WO2019181774A1 - Resistance device and inverter device - Google Patents

Resistance device and inverter device Download PDF

Info

Publication number
WO2019181774A1
WO2019181774A1 PCT/JP2019/010790 JP2019010790W WO2019181774A1 WO 2019181774 A1 WO2019181774 A1 WO 2019181774A1 JP 2019010790 W JP2019010790 W JP 2019010790W WO 2019181774 A1 WO2019181774 A1 WO 2019181774A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
resistors
inrush current
resistance device
groove
Prior art date
Application number
PCT/JP2019/010790
Other languages
French (fr)
Japanese (ja)
Inventor
圭司 原田
正則 景山
中島 浩二
雄二 白形
善一 野月
隆史 内藤
章 吉村
善紀 有賀
Original Assignee
三菱電機株式会社
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, Koa株式会社 filed Critical 三菱電機株式会社
Priority to CN201980006020.0A priority Critical patent/CN111837204A/en
Priority to JP2020507750A priority patent/JP6984002B2/en
Publication of WO2019181774A1 publication Critical patent/WO2019181774A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/02Housing; Enclosing; Embedding; Filling the housing or enclosure
    • H01C1/028Housing; Enclosing; Embedding; Filling the housing or enclosure the resistive element being embedded in insulation with outer enclosing sheath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/08Cooling, heating or ventilating arrangements
    • H01C1/084Cooling, heating or ventilating arrangements using self-cooling, e.g. fins, heat sinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This invention relates to a resistance device.
  • the conventional resistance device includes an inrush current prevention resistor and a voltage balance resistor. These two types of resistors are fixed to a printed wiring board or a casing, respectively.
  • the inrush current prevention resistor is used to suppress the inrush current to the capacitor that flows when the input power is turned on.
  • a relay is connected in parallel to the inrush current prevention resistor, and the current flowing through the inrush current prevention resistor is bypassed by switching the relay from OFF to ON after charging the capacitor.
  • Patent Document 1 discloses a resistance device having a normal discharge resistor and a rapid discharge resistor having a resistance value smaller than that of the normal discharge resistor. Normally, the discharging resistor is used as an inrush current preventing resistor, and the rapid discharging resistor is used as a voltage balance resistor.
  • the inrush current prevention resistor In order to suppress the inrush current of the capacitor, the inrush current prevention resistor is required to have pulse resistance. The larger the capacitance of the capacitor, the larger the size of the inrush current prevention resistor. Therefore, although the inrush current prevention resistor is used only when the input power is turned on, there is a problem that a resistor having a large size is required.
  • the voltage balance resistor generates heat constantly and raises the ambient temperature of the capacitor, so that there is a problem that the life of the capacitor is deteriorated.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a resistance device that is small and does not deteriorate the life of the capacitor.
  • the resistance device of the present invention includes at least one first resistor connected in series to a first smoothing capacitor and a second smoothing capacitor connected in series, and a second connected in parallel to the first smoothing capacitor.
  • a resistor, a third resistor connected in parallel to the second smoothing capacitor, and an insulating case for sealing the first, second and third resistors with a sealing material filled therein; Prepare.
  • the first, second and third resistors are thermally coupled by being sealed in the insulating case. Since the first resistor and the second and third resistors have different temperature rise timings, it is possible to cool the heat generated by the other resistor when one temperature rises. Therefore, the first, second, and third resistors can be reduced in size, and the resistance device can be reduced in size. In addition, the second and third resistors constantly generate heat when used as a voltage balance resistor, but since the heat can be radiated to the first resistor, the deterioration of the life of the capacitor is suppressed. be able to. Objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
  • FIG. 3 is a circuit diagram of the inverter device according to the first embodiment. It is a figure which shows the temperature change of an inrush current prevention resistance and a voltage balance resistance.
  • 1 is a perspective view of an inverter device according to a first embodiment.
  • FIG. 3 is a side view of the inverter device according to the first embodiment.
  • FIG. 3 is an exploded perspective view of the resistance device according to the first embodiment.
  • 1 is a cross-sectional view of a resistance device according to a first embodiment.
  • FIG. 6 is an exploded perspective view of a resistance device according to a second embodiment.
  • FIG. 10 is an exploded perspective view of a resistance device according to a third embodiment.
  • FIG. 6 is a cross-sectional view of a resistance device according to a third embodiment.
  • FIG. 1 is a circuit diagram of an inverter device 100 according to the first embodiment.
  • the inverter device 100 includes a three-phase (R phase, S phase, T phase) input power supply Pin, a rectifier circuit 10, an inrush current prevention resistor 4, an inrush current prevention relay 3, a relay drive circuit 2, smoothing capacitors 5a and 5b, a voltage Balance resistors 6a and 6b and an inverter 20 are provided.
  • the rectifier circuit 10 includes a plurality of rectifier diodes 1a, 1b, 1c, 1d, 1e, and 1f.
  • the rectifier diodes 1a and 1d are connected to the R phase
  • the rectifier diodes 1b and 1e are connected to the S phase
  • the rectifier diodes 1c and 1f are connected to the T phase.
  • the smoothing capacitor 5a and the smoothing capacitor 5b are connected in series between the positive line Lp and the negative line Ln to ensure a withstand voltage.
  • the inrush current preventing resistor 4 is connected to the series connection body in series at the subsequent stage of the rectifier circuit 10.
  • the inrush current prevention relay 3 is connected in parallel with the inrush current prevention resistor 4, and its on / off is controlled by the relay drive circuit 2.
  • the inrush current preventing resistor 4 is for limiting the charging current flowing through the smoothing capacitors 5a and 5b. Without the inrush current preventing resistor 4, when the input power source Pin is turned on, an excessive inrush current flows to the uncharged smoothing capacitors 5a and 5b. When the smoothing capacitors 5a and 5b are charged, the inrush current preventing relay 3 is shifted from OFF to ON by the relay drive circuit 2, and the current that has been flowing through the inrush current preventing resistor 4 until then is passed through the inrush current preventing relay 3. To bypass the inrush current prevention resistor 4. Accordingly, no current flows through the inrush current prevention resistor 4.
  • the applied voltage to the smoothing capacitors 5a and 5b also varies due to variations in the leakage current.
  • voltage balancing resistors 6a and 6b are connected in parallel to the smoothing capacitors 5a and 5b, respectively. Simultaneously with the start of charging of the smoothing capacitors 5a and 5b, a voltage is applied to the voltage balance resistors 6a and 6b.
  • the current value flowing through the voltage balance resistors 6a and 6b is relatively small, the temperature of the voltage balance resistors 6a and 6b is It rises little by little.
  • the inverter 20 includes IGBTs (Insulated Gate Bipolar Transistors) 7a, 7b, 7c, 7d, 7e, 7f, diodes 8a, 8b, 8c, 8d, 8e, 8f, and drive circuits 9a, 9b, 9c, 9d, 9e, 9f. Is provided.
  • the IGBT is an example of a power semiconductor element. Between the positive line Lp and the negative line Ln, there are a series circuit composed of IGBTs 7a and 7d for switching the U phase, a series circuit composed of IGBTs 7b and 7e for switching the V phase, and IGBTs 7c and 7f for switching the W phase. Are connected to each other.
  • Diodes 8a, 8b, 8c, 8d, 8e, and 8f are connected in reverse parallel to the IGBTs 7a, 7b, 7c, 7d, 7e, and 7f, respectively.
  • the junction points of IGBTs 7a and 7d are connected to the U-phase terminal U of the motor
  • the junction points of IGBTs 7b and 7e are connected to the V-phase terminal V of the motor
  • the junction points of IGBTs 7c and 7f are connected to the W-phase terminal W of the motor.
  • Drive signals are individually supplied from the drive circuits 9a, 9b, 9c, 9d, 9e, and 9f to the gates and emitters of the IGBTs 7a, 7b, 7c, 7d, 7e, and 7f, respectively.
  • the drive circuits 9a, 9b, 9c, 9d, 9e, and 9f are provided with photocouplers for optical insulation, receive control signals from an external control circuit such as a microprocessor, generate drive signals, and pass through connection terminals. Then, drive signals are supplied to the gates and emitters of the IGBTs 7a, 7b, 7c, 7d, 7e and 7f.
  • FIG. 1 illustrates an inverter device 100 that converts a three-phase (R-phase, S-phase, T-phase) input power source Pin into a three-phase (U-phase, V-phase, W-phase) power output.
  • the present invention can also be applied to various inverter devices or various converter devices.
  • the inrush current prevention resistor 4 and the inrush current prevention relay 3 are arranged in the subsequent stage of the rectifier circuit 10. May be.
  • a curve 41 shows a temperature change of the inrush current prevention resistor 4
  • a curve 42 shows a temperature change of the voltage balance resistors 6a and 6b.
  • the inrush current prevention resistor 4 and the voltage balance resistors 6a and 6b are thermally coupled as will be described later with reference to FIGS. 4 and the voltage balance resistors 6a and 6b are not thermally coupled, that is, the temperature changes in the state where it is assumed that there is no heat transfer between the inrush current prevention resistor 4 and the voltage balance resistors 6a and 6b. .
  • the temperature change of the inrush current prevention resistor 4 represented by the curve 41 will be described.
  • the temperature of the inrush current prevention resistor 4 rapidly increases. This is because charging of the smoothing capacitors 5a and 5b starts, and the inrush current prevention resistor 4 limits the inrush current to the smoothing capacitors 5a and 5b.
  • the inrush current prevention resistor 4 limits the inrush current to the smoothing capacitors 5a and 5b.
  • the current bypasses the inrush current prevention resistor 4 by the inrush current prevention relay 3, so that the temperature of the inrush current prevention resistor 4 decreases.
  • a winding resistance having a high pulse resistance is used.
  • the temperature change of the voltage balance resistors 6a and 6b represented by the curve 42 will be examined.
  • the current value flowing through the voltage balance resistors 6a and 6b is relatively small, the temperature of the voltage balance resistors 6a and 6b gradually increases.
  • FIG. 3 is a perspective view of the inverter device 100
  • FIG. 4 is a side view of the inverter device 100 viewed in the direction of the arrow shown in FIG.
  • an inrush current prevention relay 3 (not shown), smoothing capacitors 5a and 5b, a resistor device 30A, driving circuits 9a, 9b, 9c, 9d, 9e, and 9f (see FIG.
  • the relay drive circuit 2 (not shown) and the rectifying module 31 and the IGBT module 32 are mounted on the lower surface.
  • the rectifying module 31 and the IGBT module 32 are electrically connected to the printed wiring board 33 by soldering.
  • the rectifying module 31 is a module in which a plurality of diodes 1 a, 1 b, 1 c, 1 d, 1 e, and 1 f are enclosed in one package, and constitutes the rectifying circuit 10.
