WO2019182207A1 - Lithium superionic conductor-based ammonia synthesis method - Google Patents

Lithium superionic conductor-based ammonia synthesis method Download PDF

Info

Publication number
WO2019182207A1
WO2019182207A1 PCT/KR2018/009908 KR2018009908W WO2019182207A1 WO 2019182207 A1 WO2019182207 A1 WO 2019182207A1 KR 2018009908 W KR2018009908 W KR 2018009908W WO 2019182207 A1 WO2019182207 A1 WO 2019182207A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
ammonia
cathode
ammonia synthesis
thin film
Prior art date
Application number
PCT/KR2018/009908
Other languages
French (fr)
Korean (ko)
Inventor
윤형철
유충열
김종남
김귀용
한종인
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2019182207A1 publication Critical patent/WO2019182207A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/026Preparation of ammonia from inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Definitions

  • the present invention relates to ammonia synthesis, and to a method for synthesizing ammonia based on lithium superion conductors.
  • Ammonia is a hydrogen and nitrogen compound with the chemical formula NH 3 , present in a gaseous state with an irritating odor at room temperature. It contains a small amount in the atmosphere, a small amount in natural water, and may be generated and present in the process of decomposing bacteria nitrogen organic matter in the soil.
  • Ammonia is used as a raw material for various chemical industries, for the production of ammonia water, and as a solvent for ionic substances.
  • renewable energy in order to meet the greenhouse gas reduction target to cope with the depletion of oil resources and to respond to climate change, the use of renewable energy is increasing.
  • Renewable energy has local ubiquitous and intermittent problems, so a means of storage and transportation is essential.
  • Ammonia and hydrogen are attracting attention as energy carriers for solving these problems.
  • Hydrogen has limited storage and transport, but ammonia is easier to store and transport than hydrogen because it is liquid at room temperature of 8.5 atm.
  • ammonia The most common method of producing ammonia is the Haber-Bosch process synthesized from hydrogen and nitrogen. In the presence of an iron or ruthenium catalyst, one nitrogen molecule and three hydrogen molecules combine to form two ammonia molecules as shown in Formula 1 below. It is an exothermic process that generates. However, this is a large industrial process but has a low ammonia yield of 10-20% and requires additional energy and hydrogen.
  • electrochemical ammonia synthesis using ion-conducting oxide electrolytes has been proposed, and electrochemical ammonia synthesis using electrolytes using water and nitrogen as raw materials has been actively studied (Marnellos et al. ).
  • an electrolytic cell based on an aqueous electrolyte undergoes a series of processes as shown in the following formula (2), in which water is decomposed at an anode and divided into hydrogen ions and electrons (2-1) and hydrogen. It includes a reaction (2-2) in which ions and electrons reduce nitrogen molecules to produce ammonia. Since the final product of the ammonia electrochemical synthesis method is only ammonia and oxygen, there is no carbon emission.
  • the main limiting reaction in the electrochemical ammonia synthesis reaction is a step of reducing nitrogen molecules, which are reactions on the reduction electrode, to ammonia, which is caused by the strong triple bond of the nitrogen molecules.
  • the cathode reaction often generates hydrogen instead of the nitrogen reduction reaction. Indeed, current efficiency is known to be less than 1% when using electrolytic based systems (R. Lan et al.).
  • US Patent No. 7111442 and European Patent No. 972855 relate to an ammonia synthesis apparatus, and discloses an ammonia synthesis apparatus for synthesizing ammonia by using a proton conductive solid oxide as an electrolyte and applying an external current.
  • the above patents require the use of a solid oxide electrolyte, which requires a high operating temperature, which is difficult to obtain a high yield since the temperature at which ammonia can be decomposed into hydrogen and nitrogen gas.
  • US Patent No. 8916123 discloses ammonia synthesis method using an ammonia synthesis cell partitioned into a cathode and an anode by a lithium ion conductor. However, this has a problem in that the ammonia synthesis yield is low due to side reaction between lithium and a solvent or corrosion of a lithium conductor by lithium.
  • the present invention has been made to solve the above-mentioned conventional problems, to provide a lithium superion conductor-based ammonia synthesis method that can obtain a high ammonia synthesis yield.
  • the present inventors have found that the ammonia synthesis method based on lithium superion conductors can be used to optimize the ammonia synthesis conditions required for each step to synthesize ammonia with a high yield, thus completing the present invention.
  • the present invention is a lithium superion conductor-based ammonia synthesis method, the method comprising the steps of: preparing a lithium thin metal plate on the cathode using an electrochemical cell in which the anode portion and the cathode portion are partitioned by the lithium superion conductor; Washing the lithium thin film metal plate; A step of manufacturing a lithium nitride thin film metal plate for forming lithium nitride (Li 3 N) on the lithium thin film by heating the lithium thin film metal plate passed through the washing step in a nitrogen atmosphere reactor; And supporting the lithium nitride thin film metal plate in an acid solution to synthesize ammonia, wherein the anode portion includes an anode and an anode solution, and the cathode portion includes a cathode and a cathode solution.
  • the anolyte is an aqueous solution of Li 2 SO 4 , and lithium ions passed by the lithium superion conductor are coated on the cathode, and the reduction electrode solution includes a lithium salt, an organic solvent, and an additive. Provide a synthesis method.
  • the present invention also provides a method for synthesizing ammonia using a lithium superion conductor-based compartmental ammonia synthesizing apparatus, wherein the method is based on a rotary cathode and has a first compartment, a second compartment, and A cylindrical reaction device divided into a third compartment, comprising: placing an anode and a superion conductor in an electrolyte including an additive in the first compartment so as to face the cathode and electrodepositing a lithium thin film on the cathode; Rotating the portion in which the lithium thin film is formed to supply a nitrogen gas and heating the second compartment to form a lithium nitride thin film; And rotating the portion in which the lithium nitride thin film is formed into a third compartment and contacting with an acid solution to synthesize ammonia, wherein the electrolyte includes Li 2 SO 4 and a lithium salt, and synthesizes the ammonia.
  • Li 2 SO 4 produced in the step is supplied to the first compartment is reused, the
  • the present invention also provides a method for preparing a lithium thin metal plate on the cathode, wherein the lithium electrode is electrodeposited (electrodeposition) on one surface of the cathode, a lithium superion conductor-based ammonia synthesis method.
  • the anode is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, At least one alloy selected from the group consisting of W, Re, Os, Ir, Pt, and Au, and the cathode is at least one selected from the group consisting of Ti, Mo, Fe, Co, Ni, Cu, Ag, and Zn A method of synthesizing ammonia based on lithium superion conductors, which is an alloy.
  • the lithium salt is lithium perchlorate, lithium dithionite, lithium sulfate, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium bromide and lithium chloride, lithium bistrifluoromethanesulfonylimide ( LiTFSI), lithium bisfluoromethanesulfonylimide (LiFSI), and lithium bisoxalatoborate (LiBOB) provide at least one lithium superion conductor based ammonia synthesis method.
  • LiTFSI lithium bistrifluoromethanesulfonylimide
  • LiFSI lithium bisfluoromethanesulfonylimide
  • LiBOB lithium bisoxalatoborate
  • the present invention also the organic solvent is a group consisting of a solvent containing propylene carbonate, ethylene carbonate, dimethyl carbonate, 1,3-dioxolane (1,3-dioxolane, DOL), dimethoxyethane (DME) Provided is a method of synthesizing ammonia based on lithium superion conductor, which is at least one selected from.
  • the present invention also provides a lithium superion conductor based, wherein the additive comprises at least one additive selected from the group consisting of sodium, potassium, cesium, rubidium, magnesium, potassium, strontium, fluoroethylene carbonate (FEC) A method for synthesizing ammonia is provided.
  • the present invention also provides a method for synthesizing ammonia based on lithium superion conductor, wherein the washing is performed using 2-methyl tetrahydrofuran.
  • the present invention also provides a lithium superion conductor based ammonia synthesis method, wherein the heating is performed at 200 ° C to 230 ° C for 30 minutes to 1 hour.
  • the present invention also provides a method for synthesizing ammonia based on lithium superion conductor, wherein the acid solution is H 2 SO 4 .
  • the present invention also provides a method for synthesizing ammonia based on lithium superion conductors, wherein the cathode is used to reuse the metal plate that has undergone the step of synthesizing the ammonia.
  • the present invention also provides a lithium superion conductor-based ammonia synthesis method for reusing the metal plate subjected to the synthesis of the ammonia to the cathode.
  • the present invention also provides a lithium superion conductor based ammonia synthesis method, wherein the electrodeposition is carried out for 5 to 20 minutes.
  • the present invention also comprises the step of synthesizing the ammonia to temporarily adjust the pH to 10 or more to convert the ammonium into ammonia gas state, the ammonium selective film is polypropylene (polypropylene, PP), polyvinyl Provided is a lithium superion conductor-based ammonia synthesis method, which is one gas permeable membrane selected from the group consisting of polyvinilidenefluoride (PVDF) and polytetrafluoroethylene (PTFE).
  • PVDF polyvinilidenefluoride
  • PTFE polytetrafluoroethylene
  • ammonia may be synthesized in high yield as the ammonia synthesis conditions required for each step are optimized.
  • FIG. 1 is a schematic diagram illustrating a method for synthesizing ammonia based on a superion conductor according to an embodiment of the present invention.
  • Figure 2 is a graph showing the synthesis rate of ammonia according to whether the washing and temperature of the lithium thin film metal plate according to an embodiment of the present invention.
  • Figure 3 is a graph showing the ammonia synthesis yield according to whether the washing and temperature of the lithium thin film metal plate according to an embodiment of the present invention.
  • Figure 4 is a graph showing the ammonia synthesis yield over time according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a continuous ammonia synthesis reactor according to an embodiment of the present invention.
  • Figure 6 is a graph comparing the amount of ammonia synthesis with or without an additive in one embodiment of the present invention.
  • the present invention is a lithium superion conductor-based ammonia synthesis method, the method, electrodeposition of lithium on one side of the cathode using an electrochemical cell in which the anode portion and the cathode portion is partitioned by the lithium superion conductor.
