WO2019182033A1 - Drowsiness detection device - Google Patents

Drowsiness detection device Download PDF

Info

Publication number
WO2019182033A1
WO2019182033A1 PCT/JP2019/011790 JP2019011790W WO2019182033A1 WO 2019182033 A1 WO2019182033 A1 WO 2019182033A1 JP 2019011790 W JP2019011790 W JP 2019011790W WO 2019182033 A1 WO2019182033 A1 WO 2019182033A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
value
pressure sensor
output
dozing
Prior art date
Application number
PCT/JP2019/011790
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 寧
Original Assignee
国立大学法人九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州工業大学 filed Critical 国立大学法人九州工業大学
Priority to JP2020507881A priority Critical patent/JPWO2019182033A1/en
Publication of WO2019182033A1 publication Critical patent/WO2019182033A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators

Definitions

  • the present invention relates to a snoozing detection device that detects the snoozing of a driver of a passenger car.
  • a driver's doze while driving a passenger car contributes to the occurrence of a traffic accident.
  • the accumulation of fatigue caused by long working hours often induces a doze and is recognized as a social problem.
  • Devices that detect a driver's sleep at an early stage and issue a warning to the driver to prevent the driver's sleep are being developed in various forms. For this reason, a variety of techniques for detecting the driver's drowsiness have been considered.
  • Patent Document 1 discloses a pulse sensor which is the inventor's invention.
  • Patent Document 2 discloses a dozing prevention apparatus and method for detecting a driver's dozing by detecting eye movements.
  • the dozing alarm device detects the driver's falling asleep and sounds an alarm.
  • the driver's biological information is measured, a predetermined calculation process is performed on the measured biological information, and the result of the calculation process indicates whether the driver is asleep.
  • Various snoozing alarm devices and snoozing detection devices have been developed, but as described above, the basic idea of information processing is common.
  • Japanese Patent Application Laid-Open No. 2004-151620 discloses technical contents related to a sensor for detecting a heartbeat of a driver.
  • the technique described in Patent Literature 1 performs predetermined arithmetic processing such as Fourier transform on the detected driver's heartbeat information to determine whether or not the driver is asleep.
  • Patent Document 2 discloses the technical content of detecting the driver's eye movement and detecting the driver's drowsiness.
  • various methods have been developed depending on how the driver's biometric information is measured and what calculation processing is performed.
  • the apparatus In order to popularize the dozing alarm device or the dozing detection device, first, high detection accuracy is required. Secondly, it is required that the apparatus is easily installed. It is ideal that the end user can purchase it at a mass retailer or the like and install it easily in the passenger car rather than one that can only be installed during the manufacturing process of the passenger car. Thirdly, it is required that the operation of the apparatus is easy. For example, a sensor that is in contact with the skin of the driver is not preferable from the viewpoint of ease of operation. It is desirable that the driver is not in contact with the driver or that the driver does not need to be aware of the operation of the device. Fourth, the device is required to be inexpensive. In order to realize a low price using a microcomputer, it is preferable that the amount of calculation is small. When the amount of calculation is large, the calculation processing capability of the microcomputer necessary for realizing the desired function increases, leading to an increase in the cost of the entire apparatus.
  • Patent Document 1 The inventor succeeded in satisfying the first to third conditions in Patent Document 1. However, under the condition of the fourth device cost, the cost increases in the final data processing part.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a dozing detection device that has high detection accuracy, is easy to install and operate, and can be realized at low cost.
  • the dozing detection device of the present invention includes a first pressure sensor disposed on the left side of the seat of the driver's seat and a second pressure sensor disposed on the right side of the seat.
  • a first differential amplifier that obtains a differential output; an absolute value processing unit that outputs an absolute value of an output value of the first differential amplifier; and an output value of the absolute value processing unit that is compared with a first threshold value.
  • a first comparator that outputs a logical value for detecting the inclination of the trunk of the driver sitting on the seat.
  • a high-pass filter that outputs a differential value of the output value of the absolute value processing unit, a zero-cross detection unit that detects a zero-cross of the output value of the high-pass filter, and a predetermined value while the logical value of the first comparator indicates logic true
  • a timer that counts the clock and is reset by the logic value of the zero-cross detection unit, and compares the count value of the timer with the second threshold value and outputs a logic value that detects whether or not the driver is asleep.
  • Two comparators Two comparators.
  • 1 is an external view of a dozing detection device according to an embodiment of the present invention. It is a block diagram which shows the hardware constitutions of a dozing detection apparatus. It is a block diagram which shows the software function of a dozing detection apparatus. 5 is a time chart of each part in the dozing detection device in a state in which the driver depresses the brake pedal in a normal state and in a state in which a driver in a dozing state suddenly notices and stepped on the brake pedal. It is the schematic and pressure detection circuit of the pressure sensor which concern on a 1st example, and the schematic and pressure detection circuit of the pressure sensor which concerns on a 2nd example.
  • FIG. 1A is a schematic view of a driver's seat and driver of a passenger car as viewed from the side.
  • FIG. 1B is a diagram illustrating a state in which the trunk swings to the left and right when the driver falls asleep.
  • FIG. 1C is a schematic view of a driver seat and a pressure sensor embedded in the driver seat.
  • FIG. 1D is a diagram illustrating the positional relationship between the driver and the pressure sensor and the dozing detection device 101 connected to the pressure sensor.
  • the driver 102 who has accumulated fatigue begins to fall asleep while driving a passenger car (not shown). Then, as shown in FIG. 1B, a so-called “boat rowing” operation in which the upper body slowly swings left and right is performed unconsciously. Then, the right and left balance of the pressure applied to the seat chair 103a of the driver's seat 103 from the hips and thighs of the driver 102 changes.
  • the pressure sensors are provided at four locations of the seat chair 103 a of the driver's seat 103.
  • the first pressure sensor 104 detects the pressure applied from the right thigh of the driver 102.
  • the second pressure sensor 105 is applied from the left thigh of the driver 102
  • the third pressure sensor 106 is applied from the starboard part of the driver 102
  • the fourth pressure sensor 107 is applied from the port part of the driver 102. Detect each.
  • the dozing detection device 101 is connected to a first pressure sensor 104, a second pressure sensor 105, a third pressure sensor 106, and a fourth pressure sensor 107.
  • the dozing detection device 101 generates an analog voltage signal corresponding to the pressure applied to each connected pressure sensor, converts the analog voltage signal into digital data, performs arithmetic processing described later, and performs a driver 102 operation. It is determined whether or not is in a doze state.
  • FIG. 2 is a block diagram illustrating a hardware configuration of the dozing detection apparatus 101.
  • the dozing detection device 101 which is a computer such as a one-board microcomputer, is connected to the bus 201 and outputs a logical signal of the determination result to the CPU 202, ROM 203, RAM 204, and any external device (“serial” in FIG. 2).
  • the ROM 203 stores a program for operating the microcomputer as the dozing detection device 101.
  • a first pressure sensor 104, a second pressure sensor 105, a third pressure sensor 106, and a fourth pressure sensor 107 are connected to the bus 201 through an A / D converter 206 and a multiplexer 207. That is, analog signals output from the first pressure sensor 104, the second pressure sensor 105, the third pressure sensor 106, and the fourth pressure sensor 107 are selected by the multiplexer 207 and then converted into digital data by the A / D converter 206. Converted.
  • the multiplexer 207 switches in synchronization with the sampling clock of the A / D converter 206.
  • the frequency of the sampling clock of the A / D converter 206 is 280 Hz. Therefore, the first pressure sensor 104, the second pressure sensor 105, the third pressure sensor 106, and The sampling clock of the fourth pressure sensor 107 is 1 ⁇ 4, 70 Hz.
  • the dozing detection device 101 detects the trunk movement of the driver 102 with the first pressure sensor 104, the second pressure sensor 105, the third pressure sensor 106, and the fourth pressure sensor 107.
  • the sampling clock Since the rowing operation is an extremely low frequency of less than 1 Hz and the sudden braking is a frequency of about several Hz, the sampling clock is sufficient at a low frequency.
  • the fact that the sampling clock has a low frequency means that the required specifications can be satisfied even if the microcomputer has a low processing capacity per unit time.
  • FIG. 3 is a block diagram illustrating software functions of the dozing detection apparatus 101.
  • circuit symbols described by analog operational amplifiers such as differential amplifiers are software components that receive digital data input and realize arithmetic processing having functions equivalent to those of the analog operational amplifier.
  • Analog signals output from the first pressure sensor 104, the second pressure sensor 105, the third pressure sensor 106, and the fourth pressure sensor 107 are converted into digital data by the A / D converter 206.
  • the multiplexer 207 is omitted to simplify the description.
  • the first adder 301 adds the digital data of the first pressure sensor 104 and the digital data of the third pressure sensor 106. That is, the first adder 301 adds the pressure data of the right thigh of the driver 102 and the pressure data of the starboard region, whereby the pressure data of the right half of the driver 102 is obtained from the first adder 301.
  • the digital data of the second pressure sensor 105 and the digital data of the fourth pressure sensor 107 are added by the second adder 302. That is, the pressure data of the left thigh of the driver 102 and the pressure data of the left buttock of the driver 102 are added by the second adder 302, whereby the pressure data of the left body of the driver 102 is obtained from the second adder 302.
  • the output data of the first adder 301 and the output data of the second adder 302 are differentially amplified by the first differential amplifier 303.
  • the output data from the first adder 301 and the output data from the second adder 302 are added by the third adder 304.
  • the output gain of the output data of the first differential amplifier 303 is adjusted by an AGC (Auto Gain Control) 305. Since the AGC 305 is adjusted by the output data of the third adder 304, the AGC 305 excludes the dependent element due to the weight of the driver 102 from the output data of the first differential amplifier 303. In the output data of the AGC 305, a negative value is converted into a positive value by the absolute value processing unit 306.
  • the left-right unbalanced component of the load applied to the pressure sensor which is caused by the angle at which the trunk is tilted, appears as a positive value regardless of whether the trunk of the driver 102 is tilted to the left or right. .
  • the data output from the absolute value processing unit 306 is input to the plus side input of the first comparator 307.
  • the first comparator 307 compares the first threshold value 308 connected to the minus side input with the value of the plus side input, and if the data output from the absolute value processing unit 306 is equal to or greater than the first threshold value 308, the logic The true of is output.
  • the data output from the absolute value processing unit 306 is input to the non-inverting input of the second differential amplifier 309.
  • the data output from the absolute value processing unit 306 is input through the low-pass filter (indicated as “LPF” in the figure, hereinafter abbreviated as “LPF”) 310.
  • LPF low-pass filter
