WO2019181690A1 - Tensioner - Google Patents

Tensioner Download PDF

Info

Publication number
WO2019181690A1
WO2019181690A1 PCT/JP2019/010293 JP2019010293W WO2019181690A1 WO 2019181690 A1 WO2019181690 A1 WO 2019181690A1 JP 2019010293 W JP2019010293 W JP 2019010293W WO 2019181690 A1 WO2019181690 A1 WO 2019181690A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
tensioner
axial direction
holding member
inclined surface
Prior art date
Application number
PCT/JP2019/010293
Other languages
French (fr)
Japanese (ja)
Inventor
貴雄 小林
山田 佳男
和人 平岡
伊藤 敬一
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to JP2020508270A priority Critical patent/JP7293192B2/en
Publication of WO2019181690A1 publication Critical patent/WO2019181690A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains

Definitions

  • This disclosure relates to tensioners.
  • Japanese Patent Application Laid-Open No. 2005-344887 discloses a ring-type hydraulic tensioner that applies tension to a timing chain wound around a crankshaft and a camshaft of a vehicle engine.
  • a cylindrical plunger is inserted into the plunger receiving hole of the housing body.
  • An annular groove is formed on the outer periphery of the cylindrical plunger, and a C-shaped ring is fitted into the annular groove. Further, the C-shaped ring is biased so as to increase in diameter toward the inner peripheral wall of the plunger receiving hole.
  • the C-shaped ring slides with the inner peripheral wall of the plunger accommodation hole as the plunger moves back and forth. Due to this sliding friction, the inner peripheral wall of the plunger receiving hole is worn. As a result, the gap between the inner peripheral wall of the plunger receiving hole and the outer peripheral surface of the plunger increases. In addition, wear and heat settling of the C-shaped ring occurs, and the diameter expansion force of the C-shaped ring decreases. In these cases, the buffering performance of the C-shaped ring may be reduced.
  • the present disclosure provides a tensioner in which the buffering performance for suppressing rapid movement of the cylindrical plunger (propulsion member) is unlikely to deteriorate.
  • the tensioner of the first aspect includes a cylindrical holding member, an idler member that is slidably attached to the retainer member in the axial direction, a propulsion member that is attached to the idler member so as to be relatively movable, and the idler member And an urging member that urges the propulsion member axially outward of the holding member and urges the floating member axially inward of the holding member; and the floating member
  • Sliding force increasing means for increasing the resistance.
  • the propulsion member moves outward in the axial direction of the holding member by the urging force of the urging member.
  • the floating member moves inward in the axial direction of the holding member by the urging force of the urging member.
  • the sliding force increasing means formed in contact with the floating member and the holding member presses the propelling member together with the floating member in a direction crossing the axial direction. For this reason, the sliding resistance between the propelling member and the holding member is increased. Thereby, the sliding speed of a propulsion member becomes slow and a buffer function is exhibited.
  • the propulsion member when a force in a direction of pushing the propulsion member back in the axial direction of the holding member acts on the propulsion member, the propulsion member is pushed back in the axial direction of the holding member together with the floating member against the biasing force of the biasing member. . Also at this time, since the idler member moves inward in the axial direction of the holding member, the sliding force increasing means presses the propelling member together with the idler member in a direction crossing the axial direction. For this reason, the sliding resistance between the propelling member and the holding member is increased. Thereby, the sliding speed of a propulsion member becomes slow and a buffer function is exhibited.
  • the urging member, the floating member, the holding member, and the sliding force increasing means are related to each other to exhibit a buffering performance. For this reason, it is difficult for the load to concentrate on a specific member, and the buffering performance is not easily lowered.
  • the buffering performance depends only on the C-shaped ring. For this reason, if physical degradation occurs in the C-shaped ring, the buffering performance tends to be lowered.
  • the sliding force increasing means is formed on the inner peripheral surface of the holding member and expands from the inner side in the axial direction to the outer side in the axial direction of the holding member.
  • a diameter portion, and a wedge portion formed on the floating member and in contact with the enlarged diameter portion.
  • the enlarged diameter portion is formed on the inner peripheral surface of the holding member.
  • the diameter-expanded portion increases in diameter from the inner side in the axial direction to the outer side in the axial direction of the holding member toward the outer side in the radial direction of the holding member.
  • At least one of the enlarged diameter portion and the wedge portion in contact with the enlarged diameter portion gradually increases in diameter from the inner side in the axial direction to the outer side in the axial direction of the holding member.
  • a changing inclined surface is formed.
  • an inclined surface that gradually changes in diameter is formed in the enlarged diameter portion or the wedge portion.
  • the inclined surface is formed on both the enlarged diameter portion and the wedge portion in contact with the enlarged diameter portion.
  • the floating member can easily move inward in the axial direction of the holding member. For this reason, it is easy to obtain buffer performance.
  • the inclination angle of the inclined surface is 30 ° or more and 60 ° or less with respect to the axial direction of the holding member.
  • the wedge portion even if the urging force of the urging means is small compared to the case where it is larger than 60 °. Is easy to move inward in the axial direction of the holding member while in contact with the inclined surface.
  • the inclination angle of the inclined surface is 30 ° or more with respect to the axial direction of the holding member, the urging force of the urging means and the propelling member are pushed back to the inside of the holding member as compared with the case where it is smaller than 30 ° Even if the directional force is large, the wedge portion is difficult to move inward in the axial direction of the holding member while being in contact with the inclined surface.
  • the tensioner according to the sixth aspect includes movement restraining means for restraining the propelling member from moving inward in the axial direction.
  • the movement restraining means restrains the propulsion member from moving inside the holding member. For this reason, even when the propulsion member is strongly pressed inward, the propulsion member can be prevented from moving inward. Thereby, the buffering effect can be enhanced.
  • the movement suppressing means is a concavo-convex portion that is provided on a contact surface between the wedge portion and the propelling member and engages with each other.
  • the concave and convex portions that engage with each other are provided between the wedge portion of the floating member and the propulsion member. For this reason, when the wedge portion is pressed from the holding member, the concavo-convex portions mesh with each other. Thereby, it can suppress that a propelling member moves inside.
  • the buffering performance for suppressing the rapid displacement of the propelling member is unlikely to deteriorate.
  • an engine 100 to which a tensioner 10 according to the first embodiment of the present disclosure is attached includes a driving side sprocket 102 attached to a crankshaft and a driven side sprocket 104 attached to a camshaft. Further, a timing chain 106 is wound around.
  • the tensioner 10 includes a housing 20 and a plunger 30.
  • the housing 20 is fixed to the engine 100 with bolts 12.
  • the plunger 30 is inserted into the housing 20.
  • the plunger 30 biased in the direction away from the housing 20 presses the chain guide 110 that rotates about the support shaft 108 with the propulsive force P.
  • the chain guide 110 presses the timing chain 106.
  • the tensioner 10 is disposed between the housing 20, the plunger 30 inserted into the housing 20 and movable along the axial direction of the housing 20, and the housing 20 and the plunger 30. And a floating member 40.
  • the housing 20 as an example of a holding member in the present disclosure is a bottomed cylindrical member.
  • the housing 20 includes a substantially circular insertion hole 22, a guide groove 24 formed in the upper part of the insertion hole 22 along the insertion hole 22, and a guide groove 26 formed in the lower part of the insertion hole 22.
  • An inclined surface 24 ⁇ / b> A is formed from the inner side of the insertion hole 22 to the outer side at the outer end portion of the guide groove 24 (that is, the peripheral edge portion of the entrance / exit of the plunger 30 described later).
  • the inclined surface 24A gradually changes in diameter in a direction away from the central axis CL of the insertion hole 22 (in other words, gradually inclines from the outside toward the inside in the radial direction of the housing 20).
  • the inclination angle of the inclined surface 24A is an angle ⁇ 1 with respect to the central axis CL. Note that the inclined surface 24A is an example of a diameter-expanded portion in the present disclosure.
  • “upper” and “lower” indicate directions on the paper surface of FIG. 3, and do not indicate directions in a state of being attached to the engine 100 shown in FIG. 1. Further, “inside” indicates the hole bottom 22A side (axially inside, arrow IN side in FIG. 3A) of the insertion hole 22, and “outside” indicates the opening end 22B side (axially outside, FIG. 3A) of the insertion hole 22. 3A shows an arrow OUT side). The same applies to “upper part”, “lower part”, “inner side” and “outer side” used in the following description.
  • the flange 28 which the bolt hole 28A penetrated is formed in the upper part and the lower part of the housing 20. As shown in FIG. 1, the flange 28 is fixed to the engine 100 using bolts 12.
  • the housing 20 is formed with a screw hole 29 penetrating from the outer peripheral surface side of the housing 20 to the insertion hole 22.
  • a plunger 30 described later can be temporarily fixed inside the insertion hole 22.
  • the plunger 30 as an example of the propelling member in the present disclosure is a bottomed cylindrical member.
  • the plunger 30 includes a circular insertion hole 32 and a guide protrusion 34.
  • the guide protrusion 34 is formed on the opening end 32 ⁇ / b> B side of the insertion hole 32 and projects outward in the radial direction of the insertion hole 32.
  • the plunger 30 has the insertion end 32 of the insertion hole 32 facing the inside of the insertion hole 22 of the housing 20, and the guide protrusion 34 is fitted in the guide groove 26 of the housing 20. In this way, it is inserted into the insertion hole 22 of the housing 20.
  • the outer diameter of the plunger 30 is a dimension that does not hinder the insertion of the plunger 30 into the insertion hole 22 of the housing 20, and is a dimension that substantially matches the inner diameter of the insertion hole 22.
  • the floating member 40 is a member formed in an L shape in a cross-sectional view, and extends in a direction substantially orthogonal to the bottom portion 42 from the circular bottom portion 42 and the outer peripheral end of the bottom portion 42. And a sliding portion 44 that is brought out.
  • a wedge portion 44A is formed at the end opposite to the bottom portion.
  • the wedge portion 44 ⁇ / b> A is formed to be thicker than the other portion of the sliding portion 44, and has an inclined surface 44 ⁇ / b> AE whose outer peripheral surface is inclined in a direction away from the bottom portion 42.
  • the inclination angle of the inclined surface 44AE (that is, the inclination angle with respect to the extending direction of the sliding portion 44) is equal to the inclination angle of the inclined surface 24A formed in the guide groove 24 of the housing 20 and is an angle ⁇ 1.
  • the floating member 40 is inserted into the insertion hole 22 of the housing 20 so that the bottom 42 is disposed inside the plunger 30 and the sliding portion 44 is fitted in the guide groove 24 of the housing 20. Is done. Further, the floating member 40 has an outer end portion of the sliding portion 44 protruding outside the housing 20 (guide groove 24), and an inclined surface 44AE of the wedge portion 44A abuts on an inclined surface 24A of the guide groove 24, It is arranged inside the insertion hole 22. At this time, the wedge portion 44 ⁇ / b> A is disposed on the radially inner side of the insertion hole 22 in the housing 20 and on the outer side in the axial direction of the insertion hole 22 with respect to the inclined surface 24 ⁇ / b> A.
  • the wedge portion 44A and the inclined surface 24A of the guide groove 24 are an example of a sliding force increasing unit in the present disclosure.
  • the inner peripheral surface 44B of the sliding portion 44 of the floating member 40 is a concave surface having the same curvature as the outer peripheral surface 30A of the plunger 30.
  • the inner peripheral surface 44B and the outer peripheral surface 30A are arranged so as to be in surface contact with each other.
  • the bottom portion 42 of the floating member 40 is formed with a clearance (space V) from the hole bottom 22A of the insertion hole 22 of the housing 20, so that the floating member 40 can move inward.
  • a coil spring 50 is disposed between the plunger 30 and the bottom portion 42 of the floating member 40 to bias the plunger 30 outward and bias the floating member 40 inward.
  • the coil spring 50 is an example of an urging member in the present disclosure, and is inserted into the insertion hole 32 of the plunger 30.
  • the coil spring 50 is disposed between the hole bottom 32 ⁇ / b> A of the insertion hole 32 and the bottom portion 42 of the floating member 40 in a state where the coil spring 50 is contracted from the free height (that is, the height when no load is applied).
  • the plunger 30 moves outward by the biasing force of the coil spring 50.
  • the guide protrusion 34 of the plunger 30 moves along the guide groove 26 of the housing 20.
  • a retaining member 60 is locked to the leading end of the guide groove 26. The movement of the plunger 30 is stopped by the guide protrusion 34 coming into contact with the retaining member 60.
  • the plunger 30 receives an urging force P ⁇ b> 1 directed outward from the coil spring 50 (P ⁇ b> 1 is a spring load).
  • the floating member 40 receives an urging force P ⁇ b> 1 directed inward from the coil spring 50.
  • the floating member 40 is pulled into the insertion hole 22 by the urging force P1.
  • the wedge portion 44 ⁇ / b> A formed on the sliding portion 44 of the floating member 40 presses the inclined surface 24 ⁇ / b> A formed on the guide groove 24 of the housing 20.
  • the wedge portion 44A receives the reaction force Pb along the normal direction of the inclined surface 44AE of the wedge portion 44A from the inclined surface 24A of the housing 20. Further, the reaction force Pb is transmitted through the inside of the floating member 40 and acts on the outer peripheral surface of the plunger 30 as a pressing force Pa.
  • the pressing force Pa is obtained by dividing the reaction force Pb into “force in the direction along the axial direction” and “force in the direction orthogonal to the axial direction” of the plunger 30 and “force in the direction orthogonal to the axial direction”. Is equivalent to "
  • the pressing force Pa is transmitted through the inside of the plunger 30 and presses the inner peripheral surface 22C of the insertion hole 22.
  • the outer peripheral surface of the plunger 30 receives a pressing force Pa as a reaction force from the inner peripheral surface 22 ⁇ / b> C of the insertion hole 22.
  • the pressing force by which the wedge portion 44A of the floating member 40 presses the inclined surface 24A of the housing 20 becomes large.
  • FIG. 8 shows an urging force P1 due to the coil spring 50, a sliding resistance force Ps when the pressing force P2 is not received from the chain guide 110, and a sliding resistance when the pressing force P2 is received from the chain guide 110.
  • the stroke characteristic of the plunger 30 in consideration of the force PS is shown by a solid line. Further, the stroke characteristics of the coil spring 50 alone are indicated by a two-dot chain line.
  • the coil spring 50 has a larger spring load when the stroke from the free height (that is, the amount of contraction) is larger, and the spring load is smaller when the stroke is smaller.
  • the propulsion load PF1 (P1-Ps) that presses the chain guide 110 is retracted (ie, the insertion hole).
  • the retraction load PF3 (P1 + PS) on the plunger 30 “necessary” when moving to the inside of 22 is larger by the sum of the sliding resistance forces Ps and PS (Ps + PS).
  • the tensioner 10 since the tensioner 10 according to the first embodiment uses the floating member 40, the plunger 30 is prevented from abruptly propelling when the plunger 30 is propelled, as compared with the case where the coil spring 50 is used alone. Further, the tensioner 10 gently presses the chain guide 110 to suppress fluttering of the timing chain 106. In addition, when the engine 100 is driven and the timing chain 106 flutters, the tensioner 10 exerts a large resistance force to restrain the plunger 30 from retreating, and fluttering can be restrained.
  • the tensioner 10 presses the chain guide 110 with a small propulsive force as compared with the case where the coil spring 50 is used alone. For this reason, sliding friction between the chain guide 110 and the timing chain 106 can be reduced. Thereby, generation
  • the outer diameter of the plunger 30 is set to a dimension that substantially matches the inner diameter of the insertion hole 22. Furthermore, the inner peripheral surface 44 ⁇ / b> B of the floating member 40 is in surface contact with the outer peripheral surface 30 ⁇ / b> A of the plunger 30. For this reason, the pressing force Pa acts on the plunger 30 in a plane. For this reason, the plunger 30 is unlikely to be worn, and the buffering performance of the tensioner 10 is unlikely to decrease.
  • the wedge portion 44 ⁇ / b> A of the floating member 40 presses the inclined surface 24 ⁇ / b> A formed in the guide groove 24 of the housing 20.
  • sliding resistance acts on the plunger 30.
  • the wedge portion 44A is worn as indicated by a broken line as the inclined surface 44AE in FIG. 2, the loose member 40 is disposed inside the insertion hole 22 by the amount of wear as indicated by an arrow M. For this reason, the sliding resistance is hardly reduced due to wear. The same applies when the inclined surface 24A is worn.
  • a strong sliding resistance PS is generated when the plunger 30 is retracted.
  • This sliding resistance PS varies depending on the pressing force P ⁇ b> 2 that the plunger 30 receives from the chain guide 110. That is, as the pressing force P2 increases, the sliding resistance PS increases. For this reason, high sliding resistance PS can be exhibited according to the magnitude of the pressing force P2.
  • the floating member 40 when the floating member 40 is not used, for example, a C-shaped ring or the like urged so as to expand the diameter is disposed between the outer peripheral surface 30A of the plunger 30 and the inner peripheral surface 22C of the insertion hole 22. (When configured differently from the present disclosure), it is possible to obtain a sliding resistance of “a certain size”, but it is difficult to obtain a sliding resistance according to the magnitude of the pressing force P2.
  • the tensioner 10 when a C-type ring or the like is used, if the spring load is reduced due to the deterioration of the C-type ring, the sliding resistance is also reduced.
  • the coil spring 50 is used to generate the sliding resistance force Ps.
  • the coil spring 50 is longer in the axial direction than the C-shaped ring and has a low spring constant, so that the load is hardly reduced. For this reason, the sliding resistance Ps obtained is not easily changed. Thereby, the tensioner 10 can exhibit the stable buffer performance. Furthermore, since the tensioner 10 does not require small parts such as a C-shaped ring in order to obtain buffer performance, maintenance is easy.
  • the inclination angle of the inclined surface 44AE in the wedge portion 44A of the floating member 40 is equal to the inclination angle of the inclined surface 24A formed in the guide groove 24 of the housing 20, and is an angle ⁇ 1.
  • This angle ⁇ 1 is set to be twice or more the friction angle.
  • the inclination angle ⁇ 1 of the inclined surface 44AE is twice or more the friction angle, it is difficult for the floating member 40 to enter the insertion hole 22 as compared with a case where the inclination angle is smaller than twice, so that the plunger 30 is not pushed excessively. It is possible to suppress the pressure from acting and inhibiting the propulsion of the plunger 30.
  • the angle ⁇ 1 is preferably 30 ° or more and 60 ° or less. By doing so, the wedge portion 44A is inclined even when the biasing force of the coil spring 50 and the force in the direction of pushing the plunger 30 back to the inside of the housing 20 are larger than when the angle ⁇ 1 is smaller than 30 °. It is difficult to move inward in the axial direction of the housing 20 while in contact with the surface 24A. For this reason, it is easy to obtain the driving force of the plunger 30. Further, as compared with the case where ⁇ 1 is larger than 60 °, the wedge portion 44A is easily moved inward in the axial direction of the housing 20 while being in contact with the inclined surface 24A even if the biasing force of the coil spring 50 is small. For this reason, it is easy to obtain a pressing force against the plunger 30.
  • the inclined angles ⁇ ⁇ b> 1 are formed equally so that the inclined surface 44 ⁇ / b> AE of the wedge portion 44 ⁇ / b> A of the floating member 40 and the inclined surface 24 ⁇ / b> A formed in the guide groove 24 of the housing 20 are in surface contact.
  • the inclination angle ⁇ 1 of the inclined surface 44AE of the wedge portion 44A may be larger or smaller than the inclined surface 24A of the housing 20.
  • a stepped cutout 24B may be formed in the guide groove 24 instead of the inclined surface 24A.
  • a pressing force Pe can be obtained by the wedge portion 44A of the floating member 40 entering the cutout portion 24B.
  • the notch 24B is an example of an enlarged diameter portion in the present disclosure.
  • the notch 24B is formed in a single stepped shape
  • the enlarged diameter portion may be a notched portion formed in a plurality of steps.
  • the enlarged diameter portion may have a curved surface shape that follows a circular or elliptical arc.
  • the boundary portion between the enlarged diameter portion and the portion other than the enlarged diameter portion in the guide groove 24 can be formed into a gentle shape. Thereby, abrasion resistance can be made high.
  • the floating member 40 may be formed with a protruding portion 44C protruding in an arc shape instead of the wedge portion 44A.
  • the protruding portion 44C enters the inclined surface 24A of the guide groove 24, whereby the pressing force Pf can be obtained.
  • the arcuate protruding portion 44C may be used in combination with the above-described cutout portion 24B, a plurality of cutout portions, or a curved cutout portion.
  • the inclined surface 24A is formed in the outer edge part of the guide groove 24 in the housing 20, and the peripheral part of the entrance / exit of the plunger 30, embodiment of this indication is not restricted to this.
  • the inclined surface 24 ⁇ / b> A can be formed at any location on the inner side of the guide groove 24 from the entrance / exit of the plunger 30.
  • the inclined surface 24 ⁇ / b> A is formed at a position different from the peripheral edge of the entrance / exit of the plunger 30.
  • the inclined surface 44AE of the plunger 30 is formed at a position in contact with the inclined surface 24A.
  • the housing 20 as an example of a holding member in the present disclosure is a bottomed cylindrical member.
  • the housing 29 includes a substantially circular insertion hole 22, a guide groove 24 formed in the upper part of the insertion hole 22 along the insertion hole 22, and a guide groove 26 formed in the lower part of the insertion hole 22.
  • An inclined surface 24A that is inclined in a direction away from the central axis CL of the insertion hole 22 from the inner side toward the outer side is formed at an outer end portion of the guide groove 24 (that is, a peripheral edge portion of an entrance / exit of the plunger 30 described later).
  • the inclination angle of the inclined surface 24A is an angle ⁇ 1 with respect to the central axis CL.
  • the tensioner 70 of 2nd Embodiment is demonstrated.
  • the same components as those of the tensioner 10 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the tensioner 70 of the second embodiment is different from the tensioner 10 of the first embodiment in the shape of the wedge portion 44 ⁇ / b> A in the floating member 40.
  • a recess 44D is formed on the surface of the wedge portion 44A that faces the plunger 30.
  • the wall portion 44E is formed in parallel with the inclined surface 44AE of the wedge portion 44A and the inclined surface 24A of the guide groove 24. Furthermore, a substantially triangular engagement member 72 is attached to the recess 44D in a cross-sectional view.
  • the engagement member 72 is an example of a movement suppressing unit in the present disclosure.
  • a coil spring 74 is attached between the outer peripheral surface (end surface facing outward) 72A of the engaging member 72 and the inner peripheral surface (end surface facing inward) 44F of the recess 44D. The coil spring 74 urges the engaging member 72 inward.
  • the surface of the engaging member 72 that faces the plunger 30 is provided with a concavo-convex portion 72B that is cut into gears.
  • the surface of the plunger 30 that faces the engaging member 72 is also provided with a concavo-convex portion 30B that has been gear cut.
  • the concavo-convex portion 72B of the engaging member 72 and the concavo-convex portion 30B of the plunger 30 are formed into shapes that engage with each other.
  • the uneven portion 30B of the plunger 30 is engaged with the uneven portion 72B of the engaging member 72.
  • the engaging member 72 also moves outward.
  • the engaging member 72 is biased inward by a coil spring 74.
  • the engagement between the concavo-convex portion 72B of the engaging member 72 and the concavo-convex portion 30B of the plunger 30 is once released, and the engaging member 72 moves inward until it abuts against the wall portion 44E.
  • the engaging member 72 since the concavo-convex portion 30B of the plunger 30 is engaged with the concavo-convex portion 72B of the engaging member 72, when the plunger 30 attempts to retract inward, the engaging member 72 also moves inward. At this time, the engaging member 72 receives the pressing force Pc from the wall portion 44E. This pressing force Pc is transmitted by the engaging member 72 and presses the plunger 30 with the pressing force Pd. Thereby, the uneven part 72B of the engaging member 72 and the uneven part 30B of the plunger 30 are firmly engaged. For this reason, the movement to the inner side of the plunger 30 is suppressed. As a result, the tensioner 70 can continue to apply tension to the timing chain 106 even when it receives a strong pressing force from the chain guide 110 (see FIG. 6 and the like).
  • grooved part 72B is provided in the engaging member 72
  • embodiment of this indication is not restricted to this.
  • the concave portion 44D may not be formed in the wedge portion 44A, and the engaging member 72 may be omitted, and the concave and convex portion may be provided directly on the surface of the wedge portion 44A that faces the plunger 30. In this way, the number of parts can be reduced.
  • a rod-shaped rotating member 84 is disposed inside the insertion hole 82 ⁇ / b> A in the housing 82.
  • a torsion spring 85 surrounding the rotating member 84 is disposed around the rotating member 84 in a wound state.
  • One end 85 ⁇ / b> A of the torsion spring 85 is fixed to the housing 82, and the other end 85 ⁇ / b> B is fixed to the rotating member 84. Thereby, rotational torque is applied to the rotating member 84.
  • a male screw 84A is formed on the outer side of the portion where the torsion spring 85 is fixed.
  • a female screw 86A formed inside the plunger 86 is engaged with the male screw 84A.
  • the plunger 86 has a two-sided shape when viewed from the axial direction of the housing 82. Further, a plate-like rotation restraining member 88 is fixed to the opening end of the insertion hole 82A in the housing 82.
  • the rotation suppression member 88 includes a through hole 88 ⁇ / b> A that substantially matches the outer shape of the plunger 86. The plunger 86 is restricted from rotating by being inserted through the through hole 88A.
  • the plunger 86 does not rotate even when the rotational torque of the rotating member 84 shown in FIG. 12A is applied, and is given a biasing force for propelling to the outside of the insertion hole 82A.
  • the housing 82 has a guide groove 82B and an inclined portion 82C.
  • the guide groove 82B and the inclined portion 82C have the same configuration as the guide groove 24 and the inclined surface 24A in the housing 20 of the first embodiment.
  • the sliding portion 90A of the floating member 90 is disposed in the guide groove 82B.
  • a bottom portion 90B through which the rotating member 84 is inserted is formed at the inner end of the sliding portion 90A.
  • an inclined portion 90C whose diameter increases toward the outside is formed at the outer end of the sliding portion 90A.
  • a coil spring 92 is disposed between the plunger 86 and the bottom 90B of the floating member 90.
  • the coil spring 92 biases the plunger 86 outward and biases the floating member 90 inward.
  • the driving force to the outside of the plunger 86 is obtained from the torsion spring 85 and the coil spring 92.
  • the inward biasing force of the floating member 90 is obtained only from the coil spring 92.
  • the tensioner 80 the magnitude relationship between the pressing force of the plunger 86 against the chain guide 110 and the sliding resistance force received by the plunger 86 from the floating member 90 can be arbitrarily set. That is, fine control over the flickering of the timing chain 106 can be performed.
  • the torsion spring 85 in the third embodiment biases the plunger 86 outward. For this reason, the plunger 86 is restrained from moving inward. That is, the torsion spring 85 is an example of a movement suppressing unit in the present disclosure.
  • a movement restraining means for restraining the plunger 86 from moving inward an oil damper, a ratchet mechanism, or the like may be used as appropriate in addition to the above-described engaging member 72 and torsion spring 85.
  • the tensioner 120 As shown in FIG. 13, the tensioner 120 according to the fourth embodiment includes a housing 112, a plunger 114, a floating member 116, and a coil spring 118.
  • the housing 112 is obtained by omitting the flange 28 in the housing 20 of the first embodiment shown in FIG. 2A. Moreover, the plunger 114 forms the external thread 114A in the outer end part in the plunger 30 of 1st Embodiment.
  • the tensioner 120 is fixed to the engine 100 by the male screw 114 ⁇ / b> A being screwed into the female screw 100 ⁇ / b> A formed in the engine 100.
  • the housing 112 is driven by the biasing force of the coil spring 118. For this reason, the chain guide 110 (see FIG. 6 and the like) is pressed at the tip of the housing 112.
  • the buffer effect obtained by the tensioner 120 is the same as the buffer effect obtained by the tensioner 10 of the first embodiment, and detailed description thereof is omitted.
  • the tensioner according to the present disclosure can be implemented in various modes.

