WO2019181897A1 - Moving body management system, method for controlling same, management server, and autonomous moving body - Google Patents

Moving body management system, method for controlling same, management server, and autonomous moving body Download PDF

Info

Publication number
WO2019181897A1
WO2019181897A1 PCT/JP2019/011307 JP2019011307W WO2019181897A1 WO 2019181897 A1 WO2019181897 A1 WO 2019181897A1 JP 2019011307 W JP2019011307 W JP 2019011307W WO 2019181897 A1 WO2019181897 A1 WO 2019181897A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile body
autonomous mobile
unit
autonomous
planned route
Prior art date
Application number
PCT/JP2019/011307
Other languages
French (fr)
Japanese (ja)
Inventor
藤原明彦
長井誠
大舘正太郎
惣野崇
松本恒平
廣瀬史也
伊藤洋
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2020507812A priority Critical patent/JP7391832B2/en
Publication of WO2019181897A1 publication Critical patent/WO2019181897A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the present invention relates to a management system that manages the movement of a plurality of moving bodies, a control method therefor, a management server, and an autonomous moving body.
  • US Patent Application Publication No. 2015/0339931 discloses a system, method and apparatus capable of flying according to a flight restricted area (summary).
  • a flight restricted area summary
  • UAV unmanned vehicle
  • U.S. Patent Application Publication No. 2015/0339931 compares the location of the UAV with the flight restricted area and, if necessary, the UAV takes action to avoid entering the no-fly zone. Take (summary). However, US Patent Application Publication No. 2015/0339931 does not consider the attributes of the flying object. In addition, US Patent Application Publication No. 2015/0339931 does not take into consideration a case where an event that causes a departure or a change in the planned route occurs in the flying object. These issues apply not only to flying objects but also to other autonomous moving objects (automobiles, ships, etc.) that perform autonomous movement.
  • the present invention has been made in consideration of the above-described problems, a management system capable of suitably managing the movement of the autonomous mobile body in consideration of the attributes of the autonomous mobile body, and the control method thereof, It aims at providing a management server and an autonomous mobile body.
  • the management system includes: A first autonomous mobile body having an autonomous control unit for moving from the departure place to the destination; A communication unit that communicates with the first autonomous mobile body via a communication device, and manages a movement of a plurality of mobile bodies including the first autonomous mobile body,
  • the movement management unit is unit classification information that is attribute information of a geographical unit classification to which a current position of the first autonomous moving body belongs when an event that deviates or changes a planned route occurs in the first autonomous moving body.
  • a countermeasure control unit that executes countermeasure control for performing correspondence according to the individual information of the first autonomous mobile body.
  • the movement management unit is attribute information of the geographical unit section to which the current position of the first autonomous mobile body belongs. Countermeasure control is performed to perform correspondence according to the unit classification information and the individual information of the first autonomous mobile body. Thereby, it becomes possible to respond appropriately when an event that deviates or changes the planned route occurs in the first autonomous mobile body.
  • the movement management unit commands the correspondence of the first autonomous mobile body according to the unit classification information and the individual information May be. Thereby, it becomes possible to appropriately cope with an event in which the first autonomous mobile body itself cannot maintain the planned route.
  • the management system may include an external device that requests the movement management unit to move the first autonomous moving body.
  • the movement management unit notifies the external device of the occurrence of the event or the response by the countermeasure control. You may have a part. As a result, the user who has recognized the notification via the external device can provide an additional service according to the content notified when the event occurs.
  • the movement management unit changes the response commanded to the first autonomous mobile body when the event occurs, according to a history of the event in which the first autonomous mobile body has deviated or changed the planned route. You may let them. Thereby, it becomes possible to cope more appropriately when an event that deviates or changes the planned route occurs in the first autonomous mobile body.
  • the movement management unit determines the planned route of the second autonomous mobile body that is moving around the first autonomous mobile body. It may be reset so as to leave the first autonomous mobile body. Thereby, the planned route of the second autonomous mobile body can be changed in accordance with the movement of the first autonomous mobile body.
  • the control method of the management system includes: A first autonomous mobile body having an autonomous control unit for moving from the departure place to the destination; A control method for a management system comprising: a movement management unit that communicates with the first autonomous mobile body via a communication device and manages movement of a plurality of mobile bodies including the first autonomous mobile body, When an event occurs in the first autonomous mobile body that deviates or changes the planned route, the movement management unit is unit classification information that is attribute information of a geographical unit classification to which the current position of the first autonomous mobile body belongs And a command corresponding to the individual information of the first autonomous mobile body is directed to the first autonomous mobile body.
  • the management server which concerns on this invention communicates with the 1st autonomous mobile body provided with the autonomous control part for moving from a departure place to the destination, and manages the movement of the several mobile body containing the said 1st autonomous mobile body And
  • the management server when an event that deviates or changes a planned route occurs in the first autonomous mobile body, unit classification information that is attribute information of a geographical unit classification to which the current position of the first autonomous mobile body belongs, And a coping control unit that executes coping control for performing the coping according to the individual information of the first autonomous mobile body.
  • the autonomous mobile body includes an autonomous control unit for moving from a departure place to a destination,
  • the autonomous control unit when an event that deviates or changes a planned route occurs in the autonomous mobile body, unit classification information that is attribute information of a geographical unit classification to which the current position of the autonomous mobile body belongs, It includes a countermeasure control unit that executes countermeasure control for performing correspondence in accordance with individual information of a moving object.
  • FIG. 1 is an overall configuration diagram showing an overview of a management system 10 according to the first embodiment of the present invention.
  • the management system 10 includes a plurality of customer terminals 20, at least one service management server 22 (hereinafter also referred to as “service server 22”), and at least one traffic management server 24 (hereinafter also referred to as “traffic server 24”). )), A plurality of drones 26, a plurality of external alarm devices 28, and a plurality of peripheral terminals 30.
  • the service server 22 and the traffic server 24 constitute a movement management unit 32. In FIG. 1, only one customer terminal 20, service server 22, traffic server 24, external alarm device 28, and peripheral terminal 30 are shown.
  • the drone 26 (hereinafter also referred to as “target drone 26tar”) delivers the merchandise G based on the order information Iodr of the merchandise G input via the customer terminal 20. Further, in the management system 10, when an event Ev that deviates from the planned route RTp occurs in the target drone 26tar, the surrounding area is connected via the target drone 26tar and the external alarm device 28 and the peripheral terminal 30 located around the target drone 26tar. Notifications are made to people.
  • Communication is possible between the customer terminal 20 and the service server 22 and between the service server 22 and the traffic server 24 via the Internet 50. Further, communication between the service server 22 and the drone 26, between the traffic server 24 and the external alarm device 28, and between the traffic server 24 and the peripheral terminal 30 is possible via the Internet 50 and the wireless relay station 52.
  • the customer terminal 20 (external device) is an external device that accepts an order from a customer for the product G handled by the service server 22.
  • the customer terminal 20 is comprised from a personal computer or a smart phone, for example.
  • the service management server 22 is a server managed by a specific company, and performs order management, inventory management, and delivery management of the company.
  • order management an order (service request) from the customer terminal 20 is accepted.
  • inventory management inventory management of the product G is performed.
  • delivery management delivery of goods G (movement of a plurality of drones 26) is managed.
  • the service server 22 includes an input / output unit 60, a communication unit 62, a calculation unit 64, and a storage unit 66.
  • the communication unit 62 can communicate with the customer terminal 20, the traffic server 24, the drone 26, and the like via the Internet 50.
  • the calculation unit 64 includes a central processing unit (CPU) and operates by executing a program stored in the storage unit 66. A part of the function executed by the arithmetic unit 64 can also be realized by using a logic IC (Integrated) Circuit). The calculation unit 64 can also configure a part of the program with hardware (circuit parts).
  • the calculation unit 64 of the present embodiment includes a flight monitoring unit 70 (a countermeasure control unit) that executes flight monitoring control for monitoring the flight of the drone 26.
  • the flight monitoring unit 70 includes a notification unit 80 that notifies the customer terminal 20 of the occurrence of an event Ev in which the target drone 26tar deviates from the planned route RTp or the response by countermeasure control (described later). The flight monitoring control will be described later with reference to FIGS. 5 and 6.
  • the storage unit 66 stores a program and data used by the calculation unit 64 and includes a random access memory (hereinafter referred to as “RAM”).
  • RAM random access memory
  • a volatile memory such as a register and a non-volatile memory such as a hard disk or a flash memory can be used.
  • the storage unit 66 may include a read only memory (ROM) in addition to the RAM.
  • the storage unit 66 includes an order database 90 (hereinafter referred to as “order DB 90”), an inventory database 92 (hereinafter referred to as “stock DB 92”), a mobile object database 94 (hereinafter referred to as “mobile object DB 94”), 1 map database 96 (hereinafter referred to as “first map DB 96”) and a delivery database 98 (hereinafter referred to as “delivery DB 98”).
  • order database 90 hereinafter referred to as “order DB 90”
  • stock DB 92 hereinafter referred to as “stock DB 92”
  • mobile object database 94 hereinafter referred to as “mobile object DB 94”
  • 1 map database 96 hereinafter referred to as “first map DB 96”
  • delivery database 98 hereinafter referred to as “delivery DB 98”.
  • the order DB 90 accumulates information (order information Iodr) related to orders received via each customer terminal 20.
  • the stock DB 92 accumulates information related to stock (stock information Istk).
  • the mobile DB 94 accumulates individual information Ii as attribute information of the drone 26 used for delivery.
  • the individual information Ii includes, for example, the identification information (identification ID) of the drone 26, the type (small, large, etc.), the maximum load weight, and the maximum size of the loadable load.
  • the individual information Ii may include one or more of the number of loads that can be loaded, the maximum number of people that can be used, the fuel consumption, the maximum speed, the number of years of operation, the total moving distance, and the current position of the moving object.
  • the individual information Ii also includes the airframe classification Sp.
  • the first map DB 96 accumulates map information (first map information Imap1) for delivery by the drone 26.
  • the first map information Imap1 includes position information of an entry restriction area that requires entry permission by the traffic server 24.
  • the delivery DB 98 stores information (delivery information Idel) related to delivery of the ordered product G.
  • the delivery information Idel includes information related to the drone 26 that delivers the product G.
  • the traffic management server 24 manages information (traffic information It) regarding traffic (flight) of the plurality of drones 26. For example, when the traffic server 24 receives a flight permission application for the drone 26 from the service server 22, the traffic server 24 determines whether or not to permit the flight permission application, and permits or does not permit the service server 22 according to the determination result. Notice. In addition, the traffic server 24 notifies the service server 22 of various information related to the drone 26.
  • the traffic management server 24 includes an input / output unit 100, a communication unit 102, a calculation unit 104, and a storage unit 106.
  • the communication unit 102 can communicate with the service server 22, the external alarm device 28, the peripheral terminal 30, and the like via the Internet 50.
  • the calculation unit 104 includes a CPU and operates by executing a program stored in the storage unit 106. Some of the functions executed by the arithmetic unit 104 can also be realized using a logic IC. The calculation unit 104 can also configure a part of the program with hardware (circuit parts).
  • the calculation unit 104 includes an emergency response unit 110 that executes emergency response control.
  • the emergency response control is control in which a response is taken on the traffic server 24 side when an emergency occurs in the drone 26 in flight.
  • the storage unit 106 stores programs and data used by the arithmetic unit 104 and includes a RAM.
  • the storage unit 106 may include a ROM in addition to the RAM.
  • the storage unit 106 includes a second map database 120 (hereinafter referred to as “second map DB 120”), a flight schedule database 112 (hereinafter referred to as “flight schedule DB 122”), and a flight history database 124 (hereinafter referred to as “flight history DB 124”). Said).
  • 2nd map DB120 accumulate
  • the flight schedule DB 122 stores information related to the flight schedule of each drone 26 (flight schedule information Isc).
  • the flight history DB 124 accumulates information (flight history information Ifh) regarding the flight history of each drone 26.
  • the drone 26 (autonomous mobile body) of the present embodiment is for merchandise delivery, and is based on a departure command Pst (not shown) according to a delivery command (flight command) received from the service server 22 via the Internet 50 and the wireless relay station 52.
  • the goods G are delivered from the warehouse etc. to the delivery destination Pdtar.
  • the drone 26 may be used for other purposes.
  • the drone 26 includes a drone sensor group 130, a communication device 132, a drone control device 134, a propeller drive unit 136, a lamp 138, and a first speaker 140.
  • the drone sensor group 130 includes a global positioning system sensor 150 (hereinafter referred to as “GPS sensor 150”), a speedometer 152, an altimeter 154, a gyro sensor 156, a camera 158, and the like.
  • GPS sensor 150 global positioning system sensor 150
  • speedometer 152 an altimeter 154
  • altimeter 154 an altimeter 154
  • gyro sensor 156 a gyro sensor 156
  • camera 158 and the like.
  • the GPS sensor 150 detects the current position Pdcur of the drone 26.
  • the speedometer 152 detects the flight speed Vd [km / h] of the drone 26.
  • the altimeter 154 detects a ground altitude H (hereinafter referred to as “altitude H”) [m] as a distance to the ground below the drone 26.
  • the gyro sensor 156 detects the angular velocity ⁇ [rad / sec] of the drone 26.
  • the angular velocity ⁇ includes an angular velocity Y (yaw Y) with respect to the vertical axis, an angular velocity P (pitch P) with respect to the horizontal axis, and an angular velocity R (roll R) with respect to the longitudinal axis.
  • the camera 158 is arranged at the lower part of the main body of the drone 26 and acquires an image Id of the drone 26 (hereinafter also referred to as “drone image Id”).
  • the camera 158 is a video camera that captures moving images.
  • the camera 158 may be able to capture both moving images and still images, or only still images.
  • the direction of the camera 158 (the posture of the camera 158 with respect to the main body of the drone 26) can be adjusted by a camera actuator (not shown).
  • the position of the camera 158 with respect to the main body of the drone 26 may be fixed.
  • the communication device 132 can perform radio wave communication with the wireless relay station 52 and the like, and includes, for example, a radio wave communication module.
  • the communication device 132 can communicate with the service server 22 and the like via the wireless relay station 52 and the Internet 50.
  • the drone control device 134 (autonomous control unit) controls the entire drone 26 such as flight and shooting of the drone 26.
  • the drone control device 134 autonomously moves (flies) the drone 26 from the departure point Pst to the destination Ptar.
  • the drone control device 134 includes an input / output unit, a calculation unit, and a storage unit (not shown).
  • the propeller drive unit 136 includes a plurality of propellers and a plurality of propeller actuators.
  • the propeller actuator has, for example, an electric motor.
  • the lamp 138 is disposed on the lower surface of the main body of the drone 26 and irradiates visible light below the drone 26.
  • the visible light is used as warning light to the surroundings of the drone 26 (details will be described later).
  • the first speaker 140 is disposed on the lower surface of the main body of the drone 26 and generates an output sound downward from the drone 26.
  • the output sound is used as a warning sound around the drone 26 (details will be described later).
  • External alarm device 28 When an event Ev that deviates or changes the planned route RTp occurs in the target drone 26tar, the external alarm device 28 notifies people around the external alarm device 28 based on a command from the traffic server 24 (movement management unit 32). Make notifications.
  • the external alarm device 28 that performs notification or the like is present around the target drone 26tar where the event Ev that deviates from the planned route RTp has occurred.
  • the external alarm device 28 includes, for example, a second speaker 170 disposed in the city.
  • Peripheral terminal 30 When the event Ev that deviates or changes the planned route RTp occurs in the target drone 26tar, the peripheral terminal 30 notifies the people around the peripheral terminal 30 based on a command from the traffic server 24 (movement management unit 32). I do.
  • the peripheral terminal 30 that performs notification or the like is present around the target drone 26tar in which the event Ev that deviates from the planned route RTp has occurred.
  • the peripheral terminal 30 is composed of, for example, a personal computer or a smartphone.
  • Peripheral terminal 30 includes a third speaker 180 and a display unit 182.
  • FIG. 2 is a flowchart showing an outline when the product G ordered from the customer is delivered by the drone 26 in the first embodiment. Note that in FIG. 2, only a rough flow is shown.
  • step S11 the customer terminal 20 accepts an order according to the customer's operation. Specifically, the customer terminal 20 displays an ordering screen on a display unit (not shown) in accordance with a customer operation.
  • the order screen data is obtained from the service management server 22. Further, when displaying the ordering screen, the service server 22 confirms the number of stocks of the product G to be ordered. In the case of out of stock, the service server 22 displays the fact together.
  • the customer terminal 20 receives an order from the customer and transmits it to the service management server 22.
  • step S21 the service server 22 calculates the target drone 26tar and the planned route RTp according to the order information Iodr received by the customer terminal 20.
  • the calculation of the target drone 26tar and the planned route RTp may be performed before ordering and may be determined at the time of ordering. Further information regarding the calculation of the planned route RTp will be described later.
  • step S22 the service server 22 determines whether the traffic server 24 needs to be permitted for the planned route RTp (in other words, whether the planned route RTp includes a portion that requires the traffic server 24). Is determined based on the first map information Imap1. As a part which requires permission of the traffic server 24, a flight restriction area is included, for example.
  • a flight permission application for the planned route RTp is transmitted to the traffic management server 24 in step S23.
  • the identification number of the target drone 26 is given to the flight permission application.
  • the service server 22 monitors whether or not the result notification from the traffic management server 24 has been received.
  • step S31 the traffic management server 24 that has received the flight permission application (S23) from the service server 22 determines whether the received flight permission application is permitted or not. For example, when the scheduled route RTp includes a temporary flight prohibited area, the traffic server 24 disallows the flight permission application. In addition, when one or more other drones 26 (other aircraft) are scheduled to pass a part of the planned route RTp at the same time as themselves (own aircraft), the traffic server 24 rejects the flight permission application. To do. On the other hand, when there is no reason for not allowing the drone 26 to fly, the traffic server 24 permits the flight permission application.
  • the traffic management server 24 When permitting a flight permission application (S31: TRUE), the traffic management server 24 transmits a permission notice to the service server 22 in step S32. When permission application is not permitted (S31: FALSE), the traffic management server 24 transmits a disapproval notice to the service server 22 in step S33.
  • the reason for non-permission (for example, that the planned route RTp passes through the flight prohibited area, the position of the flight prohibited area, etc.) is also added to the non-permission notice.
  • the process proceeds to the service server 22 again.
  • the process proceeds to step S25.
  • the service server 22 calculates a new scheduled route RTp according to the reason for non-permission included in the result. For example, if the reason for the disapproval is that the scheduled route RTp passes through the flight prohibited area, the service server 22 calculates a new scheduled route RTp that avoids the flight prohibited area (S21). Then, the service server 22 makes another flight permission application as necessary (S23).
  • the service server 22 transmits a delivery command to the target drone 26tar delivering the product G.
  • the delivery command includes information on the planned route RTp.
  • the travel route RTf includes a route from the departure point Pst, which is the current position Pdcur (for example, a warehouse not shown) of the target drone 26tar, to the delivery destination Pdtar (outward route), and a route from the delivery destination Pdtar to the return destination Prtar ( Including return trip).
  • the planned route RTp may include a route from the current position Pdcur to the warehouse.
  • a route to the warehouse, sales office, or the like may be set as the scheduled route RTp.
  • a route to the delivery destination Pdtar and a route to the return destination Prtar may be set as the new scheduled route RTp.
  • the delivery command can be transmitted by another method instead of directly transmitted from the service server 22 to the target drone 26tar.
  • the drone 26 monitors whether or not a delivery command (S25) has been received from the service server 22.
  • the drone 26 that has received the delivery command starts the delivery control for transporting the product G from the warehouse or sales office to the delivery destination Pdtar and then returning to the return destination Prtar.
  • the target drone 26tar transmits its current position Pdcur and the like to the service server 22 at a predetermined cycle during delivery.
  • the service server 22 can monitor the delivery state of the target drone 26tar by comparing the received current position Pdcur and the like with the planned route RTp.
  • the service server 22 calculates the target drone 26tar and the scheduled route RTp according to the order information Iodr received by the customer terminal 20.
  • the service server 22 calculates the departure place Pst of the target drone 26tar.
  • the departure place Pst for example, a warehouse of the product G, a sales office where the target drone 26tar loads the product G, and the like are set.
  • the service server 22 calculates a necessary flight distance Dnf for delivery of the product G. Specifically, the total of the distance from the departure point Pst to the delivery destination Pdtar (outward route) and the distance from the delivery destination Pdtar to the return destination Prtar (return route) is the required flight distance Dnf. In calculating the required flight distance Dnf, the service server 22 imposes a restriction on the planned route RTp of the drone 26 according to the unit classification information Isu and the individual information Ii.
  • FIG. 3 is a diagram for explaining the setting of the scheduled route RTp of the target drone 26tar in the first embodiment. As shown in FIG. 3, in the first embodiment, whether or not the target drone 26 tar can fly is determined for each combination of the aircraft section Sp and the geographical unit section Su of the drone 26.
  • the unit division information Isu is attribute information of the geographical unit division Su.
  • categories A to E as the geographic unit category Su of the present embodiment. That is, the section A is a population concentration area and a densely populated house. Section B is on the road and on the track. Section C is an urban area. Category D is a field and a non-urban area. Category E is freeways, rivers and safety measures areas. In addition, in population-intensive areas or densely populated areas in Category A, the movement of humans or vehicles is monitored by a fixed point camera (not shown), and Category A or Non-Category A (Category B ⁇ Any one of E) may be switched.
  • the individual information Ii includes the airframe classification Sp of the drone 26.
  • the first type is an aircraft for private use (for example, commercial delivery, commercial photography).
  • the second type is, for example, a general public-use aircraft (for example, patrol monitoring by the police).
  • the third type is, for example, an emergency public use aircraft (for example, disaster response, lifesaving, crime response).
  • Airframe classification Sp may be other than the above.
  • the flight of the drone 26 is prohibited. In other words, it is not selected as the planned route RTp.
  • the flight of the drone 26 is permitted under certain conditions. In other words, only when the condition is satisfied, it can be selected as the scheduled route RTp.
  • the condition mentioned here is, for example, a condition that the planned route RTp when detouring the geographical unit section Su is a distance X times the planned route RTp when passing the geographical unit section Su.
  • X is set as a fixed value of 1.5 to 3.0, for example.
  • the drone 26 is allowed to fly without restriction. In other words, the scheduled route RTp can be selected without limitation.
  • the service server 22 can select a candidate geographic unit segment Su that can be selected as the planned route RTp (hereinafter referred to as “candidate”) based on the combination of the individual information Ii (airframe segment Sp) and the unit segment information Isu (geographic unit segment Su). “Unit division candidate Suop”). Then, the service server 22 calculates a planned route RTp that passes through the unit category candidate Suop.
  • FIG. 4 is a diagram illustrating an example of a scene in which the planned route RTp is set in the first embodiment.
  • the service server 22 sets the shortest aerial route RTp1 as the planned route RTp.
  • the airframe section Sp is the third type
  • the first area 200 belongs to the section C
  • the second area 202 around the first area 200 belongs to the section D.
  • the service server 22 sets, as the planned route RTp, the shortest route (the detour shortest route RTp2) that does not pass through the prohibited flight region among the route choices RTop to the departure point Pst and the delivery destination Pdtar. .
  • the service server 22 compares the first required flight distance Dnp1 of the shortest aerial route RTp1 with the second required flight distance Dnp2 of the detour shortest route RTp2. If the second required flight distance Dnp2 is equal to or greater than X times the first required flight distance Dnp1, the service server 22 selects the shortest air route RTp1 as the planned route RTp. On the other hand, when the second required flight distance Dnp2 is not greater than or equal to X times the first required flight distance Dnp1, the service server 22 selects the detour shortest route RTp2 as the planned route RTp.
  • FIG. 5 is a flowchart of flight monitoring control in the first embodiment. As described above, the flight monitoring control is control for monitoring the flight of the target drone 26tar, and is executed by the flight monitoring unit 70 of the service server 22.
  • the service server 22 acquires the current information Idcur of the target drone 26tar from the target drone 26tar.
  • the current information Idcur includes the current position Pdcur of the target drone 26tar.
  • step S72 the service server 22 determines whether or not the target drone 26tar has deviated from the planned route RTp. For example, when the distance Df of the target drone 26tar with respect to the virtual line indicating the planned route RTp is greater than or equal to the departure determination threshold THrtd, it is determined that the target drone 26tar has deviated from the planned route RTp.
  • the distance Df is defined by either a three-dimensional direction (front-rear direction, left-right direction, and up-down direction) or a two-dimensional direction (front-rear direction, left-right direction).
  • a three-dimensional direction front-rear direction, left-right direction, and up-down direction
  • a two-dimensional direction front-rear direction, left-right direction
  • step S73 If the target drone 26tar does not deviate from the planned route RTp (S72: FALSE), it is considered that the target drone 26tar is flying smoothly. In that case, the process returns to step S71.
  • step S73 the service server 22 reads unit classification information Isu (FIG. 3) as attribute information of the geographical unit classification Su to which the current position Pdcur of the target drone 26tar belongs from the first map DB 96.
  • step S74 the service server 22 reads the individual information Ii of the target drone 26tar from the mobile DB 94. As described above, the body information Sp is included in the individual information Ii.
  • step S75 the service server 22 takes a response according to the unit classification information Isu and the individual information Ii (handling control). Details of step S75 will be described later with reference to FIG.
  • FIG. 6 is an explanatory diagram of correspondence that the service management server 22 and the traffic management server 24 take when the target drone 26tar deviates from the planned route RTp in the first embodiment.
  • level 1, level 2, and level 3 are provided as corresponding levels.
  • the service server 22 (notification unit 80) orders that the target drone 26tar has deviated from the planned route RTp (level 1) and orders the traffic management server 24 and the product G delivered by the target drone 26tar.
  • the service server 22 transmits a route departure signal Srtd for notifying that the departure has occurred to the traffic server 24 and the ordering terminal 20odr.
  • the service server 22 transmits the first alarm command Sal1 to the target drone 26tar.
  • the target drone 26tar that has received the first warning command Sal1 blinks the lamp 138 and outputs a warning sound from the first speaker 140. Thereby, it is possible to warn people around the target drone 26tar.
  • the service server 22 resets the scheduled route RTp of the drone 26 (peripheral drone 26 sur) existing around the target drone 26 tar so as to be away from the target drone 26 tar.
  • the traffic server 24 that has received the route departure signal Srtd (level 1) transmits the second alarm command signal Sal2 and the third alarm command signal Sal3 to the external alarm device 28 and the peripheral terminal 30.
  • the external alarm device 28 that has received the second alarm command signal Sal2 outputs a warning sound via the second speaker 170.
  • the peripheral terminal 30 that has received the third alarm command signal Sal3 outputs a warning sound via the third speaker 180 and outputs a warning display on the display unit 182.
  • the traffic server 24 records in the mobile DB 94 and the delivery DB 98 that the target drone 26tar has deviated from the planned route RTp (level 1).
  • the customer terminal 20 order terminal 20odr
  • the level 1 corresponds to the case where the airframe section Sp is the first type and the geographical unit section Su is any one of the sections A to C, and the airframe section Sp is the second type and the geographical unit section Su. Is a category A (FIG. 6).
  • the service server 22 (notification unit 80) notifies the traffic management server 24 and the ordering terminal 20odr that the target drone 26tar has deviated from the planned route RTp (level 2).
  • the traffic server 24 that has received the level 2 notification from the service server 22 focuses on the target drone 26tar.
  • the traffic server 24 directly communicates with the target drone 26tar and monitors the current position Pdcur of the target drone 26tar by itself. Further, the traffic server 24 records in the mobile DB 94 and the delivery DB 98 that the target drone 26tar has deviated from the planned route RTp (level 2).
  • the ordering terminal 20odr that has received the route departure signal Srtd (level 2) displays the content of the route departure signal Srtd (level 2) on the display unit.
  • the airframe division Sp is the first type and the geographical unit division Su is the division D
  • the airframe division Sp is the second type and the geographical unit division Su is the division B or C.
  • the aircraft section Sp is the third type and the geographical unit section Su is the section A or B.
  • the service server 22 (notification unit 80) notifies the traffic management server 24 and the ordering terminal 20odr that the target drone 26tar has deviated from the planned route RTp (level 3).
  • the traffic server 24 that has received the level 3 notification from the service server 22 records in the mobile DB 94 and the delivery DB 98 that the target drone 26tar has deviated from the planned route RTp (level 3).
  • the ordering terminal 20odr Upon receiving the route departure signal Srtd (level 3), the ordering terminal 20odr displays the content of the route departure signal Srtd (level 3) on the display unit.
  • the level 3 corresponds to the case where the airframe division Sp is the first type and the geographical unit division Su is the division E, and the airframe division Sp is the second type and the geographical unit division Su is the division D or E. Is the case where the airframe section Sp is the third type and the geographical unit section Su is any one of the sections C to E.
  • FIG. 7 is a flowchart of emergency response control in the first embodiment.
  • emergency response control is control in which the traffic management server 24 responds when an emergency situation occurs in the drone 26 (target drone 26tar) in flight, and the emergency response unit 110 of the traffic server 24 Execute.
  • the traffic server 24 determines whether or not the route departure signal Srtd has been received from the service server 22.
  • the process proceeds to step S92.
  • the route departure signal Srtd is not received (S91: FALSE)
  • the emergency response control is terminated, and the process returns to step S91 after a predetermined time has elapsed.
  • step S92 the traffic server 24 determines whether or not the level indicated by the route departure signal Srtd is level 1 (see FIG. 6). When the level is 1 (S92: TRUE), in step S93, the traffic server 24 transmits the second alarm command signal Sal2 to the external alarm device 28 and the third alarm command signal Sal3 to the peripheral terminal 30. If it is not level 1 (S92: FALSE), the process proceeds to step S94.
  • step S94 the traffic server 24 determines whether or not the level indicated by the route departure signal Srtd is level 2 (see FIG. 6). If it is level 2 (S94: TRUE), in step S95, the traffic server 24 focuses on the target drone 26tar. When it is not level 2 (S94: FALSE), the level indicated by the route departure signal Srtd is level 3 (see FIG. 6). In this case, the process proceeds to step S96.
  • step S96 the traffic server 24 records in the mobile DB 94 and the delivery DB 98 that the target drone 26tar has deviated from the planned route RTp and its level (any of levels 1 to 3).
  • the service server 22 (movement management unit 32) Corresponding to the target drone 26tar is commanded according to the unit division information Isu (attribute information of the geographical unit division Su) and the individual information Ii (S75 in FIG. 5, FIG. 6). Accordingly, it is possible to appropriately cope with an event Ev in which the target drone 26tar itself cannot maintain the planned route RTp.
  • the management system 10 sends a customer terminal 20 (external device) that requests delivery (movement) of the target drone 26tar (first autonomous mobile body) to the service server 22 (movement management unit 32).
  • a customer terminal 20 external device
  • the service server 22 causes the customer terminal 20 to respond to the occurrence of the event Ev or the response control by the response control.
  • Notifying FIG. 6
  • the customer (user) who has recognized the notification via the customer terminal 20 can provide an additional service according to the content notified in response to the occurrence of the event Ev.
  • the service server 22 moves around the target drone 26tar so as to leave the target drone 26tar (FIG. 6).
  • the planned route RTp of the peripheral drone 26sur can be changed in accordance with the movement of the target drone 26tar.
  • FIG. 8 is a flowchart of the flight monitoring control in the second embodiment.
  • the flight monitoring control is control for monitoring the flight of the target drone 26tar, and is executed by the flight monitoring unit 70 of the service server 22.
  • the determination as to whether or not the target drone 26tar has deviated from the planned route RTp is different from that in the first embodiment.
  • step S101 in FIG. 8 the service server 22 reads the erroneous correspondence history Her for the target drone 26tar from the delivery DB 98.
  • the erroneous correspondence history Her determines in the past flight monitoring control that the target drone 26tar (the same drone 26 as the target drone 26tar in the current flight monitoring control) has deviated from the planned route RTp (S104 in FIG. 8: TRUE). Nevertheless, it is a history indicating that there was no actual departure.
  • the erroneous correspondence history Her is recorded in the delivery DB 98 by the administrator of the service server 22 when the erroneous correspondence is found.
  • step S102 the service server 22 sets the departure determination threshold value THrtd of the planned route RTp according to the erroneous handling history Her.
  • the deviation determination threshold value THrtd is set so that it is difficult to determine that the deviation has occurred as the number of erroneous correspondence histories Her increases.
  • Steps S103, S104, S105, S106, and S107 are the same as steps S71, S72, S73, S74, and S75 in FIG.
  • the service server 22 (movement management unit 32) sets the erroneous correspondence history Her as the history of the event Ev that has deviated or changed the planned route RTp to the target drone 26tar (first autonomous mobile body).
  • the response to be commanded to the target drone 26tar when the event Ev occurs is changed (S101 to S107 in FIG. 8). Accordingly, it is possible to more appropriately cope with a case where an event Ev that deviates or changes the planned route RTp occurs in the target drone 26tar.
  • the drone 26 of the first embodiment was for delivery (FIGS. 1 and 2).
  • the present invention is not limited to this.
  • the drone 26 can be used for applications such as transportation of people, emergency use, photography, advertisement, security monitoring, surveying, entertainment, personal hobbies, and the like.
  • the emergency use includes, for example, disaster response, lifesaving or crime response.
  • the entertainment includes, for example, music concerts, sports or festivals. The same applies to the second embodiment.
  • the present invention is applied to the drone 26 (FIGS. 1 and 2).
  • the present invention may be applied to another type of flying object or autonomous moving object.
  • the present invention can be applied to an autonomous vehicle, a helicopter, or a ship. The same applies to the second embodiment.
  • the mobility management unit 32 of the first embodiment includes a service server 22 and a traffic management server 24 (FIG. 1).
  • the movement management unit 32 may be configured only from the service server 22.
  • a plurality of local control servers arranged for each predetermined area and managing the flight of the drone 26 can be provided.
  • command with respect to the drone 26 from the service server 22 may be transmitted via a local control server. The same applies to the second embodiment.
  • the service server 22 of the first embodiment managed the delivery (flight) of the drone 26 (FIGS. 1 and 2).
  • the present invention is not limited to this.
  • delivery of an autonomous vehicle, helicopter or ship may be managed. The same applies to the second embodiment.
  • the service server 22 of the first embodiment managed the delivery of the product G (FIG. 1).
  • the present invention is not limited to this.
  • the service server 22 may manage uses such as transportation of people, emergency use, shooting, advertisement, security monitoring, surveying, entertainment, personal hobbies, and the like. The same applies to the second embodiment.
  • the first map DB 96 and the moving body DB 94 are arranged on the service server 22 (FIG. 1).
  • the present invention is not limited to this.
  • the first map DB 96 or the moving body DB 94 can be provided outside the service server 22 (for example, the cloud or the traffic server 24).
  • two correspondences including notification to the traffic server 24 and notification to the customer terminal 20 are performed as correspondences of the level 2 and the level 3 (S75 in FIG. 5, FIG. 6).
  • the present invention is not limited to this. For example, only one of these two can be performed. The same applies to the second embodiment.
  • the content of the countermeasure control is determined based on the unit division Su of the unit division information Isu and the airframe division Sp of the individual information Ii. Selected ( Figure 6).
  • the present invention is not limited to this.
  • the content of the countermeasure control may be selected according to the degree of deviation of the target drone 26tar or the degree of emergency situation. The same applies to the second embodiment.
  • the route guidance of the target drone 26tar is not included in the response performed by the service server 22 and the traffic server 24. (FIG. 6).
  • the service server 22 or the traffic server 24 can also guide the route of the target drone 26tar.
  • the second alarm command signal Sal2 and the third alarm command signal Sal3 to the external alarm device 28 and the peripheral terminal 30 are transmitted from the traffic server 24 (S93 in FIGS. 6 and 7).
  • the present invention is not limited to this.
  • the traffic server 24 instead of the traffic server 24, it is also possible to transmit the second alarm command signal Sal2 and the third alarm command signal Sal3 from the service server 22 to the external alarm device 28 and the peripheral terminal 30. The same applies to the second embodiment.
  • the execution subject of the flight monitoring control (FIG. 5) is the service server 22.
  • the present invention is not limited to this.
  • the traffic server 24 or the target drone 26tar can perform flight monitoring control (including coping control). The same applies to the second embodiment.
  • the target drone 26tar itself performs flight monitoring control
  • the following is performed. That is, when the target drone 26tar determines that he / she has deviated from the planned route RTp (S72 in FIG. 5: TRUE) or before that, the unit as attribute information of the geographical unit section Su to which his current position Pdcur belongs The division information Isu and its own individual information Ii are acquired. Then, the target drone 26tar performs countermeasure control based on the unit division information Isu and the individual information Ii.

