WO2019181294A1 - Hydrogel containing sulfonated cellulose nanofibers - Google Patents

Hydrogel containing sulfonated cellulose nanofibers Download PDF

Info

Publication number
WO2019181294A1
WO2019181294A1 PCT/JP2019/005245 JP2019005245W WO2019181294A1 WO 2019181294 A1 WO2019181294 A1 WO 2019181294A1 JP 2019005245 W JP2019005245 W JP 2019005245W WO 2019181294 A1 WO2019181294 A1 WO 2019181294A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
gelatin
scnf
group
hydrogel according
Prior art date
Application number
PCT/JP2019/005245
Other languages
French (fr)
Japanese (ja)
Inventor
昭広 西口
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2020507432A priority Critical patent/JP6869518B2/en
Publication of WO2019181294A1 publication Critical patent/WO2019181294A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels

Definitions

  • the present invention relates to a biodegradable hydrogel, and more particularly to an injectable hydrogel comprising a sulfonated cellulose nanofiber and a biodegradable polymer having a primary amino group.
  • Catheter treatment is widely used in medical settings such as cerebral aneurysm treatment as a minimally invasive treatment method.
  • a cerebral aneurysm is a disease in which part of a blood vessel in the brain swells and causes subarachnoid hemorrhage when it ruptures.
  • a treatment method for closing an aneurysm with an embolic material using a catheter is widespread, and it is important as a minimally invasive treatment method that does not require craniotomy.
  • Coils have been widely used as an embolic material so far, such as Matrix 2 coils coated with polyglycolic acid / lactic acid copolymer (Stryker, SA) and Hydrocoil embroidery system coated with non-degradable polymers (Microvention / Terumo, Japan) is used.
  • Matrix 2 coils coated with polyglycolic acid / lactic acid copolymer (Stryker, SA) and Hydrocoil embroidery system coated with non-degradable polymers (Microvention / Terumo, Japan) is used.
  • the liquid embolic material can completely fill the aneurysm, while using a non-degradable polymer such as cyanoacrylate (NBCA) or ethylene vinyl alcohol (EVOH) copolymer (Onyx, Covidien).
  • NBCA cyanoacrylate
  • EVOH ethylene vinyl alcohol copolymer
  • Non-patent Document 1 a hydrogel containing hyaluronic acid modified with adipic acid dihydrazide or the like and aldehyde-modified cellulose nanofiber
  • Non-Patent Document 2 a hydrogel containing carboxymethyl cellulose, dextran and aldehyde-modified cellulose nanofiber
  • Non-patent Document 3 A hydrogel containing gelatin and aldehyde-modified cellulose nanowhiskers
  • the hydrogel containing cellulose nanocrystals or whiskers must be separately injected with nanocrystals or whiskers and hyaluronic acid using a double barrel syringe. Compared to annoying. This is because when nanocrystals or whiskers and hyaluronic acid are mixed, they immediately react with each other to form a cross-linked structure consisting of covalent bonds, resulting in gelation, and delivery becomes impossible or requires great force. This is because the gel structure may be damaged if it is injected into the gel. Moreover, the pore size in the gel is limited by the cross-linked structure, and the substance permeation may be inhibited.
  • an object of the present invention is to provide an injectable hydrogel that can be more easily delivered with a catheter or the like and has excellent substance permeability.
  • the present invention is as follows: A sulfonated cellulose nanofiber having a sulfone group at 0.1 to 7 mmol / g, and a primary amino group selected from the group consisting of gelatin, chitosan, collagen, albumin, fibronectin, laminin, elastin and derivatives thereof A hydrogel comprising at least one biodegradable polymer having a weight ratio of 1:99 to 70:30.
  • the hydrogel of the present invention has thixotropic properties, and its viscosity decreases under shearing force. Therefore, it can be delivered without using a double barrel syringe.
  • at least part of the cross-linked structure has a loose bond that reversibly returns to the sol due to stress, such as an electrostatic bond via a sulfone group, compared to a hydrogel that is densely cross-linked only by covalent bonds
  • the pore size is large and the material permeability is excellent.