  • a lithium thin film metal plate To produce a lithium thin film metal plate; Washing the lithium thin film metal plate; A step of manufacturing a lithium nitride thin film metal plate for forming lithium nitride (Li 3 N) on the lithium thin film by heating the lithium thin film metal plate passed through the washing step in a nitrogen atmosphere reactor; And synthesizing ammonia by supporting the lithium nitride thin film metal plate in an acid solution.
  • Lithium super ionic conductor may be represented by the formula Li 2 + 2x Zn 1-x GeO 4 , for example Li 3.5 Zn 0.25 GeO 4 , a solid material and a lithium ion conductive material.
  • a lithium thin metal plate for ammonia synthesis is manufactured using an electrochemical cell in which an anode portion and a cathode portion are partitioned by a lithium superion conductor.
  • FIG. 1 is a schematic diagram showing a method for synthesizing ammonia of the present invention.
  • FIG. 1 (a) shows an electrochemical cell 1 using a lithium superion conductor 10.
  • An electrochemical cell 1 partitioned by a lithium superion conductor is divided into an anode portion 11 and a cathode portion 12, and the anode portion 11 includes an anode 100 and an anode liquid 110.
  • the cathode part includes a cathode 200 and an anode solution 210.
  • When voltage is applied to the anode 100 and the cathode 200 water is oxidized in the anode 100 to generate electrons as shown in Scheme 1, and the electrons move to the cathode 200 to form a lithium superion conductor (
  • the lithium ions passed through 10 are reduced on the surface of the cathode 200.
  • Lithium ions are electrodeposited with lithium metal on the surface of the reduction electrode, thereby obtaining a lithium thin film metal plate 201, which is an electrode electrode on which lithium is electrodeposited.
  • the electrodeposition may be performed for 5 to 20 minutes.
  • the anode is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W , Re, Os, Ir, Pt, and Au is at least one alloy selected from the group consisting of
  • the cathode is preferably a metal material that does not cause side reactions with Li, Ti, Mo, Fe, Co, Ni, Cu, At least one alloy selected from the group consisting of Ag and Zn.
  • the anode solution is a Li 2 SO 4 aqueous solution
  • the cathode solution is a salt capable of transferring lithium ions, such as lithium perchlorate, lithium dithionite, lithium sulfate, lithium tetrafluoroborate, or lithium hexa.
  • Solution comprising fluorophosphate, lithium bromide and lithium chloride, lithium bistrifluoromethanesulfonylimide (LiTFSI), lithium bisfluoromethanesulfonylimide (LiFSI), lithium bisoxalatoborate (LiBOB) Can be used.
  • a solvent containing propylene carbonate, ethylene carbonate, dimethyl carbonate, 1,3-dioxolane (DOL), dimethoxyethane (DME) may be used.
  • DOL 1,3-dioxolane
  • DME dimethoxyethane
  • a mixed solution of 1,3-dioxolane and dimethoxyethane containing lithium bisfluoromethanesulfonylimide may be used.
  • at least one additive selected from the group consisting of sodium, potassium, cesium, rubidium, magnesium, potassium, strontium, and fluoroethylene carbonate (FEC) may be used as the reducing electrode solution. The additive may inhibit side reactions and improve ammonia yield.
  • FIG. 1 (b) shows washing the lithium thin metal plate 201 manufactured in an electrochemical cell using the lithium superion conductor in the cleaning solution 300.
  • the washing of the lithium thin metal plate 201 may increase the ammonia synthesis yield by washing side reactions generated during the formation of the lithium thin film.
  • the wash is 2-methyl tetrahydrofuran, a simple immersion wash for 30 seconds to 120 seconds, and dried for at least 1 minute in an argon atmosphere.
  • the dried lithium thin metal plate 201 is heated in a reactor in a nitrogen atmosphere as shown in FIG. 1 (c) to form lithium nitride on the surface of the lithium thin film to produce a lithium nitride thin film metal plate 202.
  • the heating is carried out at 200 °C to 230 °C for 30 minutes to 1 hour.
  • lithium nitride may not be sufficiently produced.
  • side reactions may occur or uniform lithium nitride may be difficult to form.
  • the lithium nitride thin film metal plate 202 synthesizes ammonia as shown in FIG.
  • ammonia is synthesized as in Scheme 3.
  • the acid solution is HCl, H 2 SO 4 , HNO 3 , H 3 PO 4 , H 2 CO 3 and the like may be used, but it is preferable to use H 2 SO 4 to reuse the used solution as the anolyte 110 in the electrochemical cell 1 of the step of preparing the above-described lithium thin film metal plate.
  • the metal plate that has undergone the ammonia synthesis process can also be reused in the manufacturing process of a lithium nitride thin film metal plate by washing with a reduction electrode or an electrochemical cell.
  • the synthesized ammonia can be collected using any ammonia collection step known to those skilled in the art.
  • ammonia water is obtained by collecting ammonia using water.
  • the present invention is a method for synthesizing ammonia using the lithium superion conductor-based compartmental ammonia synthesis apparatus shown in FIG. 5.
  • the method may use a cylindrical reaction device having a rotary cathode as a central axis and divided into a first compartment, a second compartment, and a third compartment based on the cathode.
  • a cathode is rotated so that a reaction occurs in each compartment, and a compartment membrane is a membrane through which a material present in each compartment cannot pass.
  • the method using the compartment-type ammonia synthesizing apparatus comprises the steps of: placing an anode and a superion conductor facing the cathode in the electrolyte containing the additive in the first compartment and electrodepositing a lithium thin film on the cathode; Rotating the portion in which the lithium thin film is formed to supply a nitrogen gas and heating the second compartment to form a lithium nitride thin film; And rotating the portion in which the lithium nitride thin film is formed into a third compartment and contacting with an acid solution to synthesize ammonia.
  • the first compartment may in one embodiment use Li 2 SO 4 or LiOH as electrolyte, preferably Li 2 SO 4 .
  • a reaction as in Scheme 1 occurs in a section in which a lithium thin film is formed on a surface of the rotary cathode exposed to the first section.
  • the electrolyte comprises one or more additives selected from the group consisting of sodium, potassium, cesium, rubidium, magnesium, potassium, strontium, fluoroethylene carbonate (FEC).
  • the additive may inhibit side reactions and improve ammonia yield.
  • the cathode When the lithium thin film is formed on the cathode in the Li 2 SO 4 electrolyte in the first compartment, the cathode is rotated so that the portion where the lithium thin film is formed is directed to the second compartment. In the second compartment, a nitrogen gas is supplied and heat is applied to form a lithium nitride thin film.
  • the lithium nitride thin film is formed by heating at 200 ° C. to 230 ° C. for 30 minutes to 1 hour.
  • the cathode in which the lithium nitride thin film is formed rotates a portion of the lithium nitride thin film to a third compartment to synthesize ammonia.
  • the lithium nitride thin film and an acid react, and a reaction similar to that of Scheme 3 occurs to produce ammonia.
  • Li 2 SO 4 generated at this time may be supplied to the first zone for reuse, and in one embodiment, the third compartment may temporarily reduce the pH to 9.3, to separate Li 2 SO 4 from (NH 4 ) 2 SO 4 .
  • the ammonium is converted into an ammonia gas state by adjusting to 10 or more, and then ammonia may be separated using an organic and hydrophobic gas permeable membrane.
  • the gas permeable membrane may be made of polypropylene (PP), poly It is one selected from the group consisting of vinylidene fluoride (polyvinilidenefluoride, PVDF) and polytetrafluoroethylene (PTFE).
  • PP polypropylene
  • PVDF vinylidene fluoride
  • PTFE polytetrafluoroethylene
  • Ammonia was synthesized in the same order as in FIG. 1 for synthesis of ammonia based on lithium superion conductors of the present invention.
  • Pt / C was used as an anode and Ni was used as a cathode.
  • 1 ml of Li 2 SO 4 was used as the anode and 1 M was LiClO 4 propylene carbonate as the cathode. 7 ml of solution was used.
  • a lithium thin film metal plate was prepared by electrodepositing lithium on a nickel electrode for 400 to 600 seconds at 6 mA applied current at room temperature.
  • the prepared lithium thin metal plate was washed by immersing in 2-methyltetrahydrofuran (2Me-THF) for 30 seconds and dried in an argon atmosphere for 1 minute.
  • a lithium nitride thin film metal plate was manufactured by heating the washed and dried lithium thin metal plate in a nitrogen atmosphere at a nitrogen flow rate of 1000 sccm.
  • the ammonia synthesis efficiency with temperature and time was performed at various temperature conditions and times, respectively.
  • Ammonia was synthesized by simply immersing the resulting lithium nitride thin film plate in a 50 mM sulfuric acid solution at room temperature to terminate the ammonia synthesis reaction immediately after immersion.
  • FIGS. 2 to 4 and 6 The results regarding the ammonia synthesis efficiency are shown in FIGS. 2 to 4 and 6.
  • a lithium nitride thin film was formed on a lithium thin metal plate for 30 minutes at 20 ° C., 100 ° C., 180 ° C., 200 ° C., 220 ° C. and 240 ° C., respectively, and the ammonia synthesis efficiency was measured according to the lithium nitride formation temperature and the presence or absence of washing.
  • 2 is ammonia production divided by electrode area and reaction time (lithium nitride production time) according to the temperature conditions and the presence or absence of cleaning in the lithium nitride thin film sheet manufacturing step Shows the ammonia synthesis rate
  • Figure 3 shows the Faraday efficiency. Referring to FIGS.
  • lithium nitride on the lithium thin metal plate subjected to the washing step may exhibit high ammonia efficiency.
  • the ammonia synthesis efficiency according to the lithium nitride thin film formation temperature was the highest efficiency at 220 °C, side reactions at a higher temperature it is believed that the ammonia synthesis efficiency is lowered.
  • Figure 4 measures the ammonia synthesis Faraday efficiency according to the lithium nitride thin film formation time.
  • Lithium nitride thin film was formed on the washed lithium thin metal plate for 10 to 120 minutes, and simply immersed in sulfuric acid.
  • the ammonia produced from the metal plate on which lithium nitride was formed for the first 10 minutes and 20 minutes showed a sharp difference in efficiency, and the metal plate on which lithium nitride was formed over 20 minutes showed a gentle form of ammonia synthesis.
  • the Faraday efficiency was 72%.
  • the lithium superion conductor-based ammonia synthesis method of the present invention can achieve a very high synthesis efficiency of ammonia by forming lithium nitride on the electrochemically produced lithium thin metal plate and simply immersing it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention relates to a lithium superionic conductor-based ammonia synthesis method. The synthesis method can synthesize ammonia at a high yield by optimizing synthesis conditions of ammonia required for respective steps.