  • the second differential amplifier 309 subtracts the data that has passed through the LPF 310 to the inverting input from the data that has not passed through the LPF 310 that is input to the non-inverting input. It functions as a high-pass filter (hereinafter abbreviated as “HPF”) 325 that outputs a differential component.
  • HPF high-pass filter
  • the output data of the second differential amplifier 309 is input to the zero cross detection unit 311.
  • the zero cross detection unit 311 is equivalent to a comparator having hysteresis, and binarizes input data. Therefore, the output of the zero-cross detection unit 311 is a logical true or false binary value.
  • the output logical value of the first comparator 307 is input to the D terminal of a D flip-flop (hereinafter abbreviated as “D-FF”) 313 via a NOT gate 312, and is set as it is in the set terminal of the D-FF 313 (in FIG. 3). It is also input to “S” (hereinafter abbreviated as “S terminal”).
  • S terminal hereinafter abbreviated as “S terminal”.
  • the output logical value of the zero cross detector 311 is input to the clock terminal of the D-FF 313. Although not shown, the reset terminal (R terminal) of the D-FF 313 is always held in a logic false state.
  • the Q terminal of the D-FF 313 is connected to one input terminal of the AND gate 314.
  • the other input terminal of the AND gate 314 is connected to the output terminal of the first comparator 307.
  • the output terminal of the AND gate 314 is connected to the reset terminal of the timer 315.
  • the output data of the timer 315 is input to the latch 316.
  • the control input terminal of the latch 316 is connected to the output terminal of the zero cross detector 311.
  • the latch 316 holds the current value when a pulse is generated from the zero cross detector 311.
  • the output data of the latch 316 is supplied to the non-inverting input of the second comparator 317.
  • the second comparator 317 compares the second threshold value 318 connected to the inverting input with the value of the non-inverting input, and when the data output from the latch 316 is equal to or higher than the second threshold value 318, the logic is true. An alarm indicating that there is a high possibility that the driver 102 is in a dozing state is output.
  • FIG. 4A is a time chart of each part in the dozing detection device 101 when the driver 102 is in a normal state and the brake pedal is depressed.
  • the output data S401 (probe point P321 in FIG. 3) of the absolute value processing unit 306 shows a peak at the moment when the driver 102 depresses the brake pedal, and thereafter maintains a state in which a little value has passed.
  • the differential component S402 (probe point P322 in FIG. 3) of the output data S401 of the absolute value processing unit 306 a component having a polarity opposite to the direction in which the brake pedal is stepped on instantaneously is output, and then the polarity is inverted to zero.
  • the output logical value S403 of the AND gate 314 (probe point P323 in FIG. 3) input to the reset terminal of the timer 315 is logically detected by the D-FF 313 from the up edge of the first comparator 307 by the up edge of the differential component S402. It will be logical true until it shows true. Therefore, the timer 315 waits for a time T405 until the force applied to the brake pedal slightly decreases while the AND gate 314 indicates the logic true, that is, a little after the driver 102 starts to step on the brake pedal. measure. Since the measurement time interval of the timer 315 is short, the output data L406 of the timer 315 is extremely small.
  • FIG. 4B is a time chart of each part in the dozing detection apparatus 101 in a state where the driver 102 in the dozing state notices and suddenly steps on the brake pedal.
  • the trunk gradually begins to tilt as the patient falls asleep.
  • the value of the output data S411 (P321) of the absolute value processing unit 306 gradually increases according to the angle at which the trunk of the driver 102 tilts.
  • the first comparator 307 indicates logic true. That is, the first comparator 307 detects that the trunk of the driver 102 has been tilted due to the driver 102 falling into a doze state.
  • the output data S411 of the absolute value processing unit 306 changes abruptly at the moment the driver 102 steps on the brake pedal. After that, the value returns to almost zero.
  • differential component S412 (P322) of the output data S411 of the absolute value processing unit 306 only a state in which the driver 102 in a dozing state notices and suddenly steps on the brake pedal appears. In other words, the slow change in the output data S411 of the absolute value processing unit 306, which is detected by the first comparator 307 and the trunk of the driver 102 slowly tilts, does not appear.
  • a component having a polarity opposite to the direction in which the brake pedal is depressed instantaneously is output, and then the polarity is inverted to return to zero.
  • the output logic value S413 (P323) of the AND gate 314 input to the reset terminal of the timer 315 is logical from the up edge of the first comparator 307 until the D-FF 313 indicates logic true by the up edge of the differential component. Become true. Therefore, the timer 315 detects the force applied to the brake pedal while the AND gate 314 indicates the logic true, that is, from the time when the trunk of the driver 102 starts to tilt, and the driver 102 suddenly steps on the brake pedal. The time T415 until the time when it slightly decreases is measured. Then, the measurement time of the timer 315 is significantly longer than that in the normal state. Therefore, the output data L416 of the timer 315 shows a large value.
  • the dozing detection apparatus 101 according to the embodiment of the present invention observes a change in a voltage signal obtained from a pressure sensor through arithmetic processing. For this reason, the pressure sensor used for the dozing detection apparatus 101 according to the embodiment of the present invention does not require strict linearity. Even if the voltage signal output according to the magnitude of the pressure includes some errors, it is only necessary to detect the voltage fluctuation. Therefore, a pressure sensor having a simple configuration can be used instead of an expensive pressure sensor in which the linearity of the output signal is guaranteed.
  • FIG. 5A is a schematic diagram of a pressure sensor 501 according to a first example.
  • the pressure sensor 501 has a configuration in which electrodes are attached to both surfaces of a conductive rubber sheet 502.
  • the resistance of the pressure sensor 501 decreases because the density of the conductive rubber forming the sheet 502 increases.
  • FIG. 5B is a pressure detection circuit using the pressure sensor 501 according to the first example.
  • the pressure sensor 501 according to the first example shown in FIGS. 5A and 5B can easily acquire an analog voltage signal corresponding to pressure with a very simple circuit configuration.
  • current always flows through the resistor. That is, a through current is always generated. For this reason, it cannot be said that it is not very suitable for a battery drive circuit.
  • An example of an electrostatic pressure sensor that does not have room for through current will be described below.
  • FIG. 5C is a schematic diagram of a pressure sensor 511 according to the second example.
  • the pressure sensor 511 shown in FIG. 5C has a configuration in which electrodes are attached to both surfaces of a dielectric rubber sheet 512 as an insulator. When pressure is applied to the sheet-like pressure sensor 511, the distance between the electrodes is shortened, so that the capacitance of the pressure sensor 511 increases.
  • FIG. 5D is a pressure detection circuit using the pressure sensor 511 according to the second example.
  • the signal source 513 generates a rectangular wave signal having a frequency higher than the audible frequency band, for example, 30 kHz or higher.
  • the rectangular wave signal is applied to the gate of the CMOS inverter 514.
  • the output terminal of the CMOS inverter 514 causes the forward current (source) and the reverse current (sink) to flow through the subsequent resistor R515 with logic inverted with respect to the rectangular wave signal. That is, the CMOS inverter 514 operates as a changeover switch that alternately connects the power supply node and the ground node to the resistor R515. Due to the presence of the CMOS inverter 514, no through current is generated in the pressure detection circuit of FIG. 5D.
  • a variable capacitor C516 constituting the pressure sensor 511 is connected to the other end of the resistor R515. Therefore, the resistor R515 and the variable capacitor C516 constitute a time constant. This time constant varies depending on the capacitance of the variable capacitor C516. That is, if the period of the rectangular wave signal of the signal source 513 is shorter than the time required for charging and discharging the variable capacitor C516, the voltage at the peak of the variable capacitor C516 varies depending on the capacitance of the variable capacitor C516. To do. When the capacitance of the variable capacitor C516 is small, the peak voltage is high. Conversely, when the capacitance of the variable capacitor C516 is large, the peak voltage is low.
  • the anode of a diode D517 is connected to the connection point between the variable capacitor C516 and the resistor R515.
  • the cathode of the diode D517 is connected to a capacitor C518 having a larger capacitance than the variable capacitor C516.
  • a resistor R519 is connected in parallel to the capacitor C518, and the capacitor C518 and the resistor R519 have a time constant of several tens to several thousand times the period of the rectangular wave signal.
  • a Schottky barrier diode with a small forward voltage drop and high-speed switching is suitable.
  • the capacitor C518 When the voltage of the capacitor C518 is lower than the voltage obtained by subtracting the forward voltage drop of the diode D517 from the voltage of the variable capacitor C516, the capacitor C518 is charged from the variable capacitor C516 through the diode D517. At this time, the discharge of the capacitor C518 to the variable capacitor C516 is blocked by the diode D517, and is discharged only by the resistor R519. Therefore, the diode D517, the capacitor C518, and the resistor R519 constitute a simple peak hold circuit. If the time constant of the capacitor C518 and the resistor R519 is sufficiently larger than the time constant of the variable capacitor C516 and the resistor R515, the voltage fluctuation of the capacitor C518 can be reduced. Therefore, by inputting the voltage of the capacitor C518 to the A / D converter 206, digital data whose value fluctuates in accordance with the pressure can be obtained.
  • the dozing detection device 101 detects that the driver 102 has fallen asleep from the change in the center of gravity balance of the trunk of the driver 102.
  • the center of gravity balance of the trunk of the driver 102 is detected by a pressure sensor.
  • the values are converted into absolute values and compared with a predetermined first threshold value 308, thereby unbalanced the trunk of the driver 102 That is, the rowing state is detected.
  • HPF is applied to the differentially amplified data, and the operation of hitting the brake is detected.
  • the counter value remains small because there is no long-term rowing condition.
  • the brake operation that is noticed from dozing and stepped on in a hurry, there is a long-time rowing state, so the value of the counter becomes large, and the dozing state can be detected.
  • the dozing detection apparatus 101 does not perform enormous calculations such as Fourier transform. Therefore, even an 8-bit one-chip microcomputer having a smaller arithmetic processing capability than a personal computer can be used sufficiently.
  • second differential amplifier 310 ... LPF 311 ... Zero cross detector, 312 ... NOT gate, 313 ... D? FF, 314 ... AND gate, 315 ... Timer, 316 ... Latch, 317 ... Second controller Parator, 318 ... second threshold, 325 ... HPF, 501, 511 ... pressure sensor, 502, 512 ... sheet, 513 ... signal source, 514 ... CMOS inverter, C516 ... variable capacitor, C518 ... capacitor, D517 ... diode, R503 , R515, R519 ... resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Educational Technology (AREA)
  • Developmental Disabilities (AREA)
  • Social Psychology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Psychology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Provided is a drowsiness detection device that has high detection accuracy, is easy to install and operate, and can be implemented at low cost. The drowsiness detection device detects that a driver has become drowsy from a change in the center of gravity balance of the driver's trunk. After values from pressure sensors disposed on the right and left of a driver's seat are subjected to differential amplification, the values are converted into absolute values and then compared with a first threshold value to detect an unbalanced state of the driver's trunk, i.e., a rowing-motion state. Meanwhile, HPF is applied to data obtained by the differential amplification to detect an operation in which the driver has stepped on the brake pedal in a rushed way.