Abstract

This tensioner has: a tubular holding member; a movable member mounted to the holding member so as to be slidable in the axial direction; a thrust member mounted to the movable member so as to be relatively movable; a biasing member which is provided between the movable member and the thrust member, biases the thrust member outward in the axial direction of the holding member, and biases the movable member inward in the axial direction of the holding member; and a sliding force increasing means which is formed between and in contact with the movable member and the holding member, and which presses the movable member in a direction crossing the axial direction and thereby increases the sliding resistance between the thrust member and the holding member when the thrust member is moving.

Description

テンショナTensioner
 本開示は、テンショナに関する。 This disclosure relates to tensioners.
 特開2005-344887号公報には、車両用エンジンのクランクシャフト及びカムシャフトに巻き掛けられるタイミングチェーンに張力を与えるリング式油圧テンショナが開示されている。このリング式油圧テンショナでは、ハウジング本体のプランジャ収容孔に、円柱状プランジャを挿入している。また、円柱状プランジャの外周には環状溝を形成して、該環状溝へC型リングを嵌合している。さらに、このC型リングはプランジャ収容孔の内周壁に向かって拡径するように付勢されている。これにより、例えばエンジン始動時にタイミングチェーンから円柱状プランジャへ衝撃的な負荷が作用しても、C型リングが緩衝性能を発揮して、円柱状プランジャの急激な後退移動が抑制される。 Japanese Patent Application Laid-Open No. 2005-344887 discloses a ring-type hydraulic tensioner that applies tension to a timing chain wound around a crankshaft and a camshaft of a vehicle engine. In this ring type hydraulic tensioner, a cylindrical plunger is inserted into the plunger receiving hole of the housing body. An annular groove is formed on the outer periphery of the cylindrical plunger, and a C-shaped ring is fitted into the annular groove. Further, the C-shaped ring is biased so as to increase in diameter toward the inner peripheral wall of the plunger receiving hole. Thereby, for example, even when an impact load is applied from the timing chain to the cylindrical plunger at the time of starting the engine, the C-shaped ring exhibits a buffering performance, and the rapid backward movement of the cylindrical plunger is suppressed.
 特開2005-344887号公報のリング式油圧テンショナにおいては、C型リングが、プランジャの前後移動に伴ってプランジャ収容孔の内周壁と摺動する。この摺動摩擦により、プランジャ収容孔の内周壁が摩耗する。この結果、プランジャ収容孔の内周壁とプランジャの外周面との間の隙間が増加する。また、C型リングの摩耗や熱へたりが生じて、C型リングの拡径力が低下する。これらの場合、C型リングの緩衝性能が低下する可能性がある。 In the ring type hydraulic tensioner disclosed in Japanese Patent Application Laid-Open No. 2005-344887, the C-shaped ring slides with the inner peripheral wall of the plunger accommodation hole as the plunger moves back and forth. Due to this sliding friction, the inner peripheral wall of the plunger receiving hole is worn. As a result, the gap between the inner peripheral wall of the plunger receiving hole and the outer peripheral surface of the plunger increases. In addition, wear and heat settling of the C-shaped ring occurs, and the diameter expansion force of the C-shaped ring decreases. In these cases, the buffering performance of the C-shaped ring may be reduced.
 本開示は、円筒形プランジャ(推進部材)の急激な移動を抑制するための緩衝性能が低下し難いテンショナを提供する。 The present disclosure provides a tensioner in which the buffering performance for suppressing rapid movement of the cylindrical plunger (propulsion member) is unlikely to deteriorate.
 第1態様のテンショナは、筒状の保持部材と、前記保持部材に軸方向へ摺動可能に装着された遊動部材と、前記遊動部材に相対移動可能に装着された推進部材と、前記遊動部材と前記推進部材との間に設けられ、前記推進部材を前記保持部材の軸方向外側へ付勢し、前記遊動部材を前記保持部材の軸方向内側へ付勢する付勢部材と、前記遊動部材と前記保持部材との間に当接した状態で形成され、前記推進部材が移動するとき、前記遊動部材を軸方向と交差する方向へ押圧して、前記推進部材と前記保持部材との摺動抵抗を大きくする摺動力増大手段と、を有する。 The tensioner of the first aspect includes a cylindrical holding member, an idler member that is slidably attached to the retainer member in the axial direction, a propulsion member that is attached to the idler member so as to be relatively movable, and the idler member And an urging member that urges the propulsion member axially outward of the holding member and urges the floating member axially inward of the holding member; and the floating member When the propulsion member moves, it presses the floating member in a direction intersecting the axial direction to slide the propulsion member and the holding member. Sliding force increasing means for increasing the resistance.
 第1態様のテンショナでは、推進部材は付勢部材の付勢力により、保持部材の軸方向外側へ移動する。一方、遊動部材は、付勢部材の付勢力により、保持部材の軸方向内側へ移動する。このとき、遊動部材と保持部材との間に当接した状態で形成された摺動力増大手段が、遊動部材と共に推進部材を軸方向と交差する方向へ押圧する。このため推進部材と保持部材との摺動抵抗が大きくなる。これにより、推進部材の摺動速度が緩慢になり、緩衝機能が発揮される。 In the tensioner according to the first aspect, the propulsion member moves outward in the axial direction of the holding member by the urging force of the urging member. On the other hand, the floating member moves inward in the axial direction of the holding member by the urging force of the urging member. At this time, the sliding force increasing means formed in contact with the floating member and the holding member presses the propelling member together with the floating member in a direction crossing the axial direction. For this reason, the sliding resistance between the propelling member and the holding member is increased. Thereby, the sliding speed of a propulsion member becomes slow and a buffer function is exhibited.
 また、推進部材に、推進部材を保持部材の軸方向内側へ押し戻す方向の力が作用すると、推進部材は、付勢部材の付勢力に抗して遊動部材と共に保持部材の軸方向内側へ押し戻される。このときも遊動部材が保持部材の軸方向内側へ移動するため、摺動力増大手段が、遊動部材と共に推進部材を軸方向と交差する方向へ押圧する。このため推進部材と保持部材との摺動抵抗が大きくなる。これにより、推進部材の摺動速度が緩慢になり、緩衝機能が発揮される。 Further, when a force in a direction of pushing the propulsion member back in the axial direction of the holding member acts on the propulsion member, the propulsion member is pushed back in the axial direction of the holding member together with the floating member against the biasing force of the biasing member. . Also at this time, since the idler member moves inward in the axial direction of the holding member, the sliding force increasing means presses the propelling member together with the idler member in a direction crossing the axial direction. For this reason, the sliding resistance between the propelling member and the holding member is increased. Thereby, the sliding speed of a propulsion member becomes slow and a buffer function is exhibited.
 このように第1態様のテンショナでは、付勢部材、遊動部材、保持部材及び摺動力増大手段が相互に関連して緩衝性能が発揮される。このため特定の部材に負荷が集中し難く、緩衝性能が低下し難い。 Thus, in the tensioner of the first aspect, the urging member, the floating member, the holding member, and the sliding force increasing means are related to each other to exhibit a buffering performance. For this reason, it is difficult for the load to concentrate on a specific member, and the buffering performance is not easily lowered.
 これに対して、例えば推進部材の周囲にC型リング等を配置し、このC型リングのバネ荷重によって緩衝性能を発揮させる場合、緩衝性能はC型リングのみに依存する。このため、C型リングに物理的劣化が生じると、緩衝性能が低下しやすい。 In contrast, for example, when a C-shaped ring or the like is disposed around the propelling member and the buffering performance is exhibited by the spring load of the C-shaped ring, the buffering performance depends only on the C-shaped ring. For this reason, if physical degradation occurs in the C-shaped ring, the buffering performance tends to be lowered.
 第2態様のテンショナは、前記摺動力増大手段は、前記保持部材の内周面に形成され前記保持部材の軸方向内側から軸方向外側にかけて前記保持部材の径方向外側に向って拡径する拡径部と、前記遊動部材に形成され、前記拡径部と接するくさび部と、を有する。 In the tensioner according to the second aspect, the sliding force increasing means is formed on the inner peripheral surface of the holding member and expands from the inner side in the axial direction to the outer side in the axial direction of the holding member. A diameter portion, and a wedge portion formed on the floating member and in contact with the enlarged diameter portion.
 第2態様のテンショナでは、保持部材の内周面に、拡径部が形成されている。拡径部は、保持部材の軸方向内側から軸方向外側にかけて保持部材の径方向外側に向って拡径している。遊動部材が付勢部材の付勢力により保持部材の軸方向内側へ移動すると、拡径部に接するくさび部が、拡径部から保持部材の軸方向と交差する方向へ押圧される。これにより推進部材と保持部材との摺動抵抗が大きくなる。 In the tensioner according to the second aspect, the enlarged diameter portion is formed on the inner peripheral surface of the holding member. The diameter-expanded portion increases in diameter from the inner side in the axial direction to the outer side in the axial direction of the holding member toward the outer side in the radial direction of the holding member. When the idler member moves inward in the axial direction of the holding member by the urging force of the urging member, the wedge portion in contact with the enlarged diameter portion is pressed from the enlarged diameter portion in a direction crossing the axial direction of the holding member. This increases the sliding resistance between the propelling member and the holding member.
 第3態様のテンショナは、前記拡径部及び前記拡径部と接する前記くさび部の少なくとも一方に、前記保持部材の軸方向内側から軸方向外側にかけて前記保持部材の径方向外側に向って漸次径変化する傾斜面が形成されている。 In the tensioner of the third aspect, at least one of the enlarged diameter portion and the wedge portion in contact with the enlarged diameter portion gradually increases in diameter from the inner side in the axial direction to the outer side in the axial direction of the holding member. A changing inclined surface is formed.
 第3態様のテンショナでは、拡径部又はくさび部に、漸次径変化する傾斜面が形成されている。このため、遊動部材が付勢部材の付勢力により保持部材の軸方向内側へ移動する際の、拡径部からくさび部に対する押圧力が、漸次大きくなる。これにより滑らかな緩衝性能を発揮できる。 In the tensioner of the third aspect, an inclined surface that gradually changes in diameter is formed in the enlarged diameter portion or the wedge portion. For this reason, when the floating member is moved inward in the axial direction of the holding member by the urging force of the urging member, the pressing force from the enlarged diameter portion to the wedge portion gradually increases. Thereby, smooth buffer performance can be exhibited.
 第4態様のテンショナは、前記傾斜面は、前記拡径部及び前記拡径部と接する前記くさび部の双方に形成されている。 In the tensioner of the fourth aspect, the inclined surface is formed on both the enlarged diameter portion and the wedge portion in contact with the enlarged diameter portion.
 第4態様のテンショナでは、傾斜面が拡径部及び拡径部と接するくさび部の双方に形成されているため、遊動部材が保持部材の軸方向内側へ移動し易い。このため、緩衝性能を得やすい。 In the tensioner according to the fourth aspect, since the inclined surface is formed on both the enlarged diameter portion and the wedge portion in contact with the enlarged diameter portion, the floating member can easily move inward in the axial direction of the holding member. For this reason, it is easy to obtain buffer performance.
 第5態様のテンショナは、前記傾斜面の傾斜角度が前記保持部材の軸方向に対して30°以上60°以下である。 In the tensioner according to the fifth aspect, the inclination angle of the inclined surface is 30 ° or more and 60 ° or less with respect to the axial direction of the holding member.
 第5態様のテンショナでは、傾斜面の傾斜角度が保持部材の軸方向に対して60°以下であるため、60°より大きい場合と比較して、付勢手段の付勢力が小さくてもくさび部は傾斜面と接しながら保持部材の軸方向内側へ移動し易い。また、傾斜面の傾斜角度が保持部材の軸方向に対して30°以上であるため、30°より小さい場合と比較して、付勢手段の付勢力や、推進部材を保持部材の内側へ押し戻す方向の力が大きくても、くさび部は傾斜面と接しながら保持部材の軸方向内側へ移動し難い。 In the tensioner of the fifth aspect, since the inclination angle of the inclined surface is 60 ° or less with respect to the axial direction of the holding member, the wedge portion even if the urging force of the urging means is small compared to the case where it is larger than 60 °. Is easy to move inward in the axial direction of the holding member while in contact with the inclined surface. Further, since the inclination angle of the inclined surface is 30 ° or more with respect to the axial direction of the holding member, the urging force of the urging means and the propelling member are pushed back to the inside of the holding member as compared with the case where it is smaller than 30 ° Even if the directional force is large, the wedge portion is difficult to move inward in the axial direction of the holding member while being in contact with the inclined surface.
