像系统及其成像方法,实现超声和光学图像的同时采集和实时显示,支持超声和光学同时成像,或者超声单一模态成像,或者光学单一模态成像。降低了成本,利于产业化。
对此,本发明采用的技术方案为:
一种双模成像系统,其包括成像探头、超声组件、光学组件以及信号采集单元,所述成像探头分别与超声组件、光学组件连接;所述成像探头的远端设有用于发射和接收超声信号的超声换能器和/或 发射和接收光信号的光学聚焦构件,所述超声组件包括超声发射接收模块,所述超声发射接收模块与超声换能器连接;所述光学组件包括光源、干涉仪、参考臂、光电探测器,所述光源发出的光经由干涉仪后一部分光进入成像探头的光学聚焦构件,所述光学聚焦构件把光聚焦到待成像物体上,反射回来的光信号进入干涉仪并与另一部分光(由参考臂返回)形成干涉信号,所述干涉信号通过光电探测器转换成电信号;
所述信号采集单元包括超声信号模拟数字采样模块和光学信号模拟数字采样模块;所述超声信号模拟数字采样模块与超声发射接收模块连接,所述光学信号模拟数字采样模块与光电探测器连接。
作为本发明的进一步改进,所述超声信号的一维信号由超声发射接收模块输出同步触发信号控制模拟数字采集模块进行同步采集;所述光学信号的一维信号由光源A触发信号输出同步触发信号控制模拟数字采集模块进行同步采集。 或者:所述超声信号模拟数字采样模块与光学信号采样模块一维信号通过同一A触发信号来同步采集,A触发信号可以是所述光源或所述超声发射接收模块提供。
作为本发明的进一步改进,所述超声信号模拟数字采样模块使用频率恒定时钟源进行模拟数字采样,所述光学信号采样模块使用光源提供的K时钟进行模拟数字采样;所述信号采集单元将双模信号传回计算机进行图像重建。其中,所述信号采集单元中超声信号采集通道的采样时钟频率可设置,采样时钟来源于采集单元内部产生或由外部输入。
或者:所述超声信号模拟数字采样模块和所述光学信号采样模块使用同一频率恒定时钟源进行模拟数字采样,所述光学信号经过后期K空间校准,所述信号采集单元将双模信号传回计算机进行图像重建。
作为本发明的进一步改进,所述双模成像系统包括三维扫描系统,分别由计算机、运动控制单元和三维扫描单元组成,所述计算机与运动控制单元连接,所述运动控制单元与三维扫描单元连接,所述三维扫描单元与成像探头连接,三维扫描控制信号由计算机发出并控制成像探头进行三维扫描。采用此技术方案,三维扫描控制信号也可以由所述光源和/或超声发射接收模块发出并控制成像探头进行三维扫描。其中信号采集单元将双模信号传回计算机进行图像重建。通过运动控制模块和三维扫描系统带动探头进行高速三维运动,便可呈现出人体病变组织的三维图像。另外,三维扫描控制信号可以由所述光源和/或超声发射接收模块发出并控制成像探头进行三维扫描,用于同步控制三维扫描单元运动,实现双模探头探测与双模探头信号采集的同步。
本发明还提供了一种如上任意一项所述的双模成像系统的双模成像方法,其包括以下步骤:
步骤S1,所述光源和/或超声发射接收模块在A触发信号的同步下,发出红外光和/或激励信号,其中红外光经干涉仪后其中一部分到达超声-光学探头,经聚光构件聚焦后投射到待测物体上,和/或激励信号到达超声-光学探头,经超声换能器转换成超声波后投射到待测物体上;
步骤S2,从待测物体上反射回来的红外光信号和/或超声波信号分别由超声-光学探头的光学聚焦构件和/或超声换能器收集后,红外光信号进入干涉仪形成干涉信号,再经光电探测器转换成光学电信号,和/或超声波信号经由超声换能器转换成超声电信号,传输至超声发射接收模块;
步骤S3,所述信号采集单元采集由光电探测器传送来的光学信号和/或超声发射接收模块传送来的超声信号;
步骤S4,信号采集单元将双模信号或单一模态信号传回计算机进行图像重建。
有益效果
与现有技术相比,本发明的有益效果为:
第一,采用本发明的技术方案,利用超声和光学成像技术优势互补的特点,既能获取组织足够的深度图像信息,又能获取组织的精细结构,可提高早期病变的微细变化的诊断精度。