Description

居眠り検出装置Dozing detection device
 本発明は、乗用車の運転手の居眠りを検出する、居眠り検出装置に関する。 [Technical Field] The present invention relates to a snoozing detection device that detects the snoozing of a driver of a passenger car.
 乗用車を運転中の運転手の居眠りは、交通事故の発生の一因である。特に運送業に従事する運転手は長時間労働に起因する疲労の蓄積が居眠りを誘発することが多く、社会問題としても認識されている。
 運転手の居眠りを早期に検出して、運転手に警報を発する等で居眠りを防止する装置が、様々な形態で開発されている。また、このために運転手の居眠りを検出する技術も多種多様な手法が考えられている。
A driver's doze while driving a passenger car contributes to the occurrence of a traffic accident. In particular, for drivers engaged in the transportation industry, the accumulation of fatigue caused by long working hours often induces a doze and is recognized as a social problem.
Devices that detect a driver's sleep at an early stage and issue a warning to the driver to prevent the driver's sleep are being developed in various forms. For this reason, a variety of techniques for detecting the driver's drowsiness have been considered.
 特許文献1には、本件発明者の発明である、脈拍センサが開示されている。
 特許文献2には、眼球運動を検出して運転手の居眠りを検出する居眠り防止装置及びその方法が開示されている。
Patent Document 1 discloses a pulse sensor which is the inventor's invention.
Patent Document 2 discloses a dozing prevention apparatus and method for detecting a driver's dozing by detecting eye movements.
再表2015/56740号公報Table 2015/56740 特開2013-85576号公報JP 2013-85576 A
 居眠り警報装置は、運転手の居眠りを検出して、警報を鳴動する。運転手の居眠りを検出するには、運転手の生体情報を計測し、計測した生体情報に対して所定の演算処理を行い、その演算処理結果から、運転手が居眠りしている状態にあるか否かを判断する。様々な居眠り警報装置や居眠り検出装置が開発されているが、上述のように、基本的な情報処理の技術思想は共通する。
 特許文献1には、運転手の心拍を検出するセンサに関する技術内容が開示されている。特許文献1に記載の技術は、検出した運転手の心拍情報に、フーリエ変換等の所定の演算処理を施して、運転手が居眠り状態にあるか否かを判定する。
 特許文献2には、運転手の眼球運動を検出して、運転手の居眠りを検出する技術内容が開示されている。
 上記以外にも、運転手のどの生体情報を、どのように計測し、どのような演算処理を行うのかで、様々な手法が開発されている。
The dozing alarm device detects the driver's falling asleep and sounds an alarm. In order to detect the driver's drowsiness, the driver's biological information is measured, a predetermined calculation process is performed on the measured biological information, and the result of the calculation process indicates whether the driver is asleep. Judge whether or not. Various snoozing alarm devices and snoozing detection devices have been developed, but as described above, the basic idea of information processing is common.
Japanese Patent Application Laid-Open No. 2004-151620 discloses technical contents related to a sensor for detecting a heartbeat of a driver. The technique described in Patent Literature 1 performs predetermined arithmetic processing such as Fourier transform on the detected driver's heartbeat information to determine whether or not the driver is asleep.
Patent Document 2 discloses the technical content of detecting the driver's eye movement and detecting the driver's drowsiness.
In addition to the above, various methods have been developed depending on how the driver's biometric information is measured and what calculation processing is performed.
 居眠り警報装置、あるいは居眠り検出装置を普及させるには、第一に、検出精度が高いことが求められる。
 そして第二に、装置の設置が容易であることが求められる。乗用車の製造過程でしか設置ができないものよりも、エンドユーザが量販店等で購入して、容易に乗用車に設置することができることが理想である。
 そして第三に、装置の運用が容易であることが求められる。例えば運転手の皮膚に接触させる形式のセンサは、運用の容易さという観点では好ましくない。あくまで運転手に非接触であるか、運転手が装置の運用を意識する必要がないことが望ましい。
 更に第四に、装置が低価格であることが求められる。マイコンを用いて低価格を実現するには、演算量が少ないことが好ましい。演算量が多いと、所望の機能を実現するに必要なマイコンの演算処理能力が高くなってしまい、装置全体のコストの上昇に繋がる。
In order to popularize the dozing alarm device or the dozing detection device, first, high detection accuracy is required.
Secondly, it is required that the apparatus is easily installed. It is ideal that the end user can purchase it at a mass retailer or the like and install it easily in the passenger car rather than one that can only be installed during the manufacturing process of the passenger car.
Thirdly, it is required that the operation of the apparatus is easy. For example, a sensor that is in contact with the skin of the driver is not preferable from the viewpoint of ease of operation. It is desirable that the driver is not in contact with the driver or that the driver does not need to be aware of the operation of the device.
Fourth, the device is required to be inexpensive. In order to realize a low price using a microcomputer, it is preferable that the amount of calculation is small. When the amount of calculation is large, the calculation processing capability of the microcomputer necessary for realizing the desired function increases, leading to an increase in the cost of the entire apparatus.
 発明者は、特許文献1において、上記第一から第三の条件を満たすことに成功した。しかしながら、第四の装置コストという条件では、最終的なデータ処理の部分で、コストが嵩んでしまう。 The inventor succeeded in satisfying the first to third conditions in Patent Document 1. However, under the condition of the fourth device cost, the cost increases in the final data processing part.
 本発明はかかる課題に鑑みてなされたものであり、検出精度が高く、設置と運用が容易で、そして低コストで実現できる、居眠り検出装置を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a dozing detection device that has high detection accuracy, is easy to install and operate, and can be realized at low cost.
 上記課題を解決するために、本発明の居眠り検出装置は、ドライバーズシートの座椅子の左側に配置される第一圧力センサと、座椅子の右側に配置される第二圧力センサとの差動出力を得る第一差動増幅器と、第一差動増幅器の出力値の絶対値を出力する絶対値処理部と、絶対値処理部の出力値を第一閾値と比較して、ドライバーズシートに着席する運転手の体幹の傾きを検出する論理値を出力する第一コンパレータとを具備する。更に、絶対値処理部の出力値の微分値を出力するハイパスフィルタと、ハイパスフィルタの出力値のゼロクロスを検出するゼロクロス検出部と、第一コンパレータの論理値が論理の真を示す間、所定のクロックを計数し、ゼロクロス検出部の論理値によってリセットされるタイマと、タイマの計数値を第二閾値と比較して、運転手が居眠り状態にあるか否かを検出する論理値を出力する第二コンパレータとを具備する。 In order to solve the above-described problem, the dozing detection device of the present invention includes a first pressure sensor disposed on the left side of the seat of the driver's seat and a second pressure sensor disposed on the right side of the seat. A first differential amplifier that obtains a differential output; an absolute value processing unit that outputs an absolute value of an output value of the first differential amplifier; and an output value of the absolute value processing unit that is compared with a first threshold value. And a first comparator that outputs a logical value for detecting the inclination of the trunk of the driver sitting on the seat. Further, a high-pass filter that outputs a differential value of the output value of the absolute value processing unit, a zero-cross detection unit that detects a zero-cross of the output value of the high-pass filter, and a predetermined value while the logical value of the first comparator indicates logic true A timer that counts the clock and is reset by the logic value of the zero-cross detection unit, and compares the count value of the timer with the second threshold value and outputs a logic value that detects whether or not the driver is asleep. Two comparators.
 本発明によれば、検出精度が高く、設置と運用が容易で、そして低コストで実現できる、居眠り検出装置を提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to provide a dozing detection device that has high detection accuracy, is easy to install and operate, and can be realized at low cost.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の実施形態に係る居眠り検出装置の外観図である。1 is an external view of a dozing detection device according to an embodiment of the present invention. 居眠り検出装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of a dozing detection apparatus. 居眠り検出装置のソフトウェア機能を示すブロック図である。It is a block diagram which shows the software function of a dozing detection apparatus. 運転手が正常な状態においてブレーキペダルを踏んだ状態と、居眠り状態の運転手が、はっと気付いて慌ててブレーキペダルを踏んだ状態における、居眠り検出装置における各部のタイムチャートである。5 is a time chart of each part in the dozing detection device in a state in which the driver depresses the brake pedal in a normal state and in a state in which a driver in a dozing state suddenly notices and stepped on the brake pedal. 第一の実例に係る圧力センサの概略図及び圧力検出回路と、第二の実例に係る圧力センサの概略図及び圧力検出回路である。It is the schematic and pressure detection circuit of the pressure sensor which concern on a 1st example, and the schematic and pressure detection circuit of the pressure sensor which concerns on a 2nd example.
 [居眠り検出装置:概要]
 発明者は、特許文献1において電波を用いた非接触の脈拍センサを実現した。しかし、脈拍データを用いる最終的な居眠り検出は、離散フーリエ変換等の、大容量のメモリと膨大な演算処理を必要とする。離散フーリエ変換は、低価格なワンチップマイコンでは演算負荷が重過ぎるし、RAMの容量も不足する。また、心拍は数Hz程度の低周波であるため、離散フーリエ変換等の演算処理を実行するには数秒乃至十数秒程度のデータサンプルを必要とする。これでは、迅速な検出が求められる居眠り検出のリアルタイム性に欠ける。
[Dozing detection device: Overview]
The inventor has realized a non-contact pulse sensor using radio waves in Patent Document 1. However, the final doze detection using the pulse data requires a large-capacity memory and an enormous calculation process such as discrete Fourier transform. In the discrete Fourier transform, a low-cost one-chip microcomputer has a heavy calculation load and a RAM capacity. In addition, since the heart rate is a low frequency of about several Hz, a data sample of about several seconds to several tens of seconds is required to execute arithmetic processing such as discrete Fourier transform. This lacks the real-time nature of dozing detection, which requires quick detection.
 今般、発明者は、特許文献1に開示された技術とは全く異なるアプローチで、運転手の居眠りを検出することに成功した。それは脈拍ではなく、居眠りによって運転手の体幹(胴体)の動作に生じる、いわゆる「舟漕ぎ」と呼ばれる特徴的な動作を検出することで、運転手の重心の移動状態を測定する技術である。つまり、運転手の重心の移動から、運転手の居眠りを検出するのである。 Recently, the inventor succeeded in detecting the driver's drowsiness by an approach completely different from the technique disclosed in Patent Document 1. It is a technology that measures the movement of the driver's center of gravity by detecting a characteristic movement called “boating” that occurs in the trunk (torso) movement of the driver due to falling asleep instead of a pulse. . That is, the driver's drowsiness is detected from the movement of the driver's center of gravity.
 [居眠り検出装置101:概略図及び外観図]
 図1Aは、乗用車の運転席と運転手を横から見た概略図である。
 図1Bは、運転手が居眠り状態に陥った場合に、体幹が左右に揺れる状態を説明する図である。
 図1Cは、運転席と運転席に埋設される圧力センサの概略図である。
 図1Dは、運転手と圧力センサの位置関係と、圧力センサに接続される居眠り検出装置101を説明する図である。
[Dozing detection device 101: schematic diagram and external view]
FIG. 1A is a schematic view of a driver's seat and driver of a passenger car as viewed from the side.
FIG. 1B is a diagram illustrating a state in which the trunk swings to the left and right when the driver falls asleep.