  • the IGBT module 32 is a module in which IGBTs 7a, 7b, 7c, 7d, 7e, 7f and diodes 8a, 8b, 8c, 8d, 8e, 8f are enclosed in one package. Since the rectifying module 31 and the IGBT module 32 are heat generating electronic components, a heat sink 34 is attached to them and cooled by the heat sink 34.
  • FIG. 5 is an exploded perspective view of the resistance device 30A
  • FIG. 6 is a cross-sectional view taken along the line AA in a state in which the resistance device 30A of FIG. 5 is assembled.
  • the resistance device 30 ⁇ / b> A includes resistors 61, 62 a, 62 b and an insulating case 50.
  • the resistor 61 is used as the inrush current preventing resistor 4, and the resistors 62a and 62b are used as the voltage balance resistors 6a and 6b.
  • the insulating case 50 has a rectangular parallelepiped shape, and has grooves 53, 54, and 55 that are recessed from the upper surface.
  • a resistor 61 is disposed in the groove 53
  • resistors 62a and 62b are disposed in the grooves 54 and 55, respectively.
  • the groove 53 is a first groove in which the resistor 61 is disposed
  • the groove 54 is a second groove in which the resistor 62a is disposed
  • the groove 55 is a third groove in which the resistor 62b is disposed. It is a groove.
  • the resistors 61, 62a, 62b are cylindrical.
  • An electrode terminal 52c is connected to both ends of the resistor 61, an electrode terminal 52a is connected to both ends of the resistor 62a, and an electrode terminal 52b is connected to both ends of the resistor 63b.
  • the size of the inrush current prevention resistor 4 is made larger than that of the voltage balance resistors 6a and 6b, and the groove 53 for arranging the inrush current prevention resistor 4 is replaced with the groove 54 for arranging the voltage balance resistors 6a and 6b. It is larger than 55. Accordingly, it is possible to prevent the inrush current prevention resistor 4 from being mistakenly disposed in the grooves 54 and 55 for arranging the voltage balance resistors 6a and 6b.
  • the grooves 53, 54, 55 are filled with a sealing material 56 such as cement.
  • a sealing material 56 such as cement.
  • the resistors 61, 62a and 62b are sealed in the insulating case 50 and thermally coupled. That is, the inrush current preventing resistor 4 and the voltage balance resistors 6a and 6b are thermally coupled.
  • the sealing amount of the sealing material 56 is adjusted so that the sealing surface, that is, the upper surface of the sealing material 56 is lower than the upper surface of the insulating case 50.
  • the creeping distance between the electrode terminals 52a, 52b, and 52c is increased by the distance between the upper surface of the insulating case 50 and the sealing surface of the sealing material 56.
  • the creepage distance between the electrode terminals 52a, 52b, and 52c and the housing 40 to which the resistance device 30A is attached also becomes long.
  • the electrode terminals 52a, 52b, and 52c protrude upward from the insulating case 50, and the protruding portion is connected to the printed wiring board 33 using a connector such as a flat connector and wiring (see FIG. 3). More specifically, the electrode terminal 52c is wire-connected to connection points 70c shown at both ends of the resistor 61 in FIG.
  • the electrode terminal 52a is wire-connected to connection points 70a shown at both ends of the resistor 62a in FIG.
  • the electrode terminal 52b is wire-connected to connection points 70b shown at both ends of the resistor 62b in FIG.
  • the electrode terminals 52a, 52b and 52c are connected to the connection points 70a, 70b and 70c using a connector such as a flat connector. Erroneous connection can be prevented.
  • the metal fitting 51 provided with the screw hole 57 is attached to the resistance device 30A.
  • the resistance device 30 ⁇ / b> A is fixed with the bottom surface thereof in direct contact with the housing 40. Thereby, since the heat generated by the resistance device 30A can be released to the housing 40 of the inverter device 100, the size of the resistance device 30A can be reduced.
  • the resistance device 30 ⁇ / b> A may be attached to the side surface of the housing 40 or the heat sink 34 in addition to being attached to the bottom surface of the housing 40, and the same effect is obtained. Further, the fixing method of the resistance device 30A is not limited to the above.
  • the resistance device 30 ⁇ / b> A may be attached to the printed wiring board 33 by inserting the electrode terminals 52 a, 52 b, 52 c into through holes provided in the printed wiring board 33 and soldering to the printed wiring board 33.
  • the resistance device 30A includes the first smoothing capacitor 5a that is the first smoothing capacitor connected in series and the smoothing capacitor 5b that is the second smoothing capacitor.
  • a resistor 61 that is a resistor
  • a resistor 62a that is a second resistor connected in parallel to the smoothing capacitor 5a
  • a resistor 62b that is a third resistor connected in parallel to the smoothing capacitor 5b
  • An insulating case 50 that seals the bodies 61, 62a, 62b with a sealing material 56 filled therein is provided.
  • the inrush current prevention resistor 4 and the voltage balance resistors 6a and 6b are thermally coupled. As shown in FIG.
  • the temperature rise timing of the inrush current prevention resistor 4 and the voltage balance resistors 6a and 6b are different, and when the temperature of the inrush current prevention resistor 4 is raised, the voltage balance resistors 6a, The temperature of 6b has not risen. Accordingly, the heat generated in the inrush current prevention resistor 4 is transferred to the voltage balance resistors 6a and 6b, so that the same effect as that of increasing the heat capacity of the inrush current prevention resistor 4 is obtained. The rise is suppressed. Further, when the temperature of the voltage balance resistors 6a and 6b is rising, the temperature of the inrush current preventing resistor 4 is not rising.
  • the heat generated in the voltage balance resistors 6a and 6b moves to the inrush current prevention resistor 4, so that the same effect as that of increasing the heat capacity of the voltage balance resistors 6a and 6b can be obtained, and the voltage balance resistors 6a and 6b.
  • Temperature rise is suppressed.
  • the inrush current preventing resistor 4 and the voltage balance resistors 6a and 6b can be reduced in size.
  • the temperature rise of voltage balance resistance 6a, 6b is suppressed, the raise of the ambient temperature of smoothing capacitor 5a, 5b is suppressed, and the lifetime deterioration of smoothing capacitor 5a, 5b is suppressed.
  • FIG. FIG. 7 is an exploded perspective view of the resistance device 30B according to the second embodiment. Since the resistance device 30B is a partial modification of the resistance device 30A of the first embodiment, differences from the resistance device 30A of the first embodiment will be described below.
  • the resistors 62a and 62b to be the voltage balance resistors 6a and 6b are arranged in different grooves 54 and 55 of the insulating case 50.
  • the ends of the resistors 62a and 62b having the same potential are connected by the common electrode terminal 52d, and the resistors 62a and 62b are arranged in the same groove 58.
  • the resistance device 30B is the same as the resistance device 30A of the first embodiment.
  • the resistor device 30B of the second embodiment one end of the resistor 62a and one end of the resistor 62b are connected by a common electrode terminal 52d, and the insulating case 50 is a groove that is a first groove in which the resistor 61 is disposed. 53 and a groove 58 which is a second groove in which the resistors 62 and 63 are disposed.
  • the resistance device 30B can be downsized and the number of components can be reduced by using the common electrode terminal 52d at the same potential end of the resistors 62a and 62b.
  • the voltage balance resistors 6a and 6b can be mounted at a closer distance, the voltage balance resistors 6a and 6b receive heat to reduce the temperature difference between them. Accordingly, it is possible to reduce variations in the resistance values of the voltage balance resistors 6a and 6b accompanying the temperature changes of the resistors 62a and 62b.
  • FIG. 8 is an exploded perspective view of the resistance device 30C of the third embodiment
  • FIG. 9 is a cross-sectional view taken along the line BB in a state where the resistance device 30C of FIG. 8 is assembled.
  • the configuration of the resistance device 30C will be compared with the resistance device 30B of the second embodiment, and differences will be described.
  • the configuration of the resistance device 30C not specifically mentioned in the following description is the same as that of the resistance device 30B of the second embodiment.
  • one resistor 61 constitutes the inrush current preventing resistor 4.
  • the two resistors 61 are connected in series or in parallel to form the inrush current preventing resistor 4.
  • the resistor 61 constituting the inrush current preventing resistor 4 and the resistors 62a and 62b constituting the voltage balance resistors 6a and 6b are arranged in different grooves 53 and 58, respectively.
  • the resistors 61, 62 a, and 62 b are disposed in the same groove 59 provided in the insulating case 50.
  • the groove 59 is a recess that is recessed from the upper surface of the insulating case 50.
  • Two protrusions 60 are provided on the bottom surface of the groove 59 from one end to the other end. Due to the two protrusions 60 arranged in this manner, the groove 59 of the insulating case 50 has a region sandwiched between the two protrusions 60, a region sandwiched between one protrusion 60 and the side surface of the groove 59, and the other protrusion. 60 and the region between the sides of the groove 59 are divided into three regions. Resistors 62a and 62b are disposed in the region sandwiched between the two protrusions 60, and two resistors 61 are disposed in the other regions so as to sandwich the resistors 62a and 62b. Due to the protrusion 60, the resistor 61 and the resistors 62a and 62b are not in contact with each other, and positioning of the resistors 61, 62a and 62b in the groove 59 is performed.
  • the groove 59 is filled with a sealing material 56 such as cement.
  • the sealing amount of the sealing material 56 is adjusted so that the sealing surface, that is, the upper surface of the sealing material 56 is lower than the upper surface of the insulating case 50.
  • the resistors 61, 62a and 62b are sealed in the insulating case 50 and thermally coupled. That is, the inrush current preventing resistor 4 and the voltage balance resistors 6a and 6b are thermally coupled.
  • the material of the insulating case 50 is reduced as compared with the first and second embodiments, and manufacturing is easy. It becomes possible to do. Further, the resistors 62a and 62b constituting the voltage balance resistors 6a and 6b are sandwiched and the resistor 61 constituting the inrush current preventing resistor 4 is disposed, whereby the inrush current preventing resistor 4 and the voltage balance resistors 6a and 6b are arranged. Since the thermal coupling property is improved, the heat generated by the resistors 62a and 62b is cooled by the resistor 61, and the heat generated by the resistor 61 is cooled by the resistors 62a and 62b.
  • the inrush current prevention resistor 4 is constituted by a plurality of resistors 61, and the resistors 61 are arranged on both sides of the resistors 62a and 62b constituting the voltage balance resistors 6a and 6b.
  • the inrush current prevention resistor 4 is constituted by one resistor 61
  • the voltage balance resistor 6a is constituted by a plurality of resistors 62a
  • the voltage balance resistor 6b is constituted by a plurality of resistors 62b
  • the resistor 61 is sandwiched therebetween.
  • the resistors 62a and 62b may be arranged.
  • the temperature of the resistance device 30C can be equalized by disposing the resistors 62a and 62b closer to the center of the insulating case 50. .