 第6態様のテンショナは、前記推進部材が軸方向内側へ移動することを抑制する移動抑制手段を備えている。 The tensioner according to the sixth aspect includes movement restraining means for restraining the propelling member from moving inward in the axial direction.
 第6態様のテンショナによると、移動抑制手段により、推進部材が保持部材の内側へ移動することが抑制される。このため、推進部材が内側へ強く押圧された際にも、推進部材が内側に動くことを抑制できる。これにより緩衝効果を高めることができる。 According to the tensioner of the sixth aspect, the movement restraining means restrains the propulsion member from moving inside the holding member. For this reason, even when the propulsion member is strongly pressed inward, the propulsion member can be prevented from moving inward. Thereby, the buffering effect can be enhanced.
 第7態様のテンショナは、前記移動抑制手段は、前記くさび部と前記推進部材との当接面にそれぞれ設けられ、互いに係合する凹凸部である。 In the tensioner according to the seventh aspect, the movement suppressing means is a concavo-convex portion that is provided on a contact surface between the wedge portion and the propelling member and engages with each other.
 第7態様のテンショナによると、遊動部材のくさび部と推進部材との間に、互いに係合する凹凸部が設けられている。このためくさび部が保持部材から押圧されると、凹凸部が互いに噛み合う。これにより推進部材が内側に移動することを抑制できる。 According to the tensioner of the seventh aspect, the concave and convex portions that engage with each other are provided between the wedge portion of the floating member and the propulsion member. For this reason, when the wedge portion is pressed from the holding member, the concavo-convex portions mesh with each other. Thereby, it can suppress that a propelling member moves inside.
 本開示に係るテンショナによると、推進部材の急激な変位を抑制するための緩衝性能が低下し難い。 </ RTI> According to the tensioner according to the present disclosure, the buffering performance for suppressing the rapid displacement of the propelling member is unlikely to deteriorate.
本開示の第1実施形態に係るテンショナがエンジンに固定された状態を示す立面図である。It is an elevation view showing the state where the tensioner concerning a 1st embodiment of this indication was fixed to the engine. 本開示の第1実施形態に係るテンショナにおいてコイルばねが縮んだ状態を示す断面図である。It is sectional drawing which shows the state which the coil spring contracted in the tensioner which concerns on 1st Embodiment of this indication. 本開示の第1実施形態に係るテンショナにおいてコイルばねが伸びた状態を示す断面図である。It is sectional drawing which shows the state which the coil spring extended in the tensioner which concerns on 1st Embodiment of this indication. 本開示の第1実施形態に係るテンショナにおけるハウジングを示す断面図である。It is sectional drawing which shows the housing in the tensioner which concerns on 1st Embodiment of this indication. 本開示の第1実施形態に係るテンショナにおけるハウジングを示す正面図である。It is a front view showing a housing in a tensioner concerning a 1st embodiment of this indication. 本開示の第1実施形態に係るテンショナにおけるプランジャを示す断面図である。It is sectional drawing which shows the plunger in the tensioner which concerns on 1st Embodiment of this indication. 本開示の第1実施形態に係るテンショナにおけるプランジャを示す正面図である。It is a front view showing a plunger in a tensioner concerning a 1st embodiment of this indication. 本開示の第1実施形態に係るテンショナにおける遊動部材を示す断面図である。It is sectional drawing which shows the floating member in the tensioner which concerns on 1st Embodiment of this indication. 本開示の第1実施形態に係るテンショナにおける遊動部材を示す正面図である。It is a front view showing a floating member in a tensioner concerning a 1st embodiment of this indication. 本開示の第1実施形態に係るテンショナがチェーンガイドを押圧している状態を示した断面図である。It is sectional drawing which showed the state which the tensioner which concerns on 1st Embodiment of this indication is pressing the chain guide. 本開示の第1実施形態に係るテンショナがチェーンガイドを押圧し、さらにチェーンガイドから押圧されている状態を示した断面図である。It is sectional drawing which showed the state which the tensioner which concerns on 1st Embodiment of this indication presses a chain guide, and is further pressed from the chain guide. 本開示の第1実施形態に係るテンショナのストローク特性を示すグラフである。It is a graph which shows the stroke characteristic of the tensioner concerning a 1st embodiment of this indication. 本開示の第1実施形態に係るテンショナにおいて、ハウジングの案内溝を切り欠いた変形例を示す断面図である。In the tensioner concerning a 1st embodiment of this indication, it is a sectional view showing the modification which notched the guide groove of the housing. 本開示の第1実施形態に係るテンショナにおいて、遊動部材に突出部を形成した変形例を示す断面図である。In the tensioner which concerns on 1st Embodiment of this indication, it is sectional drawing which shows the modification which formed the protrusion part in the floating member. 本開示の第2実施形態に係るテンショナを示す断面図である。It is sectional drawing which shows the tensioner which concerns on 2nd Embodiment of this indication. 本開示の第3実施形態に係るテンショナを示す断面図である。It is a sectional view showing a tensioner concerning a 3rd embodiment of this indication. 本開示の第3実施形態に係るテンショナを示す正面図である。It is a front view showing a tensioner concerning a 3rd embodiment of this indication. 本開示の第4実施形態に係るテンショナを示す断面図である。It is sectional drawing which shows the tensioner which concerns on 4th Embodiment of this indication.
[第1実施形態]
(テンショナ)
 図1に示すように、本開示の第1実施形態に係るテンショナ10が取り付けられるエンジン100には、クランクシャフトに取り付けられた駆動側スプロケット102及びカムシャフトに取り付けられた被駆動側スプロケット104の間に、タイミングチェーン106が巻き掛けられている。
[First Embodiment]
(Tensioner)
As shown in FIG. 1, an engine 100 to which a tensioner 10 according to the first embodiment of the present disclosure is attached includes a driving side sprocket 102 attached to a crankshaft and a driven side sprocket 104 attached to a camshaft. Further, a timing chain 106 is wound around.
 テンショナ10は、ハウジング20とプランジャ30とを備えている。ハウジング20はエンジン100にボルト12で固定されている。プランジャ30はハウジング20に挿入されている。そしてハウジング20から離れる方向に付勢されたプランジャ30が、支軸108を中心に回動するチェーンガイド110を推進力Pで押圧している。また、このチェーンガイド110が、タイミングチェーン106を押圧している。 The tensioner 10 includes a housing 20 and a plunger 30. The housing 20 is fixed to the engine 100 with bolts 12. The plunger 30 is inserted into the housing 20. The plunger 30 biased in the direction away from the housing 20 presses the chain guide 110 that rotates about the support shaft 108 with the propulsive force P. The chain guide 110 presses the timing chain 106.
 図2A、図2Bに示すように、テンショナ10は、ハウジング20と、ハウジング20に挿入されハウジング20の軸方向に沿って移動可能なプランジャ30と、ハウジング20とプランジャ30との間に配置された遊動部材40と、を備えている。 2A and 2B, the tensioner 10 is disposed between the housing 20, the plunger 30 inserted into the housing 20 and movable along the axial direction of the housing 20, and the housing 20 and the plunger 30. And a floating member 40.
(ハウジング)
 図3A、図3Bに示すように、本開示における保持部材の一例としてのハウジング20は、有底の筒状部材である。ハウジング20は略円形状の挿入孔22と、挿入孔22に沿って挿入孔22の上部に形成された案内溝24と、挿入孔22の下部に形成された案内溝26と、を備えている。案内溝24の外側端部(すなわち後述するプランジャ30の出入り口の周縁部)には、挿入孔22の内側から外側に向かって傾斜面24Aが形成されている。傾斜面24Aは、挿入孔22の中心軸CLから離れる方向に漸次径変化している(換言すると、外側から内側にかけてハウジング20の径方向内側に向って漸次傾斜している)。傾斜面24Aの傾斜角度は、中心軸CLに対して角度θ1とする。なお、傾斜面24Aは、本開示における拡径部の一例である。
(housing)
As illustrated in FIGS. 3A and 3B, the housing 20 as an example of a holding member in the present disclosure is a bottomed cylindrical member. The housing 20 includes a substantially circular insertion hole 22, a guide groove 24 formed in the upper part of the insertion hole 22 along the insertion hole 22, and a guide groove 26 formed in the lower part of the insertion hole 22. . An inclined surface 24 </ b> A is formed from the inner side of the insertion hole 22 to the outer side at the outer end portion of the guide groove 24 (that is, the peripheral edge portion of the entrance / exit of the plunger 30 described later). The inclined surface 24A gradually changes in diameter in a direction away from the central axis CL of the insertion hole 22 (in other words, gradually inclines from the outside toward the inside in the radial direction of the housing 20). The inclination angle of the inclined surface 24A is an angle θ1 with respect to the central axis CL. Note that the inclined surface 24A is an example of a diameter-expanded portion in the present disclosure.
 なお、上記の「上部」及び「下部」とは、図3の紙面上の方向を示すものであり、図1に示すエンジン100に取り付けた状態の方向を示すものではない。また、「内側」とは、挿入孔22の孔底22A側(軸方向内側、図3Aにおける矢印IN側)を示し、「外側」とは挿入孔22の開口端22B側(軸方向外側、図3Aにおける矢印OUT側)を示す。以下の説明において用いられる「上部」、「下部」、「内側」及び「外側」についても同様である。 The above “upper” and “lower” indicate directions on the paper surface of FIG. 3, and do not indicate directions in a state of being attached to the engine 100 shown in FIG. 1. Further, “inside” indicates the hole bottom 22A side (axially inside, arrow IN side in FIG. 3A) of the insertion hole 22, and “outside” indicates the opening end 22B side (axially outside, FIG. 3A) of the insertion hole 22. 3A shows an arrow OUT side). The same applies to “upper part”, “lower part”, “inner side” and “outer side” used in the following description.
 ハウジング20の上部及び下部には、ボルト孔28Aが貫通したフランジ28が形成されている。このフランジ28が、図1に示すように、エンジン100へボルト12を用いて固定される。 The flange 28 which the bolt hole 28A penetrated is formed in the upper part and the lower part of the housing 20. As shown in FIG. 1, the flange 28 is fixed to the engine 100 using bolts 12.
 また、図3Bに示すように、ハウジング20には、ハウジング20の外周面側から挿入孔22まで貫通するねじ孔29が形成されている。このねじ孔29に押さえねじ52をねじ込むことで、後述するプランジャ30を挿入孔22の内部に仮固定することができる。 Further, as shown in FIG. 3B, the housing 20 is formed with a screw hole 29 penetrating from the outer peripheral surface side of the housing 20 to the insertion hole 22. By screwing a holding screw 52 into the screw hole 29, a plunger 30 described later can be temporarily fixed inside the insertion hole 22.
(プランジャ)
 図4A、図4Bに示すように、本開示における推進部材の一例としてのプランジャ30は有底の筒状部材である。プランジャ30は、円形状の挿入孔32と、案内突起34と、を備えている。案内突起34は、挿入孔32の開口端32B側に形成され、挿入孔32の径方向外側へ突出している。図2Aに示すように、プランジャ30は、挿入孔32の開口端32Bが、ハウジング20の挿入孔22の内側を向くようにして、かつ、案内突起34が、ハウジング20の案内溝26に嵌め込まれるようにして、ハウジング20の挿入孔22へ挿入される。プランジャ30の外径は、ハウジング20の挿入孔22に挿入する際に支障が生じない程度の寸法であり、挿入孔22の内径と略一致する寸法とされている。
(Plunger)
As shown in FIGS. 4A and 4B, the plunger 30 as an example of the propelling member in the present disclosure is a bottomed cylindrical member. The plunger 30 includes a circular insertion hole 32 and a guide protrusion 34. The guide protrusion 34 is formed on the opening end 32 </ b> B side of the insertion hole 32 and projects outward in the radial direction of the insertion hole 32. As shown in FIG. 2A, the plunger 30 has the insertion end 32 of the insertion hole 32 facing the inside of the insertion hole 22 of the housing 20, and the guide protrusion 34 is fitted in the guide groove 26 of the housing 20. In this way, it is inserted into the insertion hole 22 of the housing 20. The outer diameter of the plunger 30 is a dimension that does not hinder the insertion of the plunger 30 into the insertion hole 22 of the housing 20, and is a dimension that substantially matches the inner diameter of the insertion hole 22.
(遊動部材)
 図5A、図5Bに示すように、遊動部材40は断面視でL字形状に形成された部材であり、円形状の底部42と、底部42の外周端から底部42と略直交する方向へ延出された摺動部44と、を備えている。
(Floating member)
As shown in FIGS. 5A and 5B, the floating member 40 is a member formed in an L shape in a cross-sectional view, and extends in a direction substantially orthogonal to the bottom portion 42 from the circular bottom portion 42 and the outer peripheral end of the bottom portion 42. And a sliding portion 44 that is brought out.