Abstract

Provided are: a management system capable of suitably managing the movement of an autonomous moving body in consideration of factors such as an attribute of the autonomous moving body; and a method for controlling the same. A management system (10), wherein when a first autonomous moving body (26tar) experiences an event (Ev) of changing or deviating from a planned route (RTp), a movement management unit (32) includes a countermeasure control unit (70) for executing countermeasure control to carry out a response that corresponds to unit classification information (Isu), which is attribute information for a geographical unit classification to which the current position (Pdcur) of the first autonomous moving body (26tar) belongs, and individual information (Ii) for the first autonomous moving body (26tar).

Description

移動体の管理システム及びその制御方法、管理サーバ並びに自律移動体Mobile body management system and control method thereof, management server, and autonomous mobile body
 本発明は、複数の移動体の移動を管理する管理システム及びその制御方法、管理サーバ並びに自律移動体に関する。 The present invention relates to a management system that manages the movement of a plurality of moving bodies, a control method therefor, a management server, and an autonomous moving body.
 米国特許出願公開第2015/0339931号明細書では、飛行制限区域に応じた飛行が可能なシステム、方法及び装置が開示されている(要約)。米国特許出願公開第2015/0339931号明細書では、無人飛行体(UAV:unmanned aerial vehicle)の位置が、飛行制限区域と比較される。必要に応じて、UAVは、飛行禁止区域への進入を回避するための対応を取る。 US Patent Application Publication No. 2015/0339931 discloses a system, method and apparatus capable of flying according to a flight restricted area (summary). In US 2015/0339931, the position of an unmanned vehicle (UAV) is compared to a flight restricted area. If necessary, the UAV takes action to avoid entry into the no-fly zone.
 上記のように、米国特許出願公開第2015/0339931号明細書では、UAVの位置を飛行制限区域と比較し、必要に応じて、UAVは、飛行禁止区域への進入を回避するための対応を取る(要約)。しかしながら、米国特許出願公開第2015/0339931号明細書では、飛行体の属性については考慮されていない。また、米国特許出願公開第2015/0339931号明細書では、飛行体に予定経路を外れる又は変更するイベントが発生した場合についても考慮されていない。これらの課題は、飛行体に限らず、自律的な移動を行うその他の自律移動体(自動車、船舶等)にも該当する。 As described above, U.S. Patent Application Publication No. 2015/0339931 compares the location of the UAV with the flight restricted area and, if necessary, the UAV takes action to avoid entering the no-fly zone. Take (summary). However, US Patent Application Publication No. 2015/0339931 does not consider the attributes of the flying object. In addition, US Patent Application Publication No. 2015/0339931 does not take into consideration a case where an event that causes a departure or a change in the planned route occurs in the flying object. These issues apply not only to flying objects but also to other autonomous moving objects (automobiles, ships, etc.) that perform autonomous movement.
 本発明は上記のような課題を考慮してなされたものであり、自律移動体の属性等を考慮して、自律移動体の移動を好適に管理することが可能な管理システム及びその制御方法、管理サーバ並びに自律移動体を提供することを目的とする。 The present invention has been made in consideration of the above-described problems, a management system capable of suitably managing the movement of the autonomous mobile body in consideration of the attributes of the autonomous mobile body, and the control method thereof, It aims at providing a management server and an autonomous mobile body.
 本発明に係る管理システムは、
  出発地から目的地まで移動するための自律制御部を備えた第1自律移動体と、
  通信装置を介して前記第1自律移動体と通信し、前記第1自律移動体を含む複数の移動体の移動を管理する移動管理部と
 を備えるものであって、
 前記移動管理部は、前記第1自律移動体に予定経路を外れる又は変更するイベントが発生した場合、前記第1自律移動体の現在位置が属する地理的な単位区分の属性情報である単位区分情報と、前記第1自律移動体の個体情報とに応じた対応を行う対処制御を実行する対処制御部を含む
 ことを特徴とする。
The management system according to the present invention includes:
A first autonomous mobile body having an autonomous control unit for moving from the departure place to the destination;
A communication unit that communicates with the first autonomous mobile body via a communication device, and manages a movement of a plurality of mobile bodies including the first autonomous mobile body,
The movement management unit is unit classification information that is attribute information of a geographical unit classification to which a current position of the first autonomous moving body belongs when an event that deviates or changes a planned route occurs in the first autonomous moving body. And a countermeasure control unit that executes countermeasure control for performing correspondence according to the individual information of the first autonomous mobile body.
 本発明によれば、第1自律移動体に予定経路を外れる又は変更するイベントが発生した場合、移動管理部は、第1自律移動体の現在位置が属する地理的な単位区分の属性情報である単位区分情報と、第1自律移動体の個体情報とに応じた対応を行う対処制御を実行する。これにより、第1自律移動体に予定経路を外れる又は変更するイベントが発生した場合に、好適に対応することが可能となる。 According to the present invention, when an event that deviates or changes the planned route occurs in the first autonomous mobile body, the movement management unit is attribute information of the geographical unit section to which the current position of the first autonomous mobile body belongs. Countermeasure control is performed to perform correspondence according to the unit classification information and the individual information of the first autonomous mobile body. Thereby, it becomes possible to respond appropriately when an event that deviates or changes the planned route occurs in the first autonomous mobile body.
 前記第1自律移動体自身では前記予定経路を維持できない前記イベントが発生した場合、前記移動管理部は、前記単位区分情報と前記個体情報とに応じて、前記第1自律移動体の対応を指令してもよい。これにより、第1自律移動体自体では予定経路を維持できないイベントが発生した場合に好適に対応可能となる。 When the event that the first autonomous mobile body itself cannot maintain the planned route occurs, the movement management unit commands the correspondence of the first autonomous mobile body according to the unit classification information and the individual information May be. Thereby, it becomes possible to appropriately cope with an event in which the first autonomous mobile body itself cannot maintain the planned route.
 前記管理システムは、前記移動管理部に対して、前記第1自律移動体の移動を要求する外部機器を備えてもよい。また、前記移動管理部は、前記第1自律移動体に前記予定経路を外れる又は変更する前記イベントが発生した場合、前記イベントの発生又は前記対処制御による前記対応を、前記外部機器に通知する通知部を有してもよい。これにより、外部機器を介して当該通知を認識したユーザは、イベントの発生に伴って通知された内容に応じた付加的なサービスを提供可能となる。 The management system may include an external device that requests the movement management unit to move the first autonomous moving body. In addition, when the event that deviates or changes the planned route occurs in the first autonomous mobile body, the movement management unit notifies the external device of the occurrence of the event or the response by the countermeasure control. You may have a part. As a result, the user who has recognized the notification via the external device can provide an additional service according to the content notified when the event occurs.
 前記移動管理部は、前記第1自律移動体が前記予定経路を外れた又は変更した前記イベントの履歴に応じて、前記イベントの発生時に前記第1自律移動体に対して指令する前記対応を変化させてもよい。これにより、第1自律移動体に予定経路を外れる又は変更するイベントが新たに発生した場合に、さらに好適に対応することが可能となる。 The movement management unit changes the response commanded to the first autonomous mobile body when the event occurs, according to a history of the event in which the first autonomous mobile body has deviated or changed the planned route. You may let them. Thereby, it becomes possible to cope more appropriately when an event that deviates or changes the planned route occurs in the first autonomous mobile body.
 前記第1自律移動体に前記予定経路を外れる又は変更する前記イベントが発生した場合、前記移動管理部は、前記第1自律移動体の周辺を移動している第2自律移動体の予定経路を、前記第1自律移動体から離れるように再設定してもよい。これにより、第1自律移動体の動きに合わせて、第2自律移動体の予定経路を変化させることが可能となる。 When the event that deviates or changes the planned route occurs in the first autonomous mobile body, the movement management unit determines the planned route of the second autonomous mobile body that is moving around the first autonomous mobile body. It may be reset so as to leave the first autonomous mobile body. Thereby, the planned route of the second autonomous mobile body can be changed in accordance with the movement of the first autonomous mobile body.
 本発明に係る管理システムの制御方法は、
  出発地から目的地まで移動するための自律制御部を備えた第1自律移動体と、
  通信装置を介して前記第1自律移動体と通信し、前記第1自律移動体を含む複数の移動体の移動を管理する移動管理部と
 を備える管理システムの制御方法であって、
 前記第1自律移動体に予定経路を外れる又は変更するイベントが発生した場合、前記移動管理部は、前記第1自律移動体の現在位置が属する地理的な単位区分の属性情報である単位区分情報と、前記第1自律移動体の個体情報とに応じた対応を、前記第1自律移動体に対して指令する
 ことを特徴とする。
The control method of the management system according to the present invention includes:
A first autonomous mobile body having an autonomous control unit for moving from the departure place to the destination;
A control method for a management system comprising: a movement management unit that communicates with the first autonomous mobile body via a communication device and manages movement of a plurality of mobile bodies including the first autonomous mobile body,
When an event occurs in the first autonomous mobile body that deviates or changes the planned route, the movement management unit is unit classification information that is attribute information of a geographical unit classification to which the current position of the first autonomous mobile body belongs And a command corresponding to the individual information of the first autonomous mobile body is directed to the first autonomous mobile body.
 本発明に係る管理サーバは、出発地から目的地まで移動するための自律制御部を備えた第1自律移動体と通信し、前記第1自律移動体を含む複数の移動体の移動を管理するものであって、
 前記管理サーバは、前記第1自律移動体に予定経路を外れる又は変更するイベントが発生した場合、前記第1自律移動体の現在位置が属する地理的な単位区分の属性情報である単位区分情報と、前記第1自律移動体の個体情報とに応じた対応を行う対処制御を実行する対処制御部を含む
 ことを特徴とする。
The management server which concerns on this invention communicates with the 1st autonomous mobile body provided with the autonomous control part for moving from a departure place to the destination, and manages the movement of the several mobile body containing the said 1st autonomous mobile body And
The management server, when an event that deviates or changes a planned route occurs in the first autonomous mobile body, unit classification information that is attribute information of a geographical unit classification to which the current position of the first autonomous mobile body belongs, And a coping control unit that executes coping control for performing the coping according to the individual information of the first autonomous mobile body.
 本発明に係る自律移動体は、出発地から目的地まで移動するための自律制御部を備えたものであって、
 前記自律制御部は、前記自律移動体に予定経路を外れる又は変更するイベントが発生した場合、前記自律移動体の現在位置が属する地理的な単位区分の属性情報である単位区分情報と、前記自律移動体の個体情報とに応じた対応を行う対処制御を実行する対処制御部を含む
 ことを特徴とする。
The autonomous mobile body according to the present invention includes an autonomous control unit for moving from a departure place to a destination,
The autonomous control unit, when an event that deviates or changes a planned route occurs in the autonomous mobile body, unit classification information that is attribute information of a geographical unit classification to which the current position of the autonomous mobile body belongs, It includes a countermeasure control unit that executes countermeasure control for performing correspondence in accordance with individual information of a moving object.
 本発明によれば、自律移動体の属性等を考慮して、自律移動体の移動を好適に管理することが可能となる。 According to the present invention, it is possible to suitably manage the movement of the autonomous mobile body in consideration of the attributes of the autonomous mobile body.
本発明の第1実施形態に係る管理システムの概要を示す全体構成図である。It is a whole lineblock diagram showing the outline of the management system concerning a 1st embodiment of the present invention. 第1実施形態において、顧客から発注された商品を、ドローンで配達する際の概要を示すフローチャートである。In 1st Embodiment, it is a flowchart which shows the outline | summary at the time of delivering the goods ordered from the customer with a drone. 第1実施形態における対象ドローンの予定経路の設定を説明するための図である。It is a figure for demonstrating the setting of the plan path | route of the object drone in 1st Embodiment. 第1実施形態における予定経路を設定する場面の例を示す図である。It is a figure which shows the example of the scene which sets the planned path | route in 1st Embodiment. 第1実施形態における飛行監視制御のフローチャートである。It is a flowchart of the flight monitoring control in 1st Embodiment. 第1実施形態において、前記対象ドローンが前記予定経路から逸脱した場合にサービス管理サーバ及び交通管理サーバが取る対応の説明図である。In 1st Embodiment, it is explanatory drawing of the response | compatibility which a service management server and a traffic management server take when the said target drone deviates from the said plan route. 第1実施形態における緊急対応制御のフローチャートである。It is a flowchart of emergency response control in a 1st embodiment. 第2実施形態における飛行監視制御のフローチャートである。It is a flowchart of the flight monitoring control in 2nd Embodiment.
A.第1実施形態
<A-1.構成>
[A-1-1.全体構成]
 図1は、本発明の第1実施形態に係る管理システム10の概要を示す全体構成図である。管理システム10は、複数の顧客端末20と、少なくとも1台のサービス管理サーバ22(以下「サービスサーバ22」ともいう。)と、少なくとも1台の交通管理サーバ24(以下「交通サーバ24」ともいう。)と、複数のドローン26と、複数の外部警報装置28と、複数の周辺端末30とを有する。サービスサーバ22と交通サーバ24は、移動管理部32を構成する。図1では、1つの顧客端末20、サービスサーバ22、交通サーバ24、外部警報装置28、周辺端末30のみを示している。
A. First Embodiment <A-1. Configuration>
[A-1-1. overall structure]
FIG. 1 is an overall configuration diagram showing an overview of a management system 10 according to the first embodiment of the present invention. The management system 10 includes a plurality of customer terminals 20, at least one service management server 22 (hereinafter also referred to as “service server 22”), and at least one traffic management server 24 (hereinafter also referred to as “traffic server 24”). )), A plurality of drones 26, a plurality of external alarm devices 28, and a plurality of peripheral terminals 30. The service server 22 and the traffic server 24 constitute a movement management unit 32. In FIG. 1, only one customer terminal 20, service server 22, traffic server 24, external alarm device 28, and peripheral terminal 30 are shown.
 管理システム10では、顧客端末20を介して入力された商品Gの発注情報Iodrに基づいて、ドローン26(以下「対象ドローン26tar」ともいう。)が商品Gを配送する。また、管理システム10では、対象ドローン26tarに予定経路RTpを外れるイベントEvが発生した場合、対象ドローン26tarと、対象ドローン26tarの周辺に位置する外部警報装置28及び周辺端末30とを介して周辺の人々に通知等が行われる。 In the management system 10, the drone 26 (hereinafter also referred to as “target drone 26tar”) delivers the merchandise G based on the order information Iodr of the merchandise G input via the customer terminal 20. Further, in the management system 10, when an event Ev that deviates from the planned route RTp occurs in the target drone 26tar, the surrounding area is connected via the target drone 26tar and the external alarm device 28 and the peripheral terminal 30 located around the target drone 26tar. Notifications are made to people.
 顧客端末20とサービスサーバ22の間、サービスサーバ22と交通サーバ24の間は、インターネット50を介して通信可能である。また、サービスサーバ22とドローン26の間、交通サーバ24と外部警報装置28の間、交通サーバ24と周辺端末30の間は、インターネット50及び無線中継局52を介して通信可能である。 Communication is possible between the customer terminal 20 and the service server 22 and between the service server 22 and the traffic server 24 via the Internet 50. Further, communication between the service server 22 and the drone 26, between the traffic server 24 and the external alarm device 28, and between the traffic server 24 and the peripheral terminal 30 is possible via the Internet 50 and the wireless relay station 52.
[A-1-2.顧客端末20]
 顧客端末20(外部機器)は、サービスサーバ22が取り扱う商品Gについて顧客からの発注を受け付ける外部機器である。顧客端末20は、例えば、パーソナルコンピュータ又はスマートフォンから構成される。
[A-1-2. Customer terminal 20]
The customer terminal 20 (external device) is an external device that accepts an order from a customer for the product G handled by the service server 22. The customer terminal 20 is comprised from a personal computer or a smart phone, for example.
[A-1-3.サービス管理サーバ22]
 サービス管理サーバ22は、特定の企業が管理するサーバであり、当該企業の受注管理、在庫管理及び配送管理を行う。受注管理では、顧客端末20からの発注(サービスの要求)を受け付ける。在庫管理では、商品Gの在庫管理を行う。配送管理では、商品Gの配送(複数のドローン26の移動)を管理する。図1に示すように、サービスサーバ22は、入出力部60と、通信部62と、演算部64と、記憶部66とを含む。
[A-1-3. Service management server 22]
The service management server 22 is a server managed by a specific company, and performs order management, inventory management, and delivery management of the company. In order management, an order (service request) from the customer terminal 20 is accepted. In inventory management, inventory management of the product G is performed. In delivery management, delivery of goods G (movement of a plurality of drones 26) is managed. As shown in FIG. 1, the service server 22 includes an input / output unit 60, a communication unit 62, a calculation unit 64, and a storage unit 66.
 通信部62は、インターネット50を介することで、顧客端末20、交通サーバ24、ドローン26等との通信が可能である。 The communication unit 62 can communicate with the customer terminal 20, the traffic server 24, the drone 26, and the like via the Internet 50.