Description

리튬 초이온 전도체 기반의 암모니아 합성 방법Lithium Superion Conductor Based Ammonia Synthesis Method
본 발명은 암모니아 합성에 관한 것으로, 리튬 초이온 전도체 기반의 암모니아 합성 방법에 관한 것이다.The present invention relates to ammonia synthesis, and to a method for synthesizing ammonia based on lithium superion conductors.
암모니아는 화학식이 NH3인 수소와 질소화합물로 상온에서 자극적인 냄새가 나는 기체상태로 존재한다. 대기 중에 소량이 포함되어 있으며, 천연수에도 미량 함유되어 있고, 토양 중에도 세균의 질소 유기물을 분해하는 과정에서 생성되어 존재할 수 있다. Ammonia is a hydrogen and nitrogen compound with the chemical formula NH 3 , present in a gaseous state with an irritating odor at room temperature. It contains a small amount in the atmosphere, a small amount in natural water, and may be generated and present in the process of decomposing bacteria nitrogen organic matter in the soil.
암모니아는 각종 화학공업의 원료, 암모니아수의 제조, 그리고 이온성 물질에 대한 용매로 사용된다. 또한 최근 석유 자원 고갈 대비 및 기후 변화에 대응하기 위한 온실감축 목표 달성을 위하여 신재생에너지의 사용 빈도를 높여가고 있다. 신재생에너지는 지역적 편재성과 단속성의 문제점이 있어, 저장 및 이송의 수단이 필수적이다. 이러한 문제점을 해결하기 위한 에너지 캐리어(enegry carrier)로 암모니아와 수소가 주목받고 있다. 수소는 저장 및 이송에 한계가 있으나, 암모니아는 상온 8.5 기압에서 액체 상태이기 때문에 수소보다 저장 및 이송이 용이하다.Ammonia is used as a raw material for various chemical industries, for the production of ammonia water, and as a solvent for ionic substances. In addition, in order to meet the greenhouse gas reduction target to cope with the depletion of oil resources and to respond to climate change, the use of renewable energy is increasing. Renewable energy has local ubiquitous and intermittent problems, so a means of storage and transportation is essential. Ammonia and hydrogen are attracting attention as energy carriers for solving these problems. Hydrogen has limited storage and transport, but ammonia is easier to store and transport than hydrogen because it is liquid at room temperature of 8.5 atm.
암모니아를 생산하는 가장 일반적인 방법은 수소와 질소로부터 합성하는 하버-보쉬 공정으로 철 또는 루테늄 촉매의 존재 하에 하기 화학식 1과 같이 질소분자 1개와 수소분자 3개가 결합하여 암모니아 분자 2개를 만들며 100kJ의 에너지를 발생시키는 발열과정이다. 그러나 이는 대규모 산업 공정이지만 암모니아 수율이 10-20% 정도로 낮고, 추가 에너지 및 수소를 필요로 하는 단점이 있다. The most common method of producing ammonia is the Haber-Bosch process synthesized from hydrogen and nitrogen. In the presence of an iron or ruthenium catalyst, one nitrogen molecule and three hydrogen molecules combine to form two ammonia molecules as shown in Formula 1 below. It is an exothermic process that generates. However, this is a large industrial process but has a low ammonia yield of 10-20% and requires additional energy and hydrogen.
화학식 1 Formula 1
N2 + 3H2 -> 2NH3 + 100kJN 2 + 3H 2- > 2NH 3 + 100 kJ
하버-보쉬 공정의 한계를 극복하기 위해 이온전도성 산화물 전해질을 이용한 전기화학적 암모니아 합성법이 제안되었으며, 물과 질소를 원료로 사용하여 전해질을 이용한 전기화학적 암모니아 합성법이 연구가 활발히 진행되고 있다(Marnellos et al). 전기화학적 암모니아 합성법 중 수계 전해질을 기반으로 한 전해셀은 다음의 화학식 (2)와 같은 일련의 과정을 거치는데, 산화극에서 물이 분해되어 수소이온과 전자로 나뉘는 반응(2-1)과 수소이온과 전자가 질소분자를 환원시켜 암모니아를 생성하는 반응(2-2)을 포함한다. 이러한 암모니아 전기화학적 합성법의 최종 생산물은 암모니아와 산소뿐이므로 탄소배출이 전혀 없는 장점이 있다.In order to overcome the limitations of the Haber-Bosch process, electrochemical ammonia synthesis using ion-conducting oxide electrolytes has been proposed, and electrochemical ammonia synthesis using electrolytes using water and nitrogen as raw materials has been actively studied (Marnellos et al. ). In the electrochemical ammonia synthesis method, an electrolytic cell based on an aqueous electrolyte undergoes a series of processes as shown in the following formula (2), in which water is decomposed at an anode and divided into hydrogen ions and electrons (2-1) and hydrogen. It includes a reaction (2-2) in which ions and electrons reduce nitrogen molecules to produce ammonia. Since the final product of the ammonia electrochemical synthesis method is only ammonia and oxygen, there is no carbon emission.
화학식 2 Formula 2
산화극 반응: 3H2O→ 6H++3/2O2+6e- (2-1)Oxide electrode reaction: 3H 2 O → 6H + + 3 / 2O 2 + 6e - (2-1)
환원극 반응: N2+6H++6e-→ 2NH3 (2-2)Reduction electrode reaction: N 2 + 6H + + 6e - → 2NH 3 (2-2)
상기 전기화학적 암모니아 합성 반응에서 주요 제한 반응은 환원극 상 반응인 질소 분자를 암모니아로 환원시키는 단계이며, 이는 질소 분자의 강력한 삼중결합에서 기인한다. 수계 기반 전해질을 사용할 경우 환원극 반응이 질소 환원반응 대신 수소발생반응이 일어나는 경우가 많다. 실제로, 수전해 기반 시스템 사용 시 전류 효율이 1% 미만으로 알려져 있다(R. Lan et al.).The main limiting reaction in the electrochemical ammonia synthesis reaction is a step of reducing nitrogen molecules, which are reactions on the reduction electrode, to ammonia, which is caused by the strong triple bond of the nitrogen molecules. In the case of using an aqueous-based electrolyte, the cathode reaction often generates hydrogen instead of the nitrogen reduction reaction. Indeed, current efficiency is known to be less than 1% when using electrolytic based systems (R. Lan et al.).
미국 등록특허 제7811442호 및 유럽 등록특허 제972855호는 암모니아 합성장치에 관한 것으로 프로톤 전도성 고체 산화물을 전해질로 이용하고 외부 전류를 인가하여 암모니아를 합성하는 암모니아 합성 장치를 개시한다. 그러나 상기 특허들은 고체 산화물 전해질의 사용으로, 고온의 작동 조건이 필요하며 이는 암모니아가 수소 및 질소 기체로 분해될 수 있는 온도이므로 높은 수율을 얻기 어려운 단점이 있다.US Patent No. 7111442 and European Patent No. 972855 relate to an ammonia synthesis apparatus, and discloses an ammonia synthesis apparatus for synthesizing ammonia by using a proton conductive solid oxide as an electrolyte and applying an external current. However, the above patents require the use of a solid oxide electrolyte, which requires a high operating temperature, which is difficult to obtain a high yield since the temperature at which ammonia can be decomposed into hydrogen and nitrogen gas.
미국 등록특허 8916123호는 리튬이온전도체에 의해 양극 및 음극으로 구획된 암모니아 합성셀을 이용한 암모니아 합성방법을 개시한다. 그러나 이는 리튬과 용매의 부반응 또는 리튬에 의한 리튬전도체의 부식에 의해 암모니아 합성수율이 낮은 문제점이 있다.US Patent No. 8916123 discloses ammonia synthesis method using an ammonia synthesis cell partitioned into a cathode and an anode by a lithium ion conductor. However, this has a problem in that the ammonia synthesis yield is low due to side reaction between lithium and a solvent or corrosion of a lithium conductor by lithium.
따라서, 보다 수율이 높고 제조 단가가 저렴한 에너지 친화적 암모니아 합성장치가 필요하다.Therefore, there is a need for an energy-friendly ammonia synthesis apparatus with higher yield and lower manufacturing cost.
본 발명은 전술한 종래의 문제점을 해결하기 위해 안출된 것으로, 높은 암모니아 합성 수율을 얻을 수 있는 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공하고자 한다.The present invention has been made to solve the above-mentioned conventional problems, to provide a lithium superion conductor-based ammonia synthesis method that can obtain a high ammonia synthesis yield.
본 발명자들은 리튬 초이온 전도체 기반의 암모니아 합성 방법으로 각 단계별로 요구되는 암모니아 합성 조건을 최적화 하여 높은 수율로 암모니아를 합성할 수 있음을 발견하여 본 발명을 완성하기에 이르렀다. The present inventors have found that the ammonia synthesis method based on lithium superion conductors can be used to optimize the ammonia synthesis conditions required for each step to synthesize ammonia with a high yield, thus completing the present invention.
본 발명은 리튬 초이온 전도체 기반의 암모니아 합성 방법으로, 상기 방법은, 산화극부와 환원극부가 리튬 초이온 전도체에 의해 구획되는 전기화학셀을 이용하여 환원전극에 리튬박막 금속판을 제조하는 단계; 상기 리튬박막 금속판을 세척하는 단계; 상기 세척하는 단계를 거친 상기 리튬박막 금속판을 질소 분위기 반응기에서 가열하여 리튬박막에 질화리튬(Li3N)을 형성하는 질화리튬박막 금속판 제조 단계; 및 상기 질화리튬박막 금속판을 산(acid)용액에 담지하여 암모니아를 합성하는 단계를 포함하고, 상기 산화극부는 산화전극과 산화극액을 포함하고, 상기 환원극부는 환원전극과 환원극액을 포함하며, 상기 산화극액은 Li2SO4수용액이고, 리튬 초이온 전도체에 의해 통과된 리튬 이온이 환원전극에 코팅되며, 상기 환원극액은 리튬염, 유기용매 및 첨가제를 포함하는, 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공한다.The present invention is a lithium superion conductor-based ammonia synthesis method, the method comprising the steps of: preparing a lithium thin metal plate on the cathode using an electrochemical cell in which the anode portion and the cathode portion are partitioned by the lithium superion conductor; Washing the lithium thin film metal plate; A step of manufacturing a lithium nitride thin film metal plate for forming lithium nitride (Li 3 N) on the lithium thin film by heating the lithium thin film metal plate passed through the washing step in a nitrogen atmosphere reactor; And supporting the lithium nitride thin film metal plate in an acid solution to synthesize ammonia, wherein the anode portion includes an anode and an anode solution, and the cathode portion includes a cathode and a cathode solution. The anolyte is an aqueous solution of Li 2 SO 4 , and lithium ions passed by the lithium superion conductor are coated on the cathode, and the reduction electrode solution includes a lithium salt, an organic solvent, and an additive. Provide a synthesis method.
본 발명은 또한, 리튬 초이온 전도체 기반의 구획형 암모니아 합성 장치를 이용한 암모니아 합성 방법으로, 상기 방법은 회전형 환원전극을 중심축으로 하며, 상기 환원전극을 기준으로 제1 구획, 제2 구획 및 제3 구획으로 구분되는 원통형 반응 장치에 있어서, 상기 제1 구획에서 첨가제가 포함된 전해질 내에 산화전극 및 초이온전도체가 환원전극과 대향하도록 위치시키고 환원전극에 리튬박막을 전착하여 형성하는 단계; 상기 리튬박막이 형성된 부분을 제2 구획으로 회전하여 질소 기체를 공급하고 가열하여 질화리튬박막을 형성하는 단계; 및 상기 질화리튬박막이 형성된 부분을 제3 구획으로 회전하여 산(acid)용액과 접촉시켜 암모니아를 합성하는 단계를 포함하고, 상기 전해질은 Li2SO4 및 리튬염을 포함하며, 상기 암모니아를 합성하는 단계에서 생성된 Li2SO4는 제1 구획에 공급되어 재사용되고, 상기 제3 구획은 암모늄 선택성 막을 구비하는, 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공한다.The present invention also provides a method for synthesizing ammonia using a lithium superion conductor-based compartmental ammonia synthesizing apparatus, wherein the method is based on a rotary cathode and has a first compartment, a second compartment, and A cylindrical reaction device divided into a third compartment, comprising: placing an anode and a superion conductor in an electrolyte including an additive in the first compartment so as to face the cathode and electrodepositing a lithium thin film on the cathode; Rotating the portion in which the lithium thin film is formed to supply a nitrogen gas and heating the second compartment to form a lithium nitride thin film; And rotating the portion in which the lithium nitride thin film is formed into a third compartment and contacting with an acid solution to synthesize ammonia, wherein the electrolyte includes Li 2 SO 4 and a lithium salt, and synthesizes the ammonia. Li 2 SO 4 produced in the step is supplied to the first compartment is reused, the third compartment provides an ammonia synthesis method based on lithium superion conductor, provided with an ammonium selective membrane.