第二,采用本发明的技术方案,可以实现超声和光学同时实时成像,同时能够支持超声单一模态成像,或者光学单一模态成像,使用灵活方便。
附图说明
图1是本发明一种双模成像系统的结构示意图。
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
下面对本发明的实施例作进一步的详细说明。
如图1所示,一种双模成像系统,其包括成像探头、超声组件、光学组件以及信号采集单元,所述成像探头分别与超声组件、光学组件连接, 所述成像探头的远端设有用于发射和接收超声信号的超声换能器和/或发射和接收光信号的光学聚焦构件,所述超声组件包括超声发射接收模块(简写为IVUS发射接收模块),所述IVUS超声发射接收模块与超声换能器连接;所述光学组件包括光源、干涉仪、参考臂、光电探测器,所述光源(即OCT光源)发出的光经由干涉仪后一部分光进入成像探头的光学聚焦构件,所述光学聚焦构件把光聚焦到待成像物体上,反射回来的光信号进入干涉仪并与另一部分光(参考光)形成干涉信号,所述干涉信号通过光电探测器转换成电信号(即OCT信号);所述信号采集单元包括超声信号模拟数字采样模块,简写为AD(IVUS),和光学信号模拟数字采样模块,简写为AD(OCT);所述超声信号模拟数字采样模块与超声发射接收模块连接,所述光学信号模拟数字采样模块与光电探测器连接。
如图1所示,所述双模成像系统还包括计算机、运动控制单元和三维扫描单元,所述计算机与运动控制单元连接,所述运动控制单元与三维扫描单元连接,所述三维扫描单元与成像探头连接。通过运动控制模块和三维扫描系统带动成像探头进行高速三维运动,便可呈现出人体病变组织的三维图像。或者:三维扫描控制信号由所述光源和/或超声发射接收模块发出并控制成像探头进行三维扫描。
如图1所示,所述超声信号模拟数字采样与光学信号采样一维信号通过A触发信号来同步采集。超声信号模拟数字采样与光学信号采样可使用同一A触发信号或分别使用各自的A触发信号来同步采集,A触发信号的来源可以是光源内部,或者超声发射/接收模块内部,或者由外部提供。所述超声信号模拟数字采样模块使用频率恒定时钟源进行模拟数字采样,所述光学信号采样模块使用光源提供的K时钟进行模拟数字采样;所述信号采集单元将双模信号传回计算机进行图像重建。或者:所述超声信号模拟数字采样模块和所述光学信号采样模块使用同一频率恒定时钟源进行模拟数字采样,所述光学信号经过后期K空间校准,所述信号采集单元将双模信号传回计算机进行图像重建。
采用上述的双模成像系统的双模成像方法,包括以下步骤:
步骤S1,所述光源和/或超声发射接收模块在A触发信号的同步下,发出红外光和/或激励信号,其中红外光经干涉仪后其中一部分到达超声-光学探头,经聚光构件聚焦后投射到待测物体上,和/或激励信号到达超声-光学探头,经超声换能器转换成超声波后投射到待测物体上;
步骤S2,从待测物体上反射回来的红外光信号和/或超声波信号分别由超声-光学探头的光学聚焦构件和/或超声换能器收集后,红外光信号进入干涉仪形成干涉信号,再经光电探测器转换成光学电信号,和/或超声波信号经由超声换能器转换成超声电信号,传输至超声发射接收模块;
步骤S3,所述信号采集单元采集由光电探测器传送来的光学信号和/或超声发射接收模块传送来的超声信号;
步骤S4,信号采集单元将双模信号或单一模态信号传回计算机进行图像重建。
采用此技术方案,充分利用了超声和光学成像技术优势互补的特点,既能获取组织足够的深度图像信息,又能获取组织的精细结构,可提高早期病变的微细变化的诊断精度。可以实现超声和光学同时实时成像,同时能够支持超声单一模态成像,或者光学单一模态成像,使用灵活方便。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (10)