 演算部64は、中央演算装置(CPU)を含み、記憶部66に記憶されているプログラムを実行することにより動作する。演算部64が実行する機能の一部は、ロジックIC(Integrated Circuit)を用いて実現することもできる。演算部64は、前記プログラムの一部をハードウェア(回路部品)で構成することもできる。本実施形態の演算部64は、ドローン26の飛行を監視する飛行監視制御を実行する飛行監視部70(対処制御部)を有する。また、飛行監視部70は、対象ドローン26tarが予定経路RTpを外れるイベントEvの発生又は対処制御(後述)による対応を、顧客端末20に通知する通知部80を有する。飛行監視制御については、図5及び図6を参照して後述する。 The calculation unit 64 includes a central processing unit (CPU) and operates by executing a program stored in the storage unit 66. A part of the function executed by the arithmetic unit 64 can also be realized by using a logic IC (Integrated) Circuit). The calculation unit 64 can also configure a part of the program with hardware (circuit parts). The calculation unit 64 of the present embodiment includes a flight monitoring unit 70 (a countermeasure control unit) that executes flight monitoring control for monitoring the flight of the drone 26. In addition, the flight monitoring unit 70 includes a notification unit 80 that notifies the customer terminal 20 of the occurrence of an event Ev in which the target drone 26tar deviates from the planned route RTp or the response by countermeasure control (described later). The flight monitoring control will be described later with reference to FIGS. 5 and 6.
 記憶部66は、演算部64が用いるプログラム及びデータを記憶するものであり、ランダム・アクセス・メモリ(以下「RAM」という。)を備える。RAMとしては、レジスタ等の揮発性メモリと、ハードディスク、フラッシュメモリ等の不揮発性メモリとを用いることができる。また、記憶部66は、RAMに加え、リード・オンリー・メモリ(ROM)を有してもよい。 The storage unit 66 stores a program and data used by the calculation unit 64 and includes a random access memory (hereinafter referred to as “RAM”). As the RAM, a volatile memory such as a register and a non-volatile memory such as a hard disk or a flash memory can be used. The storage unit 66 may include a read only memory (ROM) in addition to the RAM.
 記憶部66は、注文データベース90(以下「注文DB90」という。)と、在庫データベース92(以下「在庫DB92」という。)と、移動体データベース94(以下「移動体DB94」という。)と、第1地図データベース96(以下「第1地図DB96」という。)と、配送データベース98(以下「配送DB98」という。)とを有する。 The storage unit 66 includes an order database 90 (hereinafter referred to as “order DB 90”), an inventory database 92 (hereinafter referred to as “stock DB 92”), a mobile object database 94 (hereinafter referred to as “mobile object DB 94”), 1 map database 96 (hereinafter referred to as “first map DB 96”) and a delivery database 98 (hereinafter referred to as “delivery DB 98”).
 注文DB90は、各顧客端末20を介して受け付けた注文に関する情報(発注情報Iodr)を蓄積する。在庫DB92は、在庫に関する情報(在庫情報Istk)を蓄積する。移動体DB94は、配送に用いるドローン26の属性情報としての個体情報Iiを蓄積する。個体情報Iiは、例えば、ドローン26の識別情報(識別ID)、種類(小型、大型等)、最大積載重量、積載可能な荷物の最大寸法を含む。また、個体情報Iiは、積載可能な荷物の個数、最大利用可能人数、燃費、最高速度、稼働年数、総移動距離、移動体の現在位置のいずれか1つ又は複数を含んでもよい。後述するように、個体情報Iiには、機体区分Spも含まれる。 The order DB 90 accumulates information (order information Iodr) related to orders received via each customer terminal 20. The stock DB 92 accumulates information related to stock (stock information Istk). The mobile DB 94 accumulates individual information Ii as attribute information of the drone 26 used for delivery. The individual information Ii includes, for example, the identification information (identification ID) of the drone 26, the type (small, large, etc.), the maximum load weight, and the maximum size of the loadable load. In addition, the individual information Ii may include one or more of the number of loads that can be loaded, the maximum number of people that can be used, the fuel consumption, the maximum speed, the number of years of operation, the total moving distance, and the current position of the moving object. As will be described later, the individual information Ii also includes the airframe classification Sp.
 第1地図DB96は、ドローン26による配送を行うための地図情報(第1地図情報Imap1)を蓄積する。第1地図情報Imap1には、交通サーバ24による進入許可を要する進入制限領域の位置情報が含まれる。 The first map DB 96 accumulates map information (first map information Imap1) for delivery by the drone 26. The first map information Imap1 includes position information of an entry restriction area that requires entry permission by the traffic server 24.
 配送DB98は、注文を受けた商品Gの配送に関する情報(配送情報Idel)を蓄積する。配送情報Idelには、商品Gの配送を行うドローン26に関する情報も含まれる。 The delivery DB 98 stores information (delivery information Idel) related to delivery of the ordered product G. The delivery information Idel includes information related to the drone 26 that delivers the product G.
[A-1-4.交通管理サーバ24]
 交通管理サーバ24は、複数のドローン26の交通(飛行)に関する情報(交通情報It)を管理する。例えば、交通サーバ24は、ドローン26の飛行許可申請をサービスサーバ22から受信した場合、当該飛行許可申請を許可するか否かを判定し、判定結果に応じて許可又は不許可をサービスサーバ22に通知する。また、交通サーバ24は、ドローン26に関する各種の情報をサービスサーバ22に通知する。
[A-1-4. Traffic management server 24]
The traffic management server 24 manages information (traffic information It) regarding traffic (flight) of the plurality of drones 26. For example, when the traffic server 24 receives a flight permission application for the drone 26 from the service server 22, the traffic server 24 determines whether or not to permit the flight permission application, and permits or does not permit the service server 22 according to the determination result. Notice. In addition, the traffic server 24 notifies the service server 22 of various information related to the drone 26.
 図1に示すように、交通管理サーバ24は、入出力部100と、通信部102と、演算部104と、記憶部106とを含む。通信部102は、インターネット50を介することで、サービスサーバ22、外部警報装置28、周辺端末30等との通信が可能である。 As shown in FIG. 1, the traffic management server 24 includes an input / output unit 100, a communication unit 102, a calculation unit 104, and a storage unit 106. The communication unit 102 can communicate with the service server 22, the external alarm device 28, the peripheral terminal 30, and the like via the Internet 50.
 演算部104は、CPUを含み、記憶部106に記憶されているプログラムを実行することにより動作する。演算部104が実行する機能の一部は、ロジックICを用いて実現することもできる。演算部104は、前記プログラムの一部をハードウェア(回路部品)で構成することもできる。 The calculation unit 104 includes a CPU and operates by executing a program stored in the storage unit 106. Some of the functions executed by the arithmetic unit 104 can also be realized using a logic IC. The calculation unit 104 can also configure a part of the program with hardware (circuit parts).
 図1に示すように、演算部104は、緊急対応制御を実行する緊急対応部110を有する。緊急対応制御は、飛行中のドローン26に緊急事態が発生した場合に交通サーバ24側で対応を取る制御である。 As shown in FIG. 1, the calculation unit 104 includes an emergency response unit 110 that executes emergency response control. The emergency response control is control in which a response is taken on the traffic server 24 side when an emergency occurs in the drone 26 in flight.
 記憶部106は、演算部104が用いるプログラム及びデータを記憶するものであり、RAMを備える。また、記憶部106は、RAMに加え、ROMを有してもよい。記憶部106は、第2地図データベース120(以下「第2地図DB120」という。)と、飛行スケジュールデータベース112(以下「飛行スケジュールDB122」という。)と、飛行履歴データベース124(以下「飛行履歴DB124」という。)を有する。 The storage unit 106 stores programs and data used by the arithmetic unit 104 and includes a RAM. The storage unit 106 may include a ROM in addition to the RAM. The storage unit 106 includes a second map database 120 (hereinafter referred to as “second map DB 120”), a flight schedule database 112 (hereinafter referred to as “flight schedule DB 122”), and a flight history database 124 (hereinafter referred to as “flight history DB 124”). Said).
 第2地図DB120は、ドローン26の交通(飛行)に関する地図情報(第2地図情報Imap2)を蓄積する。飛行スケジュールDB122は、各ドローン26の飛行スケジュールに関する情報(飛行スケジュール情報Isc)を蓄積する。飛行履歴DB124は、各ドローン26の飛行履歴に関する情報(飛行履歴情報Ifh)を蓄積する。 2nd map DB120 accumulate | stores the map information (2nd map information Imap2) regarding the traffic (flight) of the drone 26. FIG. The flight schedule DB 122 stores information related to the flight schedule of each drone 26 (flight schedule information Isc). The flight history DB 124 accumulates information (flight history information Ifh) regarding the flight history of each drone 26.
[A-1-5.ドローン26]
(A-1-5-1.ドローン26の概要)
 本実施形態のドローン26(自律移動体)は、商品配送用であり、インターネット50及び無線中継局52を介してサービスサーバ22から受信した配送指令(飛行指令)に応じて出発地Pst(図示しない倉庫等)から配送目的地Pdtarまで商品Gを配送する。後述するように、ドローン26はその他の用途で用いてもよい。
[A-1-5. Drone 26]
(A-1-5-1. Outline of drone 26)
The drone 26 (autonomous mobile body) of the present embodiment is for merchandise delivery, and is based on a departure command Pst (not shown) according to a delivery command (flight command) received from the service server 22 via the Internet 50 and the wireless relay station 52. The goods G are delivered from the warehouse etc. to the delivery destination Pdtar. As will be described later, the drone 26 may be used for other purposes.
 図1に示すように、ドローン26は、ドローンセンサ群130と、通信装置132と、ドローン制御装置134と、プロペラ駆動部136と、ランプ138と、第1スピーカ140とを有する。 As shown in FIG. 1, the drone 26 includes a drone sensor group 130, a communication device 132, a drone control device 134, a propeller drive unit 136, a lamp 138, and a first speaker 140.
(A-1-5-2.ドローンセンサ群130)
 ドローンセンサ群130は、グローバル・ポジショニング・システム・センサ150(以下「GPSセンサ150」という。)と、速度計152と、高度計154と、ジャイロセンサ156と、カメラ158等を有する。
(A-1-5-2. Drone sensor group 130)
The drone sensor group 130 includes a global positioning system sensor 150 (hereinafter referred to as “GPS sensor 150”), a speedometer 152, an altimeter 154, a gyro sensor 156, a camera 158, and the like.
 GPSセンサ150は、ドローン26の現在位置Pdcurを検出する。速度計152は、ドローン26の飛行速度Vd[km/h]を検出する。高度計154は、ドローン26下方の地面に対する距離としての対地高度H(以下「高度H」という。)[m]を検出する。ジャイロセンサ156は、ドローン26の角速度ω[rad/sec]を検出する。角速度ωは、上下軸に対する角速度Y(ヨーY)と、左右軸に対する角速度P(ピッチP)と、前後軸に対する角速度R(ロールR)とを含む。 The GPS sensor 150 detects the current position Pdcur of the drone 26. The speedometer 152 detects the flight speed Vd [km / h] of the drone 26. The altimeter 154 detects a ground altitude H (hereinafter referred to as “altitude H”) [m] as a distance to the ground below the drone 26. The gyro sensor 156 detects the angular velocity ω [rad / sec] of the drone 26. The angular velocity ω includes an angular velocity Y (yaw Y) with respect to the vertical axis, an angular velocity P (pitch P) with respect to the horizontal axis, and an angular velocity R (roll R) with respect to the longitudinal axis.
 カメラ158は、ドローン26の本体の下部に配置され、ドローン26の画像Id(以下「ドローン画像Id」ともいう。)を取得する。カメラ158は、動画を撮影するビデオカメラである。或いは、カメラ158は、動画及び静止画の両方又は静止画のみを撮影可能としてもよい。カメラ158は、図示しないカメラアクチュエータにより向き(ドローン26の本体に対するカメラ158の姿勢)を調整可能である。或いは、カメラ158は、ドローン26の本体に対する位置が固定されてもよい。 The camera 158 is arranged at the lower part of the main body of the drone 26 and acquires an image Id of the drone 26 (hereinafter also referred to as “drone image Id”). The camera 158 is a video camera that captures moving images. Alternatively, the camera 158 may be able to capture both moving images and still images, or only still images. The direction of the camera 158 (the posture of the camera 158 with respect to the main body of the drone 26) can be adjusted by a camera actuator (not shown). Alternatively, the position of the camera 158 with respect to the main body of the drone 26 may be fixed.
(A-1-5-3.通信装置132)
 通信装置132は、無線中継局52等との電波通信が可能であり、例えば、電波通信モジュールを含む。通信装置132は、無線中継局52及びインターネット50を介することでサービスサーバ22等との通信が可能である。
(A-1-5-3. Communication device 132)
The communication device 132 can perform radio wave communication with the wireless relay station 52 and the like, and includes, for example, a radio wave communication module. The communication device 132 can communicate with the service server 22 and the like via the wireless relay station 52 and the Internet 50.
(A-1-5-4.ドローン制御装置134)
 ドローン制御装置134(自律制御部)は、ドローン26の飛行、撮影等、ドローン26全体を制御する。ドローン制御装置134は、ドローン26を出発地Pstから目的地Ptarまで自律的に移動(飛行)させる。ドローン制御装置134は、図示しない入出力部、演算部及び記憶部を含む。
(A-1-5-4. Drone control device 134)
The drone control device 134 (autonomous control unit) controls the entire drone 26 such as flight and shooting of the drone 26. The drone control device 134 autonomously moves (flies) the drone 26 from the departure point Pst to the destination Ptar. The drone control device 134 includes an input / output unit, a calculation unit, and a storage unit (not shown).
(A-1-5-5.プロペラ駆動部136)
 プロペラ駆動部136は、複数のプロペラと、複数のプロペラアクチュエータとを有する。プロペラアクチュエータは、例えば電動モータを有する。
(A-1-5-5. Propeller drive 136)
The propeller drive unit 136 includes a plurality of propellers and a plurality of propeller actuators. The propeller actuator has, for example, an electric motor.
(A-1-5-6.ランプ138)
 ランプ138は、ドローン26の本体の下面に配置されて、ドローン26の下方に可視光を照射する。可視光は、ドローン26の周囲への警告光として用いられる(詳細は後述する。)。
(A-1-5-6. Lamp 138)
The lamp 138 is disposed on the lower surface of the main body of the drone 26 and irradiates visible light below the drone 26. The visible light is used as warning light to the surroundings of the drone 26 (details will be described later).
(A-1-5-7.第1スピーカ140)
 第1スピーカ140は、ドローン26の本体の下面に配置されて、ドローン26の下方への出力音を生成する。出力音は、ドローン26の周囲への警告音として用いられる(詳細は後述する。)。
(A-1-5-7. First speaker 140)
The first speaker 140 is disposed on the lower surface of the main body of the drone 26 and generates an output sound downward from the drone 26. The output sound is used as a warning sound around the drone 26 (details will be described later).
[A-1-6.外部警報装置28]
 外部警報装置28は、対象ドローン26tarに予定経路RTpを外れる又は変更するイベントEvが発生した場合、交通サーバ24(移動管理部32)からの指令に基づいて、外部警報装置28の周辺の人々に通知等を行う。通知等を行う外部警報装置28は、予定経路RTpを外れるイベントEvが発生した対象ドローン26tarの周辺に存在するものである。外部警報装置28は、例えば街中に配置された第2スピーカ170等を含む。
[A-1-6. External alarm device 28]
When an event Ev that deviates or changes the planned route RTp occurs in the target drone 26tar, the external alarm device 28 notifies people around the external alarm device 28 based on a command from the traffic server 24 (movement management unit 32). Make notifications. The external alarm device 28 that performs notification or the like is present around the target drone 26tar where the event Ev that deviates from the planned route RTp has occurred. The external alarm device 28 includes, for example, a second speaker 170 disposed in the city.
[A-1-7.周辺端末30]
 周辺端末30は、対象ドローン26tarに予定経路RTpを外れる又は変更するイベントEvが発生した場合、交通サーバ24(移動管理部32)からの指令に基づいて、周辺端末30の周辺の人々に通知等を行う。通知等を行う周辺端末30は、予定経路RTpを外れるイベントEvが発生した対象ドローン26tarの周辺に存在するものである。周辺端末30は、例えば、パーソナルコンピュータ又はスマートフォンから構成される。周辺端末30は、第3スピーカ180及び表示部182を含む。
[A-1-7. Peripheral terminal 30]
When the event Ev that deviates or changes the planned route RTp occurs in the target drone 26tar, the peripheral terminal 30 notifies the people around the peripheral terminal 30 based on a command from the traffic server 24 (movement management unit 32). I do. The peripheral terminal 30 that performs notification or the like is present around the target drone 26tar in which the event Ev that deviates from the planned route RTp has occurred. The peripheral terminal 30 is composed of, for example, a personal computer or a smartphone. Peripheral terminal 30 includes a third speaker 180 and a display unit 182.
<A-2.第1実施形態の制御>
[A-2-1.配達時の概要]
 図2は、第1実施形態において、顧客から発注された商品Gを、ドローン26で配達する際の概要を示すフローチャートである。図2では、大まかな流れのみを示していることに留意されたい。
<A-2. Control of First Embodiment>
[A-2-1. Outline at the time of delivery]
FIG. 2 is a flowchart showing an outline when the product G ordered from the customer is delivered by the drone 26 in the first embodiment. Note that in FIG. 2, only a rough flow is shown.
 ステップS11において、顧客端末20は、顧客の操作に応じて発注を受け付ける。具体的には、顧客端末20は、顧客の操作に応じて発注画面を表示部(図示せず)に表示する。発注画面のデータは、サービス管理サーバ22から取得したものである。また、発注画面を表示させるに当たり、サービスサーバ22は、発注対象の商品Gの在庫数を確認する。在庫切れの場合、サービスサーバ22は、その旨を併せて表示させる。発注があった場合、顧客端末20は、顧客からの発注を受け付けてサービス管理サーバ22に送信する。 In step S11, the customer terminal 20 accepts an order according to the customer's operation. Specifically, the customer terminal 20 displays an ordering screen on a display unit (not shown) in accordance with a customer operation. The order screen data is obtained from the service management server 22. Further, when displaying the ordering screen, the service server 22 confirms the number of stocks of the product G to be ordered. In the case of out of stock, the service server 22 displays the fact together. When there is an order, the customer terminal 20 receives an order from the customer and transmits it to the service management server 22.
 サービスサーバ22の処理に移る。ステップS21において、サービスサーバ22は、顧客端末20が受け付けた発注情報Iodrに応じて、対象ドローン26tar及び予定経路RTpを算出する。なお、対象ドローン26tar及び予定経路RTpの算出は、発注前に行っておき、発注時に確定してもよい。予定経路RTpの算出に関する更なる情報については後述する。 Move on to processing of the service server 22. In step S21, the service server 22 calculates the target drone 26tar and the planned route RTp according to the order information Iodr received by the customer terminal 20. The calculation of the target drone 26tar and the planned route RTp may be performed before ordering and may be determined at the time of ordering. Further information regarding the calculation of the planned route RTp will be described later.