본 발명은 또한, 상기 환원전극에 리튬박막 금속판을 제조하는 단계는, 상기 환원전극 일면에 리튬을 전착(electrodeposition)하는, 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공한다.The present invention also provides a method for preparing a lithium thin metal plate on the cathode, wherein the lithium electrode is electrodeposited (electrodeposition) on one surface of the cathode, a lithium superion conductor-based ammonia synthesis method.
본 발명은 또한, 상기 산화전극은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, 및 Au로 이루어진 군으로부터 선택되는 하나 이상의 합금이고, 상기 환원전극은 Ti, Mo, Fe, Co, Ni, Cu, Ag 및 Zn로 이루어진 군에서 선택되는 하나 이상의 합금인, 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공한다.In addition, the present invention, the anode is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, At least one alloy selected from the group consisting of W, Re, Os, Ir, Pt, and Au, and the cathode is at least one selected from the group consisting of Ti, Mo, Fe, Co, Ni, Cu, Ag, and Zn A method of synthesizing ammonia based on lithium superion conductors, which is an alloy.
본 발명은 또한, 상기 리튬염은 리튬 퍼클로레이트, 리튬 디티오나이트, 리튬 설페이트, 리튬 테트라플루오로보레이트, 리튬 헥사플루오로포스페이드, 리튬 브로마이드 및 리튬 클로라이드, 리튬 비스트리플루오로메탄설포닐이미드 (LiTFSI), 리튬비스플루오로메탄설포닐이미드(LiFSI), 리튬비스옥살레이토보레이트(LiBOB)로 이루어진 군으로부터 선택되는 하나 이상인, 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공한다.The present invention, the lithium salt is lithium perchlorate, lithium dithionite, lithium sulfate, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium bromide and lithium chloride, lithium bistrifluoromethanesulfonylimide ( LiTFSI), lithium bisfluoromethanesulfonylimide (LiFSI), and lithium bisoxalatoborate (LiBOB) provide at least one lithium superion conductor based ammonia synthesis method.
본 발명은 또한, 상기 유기용매는 프로필렌 카보네이트, 에틸렌 카보네이트, 디메틸카보네이트, 1,3-디옥솔레인(1,3-dioxolane, DOL), 디메톡시에테인(dimethoxyethane, DME)을 포함하는 용매로 이루어진 군으로부터 선택되는 하나 이상인, 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공한다.The present invention also the organic solvent is a group consisting of a solvent containing propylene carbonate, ethylene carbonate, dimethyl carbonate, 1,3-dioxolane (1,3-dioxolane, DOL), dimethoxyethane (DME) Provided is a method of synthesizing ammonia based on lithium superion conductor, which is at least one selected from.
본 발명은 또한, 상기 첨가제는 나트륨, 칼륨, 세슘, 루비듐, 마그네슘, 칼륨, 스트론튬, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC)로 이루어진 군으로부터 선택되는 하나 이상의 첨가제 포함하는, 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공한다.The present invention also provides a lithium superion conductor based, wherein the additive comprises at least one additive selected from the group consisting of sodium, potassium, cesium, rubidium, magnesium, potassium, strontium, fluoroethylene carbonate (FEC) A method for synthesizing ammonia is provided.
본 발명은 또한, 상기 세척은 2-메틸 테트라하이드로퓨란을 이용하여 세척하는, 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공한다.The present invention also provides a method for synthesizing ammonia based on lithium superion conductor, wherein the washing is performed using 2-methyl tetrahydrofuran.
본 발명은 또한, 상기 가열은 200℃ 내지 230℃에서 30분 내지 1시간 동안 수행되는, 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공한다.The present invention also provides a lithium superion conductor based ammonia synthesis method, wherein the heating is performed at 200 ° C to 230 ° C for 30 minutes to 1 hour.
본 발명은 또한, 상기 산(acid) 용액은 H2SO4인, 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공한다.The present invention also provides a method for synthesizing ammonia based on lithium superion conductor, wherein the acid solution is H 2 SO 4 .
본 발명은 또한, 상기 환원전극은, 상기 암모니아를 합성하는 단계를 거친 금속판을 재사용하는, 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공한다.The present invention also provides a method for synthesizing ammonia based on lithium superion conductors, wherein the cathode is used to reuse the metal plate that has undergone the step of synthesizing the ammonia.
본 발명은 또한, 상기 암모니아를 합성하는 단계를 거친 금속판을 환원전극으로 재사용하는, 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공한다.The present invention also provides a lithium superion conductor-based ammonia synthesis method for reusing the metal plate subjected to the synthesis of the ammonia to the cathode.
본 발명은 또한, 상기 전착은 5 내지 20분 동안 수행하는, 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공한다.The present invention also provides a lithium superion conductor based ammonia synthesis method, wherein the electrodeposition is carried out for 5 to 20 minutes.
본 발명은 또한, 상기 암모니아를 합성하는 단계는 일시적으로 pH를 10 이상으로 조절하여 암모늄을 암모니아 기체 상태로 변환하는 단계를 더 포함하며, 상기 암모늄 선택성막은 폴리프로필렌(polypropylene, PP), 폴리비닐리덴플루오라이드(polyvinilidenefluoride, PVDF) 및 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)으로 이루어진 군에서 선택되는 하나의 가스 투과막인, 리튬 초이온 전도체 기반의 암모니아 합성 방법을 제공한다.The present invention also comprises the step of synthesizing the ammonia to temporarily adjust the pH to 10 or more to convert the ammonium into ammonia gas state, the ammonium selective film is polypropylene (polypropylene, PP), polyvinyl Provided is a lithium superion conductor-based ammonia synthesis method, which is one gas permeable membrane selected from the group consisting of polyvinilidenefluoride (PVDF) and polytetrafluoroethylene (PTFE).
본 발명의 리튬 초이온 전도체 기반의 암모니아 합성 방법은 각 단계별로 요구되는 암모니아 합성 조건을 최적화 함에 따라 높은 수율로 암모니아를 합성할 수 있다.In the lithium superion conductor-based ammonia synthesis method of the present invention, ammonia may be synthesized in high yield as the ammonia synthesis conditions required for each step are optimized.
도 1은 본 발명의 한 구현예에 따른 초이온 전도체 기반의 암모니아 합성 방법을 나타내는 개략도이다.1 is a schematic diagram illustrating a method for synthesizing ammonia based on a superion conductor according to an embodiment of the present invention.
도 2는 본 발명의 한 구현예에 따른 리튬박막 금속판의 세척 여부 및 온도에 따른 암모니아 합성속도를 나타내는 그래프이다.Figure 2 is a graph showing the synthesis rate of ammonia according to whether the washing and temperature of the lithium thin film metal plate according to an embodiment of the present invention.
도 3은 본 발명의 한 구현예에 따른 리튬박막 금속판의 세척 여부 및 온도에 따른 암모니아 합성 수율을 나타내는 그래프이다.Figure 3 is a graph showing the ammonia synthesis yield according to whether the washing and temperature of the lithium thin film metal plate according to an embodiment of the present invention.
도 4는 본 발명의 한 구현예에 따른 시간에 따른 암모니아 합성 수율을 나타내는 그래프이다.Figure 4 is a graph showing the ammonia synthesis yield over time according to an embodiment of the present invention.
도 5는 본 발명의 한 구현예에 따른 연속 암모니아 합성 반응기를 나타내는 모식도이다.5 is a schematic diagram showing a continuous ammonia synthesis reactor according to an embodiment of the present invention.
도 6은 본 발명의 한 구현에에서 첨가제의 유무에 따른 암모니아 합성량을 비교한 그래프이다.Figure 6 is a graph comparing the amount of ammonia synthesis with or without an additive in one embodiment of the present invention.
이하 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있을 정도로 바람직한 실시예를 도면을 참조하여 상세하게 설명하면 다음과 같다. 본 발명의 상세한 설명에 앞서, 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 된다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily perform the following. Prior to the description of the invention, the terms or words used in the specification and claims described below should not be construed as limiting in their usual or dictionary meanings. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only one of the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
한 양태에서 본 발명은 리튬 초이온 전도체 기반의 암모니아 합성 방법으로, 상기 방법은, 산화극부와 환원극부가 리튬 초이온 전도체에 의해 구획되는 전기화학셀을 이용하여 환원전극 일면에 리튬을 전착(electrodeposition)하여 리튬박막 금속판을 제조하는 단계; 상기 리튬박막 금속판을 세척하는 단계; 상기 세척하는 단계를 거친 상기 리튬박막 금속판을 질소 분위기 반응기에서 가열하여 리튬박막에 질화리튬(Li3N)을 형성하는 질화리튬박막 금속판 제조 단계; 및 상기 질화리튬박막 금속판을 산(acid) 용액에 담지하여 암모니아를 합성하는 단계를 포함한다. In one aspect, the present invention is a lithium superion conductor-based ammonia synthesis method, the method, electrodeposition of lithium on one side of the cathode using an electrochemical cell in which the anode portion and the cathode portion is partitioned by the lithium superion conductor. ) To produce a lithium thin film metal plate; Washing the lithium thin film metal plate; A step of manufacturing a lithium nitride thin film metal plate for forming lithium nitride (Li 3 N) on the lithium thin film by heating the lithium thin film metal plate passed through the washing step in a nitrogen atmosphere reactor; And synthesizing ammonia by supporting the lithium nitride thin film metal plate in an acid solution.
리튬 초이온 전도체(Lithium super ionic conductor, LISICON)란 화학식 Li2+2xZn1-xGeO4로 나타낼 수 있으며 예를 들면 Li3.5Zn0.25GeO4이고, 고형물이며 리튬 이온 전도성 물질이다. 본 발명에서는 리튬 초이온 전도체에 의해 산화극부와 환원극부가 구획된 전기화학셀을 이용하여 암모니아 합성에 필요한 리튬박막 금속판을 제조한다. 도 1은 본 발명의 암모니아 합성방법을 나타내는 개략도로, 도 1(a)는 리튬 초이온 전도체(10)를 사용한 전기화학셀(1)을 나타낸다. 리튬 초이온 전도체에 의해 구획된 전기화학셀(1)은 산화극부(11) 및 환원극부(12)로 나뉘며, 산화극부(11)는 산화전극(100) 및 산화극액(110)을 포함하고, 환원극부는 환원전극(200) 및 환원극액(210)을 포함한다. 산화전극(100)과 환원전극(200)에 전압을 인가하면 반응식 1과 같이 산화전극(100)에서는 물이 산화되어 전자가 발생하고, 전자는 환원전극(200)으로 이동하여 리튬 초이온 전도체(10)를 통과한 리튬이온을 환원전극(200) 표면에서 환원시킨다. 리튬이온은 환원전극 표면에 리튬금속으로 전착(electrodeposition)되며, 이에 따라 리튬이 전착된 훤원전극인 리튬박막 금속판(201)을 수득할 수 있다. 상기 전착은 5 내지 20분 동안 수행할 수 있다.Lithium super ionic conductor (LISICON) may be represented by the formula Li 2 + 2x Zn 1-x GeO 4 , for example Li 3.5 Zn 0.25 GeO 4 , a solid material and a lithium ion conductive material. In the present invention, a lithium thin metal plate for ammonia synthesis is manufactured using an electrochemical cell in which an anode portion and a cathode portion are partitioned by a lithium superion conductor. FIG. 1 is a schematic diagram showing a method for synthesizing ammonia of the present invention. FIG. 1 (a) shows an electrochemical cell 1 using a lithium superion conductor 10. An electrochemical cell 1 partitioned by a lithium superion conductor is divided into an anode portion 11 and a cathode portion 12, and the anode portion 11 includes an anode 100 and an anode liquid 110. The cathode part includes a cathode 200 and an anode solution 210. When voltage is applied to the anode 100 and the cathode 200, water is oxidized in the anode 100 to generate electrons as shown in Scheme 1, and the electrons move to the cathode 200 to form a lithium superion conductor ( The lithium ions passed through 10 are reduced on the surface of the cathode 200. Lithium ions are electrodeposited with lithium metal on the surface of the reduction electrode, thereby obtaining a lithium thin film metal plate 201, which is an electrode electrode on which lithium is electrodeposited. The electrodeposition may be performed for 5 to 20 minutes.