 摺動部44において、底部42と反対側の端部にはくさび部44Aが形成されている。くさび部44Aは、摺動部44の他の部分より肉厚に形成され、外周面が底部42から離れる方向へ傾斜した傾斜面44AEとされている。この傾斜面44AEの傾斜角度(すなわち摺動部44の延出方向に対する傾斜角度)は、上述したハウジング20の案内溝24に形成された傾斜面24Aの傾斜角度と等しく、角度θ1である。 In the sliding portion 44, a wedge portion 44A is formed at the end opposite to the bottom portion. The wedge portion 44 </ b> A is formed to be thicker than the other portion of the sliding portion 44, and has an inclined surface 44 </ b> AE whose outer peripheral surface is inclined in a direction away from the bottom portion 42. The inclination angle of the inclined surface 44AE (that is, the inclination angle with respect to the extending direction of the sliding portion 44) is equal to the inclination angle of the inclined surface 24A formed in the guide groove 24 of the housing 20 and is an angle θ1.
 図2Aに示すように、遊動部材40は底部42がプランジャ30の内側に配置され、かつ、摺動部44がハウジング20の案内溝24に嵌め込まれるようにして、ハウジング20の挿入孔22へ挿入される。また、遊動部材40は、摺動部44の外側端部がハウジング20(案内溝24)の外側へ突出し、くさび部44Aの傾斜面44AEが案内溝24の傾斜面24Aと当接するようにして、挿入孔22の内部へ配置される。このとき、くさび部44Aは、傾斜面24Aに対して、ハウジング20における挿入孔22の径方向内側、かつ、挿入孔22の軸方向外側に配置されている。なお、くさび部44A及び案内溝24の傾斜面24Aは、本開示における摺動力増大手段の一例である。 As shown in FIG. 2A, the floating member 40 is inserted into the insertion hole 22 of the housing 20 so that the bottom 42 is disposed inside the plunger 30 and the sliding portion 44 is fitted in the guide groove 24 of the housing 20. Is done. Further, the floating member 40 has an outer end portion of the sliding portion 44 protruding outside the housing 20 (guide groove 24), and an inclined surface 44AE of the wedge portion 44A abuts on an inclined surface 24A of the guide groove 24, It is arranged inside the insertion hole 22. At this time, the wedge portion 44 </ b> A is disposed on the radially inner side of the insertion hole 22 in the housing 20 and on the outer side in the axial direction of the insertion hole 22 with respect to the inclined surface 24 </ b> A. The wedge portion 44A and the inclined surface 24A of the guide groove 24 are an example of a sliding force increasing unit in the present disclosure.
 遊動部材40の摺動部44の内周面44Bは、プランジャ30の外周面30Aと同じ曲率の凹面とされている。内周面44Bと外周面30Aとは、互いに面接触するように配置される。また、遊動部材40の底部42は、ハウジング20の挿入孔22の孔底22Aと隙間(空間V)を空けて形成され、遊動部材40が内側へ移動できる。 The inner peripheral surface 44B of the sliding portion 44 of the floating member 40 is a concave surface having the same curvature as the outer peripheral surface 30A of the plunger 30. The inner peripheral surface 44B and the outer peripheral surface 30A are arranged so as to be in surface contact with each other. Further, the bottom portion 42 of the floating member 40 is formed with a clearance (space V) from the hole bottom 22A of the insertion hole 22 of the housing 20, so that the floating member 40 can move inward.
(コイルばね)
 図2Aに示すように、プランジャ30と遊動部材40の底部42との間には、プランジャ30を外側へ付勢し、遊動部材40を内側へ付勢するコイルばね50が配置されている。コイルばね50は、本開示における付勢部材の一例であり、プランジャ30の挿入孔32に挿入されている。コイルばね50は、挿入孔32の孔底32Aと、遊動部材40の底部42との間で、自由高さ(すなわち無荷重時の高さ)より縮められた状態で配置されている。
(Coil spring)
As shown in FIG. 2A, a coil spring 50 is disposed between the plunger 30 and the bottom portion 42 of the floating member 40 to bias the plunger 30 outward and bias the floating member 40 inward. The coil spring 50 is an example of an urging member in the present disclosure, and is inserted into the insertion hole 32 of the plunger 30. The coil spring 50 is disposed between the hole bottom 32 </ b> A of the insertion hole 32 and the bottom portion 42 of the floating member 40 in a state where the coil spring 50 is contracted from the free height (that is, the height when no load is applied).
 図2Bに示すように、プランジャ30は、コイルばね50の付勢力により外側へ移動する。このとき、プランジャ30の案内突起34がハウジング20の案内溝26に沿って移動する。案内溝26の先端には、抜け止め部材60が係止されている。案内突起34が抜け止め部材60に当接することで、プランジャ30の移動が止まる。 As shown in FIG. 2B, the plunger 30 moves outward by the biasing force of the coil spring 50. At this time, the guide protrusion 34 of the plunger 30 moves along the guide groove 26 of the housing 20. A retaining member 60 is locked to the leading end of the guide groove 26. The movement of the plunger 30 is stopped by the guide protrusion 34 coming into contact with the retaining member 60.
(作用・効果)
 第1実施形態のテンショナ10においては、図6に示すように、プランジャ30は、コイルばね50から外側へ向かう付勢力P1を受ける(P1はバネ荷重)。同様に遊動部材40が、コイルばね50から内側へ向かう付勢力P1を受ける。この付勢力P1により、遊動部材40は挿入孔22の内側へ引き込まれる。そして、遊動部材40の摺動部44に形成されたくさび部44Aが、ハウジング20の案内溝24に形成された傾斜面24Aを押圧する。
(Action / Effect)
In the tensioner 10 of the first embodiment, as shown in FIG. 6, the plunger 30 receives an urging force P <b> 1 directed outward from the coil spring 50 (P <b> 1 is a spring load). Similarly, the floating member 40 receives an urging force P <b> 1 directed inward from the coil spring 50. The floating member 40 is pulled into the insertion hole 22 by the urging force P1. Then, the wedge portion 44 </ b> A formed on the sliding portion 44 of the floating member 40 presses the inclined surface 24 </ b> A formed on the guide groove 24 of the housing 20.
 これにより、くさび部44Aは、ハウジング20の傾斜面24Aから、くさび部44Aの傾斜面44AEの法線方向に沿った反力Pbを受ける。さらに、この反力Pbは遊動部材40の内部を伝わり、プランジャ30の外周面に押圧力Paとして作用する。押圧力Paは、反力Pbを、プランジャ30の「軸方向に沿う方向の力」と「軸方向と直交する方向の力」に分けた分力のうち、「軸方向と直交する方向の力」に相当する力である。 Thereby, the wedge portion 44A receives the reaction force Pb along the normal direction of the inclined surface 44AE of the wedge portion 44A from the inclined surface 24A of the housing 20. Further, the reaction force Pb is transmitted through the inside of the floating member 40 and acts on the outer peripheral surface of the plunger 30 as a pressing force Pa. The pressing force Pa is obtained by dividing the reaction force Pb into “force in the direction along the axial direction” and “force in the direction orthogonal to the axial direction” of the plunger 30 and “force in the direction orthogonal to the axial direction”. Is equivalent to "
 またさらに、押圧力Paはプランジャ30の内部を伝わり、挿入孔22の内周面22Cを押圧する。これにより、プランジャ30の外周面は、挿入孔22の内周面22Cから、反力としての押圧力Paを受ける。 Furthermore, the pressing force Pa is transmitted through the inside of the plunger 30 and presses the inner peripheral surface 22C of the insertion hole 22. Thereby, the outer peripheral surface of the plunger 30 receives a pressing force Pa as a reaction force from the inner peripheral surface 22 </ b> C of the insertion hole 22.
 ここで、遊動部材40とプランジャ30との摩擦係数、プランジャ30とハウジング20との摩擦係数を何れもμとすると、プランジャ30は、遊動部材40およびハウジング20の各々から、摺動抵抗力Ps=(2×Pa×μ)を受ける。これにより、プランジャ30は、チェーンガイド110を推進荷重PF1=(P1-Ps)で押圧する。 Here, when the friction coefficient between the floating member 40 and the plunger 30 and the friction coefficient between the plunger 30 and the housing 20 are both μ, the plunger 30 receives a sliding resistance Ps = from each of the floating member 40 and the housing 20. (2 × Pa × μ). Thereby, the plunger 30 presses the chain guide 110 with the propulsion load PF1 = (P1−Ps).
 エンジン100(図1参照)を駆動させると、カムトルク変動に伴ってタイミングチェーン106に張力が作用する。そして、図7に示すようにプランジャ30がチェーンガイド110から押圧力P2を受ける。この押圧力P2は、コイルばね50を介して遊動部材40へ伝達される。 When the engine 100 (see FIG. 1) is driven, tension is applied to the timing chain 106 with cam torque fluctuations. Then, as shown in FIG. 7, the plunger 30 receives a pressing force P <b> 2 from the chain guide 110. This pressing force P <b> 2 is transmitted to the floating member 40 via the coil spring 50.
 したがって、プランジャ30がチェーンガイド110から押圧力P2を受けない場合と比較して、遊動部材40のくさび部44Aがハウジング20の傾斜面24Aを押圧する押圧力が大きくなる。このため、くさび部44Aが傾斜面24Aから受ける反力PB、プランジャ30の外周面に作用する押圧力PA並びにプランジャ30が遊動部材40及びハウジング20から受ける摺動抵抗力PSが、それぞれ上述した反力Pb、押圧力Pa、摺動抵抗力Psより大きくなる。このため、プランジャ30がチェーンガイド110を押圧する推進荷重PF2=(P1-PS)は、推進荷重PF1=(P1-Ps)より小さくなる。 Therefore, as compared with the case where the plunger 30 does not receive the pressing force P2 from the chain guide 110, the pressing force by which the wedge portion 44A of the floating member 40 presses the inclined surface 24A of the housing 20 becomes large. For this reason, the reaction force PB received by the wedge portion 44A from the inclined surface 24A, the pressing force PA acting on the outer peripheral surface of the plunger 30, and the sliding resistance force PS received by the plunger 30 from the floating member 40 and the housing 20 are respectively the above-mentioned reaction forces. It becomes larger than the force Pb, the pressing force Pa, and the sliding resistance force Ps. Therefore, the propulsion load PF2 = (P1-PS) at which the plunger 30 presses the chain guide 110 is smaller than the propulsion load PF1 = (P1-Ps).
 ここで、図8には、コイルばね50による付勢力P1と、チェーンガイド110から押圧力P2を受けない場合の摺動抵抗力Psと、チェーンガイド110から押圧力P2を受ける場合の摺動抵抗力PSを考慮した、プランジャ30のストローク特性が実線で示されている。また、コイルばね50単体のストローク特性が2点鎖線で示されている。コイルばね50は、自由高さからのストローク(すなわち縮み量)が大きいほうがバネ荷重は大きくなり、ストロークが小さいほうがバネ荷重は小さくなる。 Here, FIG. 8 shows an urging force P1 due to the coil spring 50, a sliding resistance force Ps when the pressing force P2 is not received from the chain guide 110, and a sliding resistance when the pressing force P2 is received from the chain guide 110. The stroke characteristic of the plunger 30 in consideration of the force PS is shown by a solid line. Further, the stroke characteristics of the coil spring 50 alone are indicated by a two-dot chain line. The coil spring 50 has a larger spring load when the stroke from the free height (that is, the amount of contraction) is larger, and the spring load is smaller when the stroke is smaller.
 図8に示すように、プランジャ30が推進時(すなわち挿入孔22の外側へ移動する時)にチェーンガイド110を押圧する推進荷重PF1=(P1-Ps)に対して、後退時(すなわち挿入孔22の内側へ移動する時)に「必要な」プランジャ30に対する後退荷重PF3=(P1+PS)は、摺動抵抗力Ps、PSの合計値(Ps+PS)分だけ大きい。この結果、プランジャ30のストロークと荷重との関係にヒステリシス特性が生じ、タイミングチェーン106及びチェーンガイド110の振動を効果的に減衰できる。 As shown in FIG. 8, when the plunger 30 is propelled (ie, moved to the outside of the insertion hole 22), the propulsion load PF1 = (P1-Ps) that presses the chain guide 110 is retracted (ie, the insertion hole). The retraction load PF3 = (P1 + PS) on the plunger 30 “necessary” when moving to the inside of 22 is larger by the sum of the sliding resistance forces Ps and PS (Ps + PS). As a result, a hysteresis characteristic is generated in the relationship between the stroke of the plunger 30 and the load, and the vibrations of the timing chain 106 and the chain guide 110 can be effectively damped.
 すなわち、第1実施形態のテンショナ10は、遊動部材40を用いているため、コイルばね50を単体で用いた場合と比較して、プランジャ30の推進時には、プランジャ30の急激な推進を抑制する。また、テンショナ10は、チェーンガイド110を緩慢に押圧してタイミングチェーン106のばたつきを抑制する。また、エンジン100が駆動してタイミングチェーン106のばたつきが大きくなった際には、テンショナ10は大きな抵抗力を発揮してプランジャ30の後退を抑制し、ばたつきを抑制できる。 That is, since the tensioner 10 according to the first embodiment uses the floating member 40, the plunger 30 is prevented from abruptly propelling when the plunger 30 is propelled, as compared with the case where the coil spring 50 is used alone. Further, the tensioner 10 gently presses the chain guide 110 to suppress fluttering of the timing chain 106. In addition, when the engine 100 is driven and the timing chain 106 flutters, the tensioner 10 exerts a large resistance force to restrain the plunger 30 from retreating, and fluttering can be restrained.
 また、テンショナ10は、コイルばね50を単体で用いた場合と比較して、小さな推進力によってチェーンガイド110を押圧する。このため、チェーンガイド110とタイミングチェーン106との摺動摩擦を低減できる。これにより、メカロスの発生を抑制できる。 Further, the tensioner 10 presses the chain guide 110 with a small propulsive force as compared with the case where the coil spring 50 is used alone. For this reason, sliding friction between the chain guide 110 and the timing chain 106 can be reduced. Thereby, generation | occurrence | production of mechanical loss can be suppressed.