 ステップS22において、サービスサーバ22は、予定経路RTpについて交通サーバ24の許可が必要であるか否か(換言すると、交通サーバ24の許可が必要な部分が予定経路RTpに含まれているか否か)を、第1地図情報Imap1に基づいて判定する。交通サーバ24の許可が必要な部分としては、例えば飛行制限領域が含まれる。 In step S22, the service server 22 determines whether the traffic server 24 needs to be permitted for the planned route RTp (in other words, whether the planned route RTp includes a portion that requires the traffic server 24). Is determined based on the first map information Imap1. As a part which requires permission of the traffic server 24, a flight restriction area is included, for example.
 交通サーバ24の許可が必要である場合(S22:TRUE)、ステップS23において、予定経路RTpについての飛行許可申請を、交通管理サーバ24に対して送信する。飛行許可申請には、対象となるドローン26の識別番号が付与される。飛行許可申請の送信後、ステップS24において、サービスサーバ22は、交通管理サーバ24からの結果通知を受信したか否かを監視する。 When permission of the traffic server 24 is required (S22: TRUE), a flight permission application for the planned route RTp is transmitted to the traffic management server 24 in step S23. The identification number of the target drone 26 is given to the flight permission application. After transmitting the flight permission application, in step S24, the service server 22 monitors whether or not the result notification from the traffic management server 24 has been received.
 交通管理サーバ24の処理に移る。サービスサーバ22からの飛行許可申請(S23)を受信した交通管理サーバ24は、ステップS31において、受信した飛行許可申請について許可又は不許可のいずれとするかを判定する。例えば、予定経路RTpが、一時的な飛行禁止区域を含む場合、交通サーバ24は飛行許可申請を不許可とする。また、1又は複数の他のドローン26(他機)が、自ら(自機)と同時刻に予定経路RTpの一部を通過する予定である場合、交通サーバ24は飛行許可申請を不許可とする。一方、ドローン26の飛行を認めない事由が予定経路RTpに存在しない場合、交通サーバ24は飛行許可申請を許可する。 The process proceeds to the traffic management server 24. In step S31, the traffic management server 24 that has received the flight permission application (S23) from the service server 22 determines whether the received flight permission application is permitted or not. For example, when the scheduled route RTp includes a temporary flight prohibited area, the traffic server 24 disallows the flight permission application. In addition, when one or more other drones 26 (other aircraft) are scheduled to pass a part of the planned route RTp at the same time as themselves (own aircraft), the traffic server 24 rejects the flight permission application. To do. On the other hand, when there is no reason for not allowing the drone 26 to fly, the traffic server 24 permits the flight permission application.
 飛行許可申請を許可する場合(S31:TRUE)、ステップS32において、交通管理サーバ24は、許可通知をサービスサーバ22に送信する。許可申請を許可しない場合(S31:FALSE)、ステップS33において、交通管理サーバ24は、不許可通知をサービスサーバ22に送信する。不許可通知には、不許可の理由等(例えば、予定経路RTpが飛行禁止領域を通過すること、飛行禁止領域の位置等)も付加される。 When permitting a flight permission application (S31: TRUE), the traffic management server 24 transmits a permission notice to the service server 22 in step S32. When permission application is not permitted (S31: FALSE), the traffic management server 24 transmits a disapproval notice to the service server 22 in step S33. The reason for non-permission (for example, that the planned route RTp passes through the flight prohibited area, the position of the flight prohibited area, etc.) is also added to the non-permission notice.
 再びサービスサーバ22の処理に移る。交通管理サーバ24から受信した結果が許可を示す場合(S24:TRUE)、ステップS25に進む。交通管理サーバ24から受信した結果が不許可を示す場合(S24:FALSE)、ステップS21に戻る。そして、サービスサーバ22は、結果に含まれる不許可の理由に応じて、新たな予定経路RTpを算出する。例えば、不許可の理由が、予定経路RTpが飛行禁止領域を通過することである場合、サービスサーバ22は、飛行禁止領域を避ける新たな予定経路RTpを算出する(S21)。そして、サービスサーバ22は、必要に応じて再度飛行許可申請を行う(S23)。 The process proceeds to the service server 22 again. When the result received from the traffic management server 24 indicates permission (S24: TRUE), the process proceeds to step S25. If the result received from the traffic management server 24 indicates disapproval (S24: FALSE), the process returns to step S21. Then, the service server 22 calculates a new scheduled route RTp according to the reason for non-permission included in the result. For example, if the reason for the disapproval is that the scheduled route RTp passes through the flight prohibited area, the service server 22 calculates a new scheduled route RTp that avoids the flight prohibited area (S21). Then, the service server 22 makes another flight permission application as necessary (S23).
 ステップS25において、サービスサーバ22は、商品Gを配送する対象ドローン26tarに対して配送指令を送信する。配送指令には、予定経路RTpの情報が含まれる。移動経路RTfは、対象ドローン26tarの現在位置Pdcur(例えば、図示しない倉庫)である出発地Pstから配送目的地Pdtarまでの経路(往路)と、配送目的地Pdtarから帰還目的地Prtarまでの経路(復路)を含む。 In step S25, the service server 22 transmits a delivery command to the target drone 26tar delivering the product G. The delivery command includes information on the planned route RTp. The travel route RTf includes a route from the departure point Pst, which is the current position Pdcur (for example, a warehouse not shown) of the target drone 26tar, to the delivery destination Pdtar (outward route), and a route from the delivery destination Pdtar to the return destination Prtar ( Including return trip).
 配送のために対象ドローン26tarが倉庫、営業所等に立ち寄る必要がある場合、予定経路RTpは、現在位置Pdcurから倉庫等への経路を含んでもよい。或いは、配送のために対象ドローン26tarが倉庫等に立ち寄る必要がある場合、倉庫、営業所等までの経路を予定経路RTpとして設定してもよい。その場合、新たな予定経路RTpとして、配送目的地Pdtarまでの経路と、帰還目的地Prtarまでの経路(復路)を設定してもよい。なお、後述するように、配送指令は、サービスサーバ22から対象ドローン26tarに対して直接送信するのではなく、別の方法で送信することも可能である。 When the target drone 26tar needs to stop at a warehouse, a sales office or the like for delivery, the planned route RTp may include a route from the current position Pdcur to the warehouse. Alternatively, when the target drone 26tar needs to stop at a warehouse or the like for delivery, a route to the warehouse, sales office, or the like may be set as the scheduled route RTp. In this case, a route to the delivery destination Pdtar and a route to the return destination Prtar (return route) may be set as the new scheduled route RTp. As will be described later, the delivery command can be transmitted by another method instead of directly transmitted from the service server 22 to the target drone 26tar.
 各ドローン26の処理に移る。ドローン26は、サービスサーバ22から配送指令(S25)を受信したか否かを監視している。配送指令を受信したドローン26は、ステップS51において、商品Gを倉庫又は営業所から配送目的地Pdtarまで運び、その後帰還目的地Prtarまで戻る配送制御を開始する。なお、対象ドローン26tarは、配送中、所定周期で自らの現在位置Pdcur等をサービスサーバ22に送信する。サービスサーバ22は、受信した現在位置Pdcur等と予定経路RTpを比較することで、対象ドローン26tarの配送状態を監視することができる。 移 Move to processing of each drone 26. The drone 26 monitors whether or not a delivery command (S25) has been received from the service server 22. In step S51, the drone 26 that has received the delivery command starts the delivery control for transporting the product G from the warehouse or sales office to the delivery destination Pdtar and then returning to the return destination Prtar. The target drone 26tar transmits its current position Pdcur and the like to the service server 22 at a predetermined cycle during delivery. The service server 22 can monitor the delivery state of the target drone 26tar by comparing the received current position Pdcur and the like with the planned route RTp.
[A-2-2.予定経路RTpの算出]
 上記のように、第1実施形態において、サービスサーバ22は、顧客端末20が受け付けた発注情報Iodrに応じて、対象ドローン26tar及び予定経路RTpを算出する。予定経路RTpの算出に際し、サービスサーバ22は、対象ドローン26tarの出発地Pstを算出する。出発地Pstは、例えば、商品Gの倉庫、対象ドローン26tarが商品Gを積む営業所等が設定される。
[A-2-2. Calculation of planned route RTp]
As described above, in the first embodiment, the service server 22 calculates the target drone 26tar and the scheduled route RTp according to the order information Iodr received by the customer terminal 20. When calculating the scheduled route RTp, the service server 22 calculates the departure place Pst of the target drone 26tar. As the departure place Pst, for example, a warehouse of the product G, a sales office where the target drone 26tar loads the product G, and the like are set.
 次いで、サービスサーバ22は、商品Gの配送のための必要飛行距離Dnfを算出する。具体的には、出発地Pstから配送目的地Pdtarまでの距離(往路)と、配送目的地Pdtarから帰還目的地Prtarまでの距離(復路)の合計が必要飛行距離Dnfとなる。必要飛行距離Dnfの算出に際し、サービスサーバ22は、単位区分情報Isu及び個体情報Iiに応じてドローン26の予定経路RTpに制限を課す。 Next, the service server 22 calculates a necessary flight distance Dnf for delivery of the product G. Specifically, the total of the distance from the departure point Pst to the delivery destination Pdtar (outward route) and the distance from the delivery destination Pdtar to the return destination Prtar (return route) is the required flight distance Dnf. In calculating the required flight distance Dnf, the service server 22 imposes a restriction on the planned route RTp of the drone 26 according to the unit classification information Isu and the individual information Ii.
 図3は、第1実施形態における対象ドローン26tarの予定経路RTpの設定を説明するための図である。図3に示すように、第1実施形態では、ドローン26の機体区分Spと地理的単位区分Suの組合せ毎に、対象ドローン26tarの飛行の可否を切り分ける。単位区分情報Isuは、地理的単位区分Suの属性情報である。 FIG. 3 is a diagram for explaining the setting of the scheduled route RTp of the target drone 26tar in the first embodiment. As shown in FIG. 3, in the first embodiment, whether or not the target drone 26 tar can fly is determined for each combination of the aircraft section Sp and the geographical unit section Su of the drone 26. The unit division information Isu is attribute information of the geographical unit division Su.
 図3に示すように、本実施形態の地理的単位区分Suとしては、区分A~Eがある。すなわち、区分Aは、人口集中地及び住宅密集地である。区分Bは、道路上及び線路上である。区分Cは、市街地である。区分Dは、田畑及び非市街地である。区分Eは、フリーウェイ、河川及び安全対策エリアである。なお、区分Aの人口集中地又は住宅密集地は、定点カメラ(図示せず)によりヒト又は車両の動きを監視して、ヒト又は車両の量に応じて区分A又は非区分A(区分B~Eのいずれか)を切り替えてもよい。 As shown in FIG. 3, there are categories A to E as the geographic unit category Su of the present embodiment. That is, the section A is a population concentration area and a densely populated house. Section B is on the road and on the track. Section C is an urban area. Category D is a field and a non-urban area. Category E is freeways, rivers and safety measures areas. In addition, in population-intensive areas or densely populated areas in Category A, the movement of humans or vehicles is monitored by a fixed point camera (not shown), and Category A or Non-Category A (Category B ~ Any one of E) may be switched.
 個体情報Iiは、ドローン26の機体区分Spを含む。機体区分Spとしては、第1種~第3種がある。第1種は、例えば、プライベート用途の機体(例えば商業的な配送、商業的な撮影)である。第2種は、例えば、一般的な公共用途の機体(例えば警察による巡回監視)である。第3種は、例えば、緊急の公共用途の機体(例えば、災害対応、救命、犯罪対応)である。機体区分Spは、上記以外の内容としてもよい。 The individual information Ii includes the airframe classification Sp of the drone 26. There are first to third types of airframe divisions Sp. The first type is an aircraft for private use (for example, commercial delivery, commercial photography). The second type is, for example, a general public-use aircraft (for example, patrol monitoring by the police). The third type is, for example, an emergency public use aircraft (for example, disaster response, lifesaving, crime response). Airframe classification Sp may be other than the above.
 第1種の場合、地理的単位区分Suが区分A~Cのとき、ドローン26の飛行が禁止される。換言すると、予定経路RTpとして選択されない。また、第1種の場合、地理的単位区分Suが区分Dのとき、ドローン26の飛行が条件付きで許可される。換言すると、条件を満たす場合のみ、予定経路RTpとして選択され得る。 In the case of the first type, when the geographical unit division Su is division A to C, the flight of the drone 26 is prohibited. In other words, it is not selected as the planned route RTp. In the case of the first type, when the geographical unit division Su is the division D, the flight of the drone 26 is permitted under certain conditions. In other words, only when the condition is satisfied, it can be selected as the scheduled route RTp.
 ここにいう条件としては、例えば、地理的単位区分Suを迂回した場合の予定経路RTpが、地理的単位区分Suを通過した場合の予定経路RTpのX倍の距離となるという条件である。ここでの「X」は、例えば1.5~3.0のいずれかの固定値として設定される。さらに、第1種の場合、地理的単位区分Suが区分Eのとき、ドローン26の飛行が制限なしに許可される。換言すると、制限なしに予定経路RTpとして選択され得る。 The condition mentioned here is, for example, a condition that the planned route RTp when detouring the geographical unit section Su is a distance X times the planned route RTp when passing the geographical unit section Su. Here, “X” is set as a fixed value of 1.5 to 3.0, for example. Further, in the case of the first type, when the geographical unit section Su is the section E, the drone 26 is allowed to fly without restriction. In other words, the scheduled route RTp can be selected without limitation.
 図3の内容は、第1地図DB96に記憶されている。従って、サービスサーバ22は、個体情報Ii(機体区分Sp)と単位区分情報Isu(地理的単位区分Su)の組合せに基づいて、予定経路RTpとして選択可能な地理的単位区分Suの候補(以下「単位区分候補Suop」という。)を特定する。そして、サービスサーバ22は、単位区分候補Suopを通過する予定経路RTpを算出する。 3 is stored in the first map DB 96. Therefore, the service server 22 can select a candidate geographic unit segment Su that can be selected as the planned route RTp (hereinafter referred to as “candidate”) based on the combination of the individual information Ii (airframe segment Sp) and the unit segment information Isu (geographic unit segment Su). “Unit division candidate Suop”). Then, the service server 22 calculates a planned route RTp that passes through the unit category candidate Suop.
 図4は、第1実施形態における予定経路RTpを設定する場面の例を示す図である。例えば、出発地Pstと配送目的地Pdtarまでの最短空中経路RTp1が全て単位区分候補Suopを通過する場合、サービスサーバ22は、最短空中経路RTp1を予定経路RTpとして設定する。例えば、機体区分Spが第3種であり且つ第1領域200が区分Cに属し、第1領域200の周辺にある第2領域202が区分Dに属す場合である。 FIG. 4 is a diagram illustrating an example of a scene in which the planned route RTp is set in the first embodiment. For example, when all the shortest aerial routes RTp1 to the departure point Pst and the delivery destination Pdtar pass through the unit segment candidate Suop, the service server 22 sets the shortest aerial route RTp1 as the planned route RTp. For example, the airframe section Sp is the third type, the first area 200 belongs to the section C, and the second area 202 around the first area 200 belongs to the section D.
 また、最短空中経路RTp1上に飛行禁止領域が存在する場合があり得る。例えば、機体区分Spが第1種であり且つ第1領域200が区分Cに属し、第1領域200の周辺にある第2領域202の周辺が区分Eに属す場合である。そのような場合、サービスサーバ22は、出発地Pstと配送目的地Pdtarまでの経路選択肢RTopのうち飛行禁止領域を通過せずに最短となる経路(迂回最短経路RTp2)を予定経路RTpとして設定する。 In addition, there may be a flight prohibition area on the shortest air route RTp1. For example, the airframe section Sp is the first type, the first area 200 belongs to the section C, and the periphery of the second area 202 around the first area 200 belongs to the section E. In such a case, the service server 22 sets, as the planned route RTp, the shortest route (the detour shortest route RTp2) that does not pass through the prohibited flight region among the route choices RTop to the departure point Pst and the delivery destination Pdtar. .
 さらに、最短空中経路RTp1上に条件付き飛行許可領域が存在する場合があり得る。例えば、機体区分Spが第2種であり且つ第1領域200が区分Cに属し、第1領域200の周辺にある第2領域202の周辺が区分Dに属す場合である。そのような場合、サービスサーバ22は、最短空中経路RTp1の第1必要飛行距離Dnp1と、迂回最短経路RTp2の第2必要飛行距離Dnp2を比較する。そして、第2必要飛行距離Dnp2が第1必要飛行距離Dnp1のX倍以上である場合、サービスサーバ22は、最短空中経路RTp1を予定経路RTpとして選択する。一方、第2必要飛行距離Dnp2が第1必要飛行距離Dnp1のX倍以上でない場合、サービスサーバ22は、迂回最短経路RTp2を予定経路RTpとして選択する。 Furthermore, there may be a conditional flight permission region on the shortest air route RTp1. For example, the airframe section Sp is the second type, the first area 200 belongs to the section C, and the periphery of the second area 202 around the first area 200 belongs to the section D. In such a case, the service server 22 compares the first required flight distance Dnp1 of the shortest aerial route RTp1 with the second required flight distance Dnp2 of the detour shortest route RTp2. If the second required flight distance Dnp2 is equal to or greater than X times the first required flight distance Dnp1, the service server 22 selects the shortest air route RTp1 as the planned route RTp. On the other hand, when the second required flight distance Dnp2 is not greater than or equal to X times the first required flight distance Dnp1, the service server 22 selects the detour shortest route RTp2 as the planned route RTp.
[A-2-3.サービス管理サーバ22による飛行監視制御]
(A-2-3-1.飛行監視制御の全体的な流れ)
 図5は、第1実施形態における飛行監視制御のフローチャートである。上記のように、飛行監視制御は、対象ドローン26tarの飛行を監視する制御であり、サービスサーバ22の飛行監視部70が実行する。
[A-2-3. Flight monitoring control by service management server 22]
(A-2-3-1. Overall flow of flight monitoring and control)
FIG. 5 is a flowchart of flight monitoring control in the first embodiment. As described above, the flight monitoring control is control for monitoring the flight of the target drone 26tar, and is executed by the flight monitoring unit 70 of the service server 22.
 図5のステップS71において、サービスサーバ22は、対象ドローン26tarの現在情報Idcurを対象ドローン26tarから取得する。現在情報Idcurには、対象ドローン26tarの現在位置Pdcurが含まれる。 5, the service server 22 acquires the current information Idcur of the target drone 26tar from the target drone 26tar. The current information Idcur includes the current position Pdcur of the target drone 26tar.