반응식 1 Scheme 1
환원전극: 6Li+ + 6e- → 6LiReduction electrode: 6Li + + 6e - → 6Li
산화전극: 3H2O → 3/2O2 + 6H+ + 6e- Anode: 3H 2 O → 3 / 2O 2 + 6H + + 6e -
한 구현예에서 상기 산화전극은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, 및 Au로 이루어진 군으로부터 선택되는 하나 이상의 합금이고, 상기 환원전극은 Li과 부반응을 일으키지 않는 금속 물질이 바람직하며, Ti, Mo, Fe, Co, Ni, Cu, Ag 및 Zn로 이루어진 군에서 선택되는 하나 이상의 합금이다. 상기 산화극액은 Li2SO4수용액을 사용하는 것이 바람직하며, 상기 환원극액은 리튬이온을 전달할 수 있는 염, 예를 들면 리튬 퍼클로레이트, 리튬 디티오나이트, 리튬 설페이트, 리튬 테트라플루오로보레이트, 리튬 헥사플루오로포스페이드, 리튬 브로마이드 및 리튬 클로라이드, 리튬 비스트리플루오로메탄설포닐이미드(LiTFSI), 리튬비스플루오로메탄설포닐이미드(LiFSI), 리튬비스옥살레이토보레이트(LiBOB)를 포함하는 용액을 사용할 수 있다. 전해질 용매로는 프로필렌 카보네이트, 에틸렌 카보네이트, 디메틸카보네이트, 1,3-디옥솔레인(1,3-dioxolane, DOL), 디메톡시에테인(dimethoxyethane, DME)을 포함하는 용매를 사용할 수 있다. 바람직하게는 리튬비스플루오로메탄설포닐이미드가 포함된 1,3-디옥솔레인과 디메톡시에테인의 혼합액을 사용할 수 있다. 또한, 상기 환원극액에 나트륨, 칼륨, 세슘, 루비듐, 마그네슘, 칼륨, 스트론튬, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC)로 이루어진 군으로부터 선택되는 하나 이상의 첨가제를 사용할 수 있다. 상기 첨가제는 부반응을 억제하고 암모니아 수율을 향상시킬 수 있다.In one embodiment the anode is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W , Re, Os, Ir, Pt, and Au is at least one alloy selected from the group consisting of, the cathode is preferably a metal material that does not cause side reactions with Li, Ti, Mo, Fe, Co, Ni, Cu, At least one alloy selected from the group consisting of Ag and Zn. Preferably, the anode solution is a Li 2 SO 4 aqueous solution, and the cathode solution is a salt capable of transferring lithium ions, such as lithium perchlorate, lithium dithionite, lithium sulfate, lithium tetrafluoroborate, or lithium hexa. Solution comprising fluorophosphate, lithium bromide and lithium chloride, lithium bistrifluoromethanesulfonylimide (LiTFSI), lithium bisfluoromethanesulfonylimide (LiFSI), lithium bisoxalatoborate (LiBOB) Can be used. As the electrolyte solvent, a solvent containing propylene carbonate, ethylene carbonate, dimethyl carbonate, 1,3-dioxolane (DOL), dimethoxyethane (DME) may be used. Preferably, a mixed solution of 1,3-dioxolane and dimethoxyethane containing lithium bisfluoromethanesulfonylimide may be used. In addition, at least one additive selected from the group consisting of sodium, potassium, cesium, rubidium, magnesium, potassium, strontium, and fluoroethylene carbonate (FEC) may be used as the reducing electrode solution. The additive may inhibit side reactions and improve ammonia yield.
도 1(b)는 상기 리튬 초이온 전도체를 사용한 전기화학셀에서 제조된 리튬박막 금속판(201)을 세척액(300)에 세척하는 것을 나타낸다. 리튬박막 금속판(201)의 세척은 리튬박막 형성시 생성된 부반응물 등을 세척하여, 암모니아 합성 수율을 높일 수 있다. 한 구현에에서 상기 세척액은 2-메틸 테트라하이드로퓨란이며, 30초 내지 120초 동안 단순 침지 세척하며, 아르곤 조건 분위기에서 1분 이상 건조한다. 건조된 리튬박막 금속판(201)은 리튬박막 표면에 반응식 2와 같이 질화리튬을 형성하기 위해 도 1(c)와 같이 질소 분위기의 반응기에서 가열하여 질화리튬박막 금속판(202)을 제조한다. 한 구현예에서 상기 가열은 200℃ 내지 230℃에서 30분 내지 1시간 동안 수행된다. 200℃ 이하에서 수행하면 질화리튬이 충분히 생성되지 않으며, 230℃ 이상의 경우 부반응이 일어나거나, 균일한 질화리튬 형성이 어려울 수 있다.FIG. 1 (b) shows washing the lithium thin metal plate 201 manufactured in an electrochemical cell using the lithium superion conductor in the cleaning solution 300. The washing of the lithium thin metal plate 201 may increase the ammonia synthesis yield by washing side reactions generated during the formation of the lithium thin film. In one embodiment the wash is 2-methyl tetrahydrofuran, a simple immersion wash for 30 seconds to 120 seconds, and dried for at least 1 minute in an argon atmosphere. The dried lithium thin metal plate 201 is heated in a reactor in a nitrogen atmosphere as shown in FIG. 1 (c) to form lithium nitride on the surface of the lithium thin film to produce a lithium nitride thin film metal plate 202. In one embodiment the heating is carried out at 200 ℃ to 230 ℃ for 30 minutes to 1 hour. When carried out at 200 ° C. or less, lithium nitride may not be sufficiently produced. In case of 230 ° C. or more, side reactions may occur or uniform lithium nitride may be difficult to form.
반응식 2 Scheme 2
6Li + N2 → 2Li3N6Li + N 2 → 2Li 3 N
상기 질화리튬박막 금속판(202)은 도 1(d)와 같이 암모니아를 합성한다. 질화리튬이 산용액과 접촉하면 반응식 3과 같이 암모니아가 합성된다. The lithium nitride thin film metal plate 202 synthesizes ammonia as shown in FIG. When lithium nitride is in contact with an acid solution, ammonia is synthesized as in Scheme 3.
반응식 3Scheme 3
2Li3N + 6H+ → 2NH3 + 6Li+ 2Li 3 N + 6H + → 2NH 3 + 6Li +
상기 산용액은 HCl, H2SO4, HNO3, H3PO4, H2CO3 등을 사용할 수 있으나 사용한 용액을 전술한 리튬박막 금속판을 제조하는 단계의 전기화학셀(1) 내 산화극액(110)으로 재사용하기 위해 H2SO4를 사용하는 것이 바람직하다. 상기 암모니아 합성과정을 거친 금속판 또한 전기화학셀에서 환원전극으로, 또는 세척하여 질화리튬박막 금속판 제조 단계에서 재사용 가능하다. 상기 합성된 암모니아는 당업자에 알려진 암모니아 포집공정이면 어느 것을 사용해서라도 포집할 수 있다. 본 발명의 일 구현예에서는 물을 이용하여 암모니아를 포집해 암모니아수를 수득한다. The acid solution is HCl, H 2 SO 4 , HNO 3 , H 3 PO 4 , H 2 CO 3 and the like may be used, but it is preferable to use H 2 SO 4 to reuse the used solution as the anolyte 110 in the electrochemical cell 1 of the step of preparing the above-described lithium thin film metal plate. The metal plate that has undergone the ammonia synthesis process can also be reused in the manufacturing process of a lithium nitride thin film metal plate by washing with a reduction electrode or an electrochemical cell. The synthesized ammonia can be collected using any ammonia collection step known to those skilled in the art. In one embodiment of the present invention, ammonia water is obtained by collecting ammonia using water.
또 다른 측면에서 본 발명은 도 5에 나타낸 리튬 초이온 전도체 기반의 구획형 암모니아 합성 장치를 이용한 암모니아 합성 방법이다. 상기 방법은 회전형 환원전극을 중심축으로 하며, 상기 환원전극을 기준으로 제1 구획, 제2 구획 및 제3 구획으로 구분되는 원통형 반응 장치를 사용할 수 있다. 상기 장치는 환원전극이 회전하여 각 구획에서 반응이 일어나는 것이며, 구획막은 각 구획에 존재하는 물질이 투과할 수 없는 막이다. 상기 구획형 암모니아 합성 장치를 이용한 방법은 상기 제1 구획에서 첨가제가 포함된 전해질 내에 산화전극 및 초이온전도체가 환원전극과 대향하도록 위치시키고 환원전극에 리튬박막을 전착하여 형성하는 단계; 상기 리튬박막이 형성된 부분을 제2 구획으로 회전하여 질소 기체를 공급하고 가열하여 질화리튬박막을 형성하는 단계; 및 상기 질화리튬박막이 형성된 부분을 제3 구획으로 회전하여 산(acid)용액과 접촉시켜 암모니아를 합성하는 단계를 포함한다. 상기 제1 구획은 한 구현예에서 Li2SO4 또는 LiOH를 전해질로 사용할 수 있으며, 바람직하게 Li2SO4이다. 회전형 환원전극이 제1 구획에 노출되는 표면상에 리튬박막을 형성하는 구획으로 반응식 1과 같은 반응이 일어난다. 한 구현예에서 상기 전해질에는 나트륨, 칼륨, 세슘, 루비듐, 마그네슘, 칼륨, 스트론튬, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC)로 이루어진 군으로부터 선택되는 하나 이상의 첨가제를 포함한다. 상기 첨가제는 부반응을 억제하고 암모니아 수율을 향상시킬 수 있다. In another aspect, the present invention is a method for synthesizing ammonia using the lithium superion conductor-based compartmental ammonia synthesis apparatus shown in FIG. 5. The method may use a cylindrical reaction device having a rotary cathode as a central axis and divided into a first compartment, a second compartment, and a third compartment based on the cathode. In the device, a cathode is rotated so that a reaction occurs in each compartment, and a compartment membrane is a membrane through which a material present in each compartment cannot pass. The method using the compartment-type ammonia synthesizing apparatus comprises the steps of: placing an anode and a superion conductor facing the cathode in the electrolyte containing the additive in the first compartment and electrodepositing a lithium thin film on the cathode; Rotating the portion in which the lithium thin film is formed to supply a nitrogen gas and heating the second compartment to form a lithium nitride thin film; And rotating the portion in which the lithium nitride thin film is formed into a third compartment and contacting with an acid solution to synthesize ammonia. The first compartment may in one embodiment use Li 2 SO 4 or LiOH as electrolyte, preferably Li 2 SO 4 . A reaction as in Scheme 1 occurs in a section in which a lithium thin film is formed on a surface of the rotary cathode exposed to the first section. In one embodiment the electrolyte comprises one or more additives selected from the group consisting of sodium, potassium, cesium, rubidium, magnesium, potassium, strontium, fluoroethylene carbonate (FEC). The additive may inhibit side reactions and improve ammonia yield.
