WO2019182213A1 - Sound absorption device - Google Patents

Sound absorption device Download PDF

Info

Publication number
WO2019182213A1
WO2019182213A1 PCT/KR2018/011196 KR2018011196W WO2019182213A1 WO 2019182213 A1 WO2019182213 A1 WO 2019182213A1 KR 2018011196 W KR2018011196 W KR 2018011196W WO 2019182213 A1 WO2019182213 A1 WO 2019182213A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
sound absorbing
helmholtz resonators
helmholtz
hole
Prior art date
Application number
PCT/KR2018/011196
Other languages
French (fr)
Korean (ko)
Inventor
전원주
유현빈
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180031540A external-priority patent/KR20190109893A/en
Priority claimed from KR1020180109256A external-priority patent/KR102116466B1/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2019182213A1 publication Critical patent/WO2019182213A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Definitions

  • the present invention relates to a sound absorbing device, and more particularly, to an ultra-thin sound absorbing device capable of absorbing one or more frequencies at a high sound absorption rate.
  • Efficiently reducing ambient noise is an important consideration in everyday life or in industrial settings. Sound absorption methods used in many industrial sites to reduce noise generated in various mechanical facilities, etc. can be divided into porous type, resonance type and plate type sound absorbing types.
  • Porous sound absorption method improves sound absorption rate at specific frequency and broadband frequency by adopting appropriate material with high sound absorption performance.
  • Resonance type and plate type sound absorption method partially absorb sound absorption rate at specific frequency by modifying internal structure of sound absorbing material. It's a way to improve.
  • One aspect of the present invention is to provide a sound absorbing device that is thin and absorbs noise of one or more frequencies at a high sound absorption rate.
  • Sound absorbing device a plurality of Helmholtz resonators arranged on a plane, each of the plurality of Helmholtz resonators, the neck portion of a predetermined thickness through which the hole in the thickness direction; And a chamber part connected to the neck and provided with an inner space in which sound waves are communicated through the hole, and having a different resonance frequency from at least one of the adjacent Helmholtz resonators.
  • a partition wall may be provided in the inner space of at least one of the plurality of Helmholtz resonators to guide the traveling direction of the sound waves.
  • Each of the plurality of Helmholtz resonators may have at least one of a size of the adjacent Helmholtz resonator and the hole, a thickness of the neck portion, and a volume of the inner space.
  • the plurality of Helmholtz resonators may have a square pillar shape of the same size, and four Helmholtz resonators may be arranged in a lattice form to form one flaw cell, and the plurality of sound absorbing cells may be arranged in a lattice form on the plane.
  • the size of the holes may be differently formed between the Helmholtz resonators in which the surfaces of the four Helmholtz resonators contact each other.
  • the four Helmholtz resonators may be formed to have different sizes of the holes.
  • the four Helmholtz resonators may have the same volume as the volume of the inner space and the thickness of the neck.
  • the sound absorption cell may have two or more sound absorption frequencies.
  • the partition wall is formed with an opening through which the sound wave can pass, and in the Helmholtz resonator provided with the partition wall, a path of the sound wave traveling through the inner space by the inner surface of the chamber part and the partition wall may be defined.
  • the partition may be guided so that the traveling direction of the sound wave is changed at least once.
  • the plurality of Helmholtz resonators are eight Helmholtz resonators, some of which are different from each other in the length of the path of the sound waves, the eight Helmholtz resonators adjacent to each other to form a single sound-absorbing cell of the square column shape,
  • the sound absorbing cells may be arranged in a lattice form on the plane.
  • the eight Helmholtz resonators may have the shape of a polygonal column having the same height, and the holes may have different sizes.
  • Two Helmholtz resonators of each of the eight Helmholtz resonators may be arranged adjacently to form four square pillars of the same size, and the four square pillar shapes may be adjacent to form the sound absorbing cell.
  • the eight Helmholtz resonators may have a length of at least three different paths of the sound wave.
  • the sound absorption cell may have four or more sound absorption frequencies.
  • the partition wall extends in the thickness direction, and partitions the internal space in the same area on the plane, and the path of the sound wave may be connected through the opening.
  • the plane may be perpendicular to the direction of incident sound waves, and the holes may be arranged to face the sound waves.
  • each of the plurality of Helmholtz resonators may be smaller than the wavelength of the sound wave.
  • the sound waves may have different phases reflected from adjacent Helmholtz resonators and may cause destructive interference.
  • noise can be absorbed at a high sound absorption rate.
  • the partition structure which extends the path of a sound wave is formed in a Helmholtz resonator, and it can exhibit a high flaw rate while making thickness very thin.
  • FIG. 1 is a perspective view of a scratch device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view of the Helmholtz resonator constituting the sound absorbing cell of FIG.
  • FIG. 4 is a front view of a sound absorbing cell constituting the sound absorbing device according to the first embodiment of the present invention.
  • FIG. 5 is a graph showing the sound absorption performance of the sound absorbing device according to the first embodiment of the present invention.
  • FIG. 6 is a front view of a sound absorbing cell constituting the sound absorbing device according to the second embodiment of the present invention.
  • 7 and 8 are graphs showing the scratching performance of the sound absorbing device according to the second embodiment of the present invention.
  • FIG. 9 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the third embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating a Helmholtz resonator constituting the sound absorbing cell of FIG. 9.
  • FIG. 11 is a front view of a sound absorbing cell constituting the sound absorbing device according to the third embodiment of the present invention.
  • FIG. 12 is a graph showing sound absorption performance of the sound absorbing device according to the third embodiment of the present invention.
  • FIG. 14 is a front view of a sound absorbing cell constituting the sound absorbing device according to the fourth embodiment of the present invention.
  • 15 to 17 are perspective views illustrating a Helmholtz resonator constituting the sound absorbing cell of FIG. 14.
  • FIG. 18 is a graph showing sound absorption performance of the sound absorbing device according to the fourth embodiment of the present invention.
  • FIG. 19 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the fifth embodiment of the present invention.
  • 20 to 23 are perspective views illustrating a Helmholtz resonator constituting the sound absorbing cell of FIG. 19.
  • FIG. 24 is a graph showing sound absorption performance of the sound absorbing device according to the fifth embodiment of the present invention.
  • FIG. 25 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the sixth embodiment of the present invention.
  • FIG. 26 is a perspective view illustrating a Helmholtz resonator constituting the sound absorbing cell of FIG. 25.
  • FIG. 27 is a front view illustrating the Helmholtz resonator of FIG. 26.
  • FIG. 1 is a perspective view of a scratch device according to an embodiment of the present invention.
  • a sound absorbing device 100 includes a plurality of sound absorbing cells C arranged two-dimensionally on a plane, and has a thin panel or board. ) Form.
  • the sound absorbing cell C may be a basic unit, and the plurality of sound absorbing cells C may be continuously arranged adjacent to each other in the x-axis and y-axis directions with reference to FIG. 1.
  • the plurality of sound absorption cells C may be arranged in a lattice form on an xy plane perpendicular to the incident sound wave.
  • the sound absorbing device 100 of the present invention is not limited to being composed of a plurality of sound absorbing cells C, and the sound absorbing device 100 is formed of only one sound absorbing cell C instead of the plurality of sound absorbing cells C. It may be configured.
  • the sound absorbing cell C may be composed of a plurality of Helmholtz resonators arranged on a plane.
  • Helmholtz Resonator is a device that absorbs sound by resonating air at a specific frequency. It has a closed shape with a neck and is absorbed by frictional heat loss when air enters and exits through a small hole through the neck.
  • the Helmholtz resonator may include a neck having a predetermined thickness through which a hole is passed, and a chamber part connected to the neck to provide an inner space, and the neck part and the chamber part may be integrally formed.
  • the hole may be disposed toward the sound source for generating sound waves, the sound waves may pass through the hole formed in the neck of the Helmholtz resonator to proceed to the interior space of the chamber.
  • Helmholtz resonators are well known to those skilled in the art, and thus will not be described in more detail.
  • the plurality of Helmholtz resonators constituting the sound absorbing cell (C) may be arranged adjacently so that there is no space therebetween, as shown in Figure 1, the sound absorbing cell (C) in the form of a square column Can be formed.
  • each of the plurality of Helmholtz resonators arranged on the plane may be arranged to have a different resonance frequency from the adjacent Helmholtz resonators.
  • the resonance frequency is determined by the following equation (f is the resonance frequency, v is the speed of sound waves, A is the area of the hole, V is the volume of the inner space, and l is the length of the hole).
  • each of the plurality of Helmholtz resonators includes at least one size and a neck of the adjacent Helmholtz resonator and the hole 125. At least one of the thickness (length in the z-axis direction) of 122 (see FIG. 3) and the volume of the space 126 (see FIG. 3) may be arranged differently.
  • the front and the rear define a direction closer to the sound source that generates sound waves, and the rear and rearward directions.
  • a detailed structure of the sound absorbing device 100 and various sound absorbing effects thereof will be described.
  • the structure of the sound absorbing cell constituting the sound absorbing device 100 will be described mainly, and the plurality of sound absorbing cells C are two-dimensionally arranged on a plane in all embodiments.
  • FIG. 2 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the first embodiment of the present invention.
  • the plurality of Helmholtz resonators 120 constituting the sound absorbing cell C1 may be arranged in a lattice form on a plane.
  • the plurality of Helmholtz resonators 120 may be arranged in a lattice form on a plane perpendicular to the incident sound wave S so that the reflectance may be zero at a specific frequency of the incident sound wave S.
  • the hole 125 of the Helmholtz resonator 120 may be arranged toward the incident sound wave S. That is, in FIG.
  • the plurality of Helmholtz resonators 120 are arranged in the x-axis and y-axis directions on the xy plane perpendicular to the incident sound wave S.
  • the hole 125 of the resonator 120 may face the z-axis direction.
  • the sizes of the holes 125 may be differently disposed between the Helmholtz resonators adjacent in at least one direction among the plurality of Helmholtz resonators 120 arranged on the plane.
  • the sizes of the holes 125 may be formed differently between Helmholtz resonators adjacent in two axes (x-axis, y-axis) perpendicular to each other on a plane (xy plane) perpendicular to the incident sound wave S. .
  • the sound absorbing device 100 may select and absorb a specific frequency by adjusting the size of the holes 125 of the Helmholtz resonators 120 adjacent to each other, and increase one or more specific frequencies.
  • the sound absorption can be defected, the detailed structure of the sound absorption cell C1 will be described below.
  • a plurality of sound absorbing cells C1 composed of four Helmholtz resonators 120 have a lattice shape, for example, FIG. 1. It may be configured to have a structure arranged adjacent to the x-axis and y-axis directions in the. That is, the sound absorbing device 100 is a form in which the sound absorbing cells C1 are continuously arranged on a plane, with the fault cell C1 composed of four Helmholtz resonators 120 as a basic unit.
  • the Helmholtz resonator 120 may have a size smaller than the wavelength of the sound wave S (subwavelength scale).
  • the length of one side of the Helmholtz resonator 120 that is, the thickness of the Helmholtz resonator 120 (H, see FIG. 2) and the length and width of the horizontal and vertical (D / 2, see FIG. 2) is a sound wave (S) It may be smaller than the wavelength of.
  • S sound wave
  • a high scratch effect can be exhibited in a small space.
  • by reducing the thickness H of the Helmholtz resonator 120 it is possible to function as a meta-surface by attaching a thin-shaped panel-shaped flaw device 100 to the wall.
  • FIG. 3 is a perspective view of the Helmholtz resonator constituting the sound absorbing cell of FIG.
  • the Helmholtz resonator 120 has a neck portion 122 having a predetermined thickness through which the hole 125 penetrates, and a space 126 continuously connected to the rear of the neck portion 122 to communicate with the hole 125. It may include the chamber portion 124 is provided. Accordingly, sound waves incident from the outside may enter the internal space through the hole 125.
  • the Helmholtz resonator 120 may have a polygonal column shape, and a cross section of the Helmholtz resonator 120 in a direction parallel to the plane where the Helmholtz resonator 120 is arranged may have a polygonal shape.
  • the Helmholtz resonator 120 may have a rectangular parallelepiped shape.
  • the neck 122 and the chamber 124 may be integrally formed to form a rectangular parallelepiped.
  • the sound absorbing cell C1 may be formed by arranging four Helmholtz resonators in contact with each other.
  • the shape of the Helmholtz resonator 120 is not limited to the shape of a rectangular parallelepiped, but may also be in the form of an oblique column.
  • the structure of the Helmholtz resonator 120 having a rectangular parallelepiped shape will be described.
  • the neck 122 and the space 126 through which the hole 125 of a predetermined length (or thickness) 1 is pierced are described.
  • the chamber unit 124 having a) may be integrally formed.
  • the hole 125 has a circular cross section of a predetermined size, extends to connect the space 126 inside and outside the Helmholtz resonator 120 with each other, and may have a predetermined diameter 2r.
  • the space 126 is connected to the rear end of the hole 125 so as to communicate with the hole 125, and the chamber 124 may have a predetermined thickness, so that the space 126 corresponds to the shape of the chamber 124. It may have a rectangular parallelepiped shape.
  • the space 126 may have a rectangular parallelepiped shape of horizontal (x-axis length), vertical (y-axis length), and depth (z-axis length), respectively, g, a, and b.
  • the shape of the space 126 is not limited to the rectangular parallelepiped, and may be formed in various shapes having a predetermined volume.
  • the chamber portion 124 is a rectangular parallelepiped shape
  • the neck portion 122 may be formed in a columnar shape, for example, a cylinder protruding on one surface of the rectangular parallelepiped. .
  • the Helmholtz resonator 120 may have a square pillar shape. Accordingly, when the sound absorbing device 100 is viewed from the front (z-axis direction), the sound absorbing cell C1 is also square, and the sound absorbing device 100 may be formed in a lattice form in which square sound absorbing cells C1 are continuously arranged. .
  • the cross section of the Helmholtz resonator 120 may be a square having a length D / 2
  • the cross section of the flaw cell C1 may be a square having a length D of one side.
  • the sound absorbing device 100 forms a different size of the hole 125 of the Helmholtz resonator 120 and the Helmholtz resonator 120 having a different size of the hole 125 on the x-axis or By arranging in the y-axis direction, it is possible to exhibit a high defect rate for one or more specific frequencies.
  • the arrangement of the Helmholtz resonators 120 having different sizes of the holes 125 and the relationship between the holes 125 and the defect frequencies are described. It explains in detail.
  • FIG. 4 is a front view of a sound absorbing cell constituting the sound absorbing device according to the first embodiment of the present invention
  • Figure 5 is a graph showing the sound absorption performance of the sound absorbing device according to the first embodiment of the present invention.
  • the Helmholtz resonators constituting the sound-absorbing cell (C1) in FIG. 4 is shown with reference numeral 120, four Helmholtz resonators may be referred to as the first to fourth Helmholtz resonators, respectively, as needed in the following description; , 120-1 ⁇ 120-4.
  • the holes 125 are also divided by the same reference numerals, and may be referred to as needed in the following description. This division method is equally applicable to the description of other embodiments.
  • two types of Helmholtz resonators 120-1 and 120-2 having different sizes of holes 125 are arranged to form one sound absorbing cell ( C1) may be configured. That is, the size of the holes 125-1 and 125-2 may be the same between the Helmholtz resonators arranged in the diagonal direction when viewed from the front among the four Helmholtz resonators constituting one sound absorbing cell C1. That is, the size of the holes may be arranged differently between the Helmholtz resonators in contact with each other.
  • the sound waves S incident toward the sound absorbing device 100 are Helmholtz resonators, that is, holes having different sizes in the x-axis or y-axis direction.
  • the phases reflected by the Helmholtz resonators can be reversed at certain frequencies.
  • destructive interference may be generated, whereby a sound absorption effect may be exerted.
  • the diameters of the holes of the first Helmholtz resonator 120-1 and the second Helmholtz resonator 120-2 which are adjacent in the x-axis or y-axis direction and have different sizes of holes are respectively
  • a perfect sound absorption effect can be exhibited at a specific frequency when the following Equation 1 is satisfied.
  • r 1 is the radius of the hole 125-1 of the first Helmholtz resonator 120-1
  • r 2 is the radius of the hole 125-2 of the second Helmholtz resonator 120-2.
  • Equation 2 the sound absorption frequency f peak at which perfect sound absorption is satisfied satisfies Equation 2 below.
  • a 19mm
  • b 25mm
  • g 19mm
  • l 14mm
  • D 41mm
  • H 40mm
  • r 1 2.85mm
  • FIG. 5 is a graph showing a reflection coefficient (R MS ) and a sound absorption coefficient (a MS ) of a flaw device 100 designed as described above to absorb sound waves having a frequency of 700 Hz through a numerical analysis model. It can be seen that a high sound absorption effect of more than% is exhibited.
  • R MS reflection coefficient
  • a MS sound absorption coefficient
  • a perfect sound absorbing effect can be exhibited with respect to one specific frequency.
  • a high sound absorbing effect can be achieved with respect to two or more frequencies.
  • FIGS. 7 and 8 are graphs showing the flaw performance of the sound absorbing device according to the second embodiment of the present invention.
  • the four types of Helmholtz resonators 220-1, 220-2, 220-3, and 220-4 with different sizes of the holes 225 are provided.
  • one sound absorbing cell (C2) By arranging one sound absorbing cell (C2) can be configured. That is, the four Helmholtz resonators 220-1, 220-2, 220-3, and 220-4, which constitute one sound absorbing cell C2, are holes 225-1, 225-2, 225-3, and 225, respectively. -4) may be formed differently in size.
  • the sound waves S incident toward the sound absorbing device 100 are respectively reflected in a phase at which the phases reflected between adjacent Helmholtz resonators in the x-axis direction. They may be opposite to each other or destructive interference may occur.
  • sound waves having one target frequency are adjusted by adjusting the diameters of the holes of the two types of Helmholtz resonators 220-1 and 220-2 arranged on the upper portion of the sound absorbing cell C2. It can completely absorb the sound, and by adjusting the diameter of the holes of the two other types of Helmholtz resonators 220-3, 220-4 arranged in the lower portion of the sound absorbing cell (C2) it can completely absorb sound waves having different target frequencies. That is, by adjusting the sizes of the holes of the four Helmholtz resonators 220-1, 220-2, 220-3, and 220-4, which constitute the sound absorbing cell C2, two different frequencies can be completely absorbed. have.
  • the Helmholtz resonators located above the sound absorbing cell C2 and adjacent in the x-axis direction are referred to as a first Helmholtz resonator 220-1 and a second Helmholtz resonator 220-2, respectively.
  • the diameters of the holes of the first Helmholtz resonator 220-1 and the second Helmholtz resonator 220-2 are 2r 1 and 2r 2 , respectively, the target frequencies satisfying the above-described equations 1 and 2 can be obtained.
  • the diameter of the hole, ie r 1 , r 2 can be obtained.
  • the values of r 1 , r 2 , r 3 and r 4 can be optimized. More specifically, the diameter of the hole of each Helmholtz resonator can be completely absorbed by the optimization algorithm so that the sound absorption coefficient of the sound absorption cell calculated for the two target frequencies is maximized. At this time, the initial value of the diameter of the hole can be set to the diameter of the hole of the four Helmholtz resonators obtained through the above equations (1) and (2).
  • the objective function used in the optimization algorithm may be set to maximize the sound absorption coefficient of the sound absorption cell, or may be set to minimize the difference between the acoustic impedance of the outer medium and the effective acoustic impedance of the sound absorption cell.
  • the sequential quadratic programming (SQP) method may be used for the optimization algorithm, but the present invention is not limited thereto, and various well-known methods may be used.
  • FIG. 7 is a graph of calculating the reflection coefficient (R MS ) and the absorption coefficient (a MS ) through a numerical analysis model of a flaw device 100 designed to absorb sound waves of two frequencies, 400 Hz and 600 Hz. It can be seen that the high sound absorption effect of more than 95% is exhibited at each of the two desired frequencies 400Hz and 600Hz.
  • the sound absorption may be efficiently performed at two or more frequencies or a wide frequency band according to the sound absorption frequency.
  • the two desired frequencies for sound absorption are 400Hz and 500Hz
  • FIG. 8 is a graph of calculating the reflection coefficient (R MS ) and the absorption coefficient (a MS ) through a numerical analysis model of a flaw device 100 designed to absorb sound waves of two frequencies, 400 Hz and 500 Hz. It can be seen that a high sound absorption effect of more than 95% is exhibited at 400Hz and 500Hz respectively.
  • the size of the holes of the four Helmholtz resonators 220-1, 220-2, 220-3, and 220-4 constituting the intake cell C2 can be adjusted differently so as to be effective in two or more frequencies or a wide frequency band.
  • the sound absorbing device 100 of the present invention can be designed to absorb sound.
  • the present invention is not limited thereto, and a sound absorbing device having the same effect by adjusting at least one of the size of the hole, the thickness of the neck, and the volume of the inner space, which are factors influencing the resonance frequency of the Helmholtz resonator, is provided. Can be implemented.
  • the sound absorption apparatus 100 which exhibits the same effect can be comprised.
  • At least one inner space of the plurality of Helmholtz resonators constituting the sound absorbing cell C may be provided with a partition wall for guiding a traveling direction of sound waves entering the inner space. have. Accordingly, it is possible to extend the path of the sound waves, so that the thickness of the sound absorbing device can be implemented to be thin.
  • the partition is provided in the following description. In the following description, features that are common to the first and second embodiments described above will be omitted and description will be given focusing on differences.
  • FIG. 9 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the third embodiment of the present invention
  • FIG. 10 is a perspective view showing a Helmholtz resonator constituting the sound absorbing cell of FIG. 9, and
  • FIG. It is a front view of the sound absorption cell which comprises the sound absorption apparatus which concerns on 3rd Example.
  • the path of sound waves traveling through the inner space of the Helmholtz resonator is shown by a thick solid arrow, and the partition wall is darkly shown. This illustrated method was similarly applied to the drawings of the other embodiments.
  • the sound absorbing device 100 has a sound absorbing cell C3 based on a sound absorbing cell C3 including four Helmholtz resonators 320. It is a form arrange
  • the square column-shaped sound absorbing cell C3 may be configured with four Helmholtz resonators 320 having a square pillar shape.
  • the inner space may have a square pillar shape and may be horizontal (x-axis direction). Length), length (y-axis length), and thickness (z-axis length) may be 2a, 2a, and b, respectively.
  • the shape of the inner space is not limited to the square pillar, and may be formed in various shapes having a predetermined volume.
  • the Helmholtz resonator 320 constituting the sound absorbing cell C3 is continuously connected to the neck 122 having a predetermined thickness through which the hole 325 penetrates and the rear of the neck 122. It includes a chamber portion 324 is provided with an internal space in communication with the outside through the sound source. Accordingly, sound waves incident from the outside may enter the internal space through the hole 325.
  • At least one of the plurality of Helmholtz resonators 320 may include a partition wall in an inner space.
  • a partition wall 327 may be provided in an inner space of each of the four Helmholtz resonators 320 constituting the sound absorbing cell C3.
  • the partition wall 327 partitions the inner space of the Helmholtz resonator 320 and may exert an effect of extending the path of sound waves traveling in the inner space. According to the exemplary embodiment of the present invention, the traveling direction of the sound wave may be guided at least once by the partition wall 327.
  • the partition wall 327 partitions the inner space of the Helmholtz resonator 320 in the same volume, and may partition the inner space in the same area based on the xy plane, and an opening through which sound waves can pass. 329 may be formed.
  • the inner space may also have a square pillar shape.
  • the partition wall 327 is formed in a cross shape in which two planes intersect to form an inner space of the same volume. It can be divided into four square columnar spaces.
  • an opening portion 329 may be formed at an end side of the partition wall 327. Accordingly, the path of the sound wave may be bent and changed several times by the partition wall 327 and the opening part 329. .
  • the sound waves pass through the four spaces divided by the partition wall 327 sequentially through the opening portion 329, so that the path of the sound waves is lower than that without the partition wall 327. Can be extended.
  • the path of the sound waves traveling through the inner space by the inner surface of the chamber part 324 and the partition wall 327 is defined, and the structure and the opening of the partition wall 327 are defined.
  • the thermal viscous effect is increased by the partition wall 327, so that the low sound absorption frequency can be absorbed at a high flaw rate.
  • the thickness of the thermal viscous boundary layer for the movement of air in the inner space is not negligible compared to the size of the inner space. Since the thermal viscosity dissipation effect on the sound propagation in the space inside the Helmholtz resonator 320 is dominant. As a result, the effective sound velocity (v in the above formula) traveling through the inner space is reduced, resulting in a smaller resonance frequency. Accordingly, it is possible to obtain a high sound absorption effect while having a lower sound absorption frequency than an unpartitioned Helmholtz resonator with the same volume. That is, by making the effective sound velocity small by the partition 327 and lengthening the path
  • the four Helmholtz resonators 320 constituting the sound absorbing cell (C3) are all provided with a partition of the same structure, the length of the path of the sound waves may be all the same.
  • the first Helmholtz resonators 320-1 (see FIG. 11) are illustrated, but the second to fourth Helmholtz resonators 320-2 to 320-4 may also have a partition having the same structure.
  • the third embodiment it is possible to extend the path of the sound waves through the partition wall 327, while exhibiting the same sound absorption effect as compared with the sound absorption cell C3 composed of a Helmholtz resonator without the partition wall 327
  • the thickness of the sound absorbing cell C3 can be made thinner.
  • the partition wall 327-2 of the second Helmholtz resonator 320-2 has a structure symmetrical to the partition wall 327-1 of the first Helmholtz resonator 320-1 and the xz plane, and also has a first structure.
  • the partitions 327-1 and 327-2 of the two Helmholtz resonators 320-1 and 320-2 are structures symmetrical to the partition walls of the third and fourth Helmholtz resonators 320-3 and 320-4 and the yz plane. Can be.
  • the position of the hole 325 may be arranged in the same symmetrical structure.
  • the thinner the Helmholtz resonator 320 should be in order to have a high sound absorption rate. It has a thickness and high sound absorption at broadband frequencies.
  • the four Helmholtz resonators 320-1, 320-2, 320-3, and 320-4 that make up the sound absorbing cell C3 are holes 325-1 and 325-2, respectively. , 325-3 and 325-4) may have different sizes, and the volume of the inner space and the thickness of the neck may be the same. That is, by adjusting the sizes of the holes of the four Helmholtz resonators 320-1, 320-2, 320-3, and 320-4 constituting the sound absorbing cell C3, a plurality of specific frequencies can be absorbed at a high sound absorption rate. .
  • the size of the holes 325-1 and 325-2 of 2), that is, the values of r 1 and r 2 are adjusted to completely absorb sound waves having one target frequency, and the third and fourth Helmholtz adjacent to each other.
  • the size of the holes 325-3 and 325-4 of the resonators 320-3 and 320-4, that is, r 3 and r 4 may be adjusted to completely absorb sound waves having another target frequency. have.
  • the values of r 1 , r 2, r 3 , and r 4 can be adjusted through an optimization algorithm such that the difference between the impedance in the sound absorbing device 100 calculated for the two target frequencies and the impedance of the outside air is minimized. . This is as described in the foregoing embodiment.
  • the experimental values represent the results of the specimens produced by 3D printing through impedance tube experiments.
  • the sound absorbing device 100 exhibits a high sound absorbing effect at a plurality of frequencies.
  • the sound absorbing coefficient (a MS) at two frequencies of 300 Hz and 400 Hz is shown. ) Is 0.95 or more, it can be seen that the sound absorption of 95% or more.
  • the thickness of the sound absorbing device is 1 / 24.4 times the incident wavelength.
  • FIG. 13 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the fourth embodiment of the present invention
  • FIG. 14 is a front view of the sound absorbing cell constituting the sound absorbing device according to the fourth embodiment of the present invention
  • 15 to 17 are perspective views illustrating a Helmholtz resonator constituting the sound absorbing cell of FIG. 14.
  • the sound absorbing device includes a sound absorbing cell C4 composed of eight Helmholtz resonators 420, and the sound absorbing cell C4 is continuous on a plane. It is arranged as.
  • a square column-shaped sound absorbing cell C4 may be configured of eight Helmholtz resonators 420 having a polygonal pillar shape having the same height and having various bottom surfaces.
  • the sound absorbing cell C4 may include four pairs of Helmholtz resonators 420, and are arranged adjacent to each other such that there is no space therebetween to form a square sound absorbing cell C4. can do.
  • the four pairs of Helmholtz resonators 420 constituting the sound absorbing cell C4 may be formed in different sizes of the holes 425. More precisely, the size of the holes 425 may be formed differently between the paired Helmholtz resonators 420, and the size of the holes 425 may be adjusted so that the phases of the reflected sound waves are reversed. Thereby, a high sound absorption effect can be exhibited with respect to a some frequency.
  • the path length of the sound wave in the inner space is the same.
  • the structure of the partition wall 429 provided in the inner space may be the same between the pair of Helmholtz resonators 420.
  • it may have a structure of a hole and a location of a hole symmetrical in the xz plane.
  • the third and fourth Helmholtz resonators 420-3 and 420-4 which are different from the paired first and second Helmholtz resonators 420-1 and 420-2 are sound waves.
  • the lengths of the paths may be different from each other, and thus, sound absorption for the wideband frequency may be realized.
  • the thinner the target sound absorption frequency (or the longer the wavelength of sound waves) the thicker the Helmholtz resonator 420 should be in order to have a high sound absorption rate. The same effect as the thickness of 420 becomes thick can be exhibited.
  • the first and second Helmholtz resonators 420-1 and 420-2 have a hexagonal column having a 'L' shape at the bottom thereof, and a path of sound waves may be extended by the partition wall.
  • the third and fourth Helmholtz resonators 420-3 and 420-4 have a rectangular columnar shape that can be in contact with the concave side surfaces of the first and second Helmholtz resonators 420-1 and 420-2, There may be no bulkhead.
  • the first Helmholtz resonator 420-1 is provided with a partition 427-1 in an internal space, and the partition 427-1 partitions an internal space of the first Helmholtz resonator 420-1. Two planes perpendicular to each other may be coupled to each other, and the openings 429-1 may be formed at ends of opposite directions.
  • the length of the sound wave in the thickness direction (z-axis direction) is the third Helmholtz without the partition shown in FIG.
  • the first and second Helmholtz resonators 420-1 and 420-2 can exhibit a high sound absorption effect at a low frequency
  • the third and fourth Helmholtz resonators 420-3 and 420-4 have a high frequency. High sound absorption effect can be achieved.
  • a Helmholtz resonator having different lengths of sound wave paths in one sound absorbing cell C4 by including a Helmholtz resonator having different lengths of sound wave paths in one sound absorbing cell C4, a high sound absorbing effect can be obtained even when the target sound absorption frequency is large. . In other words, it can exhibit a high sound absorption effect at a wide band frequency.
  • the fifth to eighth Helmholtz resonators 420-5 to 420-8 may have a rectangular pillar shape of the same size, and may have the same path of sound waves.
  • a partition of the same structure may be provided in the interior space.
  • a partition 427-5 is provided in an inner space of the fifth Helmholtz resonator 420-5, and is located far from the hole 425-5 at an end of the partition 427-5. Openings 429-5 may be formed at the ends of the direction.
  • the sound wave passing through the hole 425-5 progresses in the z-axis direction, and the traveling direction is changed through the opening portion 429-5 to proceed in the -z-axis direction, so that the path length of the sound wave is extended.
  • the traveling direction is changed through the opening portion 429-5 to proceed in the -z-axis direction, so that the path length of the sound wave is extended.
  • the fifth to eighth Helmholtz resonators 420-5 to 420-8 have shorter sound paths than the first and second Helmholtz resonators 420-1 and 420-2, but the third and fourth Helmholtz resonators Compared to the resonators 420-3 and 420-4, it may have a longer path of sound waves. That is, the plurality of Helmholtz resonators 420 constituting the sound absorption cell C4 may have paths of at least three different sound waves, and may have at least four sound absorption frequencies (see FIG. 18 to be described below). Accordingly, according to the fourth embodiment, it can be implemented to enable a high sound absorption rate for the frequency of the broadband.
  • the first and second Helmholtz resonators 420-1 which are adjacent to each other in FIGS. 13 and 14, 420-2) is designed to completely absorb sound waves having a first target frequency by adjusting the sizes of the holes 425-1 and 425-2, that is, the values of r 1 and r 2 .
  • the size of the holes 425-3 and 425-4 of the Helmholtz resonators 420-3 and 420-4, that is, r 3 and r 4 can be adjusted to completely absorb sound waves having the second target frequency. Can be.
  • the size of the holes 425-5 and 425-6 of the fifth and sixth Helmholtz resonators 420-5 and 420-6 are adjusted to have a third target frequency.
  • Designed to completely absorb sound waves and by adjusting the size of the holes (425-7, 425-8) of the seventh and eighth Helmholtz resonators (420-7, 420-8) adjacent to each other, that is, r 7 , r 8 It can be designed to completely absorb sound waves having a fourth target frequency.
  • r 1 , r 2 through optimization algorithms such that the difference between the impedance in the sound absorbing device 100 and the impedance of the outside air is minimized.
  • r 3 , r 4 , r 5 , r 6 You can adjust the r 7 and r 8 values.
  • FIG. 18 is a graph showing sound absorption performance of the sound absorbing device according to the fourth embodiment of the present invention.
  • the sound absorbing device 100 according to the fourth embodiment of the present invention exhibits high sound absorption at four frequencies, and includes four frequencies of 300 Hz, 400 Hz, 500 Hz, and 600 Hz. Since the sound absorption coefficient (a MS ) is 0.95 or more, it can be seen that the sound absorption rate of 95% or more can be exhibited. In addition, it can be confirmed that the sound absorbing device 100 according to the fourth embodiment of the present invention is effective for a wideband frequency. A frequency bandwidth capable of exhibiting a sound absorption rate of 50% or more is 36 Hz and 300 Hz target frequencies based on a 300 Hz target frequency. The reference is 44 Hz and 500 Hz. The target frequency is 55 Hz and 600 Hz.
  • the target frequency is 52 Hz.
  • the thickness of the sound absorbing device is 1 / 23.4 times the incident wavelength. Therefore, while implementing a sound absorbing device having a thin thickness similar to the third embodiment, it is possible to implement a sound absorbing device 100 exhibiting a high sound absorption rate for more frequencies and broadband frequencies than the third embodiment.
  • FIG. 19 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the fifth embodiment of the present invention
  • FIGS. 20 to 23 are perspective views illustrating a Helmholtz resonator constituting the sound absorbing cell of FIG. 19.
  • the sound absorbing device includes a sound absorbing cell C5 composed of eight Helmholtz resonators 520, and the sound absorbing cell C5 includes eight Helmholtz resonators.
  • Two Helmholtz resonators of 520 are arranged adjacent to each other to form four square pillars of the same size, and the four square pillars are arranged adjacent to form a square-shaped sound absorption cell C5. have.
  • the sound absorbing cell C5 may include four pairs of Helmholtz resonators 520, and are arranged adjacent to each other so that there is no space therebetween to form a square sound absorbing cell C5. can do.
  • the four pairs of Helmholtz resonators 520 constituting the sound absorbing cell C5 may have different volumes of internal space. More precisely, a pair of Helmholtz resonators may have the same internal space, but different pairs of Helmholtz resonators may have different internal volumes. Thereby, a high sound absorption effect can be exhibited with respect to a some frequency.
  • the path length of the sound wave in the inner space may be the same.
  • the structure of the partition wall 527 provided in the inner space may be the same between the pair of Helmholtz resonators.
  • it may have a structure of a hole and a location of a hole symmetrical in the xz plane.
  • the neck portion of the Helmholtz resonator 520 in which the internal space is not formed is more than only a part of the front of the Helmholtz resonator 520.
  • the hole 525 is formed in a portion, and the remaining portion may be formed in the inner space without extending the neck portion.
  • the length of the z-axis direction of the inner space directly connected to the hole 525-1 is b, but the z-axis direction of the inner space of the upper position (y-axis direction) of the hole 525-1. The length of becomes b + l.
  • the resonators 520-5 and 520-6 and the seventh and eighth Helmholtz resonators 520-7 and 520-8 may have different path lengths of sound waves, and thus, sound absorption for broadband frequencies may be realized. have. That is, by appropriately arranging a plurality of Helmholtz resonators with different paths of sound waves, high sound absorption can be exhibited for multiple frequencies and wideband frequencies.
  • the first Helmholtz resonator 520-1 has an irregular shape in which a part of a square pillar is divided, and a path of sound waves may be extended by a partition wall.
  • the third Helmholtz resonator 520-3 may be in contact with the concave side surface of the first Helmholtz resonator 520-1, and the first Helmholtz resonator 520-1 and the third Helmholtz resonator 520- 3) may be arranged adjacent to each other to form a square pillar.
  • the fifth Helmholtz resonator 520-5 is an irregular shape in which part of the square pillar is divided, and is different from the first Helmholtz resonator 520-1.
  • the structure may be formed differently from the first Helmholtz resonator 520-1.
  • the seventh Helmholtz resonator 520-7 may be in contact with the concave side of the fifth Helmholtz resonator 520-5, and the fifth Helmholtz resonator 520-5 and the seventh Helmholtz resonator 520- 7) may be arranged adjacent to each other to form a square pillar.
  • two Helmholtz resonators of the eight Helmholtz resonators constituting the sound absorption cell C5 are arranged adjacent to each other to form four square pillar shapes of the same size, and the four square pillar shapes. May be arranged adjacent to each other to form the sound absorption cell.
  • the Helmholtz resonators 420 constituting the sound absorbing cell C4 have the same thickness (the length in the z-axis direction), and two Helmholtz resonators adjacent to each other have the square pillar in the x-axis.
  • the shape of the Helmholtz resonator constituting the sound absorbing cell can be more variously compared with the above-described fourth embodiment, so that the design freedom is high, and thus the length of the path of the sound wave is more precisely. I can adjust it.
  • the difference between target sound absorption frequencies can be reduced, thereby wideband frequency.
  • High sound-absorption effect can be clearly seen at. That is, the plurality of Helmholtz resonators 520 constituting the sound absorbing cell C5 may have four different sound wave paths and may have four sound absorption frequencies.
  • the sound absorbing device 100 In the case of designing the sound absorbing device 100 according to the fifth embodiment of the present invention, it is optimized to minimize the difference between the impedance of the sound absorbing device 100 and the impedance of the outside air in the same manner as described in the previous embodiment.
  • the algorithm r 1 , r 2 , r 3 , r 4 , r 5 , r 6 You can adjust the r 7 and r 8 values.
  • FIG. 24 is a graph showing sound absorption performance of the sound absorbing apparatus according to the fifth embodiment of the present invention.
  • the sound absorbing device 100 according to the fifth embodiment of the present invention exhibits a high sound absorption effect at four frequencies, and includes four frequencies of 375 Hz, 425 Hz, 472 Hz, and 536 Hz. Since the sound absorption coefficient (a MS ) is 0.95 or more, it can be seen that the sound absorption rate of 95% or more can be exhibited. In addition, it can be seen that the sound absorbing device 100 according to the fifth embodiment of the present invention is very effective for a wideband frequency.
  • the frequency bandwidth capable of exhibiting a sound absorption rate of 50% or more is 344 Hz to 533 Hz, which is a total of 209 Hz. .
  • the thickness of the sound absorbing device relative to the incident wavelength is 1 / 18.5 times. Therefore, although the thickness is slightly thicker than that of the fourth embodiment, it is possible to implement the sound absorbing device 100 which exhibits a high sound absorption rate for a much wider frequency band.
  • FIG. 25 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the sixth embodiment of the present invention.
  • FIG. 26 is a perspective view showing a Helmholtz resonator constituting the sound absorbing cell of FIG. 25, and
  • FIG. 27 is a perspective view of FIG. Front view showing a Helmholtz resonator.
  • the sound absorbing device includes a sound absorbing cell C6 including four Helmholtz resonators 620, and based on the fault cell C6 as a basic unit.
  • the sound absorbing cells C6 are continuously arranged on a plane.
  • the square column-shaped sound absorbing cell C6 may be configured with four Helmholtz resonators 620 having the same size as the square column having a smaller height than the size of the bottom surface.
  • the sound absorbing cell C6 may include four Helmholtz resonators 620, and are arranged adjacent to each other so that there is no space therebetween to form a square sound absorbing cell C6. Can be.
  • the four Helmholtz resonators 620 constituting the sound absorbing cell (C6) may be formed in all different sizes of the holes 625. More precisely, the size of the hole 625 can be adjusted so that the phase of the sound waves reflected between two adjacent Helmholtz resonators 620 or two paired Helmholtz resonators is reversed. Thereby, a high sound absorption effect can be exhibited with respect to a some frequency.
  • the four Helmholtz resonators 620 constituting the sound absorbing cell C6 may have the same length of the path of sound waves in the internal space.
  • the four helmholtz resonators 620 constituting the sound absorbing cell C6 may have the same structure of the partition wall 629 provided in the internal space.
  • each of the four Helmholtz resonators 620 may be formed with a partition 629 so that the path of the sound waves traveling in the inner space is rounded.
  • a sound absorbing device of very thin thickness.
  • the length of the path of the sound wave can be extended while increasing the thermal viscous effect through the partition structure.
  • the z-axis of the Helmholtz resonator 620 is increased while increasing the area.
  • the thickness of the direction may be reduced, and the partition 629 may be configured to have a path of sound waves on the xy plane. Through this, it is possible to minimize the thickness of the sound absorbing device while maximizing the effect of extending the path of sound waves.
  • the first Helmholtz resonator 620-1 has a square pillar shape having a height smaller than that of the bottom surface, and the path of the sound wave is extended by the partition wall 627-1.
  • the partition wall 627-1 may be formed to partition the inner space of the first Helmholtz resonator 620-1 to the same area or to partition the inner space into a lattice shape.
  • the partition wall 627 so that the sound wave incident to the hole 625-1 proceeds in a path of turning in a direction away from the hole 625-1 with respect to the hole 625-1 with respect to the xy plane.
  • a plurality of openings 629-1 may be formed at ⁇ 1).
  • the partition wall 627-1 is in the form of a flat plate extending in the thickness direction (z-axis direction), and as shown in FIG. 27, in the x-axis and y-axis directions with respect to the xy plane. Alternately, it may be in a form of bending multiple times. That is, the opening 629-1 may be disposed in the partition wall 627-1 so as to induce a path in which sound waves turn round. Accordingly, the sound waves incident on the hole 625-1 may not travel in the z-axis direction, which is the thickness direction, but may travel in a path that is alternately bent several times in the x- and y-axis directions.
  • the partition wall 627-1 extends in the x-axis and y-axis directions to partition the internal space in a lattice form based on the xy plane, wherein the opening portion 629- 1) may be formed in a form in which the intermediate wall 627-1 extending in the x- and y-axis directions is emptied so as not to be continuously connected.
  • the path of the sound wave may rotate around the xy plane in a counterclockwise or clockwise direction.
  • the path of the sound waves traveling through the inner space of the first Helmholtz resonator 620-1 may be maximized, and thus the thickness of the first Helmholtz resonator 620-1 may be designed to be very thin.
  • the more partitioned the partition 627-1 partitions the internal space the greater the thermal viscosity effect and the longer the path of the sound waves, and thus, the higher the sound absorption rate at the same target frequency.
  • the thickness of the sound absorbing device 100 may be implemented to be thinner.
  • a partition wall having the same structure as that of the first Helmholtz resonator 620-1 may be provided.
  • a pair of Helmholtz resonators may have a structure of a partition and a position of a hole symmetrical on the x-axis.
  • the partition 627-2 of the second Helmholtz resonator 620-2 has a structure that is symmetrical to the partition 627-1 of the first Helmholtz resonator 620-1 and the x-axis, and the first and the second
  • the partitions 627-1 and 627-2 of the Helmholtz resonators 620-1 and 620-2 may have a structure symmetrical to the partition walls and the y-axis of the third and fourth Helmholtz resonators 620-3 and 620-4. .
  • the third and fourth Helmholtz resonators 620- are designed to completely absorb sound waves having a single target frequency by adjusting the magnitudes of 625-1 and 625-2, that is, r 1 and r 2 .
  • the size of the holes 625-3 and 625-4, ie, r 3 and r 4 , of 3 and 620-4 may be adjusted to completely absorb sound waves having another target frequency.
  • the values of r 1 , r 2, r 3 , and r 4 can be adjusted through an optimization algorithm such that the difference between the impedance in the sound absorbing device 100 calculated for the two target frequencies and the impedance of the outside air is minimized. Is the same as in the above-described embodiment.
  • the sound-absorbing device 100 in accordance with a sixth embodiment of the present invention may determine that exert a high sound absorption effect at a plurality of frequencies, 200 Hz, 250 Hz two kinds of sound absorption coefficient at a frequency (a MS ) Is 0.95 or more, it can be seen that the sound absorption of 95% or more.
  • the thickness of the sound absorbing device 100 can be greatly reduced, and the sound absorbing device 100 has a thickness of 1 / 73.7 times compared to the incident wavelength on the basis of 196 Hz, which is the lowest frequency having a sound absorption rate of 80% or more. Accordingly, similar to the third embodiment, it can be seen that the sound absorption device 100 having a very high sound absorption rate for the dual frequency can be implemented compared to the third embodiment.