 また、テンショナ10では、プランジャ30の外径が、挿入孔22の内径と略一致する寸法とされている。さらに、遊動部材40の内周面44Bは、プランジャ30の外周面30Aと互いに面接触している。このため、プランジャ30には、押圧力Paが面的に作用する。このためプランジャ30に摩耗が生じ難く、テンショナ10の緩衝性能が低下し難い。 Further, in the tensioner 10, the outer diameter of the plunger 30 is set to a dimension that substantially matches the inner diameter of the insertion hole 22. Furthermore, the inner peripheral surface 44 </ b> B of the floating member 40 is in surface contact with the outer peripheral surface 30 </ b> A of the plunger 30. For this reason, the pressing force Pa acts on the plunger 30 in a plane. For this reason, the plunger 30 is unlikely to be worn, and the buffering performance of the tensioner 10 is unlikely to decrease.
 また、テンショナ10では、遊動部材40のくさび部44Aが、ハウジング20の案内溝24に形成された傾斜面24Aを押圧する。これによりプランジャ30に摺動抵抗力が作用する。このくさび部44Aが図2に傾斜面44AEとして破線で示すように摩耗した場合、遊動部材40は矢印Mで示すように、摩耗した分だけ挿入孔22の内側に配置される。このため摩耗による摺動抵抗力の低減が発生し難い。なお、傾斜面24Aが摩耗した場合も同様である。 In the tensioner 10, the wedge portion 44 </ b> A of the floating member 40 presses the inclined surface 24 </ b> A formed in the guide groove 24 of the housing 20. As a result, sliding resistance acts on the plunger 30. When the wedge portion 44A is worn as indicated by a broken line as the inclined surface 44AE in FIG. 2, the loose member 40 is disposed inside the insertion hole 22 by the amount of wear as indicated by an arrow M. For this reason, the sliding resistance is hardly reduced due to wear. The same applies when the inclined surface 24A is worn.
 また、テンショナ10では、プランジャ30の後退時、強い摺動抵抗力PSが発生する。この摺動抵抗力PSは、プランジャ30がチェーンガイド110から受ける押圧力P2によって変化する。つまり、押圧力P2が大きいほど、摺動抵抗力PSは大きくなる。このため、押圧力P2の大きさに応じて高い摺動抵抗力PSを発揮できる。 In the tensioner 10, a strong sliding resistance PS is generated when the plunger 30 is retracted. This sliding resistance PS varies depending on the pressing force P <b> 2 that the plunger 30 receives from the chain guide 110. That is, as the pressing force P2 increases, the sliding resistance PS increases. For this reason, high sliding resistance PS can be exhibited according to the magnitude of the pressing force P2.
 これに対して、遊動部材40を用いず、例えばプランジャ30の外周面30Aと挿入孔22の内周面22Cとの間に拡径するように付勢されたC型リング等を配設した場合(本開示と異なる構成にした場合)、「一定の大きさ」の摺動抵抗力を得ることはできるが、押圧力P2の大きさに応じた摺動抵抗力を得ることは難しい。 On the other hand, when the floating member 40 is not used, for example, a C-shaped ring or the like urged so as to expand the diameter is disposed between the outer peripheral surface 30A of the plunger 30 and the inner peripheral surface 22C of the insertion hole 22. (When configured differently from the present disclosure), it is possible to obtain a sliding resistance of “a certain size”, but it is difficult to obtain a sliding resistance according to the magnitude of the pressing force P2.
 また、C型リング等を用いる場合は、C型リングの劣化に伴いバネ荷重が低下すると、摺動抵抗力も低下する。これに対して本開示の第1実施形態に係るテンショナ10においては、摺動抵抗力Psを発生させるためにコイルばね50を使用している。コイルばね50はC型リングと比較して軸方向の長さが長く、ばね定数が低いため荷重が低下し難い。このため得られる摺動抵抗力Psも変動し難い。これによりテンショナ10は、安定した緩衝性能を発揮できる。さらに、テンショナ10においては、緩衝性能を得るためにC型リングのような小さな部品を必要としないためメンテナンスも容易である。 In addition, when a C-type ring or the like is used, if the spring load is reduced due to the deterioration of the C-type ring, the sliding resistance is also reduced. In contrast, in the tensioner 10 according to the first embodiment of the present disclosure, the coil spring 50 is used to generate the sliding resistance force Ps. The coil spring 50 is longer in the axial direction than the C-shaped ring and has a low spring constant, so that the load is hardly reduced. For this reason, the sliding resistance Ps obtained is not easily changed. Thereby, the tensioner 10 can exhibit the stable buffer performance. Furthermore, since the tensioner 10 does not require small parts such as a C-shaped ring in order to obtain buffer performance, maintenance is easy.
 なお、テンショナ10では、遊動部材40のくさび部44Aにおける傾斜面44AEの傾斜角度は、ハウジング20の案内溝24に形成された傾斜面24Aの傾斜角度と等しく、角度θ1である。この角度θ1は、摩擦角度の2倍以上とする。テンショナ10では、遊動部材40及びハウジング20は鋼製(静止摩擦係数μ=約0.12)とされており、この場合、摩擦角度ρ=tan-1μ=6.8°と算出される。したがって、θ1>13.6°とする。傾斜面44AEの傾斜角度θ1を、摩擦角度の2倍以上とすることで、2倍より小さい場合と比較して、遊動部材40が挿入孔22の内側に入り込み難いため、プランジャ30に過剰な押圧力が作用してプランジャ30の推進が阻害されることを抑制できる。 In the tensioner 10, the inclination angle of the inclined surface 44AE in the wedge portion 44A of the floating member 40 is equal to the inclination angle of the inclined surface 24A formed in the guide groove 24 of the housing 20, and is an angle θ1. This angle θ1 is set to be twice or more the friction angle. In the tensioner 10, the floating member 40 and the housing 20 are made of steel (static friction coefficient μ = about 0.12). In this case, the friction angle ρ = tan −1 μ = 6.8 ° is calculated. Therefore, θ1> 13.6 °. By setting the inclination angle θ1 of the inclined surface 44AE to be twice or more the friction angle, it is difficult for the floating member 40 to enter the insertion hole 22 as compared with a case where the inclination angle is smaller than twice, so that the plunger 30 is not pushed excessively. It is possible to suppress the pressure from acting and inhibiting the propulsion of the plunger 30.
 なお、角度θ1は、30°以上60°以下にすることが好ましい。このようにすることで、角度θ1が30°より小さい場合と比較して、コイルばね50の付勢力や、プランジャ30をハウジング20の内側へ押し戻す方向の力が大きくても、くさび部44Aは傾斜面24Aと接しながらハウジング20の軸方向内側へ移動し難い。このため、プランジャ30の推進力を得やすい。また、θ1が60°より大きい場合と比較して、コイルばね50の付勢力が小さくてもくさび部44Aは傾斜面24Aと接しながらハウジング20の軸方向内側へ移動し易い。このため、プランジャ30に対する押圧力を得やすい。 The angle θ1 is preferably 30 ° or more and 60 ° or less. By doing so, the wedge portion 44A is inclined even when the biasing force of the coil spring 50 and the force in the direction of pushing the plunger 30 back to the inside of the housing 20 are larger than when the angle θ1 is smaller than 30 °. It is difficult to move inward in the axial direction of the housing 20 while in contact with the surface 24A. For this reason, it is easy to obtain the driving force of the plunger 30. Further, as compared with the case where θ1 is larger than 60 °, the wedge portion 44A is easily moved inward in the axial direction of the housing 20 while being in contact with the inclined surface 24A even if the biasing force of the coil spring 50 is small. For this reason, it is easy to obtain a pressing force against the plunger 30.
 なお、テンショナ10では、遊動部材40におけるくさび部44Aの傾斜面44AEと、ハウジング20の案内溝24に形成された傾斜面24Aとが面接触するように、それぞれの傾斜角度θ1が等しく形成されているが、本開示の実施形態はこれに限らない。例えば、くさび部44Aの傾斜面44AEの傾斜角度θ1を、ハウジング20の傾斜面24Aより大きくしてもよいし、小さくしてもよい。 In the tensioner 10, the inclined angles θ <b> 1 are formed equally so that the inclined surface 44 </ b> AE of the wedge portion 44 </ b> A of the floating member 40 and the inclined surface 24 </ b> A formed in the guide groove 24 of the housing 20 are in surface contact. However, embodiments of the present disclosure are not limited to this. For example, the inclination angle θ1 of the inclined surface 44AE of the wedge portion 44A may be larger or smaller than the inclined surface 24A of the housing 20.
 また、例えば図9に示すように、案内溝24には傾斜面24Aに代えて段状の切り欠き部24Bを形成してもよい。この切り欠き部24Bに、遊動部材40のくさび部44Aが入り込むことで、押圧力Peを得ることができる。なお、切り欠き部24Bは、本開示における拡径部の一例である。 For example, as shown in FIG. 9, a stepped cutout 24B may be formed in the guide groove 24 instead of the inclined surface 24A. A pressing force Pe can be obtained by the wedge portion 44A of the floating member 40 entering the cutout portion 24B. Note that the notch 24B is an example of an enlarged diameter portion in the present disclosure.
 さらに、切り欠き部24Bは一段の段状に形成されているが、拡径部は、複数段の段状に形成した切り欠き部としてもよい。切り欠き部を複数段で形成することで、プランジャ30に対する押圧力を段階的に得ることができる。 Furthermore, although the notch 24B is formed in a single stepped shape, the enlarged diameter portion may be a notched portion formed in a plurality of steps. By forming the cutout portion in a plurality of stages, the pressing force against the plunger 30 can be obtained stepwise.
 またさらに、拡径部は、円や楕円の弧に沿うような曲面形状としてもよい。曲面形状とすることで、拡径部と、案内溝24における拡径部以外の部分との境界部分をなだらかな形状にできる。これにより耐磨耗性を高くすることができる。 Furthermore, the enlarged diameter portion may have a curved surface shape that follows a circular or elliptical arc. By adopting the curved surface shape, the boundary portion between the enlarged diameter portion and the portion other than the enlarged diameter portion in the guide groove 24 can be formed into a gentle shape. Thereby, abrasion resistance can be made high.
 また、例えば図10に示すように、遊動部材40にはくさび部44Aに代えて、円弧状に突出した突出部44Cを形成してもよい。この突出部44Cが、案内溝24の傾斜面24Aに入り込むことで、押圧力Pfを得ることができる。さらに、この円弧状の突出部44Cと、上述した切り欠き部24Bや、複数段の切り欠き部、曲面形状の切り欠き部とを組み合わせて使用してもよい。 For example, as shown in FIG. 10, the floating member 40 may be formed with a protruding portion 44C protruding in an arc shape instead of the wedge portion 44A. The protruding portion 44C enters the inclined surface 24A of the guide groove 24, whereby the pressing force Pf can be obtained. Further, the arcuate protruding portion 44C may be used in combination with the above-described cutout portion 24B, a plurality of cutout portions, or a curved cutout portion.
 また、本実施形態においては、ハウジング20における案内溝24の外側端部で、かつ、プランジャ30の出入り口の周縁部に傾斜面24Aを形成しているが、本開示の実施形態はこれに限らない。例えば傾斜面24Aは、案内溝24におけるプランジャ30の出入り口より内側部分の任意の場所に形成することができる。この場合、傾斜面24Aは、プランジャ30の出入り口の周縁部とは異なる位置に形成される。また、プランジャ30における傾斜面44AEは、傾斜面24Aと接する位置に形成する。 Moreover, in this embodiment, although the inclined surface 24A is formed in the outer edge part of the guide groove 24 in the housing 20, and the peripheral part of the entrance / exit of the plunger 30, embodiment of this indication is not restricted to this. . For example, the inclined surface 24 </ b> A can be formed at any location on the inner side of the guide groove 24 from the entrance / exit of the plunger 30. In this case, the inclined surface 24 </ b> A is formed at a position different from the peripheral edge of the entrance / exit of the plunger 30. Further, the inclined surface 44AE of the plunger 30 is formed at a position in contact with the inclined surface 24A.
(ハウジング)
 図3A、図3Bに示すように、本開示における保持部材の一例としてのハウジング20は、有底の筒状部材である。ハウジング29は、略円形状の挿入孔22と、挿入孔22に沿って挿入孔22の上部に形成された案内溝24と、挿入孔22の下部に形成された案内溝26と、を備えている。案内溝24の外側端部(すなわち後述するプランジャ30の出入り口の周縁部)には、内側から外側に向かって挿入孔22の中心軸CLから離れる方向に傾斜した傾斜面24Aが形成されている。傾斜面24Aの傾斜角度は、中心軸CLに対して角度θ1とする。
(housing)
As illustrated in FIGS. 3A and 3B, the housing 20 as an example of a holding member in the present disclosure is a bottomed cylindrical member. The housing 29 includes a substantially circular insertion hole 22, a guide groove 24 formed in the upper part of the insertion hole 22 along the insertion hole 22, and a guide groove 26 formed in the lower part of the insertion hole 22. Yes. An inclined surface 24A that is inclined in a direction away from the central axis CL of the insertion hole 22 from the inner side toward the outer side is formed at an outer end portion of the guide groove 24 (that is, a peripheral edge portion of an entrance / exit of the plunger 30 described later). The inclination angle of the inclined surface 24A is an angle θ1 with respect to the central axis CL.
[第2実施形態]
 第2実施形態のテンショナ70について説明する。なお、テンショナ70において第1実施形態のテンショナ10と等しい構成については同一の符号で示し、説明は省略する。第2実施形態のテンショナ70は、図11に示すように、遊動部材40におけるくさび部44Aの形状が、第1実施形態のテンショナ10と異なっている。テンショナ70では、くさび部44Aにおけるプランジャ30と対向する面に凹部44Dが形成されている。
[Second Embodiment]
The tensioner 70 of 2nd Embodiment is demonstrated. In the tensioner 70, the same components as those of the tensioner 10 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 11, the tensioner 70 of the second embodiment is different from the tensioner 10 of the first embodiment in the shape of the wedge portion 44 </ b> A in the floating member 40. In the tensioner 70, a recess 44D is formed on the surface of the wedge portion 44A that faces the plunger 30.
