WO2019181932A1 - Vehicle drive device - Google Patents

Vehicle drive device Download PDF

Info

Publication number
WO2019181932A1
WO2019181932A1 PCT/JP2019/011426 JP2019011426W WO2019181932A1 WO 2019181932 A1 WO2019181932 A1 WO 2019181932A1 JP 2019011426 W JP2019011426 W JP 2019011426W WO 2019181932 A1 WO2019181932 A1 WO 2019181932A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
motor
wheel
drive motor
speed
Prior art date
Application number
PCT/JP2019/011426
Other languages
French (fr)
Japanese (ja)
Inventor
任田 功
晴洋 平野
米盛 敬
英樹 佐内
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018143351A external-priority patent/JP7041397B2/en
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to CN201980019069.XA priority Critical patent/CN111867869B/en
Priority to EP19771793.7A priority patent/EP3753772A4/en
Priority to US16/981,224 priority patent/US20210023935A1/en
Publication of WO2019181932A1 publication Critical patent/WO2019181932A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle drive device, and more particularly to a vehicle drive device that uses an in-wheel motor to drive a vehicle.
  • Patent Document 1 describes a drive control device for a vehicle.
  • a drive device is provided on the rear wheel side of the vehicle, and two electric motors provided in the drive device respectively drive the rear wheels of the vehicle.
  • a drive unit in which an internal combustion engine and an electric motor are connected in series is provided at the front of the vehicle. The power of the drive unit is transmitted to the front wheels via the transmission and the main drive shaft, and the power of the drive device is transmitted to the rear wheels of the vehicle.
  • the two electric motors of the drive device are driven, and this driving force is transmitted to the rear wheels of the vehicle.
  • the drive unit when the vehicle is accelerated, the drive unit also generates a driving force, and four-wheel drive is performed by the two electric motors of the drive unit and the drive device.
  • two electric motors provided mainly for the rear wheels of the vehicle generate driving force.
  • the hybrid drive device mainly composed of the driving force of the electric motor it is necessary to mount a large-capacity battery in order to ensure sufficient traveling performance. Further, in order to obtain a sufficient driving force by the electric motor, it is necessary to operate the electric motor at a relatively high voltage. For this reason, in the hybrid drive device mainly composed of the driving force of the electric motor, a large-capacity battery is required, and an electric system for supplying a high voltage to the electric motor needs to be electrically sufficiently insulated. Increase the overall weight of the vehicle and worsen the fuel consumption of the vehicle. Furthermore, in order to drive a heavy vehicle with an electric motor, there is a problem that a battery with a larger capacity and a higher voltage are required, which causes a vicious circle that further increases the weight.
  • an electric motor that drives a rear wheel is directly connected to a drive shaft of the rear wheel.
  • this electric motor may be built in the rear wheel to form a so-called in-wheel motor. Conceivable.
  • an in-wheel motor is employed, there is no need for a drive shaft that connects the motor and the wheels, so there is an advantage that the weight of the drive shaft can be reduced.
  • an in-wheel motor is employed as an electric motor for starting, accelerating, and cruise traveling of a vehicle as in the invention described in Patent Document 1, a large electric motor is required to obtain sufficient traveling performance. Inevitable increase in weight. For this reason, the merit which employ
  • an object of the present invention is to provide a vehicle drive device that can efficiently drive a vehicle using an in-wheel motor without falling into a vicious circle of strengthening drive by an electric motor and increasing vehicle weight. Yes.
  • the present invention is a vehicle drive device that uses an in-wheel motor to drive a vehicle, and is provided on a vehicle speed sensor that detects the traveling speed of the vehicle, and on the wheels of the vehicle.
  • An in-wheel motor that drives the vehicle and a controller that controls the in-wheel motor, and the controller has a vehicle traveling speed detected by the vehicle speed sensor equal to or higher than a predetermined first vehicle speed greater than zero.
  • the in-wheel motor is controlled so as to generate a driving force.
  • the traveling speed of the vehicle is detected by the vehicle speed sensor, and the controller controls the in-wheel motor that is provided on the wheel and drives the wheel. Further, the controller controls the in-wheel motor so as to generate a driving force when the vehicle traveling speed detected by the vehicle speed sensor is equal to or higher than a predetermined first vehicle speed greater than zero.
  • the in-wheel motor is configured to generate the driving force when the traveling speed of the vehicle is equal to or higher than the predetermined first vehicle speed greater than zero.
  • a large torque is not required for the in-wheel motor.
  • a small electric motor with a small torque in the low speed range can be adopted as the in-wheel motor, and the vehicle can be efficiently driven using the in-wheel motor.
  • the vehicle further includes a vehicle body side motor that is provided on the vehicle body and drives the wheels of the vehicle, and the controller has a vehicle traveling speed detected by the vehicle speed sensor less than a predetermined second vehicle speed. At this time, the vehicle body side motor is controlled so as to generate a driving force.
  • the vehicle body side motor provided in the vehicle body of the vehicle when the traveling speed of the vehicle is less than the predetermined second vehicle speed, the vehicle body side motor provided in the vehicle body of the vehicle generates a driving force. Complementing the in-wheel motor that generates force, it is possible to give the vehicle sufficient running performance.
  • the controller is configured to control the vehicle body side motor so as to generate a driving force even when the traveling speed of the vehicle detected by the vehicle speed sensor is equal to or higher than the second vehicle speed. .
  • the vehicle body side motor since the vehicle body side motor generates driving force even when the vehicle traveling speed is equal to or higher than the second vehicle speed, in the speed region where the traveling speed is equal to or higher than the first and second vehicle speeds. Both the vehicle body side motor and the in-wheel motor generate driving force. For this reason, it becomes possible to further reduce the size of the in-wheel motor.
  • the controller controls the in-wheel motor so that the driving force is not generated in the in-wheel motor when the vehicle traveling speed detected by the vehicle speed sensor is lower than the first vehicle speed. It is configured.
  • the generation of the driving force by the in-wheel motor is prohibited. It can be employed as a wheel motor, and the in-wheel motor can be reduced in weight.
  • the controller causes the vehicle-side motor to generate a driving force to start the vehicle, and when the vehicle traveling speed detected by the vehicle speed sensor reaches the first vehicle speed, The driving force is generated in the motor.
  • the in-wheel motor generates the driving force when the traveling speed reaches the first vehicle speed after the vehicle body side motor generates the driving force and starts the vehicle.
  • An in-wheel motor is not used when the vehicle is started, and an electric motor with extremely small starting torque can be employed as the in-wheel motor, and the in-wheel motor can be reduced in weight.
  • the in-wheel motor is configured to directly drive a wheel provided with the in-wheel motor without using a speed reduction mechanism.
  • the in-wheel motor since the in-wheel motor generates a driving force when the vehicle speed is equal to or higher than the predetermined first vehicle speed, the in-wheel motor is not required to have a large torque in the low speed range. For this reason, the in-wheel motor can generate sufficient torque in the rotation region where torque is required without providing a speed reduction mechanism. Further, according to the present invention configured as described above, since the wheels are directly driven without using the speed reduction mechanism, the speed reduction mechanism that is extremely heavy can be omitted, and the rotation resistance of the speed reduction mechanism can be used. Output loss can be avoided.
  • the in-wheel motor is preferably an induction motor.
  • an induction motor can be configured to be lightweight while obtaining a large output torque in a high rotation region. For this reason, in the present invention, by adopting an induction motor for an in-wheel motor that does not require a large torque in the low rotation region, the electric motor capable of generating sufficient torque in the necessary rotation region can be reduced in weight. Can be configured.
  • the vehicle body side motor is preferably a permanent magnet motor.
  • a permanent magnet motor has a relatively large starting torque, and can obtain a large torque in a low rotation region. For this reason, in the present invention, by adopting a permanent magnet motor for a vehicle body side motor that requires a large torque in a low rotation region, a motor that can generate sufficient torque in a necessary rotation region is configured to be lightweight. be able to.
  • the in-wheel motor is configured to drive the front wheel of the vehicle
  • the vehicle body side motor is configured to drive the rear wheel of the vehicle.
  • the in-wheel motor is configured to drive the rear wheel of the vehicle
  • the vehicle body side motor is configured to drive the front wheel of the vehicle
  • the in-wheel motor and the vehicle body side motor are configured to drive the front wheels of the vehicle.
  • the in-wheel motor and the vehicle body side motor are configured to drive the rear wheels of the vehicle.
  • the present invention is a vehicle drive device that uses an in-wheel motor to drive a vehicle, a vehicle speed sensor that detects a traveling speed of the vehicle, an in-wheel motor that is provided on a wheel of the vehicle and that drives the wheel. And a controller for controlling the in-wheel motor.
  • the controller controls the in-wheel motor when the vehicle traveling speed detected by the vehicle speed sensor is less than a predetermined first vehicle speed greater than zero.
  • the in-wheel motor is controlled so as not to generate a driving force.
  • the present invention is a vehicle drive device that uses an in-wheel motor to drive a vehicle, a vehicle speed sensor that detects a traveling speed of the vehicle, an in-wheel motor that is provided on a wheel of the vehicle and that drives the wheel.
  • a vehicle body side motor provided on the vehicle body for driving the vehicle wheel; and a controller for controlling the in-wheel motor and the vehicle body side motor, wherein the controller generates a driving force for the vehicle body side motor.
  • the driving force is generated in the in-wheel motor when the vehicle traveling speed detected by the vehicle speed sensor reaches a predetermined first vehicle speed greater than zero. It is characterized by that.
  • the vehicle can be efficiently driven using the in-wheel motor without falling into a vicious circle of the drive enhancement by the electric motor and the vehicle weight increase.
  • FIG. 1 is a layout diagram of a vehicle equipped with a hybrid drive device according to a first embodiment of the present invention. It is the perspective view which looked at the front part of the vehicle carrying the hybrid drive device by a 1st embodiment of the present invention from the upper part. It is the perspective view which looked at the front part of the vehicle carrying the hybrid drive device by 1st Embodiment of this invention from the side surface.
  • FIG. 4 is a sectional view taken along line iv-iv in FIG. 2. It is a block diagram which shows the input / output of various signals in the hybrid drive device by 1st Embodiment of this invention. It is a block diagram which shows the power supply structure of the hybrid drive device by 1st Embodiment of this invention.
  • the hybrid drive device by a 1st embodiment of the present invention it is a figure showing typically an example of change of voltage when electric power is regenerated to a capacitor. It is a figure which shows the relationship between the output of each motor currently used in the hybrid drive device by 1st Embodiment of this invention, and a vehicle speed. It is sectional drawing which shows typically the structure of the sub drive motor employ
  • the hybrid drive device In the hybrid drive device according to the first embodiment of the present invention, it is a diagram schematically showing a change in acceleration acting on the vehicle when the transmission is shifted down or up. It is a flowchart of control by the control apparatus in the hybrid drive device by 2nd Embodiment of this invention. It is a graph which shows an example of the operation
  • FIG. 2 is a layout diagram of a vehicle equipped with a hybrid drive device according to a first modified embodiment of the present invention.
  • FIG. 6 is a layout diagram of a vehicle equipped with a hybrid drive device according to a second modified embodiment of the present invention.
  • FIG. 6 is a layout diagram of a vehicle equipped with a hybrid drive device according to a third modified embodiment of the present invention.
  • FIG. 1 is a layout diagram of a vehicle equipped with a hybrid drive apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the front portion of the vehicle on which the hybrid drive device of this embodiment is mounted as viewed from above, and
  • FIG. 3 is a perspective view of the front portion of the vehicle as viewed from the side.
  • 4 is a cross-sectional view taken along line iv-iv in FIG.
  • a vehicle 1 equipped with a hybrid drive device that is a vehicle drive device according to a first embodiment of the present invention is equipped with an engine 12 that is an internal combustion engine in front of the vehicle, ahead of the driver's seat.
  • This is a so-called FR (Front engine, Rear drive) vehicle that drives a pair of left and right rear wheels 2a that are main driving wheels.
  • FR Front engine, Rear drive
  • the rear wheel 2a is also driven by a main drive motor that is a main drive motor
  • the pair of left and right front wheels 2b that are sub drive wheels are driven by a sub drive motor that is a sub drive motor.
  • the hybrid drive device 10 mounted on a vehicle 1 drives an engine 12 that drives a rear wheel 2a, a power transmission mechanism 14 that transmits a driving force to the rear wheel 2a, and a rear wheel 2a.
  • the main drive motor 16 the battery 18 that is a battery
  • the sub drive motor 20 that drives the front wheels 2b
  • the capacitor 22 the control device 24 that is a controller.
  • the engine 12 is an internal combustion engine for generating a driving force for the rear wheel 2a, which is the main driving wheel of the vehicle 1.
  • an in-line four-cylinder engine is adopted as the engine 12, and the engine 12 disposed in the front portion of the vehicle 1 is connected to the rear wheel 2 a via the power transmission mechanism 14. Is supposed to drive.
  • the engine 12 is a flywheelless engine that does not include a flywheel, and is mounted on the subframe 4 a of the vehicle 1 via an engine mount 6 a. Further, the sub frame 4a is fastened and fixed to the lower part of the front side frame 4b and the lower part of the dash panel 4c at the rear end.
  • the power transmission mechanism 14 is configured to transmit the driving force generated by the engine 12 to the rear wheel 2a that is the main driving wheel.
  • the power transmission mechanism 14 includes a propeller shaft 14 a connected to the engine 12, a clutch 14 b, and a transmission 14 c that is a stepped transmission.
  • the propeller shaft 14 a extends from the engine 12 disposed at the front of the vehicle 1 through the propeller shaft tunnel 4 d (FIG. 2) toward the rear of the vehicle 1.
  • the rear end of the propeller shaft 14a is connected to the transmission 14c via the clutch 14b.
  • the output shaft of the transmission 14c is connected to the axle (not shown) of the rear wheel 2a, and drives the rear wheel 2a.
  • the transmission 14c has a so-called transaxle arrangement.
  • the main body of the transmission having a large outer diameter does not exist immediately after the engine 12, so that the width of the floor tunnel (propeller shaft tunnel 4d) can be reduced, and the foot space on the center side of the occupant is secured.
  • This makes it possible for the occupant to take a symmetrical lower body posture facing directly in front.
  • the main drive motor 16 is an electric motor for generating a driving force for the main drive wheels, and is provided on the vehicle body of the vehicle 1 and is disposed on the rear side of the engine 12 adjacent to the engine 12. Functions as a side motor. Further, an inverter (INV) 16 a is disposed adjacent to the main drive motor 16, and the current from the battery 18 is converted into alternating current by the inverter 16 a and supplied to the main drive motor 16. Further, as shown in FIGS. 2 and 3, the main drive motor 16 is connected in series with the engine 12, and the driving force generated by the main drive motor 16 is also transmitted to the rear wheel 2 a via the power transmission mechanism 14. .
  • the present invention can be configured such that the main drive motor 16 is connected to the middle of the power transmission mechanism 14 and the driving force is transmitted to the rear wheel 2a via a part of the power transmission mechanism 14.
  • a 25 kW permanent magnet motor (permanent magnet synchronous motor) driven at 48 V is adopted as the main drive motor 16.
  • the battery 18 is a capacitor for storing electric power mainly for operating the main drive motor 16. Further, as shown in FIG. 2, in the present embodiment, the battery 18 is disposed inside the propeller shaft tunnel 4d so as to surround the torque tube 14d that covers the propeller shaft 14a. Furthermore, in this embodiment, a 48 V, 3.5 kWh lithium ion battery (LIB) is used as the battery 18. As described above, since the transaxle arrangement is employed in the present embodiment, the volume for accommodating the battery 18 is expanded toward the space ahead of the floor tunnel (propeller shaft tunnel 4d) generated thereby. be able to. As a result, the capacity of the battery 18 can be secured and expanded without increasing the width of the floor tunnel and narrowing the center space of the passenger.
  • LIB lithium ion battery
  • the sub drive motor 20 is provided on each wheel of the front wheel 2 b under the spring of the vehicle 1 so as to generate a driving force for the front wheel 2 b which is a sub drive wheel.
  • each wheel of the front wheel 2b is supported by a double wishbone type suspension, and is suspended by an upper arm 8a, a lower arm 8b, a spring 8c, and a shock absorber 8d.
  • the auxiliary drive motor 20 is an in-wheel motor, and is accommodated in each wheel of the front wheel 2b. Accordingly, the auxiliary drive motor 20 is provided in a so-called “unsprung” state of the vehicle 1 and is configured to drive the front wheels 2b. Further, as shown in FIG.
  • each sub drive motor 20 is supplied with a current from a capacitor (CAP) 22 after being converted into an alternating current by each inverter 20a. Furthermore, in this embodiment, the sub drive motor 20 is not provided with a speed reducer as a speed reduction mechanism, and the driving force of the sub drive motor 20 is directly transmitted to the front wheels 2b, so that the wheels are directly driven. In this embodiment, a 17 kW induction motor is employed as each sub drive motor 20.
  • CAP capacitor
  • the capacitor (CAP) 22 is provided so as to accumulate electric power regenerated by the sub drive motor 20. As shown in FIGS. 2 and 3, the capacitor 22 is disposed immediately in front of the engine 12 and supplies power to the auxiliary drive motors 20 provided on the front wheels 2 b of the vehicle 1. As shown in FIG. 4, the capacitor 22 has brackets 22a protruding from the side surfaces on both sides thereof and supported by the front side frame 4b via the capacitor mount 6b. A harness 22b extending from the auxiliary drive motor 20 to the capacitor 22 is passed through the upper end of the side of the wheel house wall and into the engine room. Further, the capacitor 22 is configured to store electric charges at a higher voltage than the battery 18, and is disposed in a region between the left and right front wheels 2b that are auxiliary driving wheels. The sub drive motor 20 driven mainly by the electric power stored in the capacitor 22 is driven at a higher voltage than the main drive motor 16.
  • the control device 24 is configured to control the engine 12, the main drive motor 16, and the sub drive motor 20 to execute the electric motor travel mode and the internal combustion engine travel mode.
  • the control device 24 can be configured by a microprocessor, a memory, an interface circuit, and a program (not shown) for operating these. Details of the control by the control device 24 will be described later.
  • a high voltage DC / DC converter 26a and a low voltage DC / DC converter 26b which are voltage converters, are arranged in the vicinity of the capacitor 22, respectively.
  • the high voltage DC / DC converter 26a, the low voltage DC / DC converter 26b, the capacitor 22, and the two inverters 20a are unitized to form an integrated unit.
  • FIG. 5 is a block diagram showing input / output of various signals in the hybrid drive apparatus 10 according to the first embodiment of the present invention.
  • FIG. 6 is a block diagram showing a power supply configuration of the hybrid drive apparatus 10 according to the first embodiment of the present invention.
  • FIG. 7 is a diagram schematically illustrating an example of a change in voltage when electric power is regenerated in the capacitor 22 in the hybrid drive device 10 of the present embodiment.
  • FIG. 8 is a diagram showing the relationship between the output of each motor used in the hybrid drive device 10 of the present embodiment and the vehicle speed.
  • the control device 24 includes a mode selection switch 40, a vehicle speed sensor 42, an accelerator opening sensor 44, a brake sensor 46, an engine speed sensor 48, an automatic transmission (AT) input rotation sensor 50, an automatic Detection signals detected by a transmission (AT) output rotation sensor 52, a voltage sensor 54, and a current sensor 56 are input.
  • the control device 24 also includes an inverter 16a for the main drive motor, an inverter 20a for the sub drive motor 20, a high voltage DC / DC converter 26a, a low voltage DC / DC converter 26b, a fuel injection valve 58, a spark plug 60, and a transmission 14c. Control signals are respectively sent to the hydraulic solenoid valves 62 and are controlled.
  • the power supply configuration of the hybrid drive device 10 according to the first embodiment of the present invention will be described.
  • the battery 18 and the capacitor 22 provided in the hybrid drive apparatus 10 are connected in series.
  • the main drive motor 16 is driven at a reference output voltage of about 48 V, which is the battery 18, and the sub drive motor 20 is driven at a maximum voltage of 120 V, which is higher than 48 V, which is the sum of the output voltage of the battery 18 and the terminal voltage of the capacitor 22. Is done. For this reason, the sub drive motor 20 is always driven by the electric power supplied via the capacitor 22.
  • an inverter 16a is attached to the main drive motor 16, and the main drive motor 16 that is a permanent magnet motor is driven after the output of the battery 18 is converted into an alternating current.
  • an inverter 20a is attached to each sub drive motor 20, and the sub drive motor 20 that is an induction motor is driven after the outputs of the battery 18 and the capacitor 22 are converted into alternating current. Since the sub drive motor 20 is driven at a voltage higher than that of the main drive motor 16, the harness (electric wire) 22b that supplies power to the sub drive motor 20 is required to have high insulation. However, since the capacitors 22 are arranged close to each sub drive motor 20, an increase in weight due to increasing the insulation of the harness 22b can be minimized.
  • the main drive motor 16 and each sub drive motor 20 function as a generator, and regenerates the kinetic energy of the vehicle 1 to generate electric power.
  • the power regenerated by the main drive motor 16 is stored in the battery 18, and the power regenerated by each sub drive motor 20 is stored mainly in the capacitor 22.
  • a high-voltage DC / DC converter 26a which is a voltage converter, is connected between the battery 18 and the capacitor 22, and the high-voltage DC / DC converter 26a has a shortage of charge accumulated in the capacitor 22 ( When the voltage across the terminals of the capacitor 22 decreases), the voltage of the battery 18 is boosted to charge the capacitor 22.
  • the inter-terminal voltage of the capacitor 22 rises to a predetermined voltage or more due to energy regeneration by each sub drive motor 20, the charge accumulated in the capacitor 22 is stepped down and applied to the battery 18, and the battery 18 Charge the battery. That is, after the electric power regenerated by the sub drive motor 20 is accumulated in the capacitor 22, a part of the accumulated electric charge is charged in the battery 18 via the high voltage DC / DC converter 26a.
  • a low voltage DC / DC converter 26b is connected between the battery 18 and the 12V electrical component 25 of the vehicle 1. Since most of the control device 24 of the hybrid drive device 10 and the electrical component 25 of the vehicle 1 operate at a voltage of 12V, the charge accumulated in the battery 18 is stepped down to 12V by the low-voltage DC / DC converter 26b, Supply to equipment.
  • the voltage of the capacitor 22 is the sum of the base voltage by the battery 18 and the voltage across the terminals of the capacitor 22 itself.
  • the vehicle 1 is decelerated or the like, power is regenerated by each sub drive motor 20, and the regenerated power is charged in the capacitor 22.
  • the capacitor 22 is charged, the voltage between the terminals rises relatively rapidly.
  • the voltage of the capacitor 22 rises to a predetermined voltage or higher due to charging, the voltage of the capacitor 22 is stepped down by the high voltage DC / DC converter 26a, and the battery 18 is charged.
  • the charging from the capacitor 22 to the battery 18 is performed more slowly than the charging to the capacitor 22, and the voltage of the capacitor 22 is lowered relatively slowly to an appropriate voltage.
  • the electric power regenerated by each sub drive motor 20 is temporarily stored in the capacitor 22 and then slowly charged into the battery 18. Depending on the period during which regeneration is performed, the regeneration of electric power by each sub drive motor 20 and the charging from the capacitor 22 to the battery 18 may be performed in an overlapping manner. On the other hand, the electric power regenerated by the main drive motor 16 is directly charged in the battery 18.
  • FIG. 8 is a graph showing the relationship between the speed of the vehicle 1 and the output of each motor at each speed in the hybrid drive device 10 of the present embodiment.
  • the output of the main drive motor 16 is indicated by a broken line
  • the output of one sub drive motor 20 is indicated by a one-dot chain line
  • the sum of the outputs of two sub drive motors 20 is indicated by a two-dot chain line.
  • the total is shown by a solid line.
  • FIG. 8 shows the speed of the vehicle 1 on the horizontal axis and the output of each motor on the vertical axis.
  • the horizontal axis is Even in the case of the motor rotation speed, the output of each motor draws the same curve as in FIG.
  • the output of the main drive motor 16 is large and the vehicle speed is low in a low vehicle speed range where the motor speed is low.
  • the motor output that can be output decreases as the speed increases. That is, in this embodiment, the main drive motor 16 is driven at about 48 V, outputs a torque of about 200 Nm, which is the maximum torque up to about 1000 rpm, and the torque decreases with an increase in the rotational speed at about 1000 rpm or more.
  • the main drive motor 16 is configured to obtain a continuous output of about 20 kW in the lowest speed range and a maximum output of about 25 kW.
  • the output of the secondary drive motor 20 is extremely small and the vehicle speed is low in the low vehicle speed range, as shown by the one-dot chain line and the two-dot chain line in FIG.
  • the output increases as the speed increases, and the motor output decreases after the maximum output is obtained around the vehicle speed of about 130 km / h.
  • the auxiliary drive motor 20 is driven at about 120 V, and is configured to obtain an output of about 17 kW per unit at a vehicle speed of about 130 km / h, and a total output of about 34 kW. That is, in the present embodiment, the auxiliary drive motor 20 has a peak torque curve at about 600 to 800 rpm, and a maximum torque of about 200 Nm is obtained.
  • the vehicle is driven only by the main drive motor 16 and only when the high output is required in the high vehicle speed range (when the vehicle 1 is accelerated at the high vehicle speed range)
  • the sub drive motor 20 generates an output.
  • the induction motor (sub drive motor 20) capable of generating a large output in the high rotation region is used only in the high speed region, the increase in vehicle weight is kept low, and when necessary (a predetermined speed or more) Sufficient output can be obtained.
  • FIG. 9 is a cross-sectional view schematically showing the structure of the sub drive motor 20.
  • the sub drive motor 20 is an outer rotor type induction motor that includes a stator 28 and a rotor 30 that rotates around the stator 28.
  • the stator 28 includes a substantially disk-shaped stator base 28a, a stator shaft 28b extending from the center of the stator base 28a, and a stator coil 28c attached around the stator shaft 28b.
  • the stator coil 28c is housed in the electric insulating liquid chamber 32, and is immersed in the electric insulating liquid 32a filled therein, thereby being cooled by boiling.
  • the rotor 30 is configured in a substantially cylindrical shape so as to surround the periphery of the stator 28, and has a rotor body 30 a configured in a generally cylindrical shape with one end closed, and a rotor disposed on the inner peripheral wall surface of the rotor body 30 a.
  • the rotor coil 30b is arranged to face the stator coil 28c so that an induced current is generated by the rotating magnetic field generated by the stator coil 28c. Further, the rotor 30 is supported by a bearing 34 attached to the tip of the stator shaft 28b so as to rotate smoothly around the stator 28.
  • the stator base 28a is supported by an upper arm 8a and a lower arm 8b (FIG. 4) that suspend the front wheel of the vehicle 1.
  • the rotor body 30a is directly fixed to the wheel (not shown) of the front wheel 2b.
  • An alternating current converted into an alternating current by the inverter 20a flows through the stator coil 28c, and a rotating magnetic field is generated.
  • This rotating magnetic field causes an induced current to flow through the rotor coil 30b, generating a driving force that rotates the rotor body 30a.
  • the driving force generated by each auxiliary drive motor 20 directly rotates and drives the wheel (not shown) of each front wheel 2b.
  • FIG. 10 is a flowchart of control by the control device 24, and FIG. 11 is a graph showing an example of operation in each mode. Note that the flowchart shown in FIG. 10 is repeatedly executed at predetermined time intervals during operation of the vehicle 1.
  • the speed of the vehicle 1 the torque generated by the engine 12, the torque generated by the main drive motor 16, the torque generated by the auxiliary drive motor 20, the voltage of the capacitor 22, the current of the capacitor 22, And the battery 18 current.
  • a positive value means that each motor is generating torque
  • a negative value means that each motor is in motion of the vehicle 1. It means a state of regenerating energy.
  • a negative value means a state in which power is supplied (discharged) to each motor, and a positive value charges the power regenerated in each motor. Means the state.
  • step S1 of FIG. 10 it is determined whether or not the vehicle 1 is set to the internal combustion engine traveling mode (ENG mode). That is, the vehicle 1 is provided with a mode selection switch 40 (FIG. 5) for selecting either the internal combustion engine travel mode or the motor travel mode (EV mode).
  • step S1 which mode is set. Is determined.
  • the processing in the flowchart in FIG. 10 proceeds to step S2.
  • step S2 it is determined whether or not the vehicle 1 is equal to or higher than a predetermined vehicle speed. If it is equal to or higher than the predetermined vehicle speed, the process proceeds to step S6. At time t 1 in FIG. 11, since the driver starts the vehicle 1 and the vehicle speed is low, the process in the flowchart proceeds to step S3.
  • step S3 it is determined whether or not the vehicle 1 is decelerated (the brake pedal (not shown) of the vehicle 1 is operated). If decelerated, the process proceeds to step S5, where acceleration is performed. Alternatively, when the vehicle is traveling at a constant speed (the operation of the brake pedal is not detected by the brake sensor 46 (FIG. 5)), the process proceeds to step S4. At time t 1 in FIG. 11, the driver starts the vehicle 1 and accelerates (the accelerator pedal position sensor 44 (FIG. 5) detects an operation of a predetermined amount or more of the accelerator pedal of the vehicle 1. Therefore, the process in the flowchart proceeds to step S4, and one process according to the flowchart of FIG.
  • step S4 the main drive motor 16 generates torque, and the vehicle speed increases (time t 1 to t 2 in FIG. 11).
  • a discharge current flows from the battery 18 that supplies power to the main drive motor 16, while the sub drive motor 20 does not generate torque. Therefore, the discharge current from the capacitor 22 remains zero, and the voltage of the capacitor 22 also increases. It does not change.
  • These currents and voltages are detected by the voltage sensor 54 and the current sensor 56 (FIG. 5) and input to the control device 24.
  • the engine 12 is not driven. That is, since the control device 24 stops fuel injection by the fuel injection valve 58 of the engine 12 and does not perform ignition by the spark plug 60, the engine 12 does not generate torque.
  • step S5 the driving by the main drive motor 16 is stopped (no torque is generated), and the kinetic energy of the vehicle 1 is regenerated as electric power by the sub drive motor 20.
  • the vehicle 1 is decelerated by the regeneration of the kinetic energy, and the discharge current from the battery 18 becomes zero.
  • the regeneration of the electric power by the auxiliary drive motor 20 causes a charging current to flow through the capacitor 22 and the voltage of the capacitor 22 increases.
  • step S1 ⁇ S2 ⁇ S3 ⁇ S4 is repeatedly executed.
  • step S1 ⁇ S2 ⁇ S3 ⁇ S4 is repeatedly executed.
  • steps S 1 ⁇ S 2 ⁇ S 3 ⁇ S 5 is repeatedly executed in the flowchart of FIG. 10, and power regeneration by the sub drive motor 20 is performed.
  • the motor driving mode is set, the vehicle 1 functions purely as an electric vehicle (EV), and the engine 12 does not generate torque. .
  • step S6 it is determined whether the vehicle 1 is decelerating (operating a brake pedal). Since the vehicle 1 is not decelerating at time t 9, the processing in the flowchart proceeds to step S7.
  • step S7 it is determined whether the vehicle 1 is accelerated by a predetermined value or more (whether the accelerator pedal of the vehicle 1 is operated by a predetermined amount or more).
  • step S8 since the vehicle 1 is accelerated more than a predetermined value at time t 9, the process proceeds to step S8, where along with the main drive motor 16 is driven, the auxiliary drive motor 20 is also driven.
  • the control device 24 causes the main drive motor 16 to generate a driving force to start the vehicle 1 (time t 8 ), and then the traveling speed of the vehicle 1 detected by the vehicle speed sensor 42 is the first.
  • the sub driving motor 20 When the vehicle speed is reached (time t 9 ), the sub driving motor 20 generates driving force. At this time, power is supplied from the battery 18 to the main drive motor 16, and power is supplied from the capacitor 22 to the sub drive motor 20. As power is supplied from the capacitor 22 in this way, the voltage of the capacitor 22 decreases. While the vehicle 1 is being driven by the main drive motor 16 and the sub drive motor 20 (time t 9 to t 10 ), in the flowchart, the processes of steps S 1 ⁇ S 2 ⁇ S 6 ⁇ S 7 ⁇ S 8 are repeatedly executed.
  • the auxiliary drive motor 20 generates a driving force when the traveling speed of the vehicle 1 is equal to or higher than a predetermined first vehicle speed, and the generation of the driving force is prohibited when the traveling speed is lower than the first vehicle speed.
  • the first vehicle speed is set to about 100 km / h, but the first vehicle speed is set to an arbitrary vehicle speed of about 50 km / h or more according to the output characteristics of the adopted sub drive motor 20. Can be set.
  • the main drive motor 16 is configured to generate a driving force when the traveling speed of the vehicle 1 is less than a predetermined second vehicle speed including zero and when it is equal to or higher than the second vehicle speed.
  • the predetermined second vehicle speed can be set to the same vehicle speed as the first vehicle speed, or can be set to a different vehicle speed.
  • the main drive motor 16 always generates a drive force when a drive force is required in the electric motor travel mode.
  • step S9 the drive by the sub drive motor 20 is stopped (no torque is generated), and the vehicle 1 is driven only by the main drive motor 16. As described above, even when the vehicle 1 is traveling at a predetermined vehicle speed or higher, the vehicle 1 is driven only by the main drive motor 16 in a state where acceleration of a predetermined amount or more is not performed.
  • the control unit 24 at time t 10 sends a signal to the high-voltage DC / DC converter 26a,
  • the capacitor 22 is charged. That is, the high voltage DC / DC converter 26 a boosts the charge accumulated in the battery 18 and charges the capacitor 22.
  • the current for driving the main drive motor 16 and the current for charging the capacitor 22 are discharged from the battery 18.
  • the control device 24 sends a signal to the high voltage DC / DC converter 26a to step down the voltage of the capacitor 22. Then, the battery 18 is charged. As described above, the electric power regenerated by the sub drive motor 20 is consumed by the sub drive motor 20 or once stored in the capacitor 22 and then charged to the battery 18 via the high voltage DC / DC converter 26a. .
  • step S10 the kinetic energy of the vehicle 1 is regenerated as electric power by both the main drive motor 16 and the sub drive motor 20.
  • the power regenerated by the main drive motor 16 is stored in the battery 18, and the power regenerated by the sub drive motor 20 is stored in the capacitor 22.
  • the brake pedal is operated at a speed equal to or higher than the predetermined vehicle speed, power is regenerated by both the main drive motor 16 and the sub drive motor 20, and charges are accumulated in the battery 18 and the capacitor 22.
  • step S11 the process after step S11 is executed.
  • step S11 it is determined whether or not the vehicle 1 is stopped. If the vehicle 1 is not stopped (running), whether or not the vehicle 1 is decelerating in step S12 ( It is determined whether or not a brake pedal (not shown) is operated. At time t 12 of FIG. 11, the vehicle 1 is traveling, because the driver is operating the accelerator pedal, the processing in the flowchart of FIG. 10 proceeds to step S13.
  • step S13 the supply of fuel to the engine 12 is started, and the engine 12 generates torque. That is, in the present embodiment, since the output shaft (not shown) of the engine 12 is directly connected to the output shaft (not shown) of the main drive motor 16, the output shaft of the engine 12 is always the main drive motor 16. It is rotated with the drive. However, since no fuel is supplied to the engine 12 in the electric motor travel mode, the engine 12 does not generate torque. In the internal combustion engine travel mode, fuel is supplied (fuel injection by the fuel injection valve 58 and an ignition plug). Torque is generated when the ignition by 60) is started.
  • the control device 24 Immediately after switching from the motor travel mode to the internal combustion engine travel mode, the control device 24 generates torque for starting the engine by the main drive motor 16 (time t 12 to t 13 in FIG. 11).
  • the engine starting torque is generated by causing the vehicle 12 to run and the engine 12 generating torque after the fuel supply to the engine 12 is started and until the engine 12 actually generates torque. Generated to suppress front and rear torque unevenness.
  • fuel supply to the engine 12 is not started, and the engine is started by engine starting torque.
  • Fuel supply is started when 12 reaches a predetermined number of revolutions or more. In the present embodiment, the fuel supply is started when the rotational speed of the engine 12 detected by the engine rotational speed sensor 48 increases to 2000 rpm or more.
  • steps S1 ⁇ S11 ⁇ S12 ⁇ S13 are repeatedly executed (time t in FIG. 11). 13 to t 14 ).
  • the power for driving the vehicle 1 is exclusively output from the engine 12, and the main drive motor 16 and the sub drive motor 20 output the power for driving the vehicle 1. Absent. For this reason, the driver can enjoy the driving feeling of the vehicle 1 driven by the internal combustion engine.
  • step S12 ⁇ S14 fuel supply to the engine 12 is stopped, and fuel consumption is suppressed.
  • step S15 the kinetic energy of the vehicle 1 is regenerated as electric energy by the main drive motor 16 and the sub drive motor 20, and charging current flows through the battery 18 and the capacitor 22, respectively.
  • the control device 24 drives the auxiliary drive motor 20 to perform downshift torque adjustment when the transmission 14c, which is a stepped transmission, is switched (at the time of shifting). To do.
  • the torque generated by this torque adjustment complements instantaneous torque loss and does not correspond to the torque for driving the vehicle 1. Details of the torque adjustment will be described later.
  • step S 11 ⁇ S16 the processing in the flowchart of FIG. 10 will be moves to step S11 ⁇ S16.
  • step S ⁇ b> 16 the control device 24 supplies the minimum amount of fuel necessary to maintain the engine 12 idling. Further, the control device 24 generates assist torque by the main drive motor 16 so that the engine 12 can maintain idling at a low rotational speed. In this way, while the vehicle 1 is stopped, the processes of steps S1 ⁇ S11 ⁇ S16 are repeatedly executed (time t 15 to t 16 in FIG. 11).
  • the engine 12 is a flywheelless engine, but the assist torque generated by the main drive motor 16 acts as a pseudo flywheel, and the engine 12 maintains a smooth idling at a low rotational speed. Can do. Further, by adopting the flywheelless engine, the high response of the engine 12 can be obtained during the traveling in the internal combustion engine traveling mode, and a pleasant driving can be enjoyed.
  • FIG. 12 is a diagram schematically showing changes in acceleration acting on the vehicle when the transmission 14c is downshifted or upshifted. From the upper stage, downshift torque down, downshift torque assist, and upshift torque assist are sequentially illustrated. An example is shown respectively.
  • the control device 24 controls the clutch 14b and the automatic transmission according to the vehicle speed and the engine speed.
  • the transmission 14c as a machine is automatically switched. As shown in the upper part of FIG. 12, when the transmission 14 c is shifted down (shifted to the low speed side) while negative acceleration is acting on the vehicle 1 during deceleration (time t 101 in FIG. 12), the control device 24, the clutch 14b is disconnected, and the output shaft of the engine 12 and the main drive wheel (rear wheel 2a) are disconnected.
  • the control device 24 sends a control signal to the transmission 14c, and switches the built-in hydraulic solenoid valve 62 (FIG. 5) to increase the reduction ratio of the transmission 14c. Further, the acceleration is changed to the negative side again when downshifting completion time controller at time t 102 of 24 connects the clutch 14b.
  • the period from the start of shift down to the completion (time t 101 to t 102 ) is 300 to 1000 msec, but a so-called torque shock in which the torque acting on the vehicle changes instantaneously gives the occupant a feeling of running idle. May cause discomfort.
  • the control device 24 sends a control signal to the auxiliary drive motor 20 at the time of downshifting to adjust the torque and suppress the feeling of idling of the vehicle 1.
  • the control device 24 sends a signal to the clutch 14b and the transmission 14c to perform a downshift
  • the control device 24 includes an automatic transmission input rotation sensor 50 and an automatic transmission output rotation sensor 52 (FIG. 5).
  • the rotation speeds of the input shaft and the output shaft of the transmission 14c detected by the above are read.
  • a change in acceleration generated in the vehicle 1 is predicted based on the read rotation speeds of the input shaft and the output shaft, and the auxiliary drive motor 20 is caused to perform energy regeneration.
  • the instantaneous increase (change to the positive side) of the acceleration of the vehicle 1 due to the torque shock is suppressed, and the idling feeling can be suppressed.
  • the torque shock in the main drive wheel (rear wheel 2a) that accompanies the downshift is supplemented by the sub drive motor 20 with the sub drive wheel (front wheel 2b). Therefore, torque adjustment can be performed without being affected by the dynamic characteristics of the power transmission mechanism 14 that transmits power from the engine 12 to the main drive wheels.
  • the control device 24 shifts down, a change in acceleration generated in the vehicle 1 based on detection signals of the automatic transmission input rotation sensor 50 and the automatic transmission output rotation sensor 52. And the sub-driving motor 20 generates a driving force.
  • the instantaneous decrease (change to the negative side) of the acceleration of the vehicle 1 due to the torque shock is suppressed, and the feeling of stall is suppressed.
  • the shift-up is started at time t 105 in a state where positive acceleration is acting on the vehicle 1 during acceleration (the positive acceleration decreases with time). Then, the output shaft of the engine 12 and the main drive wheel (rear wheel 2a) are separated. Thus, no longer acts on the rear wheels 2a is driving torque by the engine 12, the torque shock occurs, which may stall feeling occupant until the upshift is complete is given at time t 106. That is, instantaneously acceleration of the vehicle 1 is changed to the negative side at time t 105 to upshift is initiated, acceleration in the shift-up is completed time t 106 is changed to the positive side.
  • the control device 24 predicts a change in acceleration generated in the vehicle 1 based on detection signals of the automatic transmission input rotation sensor 50 and the automatic transmission output rotation sensor 52 when shifting up, A driving force is generated in the driving motor 20.
  • the instantaneous decrease (change to the negative side) of the acceleration of the vehicle 1 due to the torque shock is suppressed, and the feeling of stall is suppressed.
  • the adjustment of the drive torque by the sub drive motor 20 when the transmission 14c is shifted down or up is performed in a very short time, and does not substantially drive the vehicle 1. Therefore, the power generated by the sub drive motor 20 can be generated by the electric charge regenerated by the sub drive motor 20 and accumulated in the capacitor 22.
  • the adjustment of the drive torque by the auxiliary drive motor 20 can be applied to an automatic transmission with a torque converter, an automatic transmission without a torque converter, an automated manual transmission, and the like.
  • the hybrid drive device 10 is an in-wheel motor when the traveling speed of the vehicle 1 is equal to or higher than a predetermined first vehicle speed greater than zero (steps S2 ⁇ S6 in FIG. 10). Since the sub drive motor 20 is configured to generate a driving force, a large torque is not required for the sub drive motor 20 in a low speed range. As a result, a small electric motor with a small torque in the low speed range can be adopted as the auxiliary drive motor 20, and the vehicle can be efficiently driven using the in-wheel motor.
  • the vehicle-side motor provided on the vehicle body of the vehicle 1 is used. Since a certain main drive motor 16 generates a driving force (step S4 in FIG. 10), the auxiliary driving motor 20 that is an in-wheel motor that generates a driving force at a speed equal to or higher than the first vehicle speed is complemented, and sufficient traveling performance for the vehicle 1 Can be given.
  • the main drive motor 16 generates driving force even when the traveling speed of the vehicle 1 is equal to or higher than the second vehicle speed (steps S2 to S6 in FIG. 10) (FIG. 10).
  • steps S8 and S9) both the main drive motor 16 and the sub drive motor 20 generate driving force in the speed region where the traveling speed is equal to or higher than the first and second vehicle speeds. For this reason, the in-wheel motor which is the sub drive motor 20 can be further downsized.
  • the traveling speed of the vehicle 1 is less than the first vehicle speed (steps S2 ⁇ S3 in FIG. 10)
  • the generation of the driving force by the auxiliary drive motor 20 is prohibited.
  • Steps S4 and S5 in FIG. 10 an electric motor with extremely small torque in the low speed range can be employed as the sub drive motor 20, and the in-wheel motor can be reduced in weight.
  • the main drive motor 16 is a vehicle body side motor generates a driving force, after the vehicle 1 is starting (time t 8 in FIG. 11), the traveling speed When the first vehicle speed is reached (time t 9 in FIG. 11), the auxiliary drive motor 20 that is an in-wheel motor generates a driving force, so that the in-wheel motor is not used when the vehicle 1 starts and the starting torque is extremely small.
  • the electric motor can be employed as the in-wheel motor, and the in-wheel motor can be reduced in weight.
  • the wheels front wheels 2b
  • the auxiliary drive motor 20 without passing through the speed reduction mechanism (FIGS. 4 and 9), so that the speed is extremely heavy.
  • the mechanism can be omitted and output loss due to the rotational resistance of the speed reduction mechanism can be avoided.
  • the induction motor is employed as the in-wheel motor for the auxiliary drive motor 20 that does not require a large torque in the low rotation range (step S8 in FIG. 10).
  • region can be comprised lightweight.
  • a required rotation region can be obtained by employing a permanent magnet motor for the main drive motor 16 that requires a large torque in the low rotation region (step S4 in FIG. 10).
  • an electric motor capable of generating a sufficient torque can be configured to be lightweight.
  • FIGS. 13 and 14 a vehicle drive device that is a hybrid drive device according to a second embodiment of the present invention will be described with reference to FIGS. 13 and 14.
  • the vehicle drive device according to the present embodiment differs from the first embodiment described above in the control executed by the control device 24. Therefore, since the configuration of the vehicle drive device described with reference to FIGS. 1 to 9 is the same as that of the first embodiment, the description thereof will be omitted.
  • the second embodiment of the present invention is different from the first embodiment. Only the differences will be described.
  • FIG. 13 is a flowchart of the control by the control device provided in the vehicle drive device of the second embodiment of the present invention
  • FIG. 14 is a graph showing an example of the operation in the electric motor travel mode.
  • the flowchart shown in FIG. 13 shows the process (corresponding to the process after step S2 of the flowchart shown in FIG. 10) executed when the mode selection switch 40 of the vehicle 1 is set to the electric motor travel mode. .
  • Processing executed in the engine travel mode of the vehicle control device of the present embodiment is the same as that of the first embodiment.
  • the flowchart shown in FIG. 13 is repeatedly executed at predetermined time intervals while the vehicle 1 is operating.
  • the graph shown in FIG. 14 is, in order from the top, the speed of the vehicle 1, the target acceleration of the vehicle 1 set based on the driving operation of the driver, the torque generated by the engine 12, the torque generated by the main drive motor 16, and The torque generated by the sub drive motor 20 is shown. Since the graph shown in FIG. 14 shows the operation in the electric motor travel mode, the torque generated by the engine 12 is always zero.
  • a positive value means that each motor is generating torque
  • a negative value means that each motor is in motion of the vehicle 1. It means a state of regenerating energy.
  • step S201 in FIG. 13 detection signals from various sensors are read. Specifically, detection signals from the vehicle speed sensor 42, the accelerator opening sensor 44, the brake sensor 46, and the like are read into the control device 24.
  • a target acceleration is set based on the detection signal of each sensor read in step S201.
  • the target acceleration is set mainly based on the depression amount of an accelerator pedal (not shown) detected by the accelerator opening sensor 44 (FIG. 5).
  • the target acceleration is set to a negative value and the target deceleration is set.
  • the target deceleration (negative target acceleration) is set mainly based on the brake pedal depression amount detected by the brake sensor 46 (FIG. 5).
  • step S203 it is determined whether or not the speed of the vehicle 1 detected by the vehicle speed sensor 42 is equal to or higher than a predetermined first vehicle speed. If it is less than the first vehicle speed, the process proceeds to step S210.
  • the predetermined first vehicle speed is set to about 100 km / h. However, according to the characteristics of the main drive motor 16 and the sub drive motor 20 that are employed, The first vehicle speed can also be set to a low vehicle speed, for example, about 50 km / h.
  • step S210 it is determined whether or not the target acceleration of the vehicle 1 is a negative value (whether or not it is a target deceleration). If the target acceleration is smaller than zero, the process proceeds to step S211. If the target acceleration is positive or zero, the process proceeds to step S212. At time t 201 in FIG. 14, the driver is starting the vehicle 1, processing in the flow chart since the acceleration (positive target acceleration is set), the process proceeds to step S212. In step S212, it is determined whether or not the target acceleration is a positive value (whether or not the target acceleration is positive). If the target acceleration is positive, the process proceeds to step S213, and the target acceleration is zero. Then, the process proceeds to step S214.
  • step S 213 Since the positive target acceleration is set at time t 201 , the process proceeds to step S 213, and the control parameter for the main drive motor 16 is obtained so that the target acceleration is obtained by the driving force of the main drive motor 16 in step S 213. Is set. On the other hand, in step S213, the control parameter for the sub drive motor 20 is set to stop (no driving force is generated and kinetic energy is not regenerated).
  • step S206 the control parameters set in step S213 are transmitted from the control device 24 to the main drive motor 16 and the sub drive motor 20, and one process according to the flowchart of FIG. 13 is completed.
  • step S206 by the control parameters are transmitted, the main drive motor 16 generates a torque, the target acceleration is achieved vehicle speed rises (time t 201 ⁇ t 202 in FIG. 14).
  • step S214 control parameters for the main drive motor 16 are set so that constant speed running is maintained by the driving force of the main drive motor 16. That is, the control parameter is set so that the main drive motor 16 generates a driving force corresponding to the running resistance of the vehicle 1 and a constant speed is maintained. For this reason, the driving force generated by the main drive motor 16 is lower than during acceleration of the vehicle 1.
  • step S214 the control parameter for the sub drive motor 20 is set to stop.
  • the process proceeds to step S206, and the control parameter set in step S214 is transmitted to each motor, and one process according to the flowchart of FIG. 13 ends.
  • step S213 the control parameter for the main drive motor 16 is set so that the set target acceleration is realized, and the control parameter for the sub drive motor 20 is set to stop.
  • step S206 the control parameter set in step S213 is transmitted to each motor, and one process by the flowchart of FIG. 13 is complete
  • step S204 it is determined whether or not the target acceleration of the vehicle 1 is a negative value (whether or not it is a target deceleration). If the target acceleration is smaller than zero, the process proceeds to step S205 and the target acceleration is reached. If is positive or zero, the process proceeds to step S207.
  • step S207 it is determined whether or not the target acceleration is a positive value (whether or not the target acceleration is positive). If the target acceleration is positive, the process proceeds to step S208, and the target acceleration is zero. The process proceeds to step S209.
  • step S208 Since the positive target acceleration is set at time t 204, the process proceeds to step S208, so that the target acceleration is obtained by the driving force of the main drive motor 16 and the auxiliary drive motor 20 in step S208, the main drive Control parameters for the motor 16 and the auxiliary drive motor 20 are set.
  • the auxiliary drive motor 20 when the vehicle 1 is accelerated in a state where the speed of the vehicle 1 is equal to or higher than the first vehicle speed, the auxiliary drive motor 20 also generates a driving force in addition to the main drive motor 16. That is, the target acceleration set in step S202 is realized by the driving force generated by the main drive motor 16 and the sub drive motor 20.
  • the auxiliary drive motor 20 is used to assist the driving force of the main drive motor 16 when the vehicle 1 is accelerated in a state where the speed of the vehicle 1 is equal to or higher than the first vehicle speed.
  • step S206 the control parameters set in step S208 are transmitted to the main drive motor 16 and the sub drive motor 20, and one process according to the flowchart of FIG. 13 is completed.
  • the main drive motor 16 and the auxiliary drive motor 20 By controlling parameters are transmitted in step S206, the main drive motor 16 and the auxiliary drive motor 20 generates a torque, the target acceleration is achieved by the vehicle speed rises (time t 204 ⁇ t 205 in FIG. 14).
  • each motor is drawn so as to output a constant torque with respect to a constant target acceleration.
  • the graph of these motor torques is drawn schematically. That is, the running resistance, air resistance, and the like acting on the vehicle 1 also change depending on factors such as the vehicle speed, so that the torque actually required to maintain a constant target acceleration is not a constant value.
  • step S207 control parameters for the main drive motor 16 and the sub drive motor 20 are set so that constant speed running is maintained by the driving force of the main drive motor 16 and the sub drive motor 20.
  • step S206 control parameters set in step S209 are transmitted to each motor, and one process according to the flowchart of FIG. 13 is completed.
  • the present invention can also be configured to maintain constant speed running only with the driving force of the sub drive motor 20.
  • step S202 control parameters for these motors are set so that the main drive motor 16 and the sub drive motor 20 regenerate the kinetic energy of the vehicle 1. Furthermore, when the set control parameters are transmitted to the main drive motor 16 and the sub drive motor 20 in step S206, kinetic energy is regenerated in these motors.
  • step S211 the main drive motor 16 is stopped (no driving force is generated and no kinetic energy is regenerated), and the sub drive motor 20 is configured to control parameters for these motors so that the kinetic energy of the vehicle 1 is regenerated. Is set.
  • step S206 when the set control parameter is transmitted to the main drive motor 16 and the sub drive motor 20 in step S206, the kinetic energy is regenerated in the sub drive motor 20. As a result, the vehicle speed decreases, and the vehicle 1 stops at time t208 in FIG.
  • the vehicle drive device which is a hybrid drive device by 3rd Embodiment of this invention is demonstrated.
  • the vehicle drive device according to the present embodiment differs from the first embodiment described above in the control executed by the control device 24. Accordingly, the configuration of the vehicle drive device described with reference to FIGS. 1 to 9 is the same as that of the first embodiment, and thus the description thereof will be omitted.
  • the third embodiment of the present invention is different from the first embodiment. Only the differences will be described.
  • FIG. 15 is a flowchart of control by the control device provided in the vehicle drive device of the third embodiment of the present invention
  • FIG. 16 is a graph showing an example of the operation in the electric motor travel mode.
  • the flowchart shown in FIG. 15 shows the process (corresponding to the process after step S2 of the flowchart shown in FIG. 10) executed when the mode selection switch 40 of the vehicle 1 is set to the electric motor travel mode. .
  • Processing executed in the engine travel mode of the vehicle control device of the present embodiment is the same as that of the first embodiment.
  • the flowchart shown in FIG. 15 is repeatedly executed at predetermined time intervals while the vehicle 1 is operating.
  • the graph shown in FIG. 16 includes, in order from the top, the speed of the vehicle 1, the target acceleration of the vehicle 1 set based on the driving operation of the driver, the torque generated by the engine 12, the torque generated by the main drive motor 16, and The torque generated by the sub drive motor 20 is shown. Since the graph shown in FIG. 16 shows the operation in the electric motor travel mode, the torque generated by the engine 12 is always zero.
  • a positive value means that each motor is generating torque
  • a negative value means that each motor is in motion of the vehicle 1. It means a state of regenerating energy.
  • step S301 in FIG. 15 detection signals from various sensors are read. Specifically, detection signals from the vehicle speed sensor 42, the accelerator opening sensor 44, the brake sensor 46, and the like are read into the control device 24.
  • a target acceleration is set based on the detection signal of each sensor read in step S301.
  • the target acceleration is set mainly based on the depression amount of an accelerator pedal (not shown) detected by the accelerator opening sensor 44 (FIG. 5).
  • the target acceleration is set to a negative value and the target deceleration is set.
  • the target deceleration (negative target acceleration) is set mainly based on the brake pedal depression amount detected by the brake sensor 46 (FIG. 5).
  • step S303 it is determined whether or not the speed of the vehicle 1 detected by the vehicle speed sensor 42 is equal to or higher than a predetermined first vehicle speed. If the speed is equal to or higher than the predetermined first vehicle speed, the process proceeds to step S304. If it is less than the first vehicle speed, the process proceeds to step S312. At time t301 in FIG. 16, the driver has started the vehicle 1 and the vehicle speed is low, so the processing in the flowchart proceeds to step S312. Also in this embodiment, the predetermined first vehicle speed is set to about 100 km / h.
  • step S312 it is determined whether or not the target acceleration of the vehicle 1 is a negative value (whether or not it is a target deceleration). If the target acceleration is smaller than zero, the process proceeds to step S313. If the target acceleration is positive or zero, the process proceeds to step S314. At time t301 in FIG. 16, the driver starts the vehicle 1 and is accelerating (positive target acceleration is set), so the processing in the flowchart proceeds to step S314. In step S314, it is determined whether or not the target acceleration is a positive value (whether or not the target acceleration is positive). If the target acceleration is positive, the process proceeds to step S315, and the target acceleration is zero. Then, the process proceeds to step S311.
  • step S315 Since the positive target acceleration is set at time t 301, the process proceeds to step S315, so that the target acceleration is obtained by the driving force of the main drive motor 16 in step S315, the control parameters for the main drive motor 16 Is set. On the other hand, in step S315, the control parameter for the sub drive motor 20 is set to stop (no driving force is generated and kinetic energy is not regenerated).
  • step S306 the control parameter set in step S315 is transmitted from the control device 24 to the main drive motor 16 and the sub drive motor 20, and one process according to the flowchart of FIG. 13 is completed.
  • step S306 when the control parameter is transmitted, the main drive motor 16 generates torque, the vehicle speed increases, and the target acceleration is realized (time t 301 to t 302 in FIG. 14).
  • step S ⁇ b> 311 control parameters for the main drive motor 16 are set so that constant speed running is maintained by the driving force of the main drive motor 16. That is, the control parameter is set so that the main drive motor 16 generates a driving force corresponding to the running resistance of the vehicle 1 and a constant speed is maintained. For this reason, the driving force generated by the main drive motor 16 is lower than during acceleration of the vehicle 1.
  • step S311 the control parameter for the sub drive motor 20 is set to stop.
  • step S306 the control parameter set in step S311 is transmitted to each motor, and one process by the flowchart of FIG. 15 is complete
  • step S302 the target acceleration set in step S302 in FIG. 15 is set to a positive value.
  • step S315 the control parameter for the main drive motor 16 is set so that the set target acceleration is realized, and the control parameter for the sub drive motor 20 is set to stop.
  • step S306 the control parameter set in step S315 is transmitted to each motor, and one process by the flowchart of FIG. 15 is complete
  • step S304 it is determined whether or not the target acceleration of the vehicle 1 is a negative value (whether or not it is a target deceleration). If the target acceleration is smaller than zero, the process proceeds to step S305 and the target acceleration is reached. If is positive or zero, the process proceeds to step S307.
  • step S307 it is determined whether or not the target acceleration is a positive value (whether or not the target acceleration is positive). If the target acceleration is positive, the process proceeds to step S308, and the target acceleration is zero. Then, the process proceeds to step S311.
  • step S308 the target acceleration is equal to or a predetermined first acceleration or not is determined.
  • the predetermined first acceleration is set to about 1.5 m / sec 2.
  • the predetermined first acceleration varies depending on the characteristics of the main drive motor 16 and the sub drive motor 20 that are employed.
  • One acceleration can also be set.
  • the predetermined first acceleration can be set within a range of about 1.5 to 2.5 m / sec 2 .
  • the control parameter for the main drive motor 16 is set so that the set target acceleration is realized, and the control parameter for the sub drive motor 20 is set to stop.
  • step S306 the control parameters set in step S309 are transmitted to the main drive motor 16 and the sub drive motor 20, and one process according to the flowchart of FIG. 15 ends.
  • the main drive motor 16 By controlling parameters are transmitted in step S306, the main drive motor 16 generates a torque, the target acceleration is achieved (time t 304 ⁇ t 305 in FIG. 16).
  • the target acceleration is achieved (time t 304 ⁇ t 305 in FIG. 16).
  • the vehicle 1 travels at a constant acceleration, and the speed increases.
  • steps S301 ⁇ S302 ⁇ S303 ⁇ S304 ⁇ S307 ⁇ S308 ⁇ S309 ⁇ S306 are repeatedly executed.
  • step S310 control parameters for the main drive motor 16 and the sub drive motor 20 are set so that the target acceleration can be obtained by the driving forces of the main drive motor 16 and the sub drive motor 20.
  • the auxiliary driving motor 20 in addition to the main driving motor 16 exerts the driving force. To occur.
  • the target acceleration set in step S302 is realized by the driving force generated by the main drive motor 16 and the sub drive motor 20.
  • the auxiliary drive motor 20 is used to assist the driving force of the main drive motor 16 when the vehicle 1 is accelerated at an acceleration equal to or higher than the first acceleration when the speed of the vehicle 1 is equal to or higher than the first vehicle speed. Is done.
  • step S306 the control parameters set in step S310 are transmitted to the main drive motor 16 and the sub drive motor 20, and one process according to the flowchart of FIG. 15 is completed.
  • the main drive motor 16 and the auxiliary drive motor 20 By controlling parameters are transmitted in step S306, the main drive motor 16 and the auxiliary drive motor 20 generates a torque, the target acceleration is achieved by the vehicle speed rises (time t 305 ⁇ t 306 in FIG. 16).
  • the vehicle 1 travels at a constant acceleration, and the speed increases.
  • steps S301 ⁇ S302 ⁇ S303 ⁇ S304 ⁇ S307 ⁇ S308 ⁇ S310 ⁇ S306 are repeatedly executed.
  • step S302 when the driver depresses the accelerator pedal at time t 306 in FIG. 16, the target acceleration set in step S302 in FIG. 15 is set to zero (constant speed running).
  • the processing in the flowchart of FIG. 15 shifts from step S307 to S311 and the processing of steps S301 ⁇ S302 ⁇ S303 ⁇ S304 ⁇ S307 ⁇ S311 ⁇ S306 is repeatedly executed.
  • step S311 control parameters for the main drive motor 16 and the sub drive motor 20 are set so that constant speed running is maintained by the driving force of the main drive motor 16 (the sub drive motor 20 is stopped).
  • step S306 the control parameter set in step S311 is transmitted to each motor, and one process by the flowchart of FIG. 15 is complete
  • the present invention can also be configured to maintain constant speed running only with the driving force of the sub drive motor 20.
  • step S302 the target acceleration set in step S302 of the flowchart in FIG. 15 is a negative value (target deceleration).
  • step S305 control parameters for these motors are set so that the main drive motor 16 and the sub drive motor 20 regenerate the kinetic energy of the vehicle 1.
  • step S306 kinetic energy is regenerated in these motors.
  • the vehicle speed decreases due to the driver's operation of a brake pedal (not shown), and the speed of the vehicle 1 is less than a predetermined first vehicle speed (100 [km / h] in the present embodiment) at time t308 in FIG.
  • a predetermined first vehicle speed 100 [km / h] in the present embodiment
  • the process in the flowchart shifts to steps S303 ⁇ S312 ⁇ S313, and the processes of steps S301 ⁇ S302 ⁇ S303 ⁇ S312 ⁇ S313 ⁇ S306 are repeatedly executed.
  • step S3133 the main drive motor 16 is stopped (no driving force is generated and no kinetic energy is regenerated), and the sub drive motor 20 controls the control parameters for these motors so that the kinetic energy of the vehicle 1 is regenerated. Is set.
  • step S306 when the set control parameter is transmitted to the main drive motor 16 and the sub drive motor 20 in step S306, the kinetic energy is regenerated in the sub drive motor 20. As a result, the vehicle speed decreases, and the vehicle 1 stops at time t309 in FIG.
  • the vehicle driving apparatus has been described above.
  • the vehicle drive device of the present invention is applied to an FR vehicle.
  • an engine and / or a main drive motor is disposed in the front portion of the vehicle to drive the front wheels as a main drive.
  • the present invention can be applied to various types of vehicles such as so-called FF vehicles that use wheels, and so-called RR vehicles that use an engine and / or main drive motor in the rear part of the vehicle and use the rear wheels as main drive wheels. it can.
  • an engine 12 When the present invention is applied to an FF vehicle, for example, as shown in FIG. 17, an engine 12, a main drive motor 16, and a transmission 14c are arranged in a front portion of the vehicle 101, and a front wheel 102a is used as a main drive wheel. It can be laid out to drive. Further, the auxiliary drive motor 20 can be arranged as an in-wheel motor on the left and right rear wheels 102b which are auxiliary drive wheels. As described above, the main drive motor 16 that is the vehicle body side motor drives the front wheel 102a that is the main drive wheel, and the sub drive motor 20 that is the in-wheel motor drives the rear wheel 102b that is the sub drive wheel.
  • the present invention can be configured.
  • the main drive motor 16 can be driven by the electric power stored in the battery 18 supplied via the inverter 16a. Further, an integrated unit obtained by unitizing the capacitor 22, the high-voltage DC / DC converter 26 a and the low-voltage DC / DC converter 26 b that are voltage converters, and the two inverters 20 a can be arranged at the rear portion of the vehicle 101. Further, the sub drive motor 20 can be driven by the electric power stored in the battery 18 and the capacitor 22 arranged in series and supplied through the inverter 20a.
  • the engine 12 the main drive motor 16, and the transmission 14c are arranged in the front portion of the vehicle 201, and the front wheels 202a are used as main drive wheels.
  • the auxiliary drive motor 20 can be disposed on the left and right front wheels 202a, which are the main drive wheels, as an in-wheel motor.
  • the main drive motor 16 that is the vehicle body side motor drives the front wheel 202a that is the main drive wheel
  • the sub drive motor 20 that is the in-wheel motor also drives the front wheel 202a that is the main drive wheel.
  • the invention can be configured.
  • the main drive motor 16 can be driven by the electric power stored in the battery 18 supplied via the inverter 16a.
  • an integrated unit obtained by unitizing the capacitor 22, the high-voltage DC / DC converter 26a and the low-voltage DC / DC converter 26b, which are voltage converters, and the two inverters 20a can be disposed at the rear of the vehicle 201.
  • the sub drive motor 20 can be driven by the electric power stored in the battery 18 and the capacitor 22 arranged in series and supplied through the inverter 20a.
  • the engine 12 and the main drive motor 16 are disposed in the front portion of the vehicle 301, and power is transmitted to the vehicle 301 via the propeller shaft 14 a. It can be laid out so as to lead to the rear and drive the rear wheel 302b as the main drive wheel.
  • the rear wheel 302b is driven through the clutch 14b and the transmission 14c, which is a stepped transmission, by the power guided to the rear portion by the propeller shaft 14a.
  • the auxiliary drive motor 20 can be disposed on the left and right rear wheels 302b, which are the main drive wheels, as an in-wheel motor.
  • the main drive motor 16 that is the vehicle body side motor drives the rear wheel 302b that is the main drive wheel
  • the auxiliary drive motor 20 that is the in-wheel motor also drives the rear wheel 302b that is the main drive wheel.
  • the present invention can be configured as follows.
  • the main drive motor 16 can be driven by the electric power stored in the battery 18 supplied via the inverter 16a.
  • an integrated unit in which the capacitor 22, the high-voltage DC / DC converter 26 a and the low-voltage DC / DC converter 26 b that are voltage converters, and the two inverters 20 a are unitized can be disposed in the front portion of the vehicle 301.
  • the sub drive motor 20 can be driven by the electric power stored in the battery 18 and the capacitor 22 arranged in series and supplied through the inverter 20a.
  • the present invention is applied to a hybrid drive apparatus including an engine and an electric motor.
  • the present invention is applied to a vehicle drive apparatus that does not include an engine and drives a vehicle only by an electric motor. You can also.