FIG. 1C is a schematic view of a driver seat and a pressure sensor embedded in the driver seat.
FIG. 1D is a diagram illustrating the positional relationship between the driver and the pressure sensor and the dozing detection device 101 connected to the pressure sensor.
 図1Aに示すように、疲労が蓄積した運転手102は図示しない乗用車を運転しながら居眠りを始めてしまう。すると、図1Bに示すように、いわゆる「舟漕ぎ」と呼ばれる、上半身がゆっくり左右に揺れる動作が無意識に行われる。すると、運転手102の尻と太腿からドライバーズシート103の座椅子103aに加わる圧力の、左右のバランスが変動する。 As shown in FIG. 1A, the driver 102 who has accumulated fatigue begins to fall asleep while driving a passenger car (not shown). Then, as shown in FIG. 1B, a so-called “boat rowing” operation in which the upper body slowly swings left and right is performed unconsciously. Then, the right and left balance of the pressure applied to the seat chair 103a of the driver's seat 103 from the hips and thighs of the driver 102 changes.
 圧力センサは、図1C及び図1Dに示すように、ドライバーズシート103の座椅子103aの部分の4箇所に設けられる。第一圧力センサ104は運転手102の右太腿から加わる圧力を検出する。以下同様に、第二圧力センサ105は運転手102の左太腿から、第三圧力センサ106は運転手102の右臀部から、第四圧力センサ107は運転手102の左臀部から、加わる圧力をそれぞれ検出する。
 図1Dに示すように居眠り検出装置101は、第一圧力センサ104、第二圧力センサ105、第三圧力センサ106及び第四圧力センサ107に接続されている。そして居眠り検出装置101は、接続されたそれぞれの圧力センサに加わった圧力に応じたアナログ電圧信号をその内部で生成し、これをデジタルデータに変換した後、後述する演算処理を行い、運転手102が居眠り状態にあるか否かを判定する。
As shown in FIG. 1C and FIG. 1D, the pressure sensors are provided at four locations of the seat chair 103 a of the driver's seat 103. The first pressure sensor 104 detects the pressure applied from the right thigh of the driver 102. Similarly, the second pressure sensor 105 is applied from the left thigh of the driver 102, the third pressure sensor 106 is applied from the starboard part of the driver 102, and the fourth pressure sensor 107 is applied from the port part of the driver 102. Detect each.
As shown in FIG. 1D, the dozing detection device 101 is connected to a first pressure sensor 104, a second pressure sensor 105, a third pressure sensor 106, and a fourth pressure sensor 107. The dozing detection device 101 generates an analog voltage signal corresponding to the pressure applied to each connected pressure sensor, converts the analog voltage signal into digital data, performs arithmetic processing described later, and performs a driver 102 operation. It is determined whether or not is in a doze state.
 [居眠り検出装置101:ハードウェア構成]
 図2は、居眠り検出装置101のハードウェア構成を示すブロック図である。
 ワンボードマイコン等の計算機よりなる居眠り検出装置101は、バス201に接続された、CPU202、ROM203、RAM204、そして外部の任意の装置へ判定結果の論理信号を出力するシリアルインターフェース(図2中「シリアルI/F」と表記、以下「シリアルI/F」と略)205を備える。ROM203にはマイコンを居眠り検出装置101として稼働させるためのプログラムが格納されている。
 バス201には更に、A/D変換器206とマルチプレクサ207を通じて第一圧力センサ104、第二圧力センサ105、第三圧力センサ106及び第四圧力センサ107が接続されている。すなわち、第一圧力センサ104、第二圧力センサ105、第三圧力センサ106及び第四圧力センサ107が出力するアナログ信号は、マルチプレクサ207で選択された後、A/D変換器206によってデジタルデータに変換される。
[Dozing detection device 101: hardware configuration]
FIG. 2 is a block diagram illustrating a hardware configuration of the dozing detection apparatus 101.
The dozing detection device 101, which is a computer such as a one-board microcomputer, is connected to the bus 201 and outputs a logical signal of the determination result to the CPU 202, ROM 203, RAM 204, and any external device (“serial” in FIG. 2). "I / F", hereinafter abbreviated as "serial I / F") 205. The ROM 203 stores a program for operating the microcomputer as the dozing detection device 101.
Further, a first pressure sensor 104, a second pressure sensor 105, a third pressure sensor 106, and a fourth pressure sensor 107 are connected to the bus 201 through an A / D converter 206 and a multiplexer 207. That is, analog signals output from the first pressure sensor 104, the second pressure sensor 105, the third pressure sensor 106, and the fourth pressure sensor 107 are selected by the multiplexer 207 and then converted into digital data by the A / D converter 206. Converted.
 マルチプレクサ207はA/D変換器206のサンプリングクロックに同期して切り替わる。本発明の実施形態に係る居眠り検出装置101の場合、A/D変換器206のサンプリングクロックの周波数は280Hzであり、このため第一圧力センサ104、第二圧力センサ105、第三圧力センサ106及び第四圧力センサ107のサンプリングクロックはその1/4である70Hzとなる。
 居眠り検出装置101は運転手102の体幹動作を第一圧力センサ104、第二圧力センサ105、第三圧力センサ106及び第四圧力センサ107で検出する。船漕ぎ動作は1Hzに満たない超低周波であり、急ブレーキも数Hz程度の周波数であるため、サンプリングクロックも低周波数で事足りる。サンプリングクロックが低周波数である、ということは、マイコンの単位時間あたりの演算処理能力が低くても、要求仕様を満たすことが可能である。
The multiplexer 207 switches in synchronization with the sampling clock of the A / D converter 206. In the case of the dozing detection device 101 according to the embodiment of the present invention, the frequency of the sampling clock of the A / D converter 206 is 280 Hz. Therefore, the first pressure sensor 104, the second pressure sensor 105, the third pressure sensor 106, and The sampling clock of the fourth pressure sensor 107 is ¼, 70 Hz.
The dozing detection device 101 detects the trunk movement of the driver 102 with the first pressure sensor 104, the second pressure sensor 105, the third pressure sensor 106, and the fourth pressure sensor 107. Since the rowing operation is an extremely low frequency of less than 1 Hz and the sudden braking is a frequency of about several Hz, the sampling clock is sufficient at a low frequency. The fact that the sampling clock has a low frequency means that the required specifications can be satisfied even if the microcomputer has a low processing capacity per unit time.
 [居眠り検出装置101:ソフトウェア機能]
 図3は、居眠り検出装置101のソフトウェア機能を示すブロック図である。図3に示すブロック図中、差動増幅器等の、アナログオペアンプにて記述されている回路記号は、デジタルデータの入力を受けてアナログオペアンプと同等の機能の演算処理を実現するソフトウェア部品である。
 第一圧力センサ104、第二圧力センサ105、第三圧力センサ106及び第四圧力センサ107が出力するアナログ信号は、A/D変換器206によってデジタルデータに変換される。なお、図3においては説明を簡略化させるため、マルチプレクサ207を省略している。
[Dozing detection device 101: software function]
FIG. 3 is a block diagram illustrating software functions of the dozing detection apparatus 101. In the block diagram shown in FIG. 3, circuit symbols described by analog operational amplifiers such as differential amplifiers are software components that receive digital data input and realize arithmetic processing having functions equivalent to those of the analog operational amplifier.
Analog signals output from the first pressure sensor 104, the second pressure sensor 105, the third pressure sensor 106, and the fourth pressure sensor 107 are converted into digital data by the A / D converter 206. In FIG. 3, the multiplexer 207 is omitted to simplify the description.
 第一圧力センサ104のデジタルデータと、第三圧力センサ106のデジタルデータは、第一加算器301によって加算される。すなわち、第一加算器301によって運転手102の右太腿の圧力データと右臀部の圧力データが加算されることで、第一加算器301から運転手102の右半身の圧力データが得られる。
 第二圧力センサ105のデジタルデータと、第四圧力センサ107のデジタルデータは、第二加算器302によって加算される。すなわち、第二加算器302によって運転手102の左太腿の圧力データと左臀部の圧力データが加算されることで、第二加算器302から運転手102の左半身の圧力データが得られる。
The first adder 301 adds the digital data of the first pressure sensor 104 and the digital data of the third pressure sensor 106. That is, the first adder 301 adds the pressure data of the right thigh of the driver 102 and the pressure data of the starboard region, whereby the pressure data of the right half of the driver 102 is obtained from the first adder 301.
The digital data of the second pressure sensor 105 and the digital data of the fourth pressure sensor 107 are added by the second adder 302. That is, the pressure data of the left thigh of the driver 102 and the pressure data of the left buttock of the driver 102 are added by the second adder 302, whereby the pressure data of the left body of the driver 102 is obtained from the second adder 302.
 第一加算器301の出力データと、第二加算器302の出力データは、第一差動増幅器303によって差動増幅される。また、第一加算器301の出力データと、第二加算器302の出力データは、第三加算器304によって加算される。
 第一差動増幅器303の出力データは、AGC(Auto Gain Control)305によって出力ゲインが調整される。AGC305は第三加算器304の出力データによって調整されるので、AGC305は第一差動増幅器303の出力データから運転手102の体重に因る依存要素を除外する。
 AGC305の出力データは、絶対値処理部306によって負の値が正の値に変換される。この絶対値処理部306によって、運転手102の体幹が左右のどちらに傾いても、体幹が傾いた角度によって生じた、圧力センサに加わる荷重の左右不平衡の成分が正の値として現れる。
The output data of the first adder 301 and the output data of the second adder 302 are differentially amplified by the first differential amplifier 303. The output data from the first adder 301 and the output data from the second adder 302 are added by the third adder 304.
The output gain of the output data of the first differential amplifier 303 is adjusted by an AGC (Auto Gain Control) 305. Since the AGC 305 is adjusted by the output data of the third adder 304, the AGC 305 excludes the dependent element due to the weight of the driver 102 from the output data of the first differential amplifier 303.
In the output data of the AGC 305, a negative value is converted into a positive value by the absolute value processing unit 306. By this absolute value processing unit 306, the left-right unbalanced component of the load applied to the pressure sensor, which is caused by the angle at which the trunk is tilted, appears as a positive value regardless of whether the trunk of the driver 102 is tilted to the left or right. .
 絶対値処理部306が出力するデータは、第一コンパレータ307のプラス側入力に入力される。第一コンパレータ307はマイナス側入力に接続されている第一閾値308とプラス側入力の値とを比較して、絶対値処理部306が出力するデータが第一閾値308以上である場合には論理の真を出力する。
 また、絶対値処理部306が出力するデータは、第二差動増幅器309の非反転入力に入力される。第二差動増幅器309の反転入力には、絶対値処理部306が出力するデータにローパスフィルタ(図中「LPF」と表記。以下「LPF」と略)310を通したデータが入力される。第二差動増幅器309は、非反転入力に入力されるLPF310を通過していないデータに対して、反転入力にLPF310を通過したデータを減算するので、実質的にLPF310を通過していないデータの微分成分を出力する、ハイパスフィルタ(以下「HPF」と略)325として機能する。
The data output from the absolute value processing unit 306 is input to the plus side input of the first comparator 307. The first comparator 307 compares the first threshold value 308 connected to the minus side input with the value of the plus side input, and if the data output from the absolute value processing unit 306 is equal to or greater than the first threshold value 308, the logic The true of is output.
Further, the data output from the absolute value processing unit 306 is input to the non-inverting input of the second differential amplifier 309. To the inverting input of the second differential amplifier 309, the data output from the absolute value processing unit 306 is input through the low-pass filter (indicated as “LPF” in the figure, hereinafter abbreviated as “LPF”) 310. The second differential amplifier 309 subtracts the data that has passed through the LPF 310 to the inverting input from the data that has not passed through the LPF 310 that is input to the non-inverting input. It functions as a high-pass filter (hereinafter abbreviated as “HPF”) 325 that outputs a differential component.