Abstract

The purpose of the present invention is to provide a resistance device which is compact and does not cause the lifespan of a capacitor to deteriorate. The resistance device according to the present invention comprises: at least one resistor (61) connected in series to a smoothing capacitor (5a) and a smoothing capacitor (5b), which are connected in series to each other; a resistor (62a) connected in parallel to the smoothing capacitor (5a); a resistor (62b) connected in parallel to the smoothing capacitor (5b); and an insulating case (50) enclosing the resistors (61, 62a, 62b) by means of a sealant (56) which fills inner cavity.

Description

抵抗装置およびインバータ装置Resistance device and inverter device
 この発明は、抵抗装置に関する。 This invention relates to a resistance device.
 従来の抵抗装置は、突入電流防止抵抗と電圧バランス抵抗とを備える。これら2種類の抵抗は、それぞれプリント配線板または筺体に固定される。 The conventional resistance device includes an inrush current prevention resistor and a voltage balance resistor. These two types of resistors are fixed to a printed wiring board or a casing, respectively.
 突入電流防止抵抗は、入力電源投入時に流れるコンデンサへの突入電流を抑制するために使用される。突入電流防止抵抗にはリレーが並列に接続されており、コンデンサの充電後にリレーをオフからオンへ切り替えることで、突入電流防止抵抗に流れる電流がバイパスされる。 The inrush current prevention resistor is used to suppress the inrush current to the capacitor that flows when the input power is turned on. A relay is connected in parallel to the inrush current prevention resistor, and the current flowing through the inrush current prevention resistor is bypassed by switching the relay from OFF to ON after charging the capacitor.
 コンデンサの耐圧不足を補うために複数のコンデンサを直列接続した場合、各コンデンサの漏れ電流のばらつきに依存し、各コンデンサに印加される電圧がアンバランスになり得る。それを防止するため、各コンデンサに電圧バランス抵抗が並列に接続される。 When a plurality of capacitors are connected in series in order to compensate for the insufficient withstand voltage of the capacitor, the voltage applied to each capacitor can be unbalanced depending on the variation in leakage current of each capacitor. In order to prevent this, a voltage balance resistor is connected in parallel to each capacitor.
 特許文献1には、通常放電用抵抗体と、通常放電用抵抗体より抵抗値が小さい急速放電用抵抗体を有する抵抗装置が開示されている。通常放電用抵抗体は突入電流防止抵抗として用いられ、急速放電用抵抗体は電圧バランス抵抗として用いられる。 Patent Document 1 discloses a resistance device having a normal discharge resistor and a rapid discharge resistor having a resistance value smaller than that of the normal discharge resistor. Normally, the discharging resistor is used as an inrush current preventing resistor, and the rapid discharging resistor is used as a voltage balance resistor.
特開2014-36145号公報JP 2014-36145 A
 コンデンサの突入電流を抑制するため、突入電流防止抵抗には耐パルス性が要求される。コンデンサの容量が大きいほど突入電流防止抵抗のサイズは大きくなる。そのため、突入電流防止抵抗は、入力電源投入時にのみ使用されるにもかかわらず、サイズの大きい抵抗体が必要になるという問題がある。 In order to suppress the inrush current of the capacitor, the inrush current prevention resistor is required to have pulse resistance. The larger the capacitance of the capacitor, the larger the size of the inrush current prevention resistor. Therefore, although the inrush current prevention resistor is used only when the input power is turned on, there is a problem that a resistor having a large size is required.
 一方、電圧バランス抵抗は定常的に発熱し、コンデンサの周囲温度を上げるため、コンデンサの寿命を劣化させるという問題がある。 On the other hand, the voltage balance resistor generates heat constantly and raises the ambient temperature of the capacitor, so that there is a problem that the life of the capacitor is deteriorated.
 本発明は、上述の問題に鑑み、小型でコンデンサの寿命を劣化させない抵抗装置の提供を目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a resistance device that is small and does not deteriorate the life of the capacitor.
 本発明の抵抗装置は、直列接続される第1の平滑コンデンサおよび第2の平滑コンデンサに直列接続される少なくとも1つの第1の抵抗体と、第1の平滑コンデンサに並列接続される第2の抵抗体と、第2の平滑コンデンサに並列接続される第3の抵抗体と、第1、第2および第3の抵抗体を、内部に充填された封止材により密閉する絶縁ケースと、を備える。 The resistance device of the present invention includes at least one first resistor connected in series to a first smoothing capacitor and a second smoothing capacitor connected in series, and a second connected in parallel to the first smoothing capacitor. A resistor, a third resistor connected in parallel to the second smoothing capacitor, and an insulating case for sealing the first, second and third resistors with a sealing material filled therein; Prepare.
 本発明の抵抗装置によれば、第1、第2および第3の抵抗体が絶縁ケース内で密閉されることにより熱的に結合される。第1の抵抗体と第2および第3の抵抗体とでは、温度上昇のタイミングが異なるため、一方の温度が上昇したときに、他方の抵抗体によりその発熱を冷却することが可能である。従って、第1、第2および第3の抵抗体の小型化が可能となり、抵抗装置の小型化が可能となる。また、第2および第3の抵抗体は電圧バランス抵抗として用いられる場合に定常的に発熱するが、その熱を第1の抵抗体に放熱することができるため、コンデンサの寿命の劣化を抑制することができる。本発明の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 According to the resistance device of the present invention, the first, second and third resistors are thermally coupled by being sealed in the insulating case. Since the first resistor and the second and third resistors have different temperature rise timings, it is possible to cool the heat generated by the other resistor when one temperature rises. Therefore, the first, second, and third resistors can be reduced in size, and the resistance device can be reduced in size. In addition, the second and third resistors constantly generate heat when used as a voltage balance resistor, but since the heat can be radiated to the first resistor, the deterioration of the life of the capacitor is suppressed. be able to. Objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
実施の形態1のインバータ装置の回路図である。FIG. 3 is a circuit diagram of the inverter device according to the first embodiment. 突入電流防止抵抗と電圧バランス抵抗の温度変化を示す図である。It is a figure which shows the temperature change of an inrush current prevention resistance and a voltage balance resistance. 実施の形態1のインバータ装置の斜視図である。1 is a perspective view of an inverter device according to a first embodiment. 実施の形態1のインバータ装置の側面図である。FIG. 3 is a side view of the inverter device according to the first embodiment. 実施の形態1の抵抗装置の分解斜視図である。FIG. 3 is an exploded perspective view of the resistance device according to the first embodiment. 実施の形態1の抵抗装置の断面図である。1 is a cross-sectional view of a resistance device according to a first embodiment. 実施の形態2の抵抗装置の分解斜視図である。FIG. 6 is an exploded perspective view of a resistance device according to a second embodiment. 実施の形態3の抵抗装置の分解斜視図である。FIG. 10 is an exploded perspective view of a resistance device according to a third embodiment. 実施の形態3の抵抗装置の断面図である。FIG. 6 is a cross-sectional view of a resistance device according to a third embodiment.
 実施の形態1.
 図1は、実施の形態1のインバータ装置100の回路図である。インバータ装置100は、三相(R相、S相、T相)の入力電源Pin、整流回路10、突入電流防止抵抗4、突入電流防止リレー3、リレー駆動回路2、平滑コンデンサ5a、5b、電圧バランス抵抗6a、6bおよびインバータ20を備える。
Embodiment 1 FIG.
FIG. 1 is a circuit diagram of an inverter device 100 according to the first embodiment. The inverter device 100 includes a three-phase (R phase, S phase, T phase) input power supply Pin, a rectifier circuit 10, an inrush current prevention resistor 4, an inrush current prevention relay 3, a relay drive circuit 2, smoothing capacitors 5a and 5b, a voltage Balance resistors 6a and 6b and an inverter 20 are provided.
 整流回路10は複数の整流ダイオード1a,1b,1c,1d,1e,1fを備えて構成される。整流ダイオード1a,1dはR相に接続され、整流ダイオード1b,1eはS相に接続され、整流ダイオード1c,1fはT相に接続される。平滑コンデンサ5aと平滑コンデンサ5bは、耐圧を確保するため正ラインLpと負ラインLnの間で直列に接続される。この直列接続体に対して、突入電流防止抵抗4は整流回路10の後段で直列に接続される。突入電流防止リレー3は、突入電流防止抵抗4と並列に接続され、そのオンオフはリレー駆動回路2により制御される。 The rectifier circuit 10 includes a plurality of rectifier diodes 1a, 1b, 1c, 1d, 1e, and 1f. The rectifier diodes 1a and 1d are connected to the R phase, the rectifier diodes 1b and 1e are connected to the S phase, and the rectifier diodes 1c and 1f are connected to the T phase. The smoothing capacitor 5a and the smoothing capacitor 5b are connected in series between the positive line Lp and the negative line Ln to ensure a withstand voltage. The inrush current preventing resistor 4 is connected to the series connection body in series at the subsequent stage of the rectifier circuit 10. The inrush current prevention relay 3 is connected in parallel with the inrush current prevention resistor 4, and its on / off is controlled by the relay drive circuit 2.
 突入電流防止抵抗4は、平滑コンデンサ5a,5bに流れる充電電流を制限するためのものである。突入電流防止抵抗4がなければ、入力電源Pinが投入されたとき、未充電の平滑コンデンサ5a,5bへ過大な突入電流が流れてしまう。平滑コンデンサ5a,5bが充電されると、リレー駆動回路2により突入電流防止リレー3がオフからオンへ動作移行し、それまで突入電流防止抵抗4に流れていた電流は突入電流防止リレー3を介して突入電流防止抵抗4をバイパスする。従って、突入電流防止抵抗4には電流が流れなくなる。 The inrush current preventing resistor 4 is for limiting the charging current flowing through the smoothing capacitors 5a and 5b. Without the inrush current preventing resistor 4, when the input power source Pin is turned on, an excessive inrush current flows to the uncharged smoothing capacitors 5a and 5b. When the smoothing capacitors 5a and 5b are charged, the inrush current preventing relay 3 is shifted from OFF to ON by the relay drive circuit 2, and the current that has been flowing through the inrush current preventing resistor 4 until then is passed through the inrush current preventing relay 3. To bypass the inrush current prevention resistor 4. Accordingly, no current flows through the inrush current prevention resistor 4.