Abstract

The purpose of the present invention is to provide a vehicle drive device capable of efficiently driving a vehicle using in-wheel motors without falling into the spiral of enhancing motor drive at the cost of increased vehicle weight. The present invention provides a vehicle drive device for driving a vehicle using in-wheel motors, characterized by comprising a vehicle speed sensor (42) that detects the traveling speed of a vehicle (1), in-wheel motors (20) that are disposed in wheels (2b) of the vehicle and drive the wheels, and a controller (24) that controls the in-wheel motors, wherein the controller controls the in-wheel motors to generate drive power when the traveling speed of the vehicle detected by the vehicle speed sensor is equal to or higher than a predetermined first vehicle speed that is greater than zero.

Description

車両駆動装置Vehicle drive device
 本発明は車両駆動装置に関し、特に、車両の駆動にインホイールモータを使用する車両駆動装置に関する。 The present invention relates to a vehicle drive device, and more particularly to a vehicle drive device that uses an in-wheel motor to drive a vehicle.
 近年、世界各国において車両の排出ガス規制が強化され、車両の燃費、走行距離当たりの二酸化炭素排出量等に対する要求が厳しくなっている。また、内燃機関で走行する車両の市街地への進入を規制している都市も存在する。これらの要求を満足するため、内燃機関及び電動機を備えたハイブリッド駆動の車両や、電動機のみによって駆動される電気自動車が開発され、広く普及している。 In recent years, regulations on vehicle exhaust emissions have been strengthened in various countries around the world, and requirements for vehicle fuel consumption, carbon dioxide emissions per mileage, etc. have become stricter. There are also cities that restrict the entry of vehicles that run on internal combustion engines into urban areas. In order to satisfy these requirements, a hybrid drive vehicle including an internal combustion engine and an electric motor and an electric vehicle driven only by the electric motor have been developed and widely spread.
 特許第5280961号公報(特許文献1)には、車両の駆動制御装置が記載されている。この駆動制御装置においては、車両の後輪側に駆動装置が設けられており、この駆動装置に備えられた2つの電動機が、車両の後輪を夫々駆動する。また、この駆動装置とは別に、内燃機関と電動機が直列に接続された駆動ユニットが車両の前部に設けられている。駆動ユニットの動力はトランスミッション及び主駆動軸を介して前輪に伝達され、駆動装置の動力は車両の後輪に伝達される。また、この駆動制御装置において、車両の発進時には、駆動装置の2つの電動機が駆動され、この駆動力が車両の後輪に夫々伝達される。さらに、車両の加速時には駆動ユニットも駆動力を発生し、駆動ユニット、及び駆動装置の2つの電動機による四輪駆動となる。このように、特許文献1記載の駆動制御装置においては、主に車両の後輪用に夫々設けられた2つの電動機が駆動力を発生している。 Japanese Patent No. 5280961 (Patent Document 1) describes a drive control device for a vehicle. In this drive control device, a drive device is provided on the rear wheel side of the vehicle, and two electric motors provided in the drive device respectively drive the rear wheels of the vehicle. In addition to this drive device, a drive unit in which an internal combustion engine and an electric motor are connected in series is provided at the front of the vehicle. The power of the drive unit is transmitted to the front wheels via the transmission and the main drive shaft, and the power of the drive device is transmitted to the rear wheels of the vehicle. In this drive control device, when the vehicle starts, the two electric motors of the drive device are driven, and this driving force is transmitted to the rear wheels of the vehicle. Furthermore, when the vehicle is accelerated, the drive unit also generates a driving force, and four-wheel drive is performed by the two electric motors of the drive unit and the drive device. As described above, in the drive control device described in Patent Document 1, two electric motors provided mainly for the rear wheels of the vehicle generate driving force.
特許第5280961号Japanese Patent No. 5280961
 電動機による車両の駆動は、走行中に二酸化炭素を排出しないため、年々強化される排出ガス規制をクリアするためには有利であるが、バッテリに蓄積可能な電力に限界があり、十分に長い航続距離を確保することが困難である。このため、車両用の駆動装置として、電動機と共に内燃機関を搭載したハイブリッド駆動装置が広く普及している。また、このようなハイブリッド駆動装置においても、走行中の二酸化炭素排出量を低減するため、特許文献1に記載されている車両のように、主として電動機による駆動力を利用する車両が増加している。 Driving a vehicle with an electric motor does not emit carbon dioxide while driving, so it is advantageous for clearing exhaust gas regulations that are tightened year by year, but there is a limit to the power that can be stored in the battery, and the cruising time is long enough. It is difficult to secure a distance. For this reason, hybrid drive devices in which an internal combustion engine is mounted together with an electric motor are widely used as drive devices for vehicles. Also in such a hybrid drive device, in order to reduce the amount of carbon dioxide emissions during traveling, the number of vehicles that mainly use the driving force of an electric motor is increasing as in the vehicle described in Patent Document 1. .
 このように、電動機の駆動力を主体とするハイブリッド駆動装置では、十分な走行性能を確保するために大容量のバッテリを搭載する必要がある。また、電動機により十分な駆動力を得るためには、比較的高電圧で電動機を作動させる必要がある。このため、電動機の駆動力を主体とするハイブリッド駆動装置では、大容量のバッテリが要求されると共に、電動機に高電圧を供給する電気系統を電気的に十分に絶縁する必要があり、これらが車両の全体的な重量を増加させ、車両の燃費を悪化させる。さらに、重量の大きい車両を電動機で駆動するために、更なる大容量のバッテリや高電圧が必要となり、これが更なる重量の増加を生む悪循環に陥るという問題がある。 As described above, in the hybrid drive device mainly composed of the driving force of the electric motor, it is necessary to mount a large-capacity battery in order to ensure sufficient traveling performance. Further, in order to obtain a sufficient driving force by the electric motor, it is necessary to operate the electric motor at a relatively high voltage. For this reason, in the hybrid drive device mainly composed of the driving force of the electric motor, a large-capacity battery is required, and an electric system for supplying a high voltage to the electric motor needs to be electrically sufficiently insulated. Increase the overall weight of the vehicle and worsen the fuel consumption of the vehicle. Furthermore, in order to drive a heavy vehicle with an electric motor, there is a problem that a battery with a larger capacity and a higher voltage are required, which causes a vicious circle that further increases the weight.
 また、特許文献1記載の車両の駆動制御装置では、後輪を駆動する電動機が後輪のドライブシャフトに直結されているが、この電動機を後輪に内蔵させ、所謂インホイールモータとすることが考えられる。インホイールモータを採用した場合には、モータと車輪を連結するドライブシャフトが不要になるため、ドライブシャフト分の重量を削減することができるというメリットがある。しかしながら、特許文献1記載の発明のように、車両の発進、加速、クルーズ走行を行うための電動機としてインホイールモータを採用したとしても、十分な走行性能を得るためには大型の電動機が必要となり、重量の増加を避けることができない。このため、インホイールモータを採用したメリットを十分に享受することができない。 Further, in the vehicle drive control device described in Patent Document 1, an electric motor that drives a rear wheel is directly connected to a drive shaft of the rear wheel. However, this electric motor may be built in the rear wheel to form a so-called in-wheel motor. Conceivable. When an in-wheel motor is employed, there is no need for a drive shaft that connects the motor and the wheels, so there is an advantage that the weight of the drive shaft can be reduced. However, even if an in-wheel motor is employed as an electric motor for starting, accelerating, and cruise traveling of a vehicle as in the invention described in Patent Document 1, a large electric motor is required to obtain sufficient traveling performance. Inevitable increase in weight. For this reason, the merit which employ | adopted the in-wheel motor cannot fully be enjoyed.
 従って、本発明は、電動機による駆動の強化と車両重量増加の悪循環に陥ることなく、インホイールモータを使用して、効率的に車両を駆動することができる車両駆動装置を提供することを目的としている。 Accordingly, an object of the present invention is to provide a vehicle drive device that can efficiently drive a vehicle using an in-wheel motor without falling into a vicious circle of strengthening drive by an electric motor and increasing vehicle weight. Yes.
 上述した課題を解決するために、本発明は、車両の駆動にインホイールモータを使用する車両駆動装置であって、車両の走行速度を検出する車速センサと、車両の車輪に設けられると共に、車輪を駆動するインホイールモータと、このインホイールモータを制御する制御器と、を有し、制御器は、車速センサによって検出された車両の走行速度がゼロよりも大きい所定の第1車速以上の場合において、駆動力を発生するようにインホイールモータを制御する、ように構成されていることを特徴としている。 In order to solve the above-described problems, the present invention is a vehicle drive device that uses an in-wheel motor to drive a vehicle, and is provided on a vehicle speed sensor that detects the traveling speed of the vehicle, and on the wheels of the vehicle. An in-wheel motor that drives the vehicle and a controller that controls the in-wheel motor, and the controller has a vehicle traveling speed detected by the vehicle speed sensor equal to or higher than a predetermined first vehicle speed greater than zero. In the present invention, the in-wheel motor is controlled so as to generate a driving force.
 このように構成された本発明においては、車速センサにより車両の走行速度が検出され、制御器は、車輪に設けられ、車輪を駆動するインホイールモータを制御する。また、制御器は、車速センサによって検出された車両の走行速度がゼロよりも大きい所定の第1車速以上の場合に、駆動力を発生するようにインホイールモータを制御する。 In the present invention configured as described above, the traveling speed of the vehicle is detected by the vehicle speed sensor, and the controller controls the in-wheel motor that is provided on the wheel and drives the wheel. Further, the controller controls the in-wheel motor so as to generate a driving force when the vehicle traveling speed detected by the vehicle speed sensor is equal to or higher than a predetermined first vehicle speed greater than zero.
 このように構成された本発明によれば、車両の走行速度がゼロよりも大きい所定の第1車速以上の場合にインホイールモータが駆動力を発生するように構成されているので、低速域でインホイールモータに大きなトルクが要求されることはない。この結果、低速域におけるトルクの小さい小型の電動機をインホイールモータとして採用することが可能となり、インホイールモータを使用して効率的に車両を駆動することが可能になる。 According to the present invention configured as described above, the in-wheel motor is configured to generate the driving force when the traveling speed of the vehicle is equal to or higher than the predetermined first vehicle speed greater than zero. A large torque is not required for the in-wheel motor. As a result, a small electric motor with a small torque in the low speed range can be adopted as the in-wheel motor, and the vehicle can be efficiently driven using the in-wheel motor.
 本発明において、好ましくは、さらに、車両の車体に設けられ、車両の車輪を駆動する車体側モータを有し、制御器は、車速センサによって検出された車両の走行速度が所定の第2車速未満のとき、駆動力を発生するように車体側モータを制御する、ように構成されている。 In the present invention, it is preferable that the vehicle further includes a vehicle body side motor that is provided on the vehicle body and drives the wheels of the vehicle, and the controller has a vehicle traveling speed detected by the vehicle speed sensor less than a predetermined second vehicle speed. At this time, the vehicle body side motor is controlled so as to generate a driving force.
 このように構成された本発明によれば、車両の走行速度が所定の第2車速未満のとき、車両の車体に設けられた車体側モータが駆動力を発生するので、第1車速以上で駆動力を発生するインホイールモータを補完し、車両に十分な走行性能を与えることができる。 According to the present invention configured as described above, when the traveling speed of the vehicle is less than the predetermined second vehicle speed, the vehicle body side motor provided in the vehicle body of the vehicle generates a driving force. Complementing the in-wheel motor that generates force, it is possible to give the vehicle sufficient running performance.
 本発明において、好ましくは、制御器は、車速センサによって検出された車両の走行速度が第2車速以上のときも、駆動力を発生するように車体側モータを制御する、ように構成されている。 In the present invention, preferably, the controller is configured to control the vehicle body side motor so as to generate a driving force even when the traveling speed of the vehicle detected by the vehicle speed sensor is equal to or higher than the second vehicle speed. .
 このように構成された本発明によれば、車両の走行速度が第2車速以上のときも車体側モータは駆動力を発生するので、走行速度が第1及び第2車速以上の速度領域においては、車体側モータと、インホイールモータの両方が駆動力を発生する。このため、インホイールモータを更に小型化することが可能になる。 According to the present invention configured as described above, since the vehicle body side motor generates driving force even when the vehicle traveling speed is equal to or higher than the second vehicle speed, in the speed region where the traveling speed is equal to or higher than the first and second vehicle speeds. Both the vehicle body side motor and the in-wheel motor generate driving force. For this reason, it becomes possible to further reduce the size of the in-wheel motor.
 本発明において、好ましくは、制御器は、車速センサによって検出された車両の走行速度が第1車速未満の場合には、インホイールモータに駆動力を発生させないようにインホイールモータを制御する、ように構成されている。 In the present invention, it is preferable that the controller controls the in-wheel motor so that the driving force is not generated in the in-wheel motor when the vehicle traveling speed detected by the vehicle speed sensor is lower than the first vehicle speed. It is configured.
 このように構成された本発明によれば、車両の走行速度が第1車速未満の場合には、インホイールモータによる駆動力の発生が禁止されるので、低速域におけるトルクが極めて小さい電動機をインホイールモータとして採用することができ、インホイールモータを軽量化することができる。 According to the present invention configured as described above, when the vehicle traveling speed is lower than the first vehicle speed, the generation of the driving force by the in-wheel motor is prohibited. It can be employed as a wheel motor, and the in-wheel motor can be reduced in weight.
 本発明において、好ましくは、制御器は、車体側モータに駆動力を発生させることにより、車両を発進させた後、車速センサによって検出された車両の走行速度が第1車速に到達すると、インホイールモータに駆動力を発生させる、ように構成されている。 In the present invention, preferably, the controller causes the vehicle-side motor to generate a driving force to start the vehicle, and when the vehicle traveling speed detected by the vehicle speed sensor reaches the first vehicle speed, The driving force is generated in the motor.
 このように構成された本発明によれば、車体側モータが駆動力を発生して、車両を発進させた後、走行速度が第1車速に到達すると、インホイールモータが駆動力を発生するので、車両の発進時にはインホイールモータが使用されず、起動トルクが極めて小さい電動機をインホイールモータとして採用することができ、インホイールモータを軽量化することができる。 According to the present invention configured as described above, the in-wheel motor generates the driving force when the traveling speed reaches the first vehicle speed after the vehicle body side motor generates the driving force and starts the vehicle. An in-wheel motor is not used when the vehicle is started, and an electric motor with extremely small starting torque can be employed as the in-wheel motor, and the in-wheel motor can be reduced in weight.
 本発明において、好ましくは、インホイールモータは、減速機構を介することなく、インホイールモータが設けられた車輪を直接駆動する、ように構成されている。 In the present invention, preferably, the in-wheel motor is configured to directly drive a wheel provided with the in-wheel motor without using a speed reduction mechanism.
 本発明においては、車速が所定の第1車速以上の場合にインホイールモータが駆動力を発生するので、低速域においてインホイールモータが大きなトルクを要求されることはない。このため、減速機構を設けなくともインホイールモータはトルクを要求される回転領域において十分なトルクを発生することができる。また、上記のように構成された本発明によれば、減速機構を介さずに車輪が直接駆動されるので、極めて重量が大きくなる減速機構を省略することができると共に、減速機構の回転抵抗による出力損失を回避することができる。 In the present invention, since the in-wheel motor generates a driving force when the vehicle speed is equal to or higher than the predetermined first vehicle speed, the in-wheel motor is not required to have a large torque in the low speed range. For this reason, the in-wheel motor can generate sufficient torque in the rotation region where torque is required without providing a speed reduction mechanism. Further, according to the present invention configured as described above, since the wheels are directly driven without using the speed reduction mechanism, the speed reduction mechanism that is extremely heavy can be omitted, and the rotation resistance of the speed reduction mechanism can be used. Output loss can be avoided.
 本発明において、好ましくは、インホイールモータは、誘導電動機である。
 一般に、誘導電動機は、高回転領域において大きな出力トルクが得られると共に、軽量に構成することができる。このため、本発明において、低回転領域において大きなトルクを要求されることがないインホイールモータに誘導電動機を採用することにより、必要な回転領域で十分なトルクを発生することができる電動機を軽量に構成することができる。
In the present invention, the in-wheel motor is preferably an induction motor.
Generally, an induction motor can be configured to be lightweight while obtaining a large output torque in a high rotation region. For this reason, in the present invention, by adopting an induction motor for an in-wheel motor that does not require a large torque in the low rotation region, the electric motor capable of generating sufficient torque in the necessary rotation region can be reduced in weight. Can be configured.
 本発明において、好ましくは、車体側モータは、永久磁石電動機である。
 一般に、永久磁石電動機は、起動トルクが比較的大きく、低回転領域で大きなトルクを得ることができる。このため、本発明において、低回転領域において大きなトルクを要求される車体側モータに永久磁石電動機を採用することにより、必要な回転領域で十分なトルクを発生することができる電動機を軽量に構成することができる。
In the present invention, the vehicle body side motor is preferably a permanent magnet motor.
Generally, a permanent magnet motor has a relatively large starting torque, and can obtain a large torque in a low rotation region. For this reason, in the present invention, by adopting a permanent magnet motor for a vehicle body side motor that requires a large torque in a low rotation region, a motor that can generate sufficient torque in a necessary rotation region is configured to be lightweight. be able to.
 本発明において、好ましくは、インホイールモータは車両の前輪を駆動し、車体側モータは車両の後輪を駆動するように構成されている。 In the present invention, preferably, the in-wheel motor is configured to drive the front wheel of the vehicle, and the vehicle body side motor is configured to drive the rear wheel of the vehicle.
 本発明において、好ましくは、インホイールモータは車両の後輪を駆動し、車体側モータは車両の前輪を駆動するように構成されている。 In the present invention, preferably, the in-wheel motor is configured to drive the rear wheel of the vehicle, and the vehicle body side motor is configured to drive the front wheel of the vehicle.
 本発明において、好ましくは、インホイールモータ及び車体側モータは、車両の前輪を駆動するように構成されている。 In the present invention, preferably, the in-wheel motor and the vehicle body side motor are configured to drive the front wheels of the vehicle.
 本発明において、好ましくは、インホイールモータ及び車体側モータは、車両の後輪を駆動するように構成されている。 In the present invention, preferably, the in-wheel motor and the vehicle body side motor are configured to drive the rear wheels of the vehicle.
 また、本発明は、車両の駆動にインホイールモータを使用する車両駆動装置であって、車両の走行速度を検出する車速センサと、車両の車輪に設けられると共に、車輪を駆動するインホイールモータと、このインホイールモータを制御する制御器と、を有し、制御器は、車速センサによって検出された車両の走行速度がゼロよりも大きい所定の第1車速未満の場合には、インホイールモータに駆動力を発生させないようにインホイールモータを制御する、ように構成されていることを特徴としている。 Further, the present invention is a vehicle drive device that uses an in-wheel motor to drive a vehicle, a vehicle speed sensor that detects a traveling speed of the vehicle, an in-wheel motor that is provided on a wheel of the vehicle and that drives the wheel. And a controller for controlling the in-wheel motor. The controller controls the in-wheel motor when the vehicle traveling speed detected by the vehicle speed sensor is less than a predetermined first vehicle speed greater than zero. The in-wheel motor is controlled so as not to generate a driving force.
 さらに、本発明は、車両の駆動にインホイールモータを使用する車両駆動装置であって、車両の走行速度を検出する車速センサと、車両の車輪に設けられると共に、車輪を駆動するインホイールモータと、車両の車体に設けられ、車両の車輪を駆動する車体側モータと、インホイールモータ及び車体側モータを制御する制御器と、を有し、制御器は、車体側モータに駆動力を発生させることにより、車両を発進させた後、車速センサによって検出された車両の走行速度がゼロよりも大きい所定の第1車速に到達すると、インホイールモータに駆動力を発生させる、ように構成されていることを特徴としている。 Furthermore, the present invention is a vehicle drive device that uses an in-wheel motor to drive a vehicle, a vehicle speed sensor that detects a traveling speed of the vehicle, an in-wheel motor that is provided on a wheel of the vehicle and that drives the wheel. A vehicle body side motor provided on the vehicle body for driving the vehicle wheel; and a controller for controlling the in-wheel motor and the vehicle body side motor, wherein the controller generates a driving force for the vehicle body side motor. Thus, after the vehicle is started, the driving force is generated in the in-wheel motor when the vehicle traveling speed detected by the vehicle speed sensor reaches a predetermined first vehicle speed greater than zero. It is characterized by that.
 本発明の車両駆動装置によれば、電動機による駆動の強化と車両重量増加の悪循環に陥ることなく、インホイールモータを使用して、効率的に車両を駆動することができる。 According to the vehicle drive device of the present invention, the vehicle can be efficiently driven using the in-wheel motor without falling into a vicious circle of the drive enhancement by the electric motor and the vehicle weight increase.
本発明の第1実施形態によるハイブリッド駆動装置を搭載した車両のレイアウト図である。1 is a layout diagram of a vehicle equipped with a hybrid drive device according to a first embodiment of the present invention. 本発明の第1実施形態によるハイブリッド駆動装置を搭載した車両の前部を上方から見た透視図である。It is the perspective view which looked at the front part of the vehicle carrying the hybrid drive device by a 1st embodiment of the present invention from the upper part. 本発明の第1実施形態によるハイブリッド駆動装置を搭載した車両の前部を側面から見た透視図である。It is the perspective view which looked at the front part of the vehicle carrying the hybrid drive device by 1st Embodiment of this invention from the side surface. 図2のiv-iv線に沿う断面図である。FIG. 4 is a sectional view taken along line iv-iv in FIG. 2. 本発明の第1実施形態によるハイブリッド駆動装置における各種信号の入出力を示すブロック図である。It is a block diagram which shows the input / output of various signals in the hybrid drive device by 1st Embodiment of this invention. 本発明の第1実施形態によるハイブリッド駆動装置の電源構成を示すブロック図である。It is a block diagram which shows the power supply structure of the hybrid drive device by 1st Embodiment of this invention. 本発明の第1実施形態によるハイブリッド駆動装置において、キャパシタに電力が回生された場合における電圧の変化の一例を模式的に示す図である。In the hybrid drive device by a 1st embodiment of the present invention, it is a figure showing typically an example of change of voltage when electric power is regenerated to a capacitor. 本発明の第1実施形態によるハイブリッド駆動装置において使用されている各モータの出力と車速の関係を示す図である。It is a figure which shows the relationship between the output of each motor currently used in the hybrid drive device by 1st Embodiment of this invention, and a vehicle speed. 本発明の第1実施形態によるハイブリッド駆動装置に採用されている副駆動モータの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the sub drive motor employ | adopted as the hybrid drive device by 1st Embodiment of this invention. 本発明の第1実施形態によるハイブリッド駆動装置における制御装置による制御のフローチャートである。It is a flowchart of control by the control apparatus in the hybrid drive device by 1st Embodiment of this invention. 本発明の第1実施形態によるハイブリッド駆動装置の各モードにおける動作の一例を示すグラフである。It is a graph which shows an example of the operation | movement in each mode of the hybrid drive device by 1st Embodiment of this invention. 本発明の第1実施形態によるハイブリッド駆動装置において、トランスミッションをシフトダウン又はシフトアップした場合における車両に作用する加速度の変化を模式的に示す図である。In the hybrid drive device according to the first embodiment of the present invention, it is a diagram schematically showing a change in acceleration acting on the vehicle when the transmission is shifted down or up. 本発明の第2実施形態によるハイブリッド駆動装置における制御装置による制御のフローチャートである。It is a flowchart of control by the control apparatus in the hybrid drive device by 2nd Embodiment of this invention. 本発明の第2実施形態によるハイブリッド駆動装置の各モードにおける動作の一例を示すグラフである。It is a graph which shows an example of the operation | movement in each mode of the hybrid drive device by 2nd Embodiment of this invention. 本発明の第3実施形態によるハイブリッド駆動装置における制御装置による制御のフローチャートである。It is a flowchart of control by the control apparatus in the hybrid drive device by 3rd Embodiment of this invention. 本発明の第3実施形態によるハイブリッド駆動装置の各モードにおける動作の一例を示すグラフである。It is a graph which shows an example of operation in each mode of a hybrid drive by a 3rd embodiment of the present invention. 本発明の第1の変形実施形態によるハイブリッド駆動装置を搭載した車両のレイアウト図である。FIG. 2 is a layout diagram of a vehicle equipped with a hybrid drive device according to a first modified embodiment of the present invention. 本発明の第2の変形実施形態によるハイブリッド駆動装置を搭載した車両のレイアウト図である。FIG. 6 is a layout diagram of a vehicle equipped with a hybrid drive device according to a second modified embodiment of the present invention. 本発明の第3の変形実施形態によるハイブリッド駆動装置を搭載した車両のレイアウト図である。FIG. 6 is a layout diagram of a vehicle equipped with a hybrid drive device according to a third modified embodiment of the present invention.
 次に、添付図面を参照して、本発明の好ましい実施形態を説明する。
 図1は、本発明の第1実施形態によるハイブリッド駆動装置を搭載した車両のレイアウト図である。図2は本実施形態のハイブリッド駆動装置を搭載した車両の前部を上方から見た透視図であり、図3は車両の前部を側面から見た透視図である。図4は、図2のiv-iv線に沿う断面図である。
Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a layout diagram of a vehicle equipped with a hybrid drive apparatus according to a first embodiment of the present invention. FIG. 2 is a perspective view of the front portion of the vehicle on which the hybrid drive device of this embodiment is mounted as viewed from above, and FIG. 3 is a perspective view of the front portion of the vehicle as viewed from the side. 4 is a cross-sectional view taken along line iv-iv in FIG.
 図1に示すように、本発明の第1実施形態による車両駆動装置であるハイブリッド駆動装置を搭載した車両1は、運転席よりも前方の、車両の前部に内燃機関であるエンジン12が搭載され、主駆動輪である左右1対の後輪2aを駆動する所謂FR(Front engine, Rear drive)車である。また、後述するように、後輪2aは主駆動電動機である主駆動モータによっても駆動され、副駆動輪である左右1対の前輪2bは、副駆動電動機である副駆動モータによって駆動される。 As shown in FIG. 1, a vehicle 1 equipped with a hybrid drive device that is a vehicle drive device according to a first embodiment of the present invention is equipped with an engine 12 that is an internal combustion engine in front of the vehicle, ahead of the driver's seat. This is a so-called FR (Front engine, Rear drive) vehicle that drives a pair of left and right rear wheels 2a that are main driving wheels. As will be described later, the rear wheel 2a is also driven by a main drive motor that is a main drive motor, and the pair of left and right front wheels 2b that are sub drive wheels are driven by a sub drive motor that is a sub drive motor.
 車両1に搭載された本発明の第1実施形態によるハイブリッド駆動装置10は、後輪2aを駆動するエンジン12と、後輪2aに駆動力を伝達する動力伝達機構14と、後輪2aを駆動する主駆動モータ16と、蓄電器であるバッテリ18と、前輪2bを駆動する副駆動モータ20と、キャパシタ22と、制御器である制御装置24と、を有する。 The hybrid drive device 10 according to the first embodiment of the present invention mounted on a vehicle 1 drives an engine 12 that drives a rear wheel 2a, a power transmission mechanism 14 that transmits a driving force to the rear wheel 2a, and a rear wheel 2a. The main drive motor 16, the battery 18 that is a battery, the sub drive motor 20 that drives the front wheels 2b, the capacitor 22, and the control device 24 that is a controller.
 エンジン12は、車両1の主駆動輪である後輪2aに対する駆動力を発生するための内燃機関である。図2乃至4に示すように、本実施形態においては、エンジン12として直列4気筒エンジンが採用されており、車両1の前部に配置されたエンジン12が動力伝達機構14を介して後輪2aを駆動するようになっている。また、図4に示すように、本実施形態においては、エンジン12は、フライホイールを備えていないフライホイールレスエンジンであり、車両1のサブフレーム4aにエンジンマウント6aを介して装着されている。さらに、サブフレーム4aは、フロントサイドフレーム4bの下部、及びその後端のダッシュパネル4c下部に締結固定されている。 The engine 12 is an internal combustion engine for generating a driving force for the rear wheel 2a, which is the main driving wheel of the vehicle 1. As shown in FIGS. 2 to 4, in this embodiment, an in-line four-cylinder engine is adopted as the engine 12, and the engine 12 disposed in the front portion of the vehicle 1 is connected to the rear wheel 2 a via the power transmission mechanism 14. Is supposed to drive. As shown in FIG. 4, in the present embodiment, the engine 12 is a flywheelless engine that does not include a flywheel, and is mounted on the subframe 4 a of the vehicle 1 via an engine mount 6 a. Further, the sub frame 4a is fastened and fixed to the lower part of the front side frame 4b and the lower part of the dash panel 4c at the rear end.
 動力伝達機構14は、エンジン12が発生した駆動力を主駆動輪である後輪2aに伝達するように構成されている。図1乃至図3に示すように、動力伝達機構14は、エンジン12に接続されたプロペラシャフト14a、クラッチ14b、及び有段変速機であるトランスミッション14cを備えている。プロペラシャフト14aは、車両1の前部に配置されたエンジン12から、プロペラシャフトトンネル4d(図2)の中を車両1の後方へ向けて延びている。プロペラシャフト14aの後端は、クラッチ14bを介してトランスミッション14cに接続されている。トランスミッション14cの出力軸は後輪2aの車軸(図示せず)に接続され、後輪2aを駆動する。
 なお、本実施形態において、トランスミッション14cは、所謂トランスアクスル配置である。これにより、エンジン12の直後の位置に外径の大きな変速機の本体が存在しなくなるので、フロアトンネル(プロペラシャフトトンネル4d)の幅を小さくすることができ、乗員の中央側足元空間を確保して乗員に真正面に正対した左右対称な下半身姿勢をとらせることが可能となる。更に、この乗員の姿勢を確保しつつ主駆動モータ16の外径や、長さを出力に応じた十分な大きさにすることが容易になる。
The power transmission mechanism 14 is configured to transmit the driving force generated by the engine 12 to the rear wheel 2a that is the main driving wheel. As shown in FIGS. 1 to 3, the power transmission mechanism 14 includes a propeller shaft 14 a connected to the engine 12, a clutch 14 b, and a transmission 14 c that is a stepped transmission. The propeller shaft 14 a extends from the engine 12 disposed at the front of the vehicle 1 through the propeller shaft tunnel 4 d (FIG. 2) toward the rear of the vehicle 1. The rear end of the propeller shaft 14a is connected to the transmission 14c via the clutch 14b. The output shaft of the transmission 14c is connected to the axle (not shown) of the rear wheel 2a, and drives the rear wheel 2a.
In the present embodiment, the transmission 14c has a so-called transaxle arrangement. As a result, the main body of the transmission having a large outer diameter does not exist immediately after the engine 12, so that the width of the floor tunnel (propeller shaft tunnel 4d) can be reduced, and the foot space on the center side of the occupant is secured. This makes it possible for the occupant to take a symmetrical lower body posture facing directly in front. Furthermore, it becomes easy to make the outer diameter and length of the main drive motor 16 sufficiently large according to the output while ensuring the posture of the occupant.