 ステップS72において、サービスサーバ22は、対象ドローン26tarが予定経路RTpを逸脱したか否かを判定する。例えば、予定経路RTpを示す仮想線に対して対象ドローン26tarの距離Dfが逸脱判定閾値THrtd以上になったとき、対象ドローン26tarが予定経路RTpを逸脱したと判定する。 In step S72, the service server 22 determines whether or not the target drone 26tar has deviated from the planned route RTp. For example, when the distance Df of the target drone 26tar with respect to the virtual line indicating the planned route RTp is greater than or equal to the departure determination threshold THrtd, it is determined that the target drone 26tar has deviated from the planned route RTp.
 距離Dfは、3次元方向(前後方向、左右方向及び上下方向)又は2次元方向(前後方向及び左右方向)のいずれかで定義する。例えば、3次元方向で距離Dfを定義した場合、対象ドローン26tarが上下方向に予定経路RTpを逸脱した場合にも、当該逸脱を検出可能となる。その場合、例えば、逸脱の検出精度を高めることが可能となる。一方、2次元方向で距離Dfを定義した場合、距離Dfは、上下方向で定義されない分、飛行監視部70の演算負荷を軽減することが可能となる。 The distance Df is defined by either a three-dimensional direction (front-rear direction, left-right direction, and up-down direction) or a two-dimensional direction (front-rear direction, left-right direction). For example, when the distance Df is defined in the three-dimensional direction, the deviation can be detected even when the target drone 26tar deviates from the planned route RTp in the vertical direction. In that case, for example, it becomes possible to improve the deviation detection accuracy. On the other hand, when the distance Df is defined in the two-dimensional direction, the calculation load on the flight monitoring unit 70 can be reduced because the distance Df is not defined in the vertical direction.
 対象ドローン26tarが予定経路RTpを逸脱した場合(S72:TRUE)、対象ドローン26tarに何らかの緊急事態が発生していると考えられる。その場合、ステップS73に進む。対象ドローン26tarが予定経路RTpを逸脱していない場合(S72:FALSE)、対象ドローン26tarは順調に飛行していると考えられる。その場合、ステップS71に戻る。 When the target drone 26tar deviates from the planned route RTp (S72: TRUE), it is considered that some emergency has occurred in the target drone 26tar. In that case, the process proceeds to step S73. If the target drone 26tar does not deviate from the planned route RTp (S72: FALSE), it is considered that the target drone 26tar is flying smoothly. In that case, the process returns to step S71.
 ステップS73において、サービスサーバ22は、対象ドローン26tarの現在位置Pdcurが属する地理的単位区分Suの属性情報としての単位区分情報Isu(図3)を第1地図DB96から読み出す。ステップS74において、サービスサーバ22は、対象ドローン26tarの個体情報Iiを移動体DB94から読み出す。上記のように、個体情報Iiには、機体区分Spが含まれる。 In step S73, the service server 22 reads unit classification information Isu (FIG. 3) as attribute information of the geographical unit classification Su to which the current position Pdcur of the target drone 26tar belongs from the first map DB 96. In step S74, the service server 22 reads the individual information Ii of the target drone 26tar from the mobile DB 94. As described above, the body information Sp is included in the individual information Ii.
 ステップS75において、サービスサーバ22は、単位区分情報Isu及び個体情報Iiに応じた対応を取る(対処制御)。ステップS75の詳細は、図6を参照して後述する。 In step S75, the service server 22 takes a response according to the unit classification information Isu and the individual information Ii (handling control). Details of step S75 will be described later with reference to FIG.
(A-2-3-2.地理的単位区分Su及び個体情報Iiに応じた対応)
 図6は、第1実施形態において、対象ドローン26tarが予定経路RTpから逸脱した場合にサービス管理サーバ22及び交通管理サーバ24が取る対応の説明図である。図6の例では、対応のレベルとして、レベル1、レベル2、レベル3を設ける。
(A-2-3-3-2. Correspondence according to geographical unit division Su and individual information Ii)
FIG. 6 is an explanatory diagram of correspondence that the service management server 22 and the traffic management server 24 take when the target drone 26tar deviates from the planned route RTp in the first embodiment. In the example of FIG. 6, level 1, level 2, and level 3 are provided as corresponding levels.
 レベル1の場合、サービスサーバ22(通知部80)は、対象ドローン26tarが予定経路RTpを逸脱した旨(レベル1)を、交通管理サーバ24と、対象ドローン26tarが配送している商品Gを発注した顧客の顧客端末20(発注端末20odr)とに対して通知する。より具体的には、サービスサーバ22は、当該逸脱が発生したことを通知する経路逸脱信号Srtdを交通サーバ24及び発注端末20odrに対して送信する。 In the case of level 1, the service server 22 (notification unit 80) orders that the target drone 26tar has deviated from the planned route RTp (level 1) and orders the traffic management server 24 and the product G delivered by the target drone 26tar. To the customer terminal 20 (ordering terminal 20odr) of the customer who made the request. More specifically, the service server 22 transmits a route departure signal Srtd for notifying that the departure has occurred to the traffic server 24 and the ordering terminal 20odr.
 また、サービスサーバ22は、対象ドローン26tarに対して第1警報指令Sal1を送信する。第1警報指令Sal1を受けた対象ドローン26tarは、ランプ138を点滅させると共に、第1スピーカ140から警告音を出力する。これにより、対象ドローン26tarの周囲の人々に警告を行うことができる。さらに、サービスサーバ22は、対象ドローン26tarの周辺に存在するドローン26(周辺ドローン26sur)の予定経路RTpを、対象ドローン26tarから離れるように再設定する。 In addition, the service server 22 transmits the first alarm command Sal1 to the target drone 26tar. The target drone 26tar that has received the first warning command Sal1 blinks the lamp 138 and outputs a warning sound from the first speaker 140. Thereby, it is possible to warn people around the target drone 26tar. Further, the service server 22 resets the scheduled route RTp of the drone 26 (peripheral drone 26 sur) existing around the target drone 26 tar so as to be away from the target drone 26 tar.
 経路逸脱信号Srtd(レベル1)を受信した交通サーバ24は、外部警報装置28及び周辺端末30に第2警報指令信号Sal2及び第3警報指令信号Sal3を送信する。第2警報指令信号Sal2を受信した外部警報装置28は、第2スピーカ170を介して警告音を出力する。第3警報指令信号Sal3を受信した周辺端末30は、第3スピーカ180を介して警告音を出力すると共に、表示部182に警告表示を出力する。また、交通サーバ24は、対象ドローン26tarが予定経路RTpを逸脱したこと(レベル1)を移動体DB94及び配送DB98に記録する。経路逸脱信号Srtd(レベル1)を受信した顧客端末20(発注端末20odr)は、経路逸脱信号Srtd(レベル1)の内容を表示部に表示する。 The traffic server 24 that has received the route departure signal Srtd (level 1) transmits the second alarm command signal Sal2 and the third alarm command signal Sal3 to the external alarm device 28 and the peripheral terminal 30. The external alarm device 28 that has received the second alarm command signal Sal2 outputs a warning sound via the second speaker 170. The peripheral terminal 30 that has received the third alarm command signal Sal3 outputs a warning sound via the third speaker 180 and outputs a warning display on the display unit 182. Further, the traffic server 24 records in the mobile DB 94 and the delivery DB 98 that the target drone 26tar has deviated from the planned route RTp (level 1). Upon receiving the route departure signal Srtd (level 1), the customer terminal 20 (order terminal 20odr) displays the content of the route departure signal Srtd (level 1) on the display unit.
 レベル1に対応するのは、機体区分Spが第1種であり且つ地理的単位区分Suが区分A~Cのいずれかである場合、機体区分Spが第2種であり且つ地理的単位区分Suが区分Aである場合である(図6)。 The level 1 corresponds to the case where the airframe section Sp is the first type and the geographical unit section Su is any one of the sections A to C, and the airframe section Sp is the second type and the geographical unit section Su. Is a category A (FIG. 6).
 レベル2の場合、サービスサーバ22(通知部80)は、対象ドローン26tarが予定経路RTpを逸脱した旨(レベル2)を、交通管理サーバ24及び発注端末20odrに対して通知する。サービスサーバ22からレベル2の通知を受けた交通サーバ24は、対象ドローン26tarを重点監視する。例えば、交通サーバ24は、対象ドローン26tarと直接通信し、対象ドローン26tarの現在位置Pdcur等を自らで監視する。また、交通サーバ24は、対象ドローン26tarが予定経路RTpを逸脱したこと(レベル2)を移動体DB94及び配送DB98に記録する。経路逸脱信号Srtd(レベル2)を受信した発注端末20odrは、経路逸脱信号Srtd(レベル2)の内容を表示部に表示する。 In the case of level 2, the service server 22 (notification unit 80) notifies the traffic management server 24 and the ordering terminal 20odr that the target drone 26tar has deviated from the planned route RTp (level 2). The traffic server 24 that has received the level 2 notification from the service server 22 focuses on the target drone 26tar. For example, the traffic server 24 directly communicates with the target drone 26tar and monitors the current position Pdcur of the target drone 26tar by itself. Further, the traffic server 24 records in the mobile DB 94 and the delivery DB 98 that the target drone 26tar has deviated from the planned route RTp (level 2). The ordering terminal 20odr that has received the route departure signal Srtd (level 2) displays the content of the route departure signal Srtd (level 2) on the display unit.
 レベル2に対応するのは、機体区分Spが第1種であり且つ地理的単位区分Suが区分Dである場合、機体区分Spが第2種であり且つ地理的単位区分Suが区分B又はCである場合、機体区分Spが第3種であり且つ地理的単位区分Suが区分A又はBである場合である。 Corresponding to level 2 is when the airframe division Sp is the first type and the geographical unit division Su is the division D, the airframe division Sp is the second type and the geographical unit division Su is the division B or C. Is the case where the aircraft section Sp is the third type and the geographical unit section Su is the section A or B.
 レベル3の場合、サービスサーバ22(通知部80)は、対象ドローン26tarが予定経路RTpを逸脱した旨(レベル3)を、交通管理サーバ24及び発注端末20odrに対して通知する。サービスサーバ22からレベル3の通知を受けた交通サーバ24は、対象ドローン26tarが予定経路RTpを逸脱したこと(レベル3)を移動体DB94及び配送DB98に記録する。経路逸脱信号Srtd(レベル3)を受信した発注端末20odrは、経路逸脱信号Srtd(レベル3)の内容を表示部に表示する。 In the case of level 3, the service server 22 (notification unit 80) notifies the traffic management server 24 and the ordering terminal 20odr that the target drone 26tar has deviated from the planned route RTp (level 3). The traffic server 24 that has received the level 3 notification from the service server 22 records in the mobile DB 94 and the delivery DB 98 that the target drone 26tar has deviated from the planned route RTp (level 3). Upon receiving the route departure signal Srtd (level 3), the ordering terminal 20odr displays the content of the route departure signal Srtd (level 3) on the display unit.
 レベル3に対応するのは、機体区分Spが第1種であり且つ地理的単位区分Suが区分Eである場合、機体区分Spが第2種であり且つ地理的単位区分Suが区分D又はEである場合、機体区分Spが第3種であり且つ地理的単位区分Suが区分C~Eのいずれかである場合である。 The level 3 corresponds to the case where the airframe division Sp is the first type and the geographical unit division Su is the division E, and the airframe division Sp is the second type and the geographical unit division Su is the division D or E. Is the case where the airframe section Sp is the third type and the geographical unit section Su is any one of the sections C to E.
[A-2-4.交通管理サーバ24による緊急対応制御]
 図7は、第1実施形態における緊急対応制御のフローチャートである。上記のように、緊急対応制御は、飛行中のドローン26(対象ドローン26tar)に緊急事態が発生した場合に交通管理サーバ24側で対応を取る制御であり、交通サーバ24の緊急対応部110が実行する。
[A-2-4. Emergency response control by the traffic management server 24]
FIG. 7 is a flowchart of emergency response control in the first embodiment. As described above, emergency response control is control in which the traffic management server 24 responds when an emergency situation occurs in the drone 26 (target drone 26tar) in flight, and the emergency response unit 110 of the traffic server 24 Execute.
 図7のステップS91において、交通サーバ24は、サービスサーバ22から経路逸脱信号Srtdを受信したか否かを判定する。経路逸脱信号Srtdを受信した場合(S91:TRUE)、ステップS92に進む。経路逸脱信号Srtdを受信しない場合(S91:FALSE)、今回の緊急対応制御を終了し、所定時間経過後にステップS91に戻る。 7, the traffic server 24 determines whether or not the route departure signal Srtd has been received from the service server 22. When the route departure signal Srtd is received (S91: TRUE), the process proceeds to step S92. When the route departure signal Srtd is not received (S91: FALSE), the emergency response control is terminated, and the process returns to step S91 after a predetermined time has elapsed.
 ステップS92において、交通サーバ24は、経路逸脱信号Srtdが示すレベルがレベル1(図6参照)であるか否かを判定する。レベル1である場合(S92:TRUE)、ステップS93において、交通サーバ24は、外部警報装置28に第2警報指令信号Sal2を、周辺端末30に第3警報指令信号Sal3を送信する。レベル1でない場合(S92:FALSE)、ステップS94に進む。 In step S92, the traffic server 24 determines whether or not the level indicated by the route departure signal Srtd is level 1 (see FIG. 6). When the level is 1 (S92: TRUE), in step S93, the traffic server 24 transmits the second alarm command signal Sal2 to the external alarm device 28 and the third alarm command signal Sal3 to the peripheral terminal 30. If it is not level 1 (S92: FALSE), the process proceeds to step S94.
 ステップS94において、交通サーバ24は、経路逸脱信号Srtdが示すレベルがレベル2(図6参照)であるか否かを判定する。レベル2である場合(S94:TRUE)、ステップS95において、交通サーバ24は、対象ドローン26tarを重点監視する。レベル2でない場合(S94:FALSE)、経路逸脱信号Srtdが示すレベルは、レベル3(図6参照)である。この場合、ステップS96に進む。 In step S94, the traffic server 24 determines whether or not the level indicated by the route departure signal Srtd is level 2 (see FIG. 6). If it is level 2 (S94: TRUE), in step S95, the traffic server 24 focuses on the target drone 26tar. When it is not level 2 (S94: FALSE), the level indicated by the route departure signal Srtd is level 3 (see FIG. 6). In this case, the process proceeds to step S96.
 ステップS93若しくはS95の後又はステップS94が偽(FALSE)の場合、ステップS96に進む。ステップS96において、交通サーバ24は、対象ドローン26tarが予定経路RTpを逸脱したこと及びそのレベル(レベル1~3のいずれか)を移動体DB94及び配送DB98に記録する。 After step S93 or S95 or when step S94 is false (FALSE), the process proceeds to step S96. In step S96, the traffic server 24 records in the mobile DB 94 and the delivery DB 98 that the target drone 26tar has deviated from the planned route RTp and its level (any of levels 1 to 3).
<A-3.第1実施形態の効果>
 第1実施形態によれば、対象ドローン26tar(第1自律移動体)に予定経路RTpを外れる又は変更するイベントEvが発生した場合(図5のS72:TRUE)、サービスサーバ22(移動管理部32)は、対象ドローン26tarの現在位置Pdcurが属する地理的単位区分Suの属性情報である単位区分情報Isuと、対象ドローン26tarの個体情報Iiとに応じた対応を行う対処制御を実行する(図5のS75、図6)。これにより、対象ドローン26tarに予定経路RTpを外れる又は変更するイベントEvが発生した場合に、好適に対応することが可能となる。
<A-3. Effects of First Embodiment>
According to the first embodiment, when an event Ev that deviates or changes the planned route RTp occurs in the target drone 26tar (first autonomous mobile body) (S72: TRUE in FIG. 5), the service server 22 (movement management unit 32). ) Executes the coping control for performing correspondence in accordance with the unit section information Isu that is the attribute information of the geographical unit section Su to which the current position Pdcur of the target drone 26tar belongs and the individual information Ii of the target drone 26tar (FIG. 5). S75, FIG. 6). As a result, it is possible to suitably cope with an event Ev that deviates or changes the planned route RTp in the target drone 26tar.
 第1実施形態において、対象ドローン26tar(第1自律移動体)自身では予定経路RTpを維持できないイベントEvが発生した場合(図5のS72:TRUE)、サービスサーバ22(移動管理部32)は、単位区分情報Isu(地理的単位区分Suの属性情報)と個体情報Iiとに応じて、対象ドローン26tarの対応を指令する(図5のS75、図6)。これにより、対象ドローン26tar自体では予定経路RTpを維持できないイベントEvが発生した場合に好適に対応可能となる。 In the first embodiment, when an event Ev that cannot maintain the planned route RTp by the target drone 26tar (first autonomous mobile body) itself (S72: TRUE in FIG. 5) occurs, the service server 22 (movement management unit 32) Corresponding to the target drone 26tar is commanded according to the unit division information Isu (attribute information of the geographical unit division Su) and the individual information Ii (S75 in FIG. 5, FIG. 6). Accordingly, it is possible to appropriately cope with an event Ev in which the target drone 26tar itself cannot maintain the planned route RTp.
 第1実施形態において、管理システム10は、サービスサーバ22(移動管理部32)に対して、対象ドローン26tar(第1自律移動体)の配送(移動)を要求する顧客端末20(外部機器)を備える(図1)。また、サービスサーバ22は、対象ドローン26tarに予定経路RTpを外れる又は変更するイベントEvが発生した場合(図5のS72:TRUE)、イベントEvの発生又は対処制御による前記対応を、顧客端末20に通知する(図6)通知部80を有する(図1)。これにより、顧客端末20を介して当該通知を認識した顧客(ユーザ)は、イベントEvの発生に伴って通知された内容に応じた付加的なサービスを提供可能となる。 In the first embodiment, the management system 10 sends a customer terminal 20 (external device) that requests delivery (movement) of the target drone 26tar (first autonomous mobile body) to the service server 22 (movement management unit 32). Provide (FIG. 1). Further, when an event Ev that deviates or changes the planned route RTp occurs in the target drone 26tar (S72: TRUE in FIG. 5), the service server 22 causes the customer terminal 20 to respond to the occurrence of the event Ev or the response control by the response control. Notifying (FIG. 6) It has the notification part 80 (FIG. 1). Thereby, the customer (user) who has recognized the notification via the customer terminal 20 can provide an additional service according to the content notified in response to the occurrence of the event Ev.
 第1実施形態において、対象ドローン26tar(第1自律移動体)に予定経路RTpを外れる又は変更するイベントEvが発生した場合(図5のS72:TRUE)、サービスサーバ22(移動管理部32)は、対象ドローン26tarの周辺を移動している周辺ドローン26sur(第2自律移動体)の予定経路RTpを、対象ドローン26tarから離れるように再設定する(図6)。これにより、対象ドローン26tarの動きに合わせて、周辺ドローン26surの予定経路RTpを変化させることが可能となる。 In the first embodiment, when an event Ev that deviates or changes the planned route RTp occurs in the target drone 26tar (first autonomous mobile body) (S72: TRUE in FIG. 5), the service server 22 (movement management unit 32) Then, the scheduled route RTp of the peripheral drone 26sur (second autonomous mobile body) moving around the target drone 26tar is reset so as to leave the target drone 26tar (FIG. 6). As a result, the planned route RTp of the peripheral drone 26sur can be changed in accordance with the movement of the target drone 26tar.