  • cellulose nanofibers are biodegradable
  • hydrogels are also biodegradable.
  • the hydrogel has high cell adhesion and is excellent in biocompatibility and affinity.
  • FIG. 1 is an X-ray diffraction chart (left) and a graph (right) showing crystallinity of aldehyde cellulose.
  • FIG. 2 is a graph showing the relationship between the amount of sodium pyrosulfite charged and the amount of sulfonate groups of the sulfonated cellulose nanofibers obtained.
  • FIG. 3 is an electron micrograph of sulfonated cellulose nanofibers.
  • FIG. 4 is a graph showing weight loss (%) of sulfonated cellulose nanofibers in a biodegradability test.
  • FIG. 5 is a photograph of the hydrogel of the present invention obtained by mixing sulfonated cellulose nanofibers and a gelatin solution.
  • FIG. 1 is an X-ray diffraction chart (left) and a graph (right) showing crystallinity of aldehyde cellulose.
  • FIG. 2 is a graph showing the relationship between the amount of sodium pyrosulfite charged and the amount of
  • FIG. 6 is an electron micrograph of a cross section of the hydrogel.
  • FIG. 7 is a graph showing changes in the shear modulus of the hydrogel with temperature.
  • FIG. 8 is a graph showing the relationship between the concentration of sulfonated cellulose nanofibers and gelatin and the shear modulus.
  • FIG. 9 is a graph showing the relationship between the pH of the gelatin solution and the shear modulus of the hydrogel.
  • FIG. 10 is a graph showing the thixotropy of the hydrogel.
  • FIG. 11 is a graph showing the results of a viscoelasticity test of a PEG gel obtained by cross-linking gelatin with pentaerythritol-poly (ethylene glycol) ether tetrasuccinimidyl-glutarate instead of sulfonated cellulose nanofibers.
  • FIG. 12 is a graph showing a comparison of the permeability of hydrogel and PEG gel.
  • FIG. 13 is an electron micrograph (upper) of cells cultured in a medium containing sulfonated cellulose nanofibers and a graph (lower) of the number of cells.
  • FIG. 14 is a phase-contrast micrograph (left) of cells cultured in a medium containing sulfonated cellulose nanofibers, and a graph (right) showing the cell aspect ratio with respect to the concentration of sulfonated cellulose nanofibers.
  • FIG. 15 is a phase contrast micrograph of cells (left: endothelial cells, right: fibroblasts) adhered to the hydrogel surface of the present invention.
  • FIG. 16 is a phase contrast micrograph of fibroblasts encapsulated in the hydrogel of the present invention.
  • FIG. 17 is a graph showing the relationship between the amount of sulfone groups per unit weight of sCNF contained in the hydrogel (mmol / g) and the adsorption amount of albumin.
  • FIG. 15 is a phase contrast micrograph of cells (left: endothelial cells, right: fibroblasts) adhered to the hydrogel surface of the present invention.
  • FIG. 16 is a phase contrast micrograph of fibroblast
  • FIG. 18 is an image of hematoxylin and eosin (HE) staining of a tissue section of a tissue not implanted with hydrogel 14 days after implantation (control) and a tissue section of the tissue implanted with hydrogel.
  • FIG. 19 is an HE-stained image several days after each hydrogel was implanted.
  • FIG. 20 is a graph in which the distribution of cells infiltrating into the hydrogel is quantified and plotted. 0 represents the boundary between the tissue and the hydrogel, and 1 represents the central part of the gel.
  • FIG. 21 is a graph in which the depth of cells infiltrating each hydrogel is quantified and plotted.
  • FIG. 22 is an immunostained image using vimentin antibody and CD31 antibody 14 days after implantation.
  • FIG. 23 is an immunostained image using vimentin antibody and CD31 antibody 14 days after implantation.
  • FIG. 24 shows the result of quantifying the area of positive cells from a vimentin-stained image.
  • FIG. 25 shows the result of quantifying the area of positive cells from the CD31-stained image.
  • FIG. 26 shows the results of quantifying the number of luminal structures from CD31 stained images.