 主駆動モータ16は、主駆動輪に対する駆動力を発生するための電動機であって、車両1の車体上に設けられ、エンジン12の後ろ側に、エンジン12に隣接して配置されており、車体側モータとして機能する。また、主駆動モータ16に隣接してインバータ(INV)16aが配置されており、このインバータ16aにより、バッテリ18からの電流が交流に変換されて主駆動モータ16に供給される。さらに、図2及び図3に示すように、主駆動モータ16はエンジン12と直列に接続されており、主駆動モータ16が発生した駆動力も動力伝達機構14を介して後輪2aに伝達される。或いは、主駆動モータ16を動力伝達機構14の途中に接続し、動力伝達機構14の一部を介して駆動力が後輪2aに伝達されるように本発明を構成することもできる。また、本実施形態においては、主駆動モータ16として、48Vで駆動される25kWの永久磁石電動機(永久磁石同期電動機)が採用されている。 The main drive motor 16 is an electric motor for generating a driving force for the main drive wheels, and is provided on the vehicle body of the vehicle 1 and is disposed on the rear side of the engine 12 adjacent to the engine 12. Functions as a side motor. Further, an inverter (INV) 16 a is disposed adjacent to the main drive motor 16, and the current from the battery 18 is converted into alternating current by the inverter 16 a and supplied to the main drive motor 16. Further, as shown in FIGS. 2 and 3, the main drive motor 16 is connected in series with the engine 12, and the driving force generated by the main drive motor 16 is also transmitted to the rear wheel 2 a via the power transmission mechanism 14. . Alternatively, the present invention can be configured such that the main drive motor 16 is connected to the middle of the power transmission mechanism 14 and the driving force is transmitted to the rear wheel 2a via a part of the power transmission mechanism 14. In the present embodiment, a 25 kW permanent magnet motor (permanent magnet synchronous motor) driven at 48 V is adopted as the main drive motor 16.
 バッテリ18は、主として主駆動モータ16を作動させる電力を蓄積するための蓄電器である。また、図2に示すように、本実施形態においてバッテリ18は、プロペラシャフト14aをカバーするトルクチューブ14dを取り囲むように、プロペラシャフトトンネル4dの内部に配置されている。さらに、本実施形態においては、バッテリ18として、48V、3.5kWhのリチウムイオンバッテリ(LIB)が使用されている。
 なお、上記のように、本実施形態においてはトランスアクスル配置が採用されているため、これにより生じたフロアトンネル(プロペラシャフトトンネル4d)前方の空間に向けて、バッテリ18を収容する容積を拡大することができる。これにより、フロアトンネルの幅を大きくして乗員の中央側空間を狭めることなく、バッテリ18容量の確保、拡大が可能になる。
The battery 18 is a capacitor for storing electric power mainly for operating the main drive motor 16. Further, as shown in FIG. 2, in the present embodiment, the battery 18 is disposed inside the propeller shaft tunnel 4d so as to surround the torque tube 14d that covers the propeller shaft 14a. Furthermore, in this embodiment, a 48 V, 3.5 kWh lithium ion battery (LIB) is used as the battery 18.
As described above, since the transaxle arrangement is employed in the present embodiment, the volume for accommodating the battery 18 is expanded toward the space ahead of the floor tunnel (propeller shaft tunnel 4d) generated thereby. be able to. As a result, the capacity of the battery 18 can be secured and expanded without increasing the width of the floor tunnel and narrowing the center space of the passenger.
 図4に示すように、副駆動モータ20は、副駆動輪である前輪2bに対する駆動力を発生するように、車両1のバネ下に、前輪2b各輪に設けられている。本実施形態においては、前輪2b各輪はダブルウイッシュボーンタイプのサスペンションで支持され、アッパアーム8a、ロアアーム8b、スプリング8c、及びショックアブソーバ8dにより懸架されている。また、副駆動モータ20はインホイールモータであり、前輪2b各輪のホイール内に夫々収容されている。従って、副駆動モータ20は、車両1の所謂「バネ下」に設けられて前輪2bを夫々駆動するように構成されている。また、図1に示すように、各副駆動モータ20には、キャパシタ(CAP)22からの電流が、各インバータ20aにより夫々交流に変換されて供給される。さらに、本実施形態においては、副駆動モータ20には減速機構である減速機が設けられておらず、副駆動モータ20の駆動力は前輪2bに直接伝えられ、車輪が直接駆動される。また、本実施形態においては、各副駆動モータ20として、17kWの誘導電動機が夫々採用されている。 As shown in FIG. 4, the sub drive motor 20 is provided on each wheel of the front wheel 2 b under the spring of the vehicle 1 so as to generate a driving force for the front wheel 2 b which is a sub drive wheel. In the present embodiment, each wheel of the front wheel 2b is supported by a double wishbone type suspension, and is suspended by an upper arm 8a, a lower arm 8b, a spring 8c, and a shock absorber 8d. The auxiliary drive motor 20 is an in-wheel motor, and is accommodated in each wheel of the front wheel 2b. Accordingly, the auxiliary drive motor 20 is provided in a so-called “unsprung” state of the vehicle 1 and is configured to drive the front wheels 2b. Further, as shown in FIG. 1, each sub drive motor 20 is supplied with a current from a capacitor (CAP) 22 after being converted into an alternating current by each inverter 20a. Furthermore, in this embodiment, the sub drive motor 20 is not provided with a speed reducer as a speed reduction mechanism, and the driving force of the sub drive motor 20 is directly transmitted to the front wheels 2b, so that the wheels are directly driven. In this embodiment, a 17 kW induction motor is employed as each sub drive motor 20.
 キャパシタ(CAP)22は、副駆動モータ20によって回生された電力を蓄積するように設けられている。図2及び図3に示すように、キャパシタ22はエンジン12の直前に配置されると共に、車両1の前輪2b各輪に設けられた副駆動モータ20に電力を供給する。図4に示すように、キャパシタ22は、その両側の側面から突出したブラケット22aが、キャパシタ用マウント6bを介してフロントサイドフレーム4bに支持されている。また、副駆動モータ20からキャパシタ22へ延びるハーネス22bは、ホイールハウス壁面の側部上端を通ってエンジンルーム内に通されている。さらに、キャパシタ22は、バッテリ18よりも高い電圧で電荷を蓄積するように構成されると共に、副駆動輪である左右の前輪2bの間の領域内に配置される。主としてキャパシタ22に蓄積された電力により駆動される副駆動モータ20は、主駆動モータ16よりも高い電圧で駆動される。 The capacitor (CAP) 22 is provided so as to accumulate electric power regenerated by the sub drive motor 20. As shown in FIGS. 2 and 3, the capacitor 22 is disposed immediately in front of the engine 12 and supplies power to the auxiliary drive motors 20 provided on the front wheels 2 b of the vehicle 1. As shown in FIG. 4, the capacitor 22 has brackets 22a protruding from the side surfaces on both sides thereof and supported by the front side frame 4b via the capacitor mount 6b. A harness 22b extending from the auxiliary drive motor 20 to the capacitor 22 is passed through the upper end of the side of the wheel house wall and into the engine room. Further, the capacitor 22 is configured to store electric charges at a higher voltage than the battery 18, and is disposed in a region between the left and right front wheels 2b that are auxiliary driving wheels. The sub drive motor 20 driven mainly by the electric power stored in the capacitor 22 is driven at a higher voltage than the main drive motor 16.
 制御装置24は、エンジン12、主駆動モータ16、及び副駆動モータ20を制御して、電動機走行モード及び内燃機関走行モードを実行するように構成されている。具体的には、制御装置24は、マイクロプロセッサ、メモリ、インタフェイス回路、及びこれらを作動させるプログラム(以上、図示せず)等によって構成することができる。制御装置24による制御の詳細は後述する。 The control device 24 is configured to control the engine 12, the main drive motor 16, and the sub drive motor 20 to execute the electric motor travel mode and the internal combustion engine travel mode. Specifically, the control device 24 can be configured by a microprocessor, a memory, an interface circuit, and a program (not shown) for operating these. Details of the control by the control device 24 will be described later.
 また、図1に示すように、キャパシタ22の近傍には、電圧変換器である高圧DC/DCコンバータ26a及び低圧DC/DCコンバータ26bが夫々配置されている。これらの高圧DC/DCコンバータ26a、低圧DC/DCコンバータ26b、キャパシタ22、及び2つのインバータ20aはユニット化され、統合ユニットを構成している。 Further, as shown in FIG. 1, a high voltage DC / DC converter 26a and a low voltage DC / DC converter 26b, which are voltage converters, are arranged in the vicinity of the capacitor 22, respectively. The high voltage DC / DC converter 26a, the low voltage DC / DC converter 26b, the capacitor 22, and the two inverters 20a are unitized to form an integrated unit.
 次に、図5乃至図8を参照して、本発明の第1実施形態によるハイブリッド駆動装置10の全体構成、電源構成、及び各モータによる車両1の駆動を説明する。
 図5は、本発明の第1実施形態によるハイブリッド駆動装置10における各種信号の入出力を示すブロック図である。図6は、本発明の第1実施形態によるハイブリッド駆動装置10の電源構成を示すブロック図である。図7は、本実施形態のハイブリッド駆動装置10において、キャパシタ22に電力が回生された場合における電圧の変化の一例を模式的に示す図である。図8は、本実施形態のハイブリッド駆動装置10において使用されている各モータの出力と車速の関係を示す図である。
Next, with reference to FIG. 5 thru | or FIG. 8, the whole structure of the hybrid drive device 10 by 1st Embodiment of this invention, a power supply structure, and the drive of the vehicle 1 by each motor are demonstrated.
FIG. 5 is a block diagram showing input / output of various signals in the hybrid drive apparatus 10 according to the first embodiment of the present invention. FIG. 6 is a block diagram showing a power supply configuration of the hybrid drive apparatus 10 according to the first embodiment of the present invention. FIG. 7 is a diagram schematically illustrating an example of a change in voltage when electric power is regenerated in the capacitor 22 in the hybrid drive device 10 of the present embodiment. FIG. 8 is a diagram showing the relationship between the output of each motor used in the hybrid drive device 10 of the present embodiment and the vehicle speed.
 まず、本発明の第1実施形態によるハイブリッド駆動装置10における各種信号の入出力を説明する。図5に示すように、制御装置24には、モード選択スイッチ40、車速センサ42、アクセル開度センサ44、ブレーキセンサ46、エンジン回転数センサ48、自動変速機(AT)入力回転センサ50、自動変速機(AT)出力回転センサ52、電圧センサ54、及び電流センサ56によって検出された検出信号が夫々入力される。また、制御装置24は、主駆動モータ用のインバータ16a、副駆動モータ20用のインバータ20a、高圧DC/DCコンバータ26a、低圧DC/DCコンバータ26b、燃料噴射弁58、点火プラグ60、及びトランスミッション14cの油圧ソレノイド弁62に制御信号を夫々送り、これらを制御するように構成されている。 First, input / output of various signals in the hybrid drive apparatus 10 according to the first embodiment of the present invention will be described. As shown in FIG. 5, the control device 24 includes a mode selection switch 40, a vehicle speed sensor 42, an accelerator opening sensor 44, a brake sensor 46, an engine speed sensor 48, an automatic transmission (AT) input rotation sensor 50, an automatic Detection signals detected by a transmission (AT) output rotation sensor 52, a voltage sensor 54, and a current sensor 56 are input. The control device 24 also includes an inverter 16a for the main drive motor, an inverter 20a for the sub drive motor 20, a high voltage DC / DC converter 26a, a low voltage DC / DC converter 26b, a fuel injection valve 58, a spark plug 60, and a transmission 14c. Control signals are respectively sent to the hydraulic solenoid valves 62 and are controlled.
 次に、本発明の第1実施形態によるハイブリッド駆動装置10の電源構成を説明する。図6に示すように、ハイブリッド駆動装置10に備えられているバッテリ18とキャパシタ22は直列に接続されている。主駆動モータ16はバッテリ18の基準出力電圧である約48Vで駆動され、副駆動モータ20はバッテリ18の出力電圧とキャパシタ22の端子間電圧を合算した48Vよりも高い、最大120Vの電圧で駆動される。このため、副駆動モータ20は、常にキャパシタ22を介して供給された電力によって駆動される。 Next, the power supply configuration of the hybrid drive device 10 according to the first embodiment of the present invention will be described. As shown in FIG. 6, the battery 18 and the capacitor 22 provided in the hybrid drive apparatus 10 are connected in series. The main drive motor 16 is driven at a reference output voltage of about 48 V, which is the battery 18, and the sub drive motor 20 is driven at a maximum voltage of 120 V, which is higher than 48 V, which is the sum of the output voltage of the battery 18 and the terminal voltage of the capacitor 22. Is done. For this reason, the sub drive motor 20 is always driven by the electric power supplied via the capacitor 22.
 また、主駆動モータ16にはインバータ16aが取り付けられており、バッテリ18の出力を交流に変換した上で永久磁石電動機である主駆動モータ16が駆動される。同様に、各副駆動モータ20にはインバータ20aが夫々取り付けられており、バッテリ18及びキャパシタ22の出力を交流に変換した上で誘導電動機である副駆動モータ20が駆動される。なお、副駆動モータ20は、主駆動モータ16よりも高い電圧で駆動されるため、副駆動モータ20に電力を供給するハーネス(電線)22bには高い絶縁性が要求される。しかしながら、各副駆動モータ20に近接してキャパシタ22が配置されているため、ハーネス22bの絶縁性を高くすることによる重量の増加を最小限に抑えることができる。 Further, an inverter 16a is attached to the main drive motor 16, and the main drive motor 16 that is a permanent magnet motor is driven after the output of the battery 18 is converted into an alternating current. Similarly, an inverter 20a is attached to each sub drive motor 20, and the sub drive motor 20 that is an induction motor is driven after the outputs of the battery 18 and the capacitor 22 are converted into alternating current. Since the sub drive motor 20 is driven at a voltage higher than that of the main drive motor 16, the harness (electric wire) 22b that supplies power to the sub drive motor 20 is required to have high insulation. However, since the capacitors 22 are arranged close to each sub drive motor 20, an increase in weight due to increasing the insulation of the harness 22b can be minimized.
 さらに、車両1の減速時等には、主駆動モータ16及び各副駆動モータ20は発電機として機能し、車両1の運動エネルギーを回生して電力を生成する。主駆動モータ16によって回生された電力はバッテリ18に蓄積され、各副駆動モータ20によって回生された電力は主としてキャパシタ22に蓄積される。 Furthermore, when the vehicle 1 is decelerated, the main drive motor 16 and each sub drive motor 20 function as a generator, and regenerates the kinetic energy of the vehicle 1 to generate electric power. The power regenerated by the main drive motor 16 is stored in the battery 18, and the power regenerated by each sub drive motor 20 is stored mainly in the capacitor 22.
 また、バッテリ18とキャパシタ22の間には電圧変換器である高圧DC/DCコンバータ26aが接続されており、この高圧DC/DCコンバータ26aはキャパシタ22に蓄積された電荷が不足しているとき(キャパシタ22の端子間電圧が低下したとき)、バッテリ18の電圧を昇圧してキャパシタ22に充電する。一方、各副駆動モータ20によるエネルギーの回生により、キャパシタ22の端子間電圧が所定電圧以上に上昇した場合には、キャパシタ22に蓄積された電荷を降圧してバッテリ18に印加し、バッテリ18の充電を行う。即ち、副駆動モータ20によって回生された電力はキャパシタ22に蓄積された後、蓄積された電荷の一部が、高圧DC/DCコンバータ26aを介してバッテリ18に充電される。 A high-voltage DC / DC converter 26a, which is a voltage converter, is connected between the battery 18 and the capacitor 22, and the high-voltage DC / DC converter 26a has a shortage of charge accumulated in the capacitor 22 ( When the voltage across the terminals of the capacitor 22 decreases), the voltage of the battery 18 is boosted to charge the capacitor 22. On the other hand, when the inter-terminal voltage of the capacitor 22 rises to a predetermined voltage or more due to energy regeneration by each sub drive motor 20, the charge accumulated in the capacitor 22 is stepped down and applied to the battery 18, and the battery 18 Charge the battery. That is, after the electric power regenerated by the sub drive motor 20 is accumulated in the capacitor 22, a part of the accumulated electric charge is charged in the battery 18 via the high voltage DC / DC converter 26a.
 さらに、バッテリ18と車両1の12V電装品25の間には、低圧DC/DCコンバータ26bが接続されている。ハイブリッド駆動装置10の制御装置24や、車両1の電装品25の多くは12Vの電圧で作動するので、バッテリ18に蓄積された電荷を低圧DC/DCコンバータ26bにより12Vに降圧して、これらの機器に供給する。 Furthermore, a low voltage DC / DC converter 26b is connected between the battery 18 and the 12V electrical component 25 of the vehicle 1. Since most of the control device 24 of the hybrid drive device 10 and the electrical component 25 of the vehicle 1 operate at a voltage of 12V, the charge accumulated in the battery 18 is stepped down to 12V by the low-voltage DC / DC converter 26b, Supply to equipment.
 次に、図7を参照して、キャパシタ22に対する充電及び放電を説明する。
 図7に示すように、キャパシタ22の電圧は、バッテリ18によるベース電圧と、キャパシタ22自体の端子間電圧の合計となる。車両1の減速時等には、各副駆動モータ20により電力の回生が行われ、回生された電力はキャパシタ22に充電される。キャパシタ22への充電が行われると比較的急激に端子間電圧が上昇する。充電によりキャパシタ22の電圧が所定電圧以上に上昇すると、高圧DC/DCコンバータ26aによりキャパシタ22の電圧が降圧され、バッテリ18への充電が行われる。図7に示すように、このキャパシタ22からバッテリ18への充電は、キャパシタ22への充電よりも比較的緩やかに行われ、キャパシタ22の電圧は適正電圧まで比較的緩やかに低下される。
Next, charging and discharging of the capacitor 22 will be described with reference to FIG.
As shown in FIG. 7, the voltage of the capacitor 22 is the sum of the base voltage by the battery 18 and the voltage across the terminals of the capacitor 22 itself. When the vehicle 1 is decelerated or the like, power is regenerated by each sub drive motor 20, and the regenerated power is charged in the capacitor 22. When the capacitor 22 is charged, the voltage between the terminals rises relatively rapidly. When the voltage of the capacitor 22 rises to a predetermined voltage or higher due to charging, the voltage of the capacitor 22 is stepped down by the high voltage DC / DC converter 26a, and the battery 18 is charged. As shown in FIG. 7, the charging from the capacitor 22 to the battery 18 is performed more slowly than the charging to the capacitor 22, and the voltage of the capacitor 22 is lowered relatively slowly to an appropriate voltage.
 即ち、各副駆動モータ20により回生された電力は一時的にキャパシタ22に蓄積され、その後、バッテリ18へ緩やかに充電される。なお、回生が行われる期間によっては、各副駆動モータ20による電力の回生と、キャパシタ22からバッテリ18への充電がオーバーラップして行われる場合もある。
 一方、主駆動モータ16によって回生された電力は、バッテリ18に直接充電される。
That is, the electric power regenerated by each sub drive motor 20 is temporarily stored in the capacitor 22 and then slowly charged into the battery 18. Depending on the period during which regeneration is performed, the regeneration of electric power by each sub drive motor 20 and the charging from the capacitor 22 to the battery 18 may be performed in an overlapping manner.
On the other hand, the electric power regenerated by the main drive motor 16 is directly charged in the battery 18.
 次に、図8を参照して、本発明の第1実施形態によるハイブリッド駆動装置10における車速と各モータの出力の関係を説明する。図8は、本実施形態のハイブリッド駆動装置10において、車両1の速度と、各速度における各モータの出力の関係を示すグラフである。図8において、主駆動モータ16の出力を破線で示し、1つの副駆動モータ20の出力を一点鎖線で、2つの副駆動モータ20の出力の合計を二点鎖線で、全てのモータの出力の合計を実線で示している。なお、図8は、車両1の速度を横軸とし、各モータの出力を縦軸として示しているが、車両1の速度とモータの回転数には一定の関係が存在するので、横軸をモータ回転数とした場合でも、各モータの出力は図8と同様の曲線を描く。 Next, the relationship between the vehicle speed and the output of each motor in the hybrid drive device 10 according to the first embodiment of the present invention will be described with reference to FIG. FIG. 8 is a graph showing the relationship between the speed of the vehicle 1 and the output of each motor at each speed in the hybrid drive device 10 of the present embodiment. In FIG. 8, the output of the main drive motor 16 is indicated by a broken line, the output of one sub drive motor 20 is indicated by a one-dot chain line, and the sum of the outputs of two sub drive motors 20 is indicated by a two-dot chain line. The total is shown by a solid line. FIG. 8 shows the speed of the vehicle 1 on the horizontal axis and the output of each motor on the vertical axis. However, since there is a certain relationship between the speed of the vehicle 1 and the rotational speed of the motor, the horizontal axis is Even in the case of the motor rotation speed, the output of each motor draws the same curve as in FIG.
 本実施形態においては主駆動モータ16には永久磁石電動機が採用されているため、図8に破線で示すように、モータ回転数が低い低車速域で主駆動モータ16の出力が大きく、車速が速くなるにつれて出力可能なモータ出力が減少する。即ち、本実施形態において、主駆動モータ16は、約48Vで駆動され、1000rpm程度まで最大トルクである約200Nmのトルクを出力し、約1000rpm以上で回転数の増加と共にトルクが低下する。また、本実施形態において、主駆動モータ16は、最低速域において約20kW程度の連続出力が得られ、最大出力約25kWが得られるように構成されている。 In the present embodiment, since a permanent magnet motor is employed for the main drive motor 16, as indicated by a broken line in FIG. 8, the output of the main drive motor 16 is large and the vehicle speed is low in a low vehicle speed range where the motor speed is low. The motor output that can be output decreases as the speed increases. That is, in this embodiment, the main drive motor 16 is driven at about 48 V, outputs a torque of about 200 Nm, which is the maximum torque up to about 1000 rpm, and the torque decreases with an increase in the rotational speed at about 1000 rpm or more. In the present embodiment, the main drive motor 16 is configured to obtain a continuous output of about 20 kW in the lowest speed range and a maximum output of about 25 kW.
 これに対して、副駆動モータ20には誘導電動機が採用されているため、図8に一点鎖線及び二点鎖線で示すように、低車速域では副駆動モータ20の出力は極めて小さく、車速が速くなるにつれて出力が増大し、車速約130km/h付近で最大出力が得られた後、モータ出力は減少する。本実施形態において、副駆動モータ20は、約120Vで駆動され、車速約130km/h付近で1台当たり約17kW、2台合計で約34kWの出力が得られるように構成されている。即ち、本実施形態において、副駆動モータ20は、約600乃至800rpmでトルクカーブがピークをもち、最大トルク約200Nmが得られる。 On the other hand, since an induction motor is employed for the secondary drive motor 20, the output of the secondary drive motor 20 is extremely small and the vehicle speed is low in the low vehicle speed range, as shown by the one-dot chain line and the two-dot chain line in FIG. The output increases as the speed increases, and the motor output decreases after the maximum output is obtained around the vehicle speed of about 130 km / h. In the present embodiment, the auxiliary drive motor 20 is driven at about 120 V, and is configured to obtain an output of about 17 kW per unit at a vehicle speed of about 130 km / h, and a total output of about 34 kW. That is, in the present embodiment, the auxiliary drive motor 20 has a peak torque curve at about 600 to 800 rpm, and a maximum torque of about 200 Nm is obtained.
 図8の実線には、これら主駆動モータ16及び2台の副駆動モータ20の出力の合計が示されている。このグラフから明らかなように、本実施形態においては、車速約130km/h付近で最大出力約53kWが得られており、この車速における、この最大出力でWLTP試験において要求される走行条件を満足することができる。なお、図8の実線では、低車速域においても2台の副駆動モータ20の出力値が合算されているが、後述するように、実際には低車速域では各副駆動モータ20が駆動されることはない。即ち、発進時及び低車速域においては主駆動モータ16のみで車両が駆動され、高車速域で大出力が必要とされたとき(高車速域で車両1を加速させるとき等)のみ2台の副駆動モータ20が出力を発生する。このように、高回転領域で大きな出力を発生することができる誘導電動機(副駆動モータ20)を、高速域のみで使用することにより、車両重量の増加を低く抑えながら必要なとき(所定速度以上での加速時等)に十分な出力を得ることができる。 8 represents the total output of the main drive motor 16 and the two sub drive motors 20. As is apparent from this graph, in the present embodiment, a maximum output of about 53 kW is obtained at a vehicle speed of about 130 km / h, and the running conditions required in the WLTP test are satisfied at this maximum output at this vehicle speed. be able to. In the solid line in FIG. 8, the output values of the two sub drive motors 20 are added together even in the low vehicle speed range. However, as will be described later, each sub drive motor 20 is actually driven in the low vehicle speed range. Never happen. That is, at the time of starting and in the low vehicle speed range, the vehicle is driven only by the main drive motor 16 and only when the high output is required in the high vehicle speed range (when the vehicle 1 is accelerated at the high vehicle speed range) The sub drive motor 20 generates an output. As described above, when the induction motor (sub drive motor 20) capable of generating a large output in the high rotation region is used only in the high speed region, the increase in vehicle weight is kept low, and when necessary (a predetermined speed or more) Sufficient output can be obtained.
 次に、図9を参照して、本発明の第1実施形態のハイブリッド駆動装置10に採用されている副駆動モータ20の構成を説明する。図9は、副駆動モータ20の構造を模式的に示す断面図である。
 図9に示すように、副駆動モータ20は、ステータ28と、このステータの周囲で回転するロータ30から構成されたアウターロータタイプの誘導電動機である。
Next, the configuration of the sub drive motor 20 employed in the hybrid drive device 10 according to the first embodiment of the present invention will be described with reference to FIG. FIG. 9 is a cross-sectional view schematically showing the structure of the sub drive motor 20.
As shown in FIG. 9, the sub drive motor 20 is an outer rotor type induction motor that includes a stator 28 and a rotor 30 that rotates around the stator 28.
 ステータ28は、概ね円板状のステータベース28aと、このステータベース28aの中心から延びるステータシャフト28bと、このステータシャフト28bの周囲に取り付けられたステータコイル28cと、を有する。また、ステータコイル28cは電気絶縁液室32に収納されており、この中に満たされた電気絶縁液32aに浸漬され、これにより沸騰冷却される。 The stator 28 includes a substantially disk-shaped stator base 28a, a stator shaft 28b extending from the center of the stator base 28a, and a stator coil 28c attached around the stator shaft 28b. The stator coil 28c is housed in the electric insulating liquid chamber 32, and is immersed in the electric insulating liquid 32a filled therein, thereby being cooled by boiling.
 ロータ30は、ステータ28の周囲を取り囲むように概ね円筒状に構成されており、一端が閉塞された概ね円筒形に構成されたロータ本体30aと、ロータ本体30aの内周壁面に配置されたロータコイル30bと、を有する。ロータコイル30bは、ステータコイル28cが生成する回転磁界により誘導電流が発生するように、ステータコイル28cに対向するように配置されている。また、ロータ30は、ステータ28の周囲で円滑に回転するように、ステータシャフト28bの先端に取り付けられたベアリング34によって支持されている。 The rotor 30 is configured in a substantially cylindrical shape so as to surround the periphery of the stator 28, and has a rotor body 30 a configured in a generally cylindrical shape with one end closed, and a rotor disposed on the inner peripheral wall surface of the rotor body 30 a. A coil 30b. The rotor coil 30b is arranged to face the stator coil 28c so that an induced current is generated by the rotating magnetic field generated by the stator coil 28c. Further, the rotor 30 is supported by a bearing 34 attached to the tip of the stator shaft 28b so as to rotate smoothly around the stator 28.
 ステータベース28aは、車両1の前輪を懸架するアッパアーム8a及びロアアーム8b(図4)によって支持されている。一方、ロータ本体30aは、前輪2bのホイール(図示せず)に直接固定されている。ステータコイル28cには、インバータ20aによって交流に変換された交流電流が流され、回転磁界が生成される。この回転磁界によりロータコイル30bに誘導電流が流れ、ロータ本体30aを回転させる駆動力が発生する。このように、各副駆動モータ20により生成された駆動力は、直接、各前輪2bのホイール(図示せず)を回転駆動する。 The stator base 28a is supported by an upper arm 8a and a lower arm 8b (FIG. 4) that suspend the front wheel of the vehicle 1. On the other hand, the rotor body 30a is directly fixed to the wheel (not shown) of the front wheel 2b. An alternating current converted into an alternating current by the inverter 20a flows through the stator coil 28c, and a rotating magnetic field is generated. This rotating magnetic field causes an induced current to flow through the rotor coil 30b, generating a driving force that rotates the rotor body 30a. Thus, the driving force generated by each auxiliary drive motor 20 directly rotates and drives the wheel (not shown) of each front wheel 2b.
 次に、図10及び図11を参照して、制御装置24により実行される電動機走行モード及び内燃機関走行モードの動作を説明する。図10は、制御装置24による制御のフローチャートであり、図11は、各モードにおける動作の一例を示すグラフである。なお、図10に示すフローチャートは、車両1の作動中、所定の時間間隔で繰り返し実行される。 Next, operations of the electric motor travel mode and the internal combustion engine travel mode executed by the control device 24 will be described with reference to FIGS. FIG. 10 is a flowchart of control by the control device 24, and FIG. 11 is a graph showing an example of operation in each mode. Note that the flowchart shown in FIG. 10 is repeatedly executed at predetermined time intervals during operation of the vehicle 1.
 図11に示すグラフは、上段から順に、車両1の速度、エンジン12が発生するトルク、主駆動モータ16が発生するトルク、副駆動モータ20が発生するトルク、キャパシタ22の電圧、キャパシタ22電流、及びバッテリ18電流を示している。なお、主駆動モータ16のトルク、及び副駆動モータ20のトルクを示すグラフにおいて、正の値は各モータがトルクを発生している状態を意味し、負の値は各モータが車両1の運動エネルギーを回生している状態を意味する。また、キャパシタ22電流、及びバッテリ18電流を示すグラフにおいて、負の値は各モータに電力を供給(放電)している状態を意味し、正の値は各モータにおいて回生された電力を充電している状態を意味する。 In the graph shown in FIG. 11, the speed of the vehicle 1, the torque generated by the engine 12, the torque generated by the main drive motor 16, the torque generated by the auxiliary drive motor 20, the voltage of the capacitor 22, the current of the capacitor 22, And the battery 18 current. In the graph showing the torque of the main drive motor 16 and the torque of the sub drive motor 20, a positive value means that each motor is generating torque, and a negative value means that each motor is in motion of the vehicle 1. It means a state of regenerating energy. Further, in the graph showing the capacitor 22 current and the battery 18 current, a negative value means a state in which power is supplied (discharged) to each motor, and a positive value charges the power regenerated in each motor. Means the state.
 まず、図10のステップS1においては、車両1が内燃機関走行モード(ENGモード)に設定されているか否かが判断される。即ち、車両1には内燃機関走行モードか、電動機走行モード(EVモード)の何れかを選択するモード選択スイッチ40(図5)が備えられており、ステップS1においては、どちらのモードに設定されているかが判断される。図11の時刻t1においては、電動機走行モードに設定されているため、図10のフローチャートにおける処理はステップS2に移行する。 First, in step S1 of FIG. 10, it is determined whether or not the vehicle 1 is set to the internal combustion engine traveling mode (ENG mode). That is, the vehicle 1 is provided with a mode selection switch 40 (FIG. 5) for selecting either the internal combustion engine travel mode or the motor travel mode (EV mode). In step S1, which mode is set. Is determined. At time t 1 in FIG. 11, since the motor travel mode is set, the processing in the flowchart in FIG. 10 proceeds to step S2.
 次に、ステップS2においては、車両1が所定車速以上であるか否かが判断され、所定車速以上である場合にはステップS6に進み、所定車速未満である場合にはステップS3に進む。図11の時刻t1においては、運転者が車両1を発進させており、車速が低いためフローチャートにおける処理はステップS3に移行する。 Next, in step S2, it is determined whether or not the vehicle 1 is equal to or higher than a predetermined vehicle speed. If it is equal to or higher than the predetermined vehicle speed, the process proceeds to step S6. At time t 1 in FIG. 11, since the driver starts the vehicle 1 and the vehicle speed is low, the process in the flowchart proceeds to step S3.
 さらに、ステップS3においては、車両1が減速されているか(車両1のブレーキペダル(図示せず)が操作されているか)否かが判断され、減速されている場合にはステップS5に進み、加速又は定速走行中である(ブレーキセンサ46(図5)によりブレーキペダルの操作が検出されていない)場合にはステップS4に進む。図11の時刻t1においては、運転者が車両1を発進させ、加速している(アクセル開度センサ44(図5)により、車両1のアクセルペダルの所定量以上の操作が検出されている)のでフローチャートにおける処理はステップS4に移行して、図10のフローチャートによる1回の処理が終了する。ステップS4においては、主駆動モータ16がトルクを発生し、車速が上昇する(図11の時刻t1~t2)。この際、主駆動モータ16に電力を供給するバッテリ18から放電電流が流れる一方、副駆動モータ20はトルクを発生させないため、キャパシタ22からの放電電流はゼロのままであり、キャパシタ22の電圧も変化しない。これらの電流、電圧は、電圧センサ54及び電流センサ56(図5)によって検出され、制御装置24に入力される。また、図11の時刻t1~t2では、電動機走行モードに設定されているため、エンジン12は駆動されない。即ち、制御装置24がエンジン12の燃料噴射弁58による燃料噴射を停止させ、点火プラグ60による点火を行わないため、エンジン12はトルクを発生しない。 Further, in step S3, it is determined whether or not the vehicle 1 is decelerated (the brake pedal (not shown) of the vehicle 1 is operated). If decelerated, the process proceeds to step S5, where acceleration is performed. Alternatively, when the vehicle is traveling at a constant speed (the operation of the brake pedal is not detected by the brake sensor 46 (FIG. 5)), the process proceeds to step S4. At time t 1 in FIG. 11, the driver starts the vehicle 1 and accelerates (the accelerator pedal position sensor 44 (FIG. 5) detects an operation of a predetermined amount or more of the accelerator pedal of the vehicle 1. Therefore, the process in the flowchart proceeds to step S4, and one process according to the flowchart of FIG. In step S4, the main drive motor 16 generates torque, and the vehicle speed increases (time t 1 to t 2 in FIG. 11). At this time, a discharge current flows from the battery 18 that supplies power to the main drive motor 16, while the sub drive motor 20 does not generate torque. Therefore, the discharge current from the capacitor 22 remains zero, and the voltage of the capacitor 22 also increases. It does not change. These currents and voltages are detected by the voltage sensor 54 and the current sensor 56 (FIG. 5) and input to the control device 24. Further, at the time t 1 to t 2 in FIG. 11, since the motor travel mode is set, the engine 12 is not driven. That is, since the control device 24 stops fuel injection by the fuel injection valve 58 of the engine 12 and does not perform ignition by the spark plug 60, the engine 12 does not generate torque.