 第二差動増幅器309の出力データは、ゼロクロス検出部311に入力される。ゼロクロス検出部311はヒステリシスを有するコンパレータと等価であり、入力されるデータを2値化する。したがって、ゼロクロス検出部311の出力は、論理の真または偽の2値である。
 第一コンパレータ307の出力論理値は、NOTゲート312を介してDフリップフロップ(以下「D-FF」と略)313のD端子に入力される他、そのままD-FF313のセット端子(図3中「S」と表記。以下「S端子」と略)にも入力される。D-FF313のクロック端子にはゼロクロス検出部311の出力論理値が入力される。なお、図示は省略しているが、D-FF313のリセット端子(R端子)は、常時論理の偽に保持されている。
The output data of the second differential amplifier 309 is input to the zero cross detection unit 311. The zero cross detection unit 311 is equivalent to a comparator having hysteresis, and binarizes input data. Therefore, the output of the zero-cross detection unit 311 is a logical true or false binary value.
The output logical value of the first comparator 307 is input to the D terminal of a D flip-flop (hereinafter abbreviated as “D-FF”) 313 via a NOT gate 312, and is set as it is in the set terminal of the D-FF 313 (in FIG. 3). It is also input to “S” (hereinafter abbreviated as “S terminal”). The output logical value of the zero cross detector 311 is input to the clock terminal of the D-FF 313. Although not shown, the reset terminal (R terminal) of the D-FF 313 is always held in a logic false state.
 D-FF313のQ端子には、ANDゲート314の一方の入力端子に接続されている。ANDゲート314の他方の入力端子は、第一コンパレータ307の出力端子と接続されている。ANDゲート314の出力端子は、タイマ315のリセット端子に接続されている。タイマ315の出力データは、ラッチ316に入力される。
 ラッチ316の制御入力端子にはゼロクロス検出部311の出力端子が接続されており、ラッチ316は、ゼロクロス検出部311からパルスが生じると現在の値を保持する。ラッチ316の出力データは、第二コンパレータ317の非反転入力に供給される。第二コンパレータ317は反転入力に接続されている第二閾値318と非反転入力の値とを比較して、ラッチ316が出力するデータが第二閾値318以上である場合には論理の真、すなわち運転手102が居眠り状態にある可能性が高いことを示すアラームを出力する。
The Q terminal of the D-FF 313 is connected to one input terminal of the AND gate 314. The other input terminal of the AND gate 314 is connected to the output terminal of the first comparator 307. The output terminal of the AND gate 314 is connected to the reset terminal of the timer 315. The output data of the timer 315 is input to the latch 316.
The control input terminal of the latch 316 is connected to the output terminal of the zero cross detector 311. The latch 316 holds the current value when a pulse is generated from the zero cross detector 311. The output data of the latch 316 is supplied to the non-inverting input of the second comparator 317. The second comparator 317 compares the second threshold value 318 connected to the inverting input with the value of the non-inverting input, and when the data output from the latch 316 is equal to or higher than the second threshold value 318, the logic is true. An alarm indicating that there is a high possibility that the driver 102 is in a dozing state is output.
 [居眠り検出装置101:動作]
 図4Aは、運転手102が正常な状態において、ブレーキペダルを踏んだ状態における、居眠り検出装置101における各部のタイムチャートである。
 絶対値処理部306の出力データS401(図3のプローブポイントP321)は、運転手102がブレーキペダルを踏んだ瞬間にピークを示し、その後は少し値が経った状態を維持する。
 絶対値処理部306の出力データS401の微分成分S402(図3のプローブポイントP322)は、瞬間的にブレーキペダルを踏み込む方向とは逆極性の成分が出力され、その後極性が反転して、ゼロに戻る。
[Dozing detection device 101: operation]
FIG. 4A is a time chart of each part in the dozing detection device 101 when the driver 102 is in a normal state and the brake pedal is depressed.
The output data S401 (probe point P321 in FIG. 3) of the absolute value processing unit 306 shows a peak at the moment when the driver 102 depresses the brake pedal, and thereafter maintains a state in which a little value has passed.
As the differential component S402 (probe point P322 in FIG. 3) of the output data S401 of the absolute value processing unit 306, a component having a polarity opposite to the direction in which the brake pedal is stepped on instantaneously is output, and then the polarity is inverted to zero. Return.
 タイマ315のリセット端子に入力される、ANDゲート314の出力論理値S403(図3のプローブポイントP323)は、第一コンパレータ307のアップエッジから、D-FF313が微分成分S402のアップエッジによって論理の真を示すまで、論理の真になる。したがって、タイマ315はANDゲート314が論理の真を示している間、すなわち運転手102がブレーキペダルを踏み込み始めてから少し経過して、ブレーキペダルに加わった力がやや減少する時点迄の時間T405を計測する。
 タイマ315の計測時間間隔は短いので、タイマ315の出力データL406は極小である。
The output logical value S403 of the AND gate 314 (probe point P323 in FIG. 3) input to the reset terminal of the timer 315 is logically detected by the D-FF 313 from the up edge of the first comparator 307 by the up edge of the differential component S402. It will be logical true until it shows true. Therefore, the timer 315 waits for a time T405 until the force applied to the brake pedal slightly decreases while the AND gate 314 indicates the logic true, that is, a little after the driver 102 starts to step on the brake pedal. measure.
Since the measurement time interval of the timer 315 is short, the output data L406 of the timer 315 is extremely small.
 図4Bは、居眠り状態の運転手102が、はっと気付いて慌ててブレーキペダルを踏んだ状態における、居眠り検出装置101における各部のタイムチャートである。
 運転手102は、居眠りに伴って体幹が徐々に傾き始める。すると、絶対値処理部306の出力データS411(P321)は、運転手102の体幹が傾く角度に応じて、徐々にその値が増大する。値が第一閾値以上になると、第一コンパレータ307が論理の真を示す。すなわち、第一コンパレータ307は、運転手102が居眠り状態に陥ったことにより、運転手102の体幹が傾いたことを検出する。そして、運転手102が自身の居眠りにはっと気付いて慌ててブレーキペダルを踏むと、運転手102がブレーキペダルを踏んだ瞬間に絶対値処理部306の出力データS411は急峻に変化することでピークを示し、その後は値が殆どゼロに戻る。
FIG. 4B is a time chart of each part in the dozing detection apparatus 101 in a state where the driver 102 in the dozing state notices and suddenly steps on the brake pedal.
As for the driver 102, the trunk gradually begins to tilt as the patient falls asleep. Then, the value of the output data S411 (P321) of the absolute value processing unit 306 gradually increases according to the angle at which the trunk of the driver 102 tilts. When the value is greater than or equal to the first threshold, the first comparator 307 indicates logic true. That is, the first comparator 307 detects that the trunk of the driver 102 has been tilted due to the driver 102 falling into a doze state. When the driver 102 suddenly notices that he / she is snoozing and steps on the brake pedal, the output data S411 of the absolute value processing unit 306 changes abruptly at the moment the driver 102 steps on the brake pedal. After that, the value returns to almost zero.
 絶対値処理部306の出力データS411の微分成分S412(P322)には、居眠り状態の運転手102が、はっと気付いて慌ててブレーキペダルを踏んだ状態のみが現れる。逆に言えば、第一コンパレータ307が検出する、運転手102の体幹がゆっくり傾くことに伴う、絶対値処理部306の出力データS411の緩慢な変化は現れない。出力データS411の微分成分S412には、瞬間的にブレーキペダルを踏み込む方向とは逆極性の成分が出力され、その後極性が反転して、ゼロに戻る。 In the differential component S412 (P322) of the output data S411 of the absolute value processing unit 306, only a state in which the driver 102 in a dozing state notices and suddenly steps on the brake pedal appears. In other words, the slow change in the output data S411 of the absolute value processing unit 306, which is detected by the first comparator 307 and the trunk of the driver 102 slowly tilts, does not appear. In the differential component S412 of the output data S411, a component having a polarity opposite to the direction in which the brake pedal is depressed instantaneously is output, and then the polarity is inverted to return to zero.
 タイマ315のリセット端子に入力される、ANDゲート314の出力論理値S413(P323)は、第一コンパレータ307のアップエッジから、D-FF313が微分成分のアップエッジによって論理の真を示すまで、論理の真になる。したがって、タイマ315はANDゲート314が論理の真を示している間、すなわち運転手102の体幹が傾き始めた時点から、運転手102が慌ててブレーキペダルを踏み込み、ブレーキペダルに加わった力がやや減少した時点迄の時間T415を計測する。すると、タイマ315の計測時間は正常状態のときと比べて大幅に長くなる。よって、タイマ315の出力データL416は大きな値を示す。 The output logic value S413 (P323) of the AND gate 314 input to the reset terminal of the timer 315 is logical from the up edge of the first comparator 307 until the D-FF 313 indicates logic true by the up edge of the differential component. Become true. Therefore, the timer 315 detects the force applied to the brake pedal while the AND gate 314 indicates the logic true, that is, from the time when the trunk of the driver 102 starts to tilt, and the driver 102 suddenly steps on the brake pedal. The time T415 until the time when it slightly decreases is measured. Then, the measurement time of the timer 315 is significantly longer than that in the normal state. Therefore, the output data L416 of the timer 315 shows a large value.
 [圧力センサの例]
 本発明の実施形態に係る居眠り検出装置101は、圧力センサから得られる電圧信号の変化を、演算処理を通して観察する。このため、本発明の実施形態に係る居眠り検出装置101に使用する圧力センサは、厳密な線形性を必要としない。圧力の大小に応じて出力される電圧信号に多少の誤差が含まれていても、電圧の変動さえ検出できればよい。したがって、出力信号の線形性が保証されている高価な圧力センサではなく、簡素な構成の圧力センサが利用可能である。
[Example of pressure sensor]
The dozing detection apparatus 101 according to the embodiment of the present invention observes a change in a voltage signal obtained from a pressure sensor through arithmetic processing. For this reason, the pressure sensor used for the dozing detection apparatus 101 according to the embodiment of the present invention does not require strict linearity. Even if the voltage signal output according to the magnitude of the pressure includes some errors, it is only necessary to detect the voltage fluctuation. Therefore, a pressure sensor having a simple configuration can be used instead of an expensive pressure sensor in which the linearity of the output signal is guaranteed.
 図5Aは、第一の実例に係る圧力センサ501の概略図である。圧力センサ501は導電性ゴムのシート502の両面に電極を貼付した構成である。このシート状の圧力センサ501に圧力を加えると、シート502を形成する導電性ゴムの密度が高まるため、圧力センサ501の抵抗値は低下する。
 図5Bは、第一の実例に係る圧力センサ501を用いた圧力検出回路である。抵抗式の圧力センサ501に抵抗R503を介して一定の電圧を印加することで、圧力に応じたアナログ電圧信号を得ることができる。このアナログ電圧信号をA/D変換器206に入力させることで、圧力の大小に呼応して値が変動するデジタルデータを得ることができる。
FIG. 5A is a schematic diagram of a pressure sensor 501 according to a first example. The pressure sensor 501 has a configuration in which electrodes are attached to both surfaces of a conductive rubber sheet 502. When pressure is applied to the sheet-like pressure sensor 501, the resistance of the pressure sensor 501 decreases because the density of the conductive rubber forming the sheet 502 increases.
FIG. 5B is a pressure detection circuit using the pressure sensor 501 according to the first example. By applying a constant voltage to the resistance type pressure sensor 501 via the resistor R503, an analog voltage signal corresponding to the pressure can be obtained. By inputting this analog voltage signal to the A / D converter 206, it is possible to obtain digital data whose value fluctuates in response to the magnitude of pressure.