제1 구획에서 Li2SO4 전해질 내의 환원전극에 리튬박막이 형성되면 환원전극을 회전하여 리튬박막이 형성된 부분이 제2 구획으로 향하게 한다. 제2 구획에서는 질소기체를 공급하고 열을 가하여 질화리튬박막을 형성시킨다. 한 구현예에서 상기 질화리튬박막은 200℃ 내지 230℃에서 30분 내지 1시간 동안 가열하여 형성된다. 상기 질화리튬박막이 형성된 환원전극은 질화리튬박막 부분을 제3 구획으로 회전하여 암모니아를 합성한다. 제3 구획에서는 질화리튬박막과 산(acid)이 반응하며, 반응식 3과 같은 반응이 일어나 암모니아가 생성된다. 이때 발생하는 Li2SO4는 제1 구역으로 공급하여 재사용할 수 있으며, 한 구현예에서 상기 제3 구획은 Li2SO4와 (NH4)2SO4를 분리하기 위해 일시적으로 pH를 9.3, 바람직하게는 10 이상으로 조절하여 암모늄을 암모니아 기체 상태로 변환한 후, 유기, 소수성 가스 투과막을 이용하여 암모니아를 분리할 수 있으며, 한 구현예에서 상기 가스 투과막은 폴리프로필렌(polypropylene, PP), 폴리비닐리덴플루오라이드(polyvinilidenefluoride, PVDF) 및 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)으로 이루어진 군에서 선택되는 하나이다.When the lithium thin film is formed on the cathode in the Li 2 SO 4 electrolyte in the first compartment, the cathode is rotated so that the portion where the lithium thin film is formed is directed to the second compartment. In the second compartment, a nitrogen gas is supplied and heat is applied to form a lithium nitride thin film. In one embodiment, the lithium nitride thin film is formed by heating at 200 ° C. to 230 ° C. for 30 minutes to 1 hour. The cathode in which the lithium nitride thin film is formed rotates a portion of the lithium nitride thin film to a third compartment to synthesize ammonia. In the third compartment, the lithium nitride thin film and an acid react, and a reaction similar to that of Scheme 3 occurs to produce ammonia. Li 2 SO 4 generated at this time may be supplied to the first zone for reuse, and in one embodiment, the third compartment may temporarily reduce the pH to 9.3, to separate Li 2 SO 4 from (NH 4 ) 2 SO 4 . Preferably, the ammonium is converted into an ammonia gas state by adjusting to 10 or more, and then ammonia may be separated using an organic and hydrophobic gas permeable membrane. In one embodiment, the gas permeable membrane may be made of polypropylene (PP), poly It is one selected from the group consisting of vinylidene fluoride (polyvinilidenefluoride, PVDF) and polytetrafluoroethylene (PTFE).
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다. All technical terms used in the present invention, unless defined otherwise, are used in the meaning as commonly understood by those skilled in the art in the related field of the present invention. The contents of all publications described herein by reference are incorporated into the present invention.
이하, 본 발명의 이해를 돕기 위해서 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다. Hereinafter, examples are provided to help understand the present invention. However, the following examples are provided only to more easily understand the present invention, and the present invention is not limited to the following examples.
실시예 1. 리튬 초이온 전도체 기반의 암모니아 합성Example 1. Ammonia Synthesis Based on Lithium Superion Conductor
본 발명의 리튬 초이온 전도체 기반의 암모니아 합성을 위해 도 1과 같은 순서로 암모니아를 합성하였다. 리튬 초이온 전도체에 의해 구획된 전기화학셀에 산화전극으로 Pt/C를, 환원전극으로 Ni을 사용하였으며, 산화극액으로 1 M의 Li2SO4 7ml, 환원극액으로 1 M의 LiClO4 프로필렌카보네이트 용액 7ml를 사용하였다. 상온에서 6 mA 인가전류로 400 내지 600초 동안 니켈전극에 리튬을 전착하여 리튬박막 금속판을 제조하였다. 제조된 리튬박막 금속판을 2-메틸테트라하이드로퓨란(2Me-THF)에서 30초간 침지하여 세척하고 1분간 아르곤 분위기에서 건조하는 세척단계를 수행하였다. 세척, 건조한 리튬박막 금속판을 질소 유량 1000 sccm의 질소 분위기에서 가열하는 질화리튬 박막 금속판 제조단계를 수행하였으며, 온도 및 시간에 따른 암모니아 합성 효율을 알아보기 위해 다양한 온도 조건 및 시간으로 각각 수행하였다. 생성된 질화리튬박막 금속판을 상온의 50 mM 황산용액에 단순히 침지하여 침지 즉시 암모니아 합성반응이 종결되는 방법으로 암모니아를 합성하였다. Ammonia was synthesized in the same order as in FIG. 1 for synthesis of ammonia based on lithium superion conductors of the present invention. In the electrochemical cell partitioned by lithium superion conductor, Pt / C was used as an anode and Ni was used as a cathode. 1 ml of Li 2 SO 4 was used as the anode and 1 M was LiClO 4 propylene carbonate as the cathode. 7 ml of solution was used. A lithium thin film metal plate was prepared by electrodepositing lithium on a nickel electrode for 400 to 600 seconds at 6 mA applied current at room temperature. The prepared lithium thin metal plate was washed by immersing in 2-methyltetrahydrofuran (2Me-THF) for 30 seconds and dried in an argon atmosphere for 1 minute. A lithium nitride thin film metal plate was manufactured by heating the washed and dried lithium thin metal plate in a nitrogen atmosphere at a nitrogen flow rate of 1000 sccm. The ammonia synthesis efficiency with temperature and time was performed at various temperature conditions and times, respectively. Ammonia was synthesized by simply immersing the resulting lithium nitride thin film plate in a 50 mM sulfuric acid solution at room temperature to terminate the ammonia synthesis reaction immediately after immersion.
암모니아 합성 효율에 관한 결과를 도 2 내지 도 4 및 도 6에 나타냈다. 20℃, 100℃, 180℃, 200℃, 220℃ 및 240℃ 온도에서 30분간 리튬박막 금속판에 질화리튬박막을 각각 생성하여 질화리튬 생성 온도 및 세척유무에 따른 암모니아 합성 효율을 측정하였다. 도 2는 질화리튬 박막 금속판 제조단계에서 온도 조건과 세척 유무에 따라 암모니아 생산량을 전극 면적 및 반응 시간(질화리튬 생성 시간)으로 나눈 암모니아 합성속도를 나타내며, 도 3은 패러데이 효율을 나타낸다. 도 2 및 도 3을 참조하면, 세척 단계를 거친 질화리튬 박막 금속판으로 암모니아를 합성하면, 대부분의 온도조건에서 높은 암모니아 생산량 및 페러데이 효율을 나타내는 것을 알 수 있다. 세척 단계를 거치지 않으면 환원극액에 포함된 프로필렌카보네이트의 잔여물로 인해 질화리튬 박막 형성을 방해되는 것으로 판단된다. 프로필렌카보네이트는 증기압이 낮아 완전한 건조 및 제거가 어려우며, 리튬과의 높은 반응성으로 인해 고온에서 질화리튬 박막 형성시 부반응이 일어나 질화리튬 박막 형성에 어려움이 있다. 그러나 2Me-THF으로 리튬박막 금속판을 세척하고 질화리튬 박막을 형성하는 경우 리튬과의 반응성이 매우 낮고, 증기압이 크기 때문에 단순 아르곤 건조만으로도 대부분을 제거할 수 있다. 따라서 세척단계를 거친 리튬박막 금속판에 질화리튬을 형성하는 것이 높은 암모니아 효율을 나타낼 수 있다. 질화리튬 박막 형성 온도에 따른 암모니아 합성효율로는 220℃에서 가장높은 효율을 나타냈으며, 그 이상의 온도에서는 부반응이 진행되어 암모니아 합성 효율이 낮아지는 것으로 판단된다. The results regarding the ammonia synthesis efficiency are shown in FIGS. 2 to 4 and 6. A lithium nitride thin film was formed on a lithium thin metal plate for 30 minutes at 20 ° C., 100 ° C., 180 ° C., 200 ° C., 220 ° C. and 240 ° C., respectively, and the ammonia synthesis efficiency was measured according to the lithium nitride formation temperature and the presence or absence of washing. 2 is ammonia production divided by electrode area and reaction time (lithium nitride production time) according to the temperature conditions and the presence or absence of cleaning in the lithium nitride thin film sheet manufacturing step Shows the ammonia synthesis rate, Figure 3 shows the Faraday efficiency. Referring to FIGS. 2 and 3, when ammonia is synthesized by the lithium nitride thin film metal plate subjected to the washing step, it can be seen that high ammonia production and Faraday efficiency are exhibited at most temperature conditions. If it is not subjected to the washing step, it is considered that the residue of propylene carbonate contained in the reducing electrode interferes with the formation of the lithium nitride thin film. Propylene carbonate has low vapor pressure, making it difficult to completely dry and remove, and due to high reactivity with lithium, side reactions occur at a high temperature to form a lithium nitride thin film. However, in the case of washing the lithium thin metal plate with 2Me-THF and forming the lithium nitride thin film, since the reactivity with lithium is very low and the vapor pressure is large, most of the lithium thin film can be removed by simple argon drying alone. Therefore, forming lithium nitride on the lithium thin metal plate subjected to the washing step may exhibit high ammonia efficiency. The ammonia synthesis efficiency according to the lithium nitride thin film formation temperature was the highest efficiency at 220 ℃, side reactions at a higher temperature it is believed that the ammonia synthesis efficiency is lowered.
도 4는 질화리튬 박막 형성 시간에 따른 암모니아 합성 패러데이 효율을 측정한 것이다. 세척한 리튬박막 금속판에 10 내지 120분 동안 질화리튬 박막 형성을 수행하였으며, 황산에 단순히 침지하였다. 그 결과 초반 10분 및 20분 동안 질화리튬을 형성한 금속판으로 제조한 암모니아는 급격한 효율 차이를 나타내고 20분 이상으로 질화리튬을 형성한 금속판은 완만한 형태의 암모니아 합성효율을 나타내어 로그 형태의 그래프로 관측되었다. 최종 120분 동안 질화리튬을 형성한 금속판을 이용한 경우 패러데이 효율 72%의 매우 높은 효율을 나타냈다. 본 발명의 리튬 초이온 전도체 기반의 암모니아 합성방법은 전기화학적으로 생성된 리튬박막 금속판에 질화리튬을 형성시키고, 이를 단순 침지하는 것으로 암모니아의 매우 높은 합성효율을 달성할 수 있다. Figure 4 measures the ammonia synthesis Faraday efficiency according to the lithium nitride thin film formation time. Lithium nitride thin film was formed on the washed lithium thin metal plate for 10 to 120 minutes, and simply immersed in sulfuric acid. As a result, the ammonia produced from the metal plate on which lithium nitride was formed for the first 10 minutes and 20 minutes showed a sharp difference in efficiency, and the metal plate on which lithium nitride was formed over 20 minutes showed a gentle form of ammonia synthesis. Observed. When the metal plate on which lithium nitride was formed in the last 120 minutes was used, the Faraday efficiency was 72%. The lithium superion conductor-based ammonia synthesis method of the present invention can achieve a very high synthesis efficiency of ammonia by forming lithium nitride on the electrochemically produced lithium thin metal plate and simply immersing it.
도 6은 세슘 첨가제를 이용한 암모니아 합성을 나타낸 것이다. 리튬박막 금속판을 제조하는 단계에서 첨가제로 세슘을 사용하여 첨가제의 첨가 여부에 따른 암모니아 합성량을 비교하였다. 세슘 첨가제는 0.03 몰농도(전체 7ml 용액 중 0.049g) 첨가하였으며, 세슘 첨가 외에는 전술한 방법과 동일하게 수행하였다. 그 결과 리튬 전착 시 세슘을 포함시킨 경우의 암모니아 합성량이 세슘의 미첨가 시보다 향상되는 것을 확인할 수 있다. 6 shows ammonia synthesis using cesium additives. In the step of preparing a lithium thin metal plate, the amount of ammonia synthesis was compared using cesium as an additive. The cesium additive was added at 0.03 molarity (0.049 g in the total 7 ml solution), and was carried out in the same manner as described above except adding cesium. As a result, it can be seen that the amount of ammonia synthesis when cesium is included in lithium electrodeposition is improved than that of cesium.
이상에서 본원의 예시적인 실시예에 대하여 상세하게 설명하였지만 본원의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본원의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본원의 권리범위에 속하는 것이다.Although the exemplary embodiments of the present application have been described in detail above, the scope of the present application is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다. All technical terms used in the present invention, unless defined otherwise, are used in the meaning as commonly understood by those skilled in the art in the related field of the present invention. The contents of all publications described herein by reference are incorporated into the present invention.
[부호의 설명][Description of the code]
1. 전기화학셀1. Electrochemical Cell
10. 리튬 초이온 전도체10. Lithium Superion Conductor
11. 산화극부11. The anode
12. 환원극부12. Reduction pole
100. 산화전극100. Anode
110. 산화극액110. Anolyte
200. 환원전극200. Reduction electrode
201. 리튬박막 금속판201.Lithium thin film metal plate
202. 질화리튬박막 금속판202. Lithium nitride thin film metal plate
210. 환원극액210. Reduction solution
300. 세척액300. Washing liquid
501. 제1 구획501. The first compartment
502. 제2 구획502. Second compartment
503. 제3 구획503. Third compartment