 図11に示す例では、時刻t1~t2の間、車両1を加速させた後、時刻t3まで車両1は定速走行されている。この間、図10のフローチャートによる処理は、ステップS1→S2→S3→S4の処理が繰り返し実行される。この低速走行中は、主駆動モータ16が発生するトルクが加速中よりも小さくなるため、バッテリ18から放電される電流も小さくなる。 In the example shown in FIG. 11, after accelerating the vehicle 1 from time t 1 to time t 2 , the vehicle 1 is traveling at a constant speed until time t 3 . In the meantime, in the process according to the flowchart of FIG. During this low speed running, the torque generated by the main drive motor 16 is smaller than during acceleration, so the current discharged from the battery 18 is also smaller.
 次に、図11の時刻t3において、運転者が車両1のブレーキペダル(図示せず)を操作すると、図10のフローチャートにおける処理は、ステップS3→S5に移行するようになる。ステップS5においては、主駆動モータ16による駆動が停止(トルクを発生しない)されると共に、副駆動モータ20により、車両1の運動エネルギーが電力として回生される。運動エネルギーの回生により車両1は減速され、バッテリ18からの放電電流がゼロとなる一方、副駆動モータ20による電力の回生により、キャパシタ22に充電電流が流れ、キャパシタ22の電圧が上昇する。 Next, at time t 3 in FIG. 11, when the driver operates the vehicle 1 of the brake pedal (not shown), the processing in the flowchart of FIG. 10 will be moves to step S3 → S5. In step S5, the driving by the main drive motor 16 is stopped (no torque is generated), and the kinetic energy of the vehicle 1 is regenerated as electric power by the sub drive motor 20. The vehicle 1 is decelerated by the regeneration of the kinetic energy, and the discharge current from the battery 18 becomes zero. On the other hand, the regeneration of the electric power by the auxiliary drive motor 20 causes a charging current to flow through the capacitor 22 and the voltage of the capacitor 22 increases.
 図11の時刻t4において、車両1が停止すると、キャパシタ22への充電電流がゼロとなり、キャパシタ22の電圧も一定になる。次いで、時刻t5において再び車両1が発進され、定速走行に至った(時刻t6)後、車両1の減速が開始(時刻t7)されるまでは、図10のフローチャートにおいて、ステップS1→S2→S3→S4の処理が繰り返し実行される。時刻t7において車両の減速が開始されると、図10のフローチャートにおいてはステップS1→S2→S3→S5の処理が繰り返し実行され、副駆動モータ20による電力の回生が行われる。このように、市街地の中などで比較的低速で発進、停止が繰り返される間は、電動機走行モードに設定され、車両1は純粋に電気自動車(EV)として機能し、エンジン12はトルクを発生しない。 When the vehicle 1 stops at time t 4 in FIG. 11, the charging current to the capacitor 22 becomes zero and the voltage of the capacitor 22 becomes constant. Then, the vehicle 1 again at time t 5 is the starting, after reaching the constant speed running (time t 6), to the deceleration of the vehicle 1 is started (time t 7), in the flowchart of FIG. 10, step S1 → S2 → S3 → S4 is repeatedly executed. When the vehicle starts decelerating at time t 7 , the process of steps S 1 → S 2 → S 3 → S 5 is repeatedly executed in the flowchart of FIG. 10, and power regeneration by the sub drive motor 20 is performed. As described above, while starting and stopping are repeated at relatively low speed in an urban area or the like, the motor driving mode is set, the vehicle 1 functions purely as an electric vehicle (EV), and the engine 12 does not generate torque. .
 さらに、図11の時刻t8において車両1が発進されると、図10のフローチャートにおいてはステップS1→S2→S3→S4の処理が繰り返し実行され、車両1が加速される。次いで、時刻t9において、車速センサ42(図5)によって検出された車両1の速度が所定の第1車速を超えると、フローチャートにおける処理は、ステップS2→S6に移行するようになる。ステップS6においては、車両1が減速しているか(ブレーキペダルを操作しているか)否かが判断される。時刻t9において車両1は減速していないため、フローチャートにおける処理はステップS7に進む。ステップS7においては、車両1が所定値以上加速されているか(車両1のアクセルペダルが所定量以上操作されているか)否かが判断される。なお、本実施形態において、所定の第1車速は、走行速度=0km/hよりも大きい、時速約100km/hに設定されている。 Further, when the vehicle 1 is started at time t 8 in FIG. 11, the processes of steps S 1 → S 2 → S 3 → S 4 are repeatedly executed in the flowchart of FIG. 10, and the vehicle 1 is accelerated. Then, at time t 9, the vehicle speed sensor 42 the speed of the vehicle 1 detected (FIG. 5) exceeds a predetermined first vehicle speed, the processing in the flowchart is as the process proceeds to step S2 → S6. In step S6, it is determined whether the vehicle 1 is decelerating (operating a brake pedal). Since the vehicle 1 is not decelerating at time t 9, the processing in the flowchart proceeds to step S7. In step S7, it is determined whether the vehicle 1 is accelerated by a predetermined value or more (whether the accelerator pedal of the vehicle 1 is operated by a predetermined amount or more). In the present embodiment, the predetermined first vehicle speed is set to approximately 100 km / h, which is greater than the traveling speed = 0 km / h.
 図11に示す例においては、時刻t9において車両1が所定値以上加速されているため、ステップS8に進み、ここでは主駆動モータ16が駆動されると共に、副駆動モータ20も駆動される。このように、電動機走行モードにおいて、所定の第1車速以上の車速で、所定値以上の加速が行われると、必要な動力を得るために主駆動モータ16及び副駆動モータ20に電力が供給され、これらによって車両1が駆動される。換言すれば、制御装置24は、主駆動モータ16に駆動力を発生させることにより、車両1を発進(時刻t8)させた後、車速センサ42によって検出された車両1の走行速度が第1車速に到達する(時刻t9)と、副駆動モータ20に駆動力を発生させるようになる。この際、主駆動モータ16にはバッテリ18から電力が供給され、副駆動モータ20にはキャパシタ22から電力が供給される。このようにキャパシタ22から電力が供給されることにより、キャパシタ22の電圧は低下する。主駆動モータ16及び副駆動モータ20により車両1が駆動されている間(時刻t9~t10)、フローチャートにおいては、ステップS1→S2→S6→S7→S8の処理が繰り返し実行される。 In the example shown in FIG. 11, since the vehicle 1 is accelerated more than a predetermined value at time t 9, the process proceeds to step S8, where along with the main drive motor 16 is driven, the auxiliary drive motor 20 is also driven. As described above, in the electric motor travel mode, when acceleration greater than a predetermined value is performed at a vehicle speed equal to or higher than a predetermined first vehicle speed, electric power is supplied to the main drive motor 16 and the sub drive motor 20 in order to obtain necessary power. Thus, the vehicle 1 is driven. In other words, the control device 24 causes the main drive motor 16 to generate a driving force to start the vehicle 1 (time t 8 ), and then the traveling speed of the vehicle 1 detected by the vehicle speed sensor 42 is the first. When the vehicle speed is reached (time t 9 ), the sub driving motor 20 generates driving force. At this time, power is supplied from the battery 18 to the main drive motor 16, and power is supplied from the capacitor 22 to the sub drive motor 20. As power is supplied from the capacitor 22 in this way, the voltage of the capacitor 22 decreases. While the vehicle 1 is being driven by the main drive motor 16 and the sub drive motor 20 (time t 9 to t 10 ), in the flowchart, the processes of steps S 1 → S 2 → S 6 → S 7 → S 8 are repeatedly executed.
 このように、副駆動モータ20は、車両1の走行速度が所定の第1車速以上の場合において駆動力を発生し、第1車速未満の場合には駆動力の発生が禁止される。なお、本実施形態においては、第1車速=約100km/hに設定されているが、採用した副駆動モータ20の出力特性に応じて、第1車速を約50km/h以上の任意の車速に設定することができる。一方、主駆動モータ16は、車両1の走行速度がゼロを含む所定の第2車速未満のとき、及び第2車速以上のとき、駆動力を発生するように構成されている。所定の第2車速は、第1車速と同じ車速に設定することも、異なる車速に設定することもできる。また、本実施形態においては、主駆動モータ16は、電動機走行モードにおいて駆動力が要求される場合には、常に駆動力を発生している。 Thus, the auxiliary drive motor 20 generates a driving force when the traveling speed of the vehicle 1 is equal to or higher than a predetermined first vehicle speed, and the generation of the driving force is prohibited when the traveling speed is lower than the first vehicle speed. In the present embodiment, the first vehicle speed is set to about 100 km / h, but the first vehicle speed is set to an arbitrary vehicle speed of about 50 km / h or more according to the output characteristics of the adopted sub drive motor 20. Can be set. On the other hand, the main drive motor 16 is configured to generate a driving force when the traveling speed of the vehicle 1 is less than a predetermined second vehicle speed including zero and when it is equal to or higher than the second vehicle speed. The predetermined second vehicle speed can be set to the same vehicle speed as the first vehicle speed, or can be set to a different vehicle speed. In the present embodiment, the main drive motor 16 always generates a drive force when a drive force is required in the electric motor travel mode.
 次に、図11の時刻t10において、車両1が定速走行に移行する(アクセルペダルの操作が所定量未満になる)と、フローチャートにおいては、ステップS1→S2→S6→S7→S9の処理が繰り返し実行されるようになる。ステップS9においては、副駆動モータ20による駆動が停止され(トルクを発生しなくなる)、主駆動モータ16のみによって車両1が駆動される。このように、車両1が所定車速以上で走行している状態であっても、所定量以上の加速が行われていない状態では、主駆動モータ16のみにより車両1が駆動される。 Next, at time t 10 in FIG. 11, the vehicle 1 is shifted to the constant speed travel and (operation of the accelerator pedal becomes less than a predetermined amount), in the flowchart, the process of step S1 → S2 → S6 → S7 → S9 Will be executed repeatedly. In step S9, the drive by the sub drive motor 20 is stopped (no torque is generated), and the vehicle 1 is driven only by the main drive motor 16. As described above, even when the vehicle 1 is traveling at a predetermined vehicle speed or higher, the vehicle 1 is driven only by the main drive motor 16 in a state where acceleration of a predetermined amount or more is not performed.
 また、時刻t9~t10の間の副駆動モータ20の駆動により、キャパシタ22の電圧が所定値以下に低下したため、時刻t10において制御装置24は高圧DC/DCコンバータ26aに信号を送り、キャパシタ22への充電を行う。即ち、高圧DC/DCコンバータ26aは、バッテリ18に蓄積されている電荷を昇圧してキャパシタ22に充電を行う。これにより、図11の時刻t10~t11においては、主駆動モータ16を駆動するための電流及びキャパシタ22を充電するための電流が、バッテリ18から放電される。なお、副駆動モータ20により大きな電力が回生され、キャパシタ22の電圧が所定値以上に上昇した場合には、制御装置24は高圧DC/DCコンバータ26aに信号を送り、キャパシタ22の電圧を降圧してバッテリ18への充電を行う。このように、副駆動モータ20により回生された電力は、副駆動モータ20によって消費されるか、又はキャパシタ22に一旦蓄積された後、高圧DC/DCコンバータ26aを介してバッテリ18に充電される。 Further, by driving the auxiliary drive motor 20 between times t 9 ~ t 10, since the voltage of the capacitor 22 falls below a predetermined value, the control unit 24 at time t 10 sends a signal to the high-voltage DC / DC converter 26a, The capacitor 22 is charged. That is, the high voltage DC / DC converter 26 a boosts the charge accumulated in the battery 18 and charges the capacitor 22. Thus, from time t 10 to t 11 in FIG. 11, the current for driving the main drive motor 16 and the current for charging the capacitor 22 are discharged from the battery 18. In addition, when large electric power is regenerated by the sub drive motor 20 and the voltage of the capacitor 22 rises to a predetermined value or more, the control device 24 sends a signal to the high voltage DC / DC converter 26a to step down the voltage of the capacitor 22. Then, the battery 18 is charged. As described above, the electric power regenerated by the sub drive motor 20 is consumed by the sub drive motor 20 or once stored in the capacitor 22 and then charged to the battery 18 via the high voltage DC / DC converter 26a. .
 図11の時刻t11において、車両1が減速する(ブレーキペダルが操作される)と、フローチャートにおいては、ステップS1→S2→S6→S10の処理が繰り返し実行されるようになる。ステップS10においては、主駆動モータ16及び副駆動モータ20の両方で車両1の運動エネルギーが電力として回生される。主駆動モータ16によって回生された電力はバッテリ18へ蓄積され、副駆動モータ20によって回生された電力はキャパシタ22に蓄積される。このように、所定車速以上でブレーキペダルが操作された場合には、主駆動モータ16及び副駆動モータ20の両方で電力の回生が行われ、バッテリ18及びキャパシタ22に電荷が蓄積される。 At time t 11 of FIG. 11, the vehicle 1 is decelerated and (brake pedal is operated), in the flowchart, so the processing of step S1 → S2 → S6 → S10 is repeatedly executed. In step S10, the kinetic energy of the vehicle 1 is regenerated as electric power by both the main drive motor 16 and the sub drive motor 20. The power regenerated by the main drive motor 16 is stored in the battery 18, and the power regenerated by the sub drive motor 20 is stored in the capacitor 22. As described above, when the brake pedal is operated at a speed equal to or higher than the predetermined vehicle speed, power is regenerated by both the main drive motor 16 and the sub drive motor 20, and charges are accumulated in the battery 18 and the capacitor 22.
 次に、図11の時刻t12において、運転者によってモード選択スイッチ40(図5)が操作され、車両1が電動機走行モードから内燃機関走行モードに切り替えられると共に、アクセルペダル(図示せず)が踏み込まれる。車両1が内燃機関走行モードに切り替えられると、制御装置24における図10のフローチャートの処理はステップS1→S11に移行するようになり、ステップS11以下の処理が実行されるようになる。 Next, at time t 12 in FIG. 11, the mode selection switch 40 by the driver (Fig. 5) is operated, the vehicle 1 is switched from the motor drive mode to the engine running mode, (not shown) accelerator pedal Step on. When the vehicle 1 is switched to the internal combustion engine travel mode, the process of the flowchart of FIG. 10 in the control device 24 shifts from step S1 to S11, and the process after step S11 is executed.
 まず、ステップS11においては、車両1が停車しているか否かが判断され、停車していない場合(走行している場合)には、ステップS12において、車両1が減速中であるか否か(ブレーキペダル(図示せず)が操作されているか否か)が判断される。図11の時刻t12においては、車両1が走行中であり、運転者がアクセルペダルを操作しているので、図10のフローチャートにおける処理はステップS13に移行する。 First, in step S11, it is determined whether or not the vehicle 1 is stopped. If the vehicle 1 is not stopped (running), whether or not the vehicle 1 is decelerating in step S12 ( It is determined whether or not a brake pedal (not shown) is operated. At time t 12 of FIG. 11, the vehicle 1 is traveling, because the driver is operating the accelerator pedal, the processing in the flowchart of FIG. 10 proceeds to step S13.
 ステップS13においては、エンジン12への燃料の供給が開始され、エンジン12がトルクを発生するようになる。即ち、本実施形態においては、エンジン12の出力軸(図示せず)は主駆動モータ16の出力軸(図示せず)と直結されているため、エンジン12の出力軸は常に主駆動モータ16の駆動と共に回転されている。しかしながら、電動機走行モードにおいては、エンジン12への燃料供給が行われないためエンジン12はトルクを発生しておらず、内燃機関走行モードにおいて燃料供給(燃料噴射弁58による燃料の噴射、及び点火プラグ60による点火)が開始されることによりトルクを発生するようになる。 In step S13, the supply of fuel to the engine 12 is started, and the engine 12 generates torque. That is, in the present embodiment, since the output shaft (not shown) of the engine 12 is directly connected to the output shaft (not shown) of the main drive motor 16, the output shaft of the engine 12 is always the main drive motor 16. It is rotated with the drive. However, since no fuel is supplied to the engine 12 in the electric motor travel mode, the engine 12 does not generate torque. In the internal combustion engine travel mode, fuel is supplied (fuel injection by the fuel injection valve 58 and an ignition plug). Torque is generated when the ignition by 60) is started.
 また、電動機走行モードから内燃機関走行モードに切り替えられた直後は、制御装置24は、主駆動モータ16によりエンジン始動用のトルクを発生させる(図11の時刻t12~t13)。このエンジン始動用のトルクは、エンジン12への燃料供給が開始された後、エンジン12が実際にトルクを発生するようになるまでの間、車両1を走行させると共に、エンジン12がトルクを発生する前後のトルクムラを抑制するために発生される。また、本実施形態においては、内燃機関走行モードに切り替えられた時点におけるエンジン12の回転数が所定回転数未満の場合にはエンジン12への燃料供給は開始されず、エンジン始動用のトルクによりエンジン12が所定回転数以上になった時点で燃料供給が開始される。本実施形態においては、エンジン回転数センサ48によって検出されたエンジン12の回転数が2000rpm以上に上昇したとき、燃料供給が開始される。 Immediately after switching from the motor travel mode to the internal combustion engine travel mode, the control device 24 generates torque for starting the engine by the main drive motor 16 (time t 12 to t 13 in FIG. 11). The engine starting torque is generated by causing the vehicle 12 to run and the engine 12 generating torque after the fuel supply to the engine 12 is started and until the engine 12 actually generates torque. Generated to suppress front and rear torque unevenness. Further, in the present embodiment, when the rotational speed of the engine 12 at the time of switching to the internal combustion engine traveling mode is less than a predetermined rotational speed, fuel supply to the engine 12 is not started, and the engine is started by engine starting torque. Fuel supply is started when 12 reaches a predetermined number of revolutions or more. In the present embodiment, the fuel supply is started when the rotational speed of the engine 12 detected by the engine rotational speed sensor 48 increases to 2000 rpm or more.
 エンジン12が始動された後、車両1が加速又は定速走行している間は、図10のフローチャートにおいては、ステップS1→S11→S12→S13の処理が繰り返し実行される(図11の時刻t13~t14)。このように、内燃機関走行モードにおいては、車両1を駆動するための動力は専らエンジン12から出力され、主駆動モータ16及び副駆動モータ20が車両1を駆動するための動力を出力することはない。このため、運転者は、内燃機関により駆動される車両1の運転フィーリングを楽しむことができる。 While the vehicle 12 is accelerating or traveling at a constant speed after the engine 12 is started, in the flowchart of FIG. 10, the processes of steps S1 → S11 → S12 → S13 are repeatedly executed (time t in FIG. 11). 13 to t 14 ). As described above, in the internal combustion engine traveling mode, the power for driving the vehicle 1 is exclusively output from the engine 12, and the main drive motor 16 and the sub drive motor 20 output the power for driving the vehicle 1. Absent. For this reason, the driver can enjoy the driving feeling of the vehicle 1 driven by the internal combustion engine.
 次いで、図11の時刻t14において、運転者がブレーキペダル(図示せず)を操作すると、図10のフローチャートにおける処理は、ステップS12→S14に移行するようになる。ステップS14においては、エンジン12への燃料供給が停止され、燃料の消費が抑制される。さらに、ステップS15においては、主駆動モータ16及び副駆動モータ20により、車両1の運動エネルギーが電気エネルギーとして回生され、バッテリ18及びキャパシタ22に夫々充電電流が流れる。このように、車両1の減速中においては、ステップS1→S11→S12→S14→S15の処理が繰り返し実行される(図11の時刻t14~t15)。 Then, at time t 14 in FIG. 11, when the driver operates the brake pedal (not shown), the processing in the flowchart of FIG. 10 will be moves to step S12 → S14. In step S14, fuel supply to the engine 12 is stopped, and fuel consumption is suppressed. Further, in step S15, the kinetic energy of the vehicle 1 is regenerated as electric energy by the main drive motor 16 and the sub drive motor 20, and charging current flows through the battery 18 and the capacitor 22, respectively. Thus, during deceleration of the vehicle 1, the process of step S1 → S11 → S12 → S14 → S15 is repeatedly executed (time t 14 ~ t 15 in FIG. 11).
 なお、内燃機関走行モードにおける車両1の減速中において、制御装置24は、有段変速機であるトランスミッション14cの切り替え時(変速時)に、副駆動モータ20を駆動してダウンシフトトルク調整を実行する。このトルク調整トにより発生されるトルクは瞬間的なトルク抜け等を補完するものであり、車両1を駆動するトルクには該当しない。トルク調整の詳細については後述する。 During deceleration of the vehicle 1 in the internal combustion engine travel mode, the control device 24 drives the auxiliary drive motor 20 to perform downshift torque adjustment when the transmission 14c, which is a stepped transmission, is switched (at the time of shifting). To do. The torque generated by this torque adjustment complements instantaneous torque loss and does not correspond to the torque for driving the vehicle 1. Details of the torque adjustment will be described later.
 一方、図11の時刻t15において、車両1が停止すると、図10のフローチャートにおける処理は、ステップS11→S16に移行するようになる。ステップS16において、制御装置24は、エンジン12のアイドリングを維持するために必要な最小限の燃料を供給する。また、制御装置24は、エンジン12が低回転数でアイドリングを維持できるよう、主駆動モータ16によりアシストトルクを発生させる。このように、車両1の停車中においては、ステップS1→S11→S16の処理が繰り返し実行される(図11の時刻t15~t16)。 At time t 15 of FIG. 11, when the vehicle 1 is stopped, the processing in the flowchart of FIG. 10 will be moves to step S11 → S16. In step S <b> 16, the control device 24 supplies the minimum amount of fuel necessary to maintain the engine 12 idling. Further, the control device 24 generates assist torque by the main drive motor 16 so that the engine 12 can maintain idling at a low rotational speed. In this way, while the vehicle 1 is stopped, the processes of steps S1 → S11 → S16 are repeatedly executed (time t 15 to t 16 in FIG. 11).
 本実施形態においては、エンジン12はフライホイールレスエンジンであるが、主駆動モータ16が発生するアシストトルクが擬似的なフライホイールとして作用し、エンジン12は低回転数で滑らかなアイドリングを維持することができる。また、フライホイールレスエンジンを採用することにより、内燃機関走行モードの走行中には、エンジン12の高い応答性が得られ、フィーリングの良い運転を楽しむことができる。 In this embodiment, the engine 12 is a flywheelless engine, but the assist torque generated by the main drive motor 16 acts as a pseudo flywheel, and the engine 12 maintains a smooth idling at a low rotational speed. Can do. Further, by adopting the flywheelless engine, the high response of the engine 12 can be obtained during the traveling in the internal combustion engine traveling mode, and a pleasant driving can be enjoyed.
 また、内燃機関走行モードにおいて車両1が停車している状態から発進する場合には、制御装置24は主駆動モータ16に信号を送り、主駆動モータ16の回転数(=エンジン12の回転数)を所定回転数まで上昇させる。エンジン回転数が所定回転数まで上昇した後、制御装置24は、エンジン12にエンジン駆動用の燃料を供給して、エンジン12による駆動を発生させ、内燃機関走行モードによる走行が行なわれる。 Further, when the vehicle 1 starts from a state where the vehicle 1 is stopped in the internal combustion engine travel mode, the control device 24 sends a signal to the main drive motor 16 and the rotation speed of the main drive motor 16 (= the rotation speed of the engine 12). Is increased to a predetermined rotational speed. After the engine speed has increased to a predetermined speed, the control device 24 supplies fuel for driving the engine to the engine 12 to cause the engine 12 to drive, and travel in the internal combustion engine travel mode is performed.
 次に、図12を参照して、トランスミッション14cの切り替え時(変速時)におけるトルク調整を説明する。
 図12は、トランスミッション14cをシフトダウン又はシフトアップした場合において、車両に作用する加速度の変化を模式的に示す図であり、上段から順にダウンシフトトルクダウン、ダウンシフトトルクアシスト、アップシフトトルクアシストの一例を夫々示している。
Next, with reference to FIG. 12, torque adjustment at the time of switching the transmission 14c (during shifting) will be described.
FIG. 12 is a diagram schematically showing changes in acceleration acting on the vehicle when the transmission 14c is downshifted or upshifted. From the upper stage, downshift torque down, downshift torque assist, and upshift torque assist are sequentially illustrated. An example is shown respectively.
 本発明の第1実施形態によるハイブリッド駆動装置10は、内燃機関走行モードにおいて、自動変速モードに設定されている場合には、車速やエンジン回転数に応じて、制御装置24がクラッチ14b及び自動変速機であるトランスミッション14cを自動的に切り替えるように構成されている。図12の上段に示すように、減速時に車両1に負の加速度が作用している状態で、トランスミッション14cのシフトダウン(低速側に変速)を行う際(図12の時刻t101)、制御装置24はクラッチ14bを切り離し、エンジン12の出力軸と主駆動輪(後輪2a)が切り離される。このように、エンジン12が主駆動輪から切り離されると、エンジン12の回転抵抗が主駆動輪に作用しなくなるので、図12上段の破線に示すように、車両1に作用する加速度は瞬間的に正の側に変化する。次いで、制御装置24はトランスミッション14cに制御信号を送り、内蔵されている油圧ソレノイド弁62(図5)を切り替えてトランスミッション14cの減速比を上げる。さらに、シフトダウン完了時の時刻t102において制御装置24がクラッチ14bを接続すると加速度は再び負の側に変化する。一般に、シフトダウン開始から完了までの期間(時刻t101~t102)は300~1000msecであるが、車両に作用するトルクが瞬間的に変化する所謂トルクショックにより、乗員に空走感が与えられ、不快感を与えてしまうことがある。 When the hybrid drive device 10 according to the first embodiment of the present invention is set to the automatic transmission mode in the internal combustion engine traveling mode, the control device 24 controls the clutch 14b and the automatic transmission according to the vehicle speed and the engine speed. The transmission 14c as a machine is automatically switched. As shown in the upper part of FIG. 12, when the transmission 14 c is shifted down (shifted to the low speed side) while negative acceleration is acting on the vehicle 1 during deceleration (time t 101 in FIG. 12), the control device 24, the clutch 14b is disconnected, and the output shaft of the engine 12 and the main drive wheel (rear wheel 2a) are disconnected. As described above, when the engine 12 is separated from the main drive wheel, the rotational resistance of the engine 12 does not act on the main drive wheel, so that the acceleration acting on the vehicle 1 is instantaneously shown in the broken line in the upper part of FIG. Change to the positive side. Next, the control device 24 sends a control signal to the transmission 14c, and switches the built-in hydraulic solenoid valve 62 (FIG. 5) to increase the reduction ratio of the transmission 14c. Further, the acceleration is changed to the negative side again when downshifting completion time controller at time t 102 of 24 connects the clutch 14b. In general, the period from the start of shift down to the completion (time t 101 to t 102 ) is 300 to 1000 msec, but a so-called torque shock in which the torque acting on the vehicle changes instantaneously gives the occupant a feeling of running idle. May cause discomfort.
 本実施形態のハイブリッド駆動装置10においては、制御装置24は、シフトダウン時において副駆動モータ20に制御信号を送ってトルク調整を行い、車両1の空走感を抑制する。具体的には、制御装置24がクラッチ14b及びトランスミッション14cに信号を送ってシフトダウンを行う際、制御装置24には、自動変速機入力回転センサ50及び自動変速機出力回転センサ52(図5)によって夫々検出されたトランスミッション14cの入力軸及び出力軸の回転数が読み込まれる。さらに、読み込んだ入力軸及び出力軸の回転数に基づいて車両1に発生する加速度の変化を予測し、副駆動モータ20にエネルギーの回生を実行させる。これにより、図12上段の実線に示すように、トルクショックによる車両1の加速度の瞬間的な上昇(正側への変化)が抑制され、空走感を抑制することができる。また、本実施形態においては、シフトダウンに伴う主駆動輪(後輪2a)におけるトルクショックを、副駆動モータ20により副駆動輪(前輪2b)で補完している。このため、エンジン12から主駆動輪に動力を伝達する動力伝達機構14の動特性の影響を受けることなくトルク調整を行うことができる。 In the hybrid drive device 10 of the present embodiment, the control device 24 sends a control signal to the auxiliary drive motor 20 at the time of downshifting to adjust the torque and suppress the feeling of idling of the vehicle 1. Specifically, when the control device 24 sends a signal to the clutch 14b and the transmission 14c to perform a downshift, the control device 24 includes an automatic transmission input rotation sensor 50 and an automatic transmission output rotation sensor 52 (FIG. 5). The rotation speeds of the input shaft and the output shaft of the transmission 14c detected by the above are read. Further, a change in acceleration generated in the vehicle 1 is predicted based on the read rotation speeds of the input shaft and the output shaft, and the auxiliary drive motor 20 is caused to perform energy regeneration. Thereby, as shown by the solid line in the upper part of FIG. 12, the instantaneous increase (change to the positive side) of the acceleration of the vehicle 1 due to the torque shock is suppressed, and the idling feeling can be suppressed. Further, in the present embodiment, the torque shock in the main drive wheel (rear wheel 2a) that accompanies the downshift is supplemented by the sub drive motor 20 with the sub drive wheel (front wheel 2b). Therefore, torque adjustment can be performed without being affected by the dynamic characteristics of the power transmission mechanism 14 that transmits power from the engine 12 to the main drive wheels.
 また、図12中段の破線に示すように、加速時に車両1に正の加速度が作用している状態で、時刻t103においてシフトダウンが開始されると、エンジン12の出力軸と主駆動輪(後輪2a)が切り離される。これにより、エンジン12による駆動トルクが後輪2aに作用しなくなり、トルクショックが発生するので、時刻t104においてシフトダウンが完了するまでの間に乗員に失速感が与えられる場合がある。即ち、シフトダウンが開始される時刻t103において瞬間的に車両1の加速度が負の側に変化し、シフトダウンが完了する時刻t104において加速度が正の側に変化する。 Also, as shown by the broken line in the middle of FIG. 12, when a downshift is started at time t 103 while positive acceleration is acting on the vehicle 1 during acceleration, the output shaft of the engine 12 and the main drive wheels ( The rear wheel 2a) is cut off. Thus, no longer acts on the rear wheels 2a is driving torque by the engine 12, the torque shock occurs, which may stall feeling occupant until the downshifting is completed is provided at time t 104. That is, instantaneously acceleration of the vehicle 1 is changed to the negative side at time t 103 to downshift is initiated, acceleration in the shift-down is completed the time t 104 is changed to the positive side.
 本実施形態のハイブリッド駆動装置10において、制御装置24はシフトダウンを行う際、自動変速機入力回転センサ50及び自動変速機出力回転センサ52の検出信号に基づいて、車両1に発生する加速度の変化を予測し、副駆動モータ20に駆動力を発生させる。これにより、図12中段の実線に示すように、トルクショックによる車両1の加速度の瞬間的な低下(負側への変化)が抑制され、失速感が抑制される。 In the hybrid drive device 10 of the present embodiment, when the control device 24 shifts down, a change in acceleration generated in the vehicle 1 based on detection signals of the automatic transmission input rotation sensor 50 and the automatic transmission output rotation sensor 52. And the sub-driving motor 20 generates a driving force. Thereby, as shown by the solid line in the middle stage of FIG. 12, the instantaneous decrease (change to the negative side) of the acceleration of the vehicle 1 due to the torque shock is suppressed, and the feeling of stall is suppressed.
 さらに、図12下段の破線に示すように、加速時に車両1に正の加速度が作用している状態(正の加速度は時間と共に低下している)で、時刻t105においてシフトアップが開始されると、エンジン12の出力軸と主駆動輪(後輪2a)が切り離される。これにより、エンジン12による駆動トルクが後輪2aに作用しなくなり、トルクショックが発生するので、時刻t106においてシフトアップが完了するまでの間に乗員に失速感が与えられる場合がある。即ち、シフトアップが開始される時刻t105において瞬間的に車両1の加速度が負の側に変化し、シフトアップが完了する時刻t106において加速度が正の側に変化する。 Furthermore, as shown by the broken line in the lower part of FIG. 12, the shift-up is started at time t 105 in a state where positive acceleration is acting on the vehicle 1 during acceleration (the positive acceleration decreases with time). Then, the output shaft of the engine 12 and the main drive wheel (rear wheel 2a) are separated. Thus, no longer acts on the rear wheels 2a is driving torque by the engine 12, the torque shock occurs, which may stall feeling occupant until the upshift is complete is given at time t 106. That is, instantaneously acceleration of the vehicle 1 is changed to the negative side at time t 105 to upshift is initiated, acceleration in the shift-up is completed time t 106 is changed to the positive side.
 本実施形態において、制御装置24はシフトアップを行う際、自動変速機入力回転センサ50及び自動変速機出力回転センサ52の検出信号に基づいて、車両1に発生する加速度の変化を予測し、副駆動モータ20に駆動力を発生させる。これにより、図12下段の実線に示すように、トルクショックによる車両1の加速度の瞬間的な低下(負側への変化)が抑制され、失速感が抑制される。 In the present embodiment, the control device 24 predicts a change in acceleration generated in the vehicle 1 based on detection signals of the automatic transmission input rotation sensor 50 and the automatic transmission output rotation sensor 52 when shifting up, A driving force is generated in the driving motor 20. As a result, as shown by the solid line in the lower part of FIG. 12, the instantaneous decrease (change to the negative side) of the acceleration of the vehicle 1 due to the torque shock is suppressed, and the feeling of stall is suppressed.