  1. 一种双模成像系统,其特征在于:其包括成像探头、超声组件、光学组件以及信号采集单元,所述成像探头与超声组件和/或光学组件连接;所述成像探头的远端设有用于发射超声信号和接收超声信号的超声换能器和/或发射和接收光信号的光学聚焦构件;所述超声组件包括超声发射接收模块,所述超声发射接收模块与超声换能器连接;所述光学组件包括光源、干涉仪、参考臂、光电探测器,所述光学组件与所述光学聚焦构件相连;所述信号采集单元包括超声信号模拟数字采样模块和光学信号采样模块,所述超声信号模拟数字采样模块与超声发射接收模块连接,所述光学信号采样模块与所述光电探测器连接;所述双模成像系统支持超声和光学同时成像,或者单一超声成像,或者单一光学成像。
  2. 根据权利要求1所述的双模成像系统,其特征在于:所述超声成像为血管内超声成像,所述光学成像为光学相干断层成像。
  3. 根据权利要求1所述的双模成像系统,其特征在于:超声信号的一维信号由超声发射接收模块输出同步触发信号控制模拟数字采集模块进行同步采集;光学信号的一维信号由光源A触发信号输出同步触发信号控制模拟数字采集模块进行同步采集。
  4. 根据权利要求1所述的双模成像系统,其特征在于:所述超声信号模拟数字采样模块与光学信号采样模块一维信号通过同一A触发信号来同步采集。
  5. 根据权利要求4所述的双模成像系统,其特征在于:所述A触发信号由所述光源或所述超声发射接收模块提供。
  6. 根据权利要求1-5任意一项所述的双模成像系统,其特征在于:所述超声信号模拟数字采样模块使用频率恒定时钟源进行模拟数字采样,所述光学信号采样模块使用光源提供的K时钟进行模拟数字采样;所述信号采集单元将双模信号传回计算机进行图像重建。
  7. 根据权利要求1-5任意一项所述的双模成像系统,其特征在于:所述超声信号模拟数字采样模块和所述光学信号采样模块使用同一频率恒定时钟源进行模拟数字采样,光学信号经过后期K空间校准,所述信号采集单元将双模信号传回计算机进行图像重建。
  8. 根据权利要求1-5任意一项所述的双模成像系统,其特征在于:其包括三维扫描系统,所述三维扫描系统包括计算机、运动控制单元和三维扫描单元,所述计算机与运动控制单元连接,所述运动控制单元与三维扫描单元连接,所述三维扫描单元与成像探头连接,三维扫描控制信号由计算机发出并控制成像探头进行三维扫描。
  9. 根据权利要求1-5任意一项所述的双模成像系统,其特征在于:其包括三维扫描系统,所述三维扫描系统包括光源和/或超声发射接收模块、运动控制单元和三维扫描单元,所述光源和/或超声发射接收模块与运动控制单元连接,所述运动控制单元与三维扫描单元连接,所述三维扫描单元与成像探头连接,三维扫描控制信号由所述光源和/或超声发射接收模块发出并控制成像探头进行三维扫描。
  10. 一种如权利要求1~9任意一项所述的双模成像系统的双模成像方法,其特征在于:其包括以下步骤:
    步骤S1,所述光源和/或超声发射接收模块在A触发信号的同步下,发出红外光和/或激励信号,其中红外光经干涉仪后其中一部分到达超声-光学探头,经聚光构件聚焦后投射到待测物体上,和/或激励信号到达超声-光学探头,经超声换能器转换成超声波后投射到待测物体上;
    步骤S2,从待测物体上反射回来的红外光信号和/或超声波信号分别由成像探头的光学聚焦构件和/或超声换能器收集后,红外光信号进入干涉仪形成干涉信号,再经光电探测器转换成光学电信号,和/或超声波信号经由超声换能器转换成超声电信号,传输至超声发射接收模块;
    步骤S3,所述信号采集单元采集由光电探测器传送来的光学信号和/或超声发射接收模块传送来的超声信号;
    步骤S4,信号采集单元将双模信号或单一模态信号传回计算机进行图像重建。
     