 この凹部44Dは、壁部44Eが、くさび部44Aの傾斜面44AE及び案内溝24の傾斜面24Aと平行に形成されている。さらに凹部44Dには、断面視で略三角形状の係合部材72が取り付けられている。係合部材72は、本開示における移動抑制手段の一例である。係合部材72の外周面(外側を向いた端面)72Aと、凹部44Dの内周面(内側を向いた端面)44Fとの間には、コイルばね74が取り付けられている。コイルばね74は、係合部材72を内側へ付勢している。 In the recess 44D, the wall portion 44E is formed in parallel with the inclined surface 44AE of the wedge portion 44A and the inclined surface 24A of the guide groove 24. Furthermore, a substantially triangular engagement member 72 is attached to the recess 44D in a cross-sectional view. The engagement member 72 is an example of a movement suppressing unit in the present disclosure. A coil spring 74 is attached between the outer peripheral surface (end surface facing outward) 72A of the engaging member 72 and the inner peripheral surface (end surface facing inward) 44F of the recess 44D. The coil spring 74 urges the engaging member 72 inward.
 係合部材72においてプランジャ30と対向する面には、歯切り加工された凹凸部72Bが設けられている。また、プランジャ30において係合部材72と対向する面にも、歯切り加工された凹凸部30Bが設けられている。係合部材72の凹凸部72Bと、プランジャ30の凹凸部30Bとは互いに係合する形状に形成されている。 The surface of the engaging member 72 that faces the plunger 30 is provided with a concavo-convex portion 72B that is cut into gears. In addition, the surface of the plunger 30 that faces the engaging member 72 is also provided with a concavo-convex portion 30B that has been gear cut. The concavo-convex portion 72B of the engaging member 72 and the concavo-convex portion 30B of the plunger 30 are formed into shapes that engage with each other.
 第2実施形態のテンショナ70によると、プランジャ30の凹凸部30Bが係合部材72の凹凸部72Bに係合している。このため、プランジャ30が外側に推進すると、係合部材72も外側へ動く。一方で、係合部材72はコイルばね74によって内側に付勢されている。このため、係合部材72の凹凸部72Bとプランジャ30の凹凸部30Bとの係合が一旦解除され、係合部材72は壁部44Eに当接するまで内側に移動する。そして、再び係合部材72の凹凸部72Bと、外側に推進した状態のプランジャ30の凹凸部30Bとが係合する。 According to the tensioner 70 of the second embodiment, the uneven portion 30B of the plunger 30 is engaged with the uneven portion 72B of the engaging member 72. For this reason, when the plunger 30 pushes outward, the engaging member 72 also moves outward. On the other hand, the engaging member 72 is biased inward by a coil spring 74. For this reason, the engagement between the concavo-convex portion 72B of the engaging member 72 and the concavo-convex portion 30B of the plunger 30 is once released, and the engaging member 72 moves inward until it abuts against the wall portion 44E. And the uneven | corrugated | grooved part 72B of the engaging member 72 and the uneven | corrugated | grooved part 30B of the plunger 30 of the state propelled outside engage again.
 ここで、プランジャ30の凹凸部30Bが係合部材72の凹凸部72Bに係合しているため、プランジャ30が内側へ退行しようとした場合、係合部材72も内側へ動く。この時、係合部材72は壁部44Eから押圧力Pcを受ける。この押圧力Pcが係合部材72によって伝達され、押圧力Pdでプランジャ30を押圧する。これにより、係合部材72の凹凸部72Bとプランジャ30の凹凸部30Bとが強固に係合される。このため、プランジャ30の内側への移動が抑制される。これにより、テンショナ70は、チェーンガイド110(図6等参照)から強い押圧力を受けても、タイミングチェーン106に対して張力を与え続けることができる。 Here, since the concavo-convex portion 30B of the plunger 30 is engaged with the concavo-convex portion 72B of the engaging member 72, when the plunger 30 attempts to retract inward, the engaging member 72 also moves inward. At this time, the engaging member 72 receives the pressing force Pc from the wall portion 44E. This pressing force Pc is transmitted by the engaging member 72 and presses the plunger 30 with the pressing force Pd. Thereby, the uneven part 72B of the engaging member 72 and the uneven part 30B of the plunger 30 are firmly engaged. For this reason, the movement to the inner side of the plunger 30 is suppressed. As a result, the tensioner 70 can continue to apply tension to the timing chain 106 even when it receives a strong pressing force from the chain guide 110 (see FIG. 6 and the like).
 なお、本実施形態においては係合部材72に凹凸部72Bを設けているが、本開示の実施形態はこれに限らない。例えばくさび部44Aに凹部44Dを形成せず係合部材72を省略し、くさび部44Aにおいてプランジャ30と対向する面に直接凹凸部を設けてもよい。このようにすることで、部品点数を減らすことができる。 In addition, in this embodiment, although the uneven | corrugated | grooved part 72B is provided in the engaging member 72, embodiment of this indication is not restricted to this. For example, the concave portion 44D may not be formed in the wedge portion 44A, and the engaging member 72 may be omitted, and the concave and convex portion may be provided directly on the surface of the wedge portion 44A that faces the plunger 30. In this way, the number of parts can be reduced.
[第3実施形態]
 第3実施形態のテンショナ80は、図12Aに示すように、ハウジング82における挿入孔82Aの内部に、棒状の回転部材84が配置されている。回転部材84の周囲には、回転部材84を囲繞するねじりばね85が巻き締められた状態で配置されている。ねじりばね85の一方の端部85Aはハウジング82に固定され、他方の端部85Bは回転部材84に固定されている。これにより、回転部材84には回転トルクが付与されている。
[Third Embodiment]
In the tensioner 80 of the third embodiment, as shown in FIG. 12A, a rod-shaped rotating member 84 is disposed inside the insertion hole 82 </ b> A in the housing 82. A torsion spring 85 surrounding the rotating member 84 is disposed around the rotating member 84 in a wound state. One end 85 </ b> A of the torsion spring 85 is fixed to the housing 82, and the other end 85 </ b> B is fixed to the rotating member 84. Thereby, rotational torque is applied to the rotating member 84.
 回転部材84において、ねじりばね85が固定された部分より外側部分には雄ネジ84Aが形成されている。この雄ネジ84Aには、プランジャ86の内側に形成された雌ネジ86Aが係合している。 In the rotating member 84, a male screw 84A is formed on the outer side of the portion where the torsion spring 85 is fixed. A female screw 86A formed inside the plunger 86 is engaged with the male screw 84A.
 プランジャ86は、図12Bに示すように、ハウジング82の軸方向から見た外形が二面取り形状とされている。また、ハウジング82における挿入孔82Aの開口端には、プレート状の回転抑止部材88が固定されている。回転抑止部材88は、プランジャ86の外形状と略一致する貫通孔88Aを備えている。プランジャ86は、この貫通孔88Aを挿通することにより、回転が規制されている。 As shown in FIG. 12B, the plunger 86 has a two-sided shape when viewed from the axial direction of the housing 82. Further, a plate-like rotation restraining member 88 is fixed to the opening end of the insertion hole 82A in the housing 82. The rotation suppression member 88 includes a through hole 88 </ b> A that substantially matches the outer shape of the plunger 86. The plunger 86 is restricted from rotating by being inserted through the through hole 88A.
 これにより、プランジャ86は図12Aに示す回転部材84の回転トルクが付与されても回転せず、挿入孔82Aの外側へ推進する付勢力が与えられている。 Thereby, the plunger 86 does not rotate even when the rotational torque of the rotating member 84 shown in FIG. 12A is applied, and is given a biasing force for propelling to the outside of the insertion hole 82A.
 また、ハウジング82には、案内溝82Bと傾斜部82Cが形成されている。この案内溝82B及び傾斜部82Cは、第1実施形態のハウジング20における案内溝24及び傾斜面24Aと同様の構成である。案内溝82Bには、遊動部材90の摺動部90Aが配置されている。摺動部90Aの内側端部には、回転部材84が挿通された底部90Bが形成されている。また、摺動部90Aの外側端部には、外側に向かって拡径する傾斜部90Cが形成されている。 The housing 82 has a guide groove 82B and an inclined portion 82C. The guide groove 82B and the inclined portion 82C have the same configuration as the guide groove 24 and the inclined surface 24A in the housing 20 of the first embodiment. The sliding portion 90A of the floating member 90 is disposed in the guide groove 82B. A bottom portion 90B through which the rotating member 84 is inserted is formed at the inner end of the sliding portion 90A. In addition, an inclined portion 90C whose diameter increases toward the outside is formed at the outer end of the sliding portion 90A.
 プランジャ86と、遊動部材90の底部90Bとの間には、コイルばね92が配置されている。このコイルばね92は、プランジャ86を外側へ付勢し、遊動部材90を内側へ付勢している。 A coil spring 92 is disposed between the plunger 86 and the bottom 90B of the floating member 90. The coil spring 92 biases the plunger 86 outward and biases the floating member 90 inward.
 第3実施形態のテンショナ80によると、プランジャ86の外側への推進力が、ねじりばね85と、コイルばね92から得られる。一方で、遊動部材90の内側への付勢力は、コイルばね92のみから得られる。これにより、例えばねじりばね85の回転トルクを、コイルばね92の付勢力に対して相対的に大きくすることで、チェーンガイド110(図6等参照)に対する押圧力を大きくする一方、遊動部材90から受ける摺動抵抗力を小さくできる。あるいは、例えば、コイルばね92の付勢力をねじりばね85の回転トルクに対して相対的に大きくすると、遊動部材90から受ける摺動抵抗力を相対的に大きくすることができる。 According to the tensioner 80 of the third embodiment, the driving force to the outside of the plunger 86 is obtained from the torsion spring 85 and the coil spring 92. On the other hand, the inward biasing force of the floating member 90 is obtained only from the coil spring 92. Thereby, for example, by increasing the rotational torque of the torsion spring 85 relative to the urging force of the coil spring 92, the pressing force against the chain guide 110 (see FIG. 6 and the like) is increased, while the floating member 90 The sliding resistance received can be reduced. Alternatively, for example, when the urging force of the coil spring 92 is relatively increased with respect to the rotational torque of the torsion spring 85, the sliding resistance force received from the floating member 90 can be relatively increased.
 このように、テンショナ80によると、プランジャ86によるチェーンガイド110に対する押圧力と、プランジャ86が遊動部材90から受ける摺動抵抗力の大小関係を、任意に設定できる。すなわち、タイミングチェーン106のばたつきに対する細かな制御ができる。 Thus, according to the tensioner 80, the magnitude relationship between the pressing force of the plunger 86 against the chain guide 110 and the sliding resistance force received by the plunger 86 from the floating member 90 can be arbitrarily set. That is, fine control over the flickering of the timing chain 106 can be performed.
 なお、第3実施形態におけるねじりばね85は、プランジャ86を外側へ付勢している。このためプランジャ86が内側に移動することを抑制している。すなわち、ねじりばね85は本開示における移動抑制手段の一例である。プランジャ86が内側に移動することを抑制する移動抑制手段としては、上述した係合部材72やねじりばね85のほか、オイルダンパやラチェット機構などを適宜用いてもよい。 In addition, the torsion spring 85 in the third embodiment biases the plunger 86 outward. For this reason, the plunger 86 is restrained from moving inward. That is, the torsion spring 85 is an example of a movement suppressing unit in the present disclosure. As a movement restraining means for restraining the plunger 86 from moving inward, an oil damper, a ratchet mechanism, or the like may be used as appropriate in addition to the above-described engaging member 72 and torsion spring 85.
[第4実施形態]
 第4実施形態に係るテンショナ120は、図13に示すように、ハウジング112と、プランジャ114と、遊動部材116と、コイルばね118と、を備えている。
[Fourth Embodiment]
As shown in FIG. 13, the tensioner 120 according to the fourth embodiment includes a housing 112, a plunger 114, a floating member 116, and a coil spring 118.
 ハウジング112は、図2Aに示す第1実施形態のハウジング20におけるフランジ28を省略したものである。また、プランジャ114は、第1実施形態のプランジャ30における外側端部に雄ネジ114Aを形成したものである。この雄ネジ114Aが、エンジン100に形成された雌ネジ100Aに捩じ込まれることで、テンショナ120がエンジン100へ固定される。 The housing 112 is obtained by omitting the flange 28 in the housing 20 of the first embodiment shown in FIG. 2A. Moreover, the plunger 114 forms the external thread 114A in the outer end part in the plunger 30 of 1st Embodiment. The tensioner 120 is fixed to the engine 100 by the male screw 114 </ b> A being screwed into the female screw 100 </ b> A formed in the engine 100.
 第4実施形態のテンショナ120においては、ハウジング112が、コイルばね118の付勢力によって推進する。このため、ハウジング112の先端部で、チェーンガイド110(図6等参照)を押圧する。テンショナ120によって得られる緩衝効果は、第1実施形態のテンショナ10によって得られる緩衝効果と同様であり、詳細の説明は省略する。以上説明したように、本開示に係るテンショナは、様々な態様で実施することができる。 In the tensioner 120 of the fourth embodiment, the housing 112 is driven by the biasing force of the coil spring 118. For this reason, the chain guide 110 (see FIG. 6 and the like) is pressed at the tip of the housing 112. The buffer effect obtained by the tensioner 120 is the same as the buffer effect obtained by the tensioner 10 of the first embodiment, and detailed description thereof is omitted. As described above, the tensioner according to the present disclosure can be implemented in various modes.
 2018年3月22日に出願された日本国特許出願2018-054023号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The entire disclosure of Japanese Patent Application No. 2018-054023 filed on Mar. 22, 2018 is incorporated herein by reference. All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (7)