 平滑コンデンサ5a,5bの電圧分圧比は平滑コンデンサ5a,5bの漏れ電流に依存するため、漏れ電流のばらつきにより平滑コンデンサ5a,5bの印加電圧にもばらつきが生じる。印加電圧のばらつきを抑制するため、平滑コンデンサ5a,5bにはそれぞれ電圧バランス抵抗6a,6bが並列接続される。平滑コンデンサ5a,5bの充電開始と同時に、電圧バランス抵抗6a,6bに電圧が印加されるが、電圧バランス抵抗6a,6bに流れる電流値は比較的小さいため、電圧バランス抵抗6a,6bの温度は少しずつ上昇していく。 Since the voltage division ratio of the smoothing capacitors 5a and 5b depends on the leakage current of the smoothing capacitors 5a and 5b, the applied voltage to the smoothing capacitors 5a and 5b also varies due to variations in the leakage current. In order to suppress variation in applied voltage, voltage balancing resistors 6a and 6b are connected in parallel to the smoothing capacitors 5a and 5b, respectively. Simultaneously with the start of charging of the smoothing capacitors 5a and 5b, a voltage is applied to the voltage balance resistors 6a and 6b. However, since the current value flowing through the voltage balance resistors 6a and 6b is relatively small, the temperature of the voltage balance resistors 6a and 6b is It rises little by little.
 インバータ20は、IGBT(Insulated Gate Bipolar Transistor)7a,7b,7c,7d,7e,7f、ダイオード8a,8b,8c,8d,8e,8f、および駆動回路9a,9b,9c,9d,9e,9fを備える。なお、IGBTはパワー半導体素子の一例である。正ラインLpと負ラインLnとの間には、U相をスイッチングするIGBT7a,7dからなる直列回路と、V相をスイッチングするIGBT7b,7eからなる直列回路と、W相をスイッチングするIGBT7c,7fからなる直列回路とがそれぞれ接続されている。IGBT7a,7b,7c,7d,7e,7fには、ダイオード8a,8b,8c,8d,8e,8fがそれぞれ逆並列接続されている。IGBT7a,7dの接合点はモータのU相端子Uに、IGBT7b,7eの接合点はモータのV相端子Vに、IGBT7c,7fの接合点はモータのW相端子Wにそれぞれ接続される。IGBT7a,7b,7c,7d,7e,7fのゲートおよびエミッタには、それぞれ駆動回路9a,9b,9c,9d,9e,9fから駆動信号が個別に供給される。駆動回路9a,9b,9c,9d,9e,9fは、光絶縁用のフォトカプラを備え、マイクロプロセッサ等の外部制御回路からの制御信号を受信して、駆動信号を生成し、接続端子を経由してIGBT7a,7b,7c,7d,7e,7fのゲートおよびエミッタに駆動信号を供給する。 The inverter 20 includes IGBTs (Insulated Gate Bipolar Transistors) 7a, 7b, 7c, 7d, 7e, 7f, diodes 8a, 8b, 8c, 8d, 8e, 8f, and drive circuits 9a, 9b, 9c, 9d, 9e, 9f. Is provided. The IGBT is an example of a power semiconductor element. Between the positive line Lp and the negative line Ln, there are a series circuit composed of IGBTs 7a and 7d for switching the U phase, a series circuit composed of IGBTs 7b and 7e for switching the V phase, and IGBTs 7c and 7f for switching the W phase. Are connected to each other. Diodes 8a, 8b, 8c, 8d, 8e, and 8f are connected in reverse parallel to the IGBTs 7a, 7b, 7c, 7d, 7e, and 7f, respectively. The junction points of IGBTs 7a and 7d are connected to the U-phase terminal U of the motor, the junction points of IGBTs 7b and 7e are connected to the V-phase terminal V of the motor, and the junction points of IGBTs 7c and 7f are connected to the W-phase terminal W of the motor. Drive signals are individually supplied from the drive circuits 9a, 9b, 9c, 9d, 9e, and 9f to the gates and emitters of the IGBTs 7a, 7b, 7c, 7d, 7e, and 7f, respectively. The drive circuits 9a, 9b, 9c, 9d, 9e, and 9f are provided with photocouplers for optical insulation, receive control signals from an external control circuit such as a microprocessor, generate drive signals, and pass through connection terminals. Then, drive signals are supplied to the gates and emitters of the IGBTs 7a, 7b, 7c, 7d, 7e and 7f.
 図1では、三相(R相、S相、T相)の入力電源Pinを三相(U相、V相、W相)の電力出力へ変換するインバータ装置100を例示しているが、他の各種インバータ装置または各種コンバータ装置にも本発明は適用可能である。また、図1では突入電流防止抵抗4と突入電流防止リレー3が整流回路10の後段に配置されているが、整流回路10の前段で入力電源PinのU相、V相、W相それぞれに配置されても良い。 FIG. 1 illustrates an inverter device 100 that converts a three-phase (R-phase, S-phase, T-phase) input power source Pin into a three-phase (U-phase, V-phase, W-phase) power output. The present invention can also be applied to various inverter devices or various converter devices. In FIG. 1, the inrush current prevention resistor 4 and the inrush current prevention relay 3 are arranged in the subsequent stage of the rectifier circuit 10. May be.
 図2を参照し、突入電流防止抵抗4と電圧バランス抵抗6a,6bの温度変化について説明する。図2において、曲線41は突入電流防止抵抗4の温度変化を、曲線42は電圧バランス抵抗6a,6bの温度変化を示している。なお、実施の形態1のインバータ装置100において、突入電流防止抵抗4と電圧バランス抵抗6a,6bは図5,6で後述するように熱的に結合されるが、図2は、突入電流防止抵抗4と電圧バランス抵抗6a,6bが熱的に結合されていない状態、すなわち突入電流防止抵抗4と電圧バランス抵抗6a,6b間で熱の移動が無いと仮定した状態での温度変化を示している。 With reference to FIG. 2, the temperature change of the inrush current prevention resistor 4 and the voltage balance resistors 6a and 6b will be described. In FIG. 2, a curve 41 shows a temperature change of the inrush current prevention resistor 4, and a curve 42 shows a temperature change of the voltage balance resistors 6a and 6b. In the inverter device 100 of the first embodiment, the inrush current prevention resistor 4 and the voltage balance resistors 6a and 6b are thermally coupled as will be described later with reference to FIGS. 4 and the voltage balance resistors 6a and 6b are not thermally coupled, that is, the temperature changes in the state where it is assumed that there is no heat transfer between the inrush current prevention resistor 4 and the voltage balance resistors 6a and 6b. .
 まず、曲線41で表される突入電流防止抵抗4の温度変化について説明する。時刻T=0に入力電源Pinが投入されると、突入電流防止抵抗4の温度は急激に上昇する。これは、平滑コンデンサ5a,5bの充電が始まり、突入電流防止抵抗4によって平滑コンデンサ5a,5bへの突入電流を制限するためである。平滑コンデンサ5a,5bが充電されるにつれ、突入電流防止抵抗4に流れる電流は小さくなる。時刻T=T1において突入電流防止リレー3がオフからオンへ動作移行すると、電流が突入電流防止リレー3により突入電流防止抵抗4をバイパスするため、突入電流防止抵抗4の温度は低下していく。このように、突入電流防止抵抗4には平滑コンデンサ5a,5bが充電される短時間のみ大電流が流れるため、耐パルス性の高い巻線抵抗などが用いられる。 First, the temperature change of the inrush current prevention resistor 4 represented by the curve 41 will be described. When the input power source Pin is turned on at time T = 0, the temperature of the inrush current prevention resistor 4 rapidly increases. This is because charging of the smoothing capacitors 5a and 5b starts, and the inrush current prevention resistor 4 limits the inrush current to the smoothing capacitors 5a and 5b. As the smoothing capacitors 5a and 5b are charged, the current flowing through the inrush current prevention resistor 4 decreases. When the inrush current prevention relay 3 shifts from OFF to ON at time T = T1, the current bypasses the inrush current prevention resistor 4 by the inrush current prevention relay 3, so that the temperature of the inrush current prevention resistor 4 decreases. Thus, since a large current flows only in the inrush current prevention resistor 4 for a short time when the smoothing capacitors 5a and 5b are charged, a winding resistance having a high pulse resistance is used.
 次に、曲線42で表される電圧バランス抵抗6a,6bの温度変化について検討する。時刻T=0に入力電源Pinが投入されると、平滑コンデンサ5a,5bの充電が始まり、それと同時に電圧バランス抵抗6a,6bに電圧が印加される。しかし、電圧バランス抵抗6a,6bに流れる電流値が比較的小さいため、電圧バランス抵抗6a、6bの温度は少しずつ上昇していく。 Next, the temperature change of the voltage balance resistors 6a and 6b represented by the curve 42 will be examined. When the input power source Pin is turned on at time T = 0, charging of the smoothing capacitors 5a and 5b starts, and at the same time, a voltage is applied to the voltage balance resistors 6a and 6b. However, since the current value flowing through the voltage balance resistors 6a and 6b is relatively small, the temperature of the voltage balance resistors 6a and 6b gradually increases.
 突入電流防止抵抗4と電圧バランス抵抗6a,6bの温度変化を比較すると、両者の温度上昇のタイミングは異なる。突入電流防止抵抗4の温度がピークとなる時点(T=T1)では、電圧バランス抵抗6a、6bの温度はそれほど上昇していない。反対に、電圧バランス抵抗6a、6bの温度が高いときには、突入電流防止抵抗4の温度はピークを過ぎて低下している。 Comparing the temperature changes of the inrush current prevention resistor 4 and the voltage balance resistors 6a and 6b, the timing of temperature rise of both is different. At the time when the temperature of the inrush current prevention resistor 4 reaches a peak (T = T1), the temperature of the voltage balance resistors 6a and 6b does not increase so much. On the other hand, when the temperature of the voltage balance resistors 6a and 6b is high, the temperature of the inrush current preventing resistor 4 decreases after passing the peak.
 図3は、インバータ装置100の斜視図であり、図4は、図3に示す矢印の向きに見たインバータ装置100の側面図である。インバータ装置100において、プリント配線板33の上面には、突入電流防止リレー3(図示せず)、平滑コンデンサ5a,5b、抵抗装置30A、駆動回路9a,9b,9c,9d,9e,9f(図示せず)およびリレー駆動回路2(図示せず)が実装され、下面には、整流モジュール31とIGBTモジュール32が実装される。整流モジュール31とIGBTモジュール32は、半田付けによってプリント配線板33に電気的に接続される。 3 is a perspective view of the inverter device 100, and FIG. 4 is a side view of the inverter device 100 viewed in the direction of the arrow shown in FIG. In the inverter device 100, an inrush current prevention relay 3 (not shown), smoothing capacitors 5a and 5b, a resistor device 30A, driving circuits 9a, 9b, 9c, 9d, 9e, and 9f (see FIG. The relay drive circuit 2 (not shown) and the rectifying module 31 and the IGBT module 32 are mounted on the lower surface. The rectifying module 31 and the IGBT module 32 are electrically connected to the printed wiring board 33 by soldering.
 整流モジュール31は、1つのパッケージ内に複数のダイオード1a,1b,1c,1d,1e,1fを同封したモジュールであり、整流回路10を構成する。IGBTモジュール32は、1つのパッケージ内にIGBT7a,7b,7c,7d,7e,7fとダイオード8a,8b,8c,8d,8e,8fを同封したモジュールである。整流モジュール31とIGBTモジュール32は発熱電子部品であるため、これらにはヒートシンク34が取り付けられ、ヒートシンク34により冷却される。 The rectifying module 31 is a module in which a plurality of diodes 1 a, 1 b, 1 c, 1 d, 1 e, and 1 f are enclosed in one package, and constitutes the rectifying circuit 10. The IGBT module 32 is a module in which IGBTs 7a, 7b, 7c, 7d, 7e, 7f and diodes 8a, 8b, 8c, 8d, 8e, 8f are enclosed in one package. Since the rectifying module 31 and the IGBT module 32 are heat generating electronic components, a heat sink 34 is attached to them and cooled by the heat sink 34.
 抵抗装置30Aの構成について説明する。図5は抵抗装置30Aの分解斜視図であり、図6は図5の抵抗装置30Aを組み立てた状態でのA-A断面図である。抵抗装置30Aは、抵抗体61,62a,62bおよび絶縁ケース50を備えている。抵抗体61は突入電流防止抵抗4として用いられ、抵抗体62a,62bは電圧バランス抵抗6a,6bとして用いられる。 The configuration of the resistance device 30A will be described. FIG. 5 is an exploded perspective view of the resistance device 30A, and FIG. 6 is a cross-sectional view taken along the line AA in a state in which the resistance device 30A of FIG. 5 is assembled. The resistance device 30 </ b> A includes resistors 61, 62 a, 62 b and an insulating case 50. The resistor 61 is used as the inrush current preventing resistor 4, and the resistors 62a and 62b are used as the voltage balance resistors 6a and 6b.