Claims (13)

  1. 리튬 초이온 전도체 기반의 암모니아 합성 방법으로,Lithium superion conductor based ammonia synthesis method,
    상기 방법은, 산화극부와 환원극부가 리튬 초이온 전도체에 의해 구획되는 전기화학셀을 이용하여 환원전극에 리튬박막 금속판을 제조하는 단계;The method includes producing a lithium thin metal plate on a cathode using an electrochemical cell in which the anode portion and the cathode portion are partitioned by a lithium superion conductor;
    상기 리튬박막 금속판을 세척하는 단계;Washing the lithium thin film metal plate;
    상기 세척하는 단계를 거친 상기 리튬박막 금속판을 질소 분위기 반응기에서 가열하여 리튬박막에 질화리튬(Li3N)을 형성하는 질화리튬박막 금속판 제조 단계; 및A step of manufacturing a lithium nitride thin film metal plate for forming lithium nitride (Li 3 N) on the lithium thin film by heating the lithium thin film metal plate passed through the washing step in a nitrogen atmosphere reactor; And
    상기 질화리튬박막 금속판을 산(acid)용액에 담지하여 암모니아를 합성하는 단계를 포함하고,And carrying out the lithium nitride thin film metal plate in an acid solution to synthesize ammonia,
    상기 산화극부는 산화전극과 산화극액을 포함하고, 상기 환원극부는 환원전극과 환원극액을 포함하며,The anode portion includes an anode and an anode solution, the cathode portion includes a cathode and a cathode solution,
    상기 산화극액은 Li2SO4수용액이고, 리튬 초이온 전도체에 의해 통과된 리튬 이온이 환원전극에 코팅되며,The anode solution is Li 2 SO 4 aqueous solution, lithium ions passed by the lithium superion conductor is coated on the cathode,
    상기 환원극액은 리튬염, 유기용매 및 첨가제를 포함하는,The reduced electrode solution includes a lithium salt, an organic solvent and an additive,
    리튬 초이온 전도체 기반의 암모니아 합성 방법.Ammonia synthesis method based on lithium superion conductor.
  2. 리튬 초이온 전도체 기반의 구획형 암모니아 합성 장치를 이용한 암모니아 합성 방법으로,Ammonia synthesis method using compartmental ammonia synthesis apparatus based on lithium superion conductor,
    상기 방법은 회전형 환원전극을 중심축으로 하며, 상기 환원전극을 기준으로 제1 구획, 제2 구획 및 제3 구획으로 구분되는 원통형 반응 장치의, 상기 제1 구획에서 전해질 내에 산화전극 및 초이온전도체가 환원전극과 대향하도록 위치시키고 환원전극에 리튬박막을 전착하여 형성하는 단계; The method comprises a cylindrical anode having a rotary cathode as its central axis and divided into a first compartment, a second compartment and a third compartment based on the cathode, in which the anode and the superion are contained in the electrolyte in the first compartment. Positioning the conductor to face the cathode and electrodepositing a lithium thin film on the cathode;
    상기 리튬박막이 형성된 부분을 제2 구획으로 회전하여 질소 기체를 공급하고 가열하여 질화리튬박막을 형성하는 단계; 및 Rotating the portion in which the lithium thin film is formed to supply a nitrogen gas and heating the second compartment to form a lithium nitride thin film; And
    상기 질화리튬박막이 형성된 부분을 제3 구획으로 회전하여 산(acid)용액과 접촉시켜 암모니아를 합성하는 단계를 포함하고, Rotating the portion where the lithium nitride thin film is formed into a third compartment and contacting with an acid solution to synthesize ammonia,
    상기 전해질은 Li2SO4 및 첨가제를 포함하며,The electrolyte comprises Li 2 SO 4 and additives,
    상기 암모니아를 합성하는 단계에서 생성된 Li2SO4는 제1 구획에 공급되어 재사용되고,Li 2 SO 4 generated in the step of synthesizing the ammonia is supplied to the first compartment and reused,
    상기 제3 구획은 암모늄 선택성 막을 구비하는,Wherein said third compartment comprises an ammonium selective membrane;
    리튬 초이온 전도체 기반의 암모니아 합성 방법.Ammonia synthesis method based on lithium superion conductor.
  3. 제 1항에 있어서,The method of claim 1,
    상기 환원전극에 리튬박막 금속판을 제조하는 단계는, 상기 환원전극 일면에 리튬을 전착(electrodeposition)하는, The manufacturing of a lithium thin metal plate on the cathode may include electrodepositing lithium on one surface of the cathode,
    리튬 초이온 전도체 기반의 암모니아 합성 방법.Ammonia synthesis method based on lithium superion conductor.
  4. 제 1 항 또는 제 2항에 있어서,The method according to claim 1 or 2,
    상기 산화전극은 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, 및 Au로 이루어진 군으로부터 선택되는 하나 이상의 합금이고,The anodes are Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os At least one alloy selected from the group consisting of Ir, Pt, and Au,
    상기 환원전극은 Ti, Mo, Fe, Co, Ni, Cu, Ag 및 Zn로 이루어진 군에서 선택되는 하나 이상의 합금인, The cathode is at least one alloy selected from the group consisting of Ti, Mo, Fe, Co, Ni, Cu, Ag and Zn,
    리튬 초이온 전도체 기반의 암모니아 합성 방법.Ammonia synthesis method based on lithium superion conductor.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 리튬염은 리튬 퍼클로레이트, 리튬 디티오나이트, 리튬 설페이트, 리튬 테트라플루오로보레이트, 리튬 헥사플루오로포스페이드, 리튬 브로마이드 및 리튬 클로라이드, 리튬 비스트리플루오로메탄설포닐이미드(LiTFSI), 리튬비스플루오로메탄설포닐이미드(LiFSI), 리튬비스옥살레이토보레이트(LiBOB)로 이루어진 군으로부터 선택되는 하나 이상인,The lithium salt is lithium perchlorate, lithium dithionite, lithium sulfate, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium bromide and lithium chloride, lithium bistrifluoromethanesulfonylimide (LiTFSI), lithium bis At least one selected from the group consisting of fluoromethanesulfonylimide (LiFSI), lithium bisoxalatoborate (LiBOB),
    리튬 초이온 전도체 기반의 암모니아 합성 방법.Ammonia synthesis method based on lithium superion conductor.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 유기용매는 프로필렌 카보네이트, 에틸렌 카보네이트, 디메틸카보네이트, 1,3-디옥솔레인(1,3-dioxolane, DOL), 디메톡시에테인(dimethoxyethane, DME)를 포함하는 용매로 이루어진 군으로부터 선택되는 하나 이상인,The organic solvent is at least one selected from the group consisting of propylene carbonate, ethylene carbonate, dimethyl carbonate, 1,3-dioxolane (DOL), a solvent containing dimethoxyethane (DME). ,
    리튬 초이온 전도체 기반의 암모니아 합성 방법.Ammonia synthesis method based on lithium superion conductor.
  7. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 첨가제는 나트륨, 칼륨, 세슘, 루비듐, 마그네슘, 칼륨, 스트론튬, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC)로 이루어진 군으로부터 선택되는 하나 이상의 첨가제 포함하는,The additive comprises one or more additives selected from the group consisting of sodium, potassium, cesium, rubidium, magnesium, potassium, strontium, fluoroethylene carbonate (FEC),
    리튬 초이온 전도체 기반의 암모니아 합성 방법.Ammonia synthesis method based on lithium superion conductor.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 세척하는 단계는, 2-메틸 테트라하이드로퓨란을 이용하여 세척하는,The washing step, washing using 2-methyl tetrahydrofuran,
    리튬 초이온 전도체 기반의 암모니아 합성 방법.Ammonia synthesis method based on lithium superion conductor.
  9. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 가열은 200℃ 내지 230℃에서 30분 내지 1시간 동안 수행되는,The heating is performed for 30 minutes to 1 hour at 200 ℃ to 230 ℃,
    리튬 초이온 전도체 기반의 암모니아 합성 방법.Ammonia synthesis method based on lithium superion conductor.
  10. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 산(acid)용액은 H2SO4인,The acid solution is H 2 SO 4 ,
    리튬 초이온 전도체 기반의 암모니아 합성 방법.Ammonia synthesis method based on lithium superion conductor.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 환원전극은, 상기 암모니아를 합성하는 단계를 거친 금속판을 재사용하는,The cathode, to reuse the metal plate that has been subjected to the step of synthesizing the ammonia,
    리튬 초이온 전도체 기반의 암모니아 합성 방법.Ammonia synthesis method based on lithium superion conductor.
  12. 제 2 항 또는 제 3 항에 있어서,The method of claim 2 or 3,
    상기 전착은 5 내지 20분 동안 수행하는,The electrodeposition is carried out for 5 to 20 minutes,
    리튬 초이온 전도체 기반의 암모니아 합성 방법.Ammonia synthesis method based on lithium superion conductor.
  13. 제 2 항에 있어서,The method of claim 2,
    상기 암모니아를 합성하는 단계는 일시적으로 pH를 10 이상으로 조절하여 암모늄을 암모니아 기체 상태로 변환하는 단계를 더 포함하며, Synthesizing the ammonia further comprises the step of temporarily adjusting the pH to 10 or more to convert ammonium into ammonia gas state,
    상기 암모늄 선택성막은 폴리프로필렌(polypropylene, PP), 폴리비닐리덴플루오라이드(polyvinilidenefluoride, PVDF) 및 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)으로 이루어진 군에서 선택되는 하나의 가스 투과막인,The ammonium selective membrane is one gas permeable membrane selected from the group consisting of polypropylene (PP), polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE),
    리튬 초이온 전도체 기반의 암모니아 합성 방법.Ammonia synthesis method based on lithium superion conductor.
PCT/KR2018/009908 2018-03-23 2018-08-28 Lithium superionic conductor-based ammonia synthesis method WO2019182207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0033641 2018-03-23
KR1020180033641A KR102128228B1 (en) 2018-03-23 2018-03-23 Method for ammonia synthesis using lithium super ionic conductor