Abstract

A sound absorption device according to an embodiment of the present invention comprises a plurality of Helmholtz resonators arranged on a plane, wherein each of the plurality of Helmholtz resonators: comprises a neck portion, which has a predetermined thickness and through which a hole extends in the thickness direction, and a chamber portion, which is connected to the neck portion and has an inner space with which sound waves communicate through the hole; and has a resonance frequency different from that of an adjacent Helmholtz resonator.

Description

흡음 장치Sound absorbing device
본 발명은 흡음 장치에 관한 것으로, 보다 상세하게는 하나 이상의 주파수를 높은 흡음률로 흡음할 수 있는 초박형의 흡음 장치에 관한 것이다.The present invention relates to a sound absorbing device, and more particularly, to an ultra-thin sound absorbing device capable of absorbing one or more frequencies at a high sound absorption rate.
주변 소음을 효율적으로 저감시키는 장치는 일상 생활 혹은 산업 현장에서 중요한 고려 사항이다. 각종 기계 설비 등에서 발생하는 소음을 저감시키기 위해 많은 산업 현장에서 이용되는 흡음 방식은 그 원리에 따라 대표적으로 다공질형, 공명형 및 판상형 흡음 방식으로 나눌 수 있다. Efficiently reducing ambient noise is an important consideration in everyday life or in industrial settings. Sound absorption methods used in many industrial sites to reduce noise generated in various mechanical facilities, etc. can be divided into porous type, resonance type and plate type sound absorbing types.
다공질형 흡음 방식은 흡음 성능이 높은 적절한 재료를 채택함으로서 특정 주파수 및 광대역 주파수에서의 흡음률을 향상시키는 방식이며, 공명형 및 판상형 흡음 방식은 흡음재의 내부구조를 변형시킴으로써 특정 주파수에서의 흡음률을 부분적으로 향상시키는 방식이다. Porous sound absorption method improves sound absorption rate at specific frequency and broadband frequency by adopting appropriate material with high sound absorption performance. Resonance type and plate type sound absorption method partially absorb sound absorption rate at specific frequency by modifying internal structure of sound absorbing material. It's a way to improve.
기존 흡음 기술들은 얇은 흡음재 두께만으로는 저주파수에서 높은 흡음률을 기대할 수 없다는 분명한 한계점을 가지고 있으며, 또한 여러 주파수의 소음이 발생할 경우 각각의 주파수에 대해 선택적으로 높은 흡음 성능을 기대할 수 없다. 따라서, 설계자가 두 개 이상의 주파수를 선택할 수 있고, 적은 공간만을 차지하는 흡음 장치를 설계할 수 있는 흡음 기술이 필요하다.Existing sound-absorbing technologies have the obvious limitation that thin sound absorber thickness alone cannot expect high sound absorption at low frequencies, and cannot selectively expect high sound-absorbing performance for each frequency when multiple frequencies of noise occur. Therefore, there is a need for a sound absorption technique that allows a designer to select two or more frequencies and to design a sound absorbing device that takes up only a small amount of space.
본 발명의 일 측면은 두께가 얇으면서 하나 이상의 주파수의 소음을 높은 흡음률로 흡수하는 흡음 장치를 제공하는 것이다.One aspect of the present invention is to provide a sound absorbing device that is thin and absorbs noise of one or more frequencies at a high sound absorption rate.
본 발명의 일 실시예에 따른 흡음 장치는, 평면 상에 배열된 복수의 헬름홀츠 공명기를 포함하며, 상기 복수의 헬름홀츠 공명기 각각은, 두께 방향으로 홀이 관통된 소정 두께의 목부; 및 상기 목부에 연결되어 상기 홀을 통해 음파가 연통되는 내부 공간이 마련된 챔버부;를 포함하고, 인접한 헬름홀츠 공명기 중 적어도 하나와 서로 다른 공명 주파수를 가진다.Sound absorbing device according to an embodiment of the present invention, a plurality of Helmholtz resonators arranged on a plane, each of the plurality of Helmholtz resonators, the neck portion of a predetermined thickness through which the hole in the thickness direction; And a chamber part connected to the neck and provided with an inner space in which sound waves are communicated through the hole, and having a different resonance frequency from at least one of the adjacent Helmholtz resonators.
상기 복수의 헬름홀츠 공명기 중 적어도 하나의 상기 내부 공간에는 상기 음파의 진행 방향을 가이드하는 격벽이 구비될 수 있다.A partition wall may be provided in the inner space of at least one of the plurality of Helmholtz resonators to guide the traveling direction of the sound waves.
상기 복수의 헬름홀츠 공명기 각각은, 상기 인접한 헬름흘츠 공명기와 상기 홀의 크기, 상기 목부의 두께, 및 상기 내부 공간의 부피 중 적어도 하나가 서로 다를 수 있다.Each of the plurality of Helmholtz resonators may have at least one of a size of the adjacent Helmholtz resonator and the hole, a thickness of the neck portion, and a volume of the inner space.
상기 복수의 헬름홀츠 공명기는 동일한 크기의 정사각기둥 형태이며, 네 개의 헬름홀츠 공명기가 격자 형태로 배열되어 하나의 흠음 셀을 형성하며, 복수 개의 상기 흡음 셀이 상기 평면 상에 격자 형태로 배열될 수 있다.The plurality of Helmholtz resonators may have a square pillar shape of the same size, and four Helmholtz resonators may be arranged in a lattice form to form one flaw cell, and the plurality of sound absorbing cells may be arranged in a lattice form on the plane.
상기 네 개의 헬름홀츠 공명기 중 서로 면이 접하는 헬름홀츠 공명기 간에는 상기 홀의 크기가 서로 다르게 형성될 수 있다.The size of the holes may be differently formed between the Helmholtz resonators in which the surfaces of the four Helmholtz resonators contact each other.
상기 네 개의 헬름홀츠 공명기는 각각 상기 홀의 크기가 서로 다르게 형성될 수 있다.The four Helmholtz resonators may be formed to have different sizes of the holes.
상기 네 개의 헬름홀츠 공명기가 상기 내부 공간의 부피와 상기 목부의 두께가 서로 동일할 수 있다.The four Helmholtz resonators may have the same volume as the volume of the inner space and the thickness of the neck.
상기 흡음 셀은 흡음 주파수가 두 개 이상일 수 있다.The sound absorption cell may have two or more sound absorption frequencies.
상기 격벽에는 상기 음파가 통과할 수 있는 개방부가 형성되고, 상기 격벽이 구비된 헬름홀츠 공명기에서, 상기 챔버부의 내면과 상기 격벽에 의해 상기 내부 공간을 진행하는 상기 음파의 경로가 규정될 수 있다.The partition wall is formed with an opening through which the sound wave can pass, and in the Helmholtz resonator provided with the partition wall, a path of the sound wave traveling through the inner space by the inner surface of the chamber part and the partition wall may be defined.
상기 격벽에 의하여 상기 음파의 진행 방향이 적어도 한 번 변경되도록 가이드 될 수 있다.The partition may be guided so that the traveling direction of the sound wave is changed at least once.
상기 복수의 헬름홀츠 공명기는 여덟 개의 헬름홀츠 공명기이고, 일부는 다른 일부와 상기 음파의 경로의 길이가 서로 다르며, 상기 여덟 개의 헬름홀츠 공명기가 서로 인접하여 정사각기둥 형태의 하나의 흡음 셀을 형성하고, 복수의 상기 흡음 셀이 상기 평면 상에 격자 형태로 배열될 수 있다.The plurality of Helmholtz resonators are eight Helmholtz resonators, some of which are different from each other in the length of the path of the sound waves, the eight Helmholtz resonators adjacent to each other to form a single sound-absorbing cell of the square column shape, The sound absorbing cells may be arranged in a lattice form on the plane.
상기 여덟 개의 헬름홀츠 공명기는 동일한 높이의 다각기둥 형태이고, 상기 홀의 크기가 서로 다르게 형성될 수 있다.The eight Helmholtz resonators may have the shape of a polygonal column having the same height, and the holes may have different sizes.
상기 여덟 개의 헬름홀츠 공명기 중 두 개씩의 헬름홀츠 공명기가 인접하게 배열되어 동일한 크기의 네 개의 정사각기둥 형태를 형성하고, 상기 네 개의 정사각기둥 형태가 인접하게 배열되어 상기 흡음 셀을 형성할 수 있다.Two Helmholtz resonators of each of the eight Helmholtz resonators may be arranged adjacently to form four square pillars of the same size, and the four square pillar shapes may be adjacent to form the sound absorbing cell.
상기 여덟 개의 헬름홀츠 공명기는 적어도 세 개의 서로 다른 상기 음파의 경로의 길이를 가질 수 있다.The eight Helmholtz resonators may have a length of at least three different paths of the sound wave.
상기 흡음 셀은 흡음 주파수가 네 개 이상일 수 있다.The sound absorption cell may have four or more sound absorption frequencies.
상기 격벽은 상기 두께 방향으로 연장되고, 상기 평면 상에서 상기 내부 공간을 동일 면적으로 구획하며, 상기 음파의 경로는 상기 개방부를 통하여 연결될 수 있다.The partition wall extends in the thickness direction, and partitions the internal space in the same area on the plane, and the path of the sound wave may be connected through the opening.
상기 평면은 입사하는 음파의 방향에 수직하고, 상기 홀은 상기 음파를 향하도록 배열될 수 있다.The plane may be perpendicular to the direction of incident sound waves, and the holes may be arranged to face the sound waves.
상기 복수의 헬름홀츠 공명기 각각의 두께는 상기 음파의 파장보다 작을 수 있다.The thickness of each of the plurality of Helmholtz resonators may be smaller than the wavelength of the sound wave.
상기 음파는 서로 인접한 헬름홀츠 공명기에서 반사되는 위상이 서로 달라 상쇄 간섭을 일으킬 수 있다.The sound waves may have different phases reflected from adjacent Helmholtz resonators and may cause destructive interference.
본 발명의 일 실시예에 따르면, 복수의 헬름홀츠 공명기를 조합하여 배열함으로써, 소음을 높은 흡음률로 흡수할 수 있다.According to an embodiment of the present invention, by arranging a plurality of Helmholtz resonators in combination, noise can be absorbed at a high sound absorption rate.
또한, 복수의 주파수의 소음이나 넓은 주파수 대역의 소음을 효과적으로 흡수할 수 있다.In addition, it is possible to effectively absorb noise of a plurality of frequencies or noise of a wide frequency band.
또한, 헬름홀츠 공명기 내에 음파의 경로를 연장시키는 격벽 구조가 형성함으로써, 두께를 매우 얇게 하면서 높은 흠음률을 발휘할 수 있다.In addition, the partition structure which extends the path of a sound wave is formed in a Helmholtz resonator, and it can exhibit a high flaw rate while making thickness very thin.
도 1은 본 발명의 실시예에 따른 흠음 장치의 사시도이다.1 is a perspective view of a scratch device according to an embodiment of the present invention.
도 2는 본 발명의 제 1 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 사시도이다.2 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the first embodiment of the present invention.
도 3은 도 2의 흡음 셀을 구성하는 헬름홀츠 공명기를 절개한 사시도이다.3 is a perspective view of the Helmholtz resonator constituting the sound absorbing cell of FIG.
도 4는 본 발명의 제 1 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 정면도이다.4 is a front view of a sound absorbing cell constituting the sound absorbing device according to the first embodiment of the present invention.
도 5는 본 발명의 제 1 실시예에 따른 흡음 장치의 흡음 성능을 나타낸 그래프이다.5 is a graph showing the sound absorption performance of the sound absorbing device according to the first embodiment of the present invention.
도 6은 본 발명의 제 2 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 정면도이다.6 is a front view of a sound absorbing cell constituting the sound absorbing device according to the second embodiment of the present invention.
도 7 및 도 8은 본 발명의 제 2 실시예에 따른 흡음 장치의 흠음 성능을 나타낸 그래프이다.7 and 8 are graphs showing the scratching performance of the sound absorbing device according to the second embodiment of the present invention.
도 9는 본 발명의 제 3 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 사시도이다.9 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the third embodiment of the present invention.
도 10은 도 9의 흡음 셀을 구성하는 헬름홀츠 공명기를 투시하여 도시한 사시도이다.10 is a perspective view illustrating a Helmholtz resonator constituting the sound absorbing cell of FIG. 9.
도 11은 본 발명의 제 3 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 정면도이다.11 is a front view of a sound absorbing cell constituting the sound absorbing device according to the third embodiment of the present invention.
도 12는 본 발명의 제 3 실시예에 따른 흡음 장치의 흡음 성능을 나타낸 그래프이다.12 is a graph showing sound absorption performance of the sound absorbing device according to the third embodiment of the present invention.
도 13은 본 발명의 제 4 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 사시도이다.It is a perspective view of the sound absorption cell which comprises the sound absorption apparatus which concerns on the 4th Embodiment of this invention.
도 14는 본 발명의 제 4 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 정면도이다.14 is a front view of a sound absorbing cell constituting the sound absorbing device according to the fourth embodiment of the present invention.
도 15 내지 도 17은 도 14의 흡음 셀을 구성하는 헬름홀츠 공명기를 투시하여 도시한 사시도이다.15 to 17 are perspective views illustrating a Helmholtz resonator constituting the sound absorbing cell of FIG. 14.
도 18은 본 발명의 제 4 실시예에 따른 흡음 장치의 흡음 성능을 나타낸 그래프이다.18 is a graph showing sound absorption performance of the sound absorbing device according to the fourth embodiment of the present invention.
도 19는 본 발명의 제 5 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 사시도이다.19 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the fifth embodiment of the present invention.
도 20 내지 도 23은 도 19의 흡음 셀을 구성하는 헬름홀츠 공명기를 투시하여 도시한 사시도이다.20 to 23 are perspective views illustrating a Helmholtz resonator constituting the sound absorbing cell of FIG. 19.
도 24는 본 발명의 제 5 실시예에 따른 흡음 장치의 흡음 성능을 나타낸 그래프이다.24 is a graph showing sound absorption performance of the sound absorbing device according to the fifth embodiment of the present invention.
도 25는 본 발명의 제 6 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 사시도이다.25 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the sixth embodiment of the present invention.
도 26은 도 25의 흡음 셀을 구성하는 헬름홀츠 공명기를 투시하여 도시한 사시도이다.FIG. 26 is a perspective view illustrating a Helmholtz resonator constituting the sound absorbing cell of FIG. 25.
도 27은 도 26의 헬름홀츠 공명기를 투시하여 도시한 정면도이다.FIG. 27 is a front view illustrating the Helmholtz resonator of FIG. 26.
도 28은 본 발명의 제 6 실시예에 따른 흡음 장치의 흡음 성능을 나타낸 그래프이다.28 is a graph showing sound absorption performance of the sound absorbing device according to the sixth embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like elements throughout the specification.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.In addition, since the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, the present invention is not necessarily limited to the illustrated.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 만 아니라, 다른 부재를 사이에 두고 "간접적으로 연결"된 것도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is "connected" to another part, it includes not only "directly connected", but also "indirectly connected" between other members. In addition, when a part is said to "include" a certain component, this means that it may further include other components, except to exclude other components unless otherwise stated.
도 1은 본 발명의 실시예에 따른 흠음 장치의 사시도이다. 1 is a perspective view of a scratch device according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 따른 흡음 장치(100)는 평면 상에 2차원적으로 배열된 복수의 흡음 셀(C)을 포함하며, 두께가 얇은 패널(panel) 또는 보드(board) 형태로 이루어진다. 흡음 장치(100)는 흡음 셀(C)을 기본 단위로 하여, 복수의 흡음 셀(C)이 도 1을 기준으로 x축 및 y축 방향으로 연속적으로 인접하게 배열된 형태로 이루어질 수 있다. 예를 들어, 도 1에 도시된 바와 같이 음파(S)가 z축 방향으로 입사하는 경우, 입사하는 음파에 수직한 xy 평면 상에 복수의 흡음 셀(C)은 격자 형태로 배열될 수 있다.Referring to FIG. 1, a sound absorbing device 100 according to an exemplary embodiment of the present invention includes a plurality of sound absorbing cells C arranged two-dimensionally on a plane, and has a thin panel or board. ) Form. In the sound absorbing device 100, the sound absorbing cell C may be a basic unit, and the plurality of sound absorbing cells C may be continuously arranged adjacent to each other in the x-axis and y-axis directions with reference to FIG. 1. For example, as shown in FIG. 1, when the sound wave S is incident in the z-axis direction, the plurality of sound absorption cells C may be arranged in a lattice form on an xy plane perpendicular to the incident sound wave.
다만, 본 발명의 흡음 장치(100)가 복수의 흡음 셀(C)로 구성되는 것에 한정되는 것은 아니며, 복수의 흡음 셀(C)이 아닌 하나의 흡음 셀(C) 만으로 흡음 장치(100)가 구성될 수도 있다. However, the sound absorbing device 100 of the present invention is not limited to being composed of a plurality of sound absorbing cells C, and the sound absorbing device 100 is formed of only one sound absorbing cell C instead of the plurality of sound absorbing cells C. It may be configured.
흡음 셀(C)은 평면 상에 배열된 복수의 헬름홀츠 공명기로 구성될 수 있다. 헬름홀츠 공명기(Helmholtz Resonator)는 공기를 특정 주파수에서 공진시켜 소리를 흡수하는 장치로서, 목(neck)을 가지는 밀폐된 모양을 가지며 목을 관통하는 작은 홀을 통해 공기가 출입할 때 마찰열손실로 흡음된다. 헬름홀츠 공명기는 홀이 관통된 소정 두께의 목부와, 목부에 연결되어 내부 공간이 마련된 챔버부를 포함할 수 있으며, 목부와 챔버부는 일체로 형성될 수 있다. 이 때, 홀은 음파를 발생시키는 음원을 향하여 배치될 수 있으며, 음파는 헬름홀츠 공명기의 목부에 형성된 홀을 통과하여 챔버부의 내부 공간으로 진행할 수 있다. 헬름홀츠 공명기는 당업자에게 널리 알려진 기술이므로 보다 상세한 설명은 생략한다.The sound absorbing cell C may be composed of a plurality of Helmholtz resonators arranged on a plane. Helmholtz Resonator is a device that absorbs sound by resonating air at a specific frequency. It has a closed shape with a neck and is absorbed by frictional heat loss when air enters and exits through a small hole through the neck. . The Helmholtz resonator may include a neck having a predetermined thickness through which a hole is passed, and a chamber part connected to the neck to provide an inner space, and the neck part and the chamber part may be integrally formed. At this time, the hole may be disposed toward the sound source for generating sound waves, the sound waves may pass through the hole formed in the neck of the Helmholtz resonator to proceed to the interior space of the chamber. Helmholtz resonators are well known to those skilled in the art, and thus will not be described in more detail.
예를 들어, 흡음 셀(C)을 구성하는 복수의 헬름홀츠 공명기는 그들 간에 이격된 공간이 존재하지 않도록 인접하게 배열될 수 있으며, 도 1에 도시된 바와 같이 흡음 셀(C)은 정사각기둥 형태로 형성될 수 있다. For example, the plurality of Helmholtz resonators constituting the sound absorbing cell (C) may be arranged adjacently so that there is no space therebetween, as shown in Figure 1, the sound absorbing cell (C) in the form of a square column Can be formed.
본 발명의 실시예에 따르면, 평면 상에 배열된 복수의 헬름홀츠 공명기 각각은, 인접한 헬름홀츠 공명기와 서로 다른 공명 주파수를 가지도록 배열될 수 있다.According to an embodiment of the present invention, each of the plurality of Helmholtz resonators arranged on the plane may be arranged to have a different resonance frequency from the adjacent Helmholtz resonators.
일반적으로 헬름홀츠 공명기의 경우, 아래의 식에 의하여 공명 주파수가 결정됨은 널리 알려져 있다.(f는 공명 주파수, v는 음파의 속도, A는 홀의 면적, V는 내부 공간의 부피, l은 홀의 길이)In general, for a Helmholtz resonator, it is widely known that the resonance frequency is determined by the following equation (f is the resonance frequency, v is the speed of sound waves, A is the area of the hole, V is the volume of the inner space, and l is the length of the hole).
Figure PCTKR2018011196-appb-I000001
Figure PCTKR2018011196-appb-I000001
즉, 헬름홀츠 공명기는 홀의 크기(직경), 홀의 길이, 및 내부 공간의 부피에 따라 공명 주파수가 달라지므로, 복수의 헬름홀츠 공명기 각각은, 적어도 일 방향으로 인접한 헬름홀츠 공명기와 홀(125)의 크기, 목부(122, 도 3 참조)의 두께(z축 방향의 길이), 및 공간(126, 도 3 참조)의 부피 중 적어도 하나가 서로 다르게 배열될 수 있다.That is, since the Helmholtz resonator has a resonant frequency that varies depending on the size (diameter) of the hole, the length of the hole, and the volume of the internal space, each of the plurality of Helmholtz resonators includes at least one size and a neck of the adjacent Helmholtz resonator and the hole 125. At least one of the thickness (length in the z-axis direction) of 122 (see FIG. 3) and the volume of the space 126 (see FIG. 3) may be arranged differently.
본 명세서에서 전방, 후방은 음파를 발생시키는 음원에 가까운 방향을 전방, 멀어지는 방향을 후방으로 정의한다. 이하 다양한 실시예의 흡음 장치(100)의 상세한 구조와 그에 따른 흡음 효과를 설명한다. 이하, 다양한 실시예의 설명에서는 흡음 장치(100)를 구성하는 흡음 셀의 구조를 중심으로 설명하며, 복수의 흡음 셀(C)이 평면 상에 2차원적으로 배열됨은 모든 실시예에서 동일하다. In the present specification, the front and the rear define a direction closer to the sound source that generates sound waves, and the rear and rearward directions. Hereinafter, a detailed structure of the sound absorbing device 100 and various sound absorbing effects thereof will be described. Hereinafter, in the description of various embodiments, the structure of the sound absorbing cell constituting the sound absorbing device 100 will be described mainly, and the plurality of sound absorbing cells C are two-dimensionally arranged on a plane in all embodiments.
도 2는 본 발명의 제 1 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 사시도이다.2 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the first embodiment of the present invention.
도 1 및 도 2를 참조하면, 본 발명의 제 1 실시예에 따르면, 흡음 셀(C1)을 구성하는 복수의 헬름홀츠 공명기(120)는 평면 상에 격자 형태로 배열될 수 있다. 예를 들어, 입사하는 음파(S)의 특정 주파수에서 반사율이 0이 될 수 있도록, 복수의 헬름홀츠 공명기(120)는 입사하는 음파(S)에 수직한 평면 상에 격자 형태로 배열될 수 있으며, 헬름홀츠 공명기(120)의 홀(125)은 입사하는 음파(S)를 향해 배열될 수 있다. 즉, 도 1에서 음파(S)가 z축 방향으로 입사하는 경우, 입사하는 음파(S)에 수직한 xy 평면 상에 복수의 헬름홀츠 공명기(120)가 x축 및 y축 방향으로 배열되고, 헬름홀츠 공명기(120)의 홀(125)은 z축 방향을 향할 수 있다.1 and 2, according to the first embodiment of the present invention, the plurality of Helmholtz resonators 120 constituting the sound absorbing cell C1 may be arranged in a lattice form on a plane. For example, the plurality of Helmholtz resonators 120 may be arranged in a lattice form on a plane perpendicular to the incident sound wave S so that the reflectance may be zero at a specific frequency of the incident sound wave S. The hole 125 of the Helmholtz resonator 120 may be arranged toward the incident sound wave S. That is, in FIG. 1, when the sound wave S is incident in the z-axis direction, the plurality of Helmholtz resonators 120 are arranged in the x-axis and y-axis directions on the xy plane perpendicular to the incident sound wave S. The hole 125 of the resonator 120 may face the z-axis direction.
본 발명의 제 1 실시예에 따르면, 평면 상에 배열된 복수의 헬름홀츠 공명기(120) 중 적어도 일 방향으로 인접한 헬름홀츠 공명기 간에는 홀(125)의 크기가 서로 다르게 배치될 수 있다. 예를 들어, 입사하는 음파(S)에 수직한 평면(xy 평면) 상의 서로 수직한 두 축(x축, y축) 방향으로 인접한 헬름홀츠 공명기 간에는 홀(125)의 크기가 서로 다르게 형성될 수 있다. According to the first embodiment of the present invention, the sizes of the holes 125 may be differently disposed between the Helmholtz resonators adjacent in at least one direction among the plurality of Helmholtz resonators 120 arranged on the plane. For example, the sizes of the holes 125 may be formed differently between Helmholtz resonators adjacent in two axes (x-axis, y-axis) perpendicular to each other on a plane (xy plane) perpendicular to the incident sound wave S. .