 絶縁ケース50は、直方体形状であり、上面から凹んだ溝53,54,55が形成されている。溝53には抵抗体61が配置され、溝54,55にはそれぞれ抵抗体62a,62bが配置される。言い換えれば、溝53は抵抗体61が配置される第1の溝であり、溝54は抵抗体62aが配置される第2の溝であり、溝55は抵抗体62bが配置される第3の溝である。これにより、抵抗体62a,62b,62cの絶縁ケース50における位置決めを容易に行うことができ、抵抗体62a,62b,62cの位置ばらつきが抑制される。抵抗体61,62a,62bは円筒形状である。抵抗体61の両端には電極端子52cが接続され、抵抗体62aの両端には電極端子52aが接続され、抵抗体63bの両端には電極端子52bが接続される。 The insulating case 50 has a rectangular parallelepiped shape, and has grooves 53, 54, and 55 that are recessed from the upper surface. A resistor 61 is disposed in the groove 53, and resistors 62a and 62b are disposed in the grooves 54 and 55, respectively. In other words, the groove 53 is a first groove in which the resistor 61 is disposed, the groove 54 is a second groove in which the resistor 62a is disposed, and the groove 55 is a third groove in which the resistor 62b is disposed. It is a groove. Thereby, the positioning of the resistors 62a, 62b, and 62c in the insulating case 50 can be easily performed, and the positional variation of the resistors 62a, 62b, and 62c is suppressed. The resistors 61, 62a, 62b are cylindrical. An electrode terminal 52c is connected to both ends of the resistor 61, an electrode terminal 52a is connected to both ends of the resistor 62a, and an electrode terminal 52b is connected to both ends of the resistor 63b.
 図5では、突入電流防止抵抗4のサイズを電圧バランス抵抗6a,6bよりも大きくし、突入電流防止抵抗4を配置するための溝53を電圧バランス抵抗6a,6bを配置するための溝54,55よりも大きくしている。これにより、突入電流防止抵抗4を誤って電圧バランス抵抗6a,6bを配置するための溝54,55に配置することを防ぐことができる。 In FIG. 5, the size of the inrush current prevention resistor 4 is made larger than that of the voltage balance resistors 6a and 6b, and the groove 53 for arranging the inrush current prevention resistor 4 is replaced with the groove 54 for arranging the voltage balance resistors 6a and 6b. It is larger than 55. Accordingly, it is possible to prevent the inrush current prevention resistor 4 from being mistakenly disposed in the grooves 54 and 55 for arranging the voltage balance resistors 6a and 6b.
 抵抗体61,62a,62bが溝53,54,55に配置された状態で、溝53,54,55にセメントなどの封止材56が充填される。こうして、抵抗体61,62a,62bは、絶縁ケース50に密閉され、熱的に結合される。すなわち、突入電流防止抵抗4と電圧バランス抵抗6a,6bは熱的に結合される。図6に示すように、封止材56の封入面すなわち上面が絶縁ケース50の上面より下になるように、封止材56の封入量は調整される。これにより、電極端子52a,52b,52c間の沿面距離が、絶縁ケース50の上面と封止材56の封入面との距離だけ長くなる。同様に、電極端子52a,52b,52cと抵抗装置30Aが取り付けられる筐体40との沿面距離も長くなる。 With the resistors 61, 62a, 62b disposed in the grooves 53, 54, 55, the grooves 53, 54, 55 are filled with a sealing material 56 such as cement. Thus, the resistors 61, 62a and 62b are sealed in the insulating case 50 and thermally coupled. That is, the inrush current preventing resistor 4 and the voltage balance resistors 6a and 6b are thermally coupled. As shown in FIG. 6, the sealing amount of the sealing material 56 is adjusted so that the sealing surface, that is, the upper surface of the sealing material 56 is lower than the upper surface of the insulating case 50. Thereby, the creeping distance between the electrode terminals 52a, 52b, and 52c is increased by the distance between the upper surface of the insulating case 50 and the sealing surface of the sealing material 56. Similarly, the creepage distance between the electrode terminals 52a, 52b, and 52c and the housing 40 to which the resistance device 30A is attached also becomes long.
 電極端子52a,52b,52cは絶縁ケース50から上方に突出しており、その突出した部分が平型接続子などの接続子と配線を用いてプリント配線板33へ接続される(図3参照)。より具体的には、電極端子52cは、図1において抵抗体61の両端に示す接続点70cに配線接続される。電極端子52aは、図1において抵抗体62aの両端に示す接続点70aに配線接続される。電極端子52bは、図1において抵抗体62bの両端に示す接続点70bに配線接続される。電極端子52cと電極端子52a,52bとの間で形状またはサイズを変えておけば、平型接続子などのコネクタを用いて電極端子52a,52b,52cを接続点70a,70b,70cに接続する際の誤接続を防止することができる。 The electrode terminals 52a, 52b, and 52c protrude upward from the insulating case 50, and the protruding portion is connected to the printed wiring board 33 using a connector such as a flat connector and wiring (see FIG. 3). More specifically, the electrode terminal 52c is wire-connected to connection points 70c shown at both ends of the resistor 61 in FIG. The electrode terminal 52a is wire-connected to connection points 70a shown at both ends of the resistor 62a in FIG. The electrode terminal 52b is wire-connected to connection points 70b shown at both ends of the resistor 62b in FIG. If the shape or size is changed between the electrode terminal 52c and the electrode terminals 52a and 52b, the electrode terminals 52a, 52b and 52c are connected to the connection points 70a, 70b and 70c using a connector such as a flat connector. Erroneous connection can be prevented.
 抵抗装置30Aには、ねじ穴57が設けられた金具51が取り付けられている。金具51を筐体40へねじ止めすることにより、抵抗装置30Aはその底面が筐体40に直接接触した状態で固定される。これにより、抵抗装置30Aの発熱をインバータ装置100の筺体40へ逃がすことができるため、抵抗装置30Aの小型化を行うことができる。なお、抵抗装置30Aは筐体40の底面に取り付けられる他、筐体40の側面またはヒートシンク34へ取り付けられても良く、同様の効果が得られる。また、抵抗装置30Aの固定方法は、上記に限らない。電極端子52a,52b,52cをプリント配線板33に設けたスルーホールに挿入してプリント配線板33とはんだ付けすることにより、抵抗装置30Aをプリント配線板33に取り付けても良い。 The metal fitting 51 provided with the screw hole 57 is attached to the resistance device 30A. By screwing the metal fitting 51 to the housing 40, the resistance device 30 </ b> A is fixed with the bottom surface thereof in direct contact with the housing 40. Thereby, since the heat generated by the resistance device 30A can be released to the housing 40 of the inverter device 100, the size of the resistance device 30A can be reduced. The resistance device 30 </ b> A may be attached to the side surface of the housing 40 or the heat sink 34 in addition to being attached to the bottom surface of the housing 40, and the same effect is obtained. Further, the fixing method of the resistance device 30A is not limited to the above. The resistance device 30 </ b> A may be attached to the printed wiring board 33 by inserting the electrode terminals 52 a, 52 b, 52 c into through holes provided in the printed wiring board 33 and soldering to the printed wiring board 33.
 以上に説明したように、実施の形態1の抵抗装置30Aは、直列接続された第1の平滑コンデンサである平滑コンデンサ5aおよび第2の平滑コンデンサである平滑コンデンサ5bに直列接続される第1の抵抗体である抵抗体61と、平滑コンデンサ5aに並列接続される第2の抵抗体である抵抗体62aと、平滑コンデンサ5bに並列接続される第3の抵抗体である抵抗体62bと、抵抗体61,62a,62bを、内部に充填された封止材56により密閉する絶縁ケース50とを備える。これにより、突入電流防止抵抗4と電圧バランス抵抗6a,6bは熱的に結合される。図2に示したように、突入電流防止抵抗4と電圧バランス抵抗6a,6bの温度上昇のタイミングは異なっており、突入電流防止抵抗4の温度が上昇しているときは、電圧バランス抵抗6a,6bの温度は上昇していない。従って、突入電流防止抵抗4で生じた熱が電圧バランス抵抗6a,6bに移動することにより、突入電流防止抵抗4の熱容量が大きくなるのと同等の効果が得られ、突入電流防止抵抗4の温度上昇が抑制される。また、電圧バランス抵抗6a,6bの温度が上昇しているときに突入電流防止抵抗4の温度は上昇していない。従って、電圧バランス抵抗6a,6bで生じた熱が突入電流防止抵抗4に移動することにより、電圧バランス抵抗6a,6bの熱容量が大きくなるのと同等の効果が得られ、電圧バランス抵抗6a,6bの温度上昇が抑制される。その結果、突入電流防止抵抗4と電圧バランス抵抗6a,6bを小型化することが可能となる。また、電圧バランス抵抗6a,6bの温度上昇が抑制されるため、平滑コンデンサ5a,5bの周囲温度の上昇が抑制され、平滑コンデンサ5a,5bの寿命の劣化が抑制される。 As described above, the resistance device 30A according to the first embodiment includes the first smoothing capacitor 5a that is the first smoothing capacitor connected in series and the smoothing capacitor 5b that is the second smoothing capacitor. A resistor 61 that is a resistor, a resistor 62a that is a second resistor connected in parallel to the smoothing capacitor 5a, a resistor 62b that is a third resistor connected in parallel to the smoothing capacitor 5b, and a resistor An insulating case 50 that seals the bodies 61, 62a, 62b with a sealing material 56 filled therein is provided. Thereby, the inrush current prevention resistor 4 and the voltage balance resistors 6a and 6b are thermally coupled. As shown in FIG. 2, the temperature rise timing of the inrush current prevention resistor 4 and the voltage balance resistors 6a and 6b are different, and when the temperature of the inrush current prevention resistor 4 is raised, the voltage balance resistors 6a, The temperature of 6b has not risen. Accordingly, the heat generated in the inrush current prevention resistor 4 is transferred to the voltage balance resistors 6a and 6b, so that the same effect as that of increasing the heat capacity of the inrush current prevention resistor 4 is obtained. The rise is suppressed. Further, when the temperature of the voltage balance resistors 6a and 6b is rising, the temperature of the inrush current preventing resistor 4 is not rising. Accordingly, the heat generated in the voltage balance resistors 6a and 6b moves to the inrush current prevention resistor 4, so that the same effect as that of increasing the heat capacity of the voltage balance resistors 6a and 6b can be obtained, and the voltage balance resistors 6a and 6b. Temperature rise is suppressed. As a result, the inrush current preventing resistor 4 and the voltage balance resistors 6a and 6b can be reduced in size. Moreover, since the temperature rise of voltage balance resistance 6a, 6b is suppressed, the raise of the ambient temperature of smoothing capacitor 5a, 5b is suppressed, and the lifetime deterioration of smoothing capacitor 5a, 5b is suppressed.
 実施の形態2.
 図7は実施の形態2の抵抗装置30Bの分解斜視図である。抵抗装置30Bは、実施の形態1の抵抗装置30Aを一部変形したものであるため、以下では実施の形態1の抵抗装置30Aとの相違点について説明する。実施の形態1の抵抗装置30Aでは、図5に示すように、電圧バランス抵抗6a,6bとなる抵抗体62a,62bが絶縁ケース50の異なる溝54,55に配置される。これに対して実施の形態2の抵抗装置30Bでは、抵抗体62a,62bの等電位になる端部が共通の電極端子52dによって接続され、抵抗体62a,62bは同じ溝58に配置される。これ以外の点で、抵抗装置30Bは実施の形態1の抵抗装置30Aと同様である。