  • FIG. 27 is an immunostained image using CD163 antibody and CD68 antibody 14 days after implantation.
  • FIG. 28 shows the result of quantifying the area of positive cells from the CD163 stained image.
  • FIG. 29 shows the result of quantifying the area of positive cells from a CD68-stained image.
  • FIG. 30 shows the ratio of the area of positive cells obtained from the CD163-stained image and the area of positive cells obtained from the CD68-stained image.
  • the sulfonated cellulose is a cellulose having a sulfonated structure in which the ring position between the 3rd and 4th positions of the glucose unit represented by the following formula (1) is opened.
  • the above formula shows a state in which the sulfone group (—SO 3 H) is dissociated in water or the like, and the counter cation is not limited to Na + and may be a proton, K + or the like.
  • the sulfonated cellulose can be synthesized by the route shown in the following formula described in, for example, Henrikki Liimatainen et al., Cellulose (2013) 20: 741-749.
  • NaIO 4 sodium periodate
  • aqueous solution containing unreacted substances is removed by filtration under reduced pressure, and an operation of washing with ultrapure water is repeated several times, followed by freeze-drying to obtain a dry powder of aldehyde cellulose.
  • m is 1 to 80 mol%, preferably 10 to 50 mol%. If m is less than the lower limit, it is difficult to ensure biodegradability. On the other hand, when m exceeds the upper limit, hydrolysis tends to occur and it becomes difficult to prepare nanofibers.
  • the amount of aldehyde groups can be determined by neutralization titration by conductivity measurement using an aqueous sodium hydroxide solution, and is 0.5 to 8 mmol / g, preferably 1 to 7 mmol / g, more preferably 1 to 5 Mmol / g.
  • raw material cellulose for example, cellulose obtained from plants, animals, etc., such as softwood pulp, hardwood pulp and cotton pulp, paper using these, waste paper, and the like can be used.
  • the aldehyde cellulose is dispersed in ultrapure water, and sodium pyrosulfite (Na 2 S 2 O 5 ) is added at 20 to 200 mol%, preferably 50 to 150 mol%, with the amount of aldehyde groups being 100 mol%.
  • the reaction is allowed to proceed with stirring at room temperature for 12-24 hours.
  • the product is recovered by centrifugation, washed with ultrapure water, etc. to remove unreacted material and purified, and then homogenized with an ultrasonic homogenizer for about 10 to 30 minutes to obtain sulfonated cellulose nanofibers (“ may be abbreviated as “sCNF”).
  • the yield is about 80-90%.
  • FIG. 3 is an electron micrograph of sCNF prepared in the example.
  • the diameter of the fiber observed with an electron microscope is several nm to 100 nm, preferably 3 to 20 nm.
  • the aspect ratio (fiber length / fiber diameter) is about 30 to 1000.
  • SCNF is biodegradable.
  • “biodegradability” was confirmed by reducing the weight of sCNF by 1% or more in one day in phosphate buffered saline (PBS) at pH 7.4 at 37 ° C.
  • PBS phosphate buffered saline
  • This biodegradability is defined as m + n, that is, the number of ring-opened units is at least 1 mol%, preferably 10 to 50 mol%, when the initial value of the amount (k) of glucose units in the raw cellulose is 100 mol%. It is thought to be due to some.
  • sCNF has a ring-opening unit, so that the crystallinity by X-ray diffraction measurement is 20 to 70%, which is lower than the raw cellulose having a crystallinity of about 90%.
  • Sulfonated cellulose nanofibers have sulfone groups at 0.1-7 mmol / g.
  • the amount of the sulfone group can be determined by neutralization titration by conductivity measurement using an aqueous sodium hydroxide solution.
  • cellulose whose sulfone group is less than the lower limit it is difficult to form nanofibers because the electrostatic repulsion between fibers is weak.
  • the upper limit of the sulfone group is not particularly limited, but in practice, it is difficult to prepare one having more than the above value.
  • sCNF has a sulfone group content of 0.1 to 2.5 mmol / g, more preferably 0.1 to 2 mmol / g, in that nanofibers can be easily recovered by centrifugation. That is, sCNF represented by the following formula (2) is preferably used.