즉, 본 발명의 실시예에 따른 흡음 장치(100)는 인접하게 배열된 헬름홀츠 공명기(120)의 홀(125) 크기를 조절함으로써, 특정 주파수를 선택하여 흡수할 수 있고, 하나 이상의 특정 주파수를 높은 흡음률로 흠음할 수 있는데, 이하 흡음 셀(C1)의 상세한 구조를 설명한다.That is, the sound absorbing device 100 according to the embodiment of the present invention may select and absorb a specific frequency by adjusting the size of the holes 125 of the Helmholtz resonators 120 adjacent to each other, and increase one or more specific frequencies. Although the sound absorption can be defected, the detailed structure of the sound absorption cell C1 will be described below.
도 1 및 도 2를 참조하면, 본 발명의 제 1 실시예에 따른 흡음 장치(100)는 네 개의 헬름홀츠 공명기(120)로 구성되는 흡음 셀(C1) 복수 개가 격자 형태, 예를 들어, 도 1에서 x축 및 y축 방향으로 인접하게 배열되는 구조로 구성될 수 있다. 즉, 흡음 장치(100)는 네 개의 헬름홀츠 공명기(120)로 구성되는 흠음 셀(C1)을 기본 단위로 하여, 흡음 셀(C1)이 평면상에 연속적으로 배열되는 형태이다. 1 and 2, in the sound absorbing device 100 according to the first embodiment of the present invention, a plurality of sound absorbing cells C1 composed of four Helmholtz resonators 120 have a lattice shape, for example, FIG. 1. It may be configured to have a structure arranged adjacent to the x-axis and y-axis directions in the. That is, the sound absorbing device 100 is a form in which the sound absorbing cells C1 are continuously arranged on a plane, with the fault cell C1 composed of four Helmholtz resonators 120 as a basic unit.
헬름홀츠 공명기(120)는 음파(S)의 파장보다 작은 크기(아-파장 크기, subwavelength scale)를 가질 수 있다. 예를 들어, 헬름홀츠 공명기(120)의 한 변의 길이, 다시 말해 헬름홀츠 공명기(120)의 두께(H, 도 2 참조) 및 가로, 세로의 길이(D/2, 도 2 참조)는 음파(S)의 파장보다 작을 수 있다. 이에 따라, 작은 공간에서 높은 흠음 효과를 발휘할 수 있다. 특히 헬름홀츠 공명기(120)의 두께(H)를 작게 함으로써, 얇은 두께의 패널(panel) 형태의 흠음 장치(100)를 벽에 부착함으로써 메타 표면(Meta-surface)으로 기능할 수 있다. The Helmholtz resonator 120 may have a size smaller than the wavelength of the sound wave S (subwavelength scale). For example, the length of one side of the Helmholtz resonator 120, that is, the thickness of the Helmholtz resonator 120 (H, see FIG. 2) and the length and width of the horizontal and vertical (D / 2, see FIG. 2) is a sound wave (S) It may be smaller than the wavelength of. Thereby, a high scratch effect can be exhibited in a small space. In particular, by reducing the thickness H of the Helmholtz resonator 120, it is possible to function as a meta-surface by attaching a thin-shaped panel-shaped flaw device 100 to the wall.
도 3은 도 2의 흡음 셀을 구성하는 헬름홀츠 공명기를 절개한 사시도이다.3 is a perspective view of the Helmholtz resonator constituting the sound absorbing cell of FIG.
도 3을 참조하면, 헬름홀츠 공명기(120)는 홀(125)이 관통된 소정 두께의 목부(122)와, 목부(122)의 후방에 연속적으로 연결되어 홀(125)과 연통되는 공간(126)이 마련된 챔버부(124)를 포함할 수 있다. 이에 따라, 외부에서 입사되는 음파는 홀(125)을 통해 내부 공간으로 들어올 수 있다.Referring to FIG. 3, the Helmholtz resonator 120 has a neck portion 122 having a predetermined thickness through which the hole 125 penetrates, and a space 126 continuously connected to the rear of the neck portion 122 to communicate with the hole 125. It may include the chamber portion 124 is provided. Accordingly, sound waves incident from the outside may enter the internal space through the hole 125.
헬름홀츠 공명기(120)는 다각기둥 형상일 수 있으며, 헬름홀츠 공명기(120)가 배열된 평면에 나란한 방향의 단면은 다각형 형상일 수 있다. 예를 들어, 헬름홀츠 공명기(120)는 직육면체 형상일 수 있다. 이 때, 도 3에 도시된 바와 같이 목부(122)와 챔버부(124)가 일체로 이루어져 직육면체 형상을 이룰 수 있다. 이에 따라, 도 2에 도시된 바와 같이, 흡음 셀(C1)은 네 개의 헬름홀츠 공명기가 서로 간에 두 면이 접하도록 배열되어 형성될 수 있다.The Helmholtz resonator 120 may have a polygonal column shape, and a cross section of the Helmholtz resonator 120 in a direction parallel to the plane where the Helmholtz resonator 120 is arranged may have a polygonal shape. For example, the Helmholtz resonator 120 may have a rectangular parallelepiped shape. At this time, as shown in FIG. 3, the neck 122 and the chamber 124 may be integrally formed to form a rectangular parallelepiped. Accordingly, as shown in FIG. 2, the sound absorbing cell C1 may be formed by arranging four Helmholtz resonators in contact with each other.
그러나, 헬름홀츠 공명기(120)의 형태가 직육면체 형상에 한정되는 것은 아니며, 빗각 기둥 형태일 수도 있다.However, the shape of the Helmholtz resonator 120 is not limited to the shape of a rectangular parallelepiped, but may also be in the form of an oblique column.
도 2 및 도 3을 참조하여 직육면체 형상의 헬름홀츠 공명기(120)의 구조를 예시적으로 설명하면, 소정 길이(또는 두께)(l)의 홀(125)이 관통된 목부(122)와 공간(126)을 가지는 챔버부(124)는 일체로 형성될 수 있다. 홀(125)은 일정한 크기의 원형 단면을 가지고, 헬름홀츠 공명기(120)의 외부와 내부의 공간(126)을 서로 연결하도록 길게 연장되며, 소정의 직경(2r)을 가질 수 있다. 공간(126)은 홀(125)과 연통되도록 홀(125)의 후단에 연결되며, 챔버부(124)는 일정 두께를 가질 수 있으므로, 공간(126)은 챔버부(124)의 형상에 대응되도록 직육면체 형상일 수 있다. 예를 들어, 도 3을 참조하면 공간(126)은 가로(x축 방향 길이), 세로(y축 방향 길이), 깊이(z축 방향 길이)가 각각 g, a, b 인 직육면체 형상일 수 있다. 그러나, 공간(126)의 형상이 직육면체에 한정되는 것은 아니며, 소정의 부피를 가지는 다양한 형상으로 형성될 수 있다.Referring to FIGS. 2 and 3, the structure of the Helmholtz resonator 120 having a rectangular parallelepiped shape will be described. For example, the neck 122 and the space 126 through which the hole 125 of a predetermined length (or thickness) 1 is pierced are described. The chamber unit 124 having a) may be integrally formed. The hole 125 has a circular cross section of a predetermined size, extends to connect the space 126 inside and outside the Helmholtz resonator 120 with each other, and may have a predetermined diameter 2r. The space 126 is connected to the rear end of the hole 125 so as to communicate with the hole 125, and the chamber 124 may have a predetermined thickness, so that the space 126 corresponds to the shape of the chamber 124. It may have a rectangular parallelepiped shape. For example, referring to FIG. 3, the space 126 may have a rectangular parallelepiped shape of horizontal (x-axis length), vertical (y-axis length), and depth (z-axis length), respectively, g, a, and b. . However, the shape of the space 126 is not limited to the rectangular parallelepiped, and may be formed in various shapes having a predetermined volume.
한편, 도면에 도시되지 않은 헬름홀츠 공명기(120)의 다른 형태로는, 챔버부(124)가 직육면체 형상이고, 목부(122)는 직육면체의 일면에 돌출된 기둥 형태, 예를 들어 원기둥으로 이루어질 수도 있다.On the other hand, as another form of the Helmholtz resonator 120 is not shown in the figure, the chamber portion 124 is a rectangular parallelepiped shape, the neck portion 122 may be formed in a columnar shape, for example, a cylinder protruding on one surface of the rectangular parallelepiped. .
본 발명의 제 1 실시예에 따르면, 헬름홀츠 공명기(120)는 정사각기둥 형태일 수 있다. 이에 따라 흡음 장치(100)를 정면(z축 방향)으로 보았을 때 흡음 셀(C1)도 정사각형이며, 흡음 장치(100)는 정사각형의 흡음 셀(C1)이 연속적으로 배열된 격자 형태로 이루어질 수 있다. 예를 들어, 도 2를 참조하면, 헬름홀츠 공명기(120)의 단면은 한 변의 길이가 D/2인 정사각형이고, 흠음 셀(C1)의 단면은 한변의 길이가 D인 정사각형일 수 있다.According to the first embodiment of the present invention, the Helmholtz resonator 120 may have a square pillar shape. Accordingly, when the sound absorbing device 100 is viewed from the front (z-axis direction), the sound absorbing cell C1 is also square, and the sound absorbing device 100 may be formed in a lattice form in which square sound absorbing cells C1 are continuously arranged. . For example, referring to FIG. 2, the cross section of the Helmholtz resonator 120 may be a square having a length D / 2, and the cross section of the flaw cell C1 may be a square having a length D of one side.
한편, 본 발명의 제 1 실시예에 따른 흡음 장치(100)는 헬름홀츠 공명기(120)의 홀(125)의 크기를 다르게 형성하고 홀(125)의 크기가 다른 헬름홀츠 공명기(120)를 x축 또는 y축 방향으로 배열하여, 하나 이상의 특정 주파수에 대한 높은 흠음률을 발휘할 수 있는데, 이하 홀(125)의 크기가 다른 헬름홀츠 공명기(120)의 배열 및 홀(125)과 흠음 주파수와의 관계 등을 상세히 설명한다.On the other hand, the sound absorbing device 100 according to the first embodiment of the present invention forms a different size of the hole 125 of the Helmholtz resonator 120 and the Helmholtz resonator 120 having a different size of the hole 125 on the x-axis or By arranging in the y-axis direction, it is possible to exhibit a high defect rate for one or more specific frequencies. Hereinafter, the arrangement of the Helmholtz resonators 120 having different sizes of the holes 125 and the relationship between the holes 125 and the defect frequencies are described. It explains in detail.
도 4는 본 발명의 제 1 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 정면도이고, 도 5는 본 발명의 제 1 실시예에 따른 흡음 장치의 흡음 성능을 나타낸 그래프이다. 설명의 편의를 위해, 도 4에서 흡음 셀(C1)을 구성하는 헬름홀츠 공명기를 도면부호 120으로 도시하되, 네 개의 헬름홀츠 공명기를 이하 설명에서 필요에 따라 각각 제 1 내지 4 헬름홀츠 공명기라 지칭할 수 있으며, 120-1~120-4로 도면부호를 구분하였다. 홀(125)도 동일한 방식으로 도면부호를 구분하였으며, 이하 설명에서 필요에 따라 구분하여 지칭할 수 있다. 이렇게 구분하는 방식은 다른 실시예의 설명에서도 동일하게 적용한다.4 is a front view of a sound absorbing cell constituting the sound absorbing device according to the first embodiment of the present invention, Figure 5 is a graph showing the sound absorption performance of the sound absorbing device according to the first embodiment of the present invention. For convenience of description, the Helmholtz resonators constituting the sound-absorbing cell (C1) in FIG. 4 is shown with reference numeral 120, four Helmholtz resonators may be referred to as the first to fourth Helmholtz resonators, respectively, as needed in the following description; , 120-1 ~ 120-4. The holes 125 are also divided by the same reference numerals, and may be referred to as needed in the following description. This division method is equally applicable to the description of other embodiments.
도 3 및 도 4를 참조하면, 본 발명의 제 1 실시예에 따르면, 홀(125)의 크기가 서로 다른 두 종류의 헬름홀츠 공명기(120-1, 120-2)를 배열하여 하나의 흡음 셀(C1)이 구성될 수 있다. 즉, 하나의 흡음 셀(C1)을 구성하는 네 개의 헬름홀츠 공명기 중 정면에서 보았을 때 대각 방향에 배치된 헬름홀츠 공명기 간에는 홀(125-1, 125-2)의 크기가 서로 같게 형성될 수 있다. 즉, 서로 면이 접하는 헬름홀츠 공명기 간에 홀의 크기가 서로 다르게 배치될 수 있다. 이러한 구조의 흡음 셀(C1)이 배열된 흡음 장치(100)의 경우, 흡음 장치(100)을 향해 입사하는 음파(S)는 x축 또는 y축 방향으로 인접한 헬름홀츠 공명기, 즉 홀의 크기가 서로 다른 헬름홀츠 공명기에서 반사되는 위상이 특정 주파수에서 서로 반대가 될 수 있다. 보다 상세히, 홀의 크기가 서로 다른, 서로 인접한 헬름홀츠 공명기에서 반사되는 위상이 서로 달라 상쇄 간섭이 발생됨으로써, 흡음 효과가 발휘될 수 있다.3 and 4, according to the first embodiment of the present invention, two types of Helmholtz resonators 120-1 and 120-2 having different sizes of holes 125 are arranged to form one sound absorbing cell ( C1) may be configured. That is, the size of the holes 125-1 and 125-2 may be the same between the Helmholtz resonators arranged in the diagonal direction when viewed from the front among the four Helmholtz resonators constituting one sound absorbing cell C1. That is, the size of the holes may be arranged differently between the Helmholtz resonators in contact with each other. In the case of the sound absorbing device 100 in which the sound absorbing cells C1 having such a structure are arranged, the sound waves S incident toward the sound absorbing device 100 are Helmholtz resonators, that is, holes having different sizes in the x-axis or y-axis direction. The phases reflected by the Helmholtz resonators can be reversed at certain frequencies. In more detail, since the phases reflected from adjacent Helmholtz resonators with different hole sizes are different from each other, destructive interference may be generated, whereby a sound absorption effect may be exerted.
예를 들어, 도 4에 도시된 바와 같이, x축 또는 y축 방향으로 인접하고 홀의 크기가 서로 다른 제 1 헬름홀츠 공명기(120-1)와 제 2 헬름홀츠 공명기(120-2)의 홀의 직경이 각각 2r1, 2r2인 경우, 하기의 식 1을 만족하는 경우에 특정 주파수에서 완벽한 흡음 효과를 발휘할 수 있다.For example, as shown in FIG. 4, the diameters of the holes of the first Helmholtz resonator 120-1 and the second Helmholtz resonator 120-2 which are adjacent in the x-axis or y-axis direction and have different sizes of holes are respectively In the case of 2r 1 and 2r 2 , a perfect sound absorption effect can be exhibited at a specific frequency when the following Equation 1 is satisfied.
[식 1][Equation 1]
r2 = 1.096 × r1 + 0.044[mm]r 2 = 1.096 × r 1 + 0.044 [mm]
여기서, r1은 제 1 헬름홀츠 공명기(120-1)의 홀(125-1)의 반경, r2는 제 2 헬름홀츠 공명기(120-2)의 홀(125-2)의 반경이다.Here, r 1 is the radius of the hole 125-1 of the first Helmholtz resonator 120-1, r 2 is the radius of the hole 125-2 of the second Helmholtz resonator 120-2.
이 때, 완벽한 흡음이 이루어지는 흡음 주파수 fpeak 는 하기의 식 2를 만족한다.At this time, the sound absorption frequency f peak at which perfect sound absorption is satisfied satisfies Equation 2 below.
[식 2][Equation 2]
fpeak = 1789[Hz/mm] × r1 - 1433[Hz/mm] × r2 + 131.4[Hz] f peak = 1789 [Hz / mm ] × r 1 - 1433 [Hz / mm] × r 2 + 131.4 [Hz]
즉, 헬름홀츠 공명기(120)의 홀(125)의 직경 외에, 헬름홀츠 공명기(120)의 형상이 고정되어 있을 때, 각 헬름홀츠 공명기(120)의 홀(125)의 직경을 조절함으로써, 원하는 주파수에서 완벽한 흡음 효과를 발휘할 수 있다. That is, in addition to the diameter of the hole 125 of the Helmholtz resonator 120, when the shape of the Helmholtz resonator 120 is fixed, by adjusting the diameter of the hole 125 of each Helmholtz resonator 120, a perfect at a desired frequency The sound absorption effect can be exhibited.
예를 들어, 헬름홀츠 공명기(120)의 홀(125)의 직경을 제외한 형상이 a=19mm, b=25mm, g=19mm, l=14mm, D=41mm, H=40mm 로 고정되어 있고(도 2 및 도 3 참조), 다시 말해, 헬름홀츠 공명기(120)의 홀(125)의 직경을 제외한 목부(122)의 길이 및 공간(125)의 부피가 고정되어 있고, 흡음을 원하는 주파수가 700Hz일 때, 상기의 식 1 및 식 2에 대입하면 r1=2.85mm 이고, r2=3.16mm 이다. 따라서, 흡음 셀(C)이 도 4와 같이 배열된 헬름홀츠 공명기에서 r1=2.85mm, r2=3.16mm 로 조절함으로써, 700Hz에서 완벽한 흡음을 이룰 수 있다.For example, the shape excluding the diameter of the hole 125 of the Helmholtz resonator 120 is fixed to a = 19mm, b = 25mm, g = 19mm, l = 14mm, D = 41mm, H = 40mm (Fig. 2). 3, that is, when the length of the neck 122 and the volume of the space 125 are fixed except for the diameter of the hole 125 of the Helmholtz resonator 120 and the desired frequency of sound absorption is 700 Hz, substituting the above expression 1 and expression 2, and r 1 = 2.85mm, it is r 2 = 3.16mm. Therefore, by adjusting the sound absorbing cell (C) to r 1 = 2.85mm, r 2 = 3.16mm in the Helmholtz resonators arranged as shown in Figure 4, it is possible to achieve a perfect sound absorption at 700Hz.
도 5는 700Hz 주파수의 음파를 흡음하기 위하여 전술한 수치로 설계된 흠음 장치(100)를 수치 해석 모델을 통해 반사 계수(RMS) 및 흡음 계수(aMS)를 계산한 그래프인데, 실제 700Hz에서 95% 이상의 높은 흡음 효과가 발휘됨을 확인할 수 있다.FIG. 5 is a graph showing a reflection coefficient (R MS ) and a sound absorption coefficient (a MS ) of a flaw device 100 designed as described above to absorb sound waves having a frequency of 700 Hz through a numerical analysis model. It can be seen that a high sound absorption effect of more than% is exhibited.
전술한 제 1 실시예의 경우, 특정한 하나의 주파수에 대하여 완벽한 흡음 효과를 발휘할 수 있으나, 이하 설명하는 제 2 실시예의 경우에는 두 개 이상의 주파수에 대하여도 높은 흡음 효과를 발휘할 수 있다.In the case of the first embodiment described above, a perfect sound absorbing effect can be exhibited with respect to one specific frequency. However, in the case of the second embodiment described below, a high sound absorbing effect can be achieved with respect to two or more frequencies.
도 6은 본 발명의 제 2 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 정면도이고, 도 7 및 도 8은 본 발명의 제 2 실시예에 따른 흡음 장치의 흠음 성능을 나타낸 그래프이다.6 is a front view of a sound absorbing cell constituting the sound absorbing device according to the second embodiment of the present invention, and FIGS. 7 and 8 are graphs showing the flaw performance of the sound absorbing device according to the second embodiment of the present invention.
도 3 및 도 6을 참조하면, 본 발명의 제 2 실시예에 따르면, 홀(225)의 크기가 서로 다른 네 종류의 헬름홀츠 공명기(220-1, 220-2, 220-3, 220-4)를 배열하여 하나의 흡음 셀(C2)이 구성될 수 있다. 즉, 하나의 흡음 셀(C2)을 구성하는 네 개의 헬름홀츠 공명기(220-1, 220-2, 220-3, 220-4)는 각각 홀(225-1, 225-2, 225-3, 225-4)의 크기가 서로 다르게 형성될 수 있다. 이러한 구조의 흡음 셀(C2)이 배열된 흡음 장치(100)의 경우도, 흡음 장치(100)을 향해 입사하는 음파(S)는 x축 방향으로 인접한 헬름홀츠 공명기 간에 각각 반사되는 위상이 특정 주파수에서 서로 반대가 되거나, 상쇄 간섭이 발생될 수 있다. 3 and 6, according to the second embodiment of the present invention, four types of Helmholtz resonators 220-1, 220-2, 220-3, and 220-4 with different sizes of the holes 225 are provided. By arranging one sound absorbing cell (C2) can be configured. That is, the four Helmholtz resonators 220-1, 220-2, 220-3, and 220-4, which constitute one sound absorbing cell C2, are holes 225-1, 225-2, 225-3, and 225, respectively. -4) may be formed differently in size. Also in the case of the sound absorbing device 100 in which the sound absorbing cells C2 of this structure are arranged, the sound waves S incident toward the sound absorbing device 100 are respectively reflected in a phase at which the phases reflected between adjacent Helmholtz resonators in the x-axis direction. They may be opposite to each other or destructive interference may occur.
다시 말해, 본 발명의 제 2 실시예의 경우, 흡음 셀(C2)의 상부에 배열된 두 종류의 헬름홀츠 공명기(220-1, 220-2)의 홀의 직경을 조절하여 하나의 목적 주파수를 가지는 음파를 완벽히 흡음할 수 있고, 흡음 셀(C2)의 하부에 배열된 다른 두 종류의 헬름홀츠 공명기(220-3, 220-4)의 홀의 직경을 조절하여 다른 목적 주파수를 가지는 음파를 완벽히 흡음할 수 있다. 즉, 흡음 셀(C2)을 구성하는 네 개의 헬름홀츠 공명기(220-1, 220-2, 220-3, 220-4)의 홀의 크기를 각각 조절함으로써, 두 개의 서로 다른 주파수를 모두 완벽히 흡음할 수 있다.In other words, in the second embodiment of the present invention, sound waves having one target frequency are adjusted by adjusting the diameters of the holes of the two types of Helmholtz resonators 220-1 and 220-2 arranged on the upper portion of the sound absorbing cell C2. It can completely absorb the sound, and by adjusting the diameter of the holes of the two other types of Helmholtz resonators 220-3, 220-4 arranged in the lower portion of the sound absorbing cell (C2) it can completely absorb sound waves having different target frequencies. That is, by adjusting the sizes of the holes of the four Helmholtz resonators 220-1, 220-2, 220-3, and 220-4, which constitute the sound absorbing cell C2, two different frequencies can be completely absorbed. have.
예를 들어, 도 6에 도시된 바와 같이, 흡음 셀(C2)의 상부에 위치하고 x축 방향으로 인접한 헬름홀츠 공명기를 각각 제 1 헬름홀츠 공명기(220-1), 제 2 헬름홀츠 공명기(220-2)라고 할 때, 제 1 헬름홀츠 공명기(220-1)와 제 2 헬름홀츠 공명기(220-2)의 홀의 직경이 각각 2r1, 2r2인 경우, 전술한 식 1 및 식 2를 만족하는 하나의 목적 주파수에 대해 홀의 직경, 즉 r1, r2 를 구할 수 있다.For example, as shown in FIG. 6, the Helmholtz resonators located above the sound absorbing cell C2 and adjacent in the x-axis direction are referred to as a first Helmholtz resonator 220-1 and a second Helmholtz resonator 220-2, respectively. When the diameters of the holes of the first Helmholtz resonator 220-1 and the second Helmholtz resonator 220-2 are 2r 1 and 2r 2 , respectively, the target frequencies satisfying the above-described equations 1 and 2 can be obtained. The diameter of the hole, ie r 1 , r 2 can be obtained.
또한, 도 6에 도시된 바와 같이, 흡음 셀(C2)의 하부에 위치하고 x축 방향으로 인접한 헬름홀츠 공명기를 각각 제 3 헬름홀츠 공명기(220-3), 제 4 헬름홀츠 공명기(220-4)라고 할 때, 제 3 헬름홀츠 공명기(220-3)와 제 4 헬름홀츠 공명기(220-4)의 홀의 직경이 각각 2r3, 2r4인 경우, 전술한 식 1 및 식 2를 만족하는 다른 하나의 목적 주파수에 대해 홀의 직경, 즉 r3, r4 를 구할 수 있다.In addition, as shown in FIG. 6, when the Helmholtz resonators 220-3 and 4th Helmholtz resonators 220-4 that are positioned below the sound absorbing cell C2 and adjacent in the x-axis direction are respectively When the diameters of the holes of the third Helmholtz resonator 220-3 and the fourth Helmholtz resonator 220-4 are 2r 3 and 2r 4 , respectively, for another target frequency that satisfies Equations 1 and 2 described above, The diameter of the hole, i.e. r 3 , r 4 can be obtained.
이어서, r1, r2, r3, r4 의 값을 최적화 할 수 있다. 보다 상세히, 두 개의 목적 주파수에 대해 계산한 흡음 셀의 흡음 계수가 최대가 되도록 최적화 알고리즘을 통해 각 헬름홀츠 공명기의 홀의 직경을 조절하여 두 개의 목적 주파수를 완벽 흡음할 수 있다. 이 때, 홀의 직경의 초기치는 전술한 식 1 및 식 2를 통해 구한 네 개의 헬름홀츠 공명기의 홀의 직경으로 설정할 수 있다. 또한, 최적화 알고리즘에 이용한 목적함수를 흡음 셀의 흡음 계수가 최대가 되도록 설정하거나, 바깥 매질의 음향 임피던스와 흡음 셀의 유효 음향 임피던스 간의 차이가 최소가 되도록 설정할 수 있다. 여기서 최적화 알고리즘에 순차 2차 계획법 (SQP) 방식이 사용될 수 있으나 이에 한정되지 않으며, 널리 알려진 다양한 방식이 사용될 수 있다.Subsequently, the values of r 1 , r 2 , r 3 and r 4 can be optimized. More specifically, the diameter of the hole of each Helmholtz resonator can be completely absorbed by the optimization algorithm so that the sound absorption coefficient of the sound absorption cell calculated for the two target frequencies is maximized. At this time, the initial value of the diameter of the hole can be set to the diameter of the hole of the four Helmholtz resonators obtained through the above equations (1) and (2). In addition, the objective function used in the optimization algorithm may be set to maximize the sound absorption coefficient of the sound absorption cell, or may be set to minimize the difference between the acoustic impedance of the outer medium and the effective acoustic impedance of the sound absorption cell. The sequential quadratic programming (SQP) method may be used for the optimization algorithm, but the present invention is not limited thereto, and various well-known methods may be used.