Embodiment 2. FIG.
FIG. 7 is an exploded perspective view of the resistance device 30B according to the second embodiment. Since the resistance device 30B is a partial modification of the resistance device 30A of the first embodiment, differences from the resistance device 30A of the first embodiment will be described below. In the resistance device 30A of the first embodiment, as shown in FIG. 5, the resistors 62a and 62b to be the voltage balance resistors 6a and 6b are arranged in different grooves 54 and 55 of the insulating case 50. In contrast, in the resistance device 30B according to the second embodiment, the ends of the resistors 62a and 62b having the same potential are connected by the common electrode terminal 52d, and the resistors 62a and 62b are arranged in the same groove 58. In other respects, the resistance device 30B is the same as the resistance device 30A of the first embodiment.
 実施の形態2の抵抗装置30Bでは、抵抗体62aの一端と抵抗体62bの一端が共通の電極端子52dにより接続され、絶縁ケース50は、抵抗体61が配置される第1の溝である溝53と、抵抗体62,63が配置される第2の溝である溝58と、を有する。抵抗体62a,62bの電位の同じ端部を共通の電極端子52dとすることによって、抵抗装置30Bの小型化と部品数の削減が可能となる。また、電圧バランス抵抗6a,6bをより近い距離で実装することができるため、電圧バランス抵抗6a、6b同士が受熱しあうことで両者の温度差が小さくなる。従って、抵抗体62a,62bの温度変化に伴う電圧バランス抵抗6a,6bの抵抗値のばらつきを小さくすることができる。 In the resistor device 30B of the second embodiment, one end of the resistor 62a and one end of the resistor 62b are connected by a common electrode terminal 52d, and the insulating case 50 is a groove that is a first groove in which the resistor 61 is disposed. 53 and a groove 58 which is a second groove in which the resistors 62 and 63 are disposed. The resistance device 30B can be downsized and the number of components can be reduced by using the common electrode terminal 52d at the same potential end of the resistors 62a and 62b. In addition, since the voltage balance resistors 6a and 6b can be mounted at a closer distance, the voltage balance resistors 6a and 6b receive heat to reduce the temperature difference between them. Accordingly, it is possible to reduce variations in the resistance values of the voltage balance resistors 6a and 6b accompanying the temperature changes of the resistors 62a and 62b.
 実施の形態3.
 図8は実施の形態3の抵抗装置30Cの分解斜視図であり、図9は図8の抵抗装置30Cを組み立てた状態でのB-B断面図である。以下、抵抗装置30Cの構成を、実施の形態2の抵抗装置30Bと対比し、相違点について説明する。以下の説明で特に言及しない抵抗装置30Cの構成は、実施の形態2の抵抗装置30Bと同様である。
Embodiment 3 FIG.
FIG. 8 is an exploded perspective view of the resistance device 30C of the third embodiment, and FIG. 9 is a cross-sectional view taken along the line BB in a state where the resistance device 30C of FIG. 8 is assembled. Hereinafter, the configuration of the resistance device 30C will be compared with the resistance device 30B of the second embodiment, and differences will be described. The configuration of the resistance device 30C not specifically mentioned in the following description is the same as that of the resistance device 30B of the second embodiment.
 実施の形態2の抵抗装置30Bでは、1つの抵抗体61が突入電流防止抵抗4を構成したが、抵抗装置30Cでは、2つの抵抗体61が直列接続または並列接続されて突入電流防止抵抗4を構成する。実施の形態2の抵抗装置30Bでは、突入電流防止抵抗4を構成する抵抗体61と電圧バランス抵抗6a,6bを構成する抵抗体62a,62bは、異なる溝53,58に配置された。しかし抵抗装置30Cにおいて、抵抗体61,62a,62bは絶縁ケース50に設けられた同一の溝59に配置される。溝59は、絶縁ケース50の上面から凹んだ凹部である。 In the resistor device 30B of the second embodiment, one resistor 61 constitutes the inrush current preventing resistor 4. However, in the resistor device 30C, the two resistors 61 are connected in series or in parallel to form the inrush current preventing resistor 4. Constitute. In the resistance device 30B of the second embodiment, the resistor 61 constituting the inrush current preventing resistor 4 and the resistors 62a and 62b constituting the voltage balance resistors 6a and 6b are arranged in different grooves 53 and 58, respectively. However, in the resistance device 30 </ b> C, the resistors 61, 62 a, and 62 b are disposed in the same groove 59 provided in the insulating case 50. The groove 59 is a recess that is recessed from the upper surface of the insulating case 50.
 溝59の底面には一端から他端にかけて2つの突起60が設けられている。このように配置された2つの突起60により、絶縁ケース50の溝59は、2つの突起60に挟まれた領域と、一方の突起60と溝59の側面に挟まれた領域と、他方の突起60と溝59の側面に挟まれた領域という3つの領域に区分される。2つの突起60に挟まれた領域には抵抗体62a,62bが配置され、他の領域には2つの抵抗体61が抵抗体62a,62bを挟み込むように配置される。突起60により、抵抗体61と抵抗体62a,62bは接触せず、抵抗体61,62a,62bの溝59における位置決めがなされる。 Two protrusions 60 are provided on the bottom surface of the groove 59 from one end to the other end. Due to the two protrusions 60 arranged in this manner, the groove 59 of the insulating case 50 has a region sandwiched between the two protrusions 60, a region sandwiched between one protrusion 60 and the side surface of the groove 59, and the other protrusion. 60 and the region between the sides of the groove 59 are divided into three regions. Resistors 62a and 62b are disposed in the region sandwiched between the two protrusions 60, and two resistors 61 are disposed in the other regions so as to sandwich the resistors 62a and 62b. Due to the protrusion 60, the resistor 61 and the resistors 62a and 62b are not in contact with each other, and positioning of the resistors 61, 62a and 62b in the groove 59 is performed.
 抵抗体61,62a,62bが溝59に配置された状態で、溝59にセメントなどの封止材56が充填される。図9に示すように、封止材56の封入面すなわち上面が絶縁ケース50の上面より下になるように、封止材56の封入量は調整される。こうして、抵抗体61,62a,62bは、絶縁ケース50に密閉され、熱的に結合される。すなわち、突入電流防止抵抗4と電圧バランス抵抗6a,6bは熱的に結合される。 In the state where the resistors 61, 62a, 62b are arranged in the groove 59, the groove 59 is filled with a sealing material 56 such as cement. As shown in FIG. 9, the sealing amount of the sealing material 56 is adjusted so that the sealing surface, that is, the upper surface of the sealing material 56 is lower than the upper surface of the insulating case 50. Thus, the resistors 61, 62a and 62b are sealed in the insulating case 50 and thermally coupled. That is, the inrush current preventing resistor 4 and the voltage balance resistors 6a and 6b are thermally coupled.
 絶縁ケース50の溝59の底面に突起60を設け、突起60により抵抗体61,62a,62bを位置決めすることにより、実施の形態1,2に比べて絶縁ケース50の材料を減らし、容易に製造することが可能になる。また、電圧バランス抵抗6a,6bを構成する抵抗体62a,62bを挟み込んで、突入電流防止抵抗4を構成する抵抗体61を配置することにより、突入電流防止抵抗4と電圧バランス抵抗6a,6bの熱的結合性が向上するため、抵抗体62a,62bの発熱を抵抗体61で冷却し、抵抗体61の発熱を抵抗体62a,62bで冷却する効果が向上する。 By providing a protrusion 60 on the bottom surface of the groove 59 of the insulating case 50 and positioning the resistors 61, 62a, 62b by the protrusion 60, the material of the insulating case 50 is reduced as compared with the first and second embodiments, and manufacturing is easy. It becomes possible to do. Further, the resistors 62a and 62b constituting the voltage balance resistors 6a and 6b are sandwiched and the resistor 61 constituting the inrush current preventing resistor 4 is disposed, whereby the inrush current preventing resistor 4 and the voltage balance resistors 6a and 6b are arranged. Since the thermal coupling property is improved, the heat generated by the resistors 62a and 62b is cooled by the resistor 61, and the heat generated by the resistor 61 is cooled by the resistors 62a and 62b.
 本実施の形態では、突入電流防止抵抗4を複数の抵抗体61で構成し、電圧バランス抵抗6a,6bを構成する抵抗体62a,62bの両側に抵抗体61を配置した。しかし、突入電流防止抵抗4を1つの抵抗体61で構成し、電圧バランス抵抗6aを複数の抵抗体62aで構成し、電圧バランス抵抗6bを複数の抵抗体62bで構成し、抵抗体61を挟み込んで抵抗体62a,62bを配置しても良い。但し、抵抗体62a,62bの方が抵抗体61よりも高温にある期間が長いため、抵抗体62a,62bを絶縁ケース50の中央寄りに配置すれば、抵抗装置30Cの均熱化が実現する。 In the present embodiment, the inrush current prevention resistor 4 is constituted by a plurality of resistors 61, and the resistors 61 are arranged on both sides of the resistors 62a and 62b constituting the voltage balance resistors 6a and 6b. However, the inrush current prevention resistor 4 is constituted by one resistor 61, the voltage balance resistor 6a is constituted by a plurality of resistors 62a, the voltage balance resistor 6b is constituted by a plurality of resistors 62b, and the resistor 61 is sandwiched therebetween. The resistors 62a and 62b may be arranged. However, since the resistors 62a and 62b are at a higher temperature than the resistor 61, the temperature of the resistance device 30C can be equalized by disposing the resistors 62a and 62b closer to the center of the insulating case 50. .
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 In the present invention, it is possible to freely combine the respective embodiments within the scope of the invention, and to appropriately modify and omit the respective embodiments.
 1a,1b,1c,1d,1e,1f 整流ダイオード、2 リレー駆動回路、3 突入電流防止リレー、4 突入電流防止抵抗、5a,5b 平滑コンデンサ、6a,6b 電圧バランス抵抗、7a,7b,7c,7d,7e,7f IGBT、8a,8b,8c,8d,8e,8f ダイオード、9a,9b,9c,9d,9e,9f 駆動回路、10 整流回路、20 インバータ、30A,30B,30C 抵抗装置、31 整流モジュール、32 IGBTモジュール、33 プリント配線板、34 ヒートシンク、40 筐体、51 金具、52a,52b,52c,52d 電極端子、53,54,55,58,59 溝、56 封止材、57 ねじ穴。 1a, 1b, 1c, 1d, 1e, 1f rectifier diode, 2 relay drive circuit, 3 inrush current prevention relay, 4 inrush current prevention resistor, 5a, 5b smoothing capacitor, 6a, 6b voltage balance resistor, 7a, 7b, 7c, 7d, 7e, 7f IGBT, 8a, 8b, 8c, 8d, 8e, 8f diode, 9a, 9b, 9c, 9d, 9e, 9f drive circuit, 10 rectifier circuit, 20 inverter, 30A, 30B, 30C resistance device, 31 Rectification module, 32 IGBT module, 33 printed wiring board, 34 heat sink, 40 housing, 51 metal fittings, 52a, 52b, 52c, 52d electrode terminals, 53, 54, 55, 58, 59 grooves, 56 sealing material, 57 screws hole.