 図5A及び図5Bに示した第一の実例に係る圧力センサ501は、非常に簡素な回路構成で、容易に圧力に応じたアナログ電圧信号を取得することができる。しかしながら、図5Bの圧力検出回路では、常時抵抗に電流が流れ続ける。つまり、貫通電流が常時発生している。このため、バッテリ駆動の回路にはあまり好適とは言えない。そこで、貫通電流が生じる余地のない、静電型の圧力センサの例を以下に説明する。 The pressure sensor 501 according to the first example shown in FIGS. 5A and 5B can easily acquire an analog voltage signal corresponding to pressure with a very simple circuit configuration. However, in the pressure detection circuit of FIG. 5B, current always flows through the resistor. That is, a through current is always generated. For this reason, it cannot be said that it is not very suitable for a battery drive circuit. An example of an electrostatic pressure sensor that does not have room for through current will be described below.
 図5Cは、第二の実例に係る圧力センサ511の概略図である。図5Cに示す圧力センサ511は、絶縁体である誘電体のゴムのシート512の両面に電極を貼付した構成である。このシート状の圧力センサ511に圧力を加えると、電極間距離が短くなるため、圧力センサ511の静電容量は上昇する。
 図5Dは、第二の実例に係る圧力センサ511を用いた圧力検出回路である。
FIG. 5C is a schematic diagram of a pressure sensor 511 according to the second example. The pressure sensor 511 shown in FIG. 5C has a configuration in which electrodes are attached to both surfaces of a dielectric rubber sheet 512 as an insulator. When pressure is applied to the sheet-like pressure sensor 511, the distance between the electrodes is shortened, so that the capacitance of the pressure sensor 511 increases.
FIG. 5D is a pressure detection circuit using the pressure sensor 511 according to the second example.
 信号源513は例えば30kHz以上の、可聴周波数帯域より高い周波数の矩形波信号を発生する。矩形波信号はCMOSインバータ514のゲートに印加される。すると、CMOSインバータ514の出力端子は、矩形波信号に対して反転した論理で、後続する抵抗R515に順方向電流(ソース)と逆方向電流(シンク)を流す。すなわち、CMOSインバータ514は、抵抗R515に電源ノードと接地ノードを交互に接続する切替スイッチとして動作する。CMOSインバータ514が存在することで、図5Dの圧力検出回路には貫通電流が発生しない。 The signal source 513 generates a rectangular wave signal having a frequency higher than the audible frequency band, for example, 30 kHz or higher. The rectangular wave signal is applied to the gate of the CMOS inverter 514. Then, the output terminal of the CMOS inverter 514 causes the forward current (source) and the reverse current (sink) to flow through the subsequent resistor R515 with logic inverted with respect to the rectangular wave signal. That is, the CMOS inverter 514 operates as a changeover switch that alternately connects the power supply node and the ground node to the resistor R515. Due to the presence of the CMOS inverter 514, no through current is generated in the pressure detection circuit of FIG. 5D.
 抵抗R515の他端には圧力センサ511を構成する可変容量コンデンサC516が接続されている。したがって、抵抗R515と可変容量コンデンサC516は時定数を構成する。この時定数は可変容量コンデンサC516の静電容量によって変動する。つまり、可変容量コンデンサC516の充放電に要する時間よりも信号源513の矩形波信号の周期が短ければ、可変容量コンデンサC516の静電容量に応じて、可変容量コンデンサC516のピーク時点の電圧は変動する。可変容量コンデンサC516の静電容量が小さい時には、ピーク時電圧は高くなり、逆に可変容量コンデンサC516の静電容量が大きい時には、ピーク時電圧は低くなる。 A variable capacitor C516 constituting the pressure sensor 511 is connected to the other end of the resistor R515. Therefore, the resistor R515 and the variable capacitor C516 constitute a time constant. This time constant varies depending on the capacitance of the variable capacitor C516. That is, if the period of the rectangular wave signal of the signal source 513 is shorter than the time required for charging and discharging the variable capacitor C516, the voltage at the peak of the variable capacitor C516 varies depending on the capacitance of the variable capacitor C516. To do. When the capacitance of the variable capacitor C516 is small, the peak voltage is high. Conversely, when the capacitance of the variable capacitor C516 is large, the peak voltage is low.
 可変容量コンデンサC516と抵抗R515の接続点には、ダイオードD517のアノードが接続されている。ダイオードD517のカソードは、可変容量コンデンサC516よりも静電容量が大きいコンデンサC518に接続されている。また、コンデンサC518には抵抗R519が並列接続されており、このコンデンサC518と抵抗R519は矩形波信号の周期よりも数十倍から数千倍程度の時定数が設定される。ダイオードD517としては、順方向電圧降下が小さくスイッチングが高速なショットキバリアダイオードが好適である。 The anode of a diode D517 is connected to the connection point between the variable capacitor C516 and the resistor R515. The cathode of the diode D517 is connected to a capacitor C518 having a larger capacitance than the variable capacitor C516. A resistor R519 is connected in parallel to the capacitor C518, and the capacitor C518 and the resistor R519 have a time constant of several tens to several thousand times the period of the rectangular wave signal. As the diode D517, a Schottky barrier diode with a small forward voltage drop and high-speed switching is suitable.
 可変容量コンデンサC516の電圧からダイオードD517の順方向電圧降下を引いた電圧よりコンデンサC518の電圧が低い場合、可変容量コンデンサC516からダイオードD517を通じてコンデンサC518へ充電される。このとき、コンデンサC518の可変容量コンデンサC516への放電はダイオードD517によって阻止され、抵抗R519でのみ放電される。したがって、このダイオードD517とコンデンサC518と抵抗R519は、簡易なピークホールド回路を構成する。コンデンサC518と抵抗R519の時定数が可変容量コンデンサC516と抵抗R515の時定数よりも十分大きければ、コンデンサC518の電圧変動を小さくすることができる。そこで、コンデンサC518の電圧をA/D変換器206に入力させることで、圧力の大小に呼応して値が変動するデジタルデータを得ることができる。 When the voltage of the capacitor C518 is lower than the voltage obtained by subtracting the forward voltage drop of the diode D517 from the voltage of the variable capacitor C516, the capacitor C518 is charged from the variable capacitor C516 through the diode D517. At this time, the discharge of the capacitor C518 to the variable capacitor C516 is blocked by the diode D517, and is discharged only by the resistor R519. Therefore, the diode D517, the capacitor C518, and the resistor R519 constitute a simple peak hold circuit. If the time constant of the capacitor C518 and the resistor R519 is sufficiently larger than the time constant of the variable capacitor C516 and the resistor R515, the voltage fluctuation of the capacitor C518 can be reduced. Therefore, by inputting the voltage of the capacitor C518 to the A / D converter 206, digital data whose value fluctuates in accordance with the pressure can be obtained.
 本発明の各実施形態においては、居眠り検出装置101を開示した。
 居眠り検出装置101は、運転手102が居眠りに陥ったことを、運転手102の体幹の重心バランスの変化から検出する。運転手102の体幹の重心バランスは、圧力センサで検出する。ドライバーズシート103の左右に設けた圧力センサの値を差動増幅した後、絶対値に変換して、所定の第一閾値308と比較することで、運転手102の体幹のアンバランスな状態、すなわち船漕ぎ状態を検出する。一方、差動増幅したデータにHPFを適用して、慌ててブレーキを踏んだ動作を検出する。正常な状態のブレーキ操作では、長時間の船漕ぎ状態がないので、カウンタの値は小さいままである。居眠りから気付いて、慌てて踏んだブレーキ操作では、長時間の船漕ぎ状態があるので、カウンタの値が大きくなり、居眠り状態を検出することができる。
In each embodiment of the present invention, the dozing detection device 101 is disclosed.
The dozing detection device 101 detects that the driver 102 has fallen asleep from the change in the center of gravity balance of the trunk of the driver 102. The center of gravity balance of the trunk of the driver 102 is detected by a pressure sensor. After differentially amplifying the values of the pressure sensors provided on the left and right sides of the driver's seat 103, the values are converted into absolute values and compared with a predetermined first threshold value 308, thereby unbalanced the trunk of the driver 102 That is, the rowing state is detected. On the other hand, HPF is applied to the differentially amplified data, and the operation of hitting the brake is detected. Under normal braking conditions, the counter value remains small because there is no long-term rowing condition. In the brake operation that is noticed from dozing and stepped on in a hurry, there is a long-time rowing state, so the value of the counter becomes large, and the dozing state can be detected.
 居眠り状態の検出には、1Hz未満の超低周波信号を扱う必要がある。アナログ回路では大容量のコンデンサが必要になるが、デジタルデータに変換することで、全てマイコンの演算処理で完結させることが可能になる。また、扱う信号の周波数が超低周波であるため、サンプリングクロックは低くてもよい。更に、本発明の実施形態に係る居眠り検出装置101は、フーリエ変換等の膨大な計算を行わない。したがって、パソコン等と比べて演算処理能力の少ない8bitのワンチップマイコンでも充分に利用可能である。 It is necessary to handle an extremely low frequency signal of less than 1 Hz for detecting a dozing state. An analog circuit requires a large-capacitance capacitor, but by converting it to digital data, it is possible to complete it all by microcomputer processing. Further, since the frequency of the signal to be handled is an extremely low frequency, the sampling clock may be low. Furthermore, the dozing detection apparatus 101 according to the embodiment of the present invention does not perform enormous calculations such as Fourier transform. Therefore, even an 8-bit one-chip microcomputer having a smaller arithmetic processing capability than a personal computer can be used sufficiently.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、他の変形例、応用例を含む。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, Unless it deviates from the summary of this invention described in the claim, another modification example and application example Including.
 101…居眠り検出装置、102…運転手、103…ドライバーズシート、103a…座椅子、104…第一圧力センサ、105…第二圧力センサ、106…第三圧力センサ、107…第四圧力センサ、201…バス、202…CPU、203…ROM、204…RAM、205…シリアルインターフェース、206…A/D変換器、207…マルチプレクサ、301…第一加算器、302…第二加算器、303…第一差動増幅器、304…第三加算器、305…AGC、306…絶対値処理部、307…第一コンパレータ、308…第一閾値、309…第二差動増幅器、310…LPF、311…ゼロクロス検出部、312…NOTゲート、313…D?FF、314…ANDゲート、315…タイマ、316…ラッチ、317…第二コンパレータ、318…第二閾値、325…HPF、501、511…圧力センサ、502、512…シート、513…信号源、514…CMOSインバータ、C516…可変容量コンデンサ、C518…コンデンサ、D517…ダイオード、R503、R515、R519…抵抗 DESCRIPTION OF SYMBOLS 101 ... Dozing detection apparatus, 102 ... Driver, 103 ... Driver's seat, 103a ... Seat chair, 104 ... First pressure sensor, 105 ... Second pressure sensor, 106 ... Third pressure sensor, 107 ... Fourth pressure sensor , 201 ... bus, 202 ... CPU, 203 ... ROM, 204 ... RAM, 205 ... serial interface, 206 ... A / D converter, 207 ... multiplexer, 301 ... first adder, 302 ... second adder, 303 ... First differential amplifier 304 ... third adder 305 ... AGC 306 ... absolute value processing unit 307 ... first comparator 308 ... first threshold value 309 ... second differential amplifier 310 ... LPF 311 ... Zero cross detector, 312 ... NOT gate, 313 ... D? FF, 314 ... AND gate, 315 ... Timer, 316 ... Latch, 317 ... Second controller Parator, 318 ... second threshold, 325 ... HPF, 501, 511 ... pressure sensor, 502, 512 ... sheet, 513 ... signal source, 514 ... CMOS inverter, C516 ... variable capacitor, C518 ... capacitor, D517 ... diode, R503 , R515, R519 ... resistance