예를 들어, 헬름홀츠 공명기(220)의 홀(225)의 직경을 제외한 형상이 a=19mm, b=25mm, g=19mm, l=14mm, D=41mm, H=40mm 로 고정되어 있고(도 2 및 도 3 참조), 다시 말해, 헬름홀츠 공명기(220)의 홀(225)의 직경을 제외한 목부의 두께 및 내부 공간의 부피가 고정되어 있고, 흡음을 원하는 두 개의 목적 주파수가 400Hz와 600Hz 일 때, 전술한 최적화 방법을 통해 흡음 셀(C2)을 구성하는 네 개의 헬름홀츠 공명기(220-1, 220-2, 220-3, 220-4) 각각의 홀의 직경을 구하면 r1=1.63mm, r2=1.66mm, r3=2.45mm, r2=2.61mm 이다. For example, the shape except for the diameter of the hole 225 of the Helmholtz resonator 220 is fixed to a = 19 mm, b = 25 mm, g = 19 mm, l = 14 mm, D = 41 mm, H = 40 mm (Fig. 2). And, in other words, when the thickness of the neck except for the diameter of the hole 225 of the Helmholtz resonator 220 and the volume of the internal space are fixed, and the two desired frequencies for sound absorption are 400 Hz and 600 Hz, Through the above-described optimization method, the diameters of the respective holes of the four Helmholtz resonators 220-1, 220-2, 220-3, and 220-4 constituting the sound absorbing cell C2 are calculated as r 1 = 1.63 mm and r 2 = 1.66 mm, r 3 = 2.45 mm, r 2 = 2.61 mm.
도 7는 400Hz와 600Hz 두 주파수의 음파를 흡음하기 위해 전술한 수치로 설계된 흠음 장치(100)를 수치 해석 모델을 통해 반사 계수(RMS) 및 흡음 계수(aMS)를 계산한 그래프인데, 실제 목적하는 두 주파수 400Hz와 600Hz 각각에서 95% 이상의 높은 흡음 효과가 발휘됨을 확인할 수 있다.FIG. 7 is a graph of calculating the reflection coefficient (R MS ) and the absorption coefficient (a MS ) through a numerical analysis model of a flaw device 100 designed to absorb sound waves of two frequencies, 400 Hz and 600 Hz. It can be seen that the high sound absorption effect of more than 95% is exhibited at each of the two desired frequencies 400Hz and 600Hz.
또 다른 예로, 흡음 주파수에 따라 두 개 이상의 주파수 또는 넓은 주파수 대역에서 효율적으로 흡음할 수 있다. 예를 들어, 흡음을 원하는 두 개의 목적 주파수가 400Hz와 500Hz 일 때, 상기의 최적화 방법을 통해 각 헬름홀츠 공명기의 홀의 직경을 구하면 r1=1.62mm, r2=1.64mm, r3=1.86mm, r2=2.11mm 이다.As another example, the sound absorption may be efficiently performed at two or more frequencies or a wide frequency band according to the sound absorption frequency. For example, when the two desired frequencies for sound absorption are 400Hz and 500Hz, the diameter of the hole of each Helmholtz resonator is obtained by the above optimization method, and r 1 = 1.62mm, r 2 = 1.64mm, r 3 = 1.86mm, r 2 = 2.11 mm.
도 8은 400Hz와 500Hz 두 주파수의 음파를 흡음하기 위해 전술한 수치로 설계된 흠음 장치(100)를 수치 해석 모델을 통해 반사 계수(RMS) 및 흡음 계수(aMS)를 계산한 그래프인데, 실제 400Hz와 500Hz 각각에서 95% 이상의 높은 흡음 효과가 발휘됨을 확인할 수 있다. FIG. 8 is a graph of calculating the reflection coefficient (R MS ) and the absorption coefficient (a MS ) through a numerical analysis model of a flaw device 100 designed to absorb sound waves of two frequencies, 400 Hz and 500 Hz. It can be seen that a high sound absorption effect of more than 95% is exhibited at 400Hz and 500Hz respectively.
더불어, 452Hz에서도 95% 이상의 높은 흡음 효과가 발휘됨을 확인할 수 있다. 이는 400Hz의 흡음 주파수를 가지도록 설계된 두 헬름홀츠 공명기와 500Hz의 흡음 주파수를 가지도록 설계된 두 헬름홀츠 공명기 간에 상호 작용을 일으켜서, 두 흡음 주파수 사이의 새로운 흡음 주파수(452Hz)가 발생되는 것이다.In addition, it can be seen that the high sound absorption effect of more than 95% at 452Hz. This creates an interaction between two Helmholtz resonators designed to have a sound absorption frequency of 400 Hz and two Helmholtz resonators designed to have a sound absorption frequency of 500 Hz, resulting in a new sound absorption frequency (452 Hz) between the two sound absorption frequencies.
따라서, 흡읍 셀(C2)을 구성하는 네 개의 헬름홀츠 공명기(220-1, 220-2, 220-3, 220-4)의 홀의 크기를 모두 다르게 조절함으로써, 두 개 이상의 주파수 또는 넓은 주파수 대역에서 효율적으로 흡음할 수 있도록 본 발명의 흡음 장치(100)를 설계할 수 있다.Therefore, the size of the holes of the four Helmholtz resonators 220-1, 220-2, 220-3, and 220-4 constituting the intake cell C2 can be adjusted differently so as to be effective in two or more frequencies or a wide frequency band. The sound absorbing device 100 of the present invention can be designed to absorb sound.
한편, 전술한 실시예들은, 서로 인접한 복수의 헬름홀츠 공명기 간에, 목부의 두께 및 내부 공간의 부피가 일정할 때, 홀의 크기를 다르게 조절함으로써, 하나 이상의 주파수를 가지는 소음을 높은 흡음율로 흡수할 수 있는 흡음 장치를 상세히 설명하였다. 그러나, 본 발명은 이에 한정되는 것은 아니며, 헬름홀츠 공명기의 공명 주파수에 영향을 주는 인자인, 홀의 크기, 목부의 두께 및 내부 공간의 부피 중 적어도 어느 하나를 조절함으로써, 동일한 효과를 발휘하는 흡음 장치를 구현할 수 있다. On the other hand, in the above embodiments, when the thickness of the neck and the volume of the internal space is constant between a plurality of Helmholtz resonators adjacent to each other, by controlling the size of the hole differently, it is possible to absorb noise having one or more frequencies at a high sound absorption rate The sound absorbing device has been described in detail. However, the present invention is not limited thereto, and a sound absorbing device having the same effect by adjusting at least one of the size of the hole, the thickness of the neck, and the volume of the inner space, which are factors influencing the resonance frequency of the Helmholtz resonator, is provided. Can be implemented.
예를 들어, 서로 인접한 복수의 헬름홀츠 공명기 간에 홀의 크기 및 목부의 두께를 일정하게 하고 내부 공간의 부피를 서로 다르게 조절함으로써, 또는, 홀의 크기 및 내부 공간의 부피를 일정하게 하고 목부의 두께를 서로 다르게 조절함으로써, 동일한 효과를 발휘하는 흡음 장치(100)를 구성할 수 있다. For example, by varying the size of the hole and the thickness of the neck and adjusting the volume of the inner space differently between a plurality of Helmholtz resonators adjacent to each other, or by making the size of the hole and the volume of the inner space constant and the thickness of the neck different By adjusting, the sound absorption apparatus 100 which exhibits the same effect can be comprised.
뿐만 아니라, 본 발명에 따른 흡음 장치를 구현하기 위하여, 서로 인접한 복수의 헬름홀츠 공명기 간에 홀의 크기, 목부의 두께 및 내부 공간의 부피 중 두 개의 인자를 일정하게 한 후, 나머지 하나의 인자를 다르게 조절할 수도 있고, 홀의 크기, 목부의 두께 및 내부 공간의 부피 중 세 개의 인자를 모두 다르게 조절할 수도 있다. 전술한 내용은 이하에서 설명하는 다른 실시예에서도 동일하게 적용될 수 있다.In addition, in order to implement a sound absorbing device according to the present invention, after the two factors of the size of the hole, the thickness of the neck and the volume of the internal space between the plurality of Helmholtz resonators adjacent to each other, it is also possible to adjust the other one differently All three factors may be adjusted differently, the size of the hole, the thickness of the neck and the volume of the internal space. The foregoing is equally applicable to other embodiments described below.
본 발명의 다른 실시예에 따른 흡음 장치(100)는, 흡음 셀(C)을 구성하는 복수의 헬름홀츠 공명기 중 적어도 하나의 내부 공간에는 내부 공간으로 들어온 음파의 진행 방향을 가이드하는 격벽이 구비될 수 있다. 이에 따라 음파의 진행 경로를 연장시킬 수 있게 되어 흡음 장치의 두께를 얇게 구현할 수 있는 바, 이하 격벽이 구비된 다른 실시예를 설명한다. 이하의 내용 중 전술한 제 1, 2 실시예와 공통되는 특징에 대해서는 설명을 생략하고 차이점을 위주로 설명한다.In the sound absorbing device 100 according to another embodiment of the present invention, at least one inner space of the plurality of Helmholtz resonators constituting the sound absorbing cell C may be provided with a partition wall for guiding a traveling direction of sound waves entering the inner space. have. Accordingly, it is possible to extend the path of the sound waves, so that the thickness of the sound absorbing device can be implemented to be thin. Hereinafter, another embodiment in which the partition is provided will be described. In the following description, features that are common to the first and second embodiments described above will be omitted and description will be given focusing on differences.
도 9는 본 발명의 제 3 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 사시도이고, 도 10은 도 9의 흡음 셀을 구성하는 헬름홀츠 공명기를 투시하여 도시한 사시도이며, 도 11는 본 발명의 제 3 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 정면도이다. 이해의 편의를 위해, 도 10에서 헬름홀츠 공명기의 내부 공간을 진행하는 음파의 경로를 굵은 실선 화살표로 도시하였고, 격벽은 어둡게 도시하였다. 이러한 도시 방법은 다른 실시예의 도면에서도 동일하게 적용하였다.9 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the third embodiment of the present invention, FIG. 10 is a perspective view showing a Helmholtz resonator constituting the sound absorbing cell of FIG. 9, and FIG. It is a front view of the sound absorption cell which comprises the sound absorption apparatus which concerns on 3rd Example. For convenience of understanding, in FIG. 10, the path of sound waves traveling through the inner space of the Helmholtz resonator is shown by a thick solid arrow, and the partition wall is darkly shown. This illustrated method was similarly applied to the drawings of the other embodiments.
도 1 및 도 9를 참조하면, 본 발명의 제 3 실시예에 따른 흡음 장치(100)는 네 개의 헬름홀츠 공명기(320)로 구성되는 흡음 셀(C3)을 기본 단위로 하여, 흡음 셀(C3)이 xy 평면 상에 연속적으로 배열되는 형태이다. 예를 들어, 정사각기둥 형태의 흡음 셀(C3)이 정사각기둥 형태의 네 개의 헬름홀츠 공명기(320)로 구성될 수 있다. 1 and 9, the sound absorbing device 100 according to the third embodiment of the present invention has a sound absorbing cell C3 based on a sound absorbing cell C3 including four Helmholtz resonators 320. It is a form arrange | positioned continuously on this xy plane. For example, the square column-shaped sound absorbing cell C3 may be configured with four Helmholtz resonators 320 having a square pillar shape.
도 9 내지 도 11를 참조하여, 흡음 셀(C3)을 구성하는 정사각기둥 형태의 헬름홀츠 공명기(320)의 구조를 예시적으로 설명하면, 내부 공간은 정사각기둥 형태일 수 있으며, 가로(x축 방향 길이), 세로(y축 방향 길이), 두께(z축 방향 길이)가 각각 2a, 2a, b 일 수 있다. 그러나, 내부 공간의 형상이 정사각기둥에 한정되는 것은 아니며, 소정의 부피를 가지는 다양한 형상으로 형성될 수 있다.9 to 11, when the structure of the Helmholtz resonator 320 having a square pillar shape constituting the sound absorbing cell C3 is exemplarily described, the inner space may have a square pillar shape and may be horizontal (x-axis direction). Length), length (y-axis length), and thickness (z-axis length) may be 2a, 2a, and b, respectively. However, the shape of the inner space is not limited to the square pillar, and may be formed in various shapes having a predetermined volume.
도 10을 참조하면, 흡음 셀(C3)을 구성하는 헬름홀츠 공명기(320)는 홀(325)이 관통된 소정 두께의 목부(122)와, 목부(122)의 후방에 연속적으로 연결되어 홀(325)을 통해 음원이 존재하는 외부와 연통되는 내부 공간이 마련된 챔버부(324)를 포함한다. 이에 따라, 외부에서 입사되는 음파는 홀(325)을 통해 내부 공간으로 들어올 수 있다.Referring to FIG. 10, the Helmholtz resonator 320 constituting the sound absorbing cell C3 is continuously connected to the neck 122 having a predetermined thickness through which the hole 325 penetrates and the rear of the neck 122. It includes a chamber portion 324 is provided with an internal space in communication with the outside through the sound source. Accordingly, sound waves incident from the outside may enter the internal space through the hole 325.
전술하였듯이, 복수의 헬름홀츠 공명기(320) 중 적어도 하나는 내부 공간에 격벽을 구비할 수 있다. 도 10을 참조하면, 제 3 실시예에 따른 흡음 장치는 흡음 셀(C3)을 구성하는 네 개의 헬름홀츠 공명기(320) 각각의 내부 공간에 격벽(327)이 마련될 수 있다.As described above, at least one of the plurality of Helmholtz resonators 320 may include a partition wall in an inner space. Referring to FIG. 10, in the sound absorbing device according to the third embodiment, a partition wall 327 may be provided in an inner space of each of the four Helmholtz resonators 320 constituting the sound absorbing cell C3.
격벽(327)은 헬름홀츠 공명기(320)의 내부 공간을 구획하여, 내부 공간에서 진행하는 음파의 경로를 연장시키는 효과를 발휘할 수 있다. 본 발명의 실시예에 따르면, 격벽(327)에 의하여 음파의 진행 방향이 적어도 한 번 변경되도록 가이드 될 수 있다. The partition wall 327 partitions the inner space of the Helmholtz resonator 320 and may exert an effect of extending the path of sound waves traveling in the inner space. According to the exemplary embodiment of the present invention, the traveling direction of the sound wave may be guided at least once by the partition wall 327.
도 10을 참조하면, 격벽(327)은 헬름홀츠 공명기(320)의 내부 공간을 동일 부피로 구획하되, xy 평면을 기준으로 내부 공간을 동일 면적으로 구획할 수 있으며, 음파가 통과할 수 있는 개방부(329)가 형성될 수 있다.Referring to FIG. 10, the partition wall 327 partitions the inner space of the Helmholtz resonator 320 in the same volume, and may partition the inner space in the same area based on the xy plane, and an opening through which sound waves can pass. 329 may be formed.
예를 들어, 헬름홀츠 공명기(320)가 정사각기둥 형태인 경우, 내부 공간도 정사각기둥 형태일 수 있는데, 이 때, 격벽(327)은 두 평면이 교차한 십자 모양으로 형성되어 내부 공간을 동일한 부피의 네 개의 정사각기둥 형태의 공간으로 분할할 수 있다. 이 때, 격벽(327)의 단부 측에는 개방부(329)가 형성될 수 있으며, 이에 따라 격벽(327)과 개방부(329)에 의해 음파의 진행 경로가 수 회 절곡되어 변경되도록 가이드 될 수 있다. 결과적으로 도 10에 도시된 바와 같이, 음파가 격벽(327)에 의해 분할된 네 개의 공간을 개방부(329)를 통해 순차적으로 통과하게 됨으로써, 격벽(327)이 없는 경우에 비하여 음파의 경로가 연장될 수 있다. For example, when the Helmholtz resonator 320 has a square pillar shape, the inner space may also have a square pillar shape. In this case, the partition wall 327 is formed in a cross shape in which two planes intersect to form an inner space of the same volume. It can be divided into four square columnar spaces. In this case, an opening portion 329 may be formed at an end side of the partition wall 327. Accordingly, the path of the sound wave may be bent and changed several times by the partition wall 327 and the opening part 329. . As a result, as shown in FIG. 10, the sound waves pass through the four spaces divided by the partition wall 327 sequentially through the opening portion 329, so that the path of the sound waves is lower than that without the partition wall 327. Can be extended.
즉, 격벽(327)이 구비된 헬름홀츠 공명기(320)에서, 챔버부(324)의 내면과 격벽(327)에 의해 내부 공간을 진행하는 음파의 경로가 규정되는데, 격벽(327)의 구조와 개방부(329)의 위치를 적절하게 설계함으로써, 음파의 경로를 연장시킬 수 있다. That is, in the Helmholtz resonator 320 provided with the partition wall 327, the path of the sound waves traveling through the inner space by the inner surface of the chamber part 324 and the partition wall 327 is defined, and the structure and the opening of the partition wall 327 are defined. By properly designing the position of the section 329, the path of the sound wave can be extended.
이 때, 격벽(327)에 의해 열점성 효과가 커지게 되어 낮은 흡음 주파수를 높은 흠음율로 흡음할 수 있다. At this time, the thermal viscous effect is increased by the partition wall 327, so that the low sound absorption frequency can be absorbed at a high flaw rate.
Figure PCTKR2018011196-appb-I000002
Figure PCTKR2018011196-appb-I000002
전술한 위의 식에서, 격벽(327)에 의하여 헬름홀츠 공명기(320)의 내부 공간이 구획될 경우, 내부 공간에서 공기의 운동에 대한 열점성 boundary layer의 두께가 내부 공간의 크기에 비해 무시할 수 없는 크기를 가지기 때문에 헬름홀츠 공명기(320) 내부 공간에서의 음향 전파에 미치는 열점성 소산 효과가 지배적이게 된다. 이에 따라 내부 공간을 진행하는 유효한 음속(상기 식에서 v)이 작아지게 되어 공명 주파수가 작아지게 된다. 이에 따라 동일 부피를 가지면서 구획되지 않은 헬름홀츠 공명기 보다 낮은 흡음 주파수를 가지면서 높은 흡음 효과를 얻을 수 있다. 즉, 격벽(327)에 의하여 유효한 음속을 작아지게 하면서, 음파의 진행 경로를 길게 함으로써, 낮은 흡음 주파수를 가지면서 높은 흡음 효과를 얻을 수 있다.In the above equation, when the inner space of the Helmholtz resonator 320 is partitioned by the partition wall 327, the thickness of the thermal viscous boundary layer for the movement of air in the inner space is not negligible compared to the size of the inner space. Since the thermal viscosity dissipation effect on the sound propagation in the space inside the Helmholtz resonator 320 is dominant. As a result, the effective sound velocity (v in the above formula) traveling through the inner space is reduced, resulting in a smaller resonance frequency. Accordingly, it is possible to obtain a high sound absorption effect while having a lower sound absorption frequency than an unpartitioned Helmholtz resonator with the same volume. That is, by making the effective sound velocity small by the partition 327 and lengthening the path | route of a sound wave, the high sound absorption effect can be acquired, having a low sound absorption frequency.
본 발명의 제 3 실시예에 따르면, 흡음 셀(C3)을 구성하는 네 개의 헬름홀츠 공명기(320)는 모두 동일한 구조의 격벽이 마련되어, 음파의 경로의 길이가 모두 같을 수 있다. 도 10에서는 제 1 헬름홀츠 공명기(320-1, 도 11 참조)를 도시한 것이나, 제 2 내지 4 헬름홀츠 공명기(320-2 ~ 320-4)도 동일한 구조의 격벽을 가질 수 있다. 즉, 제 3 실시예에 따르면, 격벽(327)을 통해 음파의 경로를 연장시킬 수 있게 되어, 격벽(327)이 없는 헬름홀츠 공명기로 구성된 흡음 셀(C3)과 비교할 때, 동일한 흡음 효과를 발휘하면서도 흡음 셀(C3)의 두께를 더 얇게 구현할 수 있다.According to the third embodiment of the present invention, the four Helmholtz resonators 320 constituting the sound absorbing cell (C3) are all provided with a partition of the same structure, the length of the path of the sound waves may be all the same. In FIG. 10, the first Helmholtz resonators 320-1 (see FIG. 11) are illustrated, but the second to fourth Helmholtz resonators 320-2 to 320-4 may also have a partition having the same structure. That is, according to the third embodiment, it is possible to extend the path of the sound waves through the partition wall 327, while exhibiting the same sound absorption effect as compared with the sound absorption cell C3 composed of a Helmholtz resonator without the partition wall 327 The thickness of the sound absorbing cell C3 can be made thinner.
예를 들어, 제 2 헬름홀츠 공명기(320-2)의 격벽(327-2)은 제 1 헬름홀츠 공명기(320-1)의 격벽(327-1)과 xz 평면에 대칭되는 구조이며, 또한, 제 1, 2 헬름홀츠 공명기(320-1, 320-2)의 격벽(327-1, 327-2)은 제 3, 4 헬름홀츠 공명기(320-3, 320-4)의 격벽과 yz 평면에 대칭되는 구조일 수 있다. 또한, 홀(325)의 위치도 동일한 대칭 구조로 배치될 수 있다.For example, the partition wall 327-2 of the second Helmholtz resonator 320-2 has a structure symmetrical to the partition wall 327-1 of the first Helmholtz resonator 320-1 and the xz plane, and also has a first structure. , The partitions 327-1 and 327-2 of the two Helmholtz resonators 320-1 and 320-2 are structures symmetrical to the partition walls of the third and fourth Helmholtz resonators 320-3 and 320-4 and the yz plane. Can be. In addition, the position of the hole 325 may be arranged in the same symmetrical structure.
일반적으로 목표하는 흡음 주파수가 작을수록, 다시 말해 음파의 파장이 길어질수록 높은 흡음률을 갖기 위해서는 헬름홀츠 공명기(320)의 두께가 두꺼워져야 하는데, 본 발명의 실시예와 같이 격벽(327)을 구비함으로써 얇은 두께를 가지면서도 광대역 주파수에서 높은 흡음 효과를 발휘할 수 있다.In general, the smaller the target sound absorption frequency, that is, the longer the wavelength of the sound wave, the thicker the Helmholtz resonator 320 should be in order to have a high sound absorption rate. It has a thickness and high sound absorption at broadband frequencies.
한편, 인접한 헬름홀츠 공명기 간에 홀(325)의 크기, 목부(322)의 두께, 및 내부 공간의 부피 중 적어도 하나를 서로 다르게 배열함으로써, 반사되는 음파의 위상이 반대가 되도록 조절할 수 있다.On the other hand, by arranging at least one of the size of the hole 325, the thickness of the neck portion 322, and the volume of the inner space between the adjacent Helmholtz resonators differently, it is possible to adjust so that the phase of the reflected sound wave is reversed.
예를 들어, 도 11를 참조하면, 흡음 셀(C3)을 구성하는 네 개의 헬름홀츠 공명기(320-1, 320-2, 320-3, 320-4)는 각각 홀(325-1, 325-2, 325-3, 325-4)의 크기가 서로 다를 수 있고, 내부 공간의 부피와 목부의 두께는 서로 동일할 수 있다. 즉, 흡음 셀(C3)을 구성하는 네 개의 헬름홀츠 공명기(320-1, 320-2, 320-3, 320-4)의 홀의 크기를 조절함으로써, 복수의 특정 주파수를 높은 흡음률로 흡음할 수 있다.For example, referring to FIG. 11, the four Helmholtz resonators 320-1, 320-2, 320-3, and 320-4 that make up the sound absorbing cell C3 are holes 325-1 and 325-2, respectively. , 325-3 and 325-4) may have different sizes, and the volume of the inner space and the thickness of the neck may be the same. That is, by adjusting the sizes of the holes of the four Helmholtz resonators 320-1, 320-2, 320-3, and 320-4 constituting the sound absorbing cell C3, a plurality of specific frequencies can be absorbed at a high sound absorption rate. .
보다 구체적으로, 본 발명의 제 3 실시예에 따른 흡음 장치(100)를 설계하는 경우에 이중 주파수의 흡음을 목적으로 한다면, 도 11에서 서로 인접한 제 1, 2 헬름홀츠 공명기(320-1, 320-2)의 홀(325-1, 325-2)의 크기, 즉 r1, r2의 값을 조절하여 하나의 목적 주파수를 가지는 음파를 완벽히 흡음할 수 있도록 설계하고, 서로 인접한 제 3, 4 헬름홀츠 공명기(320-3, 320-4)의 홀(325-3, 325-4)의 크기, 즉 r3, r4를 조절하여 다른 하나의 목적 주파수를 가지는 음파를 완벽히 흡음할 수 있도록 설계할 수 있다. 이를 위해, 두 개의 목적 주파수에 대하여 계산한 흡음 장치(100)에서의 임피던스와 외부 공기의 임피던스 간의 차이가 최소가 되도록 최적화 알고리즘을 통하여 r1, r2, r3, r4 값을 조절할 수 있다. 이는 앞선 실시예에서 설명한 바와 같다.More specifically, in the case of designing the sound absorbing device 100 according to the third embodiment of the present invention, for the purpose of sound absorption at the dual frequency, the first and second Helmholtz resonators 320-1 and 320-adjacent to each other in FIG. 11. The size of the holes 325-1 and 325-2 of 2), that is, the values of r 1 and r 2 are adjusted to completely absorb sound waves having one target frequency, and the third and fourth Helmholtz adjacent to each other. The size of the holes 325-3 and 325-4 of the resonators 320-3 and 320-4, that is, r 3 and r 4 may be adjusted to completely absorb sound waves having another target frequency. have. To this end, the values of r 1 , r 2, r 3 , and r 4 can be adjusted through an optimization algorithm such that the difference between the impedance in the sound absorbing device 100 calculated for the two target frequencies and the impedance of the outside air is minimized. . This is as described in the foregoing embodiment.
도 12는 본 발명의 제 3 실시예에 따른 흡음 장치의 흡음 성능을 나타낸 그래프이다. 도 12는 앞서 설명한 방식을 이용하여 흡음 장치(100)를 설계한 후, 이에 대한 흡음 성능을 나타낸 것이다. 보다 상세히, 도 9 내지 도 11에서, a=16 mm, b=44 mm, l=5 mm, D=71 mm, H=50 mm 로 고정하고, 목적 주파수를 300 Hz, 400 Hz 로 하여, 최적화 알고리즘을 통해 r1=2.20 mm, r2=2.27 mm, r3=3.81 mm, r4=4.20 mm 를 도출하여 제 3 실시예에 따른 흡음 장치(100)를 설계하였고, 이에 대한 흡음 성능을 이론값, 수치해석 결과, 및 실험값으로 각각 나타내었다. 여기서 실험값은 3D 프린팅으로 제작한 시편을 임피던스 튜브 실험을 통해 측정한 결과를 나타내었다.12 is a graph showing sound absorption performance of the sound absorbing device according to the third embodiment of the present invention. 12 illustrates the sound absorbing performance after designing the sound absorbing device 100 using the above-described method. More specifically, in Figs. 9 to 11, a = 16 mm, b = 44 mm, l = 5 mm, D = 71 mm, H = 50 mm are fixed, and the target frequency is 300 Hz, 400 Hz, optimization The sound absorbing device 100 according to the third embodiment was designed by deriving r 1 = 2.20 mm, r 2 = 2.27 mm, r 3 = 3.81 mm, and r 4 = 4.20 mm through an algorithm, and the sound absorption performance of the theory Values, numerical results, and experimental values are shown respectively. Here, the experimental values represent the results of the specimens produced by 3D printing through impedance tube experiments.