Claims (9)

  1.  直列接続される第1の平滑コンデンサ(5a)および第2の平滑コンデンサ(5b)に直列接続される少なくとも1つの第1の抵抗体(61)と、
     前記第1の平滑コンデンサ(5a)に並列接続される第2の抵抗体(62a)と、
     前記第2の平滑コンデンサ(5b)に並列接続される第3の抵抗体(62b)と、
     前記第1、第2および第3の抵抗体(61,62a,62b)を、内部に充填された封止材(56)により密閉する絶縁ケース(50)と、を備える、
    抵抗装置(30A)。
    At least one first resistor (61) connected in series to a first smoothing capacitor (5a) and a second smoothing capacitor (5b) connected in series;
    A second resistor (62a) connected in parallel to the first smoothing capacitor (5a);
    A third resistor (62b) connected in parallel to the second smoothing capacitor (5b);
    An insulating case (50) for sealing the first, second and third resistors (61, 62a, 62b) with a sealing material (56) filled therein;
    Resistance device (30A).
  2.  前記第1、第2および第3の抵抗体(61,62a,62b)には電極端子(52a,52b,52c)が接続され、
     前記電極端子(52a,52b,52c)は、前記絶縁ケース(50)の上面から突出し、
     前記絶縁ケース(50)の内部に充填された前記封止材(56)の上面は、前記絶縁ケース(50)の上面より下にある、
    請求項1に記載の抵抗装置(30A)。
    Electrode terminals (52a, 52b, 52c) are connected to the first, second and third resistors (61, 62a, 62b),
    The electrode terminals (52a, 52b, 52c) protrude from the upper surface of the insulating case (50),
    The upper surface of the sealing material (56) filled in the insulating case (50) is below the upper surface of the insulating case (50).
    The resistance device (30A) according to claim 1.
  3.  前記絶縁ケース(50)には、前記絶縁ケース(50)の上面から凹んだ少なくとも1つの溝(53,54,55)が設けられ、
     前記第1、第2および第3の抵抗体(61,62a,62b)は、前記溝(53,54,55)に配置される、
    請求項1または2に記載の抵抗装置(30A)。
    The insulating case (50) is provided with at least one groove (53, 54, 55) recessed from the upper surface of the insulating case (50),
    The first, second and third resistors (61, 62a, 62b) are disposed in the grooves (53, 54, 55).
    The resistance device (30A) according to claim 1 or 2.
  4.  前記溝は、
     前記第1の抵抗体(61)が配置される第1の溝(53)と、
     前記第2の抵抗体(62a)が配置される第2の溝(54)と、
     前記第3の抵抗体(62b)が配置される第3の溝(55)と、を有する、
    請求項3に記載の抵抗装置(30A)。
    The groove is
    A first groove (53) in which the first resistor (61) is disposed;
    A second groove (54) in which the second resistor (62a) is disposed;
    A third groove (55) in which the third resistor (62b) is disposed,
    The resistance device (30A) according to claim 3.
  5.  前記第2の抵抗体(62a)の一端と前記第3の抵抗体(62b)の一端が共通の端子(52d)により接続され、
     前記溝は、
     前記第1の抵抗体(61)が配置される第1の溝(53)と、
     前記第2および第3の抵抗体(62a,62b)が配置される第2の溝(58)と、を有する、
    請求項3に記載の抵抗装置(30B)。
    One end of the second resistor (62a) and one end of the third resistor (62b) are connected by a common terminal (52d),
    The groove is
    A first groove (53) in which the first resistor (61) is disposed;
    A second groove (58) in which the second and third resistors (62a, 62b) are disposed,
    The resistance device (30B) according to claim 3.
  6.  前記第1、第2および第3の抵抗体(61,62a,62b)は、前記絶縁ケース(50)に形成された一つの溝(59)に配置され、
     前記絶縁ケース(50)は、前記溝(59)の底面に、前記第1、第2および第3の抵抗体(61,62a,62b)を位置決めする突起(60)を有する、
    請求項3に記載の抵抗装置(30C)。
    The first, second and third resistors (61, 62a, 62b) are disposed in one groove (59) formed in the insulating case (50),
    The insulating case (50) has a protrusion (60) for positioning the first, second and third resistors (61, 62a, 62b) on the bottom surface of the groove (59).
    The resistance device (30C) according to claim 3.
  7.  複数の前記第1の抵抗体(61)が、直列または並列に接続され、前記第2および第3の抵抗体(62a,62b)を挟み込んで配置される、
    請求項1から6のいずれか1項に記載の抵抗装置(30C)。
    A plurality of the first resistors (61) are connected in series or in parallel, and are disposed so as to sandwich the second and third resistors (62a, 62b).
    The resistance device (30C) according to any one of claims 1 to 6.
  8.  前記第2および第3の抵抗体(62a,62b)をが、前記第1の抵抗体(61)を挟み込んで配置される、
    請求項1から6のいずれか1項に記載の抵抗装置。
    The second and third resistors (62a, 62b) are disposed with the first resistor (61) interposed therebetween,
    The resistance device according to any one of claims 1 to 6.
  9.  請求項1から8のいずれか1項に記載の抵抗装置を備える、
    インバータ装置(100)。
    The resistance device according to claim 1 is provided.
    Inverter device (100).
PCT/JP2019/010790 2018-03-19 2019-03-15 Resistance device and inverter device WO2019181774A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980006020.0A CN111837204A (en) 2018-03-19 2019-03-15 Resistor device and converter device
JP2020507750A JP6984002B2 (en) 2018-03-19 2019-03-15 Resistance device and inverter device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-050751 2018-03-19
JP2018050751 2018-03-19