  • k, m and n represent mol% of each repeating unit and are not particularly limited, but k is preferably 25 to 95 mol%, more preferably 40 to 90 mol%.
  • m is preferably 4 to 70 mol%, more preferably 7 to 60 mol%.
  • n is preferably 1 to 70 mol%, more preferably 10 to 30 mol%.
  • sCNF may have a repeating unit other than the above. Although it does not restrict
  • biodegradable polymer having a primary amino group is a polymer that can be decomposed by hydrolysis, enzymatic degradation, microbial degradation, etc. in the human body or body surface, It has a primary amino group.
  • biodegradable polymer in addition to the primary amino group, there may be a secondary amino group and a tertiary amino group capable of reacting with the sulfone group.
  • biodegradable polymers examples include polysaccharides such as chitosan, polypeptides such as collagen, gelatin, albumin and laminin, glycoproteins such as fibronectin, fibers such as elastin, and derivatives thereof. These gene recombinants may be used. Of these, polypeptides are preferred, with gelatin or derivatives thereof being most preferred.
  • Gelatin may be derived from animals or fish.
  • the gelatin may be acid-treated gelatin, alkali-treated gelatin, or genetically modified gelatin, preferably alkali-treated gelatin, more preferably low endotoxinized gelatin.
  • the molecular weight range of the gelatin is preferably a weight average molecular weight (Mw) of 30,000 to 150,000, and more preferably 50,000 to 120,000.
  • Mw weight average molecular weight
  • the molecular weight can be measured by gel permeation chromatography (GPC) according to a conventional method.
  • GltnNH—CHR 1 R 2 (3) As the gelatin derivative, one containing a structure represented by the following formula (3) can be used. GltnNH—CHR 1 R 2 (3)
  • “Gltn” is a gelatin residue
  • R 1 is an alkyl group having 1 to 11 carbon atoms
  • R 2 is a hydrogen atom or an alkyl group having 1 to 11 carbon atoms.
  • N is mainly derived from the ⁇ -amino group of lysine (Lys) in gelatin.
  • R 2 is a hydrogen atom. Since the derivative has an alkyl group, it has excellent adhesion to tissue and is also suitable as a scaffold material.
  • R 2 is an alkyl group having 1 to 5 carbon atoms, it may be the same as or different from R 1 .
  • the alkyl group may have a branch. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • R 1 is a linear alkyl group having 1 to 3 carbon atoms
  • R 2 is a hydrogen atom.
  • the derivatization rate in the gelatin derivative is 20 to 80 mol%, preferably 30 to 70 mol% in terms of mol% of the imino group to which the hydrophobic group is bonded, based on the amount of amino group in the raw material gelatin.
  • the imino group / amino group (molar ratio) in the obtained gelatin derivative is 20/80 to 80/20, preferably 30/70 to 70/30.
  • the gelatin derivative is prepared by adding an aldehyde or ketone, for example, dodecanal, tetradecanal, or decylethylketone, to a gelatin aqueous solution and stirring to form a Schiff base at 30 to 80 ° C. for 0.5 to 12 hours. It can be prepared by reduction using sodium borohydride (NaBH 3 CN), sodium triacetoxyborohydride (NaBH (OAc) 3 ), 2-picoline borane, pyridine borane and the like.
  • NaBH 3 CN sodium borohydride
  • NaBH (OAc) 3 sodium triacetoxyborohydride
  • 2-picoline borane 2-picoline borane
  • pyridine borane and the like.
  • Hydrogel means a gel containing water.
  • the hydrogel of the present invention comprises sCNF and biodegradable polymer in a weight ratio of 1:99 to 70:30, preferably 10:90 to 40:60.
  • the weight ratio is a weight ratio in a dry state.
  • the amount of water in the hydrogel is not particularly limited, but typically it is preferably prepared as appropriate at 50 to 99% by weight of the hydrogel.
  • the water content is preferably 90 to 99% by weight.
  • the hydrogel according to an embodiment of the present invention typically includes a liquid in which sCNF is dispersed in ultrapure water or a buffer having a pH of 6 to 8 at 0.5 to 2.5% by weight, and a biodegradable polymer.