 上記のように、トランスミッション14cのシフトダウン又はシフトアップ時における副駆動モータ20による駆動トルクの調整は、ごく短時間に行われるものであり、実質的に車両1を駆動するものではない。このため、副駆動モータ20が発生する動力は、副駆動モータ20によって回生され、キャパシタ22に蓄積された電荷によって生成することができる。また、副駆動モータ20による駆動トルクの調整は、トルクコンバータ付きの自動変速機や、トルクコンバータの無い自動変速機、自動化したマニュアルトランスミッション等に適用することができる。 As described above, the adjustment of the drive torque by the sub drive motor 20 when the transmission 14c is shifted down or up is performed in a very short time, and does not substantially drive the vehicle 1. Therefore, the power generated by the sub drive motor 20 can be generated by the electric charge regenerated by the sub drive motor 20 and accumulated in the capacitor 22. The adjustment of the drive torque by the auxiliary drive motor 20 can be applied to an automatic transmission with a torque converter, an automatic transmission without a torque converter, an automated manual transmission, and the like.
 本発明の第1実施形態のハイブリッド駆動装置10によれば、車両1の走行速度がゼロよりも大きい所定の第1車速以上の場合(図10のステップS2→S6)に、インホイールモータである副駆動モータ20が駆動力を発生するように構成されているので、低速域で副駆動モータ20に大きなトルクが要求されることはない。この結果、低速域におけるトルクの小さい小型の電動機を副駆動モータ20として採用することが可能となり、インホイールモータを使用して効率的に車両を駆動することが可能になる。 The hybrid drive device 10 according to the first embodiment of the present invention is an in-wheel motor when the traveling speed of the vehicle 1 is equal to or higher than a predetermined first vehicle speed greater than zero (steps S2 → S6 in FIG. 10). Since the sub drive motor 20 is configured to generate a driving force, a large torque is not required for the sub drive motor 20 in a low speed range. As a result, a small electric motor with a small torque in the low speed range can be adopted as the auxiliary drive motor 20, and the vehicle can be efficiently driven using the in-wheel motor.
 また、本実施形態のハイブリッド駆動装置10によれば、車両1の走行速度が所定の第2車速未満のとき(図10のステップS2→S3)、車両1の車体に設けられた車体側モータである主駆動モータ16が駆動力を発生する(図10のステップS4)ので、第1車速以上で駆動力を発生するインホイールモータである副駆動モータ20を補完し、車両1に十分な走行性能を与えることができる。 Further, according to the hybrid drive device 10 of the present embodiment, when the traveling speed of the vehicle 1 is less than the predetermined second vehicle speed (steps S2 → S3 in FIG. 10), the vehicle-side motor provided on the vehicle body of the vehicle 1 is used. Since a certain main drive motor 16 generates a driving force (step S4 in FIG. 10), the auxiliary driving motor 20 that is an in-wheel motor that generates a driving force at a speed equal to or higher than the first vehicle speed is complemented, and sufficient traveling performance for the vehicle 1 Can be given.
 さらに、本実施形態のハイブリッド駆動装置10によれば、車両1の走行速度が第2車速以上のとき(図10のステップS2→S6)も主駆動モータ16は駆動力を発生する(図10のステップS8、S9)ので、走行速度が第1及び第2車速以上の速度領域においては、主駆動モータ16と、副駆動モータ20の両方が駆動力を発生する。このため、副駆動モータ20であるインホイールモータを更に小型化することが可能になる。 Furthermore, according to the hybrid drive device 10 of the present embodiment, the main drive motor 16 generates driving force even when the traveling speed of the vehicle 1 is equal to or higher than the second vehicle speed (steps S2 to S6 in FIG. 10) (FIG. 10). In steps S8 and S9), both the main drive motor 16 and the sub drive motor 20 generate driving force in the speed region where the traveling speed is equal to or higher than the first and second vehicle speeds. For this reason, the in-wheel motor which is the sub drive motor 20 can be further downsized.
 また、本実施形態のハイブリッド駆動装置10によれば、車両1の走行速度が第1車速未満の場合(図10のステップS2→S3)には、副駆動モータ20による駆動力の発生が禁止される(図10のステップS4、S5)ので、低速域におけるトルクが極めて小さい電動機を副駆動モータ20として採用することができ、インホイールモータを軽量化することができる。 Further, according to the hybrid drive device 10 of the present embodiment, when the traveling speed of the vehicle 1 is less than the first vehicle speed (steps S2 → S3 in FIG. 10), the generation of the driving force by the auxiliary drive motor 20 is prohibited. (Steps S4 and S5 in FIG. 10), an electric motor with extremely small torque in the low speed range can be employed as the sub drive motor 20, and the in-wheel motor can be reduced in weight.
 さらに、本実施形態のハイブリッド駆動装置10によれば、車体側モータである主駆動モータ16が駆動力を発生して、車両1を発進(図11の時刻t8)させた後、走行速度が第1車速に到達(図11の時刻t9)すると、インホイールモータである副駆動モータ20が駆動力を発生するので、車両1の発進時にはインホイールモータが使用されず、起動トルクが極めて小さい電動機をインホイールモータとして採用することができ、インホイールモータを軽量化することができる。 Furthermore, according to the hybrid drive system 10 of the present embodiment, the main drive motor 16 is a vehicle body side motor generates a driving force, after the vehicle 1 is starting (time t 8 in FIG. 11), the traveling speed When the first vehicle speed is reached (time t 9 in FIG. 11), the auxiliary drive motor 20 that is an in-wheel motor generates a driving force, so that the in-wheel motor is not used when the vehicle 1 starts and the starting torque is extremely small. The electric motor can be employed as the in-wheel motor, and the in-wheel motor can be reduced in weight.
 また、本実施形態のハイブリッド駆動装置10によれば、減速機構を介さずに副駆動モータ20によって車輪(前輪2b)が直接駆動される(図4、図9)ので、極めて重量が大きくなる減速機構を省略することができると共に、減速機構の回転抵抗による出力損失を回避することができる。 Further, according to the hybrid drive device 10 of the present embodiment, the wheels (front wheels 2b) are directly driven by the auxiliary drive motor 20 without passing through the speed reduction mechanism (FIGS. 4 and 9), so that the speed is extremely heavy. The mechanism can be omitted and output loss due to the rotational resistance of the speed reduction mechanism can be avoided.
 さらに、本実施形態のハイブリッド駆動装置10によれば、低回転領域において大きなトルクを要求されることがない副駆動モータ20に(図10のステップS8)、インホイールモータとして誘導電動機を採用することにより(図4、図9)、必要な回転領域で十分なトルクを発生することができる電動機を軽量に構成することができる。 Furthermore, according to the hybrid drive device 10 of the present embodiment, the induction motor is employed as the in-wheel motor for the auxiliary drive motor 20 that does not require a large torque in the low rotation range (step S8 in FIG. 10). (FIG. 4, FIG. 9), the electric motor which can generate | occur | produce sufficient torque in a required rotation area | region can be comprised lightweight.
 また、本実施形態のハイブリッド駆動装置10によれば、低回転領域において大きなトルクを要求される(図10のステップS4)主駆動モータ16に、永久磁石電動機を採用することにより、必要な回転領域で十分なトルクを発生することができる電動機を軽量に構成することができる。 Further, according to the hybrid drive device 10 of the present embodiment, a required rotation region can be obtained by employing a permanent magnet motor for the main drive motor 16 that requires a large torque in the low rotation region (step S4 in FIG. 10). Thus, an electric motor capable of generating a sufficient torque can be configured to be lightweight.
 次に、図13及び図14を参照して、本発明の第2実施形態によるハイブリッド駆動装置である車両駆動装置を説明する。
 本実施形態による車両駆動装置は、制御装置24によって実行される制御が上述した第1実施形態とは異なる。従って、図1乃至図9を参照して説明した車両駆動装置の構成は第1実施形態と同一であるため説明を省略し、ここでは本発明の第2実施形態の、第1実施形態とは異なる点のみを説明する。
Next, a vehicle drive device that is a hybrid drive device according to a second embodiment of the present invention will be described with reference to FIGS. 13 and 14.
The vehicle drive device according to the present embodiment differs from the first embodiment described above in the control executed by the control device 24. Therefore, since the configuration of the vehicle drive device described with reference to FIGS. 1 to 9 is the same as that of the first embodiment, the description thereof will be omitted. Here, the second embodiment of the present invention is different from the first embodiment. Only the differences will be described.
 図13は、本発明の第2実施形態の車両駆動装置に備えられている制御装置による制御のフローチャートであり、図14は、電動機走行モードにおける動作の一例を示すグラフである。なお、図13に示すフローチャートは、車両1のモード選択スイッチ40が電動機走行モードに設定されている場合に実行される処理(図10に示すフローチャートのステップS2以下の処理に対応)を示している。本実施形態の車両制御装置のエンジン走行モードにおいて実行される処理は、第1実施形態と同様である。また、図13に示すフローチャートは、車両1の作動中、所定の時間間隔で繰り返し実行される。 FIG. 13 is a flowchart of the control by the control device provided in the vehicle drive device of the second embodiment of the present invention, and FIG. 14 is a graph showing an example of the operation in the electric motor travel mode. In addition, the flowchart shown in FIG. 13 shows the process (corresponding to the process after step S2 of the flowchart shown in FIG. 10) executed when the mode selection switch 40 of the vehicle 1 is set to the electric motor travel mode. . Processing executed in the engine travel mode of the vehicle control device of the present embodiment is the same as that of the first embodiment. Further, the flowchart shown in FIG. 13 is repeatedly executed at predetermined time intervals while the vehicle 1 is operating.
 図14に示すグラフは、上段から順に、車両1の速度、運転者の運転操作に基づいて設定される車両1の目標加速度、エンジン12が発生するトルク、主駆動モータ16が発生するトルク、及び副駆動モータ20が発生するトルクを示している。なお、図14に示すグラフは電動機走行モードにおける作用を示しているため、エンジン12が発生するトルクは常にゼロにされている。また、主駆動モータ16のトルク、及び副駆動モータ20のトルクを示すグラフにおいて、正の値は各モータがトルクを発生している状態を意味し、負の値は各モータが車両1の運動エネルギーを回生している状態を意味する。 The graph shown in FIG. 14 is, in order from the top, the speed of the vehicle 1, the target acceleration of the vehicle 1 set based on the driving operation of the driver, the torque generated by the engine 12, the torque generated by the main drive motor 16, and The torque generated by the sub drive motor 20 is shown. Since the graph shown in FIG. 14 shows the operation in the electric motor travel mode, the torque generated by the engine 12 is always zero. In the graph showing the torque of the main drive motor 16 and the torque of the sub drive motor 20, a positive value means that each motor is generating torque, and a negative value means that each motor is in motion of the vehicle 1. It means a state of regenerating energy.
 まず、図13のステップS201においては、各種センサによる検出信号が読み込まれる。具体的には、車速センサ42、アクセル開度センサ44、ブレーキセンサ46等の検出信号が制御装置24に読み込まれる。 First, in step S201 in FIG. 13, detection signals from various sensors are read. Specifically, detection signals from the vehicle speed sensor 42, the accelerator opening sensor 44, the brake sensor 46, and the like are read into the control device 24.
 次に、ステップS202においては、ステップS201において読み込まれた各センサの検出信号に基づいて、目標加速度が設定される。目標加速度は、主としてアクセル開度センサ44(図5)によって検出されたアクセルペダル(図示せず)の踏込量に基づいて設定される。一方、運転者が車両1を減速することを意図してブレーキペダル(図示せず)を踏み込んでいる場合には、目標加速度は負の値に設定され、目標減速度が設定される。目標減速度(負の目標加速度)は、主としてブレーキセンサ46(図5)によって検出されたブレーキペダルの踏込量に基づいて設定される。 Next, in step S202, a target acceleration is set based on the detection signal of each sensor read in step S201. The target acceleration is set mainly based on the depression amount of an accelerator pedal (not shown) detected by the accelerator opening sensor 44 (FIG. 5). On the other hand, when the driver depresses a brake pedal (not shown) with the intention of decelerating the vehicle 1, the target acceleration is set to a negative value and the target deceleration is set. The target deceleration (negative target acceleration) is set mainly based on the brake pedal depression amount detected by the brake sensor 46 (FIG. 5).
 次に、ステップS203においては、車速センサ42によって検出された車両1の速度が所定の第1車速以上であるか否かが判断され、所定の第1車速以上である場合にはステップS204に進み、第1車速未満である場合にはステップS210に進む。図14の時刻t201においては、運転者が車両1を発進させており、車速が低いためフローチャートにおける処理はステップS210に移行する。なお、本実施形態においては、所定の第1車速は、時速約100km/hに設定されているが、採用されている主駆動モータ16、副駆動モータ20の特性に応じて、本実施形態よりも低い車速に、例えば、時速約50km/h程度に第1車速を設定することもできる。 Next, in step S203, it is determined whether or not the speed of the vehicle 1 detected by the vehicle speed sensor 42 is equal to or higher than a predetermined first vehicle speed. If it is less than the first vehicle speed, the process proceeds to step S210. At time t 201 in FIG. 14, the driver has to start the vehicle 1, processing in the flowchart for the vehicle speed is low, the process proceeds to step S210. In the present embodiment, the predetermined first vehicle speed is set to about 100 km / h. However, according to the characteristics of the main drive motor 16 and the sub drive motor 20 that are employed, The first vehicle speed can also be set to a low vehicle speed, for example, about 50 km / h.
 さらに、ステップS210においては、車両1の目標加速度が負の値であるか否か(目標減速度であるか否か)が判断され、目標加速度がゼロよりも小さい場合にはステップS211に進み、目標加速度が正又はゼロである場合にはステップS212に進む。図14の時刻t201においては、運転者が車両1を発進させ、加速している(正の目標加速度が設定されている)のでフローチャートにおける処理はステップS212に移行する。ステップS212においては、目標加速度が正の値であるか否か(目標加速度であるか否か)が判断され、目標加速度が正である場合にはステップS213に進み、目標加速度がゼロである場合にはステップS214に進む。 Further, in step S210, it is determined whether or not the target acceleration of the vehicle 1 is a negative value (whether or not it is a target deceleration). If the target acceleration is smaller than zero, the process proceeds to step S211. If the target acceleration is positive or zero, the process proceeds to step S212. At time t 201 in FIG. 14, the driver is starting the vehicle 1, processing in the flow chart since the acceleration (positive target acceleration is set), the process proceeds to step S212. In step S212, it is determined whether or not the target acceleration is a positive value (whether or not the target acceleration is positive). If the target acceleration is positive, the process proceeds to step S213, and the target acceleration is zero. Then, the process proceeds to step S214.
 時刻t201においては正の目標加速度が設定されているため、処理はステップS213に進み、ステップS213においては主駆動モータ16の駆動力により目標加速度が得られるように、主駆動モータ16に対する制御パラメータが設定される。一方、ステップS213において、副駆動モータ20に対する制御パラメータは停止に設定(駆動力を発生せず、運動エネルギーの回生も実行しない)される。次に、ステップS206に進み、ステップS213において設定された制御パラメータが、制御装置24から主駆動モータ16及び副駆動モータ20に送信され、図13のフローチャートによる1回の処理が終了する。ステップS206において、制御パラメータが送信されることにより、主駆動モータ16がトルクを発生し、車速が上昇して目標加速度が実現される(図14の時刻t201~t202)。 Since the positive target acceleration is set at time t 201 , the process proceeds to step S 213, and the control parameter for the main drive motor 16 is obtained so that the target acceleration is obtained by the driving force of the main drive motor 16 in step S 213. Is set. On the other hand, in step S213, the control parameter for the sub drive motor 20 is set to stop (no driving force is generated and kinetic energy is not regenerated). Next, the process proceeds to step S206, and the control parameters set in step S213 are transmitted from the control device 24 to the main drive motor 16 and the sub drive motor 20, and one process according to the flowchart of FIG. 13 is completed. In step S206, by the control parameters are transmitted, the main drive motor 16 generates a torque, the target acceleration is achieved vehicle speed rises (time t 201 ~ t 202 in FIG. 14).
 図14に示す例では、時刻t201~t202の間、車両1が加速されている。この間、図13のフローチャートにおいては、ステップS201→S202→S203→S210→S212→S213→S206の処理が繰り返し実行される。 In the example shown in FIG. 14, the vehicle 1 is accelerated between times t 201 and t 202 . In the meantime, in the flowchart of FIG. 13, the processes of steps S201 → S202 → S203 → S210 → S212 → S213 → S206 are repeatedly executed.
 次いで、図14の時刻t202において、運転者がアクセルペダルを踏み戻すと、図13のステップS202において設定される目標加速度がゼロ(定速走行)にされる。これにより、図13のフローチャートにおける処理は、ステップS212→S214に移行するようになる。ステップS214においては、主駆動モータ16の駆動力により定速走行が維持されるように、主駆動モータ16に対する制御パラメータが設定される。即ち、主駆動モータ16が、車両1の走行抵抗に相当する駆動力を発生し、一定の速度が維持されるように制御パラメータが設定される。このため、主駆動モータ16が発生する駆動力は、車両1の加速中よりも低下する。一方、ステップS214において、副駆動モータ20に対する制御パラメータは停止に設定される。次に、ステップS206に進み、ステップS214において設定された制御パラメータが各モータに送信され、図13のフローチャートによる1回の処理が終了する。 Then, at time t 202 of Fig. 14, when the driver returns down the accelerator pedal, the target acceleration set in step S202 of FIG. 13 is zero (constant speed travel). As a result, the processing in the flowchart of FIG. 13 proceeds from step S212 to step S214. In step S214, control parameters for the main drive motor 16 are set so that constant speed running is maintained by the driving force of the main drive motor 16. That is, the control parameter is set so that the main drive motor 16 generates a driving force corresponding to the running resistance of the vehicle 1 and a constant speed is maintained. For this reason, the driving force generated by the main drive motor 16 is lower than during acceleration of the vehicle 1. On the other hand, in step S214, the control parameter for the sub drive motor 20 is set to stop. Next, the process proceeds to step S206, and the control parameter set in step S214 is transmitted to each motor, and one process according to the flowchart of FIG. 13 ends.
 図14に示す例では、時刻t202~t203の間、車両1が定速走行されている。この間、図13のフローチャートにおいては、ステップS201→S202→S203→S210→S212→S214→S206の処理が繰り返し実行される。 In the example shown in FIG. 14, the vehicle 1 is traveling at a constant speed between times t 202 and t 203 . In the meantime, in the flowchart of FIG. 13, the processes of steps S201 → S202 → S203 → S210 → S212 → S214 → S206 are repeatedly executed.
 次いで、図14の時刻t203において、運転者が再びアクセルペダルを踏み込むと、図13のステップS202において設定される目標加速度が正の値にされる。これにより、図13のフローチャートにおける処理は、ステップS212→S213に移行するようになる。上記のように、ステップS213においては、設定された目標加速度が実現されるように主駆動モータ16に対する制御パラメータが設定され、副駆動モータ20に対する制御パラメータは停止に設定される。次に、ステップS206に進み、ステップS213において設定された制御パラメータが各モータに送信され、図13のフローチャートによる1回の処理が終了する。 Next, when the driver depresses the accelerator pedal again at time t203 in FIG. 14, the target acceleration set in step S202 in FIG. 13 is set to a positive value. As a result, the processing in the flowchart of FIG. 13 proceeds from step S212 to step S213. As described above, in step S213, the control parameter for the main drive motor 16 is set so that the set target acceleration is realized, and the control parameter for the sub drive motor 20 is set to stop. Next, it progresses to step S206, the control parameter set in step S213 is transmitted to each motor, and one process by the flowchart of FIG. 13 is complete | finished.
 図14に示す例では、時刻t203~t204の間、車両1は加速度一定で走行され、速度が上昇する。この間、図13のフローチャートにおいては、ステップS201→S202→S203→S210→S212→S213→S206の処理が繰り返し実行される。 In the example shown in FIG. 14, between times t 203 and t 204 , the vehicle 1 travels at a constant acceleration and the speed increases. In the meantime, in the flowchart of FIG. 13, the processes of steps S201 → S202 → S203 → S210 → S212 → S213 → S206 are repeatedly executed.
 次に、時刻t204において、車両1の速度が所定の第1車速(本実施形態においては100[km/h])に到達すると、図13のフローチャートにおける処理は、ステップS203→S204に移行するようになる。
 ステップS204においては、車両1の目標加速度が負の値であるか否か(目標減速度であるか否か)が判断され、目標加速度がゼロよりも小さい場合にはステップS205に進み、目標加速度が正又はゼロである場合にはステップS207に進む。図14の時刻t204においては、運転者が車両1を加速している(正の目標加速度が設定されている)のでフローチャートにおける処理はステップS207に移行する。ステップS207においては、目標加速度が正の値であるか否か(目標加速度であるか否か)が判断され、目標加速度が正である場合にはステップS208に進み、目標加速度がゼロである場合にはステップS209に進む。
Then, at time t 204, the speed of the vehicle 1 reaches the predetermined first vehicle speed (100 [km / h] in this embodiment), the processing in the flowchart of FIG. 13 proceeds to step S203 → S204 It becomes like this.
In step S204, it is determined whether or not the target acceleration of the vehicle 1 is a negative value (whether or not it is a target deceleration). If the target acceleration is smaller than zero, the process proceeds to step S205 and the target acceleration is reached. If is positive or zero, the process proceeds to step S207. At time t204 in FIG. 14, since the driver is accelerating the vehicle 1 (a positive target acceleration is set), the process in the flowchart proceeds to step S207. In step S207, it is determined whether or not the target acceleration is a positive value (whether or not the target acceleration is positive). If the target acceleration is positive, the process proceeds to step S208, and the target acceleration is zero. The process proceeds to step S209.
 時刻t204においては正の目標加速度が設定されているため、処理はステップS208に進み、ステップS208においては主駆動モータ16及び副駆動モータ20の駆動力により目標加速度が得られるように、主駆動モータ16及び副駆動モータ20に対する制御パラメータが設定される。このように、車両1の速度が第1車速以上の状態において車両1が加速されると、主駆動モータ16に加えて、副駆動モータ20も駆動力を発生するようになる。即ち、主駆動モータ16及び副駆動モータ20が発生する駆動力により、ステップS202において設定された目標加速度が実現される。このように、副駆動モータ20は、車両1の速度が第1車速以上の状態で車両1を加速させる際に、主駆動モータ16による駆動力を補助するために利用される。 Since the positive target acceleration is set at time t 204, the process proceeds to step S208, so that the target acceleration is obtained by the driving force of the main drive motor 16 and the auxiliary drive motor 20 in step S208, the main drive Control parameters for the motor 16 and the auxiliary drive motor 20 are set. As described above, when the vehicle 1 is accelerated in a state where the speed of the vehicle 1 is equal to or higher than the first vehicle speed, the auxiliary drive motor 20 also generates a driving force in addition to the main drive motor 16. That is, the target acceleration set in step S202 is realized by the driving force generated by the main drive motor 16 and the sub drive motor 20. Thus, the auxiliary drive motor 20 is used to assist the driving force of the main drive motor 16 when the vehicle 1 is accelerated in a state where the speed of the vehicle 1 is equal to or higher than the first vehicle speed.
 次に、ステップS206に進み、ステップS208において設定された制御パラメータが、主駆動モータ16及び副駆動モータ20に送信され、図13のフローチャートによる1回の処理が終了する。ステップS206において制御パラメータが送信されることにより、主駆動モータ16及び副駆動モータ20がトルクを発生し、車速が上昇して目標加速度が実現される(図14の時刻t204~t205)。なお、図14においては、一定の目標加速度に対して各モータが一定のトルクを出力するように描かれているが、これらモータトルクのグラフは模式的に描かれたものである。即ち、車両1に作用する走行抵抗、空気抵抗等は、車速等のファクターによっても変化するため、一定の目標加速度を維持するために実際に必要とされるトルクは一定値にはならない。 Next, the process proceeds to step S206, and the control parameters set in step S208 are transmitted to the main drive motor 16 and the sub drive motor 20, and one process according to the flowchart of FIG. 13 is completed. By controlling parameters are transmitted in step S206, the main drive motor 16 and the auxiliary drive motor 20 generates a torque, the target acceleration is achieved by the vehicle speed rises (time t 204 ~ t 205 in FIG. 14). In FIG. 14, each motor is drawn so as to output a constant torque with respect to a constant target acceleration. The graph of these motor torques is drawn schematically. That is, the running resistance, air resistance, and the like acting on the vehicle 1 also change depending on factors such as the vehicle speed, so that the torque actually required to maintain a constant target acceleration is not a constant value.
 図14に示す例では、時刻t204~t205の間、車両1は加速度一定で走行され、速度が上昇する。この間、図13のフローチャートにおいては、ステップS201→S202→S203→S204→S207→S208→S206の処理が繰り返し実行される。 In the example shown in FIG. 14, the vehicle 1 travels at a constant acceleration and increases in speed from time t 204 to t 205 . In the meantime, in the flowchart of FIG. 13, the processes of steps S201 → S202 → S203 → S204 → S207 → S208 → S206 are repeatedly executed.
 次いで、図14の時刻t205において、運転者がアクセルペダルを踏み戻すと、図13のステップS202において設定される目標加速度がゼロ(定速走行)にされる。これにより、図13のフローチャートにおける処理は、ステップS207→S209に移行するようになり、ステップS201→S202→S203→S204→S207→S209→S206の処理が繰り返し実行される。ステップS209においては、主駆動モータ16及び副駆動モータ20の駆動力により定速走行が維持されるように、主駆動モータ16及び副駆動モータ20に対する制御パラメータが設定される。次に、ステップS206に進み、ステップS209において設定された制御パラメータが各モータに送信され、図13のフローチャートによる1回の処理が終了する。なお、副駆動モータ20による駆動力のみで定速走行を維持させるように、本発明を構成することもできる。 Next, at time t205 in FIG. 14, when the driver depresses the accelerator pedal, the target acceleration set in step S202 in FIG. 13 is set to zero (constant speed running). As a result, the processing in the flowchart of FIG. 13 proceeds from step S207 to S209, and the processing of steps S201, S202, S203, S204, S207, S209, and S206 is repeatedly executed. In step S209, control parameters for the main drive motor 16 and the sub drive motor 20 are set so that constant speed running is maintained by the driving force of the main drive motor 16 and the sub drive motor 20. Next, the process proceeds to step S206, where the control parameters set in step S209 are transmitted to each motor, and one process according to the flowchart of FIG. 13 is completed. It should be noted that the present invention can also be configured to maintain constant speed running only with the driving force of the sub drive motor 20.
 次に、図14の時刻t206において、運転者が車両1のブレーキペダル(図示せず)を操作すると、図13のフローチャートのステップS202において設定される目標加速度が負の値(目標減速度)に設定される。これにより、フローチャートにおける処理は、ステップS204→S205に移行するようになり、ステップS201→S202→S203→S204→S205→S206の処理が繰り返し実行される。ステップS205においては、主駆動モータ16及び副駆動モータ20が車両1の運動エネルギーを回生するように、これらのモータに対する制御パラメータが設定される。さらに、ステップS206において、設定された制御パラメータが主駆動モータ16及び副駆動モータ20に送信されると、これらのモータにおいて運動エネルギーが回生される。 Next, when the driver operates a brake pedal (not shown) of the vehicle 1 at time t206 in FIG. 14, the target acceleration set in step S202 of the flowchart in FIG. 13 is a negative value (target deceleration). Set to As a result, the processing in the flowchart shifts from step S204 to S205, and the processing of steps S201, S202, S203, S204, S205, and S206 is repeatedly executed. In step S205, control parameters for these motors are set so that the main drive motor 16 and the sub drive motor 20 regenerate the kinetic energy of the vehicle 1. Furthermore, when the set control parameters are transmitted to the main drive motor 16 and the sub drive motor 20 in step S206, kinetic energy is regenerated in these motors.
 運転者のブレーキペダル(図示せず)の操作により車速が低下し、図14の時刻t207において、車両1の速度が所定の第1車速(本実施形態においては100[km/h])未満に低下すると、フローチャートにおける処理は、ステップS203→S210→S211に移行するようになり、ステップS201→S202→S203→S210→S211→S206の処理が繰り返し実行される。ステップS211においては、主駆動モータ16は停止され(駆動力の発生も、運動エネルギーの回生も行わない)、副駆動モータ20は車両1の運動エネルギーを回生するように、これらのモータに対する制御パラメータが設定される。さらに、ステップS206において、設定された制御パラメータが主駆動モータ16及び副駆動モータ20に送信されると、副駆動モータ20において運動エネルギーが回生される。これにより車速が低下し、図14の時刻t208において、車両1が停止する。 The vehicle speed decreases due to the driver's operation of a brake pedal (not shown), and at time t 207 in FIG. 14, the speed of the vehicle 1 is less than a predetermined first vehicle speed (100 km / h in this embodiment). If it decreases, the process in the flowchart shifts from step S203 to S210 to S211, and the process of steps S201, S202, S203, S210, S211 and S206 is repeatedly executed. In step S211, the main drive motor 16 is stopped (no driving force is generated and no kinetic energy is regenerated), and the sub drive motor 20 is configured to control parameters for these motors so that the kinetic energy of the vehicle 1 is regenerated. Is set. Furthermore, when the set control parameter is transmitted to the main drive motor 16 and the sub drive motor 20 in step S206, the kinetic energy is regenerated in the sub drive motor 20. As a result, the vehicle speed decreases, and the vehicle 1 stops at time t208 in FIG.
 次に、図15及び図16を参照して、本発明の第3実施形態によるハイブリッド駆動装置である車両駆動装置を説明する。
 本実施形態による車両駆動装置は、制御装置24によって実行される制御が上述した第1実施形態とは異なる。従って、図1乃至図9を参照して説明した車両駆動装置の構成は第1実施形態と同一であるため説明を省略し、ここでは本発明の第3実施形態の、第1実施形態とは異なる点のみを説明する。
Next, with reference to FIG.15 and FIG.16, the vehicle drive device which is a hybrid drive device by 3rd Embodiment of this invention is demonstrated.
The vehicle drive device according to the present embodiment differs from the first embodiment described above in the control executed by the control device 24. Accordingly, the configuration of the vehicle drive device described with reference to FIGS. 1 to 9 is the same as that of the first embodiment, and thus the description thereof will be omitted. Here, the third embodiment of the present invention is different from the first embodiment. Only the differences will be described.
 図15は、本発明の第3実施形態の車両駆動装置に備えられている制御装置による制御のフローチャートであり、図16は、電動機走行モードにおける動作の一例を示すグラフである。なお、図15に示すフローチャートは、車両1のモード選択スイッチ40が電動機走行モードに設定されている場合に実行される処理(図10に示すフローチャートのステップS2以下の処理に対応)を示している。本実施形態の車両制御装置のエンジン走行モードにおいて実行される処理は、第1実施形態と同様である。また、図15に示すフローチャートは、車両1の作動中、所定の時間間隔で繰り返し実行される。 FIG. 15 is a flowchart of control by the control device provided in the vehicle drive device of the third embodiment of the present invention, and FIG. 16 is a graph showing an example of the operation in the electric motor travel mode. In addition, the flowchart shown in FIG. 15 shows the process (corresponding to the process after step S2 of the flowchart shown in FIG. 10) executed when the mode selection switch 40 of the vehicle 1 is set to the electric motor travel mode. . Processing executed in the engine travel mode of the vehicle control device of the present embodiment is the same as that of the first embodiment. Further, the flowchart shown in FIG. 15 is repeatedly executed at predetermined time intervals while the vehicle 1 is operating.
 図16に示すグラフは、上段から順に、車両1の速度、運転者の運転操作に基づいて設定される車両1の目標加速度、エンジン12が発生するトルク、主駆動モータ16が発生するトルク、及び副駆動モータ20が発生するトルクを示している。なお、図16に示すグラフは電動機走行モードにおける作用を示しているため、エンジン12が発生するトルクは常にゼロにされている。また、主駆動モータ16のトルク、及び副駆動モータ20のトルクを示すグラフにおいて、正の値は各モータがトルクを発生している状態を意味し、負の値は各モータが車両1の運動エネルギーを回生している状態を意味する。 The graph shown in FIG. 16 includes, in order from the top, the speed of the vehicle 1, the target acceleration of the vehicle 1 set based on the driving operation of the driver, the torque generated by the engine 12, the torque generated by the main drive motor 16, and The torque generated by the sub drive motor 20 is shown. Since the graph shown in FIG. 16 shows the operation in the electric motor travel mode, the torque generated by the engine 12 is always zero. In the graph showing the torque of the main drive motor 16 and the torque of the sub drive motor 20, a positive value means that each motor is generating torque, and a negative value means that each motor is in motion of the vehicle 1. It means a state of regenerating energy.