B.第2実施形態
<B-1.構成及び制御(第1実施形態との相違)>
 第2実施形態の構成及び制御は、基本的に第1実施形態と同様である。以下では、第1実施形態と同様の構成要素には、同一の参照符号を付して詳細な説明を省略する。第2実施形態では、サービスサーバ22による飛行監視制御が第1実施形態(図5)と一部相違する。
B. Second Embodiment <B-1. Configuration and Control (Differences from First Embodiment)>
The configuration and control of the second embodiment are basically the same as those of the first embodiment. Hereinafter, the same reference numerals are given to the same components as those in the first embodiment, and detailed description thereof will be omitted. In the second embodiment, the flight monitoring control by the service server 22 is partially different from the first embodiment (FIG. 5).
 図8は、第2実施形態における飛行監視制御のフローチャートである。上記のように、飛行監視制御は、対象ドローン26tarの飛行を監視する制御であり、サービスサーバ22の飛行監視部70が実行する。第2実施形態では、対象ドローン26tarが予定経路RTpを逸脱したか否かの判定が第1実施形態と異なる。 FIG. 8 is a flowchart of the flight monitoring control in the second embodiment. As described above, the flight monitoring control is control for monitoring the flight of the target drone 26tar, and is executed by the flight monitoring unit 70 of the service server 22. In the second embodiment, the determination as to whether or not the target drone 26tar has deviated from the planned route RTp is different from that in the first embodiment.
 図8のステップS101において、サービスサーバ22は、対象ドローン26tarについての誤対応履歴Herを配送DB98から読み出す。誤対応履歴Herは、過去の飛行監視制御において、対象ドローン26tar(今回の飛行監視制御における対象ドローン26tarと同一のドローン26)が予定経路RTpを逸脱したと判定した(図8のS104:TRUE)にもかかわらず、実際には逸脱していなかったことを示す履歴である。誤対応履歴Herは、誤対応が判明した段階で、サービスサーバ22の管理者が配送DB98に記録する。 In step S101 in FIG. 8, the service server 22 reads the erroneous correspondence history Her for the target drone 26tar from the delivery DB 98. The erroneous correspondence history Her determines in the past flight monitoring control that the target drone 26tar (the same drone 26 as the target drone 26tar in the current flight monitoring control) has deviated from the planned route RTp (S104 in FIG. 8: TRUE). Nevertheless, it is a history indicating that there was no actual departure. The erroneous correspondence history Her is recorded in the delivery DB 98 by the administrator of the service server 22 when the erroneous correspondence is found.
 ステップS102において、サービスサーバ22は、予定経路RTpの逸脱判定閾値THrtdを誤対応履歴Herに応じて設定する。例えば、誤対応履歴Herの数が多くなるほど、逸脱したと判定し難いように逸脱判定閾値THrtdを設定する。 In step S102, the service server 22 sets the departure determination threshold value THrtd of the planned route RTp according to the erroneous handling history Her. For example, the deviation determination threshold value THrtd is set so that it is difficult to determine that the deviation has occurred as the number of erroneous correspondence histories Her increases.
 ステップS103、S104、S105、S106、S107は、図5のステップS71、S72、S73、S74、S75と同様である。 Steps S103, S104, S105, S106, and S107 are the same as steps S71, S72, S73, S74, and S75 in FIG.
<B-2.第2実施形態の効果>
 以上のような第2実施形態によれば、第1実施形態の効果に加えて又はこれに代えて、以下の効果を奏することができる。
<B-2. Effect of Second Embodiment>
According to the second embodiment as described above, the following effects can be obtained in addition to or instead of the effects of the first embodiment.
 すなわち、第2実施形態において、サービスサーバ22(移動管理部32)は、対象ドローン26tar(第1自律移動体)に予定経路RTpを外れた又は変更したイベントEvの履歴としての誤対応履歴Herに応じて、イベントEvの発生時に対象ドローン26tarに対して指令する対応を変化させる(図8のS101~S107)。これにより、対象ドローン26tarに予定経路RTpを外れる又は変更するイベントEvが新たに発生した場合に、さらに好適に対応することが可能となる。 That is, in the second embodiment, the service server 22 (movement management unit 32) sets the erroneous correspondence history Her as the history of the event Ev that has deviated or changed the planned route RTp to the target drone 26tar (first autonomous mobile body). Correspondingly, the response to be commanded to the target drone 26tar when the event Ev occurs is changed (S101 to S107 in FIG. 8). Accordingly, it is possible to more appropriately cope with a case where an event Ev that deviates or changes the planned route RTp occurs in the target drone 26tar.
C.変形例
 なお、本発明は、上記各実施形態に限らず、本明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
C. Modifications Note that the present invention is not limited to the above-described embodiments, and various configurations can be adopted based on the description of the present specification. For example, the following configuration can be adopted.
<C-1.自律移動体>
 第1実施形態のドローン26は、配送用であった(図1及び図2)。しかしながら、例えば、単位区分情報Isuと個体情報Iiとに基づいて対処制御を行う観点からすれば、これに限らない。例えば、ドローン26は、人の運送、緊急用途、撮影、広告、セキュリティ監視、測量、エンターテインメント、個人趣味等の用途で用いることも可能である。前記緊急用途には、例えば、災害対応、救命又は犯罪対応が含まれる。前記エンターテインメントには、例えば、音楽コンサート、スポーツ又は祭りが含まれる。第2実施形態も同様である。
<C-1. Autonomous mobile>
The drone 26 of the first embodiment was for delivery (FIGS. 1 and 2). However, for example, from the viewpoint of performing countermeasure control based on the unit segment information Isu and the individual information Ii, the present invention is not limited to this. For example, the drone 26 can be used for applications such as transportation of people, emergency use, photography, advertisement, security monitoring, surveying, entertainment, personal hobbies, and the like. The emergency use includes, for example, disaster response, lifesaving or crime response. The entertainment includes, for example, music concerts, sports or festivals. The same applies to the second embodiment.
 第1実施形態では、ドローン26に本発明を適用した(図1及び図2)。しかしながら、例えば、単位区分情報Isuと個体情報Iiとに基づいて対処制御を行う観点からすれば、別種類の飛行体又は自律移動体に本発明を適用してもよい。例えば、自動運転車、ヘリコプタ又は船舶に本発明を適用することも可能である。第2実施形態も同様である。 In the first embodiment, the present invention is applied to the drone 26 (FIGS. 1 and 2). However, for example, from the viewpoint of performing countermeasure control based on the unit segment information Isu and the individual information Ii, the present invention may be applied to another type of flying object or autonomous moving object. For example, the present invention can be applied to an autonomous vehicle, a helicopter, or a ship. The same applies to the second embodiment.
<C-2.移動管理部32>
 第1実施形態の移動管理部32は、サービスサーバ22及び交通管理サーバ24を含んだ(図1)。しかしながら、例えば、複数のドローン26(又は自律移動体)の移動を管理する観点からすれば、これに限らない。例えば、サービスサーバ22のみから移動管理部32を構成してもよい。或いは、サービスサーバ22及び交通管理サーバ24に加えて、所定区域毎に複数配置されて、ドローン26の飛行を管理するローカル管制サーバを設けることも可能である。そして、サービスサーバ22からドローン26に対する配送指令は、ローカル管制サーバを介して送信されてもよい。第2実施形態も同様である。
<C-2. Mobility Management Unit 32>
The mobility management unit 32 of the first embodiment includes a service server 22 and a traffic management server 24 (FIG. 1). However, for example, from the viewpoint of managing the movement of a plurality of drones 26 (or autonomous mobile bodies), the present invention is not limited to this. For example, the movement management unit 32 may be configured only from the service server 22. Alternatively, in addition to the service server 22 and the traffic management server 24, a plurality of local control servers arranged for each predetermined area and managing the flight of the drone 26 can be provided. And the delivery instruction | command with respect to the drone 26 from the service server 22 may be transmitted via a local control server. The same applies to the second embodiment.
 第1実施形態のサービスサーバ22は、ドローン26の配送(飛行)を管理した(図1及び図2)。しかしながら、例えば、単位区分情報Isuと個体情報Iiとに基づいて対処制御を行う観点からすれば、これに限らない。例えば、ドローン26に加えて又はこれに代えて、自動運転車、ヘリコプタ又は船舶の配送を管理してもよい。第2実施形態も同様である。 The service server 22 of the first embodiment managed the delivery (flight) of the drone 26 (FIGS. 1 and 2). However, for example, from the viewpoint of performing countermeasure control based on the unit segment information Isu and the individual information Ii, the present invention is not limited to this. For example, in addition to or instead of the drone 26, delivery of an autonomous vehicle, helicopter or ship may be managed. The same applies to the second embodiment.
 第1実施形態のサービスサーバ22は、商品Gの配送を管理した(図1)。しかしながら、例えば、複数のドローン26(又は自律移動体)の移動を管理する観点からすれば、これに限らない。例えば、サービスサーバ22は、人の運送、緊急用途、撮影、広告、セキュリティ監視、測量、エンターテインメント、個人趣味等の用途を管理するものであってもよい。第2実施形態も同様である。 The service server 22 of the first embodiment managed the delivery of the product G (FIG. 1). However, for example, from the viewpoint of managing the movement of a plurality of drones 26 (or autonomous mobile bodies), the present invention is not limited to this. For example, the service server 22 may manage uses such as transportation of people, emergency use, shooting, advertisement, security monitoring, surveying, entertainment, personal hobbies, and the like. The same applies to the second embodiment.
<C-3.データベース>
 第1実施形態では、第1地図DB96及び移動体DB94をサービスサーバ22に配置した(図1)。しかしながら、例えば、単位区分情報Isuと個体情報Iiとに基づいて対処制御を行う観点からすれば、これに限らない。例えば、第1地図DB96又は移動体DB94をサービスサーバ22の外部(例えばクラウド又は交通サーバ24)に設けることも可能である。
<C-3. Database>
In the first embodiment, the first map DB 96 and the moving body DB 94 are arranged on the service server 22 (FIG. 1). However, for example, from the viewpoint of performing countermeasure control based on the unit segment information Isu and the individual information Ii, the present invention is not limited to this. For example, the first map DB 96 or the moving body DB 94 can be provided outside the service server 22 (for example, the cloud or the traffic server 24).
<C-4.対象ドローン26tarの緊急時の対応>
 第1実施形態では、レベル1の対応として、交通サーバ24への通知、対象ドローン26tarへの警報指令、周辺ドローン26surの予定経路RTpの再設定及び顧客端末20への通知を含む4つの対応を行った(図5のS75、図6)。しかしながら、例えば、単位区分情報Isuと個体情報Iiとに基づいて対処制御を行う観点からすれば、これに限らない。例えば、これら4つのうちいずれか1つ、2つ又は3つを行うことも可能である。第2実施形態も同様である。
<C-4. Emergency response of the target drone 26tar>
In the first embodiment, four correspondences including notification to the traffic server 24, warning command to the target drone 26tar, resetting the scheduled route RTp of the surrounding drone 26sur and notification to the customer terminal 20 are provided as Level 1 correspondences. (S75 in FIG. 5, FIG. 6). However, for example, from the viewpoint of performing countermeasure control based on the unit segment information Isu and the individual information Ii, the present invention is not limited to this. For example, any one, two, or three of these four can be performed. The same applies to the second embodiment.
 第1実施形態では、レベル2及びレベル3の対応として、交通サーバ24への通知及び顧客端末20への通知を含む2つの対応を行った(図5のS75、図6)。しかしながら、例えば、単位区分情報Isuと個体情報Iiとに基づいて対処制御を行う観点からすれば、これに限らない。例えば、これら2つのうちいずれか1つのみを行うことも可能である。第2実施形態も同様である。 In the first embodiment, two correspondences including notification to the traffic server 24 and notification to the customer terminal 20 are performed as correspondences of the level 2 and the level 3 (S75 in FIG. 5, FIG. 6). However, for example, from the viewpoint of performing countermeasure control based on the unit segment information Isu and the individual information Ii, the present invention is not limited to this. For example, only one of these two can be performed. The same applies to the second embodiment.
 第1実施形態では、対象ドローン26tarが予定経路RTpを逸脱した場合(図5のS72:TRUE)、単位区分情報Isuの単位区分Suと個体情報Iiの機体区分Spに基づいて対処制御の内容を選択した(図6)。しかしながら、例えば、単位区分情報Isuと個体情報Iiとに基づいて対処制御を行う観点からすれば、これに限らない。例えば、単位区分Suと機体区分Spに加えて、対象ドローン26tarの逸脱の程度又は緊急状況の程度に応じて対処制御の内容を選択してもよい。第2実施形態も同様である。 In the first embodiment, when the target drone 26tar deviates from the planned route RTp (S72: TRUE in FIG. 5), the content of the countermeasure control is determined based on the unit division Su of the unit division information Isu and the airframe division Sp of the individual information Ii. Selected (Figure 6). However, for example, from the viewpoint of performing countermeasure control based on the unit segment information Isu and the individual information Ii, the present invention is not limited to this. For example, in addition to the unit classification Su and the aircraft classification Sp, the content of the countermeasure control may be selected according to the degree of deviation of the target drone 26tar or the degree of emergency situation. The same applies to the second embodiment.
 第1実施形態では、対象ドローン26tarが予定経路RTpを逸脱した場合(図5のS72:TRUE)にサービスサーバ22及び交通サーバ24が行う対応に、対象ドローン26tarの経路誘導は含まれていなかった(図6)。しかしながら、経路誘導を行うための設備が存在する場合、サービスサーバ22又は交通サーバ24により対象ドローン26tarの経路誘導を行うことも可能である。 In the first embodiment, when the target drone 26tar deviates from the planned route RTp (S72: TRUE in FIG. 5), the route guidance of the target drone 26tar is not included in the response performed by the service server 22 and the traffic server 24. (FIG. 6). However, when there is a facility for performing route guidance, the service server 22 or the traffic server 24 can also guide the route of the target drone 26tar.
 第1実施形態では、外部警報装置28及び周辺端末30への第2警報指令信号Sal2及び第3警報指令信号Sal3を交通サーバ24から送信した(図6、図7のS93)。しかしながら、例えば、対象ドローン26tarの緊急時に外部警報装置28又は周辺端末30から警報を行う観点からすれば、これに限らない。例えば、交通サーバ24の代わりに、サービスサーバ22から外部警報装置28及び周辺端末30への第2警報指令信号Sal2及び第3警報指令信号Sal3を送信することも可能である。第2実施形態も同様である。 In the first embodiment, the second alarm command signal Sal2 and the third alarm command signal Sal3 to the external alarm device 28 and the peripheral terminal 30 are transmitted from the traffic server 24 (S93 in FIGS. 6 and 7). However, for example, from the viewpoint of alarming from the external alarm device 28 or the peripheral terminal 30 in the event of an emergency of the target drone 26tar, the present invention is not limited to this. For example, instead of the traffic server 24, it is also possible to transmit the second alarm command signal Sal2 and the third alarm command signal Sal3 from the service server 22 to the external alarm device 28 and the peripheral terminal 30. The same applies to the second embodiment.
 第1実施形態では、飛行監視制御(図5)の実行主体がサービスサーバ22であった。しかしながら、例えば、単位区分情報Isuと個体情報Iiとに基づいて対処制御を行う観点からすれば、これに限らない。例えば、交通サーバ24又は対象ドローン26tarが飛行監視制御(対処制御を含む)を行うことも可能である。第2実施形態も同様である。 In the first embodiment, the execution subject of the flight monitoring control (FIG. 5) is the service server 22. However, for example, from the viewpoint of performing countermeasure control based on the unit segment information Isu and the individual information Ii, the present invention is not limited to this. For example, the traffic server 24 or the target drone 26tar can perform flight monitoring control (including coping control). The same applies to the second embodiment.
 例えば、対象ドローン26tar自体(特にドローン制御装置134)が飛行監視制御を行う場合には以下のように行う。すなわち、対象ドローン26tarは、自らが予定経路RTpを逸脱したと判定した場合(図5のS72:TRUE)又はその前に、自らの現在位置Pdcurが属する地理的単位区分Suの属性情報としての単位区分情報Isuと、自らの個体情報Iiを取得する。そして、対象ドローン26tarは、単位区分情報Isuと個体情報Iiとに基づいて対処制御を行う。 For example, when the target drone 26tar itself (particularly the drone control device 134) performs flight monitoring control, the following is performed. That is, when the target drone 26tar determines that he / she has deviated from the planned route RTp (S72 in FIG. 5: TRUE) or before that, the unit as attribute information of the geographical unit section Su to which his current position Pdcur belongs The division information Isu and its own individual information Ii are acquired. Then, the target drone 26tar performs countermeasure control based on the unit division information Isu and the individual information Ii.
10…管理システム          20…顧客端末(外部機器)
26…ドローン(自律移動体、移動体)
26sur…周辺ドローン(第2自律移動体)
26tar…対象ドローン(第1自律移動体、自律移動体)
32…移動管理部           62…通信部(通信装置)
70…飛行監視部(対処制御部)    80…通知部
94…移動体DB
96…第1地図DB(地図データベース)
134…ドローン制御装置(自律制御部)
Ev…イベント            Ii…個体情報
Imap1…第1地図情報(地図情報) Isu…単位区分情報
Pdcur…ドローンの現在位置    Pst…出発地
Ptar…目的地           RTp…予定経路
10 ... Management system 20 ... Customer terminal (external device)
26 ... Drone (autonomous mobile body, mobile body)
26sur ... Peripheral drone (second autonomous mobile body)
26 tar ... Target drone (first autonomous mobile body, autonomous mobile body)
32 ... Movement management unit 62 ... Communication unit (communication device)
70: Flight monitoring unit (handling control unit) 80 ... Notification unit 94 ... Mobile object DB
96 ... 1st map DB (map database)
134 ... Drone control device (autonomous control unit)
Ev ... Event Ii ... Individual information Imap1 ... First map information (map information) Isu ... Unit division information Pdcur ... Current position of drone Pst ... Departure point Ptar ... Destination RTp ... Planned route