  • a liquid in which sCNF is dispersed in ultrapure water or a buffer having a pH of 6 to 8 at 0.5 to 2.5% by weight and a biodegradable polymer.
  • a solution of 1 to 30% by weight in a buffer solution having a pH of 8 to 10 to about 30 to 40 ° C. by a known stirring means such as a mixer, the amount ratio is within the above weight ratio range. It can be prepared by mixing.
  • the viscosity increases immediately after mixing and the gelation reaction begins.
  • gelation reaches equilibrium and the elastic modulus reaches a maximum value, which may take time and depends on the pH of the solution. This tendency is remarkable when the biodegradable polymer is gelatin.
  • the pH of the gelatin aqueous solution
  • Hydrogel is characterized by having thixotropic properties in addition to the biodegradability already described. This is not intended to limit the present invention, but the sCNF and the biodegradable polymer form a network structure based at least in part on weak physical interactions such as electrostatic interactions, hydrogen bonds, etc. It is thought to be due to The use of nanofibers with a higher aspect ratio than nanocrystals and whiskers is also considered to contribute. Since the viscosity of the hydrogel is lowered by applying a shearing force, it is suitable for injection with a catheter, a syringe, or the like.
  • the hydrogel of the present invention comprising a colloid called nanofiber can be considered as a colloid gel, and its structure is greatly different from that of a molecular gel formed by crosslinking molecules generally used.
  • the pore size is about 5 nm, whereas the colloidal gel is considered to have a pore of several tens of nm. Therefore, the substance permeability is high, and it is expected that the nutrients and growth factors are further permeated.
  • Various drugs, proteins and the like to be delivered to the hydrogel of the present invention may be blended and used as a local delivery carrier or a sustained release delivery carrier.
  • the drug include growth factors such as anti-inflammatory drugs such as steroids, antithrombotic drugs, antibiotics, fibroblast growth factor, vascular endothelial growth factor, and hepatocyte growth factor.
  • the hydrogel of the present invention is suitably used as a medical injectable hydrogel.
  • it can be used for cerebral aneurysm treatment, coronary embolization therapy, and myocardial infarction treatment.
  • Myocardial infarction is an irreversible pathological condition in which myocardial tissue is necrotized due to occlusion of blood vessels, and after infarction, heart failure may occur due to a decrease in cardiac function or arrhythmia.
  • Injecting bioactive hydrogel into the infarct site as a scaffold keeps the ventricle wall thick, suppresses necrosis, inflammatory reaction, and myocardial remodeling, induces cellular infiltration from the surroundings, and forms new blood vessels It is expected that the regeneration of the organization can be promoted.
  • hydrogel of the present invention may be used as an injectable artificial bone by mixing it with an artificial bone such as hydroxyapatite or calcium phosphate, as a wound dressing, or as an adhesive for living tissue.
  • the hydrogel of the present invention may be provided in the form of a hydrogel, but is provided in the form of a two-agent type comprising a first agent containing sulfonated cellulose nanofibers and a second agent containing a biodegradable polymer. It's okay.
  • the first agent is a dispersion of nanofibers of sulfonated cellulose
  • the second agent is an aqueous solution of a biodegradable polymer, these are mixed and injected at the time of treatment, or by a double barrel syringe You may inject.
  • sodium periodate NaIO 4
  • Aldehydated cellulose was prepared by ring-opening between the 3rd and 4th positions in the glucose unit by stirring for 4 hours at 50 ° C. in an oil bath while shielding from light.
  • the reaction product was filtered under reduced pressure to remove the aqueous solution containing unreacted material, and washed with ultrapure water. This operation was repeated 3 times for washing, and finally freeze-dried to obtain a dry powder of aldehyde cellulose.
  • the amount of aldehyde groups produced was quantified by neutralization titration.
  • sulfonated cellulose nanofibers were synthesized by sulfonation treatment.