Claims (4)

  1.  車両のドライバーズシートの座椅子の左側に配置される第一圧力センサと、前記座椅子の右側に配置される第二圧力センサとの差動出力を得る第一差動増幅器と、
     前記第一差動増幅器の出力値の絶対値を出力する絶対値処理部と、
     前記絶対値処理部の出力値を第一閾値と比較して、前記ドライバーズシートに着席する運転手の体幹の傾きを検出する論理値を出力する第一コンパレータと、
     前記絶対値処理部の出力値の微分値を出力するハイパスフィルタと、
     前記ハイパスフィルタの出力値のゼロクロスを検出するゼロクロス検出部と、
     前記第一コンパレータの論理値が論理の真を示す間、所定のクロックを計数し、前記ゼロクロス検出部の論理値によってリセットされるタイマと、
     前記タイマの計数値を第二閾値と比較して、前記運転手が居眠り状態にあるか否かを検出する論理値を出力する第二コンパレータと
    を具備する、居眠り検出装置。
    A first differential amplifier for obtaining a differential output between a first pressure sensor disposed on a left side of a seat chair of a driver's seat of a vehicle and a second pressure sensor disposed on a right side of the seat;
    An absolute value processing unit for outputting an absolute value of an output value of the first differential amplifier;
    A first comparator that compares the output value of the absolute value processing unit with a first threshold value and outputs a logical value for detecting the inclination of the trunk of the driver seated on the driver's seat;
    A high-pass filter that outputs a differential value of the output value of the absolute value processing unit;
    A zero-cross detector that detects a zero-cross of the output value of the high-pass filter;
    A timer that counts a predetermined clock while the logic value of the first comparator indicates logic true, and is reset by the logic value of the zero-cross detector;
    A dozing detection apparatus comprising: a second comparator that compares a count value of the timer with a second threshold value and outputs a logical value for detecting whether or not the driver is dozing.
  2.  更に、
     前記タイマと前記第二コンパレータとの間に介在し、前記ゼロクロス検出部の出力論理値によって入力値をラッチするラッチと
    を具備する、請求項1に記載の居眠り検出装置。
    Furthermore,
    The dozing detection apparatus according to claim 1, further comprising a latch interposed between the timer and the second comparator and latching an input value according to an output logical value of the zero-cross detection unit.
  3.  前記第一圧力センサ及び前記第二圧力センサは、
     荷重に呼応して静電容量が変動し、一方の端子が接地ノードに接続されている可変容量コンデンサと、
     一方の端子が前記可変容量コンデンサの他方の端子に接続され、第一の時定数を形成する第一の抵抗と、
     前記第一の抵抗の他方の端子に対し、電源ノードと接地ノードとを交互に切り替える切替スイッチと、
     前記可変容量コンデンサと前記第一の抵抗との接続点にアノードが接続されるダイオードと、
     前記ダイオードのカソードと接地ノードとの間に接続され、前記可変容量コンデンサよりも大きい静電容量を有するコンデンサと、
     前記コンデンサと並列接続され、前記第一の時定数より大きい第二の時定数を形成する第二の抵抗と
    を具備する、請求項2に記載の居眠り検出装置。
    The first pressure sensor and the second pressure sensor are
    A variable capacitance capacitor whose capacitance fluctuates in response to the load and whose one terminal is connected to the ground node;
    A first resistor having one terminal connected to the other terminal of the variable capacitor and forming a first time constant;
    A changeover switch that alternately switches between a power supply node and a ground node with respect to the other terminal of the first resistor;
    A diode having an anode connected to a connection point between the variable capacitor and the first resistor;
    A capacitor connected between the cathode of the diode and a ground node and having a capacitance greater than the variable capacitor;
    The dozing detection device according to claim 2, further comprising: a second resistor connected in parallel with the capacitor and forming a second time constant larger than the first time constant.
  4.  前記第一圧力センサ及び前記第二圧力センサは、荷重に呼応して抵抗値が変動する抵抗膜を有する可変抵抗である、請求項2に記載の居眠り検出装置。 The dozing detection apparatus according to claim 2, wherein the first pressure sensor and the second pressure sensor are variable resistors having a resistance film whose resistance value varies in response to a load.
PCT/JP2019/011790 2018-03-22 2019-03-20 Drowsiness detection device WO2019182033A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020507881A JPWO2019182033A1 (en) 2018-03-22 2019-03-20 Doze detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018053882 2018-03-22
JP2018-053882 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019182033A1 true WO2019182033A1 (en) 2019-09-26