PCT/CN2018/083116 2018-03-28 2018-04-13 一种双模成像系统及其成像方法 WO2019184013A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810263759.7 2018-03-28
CN201810263759.7A CN108464817A (zh) 2018-03-28 2018-03-28 一种双模成像系统及其成像方法

Publications (1)

Publication Number Publication Date
WO2019184013A1 true WO2019184013A1 (zh) 2019-10-03

Family

ID=63264873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083116 WO2019184013A1 (zh) 2018-03-28 2018-04-13 一种双模成像系统及其成像方法

Country Status (2)

Country Link
CN (1) CN108464817A (zh)
WO (1) WO2019184013A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109887578B (zh) * 2019-01-14 2022-10-04 深圳英美达医疗技术有限公司 一种双模数据的同步处理方法
CN109875512A (zh) * 2019-03-18 2019-06-14 深圳英美达医疗技术有限公司 一种血管内双模成像装置
CN111407238A (zh) * 2020-04-27 2020-07-14 浙江杜比医疗科技有限公司 一种光学超声光声乳腺癌检测仪以及医疗设备
CN115919362B (zh) * 2023-03-15 2023-05-30 深圳英美达医疗技术有限公司 超声成像系统的伪像去除方法、装置、设备及存储介质
CN116115263B (zh) * 2023-04-04 2023-07-14 深圳英美达医疗技术有限公司 双模采集数据的上传方法、装置、设备及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070066890A1 (en) * 2005-09-22 2007-03-22 Siemens Aktiengesellschaft Catheter device
US20120172698A1 (en) * 2010-12-30 2012-07-05 Boston Scientific Scimed, Inc. Imaging system
CN103654867A (zh) * 2013-12-27 2014-03-26 深圳先进技术研究院 成像探头及具有该成像探头的成像装置
WO2014049634A1 (ja) * 2012-09-25 2014-04-03 テルモ株式会社 画像診断装置及び情報処理装置及びそれらの制御方法
EP2777486A2 (en) * 2013-03-15 2014-09-17 Lightlab Imaging, Inc. Apparatus and method of image registration
US20170071568A1 (en) * 2015-09-10 2017-03-16 Terumo Kabushiki Kaisha Diagnostic imaging catheter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107126182B (zh) * 2007-01-19 2020-06-16 桑尼布鲁克健康科学中心 用于成像探头的扫描机构
US7999945B2 (en) * 2007-07-18 2011-08-16 The George Washington University Optical coherence tomography / acoustic radiation force imaging probe
CN104188625B (zh) * 2014-08-20 2016-03-16 上海交通大学 一种多模态显微成像系统
CN104257342B (zh) * 2014-10-21 2016-09-21 深圳英美达医疗技术有限公司 一种内窥成像探头及利用上述成像探头进行的成像方法
CN106361294B (zh) * 2016-11-15 2019-08-02 华南师范大学 一种血管内光学相干断层成像-光声-超声多模成像装置与方法
CN107713986A (zh) * 2017-09-11 2018-02-23 天津大学 一种血管内镜超声‑oct探头系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070066890A1 (en) * 2005-09-22 2007-03-22 Siemens Aktiengesellschaft Catheter device
US20120172698A1 (en) * 2010-12-30 2012-07-05 Boston Scientific Scimed, Inc. Imaging system
WO2014049634A1 (ja) * 2012-09-25 2014-04-03 テルモ株式会社 画像診断装置及び情報処理装置及びそれらの制御方法
EP2777486A2 (en) * 2013-03-15 2014-09-17 Lightlab Imaging, Inc. Apparatus and method of image registration
CN103654867A (zh) * 2013-12-27 2014-03-26 深圳先进技术研究院 成像探头及具有该成像探头的成像装置
US20170071568A1 (en) * 2015-09-10 2017-03-16 Terumo Kabushiki Kaisha Diagnostic imaging catheter

Also Published As

Publication number Publication date
CN108464817A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
WO2019184013A1 (zh) 一种双模成像系统及其成像方法
CN106361294B (zh) 一种血管内光学相干断层成像-光声-超声多模成像装置与方法
US10105062B2 (en) Miniaturized photoacoustic imaging apparatus including a rotatable reflector
JP5270919B2 (ja) Mpsセンサから生成された臓器タイミング信号を用いる侵襲器具追跡方法方法及び装置
US20080071172A1 (en) Combined 2D Pulse-Echo Ultrasound And Optoacoustic Signal
EP3015068A1 (en) Device and method for acquiring fusion image
KR101736113B1 (ko) 심혈관 진단용 통합형 카테터 장치 및 이를 이용한 영상 처리 시스템
JPH1156752A (ja) 被検体内断層イメージング装置
TW201119628A (en) Imaging method and system for microcalcification in tissue
JP2002153472A (ja) 画像診断装置
KR20160076868A (ko) 의료영상 장치, 영상 처리 장치 및 영상 융합 방법
CN107411708A (zh) 一种光学相干层析与光声成像双模态内窥镜
JP2006204430A (ja) 断層画像取得装置
US20150173721A1 (en) Ultrasound diagnostic apparatus, medical image processing apparatus and image processing method
CN111419149A (zh) 一种多模态内窥镜及内窥成像系统
JP2001299756A (ja) カテーテルまたは細径プローブの位置を検出可能な超音波診断装置
Pandian et al. Intravascular ultrasound estimation of arterial stenosis
US10492694B2 (en) Object information acquisition apparatus
CN101664323A (zh) 超声设备在多普勒血流测量中即时切换成像状态的方法
CN116350188A (zh) 一种无创可视化导引气管插管的光声成像系统及方法
CN117281544A (zh) 一种用于超声、光声融合实时骨骼成像的时序控制器
KR20170110478A (ko) 영상 처리를 위한 풀백시스템
JP2016042922A (ja) 光音響画像化装置
CN210055992U (zh) 一种血管内双模成像装置
KR20150048267A (ko) 초음파 진단 장치 및 초음파 진단 장치의 초음파 영상 표시 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.02.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18912019

Country of ref document: EP

Kind code of ref document: A1