 まず、図15のステップS301においては、各種センサによる検出信号が読み込まれる。具体的には、車速センサ42、アクセル開度センサ44、ブレーキセンサ46等の検出信号が制御装置24に読み込まれる。 First, in step S301 in FIG. 15, detection signals from various sensors are read. Specifically, detection signals from the vehicle speed sensor 42, the accelerator opening sensor 44, the brake sensor 46, and the like are read into the control device 24.
 次に、ステップS302においては、ステップS301において読み込まれた各センサの検出信号に基づいて、目標加速度が設定される。目標加速度は、主としてアクセル開度センサ44(図5)によって検出されたアクセルペダル(図示せず)の踏込量に基づいて設定される。一方、運転者が車両1を減速することを意図してブレーキペダル(図示せず)を踏み込んでいる場合には、目標加速度は負の値に設定され、目標減速度が設定される。目標減速度(負の目標加速度)は、主としてブレーキセンサ46(図5)によって検出されたブレーキペダルの踏込量に基づいて設定される。 Next, in step S302, a target acceleration is set based on the detection signal of each sensor read in step S301. The target acceleration is set mainly based on the depression amount of an accelerator pedal (not shown) detected by the accelerator opening sensor 44 (FIG. 5). On the other hand, when the driver depresses a brake pedal (not shown) with the intention of decelerating the vehicle 1, the target acceleration is set to a negative value and the target deceleration is set. The target deceleration (negative target acceleration) is set mainly based on the brake pedal depression amount detected by the brake sensor 46 (FIG. 5).
 次に、ステップS303においては、車速センサ42によって検出された車両1の速度が所定の第1車速以上であるか否かが判断され、所定の第1車速以上である場合にはステップS304に進み、第1車速未満である場合にはステップS312に進む。図16の時刻t301においては、運転者が車両1を発進させており、車速が低いためフローチャートにおける処理はステップS312に移行する。なお、本実施形態においても、所定の第1車速は、時速約100km/hに設定されている。 Next, in step S303, it is determined whether or not the speed of the vehicle 1 detected by the vehicle speed sensor 42 is equal to or higher than a predetermined first vehicle speed. If the speed is equal to or higher than the predetermined first vehicle speed, the process proceeds to step S304. If it is less than the first vehicle speed, the process proceeds to step S312. At time t301 in FIG. 16, the driver has started the vehicle 1 and the vehicle speed is low, so the processing in the flowchart proceeds to step S312. Also in this embodiment, the predetermined first vehicle speed is set to about 100 km / h.
 さらに、ステップS312においては、車両1の目標加速度が負の値であるか否か(目標減速度であるか否か)が判断され、目標加速度がゼロよりも小さい場合にはステップS313に進み、目標加速度が正又はゼロである場合にはステップS314に進む。図16の時刻t301においては、運転者が車両1を発進させ、加速している(正の目標加速度が設定されている)のでフローチャートにおける処理はステップS314に移行する。ステップS314においては、目標加速度が正の値であるか否か(目標加速度であるか否か)が判断され、目標加速度が正である場合にはステップS315に進み、目標加速度がゼロである場合にはステップS311に進む。 Further, in step S312, it is determined whether or not the target acceleration of the vehicle 1 is a negative value (whether or not it is a target deceleration). If the target acceleration is smaller than zero, the process proceeds to step S313. If the target acceleration is positive or zero, the process proceeds to step S314. At time t301 in FIG. 16, the driver starts the vehicle 1 and is accelerating (positive target acceleration is set), so the processing in the flowchart proceeds to step S314. In step S314, it is determined whether or not the target acceleration is a positive value (whether or not the target acceleration is positive). If the target acceleration is positive, the process proceeds to step S315, and the target acceleration is zero. Then, the process proceeds to step S311.
 時刻t301においては正の目標加速度が設定されているため、処理はステップS315に進み、ステップS315においては主駆動モータ16の駆動力により目標加速度が得られるように、主駆動モータ16に対する制御パラメータが設定される。一方、ステップS315において、副駆動モータ20に対する制御パラメータは停止に設定(駆動力を発生せず、運動エネルギーの回生も実行しない)される。次に、ステップS306に進み、ステップS315において設定された制御パラメータが、制御装置24から主駆動モータ16及び副駆動モータ20に送信され、図13のフローチャートによる1回の処理が終了する。ステップS306において、制御パラメータが送信されることにより、主駆動モータ16がトルクを発生し、車速が上昇して目標加速度が実現される(図14の時刻t301~t302)。 Since the positive target acceleration is set at time t 301, the process proceeds to step S315, so that the target acceleration is obtained by the driving force of the main drive motor 16 in step S315, the control parameters for the main drive motor 16 Is set. On the other hand, in step S315, the control parameter for the sub drive motor 20 is set to stop (no driving force is generated and kinetic energy is not regenerated). Next, the process proceeds to step S306, and the control parameter set in step S315 is transmitted from the control device 24 to the main drive motor 16 and the sub drive motor 20, and one process according to the flowchart of FIG. 13 is completed. In step S306, when the control parameter is transmitted, the main drive motor 16 generates torque, the vehicle speed increases, and the target acceleration is realized (time t 301 to t 302 in FIG. 14).
 図16に示す例では、時刻t301~t302の間、車両1が加速されている。この間、図15のフローチャートにおいては、ステップS301→S302→S303→S312→S314→S315→S306の処理が繰り返し実行される。 In the example shown in FIG. 16, the vehicle 1 is accelerated between times t 301 and t 302 . In the meantime, in the flowchart of FIG. 15, the processes of steps S301 → S302 → S303 → S312 → S314 → S315 → S306 are repeatedly executed.
 次いで、図16の時刻t302において、運転者がアクセルペダルを踏み戻すと、図15のステップS302において設定される目標加速度がゼロ(定速走行)にされる。これにより、図15のフローチャートにおける処理は、ステップS314→S311に移行するようになる。ステップS311においては、主駆動モータ16の駆動力により定速走行が維持されるように、主駆動モータ16に対する制御パラメータが設定される。即ち、主駆動モータ16が、車両1の走行抵抗に相当する駆動力を発生し、一定の速度が維持されるように制御パラメータが設定される。このため、主駆動モータ16が発生する駆動力は、車両1の加速中よりも低下する。一方、ステップS311において、副駆動モータ20に対する制御パラメータは停止に設定される。次に、ステップS306に進み、ステップS311において設定された制御パラメータが各モータに送信され、図15のフローチャートによる1回の処理が終了する。 Next, when the driver depresses the accelerator pedal at time t302 in FIG. 16, the target acceleration set in step S302 in FIG. 15 is set to zero (constant speed running). As a result, the processing in the flowchart of FIG. 15 proceeds from step S314 to step S311. In step S <b> 311, control parameters for the main drive motor 16 are set so that constant speed running is maintained by the driving force of the main drive motor 16. That is, the control parameter is set so that the main drive motor 16 generates a driving force corresponding to the running resistance of the vehicle 1 and a constant speed is maintained. For this reason, the driving force generated by the main drive motor 16 is lower than during acceleration of the vehicle 1. On the other hand, in step S311, the control parameter for the sub drive motor 20 is set to stop. Next, it progresses to step S306, the control parameter set in step S311 is transmitted to each motor, and one process by the flowchart of FIG. 15 is complete | finished.
 図16に示す例では、時刻t302~t303の間、車両1が定速走行されている。この間、図15のフローチャートにおいては、ステップS301→S302→S303→S312→S314→S311→S306の処理が繰り返し実行される。 In the example shown in FIG. 16, the vehicle 1 is traveling at a constant speed between times t 302 and t 303 . In the meantime, in the flowchart of FIG. 15, the processes of steps S301 → S302 → S303 → S312 → S314 → S311 → S306 are repeatedly executed.
 次いで、図16の時刻t303において、運転者が再びアクセルペダルを踏み込むと、図15のステップS302において設定される目標加速度が正の値にされる。これにより、図15のフローチャートにおける処理は、ステップS314→S315に移行するようになる。上記のように、ステップS315においては、設定された目標加速度が実現されるように主駆動モータ16に対する制御パラメータが設定され、副駆動モータ20に対する制御パラメータは停止に設定される。次に、ステップS306に進み、ステップS315において設定された制御パラメータが各モータに送信され、図15のフローチャートによる1回の処理が終了する。 Next, when the driver depresses the accelerator pedal again at time t303 in FIG. 16, the target acceleration set in step S302 in FIG. 15 is set to a positive value. As a result, the processing in the flowchart of FIG. 15 proceeds from step S314 to step S315. As described above, in step S315, the control parameter for the main drive motor 16 is set so that the set target acceleration is realized, and the control parameter for the sub drive motor 20 is set to stop. Next, it progresses to step S306, the control parameter set in step S315 is transmitted to each motor, and one process by the flowchart of FIG. 15 is complete | finished.
 図16に示す例では、時刻t303~t304の間、車両1は加速度一定で走行され、速度が上昇する。この間、図15のフローチャートにおいては、ステップS301→S302→S303→S312→S314→S315→S306の処理が繰り返し実行される。 In the example shown in FIG. 16, between times t 303 and t 304 , the vehicle 1 travels at a constant acceleration and the speed increases. In the meantime, in the flowchart of FIG. 15, the processes of steps S301 → S302 → S303 → S312 → S314 → S315 → S306 are repeatedly executed.
 次に、時刻t304において、車両1の速度が所定の第1車速(本実施形態においては100[km/h])に到達すると、図15のフローチャートにおける処理は、ステップS303→S304に移行するようになる。
 ステップS304においては、車両1の目標加速度が負の値であるか否か(目標減速度であるか否か)が判断され、目標加速度がゼロよりも小さい場合にはステップS305に進み、目標加速度が正又はゼロである場合にはステップS307に進む。図16の時刻t304においては、運転者が車両1を加速している(正の目標加速度が設定されている)のでフローチャートにおける処理はステップS307に移行する。ステップS307においては、目標加速度が正の値であるか否か(目標加速度であるか否か)が判断され、目標加速度が正である場合にはステップS308に進み、目標加速度がゼロである場合にはステップS311に進む。
Then, at time t 304, the speed of the vehicle 1 reaches the predetermined first vehicle speed (100 [km / h] in this embodiment), the processing in the flowchart of FIG. 15, the process proceeds to step S303 → S304 It becomes like this.
In step S304, it is determined whether or not the target acceleration of the vehicle 1 is a negative value (whether or not it is a target deceleration). If the target acceleration is smaller than zero, the process proceeds to step S305 and the target acceleration is reached. If is positive or zero, the process proceeds to step S307. At time t304 in FIG. 16, the driver is accelerating the vehicle 1 (a positive target acceleration is set), so the processing in the flowchart proceeds to step S307. In step S307, it is determined whether or not the target acceleration is a positive value (whether or not the target acceleration is positive). If the target acceleration is positive, the process proceeds to step S308, and the target acceleration is zero. Then, the process proceeds to step S311.
 時刻t304においては正の目標加速度が設定されているため、処理はステップS308に進み、ステップS308においては、目標加速度が所定第1加速度以上であるか否かが判断される。図16に示す例では、時刻t304における加速度は所定の第1加速度未満であるため、ステップS309に処理が移行する。なお、本実施形態においては、所定の第1加速度は、約1.5m/sec2に設定されているが、採用されている主駆動モータ16、副駆動モータ20の特性に応じて、異なる第1加速度を設定することもできる。例えば、所定の第1加速度は、約1.5~2.5m/sec2の範囲内に設定することができる。ステップS309においては、設定されている目標加速度が実現されるように主駆動モータ16に対する制御パラメータが設定され、副駆動モータ20に対する制御パラメータは停止に設定される。 Since at time t 304 to the positive target acceleration is set, the process proceeds to step S308, in step S308, the target acceleration is equal to or a predetermined first acceleration or not is determined. In the example shown in FIG. 16, since the acceleration is less than a predetermined first acceleration at time t 304, the process proceeds to step S309. In the present embodiment, the predetermined first acceleration is set to about 1.5 m / sec 2. However, the predetermined first acceleration varies depending on the characteristics of the main drive motor 16 and the sub drive motor 20 that are employed. One acceleration can also be set. For example, the predetermined first acceleration can be set within a range of about 1.5 to 2.5 m / sec 2 . In step S309, the control parameter for the main drive motor 16 is set so that the set target acceleration is realized, and the control parameter for the sub drive motor 20 is set to stop.
 次に、ステップS306に進み、ステップS309において設定された制御パラメータが、主駆動モータ16及び副駆動モータ20に送信され、図15のフローチャートによる1回の処理が終了する。ステップS306において制御パラメータが送信されることにより、主駆動モータ16がトルクを発生し、目標加速度が実現される(図16の時刻t304~t305)。図16に示す例では、時刻t304~t305の間、車両1は加速度一定で走行され、速度が上昇する。この間、図15のフローチャートにおいては、ステップS301→S302→S303→S304→S307→S308→S309→S306の処理が繰り返し実行される。 Next, the process proceeds to step S306, and the control parameters set in step S309 are transmitted to the main drive motor 16 and the sub drive motor 20, and one process according to the flowchart of FIG. 15 ends. By controlling parameters are transmitted in step S306, the main drive motor 16 generates a torque, the target acceleration is achieved (time t 304 ~ t 305 in FIG. 16). In the example shown in FIG. 16, between times t 304 and t 305 , the vehicle 1 travels at a constant acceleration, and the speed increases. In the meantime, in the flowchart of FIG. 15, the processes of steps S301 → S302 → S303 → S304 → S307 → S308 → S309 → S306 are repeatedly executed.
 次に、時刻t305において、運転者がアクセルペダルを更に踏み込むことにより、ステップS302において設定される目標加速度が所定の第1加速度以上になると、図15のフローチャートにおける処理は、ステップS308→S310に移行するようになる。ステップS310においては主駆動モータ16及び副駆動モータ20の駆動力により目標加速度が得られるように、主駆動モータ16及び副駆動モータ20に対する制御パラメータが設定される。このように、本実施形態においては、車両1の速度が第1車速以上の状態で、第1加速度以上の加速が行われると、主駆動モータ16に加えて、副駆動モータ20も駆動力を発生するようになる。即ち、主駆動モータ16及び副駆動モータ20が発生する駆動力により、ステップS302において設定された目標加速度が実現される。このように、副駆動モータ20は、車両1の速度が第1車速以上の状態で車両1を第1加速度以上の加速度で加速させる際に、主駆動モータ16による駆動力を補助するために利用される。 Then, at time t 305, by the driver further depresses the accelerator pedal, the target acceleration becomes equal to or higher than a predetermined first acceleration that is set in step S302, the processing in the flowchart of FIG. 15, in step S308 → S310 To move. In step S310, control parameters for the main drive motor 16 and the sub drive motor 20 are set so that the target acceleration can be obtained by the driving forces of the main drive motor 16 and the sub drive motor 20. As described above, in the present embodiment, when the acceleration of the first acceleration or more is performed in the state where the speed of the vehicle 1 is equal to or higher than the first vehicle speed, the auxiliary driving motor 20 in addition to the main driving motor 16 exerts the driving force. To occur. That is, the target acceleration set in step S302 is realized by the driving force generated by the main drive motor 16 and the sub drive motor 20. As described above, the auxiliary drive motor 20 is used to assist the driving force of the main drive motor 16 when the vehicle 1 is accelerated at an acceleration equal to or higher than the first acceleration when the speed of the vehicle 1 is equal to or higher than the first vehicle speed. Is done.
 次に、ステップS306に進み、ステップS310において設定された制御パラメータが、主駆動モータ16及び副駆動モータ20に送信され、図15のフローチャートによる1回の処理が終了する。ステップS306において制御パラメータが送信されることにより、主駆動モータ16及び副駆動モータ20がトルクを発生し、車速が上昇して目標加速度が実現される(図16の時刻t305~t306)。図16に示す例では、時刻t305~t306の間、車両1は加速度一定で走行され、速度が上昇する。この間、図15のフローチャートにおいては、ステップS301→S302→S303→S304→S307→S308→S310→S306の処理が繰り返し実行される。 Next, the process proceeds to step S306, and the control parameters set in step S310 are transmitted to the main drive motor 16 and the sub drive motor 20, and one process according to the flowchart of FIG. 15 is completed. By controlling parameters are transmitted in step S306, the main drive motor 16 and the auxiliary drive motor 20 generates a torque, the target acceleration is achieved by the vehicle speed rises (time t 305 ~ t 306 in FIG. 16). In the example shown in FIG. 16, between times t 305 and t 306 , the vehicle 1 travels at a constant acceleration, and the speed increases. In the meantime, in the flowchart of FIG. 15, the processes of steps S301 → S302 → S303 → S304 → S307 → S308 → S310 → S306 are repeatedly executed.
 次いで、図16の時刻t306において、運転者がアクセルペダルを踏み戻すと、図15のステップS302において設定される目標加速度がゼロ(定速走行)にされる。これにより、図15のフローチャートにおける処理は、ステップS307→S311に移行するようになり、ステップS301→S302→S303→S304→S307→S311→S306の処理が繰り返し実行される。ステップS311においては、主駆動モータ16の駆動力により定速走行が維持される(副駆動モータ20は停止)ように、主駆動モータ16及び副駆動モータ20に対する制御パラメータが設定される。次に、ステップS306に進み、ステップS311において設定された制御パラメータが各モータに送信され、図15のフローチャートによる1回の処理が終了する。なお、副駆動モータ20による駆動力のみで定速走行を維持させるように、本発明を構成することもできる。 Next, when the driver depresses the accelerator pedal at time t 306 in FIG. 16, the target acceleration set in step S302 in FIG. 15 is set to zero (constant speed running). As a result, the processing in the flowchart of FIG. 15 shifts from step S307 to S311 and the processing of steps S301 → S302 → S303 → S304 → S307 → S311 → S306 is repeatedly executed. In step S311, control parameters for the main drive motor 16 and the sub drive motor 20 are set so that constant speed running is maintained by the driving force of the main drive motor 16 (the sub drive motor 20 is stopped). Next, it progresses to step S306, the control parameter set in step S311 is transmitted to each motor, and one process by the flowchart of FIG. 15 is complete | finished. It should be noted that the present invention can also be configured to maintain constant speed running only with the driving force of the sub drive motor 20.
 次に、図16の時刻t307において、運転者が車両1のブレーキペダル(図示せず)を操作すると、図15のフローチャートのステップS302において設定される目標加速度が負の値(目標減速度)に設定される。これにより、フローチャートにおける処理は、ステップS304→S305に移行するようになり、ステップS301→S302→S303→S304→S305→S306の処理が繰り返し実行される。ステップS305においては、主駆動モータ16及び副駆動モータ20が車両1の運動エネルギーを回生するように、これらのモータに対する制御パラメータが設定される。さらに、ステップS306において、設定された制御パラメータが主駆動モータ16及び副駆動モータ20に送信されると、これらのモータにおいて運動エネルギーが回生される。 Next, when the driver operates a brake pedal (not shown) of the vehicle 1 at time t307 in FIG. 16, the target acceleration set in step S302 of the flowchart in FIG. 15 is a negative value (target deceleration). Set to As a result, the processing in the flowchart shifts from step S304 to S305, and the processing of steps S301, S302, S303, S304, S305, and S306 is repeatedly executed. In step S305, control parameters for these motors are set so that the main drive motor 16 and the sub drive motor 20 regenerate the kinetic energy of the vehicle 1. Furthermore, when the set control parameters are transmitted to the main drive motor 16 and the sub drive motor 20 in step S306, kinetic energy is regenerated in these motors.
 運転者のブレーキペダル(図示せず)の操作により車速が低下し、図16の時刻t308において、車両1の速度が所定の第1車速(本実施形態においては100[km/h])未満に低下すると、フローチャートにおける処理は、ステップS303→S312→S313に移行するようになり、ステップS301→S302→S303→S312→S313→S306の処理が繰り返し実行される。ステップS313においては、主駆動モータ16は停止され(駆動力の発生も、運動エネルギーの回生も行わない)、副駆動モータ20は車両1の運動エネルギーを回生するように、これらのモータに対する制御パラメータが設定される。さらに、ステップS306において、設定された制御パラメータが主駆動モータ16及び副駆動モータ20に送信されると、副駆動モータ20において運動エネルギーが回生される。これにより車速が低下し、図16の時刻t309において、車両1が停止する。 The vehicle speed decreases due to the driver's operation of a brake pedal (not shown), and the speed of the vehicle 1 is less than a predetermined first vehicle speed (100 [km / h] in the present embodiment) at time t308 in FIG. When it decreases, the process in the flowchart shifts to steps S303 → S312 → S313, and the processes of steps S301 → S302 → S303 → S312 → S313 → S306 are repeatedly executed. In step S313, the main drive motor 16 is stopped (no driving force is generated and no kinetic energy is regenerated), and the sub drive motor 20 controls the control parameters for these motors so that the kinetic energy of the vehicle 1 is regenerated. Is set. Furthermore, when the set control parameter is transmitted to the main drive motor 16 and the sub drive motor 20 in step S306, the kinetic energy is regenerated in the sub drive motor 20. As a result, the vehicle speed decreases, and the vehicle 1 stops at time t309 in FIG.
 以上、本発明の第1乃至第3実施形態による車両駆動装置を説明した。上述した第1乃至第3実施形態においては、何れも本発明の車両駆動装置をFR車に適用していたが、車両の前方部分にエンジン及び/又は主駆動モータを配置して前輪を主駆動輪とする所謂FF車や、車両の後方部分にエンジン及び/又は主駆動モータを配置して後輪を主駆動輪とする所謂RR車等、様々なタイプの車両に本発明を適用することができる。 The vehicle driving apparatus according to the first to third embodiments of the present invention has been described above. In any of the first to third embodiments described above, the vehicle drive device of the present invention is applied to an FR vehicle. However, an engine and / or a main drive motor is disposed in the front portion of the vehicle to drive the front wheels as a main drive. The present invention can be applied to various types of vehicles such as so-called FF vehicles that use wheels, and so-called RR vehicles that use an engine and / or main drive motor in the rear part of the vehicle and use the rear wheels as main drive wheels. it can.
 本発明をFF車に適用する場合には、例えば、図17に示すように、車両101の前方部分にエンジン12、主駆動モータ16、及びトランスミッション14cを配置して、主駆動輪として前輪102aを駆動するようにレイアウトすることができる。また、副駆動モータ20をインホイールモータとして、副駆動輪である左右の後輪102bに配置することができる。このように、車体側モータである主駆動モータ16により、主駆動輪である前輪102aを駆動し、インホイールモータである副駆動モータ20により、副駆動輪である後輪102bを駆動するように本発明を構成することができる。このレイアウトにおいて、主駆動モータ16は、インバータ16aを介して供給されるバッテリ18に蓄積された電力により駆動することができる。また、キャパシタ22、電圧変換器である高圧DC/DCコンバータ26a及び低圧DC/DCコンバータ26b、及び2つのインバータ20aをユニット化した統合ユニットを、車両101の後部に配置することができる。さらに、副駆動モータ20は、インバータ20aを介して供給される、直列に配置されたバッテリ18及びキャパシタ22に蓄積された電力により駆動することができる。 When the present invention is applied to an FF vehicle, for example, as shown in FIG. 17, an engine 12, a main drive motor 16, and a transmission 14c are arranged in a front portion of the vehicle 101, and a front wheel 102a is used as a main drive wheel. It can be laid out to drive. Further, the auxiliary drive motor 20 can be arranged as an in-wheel motor on the left and right rear wheels 102b which are auxiliary drive wheels. As described above, the main drive motor 16 that is the vehicle body side motor drives the front wheel 102a that is the main drive wheel, and the sub drive motor 20 that is the in-wheel motor drives the rear wheel 102b that is the sub drive wheel. The present invention can be configured. In this layout, the main drive motor 16 can be driven by the electric power stored in the battery 18 supplied via the inverter 16a. Further, an integrated unit obtained by unitizing the capacitor 22, the high-voltage DC / DC converter 26 a and the low-voltage DC / DC converter 26 b that are voltage converters, and the two inverters 20 a can be arranged at the rear portion of the vehicle 101. Further, the sub drive motor 20 can be driven by the electric power stored in the battery 18 and the capacitor 22 arranged in series and supplied through the inverter 20a.
 また、本発明をFF車に適用する場合において、例えば、図18に示すように、車両201の前方部分にエンジン12、主駆動モータ16、及びトランスミッション14cを配置して、主駆動輪として前輪202aを駆動するようにレイアウトすることができる。また、副駆動モータ20をインホイールモータとして、主駆動輪である左右の前輪202aに配置することができる。このように、車体側モータである主駆動モータ16により、主駆動輪である前輪202aを駆動し、インホイールモータである副駆動モータ20によっても主駆動輪である前輪202aを駆動するように本発明を構成することができる。このレイアウトにおいて、主駆動モータ16は、インバータ16aを介して供給されるバッテリ18に蓄積された電力により駆動することができる。また、キャパシタ22、電圧変換器である高圧DC/DCコンバータ26a及び低圧DC/DCコンバータ26b、及び2つのインバータ20aをユニット化した統合ユニットを、車両201の後部に配置することができる。さらに、副駆動モータ20は、インバータ20aを介して供給される、直列に配置されたバッテリ18及びキャパシタ22に蓄積された電力により駆動することができる。 Further, when the present invention is applied to an FF vehicle, for example, as shown in FIG. 18, the engine 12, the main drive motor 16, and the transmission 14c are arranged in the front portion of the vehicle 201, and the front wheels 202a are used as main drive wheels. Can be laid out to drive. Further, the auxiliary drive motor 20 can be disposed on the left and right front wheels 202a, which are the main drive wheels, as an in-wheel motor. Thus, the main drive motor 16 that is the vehicle body side motor drives the front wheel 202a that is the main drive wheel, and the sub drive motor 20 that is the in-wheel motor also drives the front wheel 202a that is the main drive wheel. The invention can be configured. In this layout, the main drive motor 16 can be driven by the electric power stored in the battery 18 supplied via the inverter 16a. In addition, an integrated unit obtained by unitizing the capacitor 22, the high-voltage DC / DC converter 26a and the low-voltage DC / DC converter 26b, which are voltage converters, and the two inverters 20a can be disposed at the rear of the vehicle 201. Further, the sub drive motor 20 can be driven by the electric power stored in the battery 18 and the capacitor 22 arranged in series and supplied through the inverter 20a.
 一方、本発明をFR車に適用する場合において、例えば、図19に示すように、車両301の前方部分にエンジン12、主駆動モータ16を配置し、プロペラシャフト14aを介して動力を車両301の後部へ導いて、主駆動輪として後輪302bを駆動するようにレイアウトすることができる。プロペラシャフト14aによって後部へ導かれた動力により、クラッチ14b、及び有段変速機であるトランスミッション14cを介して後輪302bが駆動される。また、副駆動モータ20をインホイールモータとして、主駆動輪である左右の後輪302bに配置することができる。このように、車体側モータである主駆動モータ16により、主駆動輪である後輪302bを駆動し、インホイールモータである副駆動モータ20によっても主駆動輪である後輪302bを駆動するように本発明を構成することができる。このレイアウトにおいて、主駆動モータ16は、インバータ16aを介して供給されるバッテリ18に蓄積された電力により駆動することができる。また、キャパシタ22、電圧変換器である高圧DC/DCコンバータ26a及び低圧DC/DCコンバータ26b、及び2つのインバータ20aをユニット化した統合ユニットを、車両301の前部に配置することができる。さらに、副駆動モータ20は、インバータ20aを介して供給される、直列に配置されたバッテリ18及びキャパシタ22に蓄積された電力により駆動することができる。 On the other hand, when the present invention is applied to an FR vehicle, for example, as shown in FIG. 19, the engine 12 and the main drive motor 16 are disposed in the front portion of the vehicle 301, and power is transmitted to the vehicle 301 via the propeller shaft 14 a. It can be laid out so as to lead to the rear and drive the rear wheel 302b as the main drive wheel. The rear wheel 302b is driven through the clutch 14b and the transmission 14c, which is a stepped transmission, by the power guided to the rear portion by the propeller shaft 14a. Further, the auxiliary drive motor 20 can be disposed on the left and right rear wheels 302b, which are the main drive wheels, as an in-wheel motor. As described above, the main drive motor 16 that is the vehicle body side motor drives the rear wheel 302b that is the main drive wheel, and the auxiliary drive motor 20 that is the in-wheel motor also drives the rear wheel 302b that is the main drive wheel. The present invention can be configured as follows. In this layout, the main drive motor 16 can be driven by the electric power stored in the battery 18 supplied via the inverter 16a. Further, an integrated unit in which the capacitor 22, the high-voltage DC / DC converter 26 a and the low-voltage DC / DC converter 26 b that are voltage converters, and the two inverters 20 a are unitized can be disposed in the front portion of the vehicle 301. Further, the sub drive motor 20 can be driven by the electric power stored in the battery 18 and the capacitor 22 arranged in series and supplied through the inverter 20a.
 以上、本発明の好ましい実施形態を説明したが、上述した実施形態に種々の変更を加えることができる。特に、上述した実施形態においては、エンジン及び電動機を備えたハイブリッド駆動装置に本発明を適用していたが、エンジンを備えない、電動機のみによって車両を駆動する車両駆動装置に本発明を適用することもできる。 The preferred embodiments of the present invention have been described above, but various modifications can be made to the above-described embodiments. In particular, in the above-described embodiment, the present invention is applied to a hybrid drive apparatus including an engine and an electric motor. However, the present invention is applied to a vehicle drive apparatus that does not include an engine and drives a vehicle only by an electric motor. You can also.
  1  車両
  2a 後輪(主駆動輪)
  2b 前輪(副駆動輪)
  4a サブフレーム
  4b フロントサイドフレーム
  4c ダッシュパネル
  4d プロペラシャフトトンネル
  6a エンジンマウント
  6b キャパシタ用マウント
  8a アッパアーム
  8b ロアアーム
  8c スプリング
  8d ショックアブソーバ
 10  ハイブリッド駆動装置(車両駆動装置)
 12  エンジン(内燃機関)
 14  動力伝達機構
 14a プロペラシャフト
 14b クラッチ
 14c トランスミッション(有段変速機、自動変速機)
 14d トルクチューブ
 16  主駆動モータ(主駆動電動機、車体側モータ)
 16a インバータ
 18  バッテリ(蓄電器)
 20  副駆動モータ(副駆動電動機、インホイールモータ)
 20a インバータ
 22  キャパシタ
 22a ブラケット
 22b ハーネス
 24  制御装置(制御器)
 25  電装品
 26a 高圧DC/DCコンバータ(電圧変換器)
 26b 低圧DC/DCコンバータ
 28  ステータ
 28a ステータベース
 28b ステータシャフト
 28c ステータコイル
 30  ロータ
 30a ロータ本体
 30b ロータコイル
 32  電気絶縁液室
 32a 電気絶縁液
 34  ベアリング
 40  モード選択スイッチ
 42  車速センサ
 44  アクセル開度センサ
 46  ブレーキセンサ
 48  エンジン回転数センサ
 50  自動変速機入力回転センサ
 52  自動変速機出力回転センサ
 54  電圧センサ
 56  電流センサ
 58  燃料噴射弁
 60  点火プラグ
 62  油圧ソレノイド弁
101  車両
102a 前輪(主駆動輪)
102b 後輪(副駆動輪)
201  車両
202a 前輪(主駆動輪)
301  車両
302b 後輪(主駆動輪)
1 Vehicle 2a Rear wheel (main drive wheel)
2b Front wheel (sub drive wheel)
4a Subframe 4b Front side frame 4c Dash panel 4d Propeller shaft tunnel 6a Engine mount 6b Capacitor mount 8a Upper arm 8b Lower arm 8c Spring 8d Shock absorber 10 Hybrid drive device (vehicle drive device)
12 engine (internal combustion engine)
14 Power transmission mechanism 14a Propeller shaft 14b Clutch 14c Transmission (stepped transmission, automatic transmission)
14d Torque tube 16 Main drive motor (main drive motor, vehicle body side motor)
16a inverter 18 battery (capacitor)
20 Sub drive motor (sub drive motor, in-wheel motor)
20a Inverter 22 Capacitor 22a Bracket 22b Harness 24 Control device (controller)
25 Electrical component 26a High voltage DC / DC converter (voltage converter)
26b Low-voltage DC / DC converter 28 Stator 28a Stator base 28b Stator shaft 28c Stator coil 30 Rotor 30a Rotor body 30b Rotor coil 32 Electrical insulation liquid chamber 32a Electrical insulation liquid 34 Bearing 40 Mode selection switch 42 Vehicle speed sensor 44 Acceleration opening sensor 46 Brake Sensor 48 Engine speed sensor 50 Automatic transmission input rotation sensor 52 Automatic transmission output rotation sensor 54 Voltage sensor 56 Current sensor 58 Fuel injection valve 60 Spark plug 62 Hydraulic solenoid valve 101 Vehicle 102a Front wheel (main drive wheel)
102b Rear wheel (sub drive wheel)
201 Vehicle 202a Front wheel (main drive wheel)
301 Vehicle 302b Rear wheel (main drive wheel)