Publications (1)

Publication Number Publication Date
WO2019181774A1 true WO2019181774A1 (en) 2019-09-26

Family

ID=67987322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010790 WO2019181774A1 (en) 2018-03-19 2019-03-15 Resistance device and inverter device

Country Status (4)

Country Link
JP (1) JP6984002B2 (en)
CN (1) CN111837204A (en)
TW (1) TWI695397B (en)
WO (1) WO2019181774A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249201U (en) * 1985-09-14 1987-03-26
JPS6276525U (en) * 1985-11-01 1987-05-16
JP2004119609A (en) * 2002-09-25 2004-04-15 Toyota Motor Corp Reactor apparatus
JP2015135860A (en) * 2014-01-16 2015-07-27 ミクロン電気株式会社 resistor
JP2016067145A (en) * 2014-09-25 2016-04-28 株式会社富士通ゼネラル Air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339164A (en) * 2002-05-22 2003-11-28 Hitachi Industrial Equipment Systems Co Ltd Switching power circuit and inverter device
JP2014036145A (en) * 2012-08-09 2014-02-24 Toyota Industries Corp Resistance device
JP6276525B2 (en) 2013-07-03 2018-02-07 株式会社竹村製作所 Water treatment equipment using filtration sand
CN205751730U (en) * 2016-05-11 2016-11-30 蚌埠市伟创远东电子有限公司 A kind of aluminum-housed resistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249201U (en) * 1985-09-14 1987-03-26
JPS6276525U (en) * 1985-11-01 1987-05-16
JP2004119609A (en) * 2002-09-25 2004-04-15 Toyota Motor Corp Reactor apparatus
JP2015135860A (en) * 2014-01-16 2015-07-27 ミクロン電気株式会社 resistor
JP2016067145A (en) * 2014-09-25 2016-04-28 株式会社富士通ゼネラル Air conditioner

Also Published As

Publication number Publication date
JP6984002B2 (en) 2021-12-17
CN111837204A (en) 2020-10-27
JPWO2019181774A1 (en) 2020-12-03
TWI695397B (en) 2020-06-01
TW201939546A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
US9685879B2 (en) Power semiconductor module and power conversion device
US6618278B2 (en) Electric power conversion/inversion apparatus
US6525950B1 (en) Semiconductor device and electric power conversion device
JP5550927B2 (en) Power converter
WO2013027819A1 (en) Semiconductor module
US20160150662A1 (en) Electrical Circuit and Method for Producing an Electrical Circuit for Activating a Load
KR102440583B1 (en) Power unit, and power transformatin device
JP6075227B2 (en) Power converter
WO2015053141A1 (en) Dc-dc converter device
CN108964480B (en) Power converter
WO2016140147A1 (en) Power semiconductor module and electric power conversion device
WO2020218014A1 (en) Power conversion device
WO2017072870A1 (en) Power conversion device
CN109429543B (en) Power conversion device
CN100394691C (en) Semiconductor switch arrangement
KR940009568A (en) Inverter device for electric vehicles
US10734162B2 (en) Capacitor device
WO2019181774A1 (en) Resistance device and inverter device
JP2015133281A (en) Terminal block, and power conversion system with the same
JP6832790B2 (en) Inverter device
US10165701B2 (en) Electric power conversion device for providing a stabilized potential to a cooler
JP2019122064A (en) Power conversion device
CN112313869A (en) Power conversion device
US20050265059A1 (en) Multi-use power conversion modules
US20200335423A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507750

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771568

Country of ref document: EP

Kind code of ref document: A1