Publications (1)

Publication Number Publication Date
WO2019182207A1 true WO2019182207A1 (en) 2019-09-26

Family

ID=67987351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009908 WO2019182207A1 (en) 2018-03-23 2018-08-28 Lithium superionic conductor-based ammonia synthesis method

Country Status (2)

Country Link
KR (1) KR102128228B1 (en)
WO (1) WO2019182207A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690944A (en) * 2020-05-20 2020-09-22 华南理工大学 Efficient organic electrochemical ammonia synthesis reaction system and application thereof
WO2024160570A1 (en) * 2023-02-03 2024-08-08 Superstate AB Continuous production of ammonia by electrolysis of a lithium salt with changing polarity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026036A (en) * 2010-06-24 2012-02-09 I'msep Co Ltd Method and apparatus for electrolytically synthesizing ammonia
CN103031568A (en) * 2011-10-08 2013-04-10 中国科学院青岛生物能源与过程研究所 Preparation method of lithium metal through electrolysis
KR101695622B1 (en) * 2015-11-10 2017-01-13 한국에너지기술연구원 Method for electrochemical ammonia synthesis using alcohol-based electrolyte
KR20170061665A (en) * 2014-11-17 2017-06-05 한국에너지기술연구원 Ammonia Synthesizer
KR101863208B1 (en) * 2017-03-20 2018-05-31 한국에너지기술연구원 Method for ammonia synthesis using lithium super ionic conductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026036A (en) * 2010-06-24 2012-02-09 I'msep Co Ltd Method and apparatus for electrolytically synthesizing ammonia
CN103031568A (en) * 2011-10-08 2013-04-10 中国科学院青岛生物能源与过程研究所 Preparation method of lithium metal through electrolysis
KR20170061665A (en) * 2014-11-17 2017-06-05 한국에너지기술연구원 Ammonia Synthesizer
KR101695622B1 (en) * 2015-11-10 2017-01-13 한국에너지기술연구원 Method for electrochemical ammonia synthesis using alcohol-based electrolyte
KR101863208B1 (en) * 2017-03-20 2018-05-31 한국에너지기술연구원 Method for ammonia synthesis using lithium super ionic conductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690944A (en) * 2020-05-20 2020-09-22 华南理工大学 Efficient organic electrochemical ammonia synthesis reaction system and application thereof
CN111690944B (en) * 2020-05-20 2021-12-21 华南理工大学 Efficient organic electrochemical ammonia synthesis reaction system and application thereof
WO2024160570A1 (en) * 2023-02-03 2024-08-08 Superstate AB Continuous production of ammonia by electrolysis of a lithium salt with changing polarity

Also Published As

Publication number Publication date
KR102128228B1 (en) 2020-06-30
KR20190111480A (en) 2019-10-02

Similar Documents

Publication Publication Date Title
EP2688841B1 (en) Ammonia synthesis using lithium ion conductive membrane
US10711021B2 (en) Metal oxide-organic hybrid materials for heterogeneous catalysis and methods of making and using thereof
Wu et al. Evolving aprotic Li–air batteries
CN112996931B (en) Lithium ion battery material recovery method
EP3326225B1 (en) Lithium-oxygen battery
Petrov et al. Low temperature removal of hydrogen sulfide from sour gas and its utilization for hydrogen and sulfur production
WO2018016844A1 (en) Electrochemical conversion system for carbon dioxide
WO2019182207A1 (en) Lithium superionic conductor-based ammonia synthesis method
CN111834673B (en) Alkaline earth metal hexafluorophosphate electrolyte and preparation method of electrolyte
US9745202B2 (en) Metal cyanometallate synthesis method
CN116323487A (en) Method for continuous electrochemical reduction of nitrogen molecules
KR101863208B1 (en) Method for ammonia synthesis using lithium super ionic conductor
Mangini et al. Lithium‐Mediated Nitrogen Reduction for Ammonia Synthesis: Reviewing the Gap between Continuous Electrolytic Cells and Stepwise Processes through Galvanic Li─ N2 Cells
KR101669890B1 (en) Lithium recovering device and method for recovering lithium by using the same
WO2023166529A1 (en) Polydopamine derived iron doped hollow carbon nanorods for simultaneous generation of hydrogen and electricity
CN109467539A (en) A kind of preparation method and purification process of the compound containing at least one cyclic ligand structure
WO2018199665A1 (en) System and method for converting carbon dioxide using liquid-liquid interface and electron donor-acceptor catalyst
CN115395013A (en) Preparation method of positive electrode material of double-ion sodium battery
US11552351B2 (en) Electrical cells and batteries, method for manufacturing the same and method for improving the performances of electrical cells and batteries
CN113277550A (en) Lead-containing solid waste treatment method, and preparation method and application of lead dioxide powder
CN107591562A (en) Electrolyte and lithium ion battery
US11569513B1 (en) Redox flow battery carrier molecule
WO2023182771A1 (en) Method for electrochemically synthesizing alkylene carbonate
WO2023048545A1 (en) Vanadium-based solution, its manufacturing method and a battery thereof
Lv et al. A Li–urine battery based on organic/aqueous hybrid electrolytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911230

Country of ref document: EP

Kind code of ref document: A1