Claims (14)

  1.  車両の駆動にインホイールモータを使用する車両駆動装置であって、
     車両の走行速度を検出する車速センサと、
     上記車両の車輪に設けられると共に、上記車輪を駆動するインホイールモータと、
     このインホイールモータを制御する制御器と、を有し、
     上記制御器は、上記車速センサによって検出された車両の走行速度がゼロよりも大きい所定の第1車速以上の場合において、駆動力を発生するように上記インホイールモータを制御する、ように構成されていることを特徴とする車両駆動装置。
    A vehicle drive device that uses an in-wheel motor to drive a vehicle,
    A vehicle speed sensor for detecting the traveling speed of the vehicle;
    An in-wheel motor that is provided on a wheel of the vehicle and drives the wheel;
    A controller for controlling the in-wheel motor,
    The controller is configured to control the in-wheel motor so as to generate a driving force when the traveling speed of the vehicle detected by the vehicle speed sensor is equal to or higher than a predetermined first vehicle speed greater than zero. The vehicle drive device characterized by the above-mentioned.
  2.  さらに、上記車両の車体に設けられ、上記車両の車輪を駆動する車体側モータを有し、上記制御器は、上記車速センサによって検出された車両の走行速度が所定の第2車速未満のとき、駆動力を発生するように上記車体側モータを制御する、ように構成されている請求項1記載の車両駆動装置。 Furthermore, the vehicle body side motor provided on the vehicle body of the vehicle for driving the wheels of the vehicle, the controller, when the traveling speed of the vehicle detected by the vehicle speed sensor is less than a predetermined second vehicle speed, 2. The vehicle drive device according to claim 1, wherein the vehicle body side motor is controlled so as to generate a drive force.
  3.  上記制御器は、上記車速センサによって検出された車両の走行速度が上記第2車速以上のときも、駆動力を発生するように上記車体側モータを制御する、ように構成されている請求項2記載の車両駆動装置。 The controller is configured to control the vehicle body side motor so as to generate a driving force even when the traveling speed of the vehicle detected by the vehicle speed sensor is equal to or higher than the second vehicle speed. The vehicle drive device described.
  4.  上記制御器は、上記車速センサによって検出された車両の走行速度が上記第1車速未満の場合には、上記インホイールモータに駆動力を発生させないように上記インホイールモータを制御する、ように構成されている請求項1乃至3の何れか1項に記載の車両駆動装置。 The controller is configured to control the in-wheel motor so that the driving force is not generated in the in-wheel motor when the traveling speed of the vehicle detected by the vehicle speed sensor is lower than the first vehicle speed. The vehicle drive device according to claim 1, wherein the vehicle drive device is provided.
  5.  上記制御器は、上記車体側モータに駆動力を発生させることにより、上記車両を発進させた後、上記車速センサによって検出された車両の走行速度が上記第1車速に到達すると、上記インホイールモータに駆動力を発生させる、ように構成されている請求項1乃至4の何れか1項に記載の車両駆動装置。 When the vehicle traveling speed detected by the vehicle speed sensor reaches the first vehicle speed after starting the vehicle by causing the vehicle body side motor to generate a driving force, the controller controls the in-wheel motor. The vehicle drive device according to claim 1, wherein the vehicle drive device is configured to generate a driving force.
  6.  上記インホイールモータは、減速機構を介することなく、上記インホイールモータが設けられた車輪を直接駆動するように構成されている請求項1乃至5の何れか1項に記載の車両駆動装置。 The vehicle drive device according to any one of claims 1 to 5, wherein the in-wheel motor is configured to directly drive a wheel provided with the in-wheel motor without using a speed reduction mechanism.
  7.  上記インホイールモータは、誘導電動機である請求項1乃至6の何れか1項に記載の車両駆動装置。 The vehicle drive device according to any one of claims 1 to 6, wherein the in-wheel motor is an induction motor.
  8.  上記車体側モータは、永久磁石電動機である請求項2乃至7の何れか1項に記載の車両駆動装置。 The vehicle driving apparatus according to any one of claims 2 to 7, wherein the vehicle body side motor is a permanent magnet motor.
  9.  上記インホイールモータは上記車両の前輪を駆動し、上記車体側モータは上記車両の後輪を駆動するように構成されている請求項2乃至8の何れか1項に記載の車両駆動装置。 The vehicle drive device according to any one of claims 2 to 8, wherein the in-wheel motor drives a front wheel of the vehicle, and the vehicle body side motor drives a rear wheel of the vehicle.
  10.  上記インホイールモータは上記車両の後輪を駆動し、上記車体側モータは上記車両の前輪を駆動するように構成されている請求項2乃至8の何れか1項に記載の車両駆動装置。 The vehicle drive device according to any one of claims 2 to 8, wherein the in-wheel motor is configured to drive a rear wheel of the vehicle, and the vehicle body side motor is configured to drive a front wheel of the vehicle.
  11.  上記インホイールモータ及び上記車体側モータは、上記車両の前輪を駆動するように構成されている請求項2乃至8の何れか1項に記載の車両駆動装置。 The vehicle drive device according to any one of claims 2 to 8, wherein the in-wheel motor and the vehicle body side motor are configured to drive a front wheel of the vehicle.
  12.  上記インホイールモータ及び上記車体側モータは、上記車両の後輪を駆動するように構成されている請求項2乃至8の何れか1項に記載の車両駆動装置。 The vehicle drive device according to any one of claims 2 to 8, wherein the in-wheel motor and the vehicle body side motor are configured to drive a rear wheel of the vehicle.
  13.  車両の駆動にインホイールモータを使用する車両駆動装置であって、
     車両の走行速度を検出する車速センサと、
     上記車両の車輪に設けられると共に、上記車輪を駆動するインホイールモータと、
     このインホイールモータを制御する制御器と、を有し、
     上記制御器は、上記車速センサによって検出された車両の走行速度がゼロよりも大きい所定の第1車速未満の場合には、上記インホイールモータに駆動力を発生させないように上記インホイールモータを制御する、ように構成されていることを特徴とする車両駆動装置。
    A vehicle drive device that uses an in-wheel motor to drive a vehicle,
    A vehicle speed sensor for detecting the traveling speed of the vehicle;
    An in-wheel motor that is provided on a wheel of the vehicle and drives the wheel;
    A controller for controlling the in-wheel motor,
    The controller controls the in-wheel motor so that the in-wheel motor does not generate a driving force when the traveling speed of the vehicle detected by the vehicle speed sensor is less than a predetermined first vehicle speed greater than zero. The vehicle drive device is configured as described above.
  14.  車両の駆動にインホイールモータを使用する車両駆動装置であって、
     車両の走行速度を検出する車速センサと、
     上記車両の車輪に設けられると共に、上記車輪を駆動するインホイールモータと、
     上記車両の車体に設けられ、上記車両の車輪を駆動する車体側モータと、
     上記インホイールモータ及び上記車体側モータを制御する制御器と、を有し、
     上記制御器は、上記車体側モータに駆動力を発生させることにより、上記車両を発進させた後、上記車速センサによって検出された車両の走行速度がゼロよりも大きい所定の第1車速に到達すると、上記インホイールモータに駆動力を発生させる、ように構成されていることを特徴とする車両駆動装置。
    A vehicle drive device that uses an in-wheel motor to drive a vehicle,
    A vehicle speed sensor for detecting the traveling speed of the vehicle;
    An in-wheel motor that is provided on a wheel of the vehicle and drives the wheel;
    A vehicle body side motor provided on a vehicle body of the vehicle for driving wheels of the vehicle;
    A controller for controlling the in-wheel motor and the vehicle body side motor,
    The controller causes the vehicle body side motor to generate a driving force to start the vehicle, and then the vehicle traveling speed detected by the vehicle speed sensor reaches a predetermined first vehicle speed greater than zero. A vehicle driving device configured to generate a driving force in the in-wheel motor.
PCT/JP2019/011426 2018-03-20 2019-03-19 Vehicle drive device WO2019181932A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980019069.XA CN111867869B (en) 2018-03-20 2019-03-19 Vehicle driving device
EP19771793.7A EP3753772A4 (en) 2018-03-20 2019-03-19 Vehicle drive device
US16/981,224 US20210023935A1 (en) 2018-03-20 2019-03-19 Vehicle drive device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018052636 2018-03-20
JP2018-052636 2018-03-20
JP2018-143351 2018-07-31
JP2018143351A JP7041397B2 (en) 2018-03-20 2018-07-31 Vehicle drive