도 12를 참조하면, 본 발명의 제 3 실시예에 따른 흡음 장치(100)는 복수의 주파수에서 높은 흡음 효과를 발휘함을 확인할 수 있는데, 300 Hz, 400 Hz 두 가지 주파수에서 흡음 계수(aMS)가 0.95 이상이므로, 95% 이상의 흡음률을 발휘할 수 있음을 확인할 수 있다. 또한, 80% 이상의 흡음률을 가지는 최저주파수인 281 Hz 기준으로, 입사 파장 대비 흡음 장치의 두께는 1/24.4 배이다.12, it can be seen that the sound absorbing device 100 according to the third embodiment of the present invention exhibits a high sound absorbing effect at a plurality of frequencies. The sound absorbing coefficient (a MS) at two frequencies of 300 Hz and 400 Hz is shown. ) Is 0.95 or more, it can be seen that the sound absorption of 95% or more. In addition, on the basis of 281 Hz, which is the lowest frequency having a sound absorption rate of 80% or more, the thickness of the sound absorbing device is 1 / 24.4 times the incident wavelength.
이하, 전술한 제 3 실시예에 비해 광대역 주파수의 흡음이 가능한 제 4 실시예에 따른 흡음 장치를 설명한다. Hereinafter, a sound absorbing device according to a fourth embodiment capable of absorbing a wideband frequency as compared with the third embodiment described above will be described.
도 13은 본 발명의 제 4 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 사시도이고, 도 14은 본 발명의 제 4 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 정면도이다. 또한, 도 15 내지 도 17은 도 14의 흡음 셀을 구성하는 헬름홀츠 공명기를 투시하여 도시한 사시도이다. 13 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the fourth embodiment of the present invention, and FIG. 14 is a front view of the sound absorbing cell constituting the sound absorbing device according to the fourth embodiment of the present invention. 15 to 17 are perspective views illustrating a Helmholtz resonator constituting the sound absorbing cell of FIG. 14.
도 13 및 도 14을 참조하면, 본 발명의 제 4 실시예에 따른 흡음 장치는 여덟 개의 헬름홀츠 공명기(420)로 구성되는 흡음 셀(C4)을 포함하고, 흡음 셀(C4)이 평면상에 연속적으로 배열되는 형태이다. 예를 들어, 정사각기둥 형태의 흡음 셀(C4)이 다양한 형태의 밑면을 가지면서 동일한 높이를 갖는 다각기둥 형태의 여덟 개의 헬름홀츠 공명기(420)로 구성될 수 있다. 13 and 14, the sound absorbing device according to the fourth embodiment of the present invention includes a sound absorbing cell C4 composed of eight Helmholtz resonators 420, and the sound absorbing cell C4 is continuous on a plane. It is arranged as. For example, a square column-shaped sound absorbing cell C4 may be configured of eight Helmholtz resonators 420 having a polygonal pillar shape having the same height and having various bottom surfaces.
도 13 내지 도 17을 참조하면, 흡음 셀(C4)은 네 쌍의 헬름홀츠 공명기(420)를 포함할 수 있으며, 그들 간에 공간이 존재하지 않도록 인접하게 배열되어 정사각기둥의 흡음 셀(C4)을 형성할 수 있다. 이 때, 흡음 셀(C4)을 구성하는 네 쌍의 헬름홀츠 공명기(420)는 홀(425)의 크기가 모두 서로 다르게 형성될 수 있다. 보다 정확히는 쌍을 이루는 헬름홀츠 공명기(420) 간에는 홀(425)의 크기가 서로 다르게 형성될 수 있으며, 반사되는 음파의 위상이 반대가 되도록 홀(425)의 크기를 조정할 수 있다. 이에 따라 복수의 주파수에 대하여 높은 흡음 효과를 발휘할 수 있다.13 to 17, the sound absorbing cell C4 may include four pairs of Helmholtz resonators 420, and are arranged adjacent to each other such that there is no space therebetween to form a square sound absorbing cell C4. can do. In this case, the four pairs of Helmholtz resonators 420 constituting the sound absorbing cell C4 may be formed in different sizes of the holes 425. More precisely, the size of the holes 425 may be formed differently between the paired Helmholtz resonators 420, and the size of the holes 425 may be adjusted so that the phases of the reflected sound waves are reversed. Thereby, a high sound absorption effect can be exhibited with respect to a some frequency.
또한, 본 발명의 제 4 실시예에 따르면, 흡음 셀(C4)을 구성하는 네 쌍의 헬름홀츠 공명기(420) 중 쌍을 이루는 헬름홀츠 공명기(420) 간에는 내부 공간에서의 음파의 경로의 길이가 동일하게 형성될 수 있다. 또는, 쌍을 이루는 헬름홀츠 공명기(420) 간에는 내부 공간에 구비된 격벽(429)의 구조가 동일할 수 있다. 예를 들어, 쌍을 이루는 헬름홀츠 공명기 간에 xz 평면에 대칭인 홀의 위치 및 격벽의 구조를 가질 수 있다.Further, according to the fourth embodiment of the present invention, among the four pairs of Helmholtz resonators 420 constituting the sound absorbing cell C4, the path length of the sound wave in the inner space is the same. Can be formed. Alternatively, the structure of the partition wall 429 provided in the inner space may be the same between the pair of Helmholtz resonators 420. For example, between paired Helmholtz resonators, it may have a structure of a hole and a location of a hole symmetrical in the xz plane.
본 발명의 제 4 실시예에 따르면, 쌍을 이루는 제 1, 2 헬름홀츠 공명기(420-1, 420-2)와 다른 쌍을 이루는 제 3, 4 헬름홀츠 공명기(420-3, 420-4)는 음파의 경로의 길이가 서로 다를 수 있으며, 이를 통해, 광대역 주파수에 대한 흡음을 구현할 수 있다. 앞서 언급하였듯이, 목표하는 흡음 주파수가 작을수록(또는 음파의 파장이 길수록) 높은 흡음률을 갖기 위해서는 헬름홀츠 공명기(420)의 두께가 두꺼워져야 하는데, 격벽 구조를 통해 음파의 경로의 길이를 길게 하여 헬름홀츠 공명기(420)의 두께가 두꺼워지는 것과 동일한 효과를 발휘할 수 있다.According to the fourth embodiment of the present invention, the third and fourth Helmholtz resonators 420-3 and 420-4 which are different from the paired first and second Helmholtz resonators 420-1 and 420-2 are sound waves. The lengths of the paths may be different from each other, and thus, sound absorption for the wideband frequency may be realized. As mentioned earlier, the smaller the target sound absorption frequency (or the longer the wavelength of sound waves), the thicker the Helmholtz resonator 420 should be in order to have a high sound absorption rate. The same effect as the thickness of 420 becomes thick can be exhibited.
도 15 및 도 16를 참조하면, 제 1, 2 헬름홀츠 공명기(420-1, 420-2)는 밑면이'L'자 형태의 육각기둥 형태이고, 격벽에 의해 음파의 경로가 연장될 수 있다. 또한, 제 3, 4 헬름홀츠 공명기(420-3, 420-4)는 제 1, 2 헬름홀츠 공명기(420-1, 420-2)의 오목한 측면에 대응되게 접할 수 있는 사각기둥 형태이고, 내부 공간에 격벽이 없을 수 있다. 도 15을 참조하면, 제 1 헬름홀츠 공명기(420-1)는 내부 공간에 격벽(427-1)이 구비되며, 격벽(427-1)은 제 1 헬름홀츠 공명기(420-1)의 내부 공간을 구획하도록 서로 수직한 두 평면이 결합한 형태일 수 있으며, 서로 반대 방향의 단부에 개방부(429-1)가 형성될 수 있다.15 and 16, the first and second Helmholtz resonators 420-1 and 420-2 have a hexagonal column having a 'L' shape at the bottom thereof, and a path of sound waves may be extended by the partition wall. In addition, the third and fourth Helmholtz resonators 420-3 and 420-4 have a rectangular columnar shape that can be in contact with the concave side surfaces of the first and second Helmholtz resonators 420-1 and 420-2, There may be no bulkhead. Referring to FIG. 15, the first Helmholtz resonator 420-1 is provided with a partition 427-1 in an internal space, and the partition 427-1 partitions an internal space of the first Helmholtz resonator 420-1. Two planes perpendicular to each other may be coupled to each other, and the openings 429-1 may be formed at ends of opposite directions.
이러한 구조의 제 4 실시예에서, 도 15에 도시된 제 1 헬름홀츠 공명기(420-1)의 경우에 두께 방향(z축 방향)으로의 음파의 길이가 도 16에 도시된 격벽이 없는 제 3 헬름홀츠 공명기(420-3)와 비교할 때 3 배 이상 연장될 수 있게 된다. 이에 따라, 상대적으로 제 1, 2 헬름홀츠 공명기(420-1, 420-2)는 낮은 주파수에서 높은 흡음 효과를 발휘할 수 있고, 제 3, 4 헬름홀츠 공명기(420-3, 420-4)는 높은 주파수에서 높은 흡음 효과를 발휘할 수 있다.In the fourth embodiment of this structure, in the case of the first Helmholtz resonator 420-1 shown in FIG. 15, the length of the sound wave in the thickness direction (z-axis direction) is the third Helmholtz without the partition shown in FIG. Compared to the resonator 420-3 can be extended more than three times. Accordingly, the first and second Helmholtz resonators 420-1 and 420-2 can exhibit a high sound absorption effect at a low frequency, and the third and fourth Helmholtz resonators 420-3 and 420-4 have a high frequency. High sound absorption effect can be achieved.
이에 따라, 제 4 실시예에 따르면, 하나의 흡음 셀(C4) 내에 음파의 경로의 길이가 서로 다른 헬름홀츠 공명기를 포함함으로써, 목표로 하는 흡음 주파수 간의 차이가 큰 경우에도 높은 흡음 효과를 발휘할 수 있다. 다시 말해 광대역 주파수에서 높은 흡음 효과를 발휘할 수 있다.Accordingly, according to the fourth embodiment, by including a Helmholtz resonator having different lengths of sound wave paths in one sound absorbing cell C4, a high sound absorbing effect can be obtained even when the target sound absorption frequency is large. . In other words, it can exhibit a high sound absorption effect at a wide band frequency.
도 13, 도 14, 및 도 17을 참조하면, 제 5 내지 8 헬름홀츠 공명기(420-5 ~ 420-8)는 동일한 크기의 직사각기둥 형태일 수 있으며, 동일한 음파의 경로를 가질 수 있다. 또는, 동일한 구조의 격벽이 내부 공간에 구비될 수 있다. 예를 들어, 도 17을 참조하면, 제 5 헬름홀츠 공명기(420-5)의 내부 공간에는 격벽(427-5)이 구비되며, 격벽(427-5)의 단부 중 홀(425-5)에서 먼 방향의 단부에 개방부(429-5)가 형성될 수 있다. 이에 따라, 홀(425-5)을 통과한 음파는 z축 방향으로 진행하다가 개방부(429-5)를 통해 진행 방향이 변경되어 -z축 방향으로 진행하게 되므로, 음파의 경로의 길이가 연장될 수 있다.13, 14, and 17, the fifth to eighth Helmholtz resonators 420-5 to 420-8 may have a rectangular pillar shape of the same size, and may have the same path of sound waves. Alternatively, a partition of the same structure may be provided in the interior space. For example, referring to FIG. 17, a partition 427-5 is provided in an inner space of the fifth Helmholtz resonator 420-5, and is located far from the hole 425-5 at an end of the partition 427-5. Openings 429-5 may be formed at the ends of the direction. Accordingly, the sound wave passing through the hole 425-5 progresses in the z-axis direction, and the traveling direction is changed through the opening portion 429-5 to proceed in the -z-axis direction, so that the path length of the sound wave is extended. Can be.
이 때, 제 5 내지 8 헬름홀츠 공명기(420-5 ~ 420-8)는 제 1, 2 헬름홀츠 공명기(420-1, 420-2)에 비해서는 짧은 음파의 경로를 가지지만, 제 3, 4 헬름홀츠 공명기(420-3, 420-4)에 비해서는 긴 음파의 경로를 가질 수 있다. 즉, 흡음 셀(C4)을 구성하는 복수의 헬름홀츠 공명기(420)는 적어도 세 개의 서로 다른 음파의 경로를 가질 수 있으며, 적어도 네 개의 흡음 주파수를 가질 수 있다(이하 설명할 도 18 참조). 이에 따라, 제 4 실시예에 따르면, 광대역의 주파수에 대하여 높은 흡음률이 가능하도록 구현될 수 있다.At this time, the fifth to eighth Helmholtz resonators 420-5 to 420-8 have shorter sound paths than the first and second Helmholtz resonators 420-1 and 420-2, but the third and fourth Helmholtz resonators Compared to the resonators 420-3 and 420-4, it may have a longer path of sound waves. That is, the plurality of Helmholtz resonators 420 constituting the sound absorption cell C4 may have paths of at least three different sound waves, and may have at least four sound absorption frequencies (see FIG. 18 to be described below). Accordingly, according to the fourth embodiment, it can be implemented to enable a high sound absorption rate for the frequency of the broadband.
본 발명의 제 4 실시예에 따른 흡음 장치(100)를 설계하는 경우에 다중 주파수 또는 광대역 주파수의 흡음을 목적으로 한다면, 도 13 및 도 14에서 서로 인접한 제 1, 2 헬름홀츠 공명기(420-1, 420-2)의 홀(425-1, 425-2)의 크기, 즉 r1, r2의 값을 조절하여 제 1 목적 주파수를 가지는 음파를 완벽히 흡음할 수 있도록 설계하고, 서로 인접한 제 3, 4 헬름홀츠 공명기(420-3, 420-4)의 홀(425-3, 425-4)의 크기, 즉 r3, r4를 조절하여 제 2 목적 주파수를 가지는 음파를 완벽히 흡음할 수 있도록 설계할 수 있다. 또한, 서로 인접한 제 5, 6 헬름홀츠 공명기(420-5, 420-6)의 홀(425-5, 425-6)의 크기, 즉 r5, r6의 값을 조절하여 제 3 목적 주파수를 가지는 음파를 완벽히 흡음할 수 있도록 설계하고, 서로 인접한 제 7, 8 헬름홀츠 공명기(420-7, 420-8)의 홀(425-7, 425-8)의 크기, 즉 r7, r8를 조절하여 제 4 목적 주파수를 가지는 음파를 완벽히 흡음할 수 있도록 설계할 수 있다. 앞선 실시예에서 설명하였던 방식과 동일하게, 흡음 장치(100)에서의 임피던스와 외부 공기의 임피던스 간의 차이가 최소가 되도록 최적화 알고리즘을 통하여 r1, r2, r3, r4, r5, r6, r7, r8 값을 조절할 수 있다.In the case of designing the sound absorbing device 100 according to the fourth embodiment of the present invention, for the purpose of sound absorption of multiple frequencies or broadband frequencies, the first and second Helmholtz resonators 420-1, which are adjacent to each other in FIGS. 13 and 14, 420-2) is designed to completely absorb sound waves having a first target frequency by adjusting the sizes of the holes 425-1 and 425-2, that is, the values of r 1 and r 2 . The size of the holes 425-3 and 425-4 of the Helmholtz resonators 420-3 and 420-4, that is, r 3 and r 4, can be adjusted to completely absorb sound waves having the second target frequency. Can be. In addition, the size of the holes 425-5 and 425-6 of the fifth and sixth Helmholtz resonators 420-5 and 420-6, that is, the values of r 5 and r 6 , are adjusted to have a third target frequency. Designed to completely absorb sound waves, and by adjusting the size of the holes (425-7, 425-8) of the seventh and eighth Helmholtz resonators (420-7, 420-8) adjacent to each other, that is, r 7 , r 8 It can be designed to completely absorb sound waves having a fourth target frequency. In the same manner as described in the above embodiment, r 1 , r 2 , through optimization algorithms such that the difference between the impedance in the sound absorbing device 100 and the impedance of the outside air is minimized. r 3 , r 4 , r 5 , r 6 , You can adjust the r 7 and r 8 values.
도 18은 본 발명의 제 4 실시예에 따른 흡음 장치의 흡음 성능을 나타낸 그래프이다.18 is a graph showing sound absorption performance of the sound absorbing device according to the fourth embodiment of the present invention.
도 18은 앞서 설명한 방식을 이용하여 제 4 실시예에 따른 흡음 장치(100)를 설계한 후, 이에 대한 흡음 성능을 나타낸 것이다. 보다 상세히, 도 13 내지 도 17에서, a=16 mm, b=44 mm, l=5 mm, D=71 mm, H=50 mm 로 고정하고, 목적 주파수를 300 Hz, 400 Hz, 500 Hz, 600 Hz 로 하여, 최적화 알고리즘을 통해 r1=1.77 mm, r2=1.78 mm, r3=2.010 mm, r4=2.014 mm, r5=2.56 mm, r6=2.66 mm, r7=1.91 mm, r8=1.92 mm 를 도출하여 제 4 실시예에 따른 흡음 장치(100)를 설계하였고, 이에 대한 흡음 성능을 이론값, 및 수치해석 결과값으로 각각 나타내었다. 18 illustrates the sound absorption performance after designing the sound absorbing device 100 according to the fourth embodiment by using the above-described method. More specifically, in Figs. 13 to 17, a = 16 mm, b = 44 mm, l = 5 mm, D = 71 mm, H = 50 mm are fixed, and the target frequencies are 300 Hz, 400 Hz, 500 Hz, With 600 Hz, the optimization algorithm allows r 1 = 1.77 mm, r 2 = 1.78 mm, r 3 = 2.010 mm, r 4 = 2.014 mm, r 5 = 2.56 mm, r 6 = 2.66 mm, r 7 = 1.91 mm , r 8 = 1.92 mm was derived and the sound absorbing device 100 according to the fourth embodiment was designed, and the sound absorbing performance thereof was shown as a theoretical value and a numerical analysis result, respectively.
도 18을 참조하면, 본 발명의 제 4 실시예에 따른 흡음 장치(100)는 네 개의 주파수에서 높은 흡음 효과를 발휘함을 확인할 수 있는데, 300 Hz, 400 Hz, 500 Hz, 600 Hz 네 가지 주파수에서 흡음 계수(aMS)가 0.95 이상이므로, 95% 이상의 흡음률을 발휘할 수 있음을 확인할 수 있다. 또한, 본 발명의 제 4 실시예에 따른 흡음 장치(100)는 광대역 주파수에 효과적임을 확인할 수 있는데, 50% 이상의 흡음률을 발휘할 수 있는 주파수 대역폭은 300 Hz 목표 주파수 기준으로 36 Hz, 300 Hz 목표 주파수 기준으로 44 Hz, 500 Hz 목표 주파수 기준으로 55 Hz, 600 Hz 목표 주파수 기준으로 52 Hz 이다. 또한, 80% 이상의 흡음률을 가지는 최저주파수인 293 Hz 기준으로, 입사 파장 대비 흡음 장치의 두께는 1/23.4 배이다. 따라서, 제 3 실시예와 유사한 수준의 얇은 두께의 흡음 장치를 구현하면서도, 제 3 실시예에 비해 더 많은 주파수 및 광대역의 주파수에 대하여 높은 흡음률을 발휘하는 흡음 장치(100)를 구현할 수 있다.Referring to FIG. 18, it can be seen that the sound absorbing device 100 according to the fourth embodiment of the present invention exhibits high sound absorption at four frequencies, and includes four frequencies of 300 Hz, 400 Hz, 500 Hz, and 600 Hz. Since the sound absorption coefficient (a MS ) is 0.95 or more, it can be seen that the sound absorption rate of 95% or more can be exhibited. In addition, it can be confirmed that the sound absorbing device 100 according to the fourth embodiment of the present invention is effective for a wideband frequency. A frequency bandwidth capable of exhibiting a sound absorption rate of 50% or more is 36 Hz and 300 Hz target frequencies based on a 300 Hz target frequency. The reference is 44 Hz and 500 Hz. The target frequency is 55 Hz and 600 Hz. The target frequency is 52 Hz. In addition, on the basis of 293 Hz, the lowest frequency having a sound absorption rate of 80% or more, the thickness of the sound absorbing device is 1 / 23.4 times the incident wavelength. Therefore, while implementing a sound absorbing device having a thin thickness similar to the third embodiment, it is possible to implement a sound absorbing device 100 exhibiting a high sound absorption rate for more frequencies and broadband frequencies than the third embodiment.
이하, 전술한 제 4 실시예에 비해 보다 확실하게 광대역의 주파수에 대하여 높은 흡음률을 발휘하는 제 5 실시예에 따른 흡음 장치를 설명한다.Hereinafter, the sound absorbing apparatus according to the fifth embodiment which more reliably exhibits a high sound absorption rate with respect to the broadband frequency compared with the above-described fourth embodiment will be described.
도 19는 본 발명의 제 5 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 사시도이고, 도 20 내지 도 23은 도 19의 흡음 셀을 구성하는 헬름홀츠 공명기를 투시하여 도시한 사시도이다. 19 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the fifth embodiment of the present invention, and FIGS. 20 to 23 are perspective views illustrating a Helmholtz resonator constituting the sound absorbing cell of FIG. 19.
도 19 및 도 20을 참조하면, 본 발명의 제 5 실시예에 따른 흡음 장치는 여덟 개의 헬름홀츠 공명기(520)로 구성되는 흡음 셀(C5)을 포함하고, 흡음 셀(C5)은 여덟 개의 헬름홀츠 공명기(520) 중 두 개씩의 헬름홀츠 공명기가 인접하게 배열되어 동일한 크기의 네 개의 정사각기둥 형태를 형성하고, 상기 네 개의 정사각기둥 형태가 인접하게 배열되어 정사각기둥 형태의 흡음 셀(C5)을 형성할 수 있다.19 and 20, the sound absorbing device according to the fifth embodiment of the present invention includes a sound absorbing cell C5 composed of eight Helmholtz resonators 520, and the sound absorbing cell C5 includes eight Helmholtz resonators. Two Helmholtz resonators of 520 are arranged adjacent to each other to form four square pillars of the same size, and the four square pillars are arranged adjacent to form a square-shaped sound absorption cell C5. have.
도 19 내지 도 23을 참조하면, 흡음 셀(C5)은 네 쌍의 헬름홀츠 공명기(520)를 포함할 수 있으며, 그들 간에 공간이 존재하지 않도록 인접하게 배열되어 정사각기둥의 흡음 셀(C5)을 형성할 수 있다. 이 때, 흡음 셀(C5)을 구성하는 네 쌍의 헬름홀츠 공명기(520)는 내부 공간의 부피가 서로 다르게 형성될 수 있다. 보다 정확히는 쌍을 이루는 헬름홀츠 공명기 간에는 내부 공간의 크기가 동일하나, 서로 다른 쌍의 헬름홀츠 공명기 간에는 내부 공간의 부피가 서로 다르게 형성될 수 있다. 이에 따라 복수의 주파수에 대하여 높은 흡음 효과를 발휘할 수 있다.19 to 23, the sound absorbing cell C5 may include four pairs of Helmholtz resonators 520, and are arranged adjacent to each other so that there is no space therebetween to form a square sound absorbing cell C5. can do. In this case, the four pairs of Helmholtz resonators 520 constituting the sound absorbing cell C5 may have different volumes of internal space. More precisely, a pair of Helmholtz resonators may have the same internal space, but different pairs of Helmholtz resonators may have different internal volumes. Thereby, a high sound absorption effect can be exhibited with respect to a some frequency.
또한, 본 발명의 제 5 실시예에 따르면, 흡음 셀(C5)을 구성하는 네 쌍의 헬름홀츠 공명기(520) 중 쌍을 이루는 헬름홀츠 공명기 간에는 내부 공간에서의 음파의 경로의 길이가 동일하게 형성될 수 있다. 또는, 쌍을 이루는 헬름홀츠 공명기 간에는 내부 공간에 구비된 격벽(527)의 구조가 동일할 수 있다. 예를 들어, 쌍을 이루는 헬름홀츠 공명기 간에 xz 평면에 대칭인 홀의 위치 및 격벽의 구조를 가질 수 있다.In addition, according to the fifth embodiment of the present invention, among the four pairs of Helmholtz resonators 520 constituting the sound absorbing cell C5, the path length of the sound wave in the inner space may be the same. have. Alternatively, the structure of the partition wall 527 provided in the inner space may be the same between the pair of Helmholtz resonators. For example, between paired Helmholtz resonators, it may have a structure of a hole and a location of a hole symmetrical in the xz plane.
한편, 본 발명의 제 5 실시예에 따르면, 전술한 제 3, 4 실시예와는 달리, 내부 공간이 형성되지 않은 헬름홀츠 공명기(520)의 목부가 헬름홀츠 공명기(520)의 전방의 일부에만, 보다 구체적으로는 홀(525)이 있는 부분에만 형성되고, 나머지 부분에는 목부가 연장되어 형성되지 않고 내부 공간이 형성될 수 있다. 예를 들어, 도 20에서 홀(525-1)과 바로 연결되는 내부 공간의 z축 방향의 길이는 b이지만, 홀(525-1)의 (y축 방향) 상부 위치의 내부 공간의 z축 방향의 길이는 b+l이 된다. 이를 통해, 목부의 부피를 최소화하여 내부 공간을 더 크게 할 수 있고, 음파의 경로를 더 길게 할 수 있다.On the other hand, according to the fifth embodiment of the present invention, unlike the third and fourth embodiments described above, the neck portion of the Helmholtz resonator 520 in which the internal space is not formed is more than only a part of the front of the Helmholtz resonator 520. Specifically, only the hole 525 is formed in a portion, and the remaining portion may be formed in the inner space without extending the neck portion. For example, in FIG. 20, the length of the z-axis direction of the inner space directly connected to the hole 525-1 is b, but the z-axis direction of the inner space of the upper position (y-axis direction) of the hole 525-1. The length of becomes b + l. Through this, the volume of the neck can be minimized to increase the internal space, and the path of the sound wave can be made longer.
본 발명의 제 5 실시예에 따르면, 쌍을 이루는 제 1, 2 헬름홀츠 공명기(520-1, 520-2), 제 3, 4 헬름홀츠 공명기(520-3, 520-4), 제 5, 6 헬름홀츠 공명기(520-5, 520-6), 및 제 7, 8 헬름홀츠 공명기(520-7, 520-8)는 음파의 경로의 길이가 서로 다를 수 있으며, 이를 통해, 광대역 주파수에 대한 흡음을 구현할 수 있다. 즉, 음파의 경로가 다른 복수의 헬름홀츠 공명기를 적절히 배치함으로써, 다중 주파수 및 광대역 주파수에 대하여 높은 흡음률을 발휘할 수 있다.According to the fifth embodiment of the present invention, paired first and second Helmholtz resonators 520-1 and 520-2, third and fourth Helmholtz resonators 520-3 and 520-4, and fifth and sixth Helmholtz The resonators 520-5 and 520-6 and the seventh and eighth Helmholtz resonators 520-7 and 520-8 may have different path lengths of sound waves, and thus, sound absorption for broadband frequencies may be realized. have. That is, by appropriately arranging a plurality of Helmholtz resonators with different paths of sound waves, high sound absorption can be exhibited for multiple frequencies and wideband frequencies.