  1.  筒状の保持部材と、
     前記保持部材に軸方向へ摺動可能に装着された遊動部材と、
     前記遊動部材に相対移動可能に装着された推進部材と、
     前記遊動部材と前記推進部材との間に設けられ、前記推進部材を前記保持部材の軸方向外側へ付勢し、前記遊動部材を前記保持部材の軸方向内側へ付勢する付勢部材と、
     前記遊動部材と前記保持部材との間に当接した状態で形成され、前記推進部材が移動するとき、前記遊動部材を軸方向と交差する方向へ押圧して、前記推進部材と前記保持部材との摺動抵抗を大きくする摺動力増大手段と、
    を有するテンショナ。
    A cylindrical holding member;
    An idler member slidably attached to the holding member in the axial direction;
    A propulsion member mounted on the floating member so as to be relatively movable;
    An urging member that is provided between the floating member and the propelling member, urges the propelling member toward the axially outer side of the holding member, and urges the floating member toward the axially inner side of the holding member;
    Formed in a state of contact between the floating member and the holding member, and when the propelling member moves, the propelling member and the holding member are pressed by pressing the floating member in a direction intersecting the axial direction. Sliding force increasing means for increasing the sliding resistance of
    Tensioner with
  2.  前記摺動力増大手段は、
     前記保持部材の内周面に形成され前記保持部材の軸方向内側から軸方向外側にかけて前記保持部材の径方向外側に向って拡径する拡径部と、
     前記遊動部材に形成され、前記拡径部と接するくさび部と、
    を有する請求項1に記載のテンショナ。
    The sliding force increasing means is
    A diameter-enlarged portion formed on the inner peripheral surface of the holding member and expanding from the inner side in the axial direction to the outer side in the axial direction of the holding member;
    A wedge part formed on the floating member and in contact with the enlarged diameter part;
    The tensioner of claim 1 having
  3.  前記拡径部及び前記拡径部と接する前記くさび部の少なくとも一方に、前記保持部材の軸方向内側から軸方向外側にかけて前記保持部材の径方向外側に向って漸次径変化する傾斜面が形成されている、請求項2に記載のテンショナ。 At least one of the enlarged diameter portion and the wedge portion in contact with the enlarged diameter portion is formed with an inclined surface that gradually changes in diameter from the inner side in the axial direction to the outer side in the axial direction of the holding member. The tensioner according to claim 2.
  4.  前記傾斜面は、前記拡径部及び前記拡径部と接する前記くさび部の双方に形成されている、請求項3に記載のテンショナ。 The tensioner according to claim 3, wherein the inclined surface is formed on both the enlarged diameter portion and the wedge portion in contact with the enlarged diameter portion.
  5.  前記傾斜面の傾斜角度が前記保持部材の軸方向に対して30°以上60°以下である、請求項3又は請求項4に記載のテンショナ。 The tensioner according to claim 3 or 4, wherein an inclination angle of the inclined surface is 30 ° or more and 60 ° or less with respect to an axial direction of the holding member.
  6.  前記推進部材が前記保持部材の内側へ移動することを抑制する移動抑制手段を備えた、請求項2~5の何れか1項に記載のテンショナ。 The tensioner according to any one of claims 2 to 5, further comprising movement restraining means for restraining the propulsion member from moving to the inside of the holding member.
  7.  前記移動抑制手段は、前記くさび部と前記推進部材との当接面にそれぞれ設けられ、互いに係合する凹凸部である、請求項6に記載のテンショナ。 The tensioner according to claim 6, wherein the movement restraining means is a concavo-convex part that is provided on a contact surface between the wedge part and the propelling member and engages with each other.
PCT/JP2019/010293 2018-03-22 2019-03-13 Tensioner WO2019181690A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020508270A JP7293192B2 (en) 2018-03-22 2019-03-13 tensioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-054023 2018-03-22
JP2018054023 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019181690A1 true WO2019181690A1 (en) 2019-09-26