Publications (1)

Publication Number Publication Date
WO2019181932A1 true WO2019181932A1 (en) 2019-09-26

Family

ID=67986465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011426 WO2019181932A1 (en) 2018-03-20 2019-03-19 Vehicle drive device

Country Status (1)

Country Link
WO (1) WO2019181932A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005178479A (en) * 2003-12-17 2005-07-07 Toyota Motor Corp Vehicular power output device
JP5280961B2 (en) 2009-07-31 2013-09-04 本田技研工業株式会社 Vehicle drive control device
JP2013219942A (en) * 2012-04-10 2013-10-24 Ntn Corp Electric vehicle
KR101551120B1 (en) * 2014-09-22 2015-09-07 현대자동차주식회사 Motor Operation Method for Improving Fuel Ratio and Hybrid Vehicle thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005178479A (en) * 2003-12-17 2005-07-07 Toyota Motor Corp Vehicular power output device
JP5280961B2 (en) 2009-07-31 2013-09-04 本田技研工業株式会社 Vehicle drive control device
JP2013219942A (en) * 2012-04-10 2013-10-24 Ntn Corp Electric vehicle
KR101551120B1 (en) * 2014-09-22 2015-09-07 현대자동차주식회사 Motor Operation Method for Improving Fuel Ratio and Hybrid Vehicle thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3753772A4 *

Similar Documents

Publication Publication Date Title
JP7054058B2 (en) Hybrid drive
JP7051048B2 (en) Hybrid drive
WO2020026905A1 (en) Vehicle drive device
WO2020026904A1 (en) Vehicle drive device
WO2019181932A1 (en) Vehicle drive device
WO2019181933A1 (en) Vehicle drive device
WO2019181934A1 (en) Vehicle drive device
WO2019181799A1 (en) Hybrid drive device
WO2019181935A1 (en) Vehicle drive device
WO2019181936A1 (en) Vehicle drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019771793

Country of ref document: EP

Effective date: 20200917