도 19, 도 20 및 도 21를 참조하면, 제 1 헬름홀츠 공명기(520-1)는 정사각기둥에서 일부가 분할된 불규칙적인 형태이고, 격벽에 의해 음파의 경로가 연장될 수 있다. 또한, 제 3 헬름홀츠 공명기(520-3)는 제 1 헬름홀츠 공명기(520-1)의 오목한 측면에 대응되게 접할 수 있는 형태이고, 제 1 헬름홀츠 공명기(520-1)와 제 3 헬름홀츠 공명기(520-3)가 서로 인접하게 배열되어 하나의 정사각기둥을 형성할 수 있다. 19, 20, and 21, the first Helmholtz resonator 520-1 has an irregular shape in which a part of a square pillar is divided, and a path of sound waves may be extended by a partition wall. In addition, the third Helmholtz resonator 520-3 may be in contact with the concave side surface of the first Helmholtz resonator 520-1, and the first Helmholtz resonator 520-1 and the third Helmholtz resonator 520- 3) may be arranged adjacent to each other to form a square pillar.
또한, 도 19, 도 22 및 도 23을 참조하면, 제 5 헬름홀츠 공명기(520-5)는 정사각기둥에서 일부가 분할된 불규칙적인 형태로서 제 1 헬름홀츠 공명기(520-1)와는 다른 형태이고, 격벽 구조도 제 1 헬름홀츠 공명기(520-1)와는 다르게 형성될 수 있다. 또한, 제 7 헬름홀츠 공명기(520-7)는 제 5 헬름홀츠 공명기(520-5)의 오목한 측면에 대응되게 접할 수 있는 형태이고, 제 5 헬름홀츠 공명기(520-5)와 제 7 헬름홀츠 공명기(520-7)가 서로 인접하게 배열되어 하나의 정사각기둥을 형성할 수 있다.19, 22, and 23, the fifth Helmholtz resonator 520-5 is an irregular shape in which part of the square pillar is divided, and is different from the first Helmholtz resonator 520-1. The structure may be formed differently from the first Helmholtz resonator 520-1. In addition, the seventh Helmholtz resonator 520-7 may be in contact with the concave side of the fifth Helmholtz resonator 520-5, and the fifth Helmholtz resonator 520-5 and the seventh Helmholtz resonator 520- 7) may be arranged adjacent to each other to form a square pillar.
즉, 제 5 실시예에 따르면, 흡음 셀(C5)을 구성하는 여덟 개의 헬름홀츠 공명기 중 두 개씩의 헬름홀츠 공명기가 인접하게 배열되어 동일한 크기의 네 개의 정사각기둥 형태를 형성하고, 상기 네 개의 정사각기둥 형태가 인접하게 배열되어 상기 흡음 셀을 형성할 수 있다. That is, according to the fifth embodiment, two Helmholtz resonators of the eight Helmholtz resonators constituting the sound absorption cell C5 are arranged adjacent to each other to form four square pillar shapes of the same size, and the four square pillar shapes. May be arranged adjacent to each other to form the sound absorption cell.
보다 상세히, 전술한 제 4 실시예의 경우, 흡음 셀(C4)을 구성하는 헬름홀츠 공명기(420)가 두께(z축 방향의 길이)가 모두 동일하고, 서로 인접한 두 개의 헬름홀츠 공명기는 정사각기둥을 x축 및 y축 방향으로만 절개한 형태이지만, 제 5 실시예의 경우, 흡음 셀(C5)을 구성하는 헬름홀츠 공명기(520) 중 서로 인접한 두 개의 헬름홀츠 공명기는 정사각기둥을 x축 및 y축 방향뿐 만 아니라, z축 방향으로도 절개한 형태이다. 이러한 구조의 제 5 실시예에서, 전술한 제 4 실시예와 비교할 때 흡음 셀을 구성하는 헬름홀츠 공명기의 형태를 보다 다양하게 할 수 있어서 설계 자유도가 높으며, 이에 따라 음파의 경로의 길이를 보다 세밀하게 조정할 수 있다.More specifically, in the above-described fourth embodiment, the Helmholtz resonators 420 constituting the sound absorbing cell C4 have the same thickness (the length in the z-axis direction), and two Helmholtz resonators adjacent to each other have the square pillar in the x-axis. And in the form of the incision only in the y-axis direction, in the fifth embodiment, two Helmholtz resonators adjacent to each other among the Helmholtz resonators 520 constituting the sound-absorbing cell (C5) as well as the x-axis and y-axis direction It is also cut in the z-axis direction. In the fifth embodiment of this structure, the shape of the Helmholtz resonator constituting the sound absorbing cell can be more variously compared with the above-described fourth embodiment, so that the design freedom is high, and thus the length of the path of the sound wave is more precisely. I can adjust it.
이에 따라, 제 5 실시예에 따르면, 하나의 흡음 셀(C5) 내에 음파의 경로의 길이가 서로 다른 헬름홀츠 공명기를 다양하게 포함함으로써, 목표로 하는 흡음 주파수 간의 차이가 줄일 수 있으며, 이를 통해 광대역 주파수에서 높은 흡음 효과를 뚜렷하게 발휘할 수 있다. 즉, 흡음 셀(C5)을 구성하는 복수의 헬름홀츠 공명기(520)는 네 개의 서로 다른 음파의 경로를 가질 수 있으며, 네 개의 흡음 주파수를 가질 수 있다. Accordingly, according to the fifth embodiment, by including various Helmholtz resonators having different lengths of sound wave paths in one sound absorbing cell C5, the difference between target sound absorption frequencies can be reduced, thereby wideband frequency. High sound-absorption effect can be clearly seen at. That is, the plurality of Helmholtz resonators 520 constituting the sound absorbing cell C5 may have four different sound wave paths and may have four sound absorption frequencies.
본 발명의 제 5 실시예에 따른 흡음 장치(100)를 설계하는 경우에 앞선 실시예에서 설명하였던 방식과 동일하게, 흡음 장치(100)에서의 임피던스와 외부 공기의 임피던스 간의 차이가 최소가 되도록 최적화 알고리즘을 통하여 r1, r2, r3, r4, r5, r6, r7, r8 값을 조절할 수 있다.In the case of designing the sound absorbing device 100 according to the fifth embodiment of the present invention, it is optimized to minimize the difference between the impedance of the sound absorbing device 100 and the impedance of the outside air in the same manner as described in the previous embodiment. Through the algorithm r 1 , r 2 , r 3 , r 4 , r 5 , r 6 , You can adjust the r 7 and r 8 values.
도 24은 본 발명의 제 5 실시예에 따른 흡음 장치의 흡음 성능을 나타낸 그래프이다.24 is a graph showing sound absorption performance of the sound absorbing apparatus according to the fifth embodiment of the present invention.
도 24은 도 19 내지 도 23에 도시된 제 5 실시예에 따른 흡음 장치(100)를 설계한 후, 이에 대한 흡음 성능을 나타낸 것이다. 보다 상세히, 도 19 내지 도 23에서, a=16 mm, b=46 mm, l=5 mm, D=71 mm, H=52 mm 로 고정하고, 목적 주파수를 370 Hz, 420 Hz, 475 Hz, 530 Hz 로 하여, 최적화 알고리즘을 통해 r1=2.23 mm, r2=2.23 mm, r3=2.45 mm, r4=2.58 mm, r5=2.22 mm, r6=2.27 mm, r7=2.36 mm, r8=2.37 mm 를 도출하여 제 5 실시예에 따른 흡음 장치(100)를 설계하였다. 이에 대한 흡음 성능을 이론값, 수치해석 결과값, 및 실험값으로 각각 나타내었다. 여기서 실험값은 3D 프린팅으로 제작한 시편을 임피던스 튜브 실험을 통해 측정한 결과를 나타내었다.FIG. 24 illustrates a sound absorbing performance after designing the sound absorbing device 100 according to the fifth embodiment shown in FIGS. 19 to 23. More specifically, in Figs. 19 to 23, a = 16 mm, b = 46 mm, l = 5 mm, D = 71 mm, H = 52 mm are fixed, and the target frequencies are 370 Hz, 420 Hz, 475 Hz, With 530 Hz, r 1 = 2.23 mm, r 2 = 2.23 mm, r 3 = 2.45 mm, r 4 = 2.58 mm, r 5 = 2.22 mm, r 6 = 2.27 mm, r 7 = 2.36 mm through an optimization algorithm , r 8 = 2.37 mm was derived to design the sound absorbing device 100 according to the fifth embodiment. Sound absorption performance is shown as theoretical value, numerical analysis result, and experimental value, respectively. Here, the experimental values represent the results of the specimens produced by 3D printing through impedance tube experiments.
도 24을 참조하면, 본 발명의 제 5 실시예에 따른 흡음 장치(100)는 네 개의 주파수에서 높은 흡음 효과를 발휘함을 확인할 수 있는데, 375 Hz, 425 Hz, 472 Hz, 536 Hz 네 가지 주파수에서 흡음 계수(aMS)가 0.95 이상이므로, 95% 이상의 흡음률을 발휘할 수 있음을 확인할 수 있다. 또한, 본 발명의 제 5 실시예에 따른 흡음 장치(100)는 광대역 주파수에 매우 효과적임을 확인할 수 있는데, 50% 이상의 흡음률을 발휘할 수 있는 주파수 대역폭은 344 Hz 에서 533 Hz 까지이므로, 총 209 Hz 이다. 또한, 80% 이상의 흡음률을 가지는 최저주파수인 357 Hz 기준으로, 입사 파장 대비 흡음 장치의 두께는 1/18.5 배이다. 따라서, 제 4 실시예에 비해 두께가 조금 두꺼워지지만, 훨씬 넓은 광대역의 주파수에 대하여 높은 흡음률을 발휘하는 흡음 장치(100)를 구현할 수 있다. Referring to FIG. 24, it can be seen that the sound absorbing device 100 according to the fifth embodiment of the present invention exhibits a high sound absorption effect at four frequencies, and includes four frequencies of 375 Hz, 425 Hz, 472 Hz, and 536 Hz. Since the sound absorption coefficient (a MS ) is 0.95 or more, it can be seen that the sound absorption rate of 95% or more can be exhibited. In addition, it can be seen that the sound absorbing device 100 according to the fifth embodiment of the present invention is very effective for a wideband frequency. The frequency bandwidth capable of exhibiting a sound absorption rate of 50% or more is 344 Hz to 533 Hz, which is a total of 209 Hz. . In addition, on the basis of 357 Hz, which is the lowest frequency having a sound absorption rate of 80% or more, the thickness of the sound absorbing device relative to the incident wavelength is 1 / 18.5 times. Therefore, although the thickness is slightly thicker than that of the fourth embodiment, it is possible to implement the sound absorbing device 100 which exhibits a high sound absorption rate for a much wider frequency band.
이하, 전술한 실시예에 비해 얇은 두께로 구현이 가능한 제 6 실시예에 따른 흡음 장치를 설명한다. Hereinafter, a sound absorbing device according to a sixth embodiment that can be implemented in a thin thickness than the above-described embodiment will be described.
도 25은 본 발명의 제 6 실시예에 따른 흡음 장치를 구성하는 흡음 셀의 사시도이고, 도 26는 도 25의 흡음 셀을 구성하는 헬름홀츠 공명기를 투시하여 도시한 사시도이며, 도 27은 도 26의 헬름홀츠 공명기를 투시하여 도시한 정면도이다. FIG. 25 is a perspective view of a sound absorbing cell constituting the sound absorbing device according to the sixth embodiment of the present invention. FIG. 26 is a perspective view showing a Helmholtz resonator constituting the sound absorbing cell of FIG. 25, and FIG. 27 is a perspective view of FIG. Front view showing a Helmholtz resonator.
도 25 내지 도 27을 참조하면, 본 발명의 제 6 실시예에 따른 흡음 장치는 네 개의 헬름홀츠 공명기(620)로 구성되는 흡음 셀(C6)을 포함하고, 흠음 셀(C6)을 기본 단위로 하여, 흡음 셀(C6)이 평면상에 연속적으로 배열되는 형태이다. 예를 들어, 정사각기둥 형태의 흡음 셀(C6)이 밑면의 사이즈에 비해 높이가 작은 동일한 크기의 정사각기둥 형태의 네 개의 헬름홀츠 공명기(620)로 구성될 수 있다.25 to 27, the sound absorbing device according to the sixth embodiment of the present invention includes a sound absorbing cell C6 including four Helmholtz resonators 620, and based on the fault cell C6 as a basic unit. The sound absorbing cells C6 are continuously arranged on a plane. For example, the square column-shaped sound absorbing cell C6 may be configured with four Helmholtz resonators 620 having the same size as the square column having a smaller height than the size of the bottom surface.
도 25 내지 도 27을 참조하면, 흡음 셀(C6)은 네 개의 헬름홀츠 공명기(620)를 포함할 수 있으며, 그들 간에 공간이 존재하지 않도록 인접하게 배열되어 정사각기둥의 흡음 셀(C6)을 형성할 수 있다. 이 때, 흡음 셀(C6)을 구성하는 네 개의 헬름홀츠 공명기(620)는 홀(625)의 크기가 모두 서로 다르게 형성될 수 있다. 보다 정확하게는, 인접하는 두 개의 헬름홀츠 공명기(620) 또는 쌍을 이루는 두 개의 헬름홀츠 공명기 간에 반사되는 음파의 위상이 반대가 되도록 홀(625)의 크기가 조정될 수 있다. 이에 따라 복수의 주파수에 대하여 높은 흡음 효과를 발휘할 수 있다.25 to 27, the sound absorbing cell C6 may include four Helmholtz resonators 620, and are arranged adjacent to each other so that there is no space therebetween to form a square sound absorbing cell C6. Can be. At this time, the four Helmholtz resonators 620 constituting the sound absorbing cell (C6) may be formed in all different sizes of the holes 625. More precisely, the size of the hole 625 can be adjusted so that the phase of the sound waves reflected between two adjacent Helmholtz resonators 620 or two paired Helmholtz resonators is reversed. Thereby, a high sound absorption effect can be exhibited with respect to a some frequency.
또한, 본 발명의 제 6 실시예에 따르면, 흡음 셀(C6)을 구성하는 네 개의 헬름홀츠 공명기(620)는 내부 공간에서의 음파의 경로의 길이가 동일하게 형성될 수 있다. 또는, 흡음 셀(C6)을 구성하는 네 개의 헬름홀츠 공명기(620) 간에는 내부 공간에 구비된 격벽(629)의 구조가 동일할 수 있다. In addition, according to the sixth embodiment of the present invention, the four Helmholtz resonators 620 constituting the sound absorbing cell C6 may have the same length of the path of sound waves in the internal space. Alternatively, the four helmholtz resonators 620 constituting the sound absorbing cell C6 may have the same structure of the partition wall 629 provided in the internal space.
예를 들어, 네 개의 헬름홀츠 공명기(620) 각각은 내부 공간에서 진행되는 음파의 경로가 빙빙 도는 형태가 되도록 격벽(629)이 형성될 수 있다. 이를 통해, 매우 얇은 두께의 흡음 장치를 구현할 수 있다. 앞서 언급하였듯이, 격벽 구조를 통해 열점성 효과를 크게 하면서 음파의 경로의 길이를 연장할 수 있는데, 도 26 및 도 27을 기준으로, 헬름홀츠 공명기(620)의 xy 평면 상의 면적을 크게 하는 반면 z축 방향의 두께를 얇게 하고, xy 평면 상에서 음파의 경로가 빙빙 도는 형태로 격벽(629)을 구성할 수 있다. 이를 통해 음파의 경로의 연장 효과를 극대화 하면서, 흡음 장치의 두께를 최소화 할 수 있다. For example, each of the four Helmholtz resonators 620 may be formed with a partition 629 so that the path of the sound waves traveling in the inner space is rounded. Through this, it is possible to implement a sound absorbing device of very thin thickness. As mentioned above, the length of the path of the sound wave can be extended while increasing the thermal viscous effect through the partition structure. Referring to FIGS. 26 and 27, the z-axis of the Helmholtz resonator 620 is increased while increasing the area. The thickness of the direction may be reduced, and the partition 629 may be configured to have a path of sound waves on the xy plane. Through this, it is possible to minimize the thickness of the sound absorbing device while maximizing the effect of extending the path of sound waves.
보다 구체적으로, 도 26 및 도 27을 참조하면, 제 1 헬름홀츠 공명기(620-1)는 밑면의 사이즈에 비해 높이가 작은 정사각기둥 형태이고, 격벽(627-1)에 의해 음파의 경로가 연장될 수 있다. 예를 들어, 도 27의 xy 평면을 기준으로, 격벽(627-1)은 제 1 헬름홀츠 공명기(620-1)의 내부 공간을 동일 면적으로 구획하도록, 또는 내부 공간을 격자 형태로 구획하도록 형성될 수 있다. 이 때, 홀(625-1)로 입사된 음파가 xy 평면을 기준으로 홀(625-1)을 중심으로 홀(625-1)에서 멀어지는 방향으로 빙빙 도는 형태의 경로로 진행되도록, 격벽(627-1)에 복수의 개방부(629-1)가 형성될 수 있다.More specifically, referring to FIGS. 26 and 27, the first Helmholtz resonator 620-1 has a square pillar shape having a height smaller than that of the bottom surface, and the path of the sound wave is extended by the partition wall 627-1. Can be. For example, based on the xy plane of FIG. 27, the partition wall 627-1 may be formed to partition the inner space of the first Helmholtz resonator 620-1 to the same area or to partition the inner space into a lattice shape. Can be. At this time, the partition wall 627 so that the sound wave incident to the hole 625-1 proceeds in a path of turning in a direction away from the hole 625-1 with respect to the hole 625-1 with respect to the xy plane. A plurality of openings 629-1 may be formed at −1).
도 26 및 도 27을 참조하면, 격벽(627-1)은 두께 방향(z축 방향)으로 연장되는 평판 형태이며, 도 27에 도시된 바와 같이, xy 평면을 기준으로 x축 및 y축 방향으로 번갈아가며 복수 회 절곡되는 형태일 수 있다. 즉, 음파가 빙빙 도는 경로를 유도하도록 격벽(627-1)에 개방부(629-1)가 배치될 수 있다. 이에 따라, 홀(625-1)로 입사된 음파는 두께 방향인 z축 방향으로 진행되지 않고 x축 및 y축 방향으로 번갈아가며 복수 회 절곡되는 경로로 진행될 수 있다. 26 and 27, the partition wall 627-1 is in the form of a flat plate extending in the thickness direction (z-axis direction), and as shown in FIG. 27, in the x-axis and y-axis directions with respect to the xy plane. Alternately, it may be in a form of bending multiple times. That is, the opening 629-1 may be disposed in the partition wall 627-1 so as to induce a path in which sound waves turn round. Accordingly, the sound waves incident on the hole 625-1 may not travel in the z-axis direction, which is the thickness direction, but may travel in a path that is alternately bent several times in the x- and y-axis directions.
예를 들어, 도 27을 참조하면, 격벽(627-1)은 x축 및 y축 방향으로 연장되어 xy 평면을 기준으로 내부 공간을 격자 형태로 구획하는 형태인데, 이 때, 개방부(629-1)는 x축 및 y축 방향으로 연장되는 격벽(627-1)이 연속적으로 연결되지 않도록 중간 중간 비워져 있는 형태로 형성될 수 있다.For example, referring to FIG. 27, the partition wall 627-1 extends in the x-axis and y-axis directions to partition the internal space in a lattice form based on the xy plane, wherein the opening portion 629- 1) may be formed in a form in which the intermediate wall 627-1 extending in the x- and y-axis directions is emptied so as not to be continuously connected.
도 26 및 도 27을 참조하면, xy 평면을 기준으로 음파의 경로가 반시계 방향 또는 시계 방향으로 빙빙 도는 형태일 수 있다. 이를 통해 제 1 헬름홀츠 공명기(620-1)의 내부 공간을 진행하는 음파의 경로를 극대화시킬 수 있기 때문에, 제 1 헬름홀츠 공명기(620-1)의 두께를 매우 얇게 설계할 수 있다. 더 나아가, 제 6 실시예의 경우, 격벽(627-1)이 내부 공간을 더욱 세밀하게 구획하는 형태가 될수록, 열점성 효과가 커지고 음파의 경로를 더 연장시킬 수 있으며, 결국 동일한 목적 주파수를 높은 흡음율로 흡음하고자 할 때 흡음 장치(100)의 두께를 더 얇게 구현할 수 있다.Referring to FIGS. 26 and 27, the path of the sound wave may rotate around the xy plane in a counterclockwise or clockwise direction. As a result, the path of the sound waves traveling through the inner space of the first Helmholtz resonator 620-1 may be maximized, and thus the thickness of the first Helmholtz resonator 620-1 may be designed to be very thin. Furthermore, in the case of the sixth embodiment, the more partitioned the partition 627-1 partitions the internal space, the greater the thermal viscosity effect and the longer the path of the sound waves, and thus, the higher the sound absorption rate at the same target frequency. When the sound absorption is to be carried out, the thickness of the sound absorbing device 100 may be implemented to be thinner.
도 26 및 도 27에서는 제 6 실시예에 따른 흡음 셀(C6)을 구성하는 네 개의 헬름홀츠 공명기(620) 중 제 1 헬름홀츠 공명기(620-1) 만을 도시하였으나, 제 2 내지 4 헬름홀츠 공명기(620-2 ~ 620-4)의 경우도 제 1 헬름홀츠 공명기(620-1)와 동일한 구조의 격벽이 구비될 수 있다. 예를 들어, 쌍을 이루는 헬름홀츠 공명기 간에 x축에 대칭인 홀의 위치 및 격벽의 구조를 가질 수 있다. 즉, 제 2 헬름홀츠 공명기(620-2)의 격벽(627-2)은 제 1 헬름홀츠 공명기(620-1)의 격벽(627-1)과 x축에 대칭되는 구조이며, 또한, 제 1, 2 헬름홀츠 공명기(620-1, 620-2)의 격벽(627-1, 627-2)은 제 3, 4 헬름홀츠 공명기(620-3, 620-4)의 격벽과 y축에 대칭되는 구조일 수 있다.26 and 27 illustrate only the first Helmholtz resonators 620-1 of the four Helmholtz resonators 620 constituting the sound absorption cell C6 according to the sixth embodiment, but the second to fourth Helmholtz resonators 620- 2 to 620-4), a partition wall having the same structure as that of the first Helmholtz resonator 620-1 may be provided. For example, a pair of Helmholtz resonators may have a structure of a partition and a position of a hole symmetrical on the x-axis. That is, the partition 627-2 of the second Helmholtz resonator 620-2 has a structure that is symmetrical to the partition 627-1 of the first Helmholtz resonator 620-1 and the x-axis, and the first and the second The partitions 627-1 and 627-2 of the Helmholtz resonators 620-1 and 620-2 may have a structure symmetrical to the partition walls and the y-axis of the third and fourth Helmholtz resonators 620-3 and 620-4. .
본 발명의 제 6 실시예에 따른 흡음 장치(100)를 설계하는 경우에 이중 주파수의 흡음을 목적으로 한다면, 도 25에서 서로 인접한 제 1, 2 헬름홀츠 공명기(620-1, 620-2)의 홀(625-1, 625-2)의 크기, 즉 r1, r2의 값을 조절하여 하나의 목적 주파수를 가지는 음파를 완벽히 흡음할 수 있도록 설계하고, 서로 인접한 제 3, 4 헬름홀츠 공명기(620-3, 620-4)의 홀(625-3, 625-4)의 크기, 즉 r3, r4를 조절하여 다른 하나의 목적 주파수를 가지는 음파를 완벽히 흡음할 수 있도록 설계할 수 있다. 이를 위해, 두 개의 목적 주파수에 대하여 계산한 흡음 장치(100)에서의 임피던스와 외부 공기의 임피던스 간의 차이가 최소가 되도록 최적화 알고리즘을 통하여 r1, r2, r3, r4 값을 조절할 수 있음은, 전술한 실시예에서와 동일하다.In the case of designing the sound absorbing device 100 according to the sixth embodiment of the present invention, for the purpose of sound absorption at the dual frequency, the holes of the first and second Helmholtz resonators 620-1 and 620-2 adjacent to each other in FIG. The third and fourth Helmholtz resonators 620- are designed to completely absorb sound waves having a single target frequency by adjusting the magnitudes of 625-1 and 625-2, that is, r 1 and r 2 . The size of the holes 625-3 and 625-4, ie, r 3 and r 4 , of 3 and 620-4 may be adjusted to completely absorb sound waves having another target frequency. To this end, the values of r 1 , r 2, r 3 , and r 4 can be adjusted through an optimization algorithm such that the difference between the impedance in the sound absorbing device 100 calculated for the two target frequencies and the impedance of the outside air is minimized. Is the same as in the above-described embodiment.
도 28은 본 발명의 제 6 실시예에 따른 흡음 장치의 흡음 성능을 나타낸 그래프이다. 도 28은 앞서 설명한 방식을 이용하여 흡음 장치(100)를 설계한 후, 이에 대한 흡음 성능을 나타낸 것이다. 보다 상세히, 도 26에서, a=17.75 mm, b=17.75 mm, l=5 mm, D=149 mm, H=23.75 mm 로 고정하고, 목적 주파수를 200 Hz, 250 Hz 로 하여, 최적화 알고리즘을 통해 r1=2.21 mm, r2=2.24 mm, r3=3.68 mm, r4=3.77 mm 를 도출하여 제 6 실시예에 따른 흡음 장치(100)를 설계하였고, 이에 대한 흡음 성능을 이론값, 및 수치해석 결과값으로 각각 나타내었다. 28 is a graph showing sound absorption performance of the sound absorbing device according to the sixth embodiment of the present invention. 28 illustrates the sound absorption performance after designing the sound absorbing device 100 using the method described above. More specifically, in Fig. 26, a = 17.75 mm, b = 17.75 mm, l = 5 mm, D = 149 mm, H = 23.75 mm, and the target frequency 200 Hz, 250 Hz, through an optimization algorithm The sound absorbing device 100 according to the sixth embodiment was designed by deriving r 1 = 2.21 mm, r 2 = 2.24 mm, r 3 = 3.68 mm, r 4 = 3.77 mm, and the sound absorption performance of the theoretical value, and The numerical results are shown respectively.
도 28을 참조하면, 본 발명의 제 6 실시예에 따른 흡음 장치(100)는 복수의 주파수에서 높은 흡음 효과를 발휘함을 확인할 수 있는데, 200 Hz, 250 Hz 두 가지 주파수에서 흡음 계수(aMS)가 0.95 이상이므로, 95% 이상의 흡음률을 발휘할 수 있음을 확인할 수 있다. 또한, 흡음 장치(100)의 두께를 대폭 줄일 수 있게 되어, 80% 이상의 흡음률을 가지는 최저주파수인 196 Hz 기준으로, 입사 파장 대비 흡음 장치(100)의 두께는 1/73.7 배이다. 따라서, 제 3 실시예와 유사하게 이중 주파수에 대하여 높은 흡음률을 가지면서도, 제 3 실시예에 비해 매우 얇은 흡음 장치(100)를 구현할 수 있음을 확인할 수 있다.Referring to Figure 28, the sound-absorbing device 100 in accordance with a sixth embodiment of the present invention may determine that exert a high sound absorption effect at a plurality of frequencies, 200 Hz, 250 Hz two kinds of sound absorption coefficient at a frequency (a MS ) Is 0.95 or more, it can be seen that the sound absorption of 95% or more. In addition, the thickness of the sound absorbing device 100 can be greatly reduced, and the sound absorbing device 100 has a thickness of 1 / 73.7 times compared to the incident wavelength on the basis of 196 Hz, which is the lowest frequency having a sound absorption rate of 80% or more. Accordingly, similar to the third embodiment, it can be seen that the sound absorption device 100 having a very high sound absorption rate for the dual frequency can be implemented compared to the third embodiment.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.
- 부호의 설명 -Description of the sign
100 흡음 장치100 sound absorbing device
120, 220, 320, 420, 520, 620 헬름홀츠 공명기120, 220, 320, 420, 520, 620 Helmholtz resonators
125, 225, 325, 425, 525, 625 홀125, 225, 325, 425, 525, 625 holes
C, C1, C2, C3, C4, C5, C6 흡음 셀C, C1, C2, C3, C4, C5, C6 Sound Absorption Cells
S 음파S sound wave