Family

ID=67987251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010293 WO2019181690A1 (en) 2018-03-22 2019-03-13 Tensioner

Country Status (2)

Country Link
JP (1) JP7293192B2 (en)
WO (1) WO2019181690A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327519A (en) * 2006-06-06 2007-12-20 Honda Motor Co Ltd Tensioner device
JP2010230056A (en) * 2009-03-26 2010-10-14 Ntn Corp Automatic tensioner
US20140097563A1 (en) * 2012-10-10 2014-04-10 Schaeffler Technologies AG & Co. KG Mechanical tensioner strut with uni-directional friction damping
JP2016223506A (en) * 2015-05-29 2016-12-28 株式会社椿本チエイン Tensioner
JP2017089842A (en) * 2015-11-16 2017-05-25 株式会社椿本チエイン Chain Tensioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327519A (en) * 2006-06-06 2007-12-20 Honda Motor Co Ltd Tensioner device
JP2010230056A (en) * 2009-03-26 2010-10-14 Ntn Corp Automatic tensioner
US20140097563A1 (en) * 2012-10-10 2014-04-10 Schaeffler Technologies AG & Co. KG Mechanical tensioner strut with uni-directional friction damping
JP2016223506A (en) * 2015-05-29 2016-12-28 株式会社椿本チエイン Tensioner
JP2017089842A (en) * 2015-11-16 2017-05-25 株式会社椿本チエイン Chain Tensioner

Also Published As

Publication number Publication date
JP7293192B2 (en) 2023-06-19
JPWO2019181690A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
US8568258B2 (en) Chain tensioner
US8740736B2 (en) Ring-type tensioner
US8272982B2 (en) Cam damped pulley for rotary devices
US8282520B2 (en) Chain tensioner
JP5914416B2 (en) Pulley structure
US8734278B2 (en) Rachet-type tensioner
JP2015025483A (en) Pulley device with built-in one-way clutch
EP2131066B1 (en) Chain tensioner
US9115788B2 (en) Ring-type tensioner
JP6162162B2 (en) Auto tensioner
JP2010025248A (en) Clip-type tensioner
KR101414870B1 (en) Ratchet-type tensioner
WO2019181690A1 (en) Tensioner
JP2009168080A (en) Driven-side pulley for v-belt type automatic transmission
JP4934815B2 (en) Tensioner
JP6747963B2 (en) Pulley structure
WO2016021566A1 (en) Load application device
JP2007187321A (en) Chain tensioner
JP2010230056A (en) Automatic tensioner
JP2007231968A (en) Auto tensioner
JP2008223792A (en) Tensioner
JP6469110B2 (en) Tensioner
WO2010038619A1 (en) Tensioner
JP6431049B2 (en) Tensioner
JP5507608B2 (en) Pulley structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508270

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771145

Country of ref document: EP

Kind code of ref document: A1