Family

ID=67987277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011790 WO2019182033A1 (en) 2018-03-22 2019-03-20 Drowsiness detection device

Country Status (2)

Country Link
JP (1) JPWO2019182033A1 (en)
WO (1) WO2019182033A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293085A (en) * 1995-04-20 1996-11-05 Mitsubishi Motors Corp Asleep driving alarm device
JPH11326084A (en) * 1998-05-12 1999-11-26 Isuzu Motors Ltd Driver condition detecting device
US6392550B1 (en) * 2000-11-17 2002-05-21 Ford Global Technologies, Inc. Method and apparatus for monitoring driver alertness
JP2012166579A (en) * 2011-02-09 2012-09-06 Aisin Seiki Co Ltd Device and method for determining state, and program
US20170327124A1 (en) * 2016-05-10 2017-11-16 Samsung Electronics Co., Ltd. Electronic device and method for determining a state of a driver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293085A (en) * 1995-04-20 1996-11-05 Mitsubishi Motors Corp Asleep driving alarm device
JPH11326084A (en) * 1998-05-12 1999-11-26 Isuzu Motors Ltd Driver condition detecting device
US6392550B1 (en) * 2000-11-17 2002-05-21 Ford Global Technologies, Inc. Method and apparatus for monitoring driver alertness
JP2012166579A (en) * 2011-02-09 2012-09-06 Aisin Seiki Co Ltd Device and method for determining state, and program
US20170327124A1 (en) * 2016-05-10 2017-11-16 Samsung Electronics Co., Ltd. Electronic device and method for determining a state of a driver

Also Published As

Publication number Publication date
JPWO2019182033A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
EP0545497B1 (en) Control system for a vehicle
US6957591B2 (en) Passenger judging apparatus with load sensor
JP2003066090A (en) Leak detector
JPWO2004089209A1 (en) Biological information detection device, contact member used therefor, and coating for biological information detection unit
US9753070B2 (en) Evaluation method and evaluation device for a capacitive contact sensor
WO2019182033A1 (en) Drowsiness detection device
CN110509978B (en) Driving mode switching method and system
US20160183834A1 (en) Semi-contact-type ecg measurement system and measurement method thereof
JPS58115384A (en) Obstacle detector for automobile
JP2002102188A (en) Heart beat signal detecting instrument
US9541446B2 (en) Occupant determination apparatus using load sensor
JP3062431B2 (en) Presence determination device
JP2021146842A (en) Detection device
JP3286819B2 (en) Pressure distribution measuring device
KR101676026B1 (en) Apparatus and method for detecting postures using Force Sensing Resistor sensor
JP2892892B2 (en) Presence detection device
JPH049141A (en) Doze preventer for vehicle
JPH0348560B2 (en)
JP2824934B2 (en) Abnormality detection device for torque sensor
JPH0571740U (en) Piezoelectric sensor with failure detection circuit
CN211213192U (en) State detection steering wheel
JPH07223456A (en) Doze warning device
GB2366062A (en) Detecting fatigue in machine operator or vehicle driver
JPH1137708A (en) Abnormally detector for potentiometer
JPH08196636A (en) Doze alarming device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507881

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771867

Country of ref document: EP

Kind code of ref document: A1