  • 1 g of the aldehyded cellulose obtained as described above was dispersed in 100 mL of ultrapure water, and sodium pyrosulfite (Na 2 S 2 O 5 ) was added in an amount of 0.05 to 2.5 equivalents relative to the aldehyde group. Each was added in proportion.
  • the mixture was allowed to react at room temperature for 12 to 24 hours with stirring to carry out sulfonation treatment.
  • the obtained product was recovered by centrifugation at 4000 rpm for 30 minutes and washed with ultrapure water. By performing this operation three times, unreacted substances were removed and purified.
  • sulfonated cellulose nanofibers were obtained by homogenizing with an ultrasonic homogenizer (150 W, 40 kHz, 60% power, BRANSON) for 10 to 30 minutes.
  • the percentage of ring opening of glucose units and the amount of aldehyde groups in each aldehyde cellulose were measured by a titration method. The results are shown in Table 1. As can be seen from the table, by changing the amount of sodium periodate to 0.5 to 2 equivalents per glucose unit, the amount of glucose units to be opened and the amount of aldehyde groups produced thereby can be controlled. .
  • X-ray diffraction measurement In order to evaluate how the crystallinity of cellulose changes due to the ring-opening reaction using sodium periodate, X-ray diffraction measurement (XRD) was performed (FIG. 1, left figure). From the results of XRD measurement, it was shown that the peak derived from cellulose (14.6, 16.5, 22.8 o ) decreased as the ring-opening ratio of glucose units decreased, and the crystallinity decreased. It was. When the crystallinity was calculated from the ratio of 18 o peak derived from the amorphous structure and 22.8 o , the crystallinity, which was originally 90%, gradually decreased with the ring-opening reaction, and 7% of glucose units.
  • the sCNF1 with the ring opened has a crystallinity of 83%
  • the sCNF2 with the ring opened 30% has a crystallinity of 70%
  • the sCNF3 with the ring opened 40% has a crystallinity of 68% (FIG. 1, right).
  • Figure 1 With sCNF4 having a ring opening ratio of 62%, the degree of crystallinity is reduced to 23%, and it is predicted that the decomposability is improved.
  • the crystallinity and degradability of cellulose can be controlled by controlling the ring-opening reaction.
  • FIG. 2 shows the sulfone group amount of the sulfonated cellulose nanofiber when the amount of sodium pyrosulfite is 0.05 to 0.5 equivalent to the aldehyde group, respectively.
  • the amount of sulfone groups in cellulose nanofibers could be controlled by changing the amount of sodium pyrosulfite even when the ring-opening ratio and the amount of aldehyde groups were the same.
  • the sulfonated cellulose nanofiber containing 50 mol% of sodium pyrosulfite with an aldehyde group and 150 mol% of the sulfonated cellulose nanofiber is mechanically shredded by ultrasonic treatment to form sCNF as shown in the electron micrograph of FIG. could be prepared.
  • hydrogel composed of each sCNF and gelatin was synthesized.
  • 2.5 wt% sCNF3 dispersion (ultra pure water, pH 7) and 20 wt% pig skin alkali-treated gelatin (Nitta Gelatin) heated to 37 ° C (0.1 M borate buffer) SCNF gel 3 was prepared by rapidly mixing an equal amount using a vortex mixer. The gelation reaction started from the moment of mixing and gelled within a few minutes as shown in the photograph of FIG. Similarly, sCNF gels were obtained for sCNF1, 2, 4, and 7.
  • FIG. 6 shows an electron micrograph. From the figure, it can be seen that the sCNF gel has pores with a diameter of about 10 to 80 ⁇ m.
  • the high-magnification photograph (left) is an enlargement of the wall portion of the hole.
  • the thixotropy was evaluated by changing the strain from 1% to 1000% every 5 minutes at 37 ° C. The gel was once destroyed by the 1000% strain and the elastic modulus was lowered, but when the strain was returned to 1%, the elastic modulus was restored again (FIG. 10). This indicates that the binding mode of the hydrogel of the present invention is reversible.
  • PEG-G gel crosslinked with
  • ⁇ Effect of sCNF on cell function The effect on cell function was evaluated by in vitro test by dispersing sCNF in a cell culture medium and giving it to cultured cells.