Claims (19)

  1. 평면 상에 배열된 복수의 헬름홀츠 공명기를 포함하며,A plurality of Helmholtz resonators arranged on a plane,
    상기 복수의 헬름홀츠 공명기 각각은, Each of the plurality of Helmholtz resonators,
    두께 방향으로 홀이 관통된 소정 두께의 목부; 및 상기 목부에 연결되어 상기 홀을 통해 음파가 연통되는 내부 공간이 마련된 챔버부;를 포함하고, 인접한 헬름홀츠 공명기 중 적어도 하나와 서로 다른 공명 주파수를 가지는, 흡음 장치.A neck having a predetermined thickness through which a hole passes in the thickness direction; And a chamber part connected to the neck and provided with an inner space in which sound waves are communicated through the hole, wherein the chamber part has a different resonance frequency from at least one of the adjacent Helmholtz resonators.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 복수의 헬름홀츠 공명기 중 적어도 하나의 상기 내부 공간에는 상기 음파의 진행 방향을 가이드하는 격벽이 구비되는, 흡음 장치.Sound absorbing device is provided with a partition wall for guiding the traveling direction of the sound wave in the inner space of at least one of the plurality of Helmholtz resonators.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 복수의 헬름홀츠 공명기 각각은, 상기 인접한 헬름흘츠 공명기와 상기 홀의 크기, 상기 목부의 두께, 및 상기 내부 공간의 부피 중 적어도 하나가 서로 다른, 흡음 장치.Each of the plurality of Helmholtz resonators is a sound absorbing device, wherein at least one of the size of the adjacent Helmholtz resonator and the hole, the thickness of the neck, and the volume of the inner space are different.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 복수의 헬름홀츠 공명기는 동일한 크기의 정사각기둥 형태이며,The Helmholtz resonators are in the form of square pillars of the same size,
    네 개의 헬름홀츠 공명기가 격자 형태로 배열되어 하나의 흠음 셀을 형성하며,Four Helmholtz resonators are arranged in a grid to form one flaw cell,
    복수 개의 상기 흡음 셀이 상기 평면 상에 격자 형태로 배열되는, 흠음 장치.A flaw device, in which a plurality of said sound absorbing cells are arranged in a lattice form on said plane.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 네 개의 헬름홀츠 공명기 중 서로 면이 접하는 헬름홀츠 공명기 간에는 상기 홀의 크기가 서로 다르게 형성되는, 흡음 장치.Sound absorbing device of the four Helmholtz resonators are formed with different sizes of the hole between the Helmholtz resonators in contact with each other.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 네 개의 헬름홀츠 공명기는 각각 상기 홀의 크기가 서로 다르게 형성되는, 흡음 장치.The four Helmholtz resonators are each formed of a different size of the hole, sound absorbing device.
  7. 제 5 항에 있어서,The method of claim 5,
    상기 네 개의 헬름홀츠 공명기가 상기 내부 공간의 부피와 상기 목부의 두께가 서로 동일한, 흡음 장치.And the four Helmholtz resonators have the same volume as that of the inner space and the thickness of the neck.
  8. 제 4 항에 있어서,The method of claim 4, wherein
    상기 흡음 셀은 흡음 주파수가 두 개 이상인, 흡음 장치.The sound absorbing cell has a sound absorbing frequency of two or more.
  9. 제 2 항에 있어서,The method of claim 2,
    상기 격벽에는 상기 음파가 통과할 수 있는 개방부가 형성되고,The partition is formed with an opening through which the sound wave can pass,
    상기 격벽이 구비된 헬름홀츠 공명기에서, 상기 챔버부의 내면과 상기 격벽에 의해 상기 내부 공간을 진행하는 상기 음파의 경로가 규정되는, 흠음 장치.In the Helmholtz resonator provided with the said partition, the path | route of the said sound wave which advances the said inner space by the inner surface of the said chamber part, and the said partition is defined.
  10. 제 2 항에 있어서,The method of claim 2,
    상기 격벽에 의하여 상기 음파의 진행 방향이 적어도 한 번 변경되도록 가이드되는, 흡음 장치.The sound absorption device is guided so that the traveling direction of the sound wave is changed at least once by the partition wall.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 복수의 헬름홀츠 공명기는 여덟 개의 헬름홀츠 공명기이고, 일부는 다른 일부와 상기 음파의 경로의 길이가 서로 다르며,The plurality of Helmholtz resonators are eight Helmholtz resonators, some of which are different from each other and the length of the path of the sound waves,
    상기 여덟 개의 헬름홀츠 공명기가 서로 인접하여 정사각기둥 형태의 하나의 흡음 셀을 형성하고, The eight Helmholtz resonators are adjacent to each other to form a single sound-absorbing cell in the form of a square column,
    복수의 상기 흡음 셀이 상기 평면 상에 격자 형태로 배열되는, 흠음 장치.A flaw device, in which a plurality of said sound absorbing cells are arranged in a lattice form on said plane.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 여덟 개의 헬름홀츠 공명기는 The eight Helmholtz resonators
    동일한 높이의 다각기둥 형태이고, 상기 홀의 크기가 서로 다르게 형성되는, 흡음 장치.Sound absorption device of the same height polygonal column shape, the size of the hole is formed different.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 여덟 개의 헬름홀츠 공명기 중 두 개씩의 헬름홀츠 공명기가 인접하게 배열되어 동일한 크기의 네 개의 정사각기둥 형태를 형성하고, 상기 네 개의 정사각기둥 형태가 인접하게 배열되어 상기 흡음 셀을 형성하는, 흡음 장치.And two Helmholtz resonators of each of the eight Helmholtz resonators arranged adjacent to form four square pillars of the same size, and the four square pillar shapes arranged adjacent to form the sound absorbing cell.
  14. 제 11 항에 있어서,The method of claim 11,
    상기 여덟 개의 헬름홀츠 공명기는 적어도 세 개의 서로 다른 상기 음파의 경로의 길이를 가지는, 흡음 장치.And the eight Helmholtz resonators have a length of at least three different paths of the sound wave.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 흡음 셀은 흡음 주파수가 네 개 이상인, 흡음 장치.The sound absorbing device has a sound absorption frequency of four or more.
  16. 제 9 항에 있어서,The method of claim 9,
    상기 격벽은 상기 두께 방향으로 연장되고, 상기 평면 상에서 상기 내부 공간을 동일 면적으로 구획하며,The partition wall extends in the thickness direction and partitions the internal space on the plane in the same area,
    상기 음파의 경로는 상기 개방부를 통하여 연결되는, 흡음 장치.A sound absorbing device, the path of the sound wave is connected through the opening.
  17. 제 1 항에 있어서,The method of claim 1,
    상기 평면은 입사하는 음파의 방향에 수직하고,The plane is perpendicular to the direction of the incident sound wave,
    상기 홀은 상기 음파를 향하도록 배열되는, 흠음 장치.Wherein the hole is arranged to face the sound wave.
  18. 제 1 항에 있어서,The method of claim 1,
    상기 복수의 헬름홀츠 공명기 각각의 두께는 상기 음파의 파장보다 작은, 흡음 장치.And a thickness of each of the plurality of Helmholtz resonators is smaller than the wavelength of the sound wave.
  19. 제 1 항에 있어서,The method of claim 1,
    상기 음파는 서로 인접한 헬름홀츠 공명기에서 반사되는 위상이 서로 달라 상쇄 간섭을 일으키는, 흡음 장치.The sound wave is a sound absorbing device, the phases reflected from the Helmholtz resonators adjacent to each other to cause a destructive interference.
PCT/KR2018/011196 2018-03-19 2018-09-20 Sound absorption device WO2019182213A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180031540A KR20190109893A (en) 2018-03-19 2018-03-19 Sound absorbing apparatus
KR10-2018-0031540 2018-03-19
KR10-2018-0109256 2018-09-12
KR1020180109256A KR102116466B1 (en) 2018-09-12 2018-09-12 Sound absorbing apparatus