Claims (8)

  1.  出発地から目的地まで移動するための自律制御部を備えた第1自律移動体と、
     通信装置を介して前記第1自律移動体と通信し、前記第1自律移動体を含む複数の移動体の移動を管理する移動管理部と
     を備える管理システムであって、
     前記移動管理部は、前記第1自律移動体に予定経路を外れる又は変更するイベントが発生した場合、前記第1自律移動体の現在位置が属する地理的な単位区分の属性情報である単位区分情報と、前記第1自律移動体の個体情報とに応じた対応を行う対処制御を実行する対処制御部を含む
     ことを特徴とする管理システム。
    A first autonomous mobile body having an autonomous control unit for moving from the departure place to the destination;
    A management system comprising: a movement management unit that communicates with the first autonomous mobile body via a communication device and manages movement of a plurality of mobile bodies including the first autonomous mobile body,
    The movement management unit is unit classification information that is attribute information of a geographical unit classification to which a current position of the first autonomous moving body belongs when an event that deviates or changes a planned route occurs in the first autonomous moving body. And a countermeasure control unit that executes countermeasure control for performing correspondence in accordance with the individual information of the first autonomous mobile body.
  2.  請求項1に記載の管理システムにおいて、
     前記第1自律移動体自身では前記予定経路を維持できない前記イベントが発生した場合、前記移動管理部は、前記単位区分情報と前記個体情報とに応じて、前記第1自律移動体の対応を指令する
     ことを特徴とする管理システム。
    The management system according to claim 1,
    When the event that the first autonomous mobile body itself cannot maintain the planned route occurs, the movement management unit commands the correspondence of the first autonomous mobile body according to the unit classification information and the individual information Management system characterized by
  3.  請求項1又は2に記載の管理システムにおいて、
     前記管理システムは、前記移動管理部に対して、前記第1自律移動体の移動を要求する外部機器を備え、
     前記移動管理部は、前記第1自律移動体に前記予定経路を外れる又は変更する前記イベントが発生した場合、前記イベントの発生又は前記対処制御による前記対応を、前記外部機器に通知する通知部を有する
     ことを特徴とする管理システム。
    In the management system according to claim 1 or 2,
    The management system includes an external device that requests the movement management unit to move the first autonomous moving body,
    The movement management unit includes a notification unit for notifying the external device of the occurrence of the event or the response by the countermeasure control when the event that deviates or changes the planned route occurs in the first autonomous mobile body. A management system characterized by having.
  4.  請求項1~3のいずれか1項に記載の管理システムにおいて、
     前記移動管理部は、前記第1自律移動体が前記予定経路を外れた又は変更した前記イベントの履歴に応じて、前記イベントの発生時に前記第1自律移動体に対して指令する前記対応を変化させる
     ことを特徴とする管理システム。
    The management system according to any one of claims 1 to 3,
    The movement management unit changes the response commanded to the first autonomous mobile body when the event occurs, according to a history of the event in which the first autonomous mobile body has deviated or changed the planned route. Management system characterized by letting
  5.  請求項1~4のいずれか1項に記載の管理システムにおいて、
     前記第1自律移動体に前記予定経路を外れる又は変更する前記イベントが発生した場合、前記移動管理部は、前記第1自律移動体の周辺を移動している第2自律移動体の予定経路を、前記第1自律移動体から離れるように再設定する
     ことを特徴とする管理システム。
    The management system according to any one of claims 1 to 4,
    When the event that deviates or changes the planned route occurs in the first autonomous mobile body, the movement management unit determines the planned route of the second autonomous mobile body that is moving around the first autonomous mobile body. The management system is reset so as to be separated from the first autonomous mobile body.
  6.  出発地から目的地まで移動するための自律制御部を備えた第1自律移動体と、
     通信装置を介して前記第1自律移動体と通信し、前記第1自律移動体を含む複数の移動体の移動を管理する移動管理部と
     を備える管理システムの制御方法であって、
     前記第1自律移動体に予定経路を外れる又は変更するイベントが発生した場合、前記移動管理部は、前記第1自律移動体の現在位置が属する地理的な単位区分の属性情報である単位区分情報と、前記第1自律移動体の個体情報とに応じた対応を、前記第1自律移動体に対して指令する
     ことを特徴とする管理システムの制御方法。
    A first autonomous mobile body having an autonomous control unit for moving from the departure place to the destination;
    A control method for a management system comprising: a movement management unit that communicates with the first autonomous mobile body via a communication device and manages movement of a plurality of mobile bodies including the first autonomous mobile body,
    When an event occurs in the first autonomous mobile body that deviates or changes the planned route, the movement management unit is unit classification information that is attribute information of a geographical unit classification to which the current position of the first autonomous mobile body belongs And a command corresponding to the individual information of the first autonomous mobile body to the first autonomous mobile body.
  7.  出発地から目的地まで移動するための自律制御部を備えた第1自律移動体と通信し、前記第1自律移動体を含む複数の移動体の移動を管理する管理サーバであって、
     前記管理サーバは、前記第1自律移動体に予定経路を外れる又は変更するイベントが発生した場合、前記第1自律移動体の現在位置が属する地理的な単位区分の属性情報である単位区分情報と、前記第1自律移動体の個体情報とに応じた対応を行う対処制御を実行する対処制御部を含む
     ことを特徴とする管理サーバ。
    A management server that communicates with a first autonomous mobile body including an autonomous control unit for moving from a departure place to a destination, and manages movement of a plurality of mobile bodies including the first autonomous mobile body,
    The management server, when an event that deviates or changes a planned route occurs in the first autonomous mobile body, unit classification information that is attribute information of a geographical unit classification to which the current position of the first autonomous mobile body belongs, A management server that includes a countermeasure control unit that executes countermeasure control for performing correspondence in accordance with the individual information of the first autonomous mobile body.
  8.  出発地から目的地まで移動するための自律制御部を備えた自律移動体であって、
     前記自律制御部は、前記自律移動体に予定経路を外れる又は変更するイベントが発生した場合、前記自律移動体の現在位置が属する地理的な単位区分の属性情報である単位区分情報と、前記自律移動体の個体情報とに応じた対応を行う対処制御を実行する対処制御部を含む
     ことを特徴とする自律移動体。
    An autonomous mobile body equipped with an autonomous control unit for moving from a departure place to a destination,
    The autonomous control unit, when an event that deviates or changes a planned route occurs in the autonomous mobile body, unit classification information that is attribute information of a geographical unit classification to which the current position of the autonomous mobile body belongs, An autonomous mobile body characterized by including a countermeasure control unit that executes countermeasure control for performing correspondence in accordance with individual information of the mobile body.
PCT/JP2019/011307 2018-03-19 2019-03-19 Moving body management system, method for controlling same, management server, and autonomous moving body WO2019181897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020507812A JP7391832B2 (en) 2018-03-19 2019-03-19 Mobile body management system and its control method, management server, and autonomous mobile body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018051528 2018-03-19
JP2018-051528 2018-03-19

Publications (1)

Publication Number Publication Date
WO2019181897A1 true WO2019181897A1 (en) 2019-09-26

Family

ID=67987280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011307 WO2019181897A1 (en) 2018-03-19 2019-03-19 Moving body management system, method for controlling same, management server, and autonomous moving body

Country Status (2)

Country Link
JP (1) JP7391832B2 (en)
WO (1) WO2019181897A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086387A (en) * 2019-11-27 2021-06-03 ソフトバンク株式会社 Information processor, information processing method, and information processing program
JP2021149304A (en) * 2020-03-17 2021-09-27 株式会社エイビット Flight management system for drone
JP7415881B2 (en) 2020-11-11 2024-01-17 トヨタ自動車株式会社 Control device, unmanned aerial vehicle, and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006235878A (en) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd Autonomous mobile equipment
JP2010205102A (en) * 2009-03-05 2010-09-16 Murata Machinery Ltd Travel control system and control method of traveling vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016154948A1 (en) 2015-03-31 2016-10-06 SZ DJI Technology Co., Ltd. Authentication systems and methods for identification of authorized participants

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006235878A (en) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd Autonomous mobile equipment
JP2010205102A (en) * 2009-03-05 2010-09-16 Murata Machinery Ltd Travel control system and control method of traveling vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086387A (en) * 2019-11-27 2021-06-03 ソフトバンク株式会社 Information processor, information processing method, and information processing program
JP7098596B2 (en) 2019-11-27 2022-07-11 ソフトバンク株式会社 Information processing equipment, information processing methods, and information processing programs
JP2021149304A (en) * 2020-03-17 2021-09-27 株式会社エイビット Flight management system for drone
JP7210034B2 (en) 2020-03-17 2023-01-23 株式会社エイビット drone flight management system
JP7415881B2 (en) 2020-11-11 2024-01-17 トヨタ自動車株式会社 Control device, unmanned aerial vehicle, and method

Also Published As

Publication number Publication date
JP7391832B2 (en) 2023-12-05
JPWO2019181897A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
US10822083B2 (en) Alert system for an unmanned aerial vehicle
US10618654B2 (en) Unmanned aerial vehicle platform
US11181375B2 (en) Dynamically adjusting UAV flight operations based on thermal sensor data
US11150654B2 (en) Dynamically adjusting UAV flight operations based on radio frequency signal data
US9947233B2 (en) Method and system to improve safety concerning drones
US20190235489A1 (en) System and method for autonomous remote drone control
WO2019181899A1 (en) Management system, control method therefor, and management server
WO2020136822A1 (en) Airspace management system, airspace management method, and program
JP7069591B2 (en) Air traffic control device
US20160116912A1 (en) System and method for controlling unmanned vehicles
WO2019240989A1 (en) System and method for managing traffic flow of unmanned vehicles
US20210263537A1 (en) Uav systems, including autonomous uav operational containment systems, and associated systems, devices, and methods
WO2019181897A1 (en) Moving body management system, method for controlling same, management server, and autonomous moving body
US20180364713A1 (en) Drone control system
US10567917B2 (en) System and method for indicating drones flying overhead
US11620915B2 (en) Flight device, flight system, flight method, and program
JP7320489B2 (en) MOBILE MANAGEMENT SYSTEM AND CONTROL METHOD THEREOF AND MANAGEMENT SERVER
JP7094741B2 (en) Mobile management system, its control method, and management server
US20230419843A1 (en) Unmanned aerial vehicle dispatching method, server, base station, system, and readable storage medium
JP6613015B1 (en) Mobile body management system
JP2022129533A (en) Flight airspace management system, unmanned flying object flight management system, unmanned flying object remote control system, and unmanned flying object
JP6859487B2 (en) Mobile management system, its control method, and management server
WO2022209133A1 (en) Information processing device, information processing method, information processing system, and computer-readable medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507812

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771720

Country of ref document: EP

Kind code of ref document: A1