Publications (1)

Publication Number Publication Date
WO2019182213A1 true WO2019182213A1 (en) 2019-09-26

Family

ID=67986274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011196 WO2019182213A1 (en) 2018-03-19 2018-09-20 Sound absorption device

Country Status (1)

Country Link
WO (1) WO2019182213A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111105774A (en) * 2019-10-29 2020-05-05 同济大学 Helmholtz resonator and low-frequency broadband sound absorption and noise reduction structure based on same
CN111696504A (en) * 2020-06-01 2020-09-22 西安交通大学 Petal-shaped inner insertion tube type underwater Helmholtz resonance cavity structure
CN111696508A (en) * 2020-06-01 2020-09-22 西安交通大学 Coarse inner insertion tube type Helmholtz resonance sound absorption structure
CN111696507A (en) * 2020-06-01 2020-09-22 西安交通大学 Underwater sound absorption inner insertion tube type Helmholtz resonance cavity structure modified by damping layer
CN112103975A (en) * 2020-09-11 2020-12-18 南京大学 Acoustic topological energy storage structure based on resonator kagome array
CN112669802A (en) * 2020-12-11 2021-04-16 南京光声超构材料研究院有限公司 Sound absorption structure and sound absorption device
CN113096626A (en) * 2021-03-30 2021-07-09 南京光声超构材料研究院有限公司 Silent box
CN113362796A (en) * 2021-05-10 2021-09-07 西安交通大学 Two-way rough inner insertion tube type Helmholtz resonance sound absorption structure
CN113362799A (en) * 2021-03-29 2021-09-07 浙江工业大学 Directional propagation and local control method for broadband acoustic energy in acoustic waveguide
CN113393827A (en) * 2021-06-08 2021-09-14 北京航空航天大学 Active/passive control Helmholtz resonator for changing sound absorption frequency
US11867139B1 (en) 2022-06-17 2024-01-09 Blue Origin, Llc Multi-volume acoustic resonator for rocket engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273938A (en) * 1997-03-31 1998-10-13 Tokai Rubber Ind Ltd Sound absorbing member
JP2004219555A (en) * 2003-01-10 2004-08-05 Nagata Acoustics Inc Wide-band sound absorbing plate and sound absorbing device
JP2010097147A (en) * 2008-10-20 2010-04-30 Yamaha Corp Sound absorbing structure, sound absorbing structure group and acoustic room
KR101422113B1 (en) * 2013-04-26 2014-07-22 목포해양대학교 산학협력단 Soundproof wall which has overlapped resonant chambers around air or water passage that makes air or water pass freely

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273938A (en) * 1997-03-31 1998-10-13 Tokai Rubber Ind Ltd Sound absorbing member
JP2004219555A (en) * 2003-01-10 2004-08-05 Nagata Acoustics Inc Wide-band sound absorbing plate and sound absorbing device
JP2010097147A (en) * 2008-10-20 2010-04-30 Yamaha Corp Sound absorbing structure, sound absorbing structure group and acoustic room
KR101422113B1 (en) * 2013-04-26 2014-07-22 목포해양대학교 산학협력단 Soundproof wall which has overlapped resonant chambers around air or water passage that makes air or water pass freely

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RYOO, HYEON BIN ET AL.: "Dual-frequency sound-absorbing metasurface based on visco-thermal effects with frequency dependence", JOURNAL OF APPLIED PHYSICS, vol. 123, no. 11, 21 March 2018 (2018-03-21), XP012227183, doi:10.1063/1.5017540 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111105774A (en) * 2019-10-29 2020-05-05 同济大学 Helmholtz resonator and low-frequency broadband sound absorption and noise reduction structure based on same
CN111696507B (en) * 2020-06-01 2023-03-28 西安交通大学 Underwater sound absorption inner insertion tube type Helmholtz resonance cavity structure modified by damping layer
CN111696504A (en) * 2020-06-01 2020-09-22 西安交通大学 Petal-shaped inner insertion tube type underwater Helmholtz resonance cavity structure
CN111696508A (en) * 2020-06-01 2020-09-22 西安交通大学 Coarse inner insertion tube type Helmholtz resonance sound absorption structure
CN111696507A (en) * 2020-06-01 2020-09-22 西安交通大学 Underwater sound absorption inner insertion tube type Helmholtz resonance cavity structure modified by damping layer
CN111696504B (en) * 2020-06-01 2023-03-28 西安交通大学 Petal-shaped inner insertion tube type underwater Helmholtz resonance cavity structure
CN111696508B (en) * 2020-06-01 2023-03-28 西安交通大学 Coarse inner intubation type Helmholtz resonance sound absorption structure
CN112103975A (en) * 2020-09-11 2020-12-18 南京大学 Acoustic topological energy storage structure based on resonator kagome array
CN112669802A (en) * 2020-12-11 2021-04-16 南京光声超构材料研究院有限公司 Sound absorption structure and sound absorption device
CN113362799A (en) * 2021-03-29 2021-09-07 浙江工业大学 Directional propagation and local control method for broadband acoustic energy in acoustic waveguide
CN113362799B (en) * 2021-03-29 2022-03-18 浙江工业大学 Directional propagation and local control method for broadband acoustic energy in acoustic waveguide
CN113096626A (en) * 2021-03-30 2021-07-09 南京光声超构材料研究院有限公司 Silent box
CN113362796A (en) * 2021-05-10 2021-09-07 西安交通大学 Two-way rough inner insertion tube type Helmholtz resonance sound absorption structure
CN113393827A (en) * 2021-06-08 2021-09-14 北京航空航天大学 Active/passive control Helmholtz resonator for changing sound absorption frequency
CN113393827B (en) * 2021-06-08 2022-05-10 北京航空航天大学 Active/passive control Helmholtz resonator for changing sound absorption frequency
US11867139B1 (en) 2022-06-17 2024-01-09 Blue Origin, Llc Multi-volume acoustic resonator for rocket engine

Similar Documents

Publication Publication Date Title
WO2019182213A1 (en) Sound absorption device
KR20200030413A (en) Sound absorbing apparatus
JP4611431B1 (en) Laser irradiation apparatus and laser processing method
WO2019124769A1 (en) Optical system and wearable display apparatus having the same
CA2288290A1 (en) Adjustable optical attenuator
WO2017026741A1 (en) Method for manufacturing shadow mask using hybrid processing method, and shadow mask manufactured thereby
WO2016199971A1 (en) Line beam forming device
KR840006704A (en) Fiber Optic Switch and Discontinuous Variable Delay Lines
NL7802167A (en) PROCEDURE FOR MANUFACTURING OPTICAL WAVE GUIDES FROM GLASS AND WAVE GUIDES AS SUCH OBTAINED.
IT1115594B (en) PREFORM FOR SILICA FIBER OPTICS AND PROCEDURE FOR THE MANUFACTURE OF THE SAME
SE8503825D0 (en) POLARIZATION INDEPENDENT ELECTROOPTIC SWITCH
WO2021029568A1 (en) Substrate for display
ITTO20080573A1 (en) SCRIBING LASER PLANT FOR THE SURFACE TREATMENT OF MAGNETIC SIDES WITH ELLIPTICAL SECTION SPOT
US20200230741A1 (en) Laser crystallizing apparatus
IT1264513B1 (en) PROCEDURE AND DEVICE FOR PROCESSING MATERIALS BY MEANS OF A HIGH ENERGY LASER BEAM, AS WELL AS APPLICATIONS THEREOF
KR890013913A (en) Optical device for optical transmission system
WO2024019249A1 (en) Particle measurement device
CN108611957A (en) A kind of period composite construction box beam
WO2024019250A1 (en) Particle measurement device
WO2024019248A1 (en) Particle measuring device
WO2020262850A1 (en) Display apparatus
WO2021118327A2 (en) Laser processing apparatus and method using laser beams of different wavelengths
JPH08174244A (en) Method for cutting off substrate member and device thereof
KR950034382A (en) Color cathode ray tube with enhanced focus
WO2022060188A1 (en) Sound absorbing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910977

Country of ref document: EP

Kind code of ref document: A1