  • L929 mouse fibroblasts (RIKEN) were cultured in a 37 ° C., 5% CO 2 incubator using RPMI 1640 medium (10% fetal bovine serum, 1% penicillin streptomycin). 5 ⁇ 10 3 L929 cells were seeded in a 96-well plate and cultured for 24 hours. Thereafter, a medium in which sCNF3 was suspended at a concentration of 12.5 ⁇ g / mL was added to L929 cells, and the culture was continued. The day when sCNF was added was defined as day 0.
  • the number of cells was quantified using a cell count counting kit (WST-8, DOJINDO), and the sample after 3 days was fixed and dehydrated. After performing, SEM observation was performed (the upper part of FIG. 13). sCNF accumulated on the substrate to form a film-like structure, suggesting that it is involved in adhesion as a cell scaffold. Regarding the number of cells, the cells to which sCNF had been added proliferated in the same manner as the samples to which sCNF had not been added, and no significant difference was observed (lower row in FIG. 13).
  • the hydrogel was washed in PBS for 24 hours, punched out with a 10 mm punch, immersed in a bovine serum albumin solution labeled with 1 mg / mL fluorescein isocynate, and incubated at 37 ° C. for 24 hours. Next, after washing three times with PBS, the gel was dissolved with a 100 ⁇ g / mL collagenase solution, transferred to a 96-well plate, and the fluorescence intensity was measured with a microplate reader. The amount of albumin adsorbed on the hydrogel was calculated from a calibration curve.
  • the amount of adsorbed albumin increased as the amount of sulfone groups per unit weight (mmol / g) of sCNF contained in the hydrogel increased. This is considered to be due to the electrostatic interaction between the negatively charged sulfone group and the positively charged portion of albumin. From this, the hydrogel according to the embodiment of the present invention is expected to exhibit functions in the body by adsorbing cytokines and growth factors in the body.
  • the hydrogel when the amount of sulfonic group of sCNF contained in the hydrogel is 0.4 mmol / g or more, the hydrogel has an excellent albumin adsorption performance, and the amount of sulfone group exceeds 0.5 mmol / g.
  • the hydrogel has a better protein adsorption performance and the sulfone group amount is 1.0 mmol / g or more, the hydrogel has a better protein adsorption performance and the sulfone group amount is 1.0 mmol / g. If it exceeds g, the hydrogel has particularly excellent protein adsorption performance, and if the amount of the sulfone group is 1.7 mmol / g or more, the hydrogel has the most excellent protein adsorption performance.
  • the hydrogel is prepared by mixing an equivalent amount of 2% by weight of sCNF and 20% gelatin (similar to the protein adsorption experiment).
  • sCNF was produced by the same method as described in Table 1 as “6”, “7”, and “8”, and the sulfone group amounts were 0.5 mmol / g, 1.2 mmol / g, What was 1.7 mmol / g was used.
  • Table 2 summarizes the “sample name” of the hydrogel used, the method for producing sCNF contained in the hydrogel, and the amount of sulfone groups.
  • FIG. 18 is an image of hematoxylin and eosin (HE) staining of a tissue section of a tissue not implanted with hydrogel 14 days after implantation (control) and a tissue section of the tissue implanted with hydrogel.
  • the range enclosed with the black broken line in FIG. 18 has shown the embedded hydrogel.
  • FIG. 19 is an HE-stained image several days after each hydrogel was implanted.
  • the white broken line indicates the boundary between the host structure and the hydrogel, and the range between the broken lines indicates the hydrogel.
  • the portion that appears black is hydrogel, and the portion that appears gray is infiltrated cells and extracellular matrix components produced by the cells.
  • the scale bar in FIG. 19 corresponds to 300 ⁇ m.
  • FIG. 20 quantifies the distribution of cells infiltrated into the hydrogel. 0 represents the boundary between the tissue and the hydrogel, and 1 represents the central part of the gel.
  • FIG. 21 quantifies the depth of cells infiltrating each hydrogel.
  • FIGS. FIG. 22 and FIG. 23 are immunostained images using vimentin antibody and CD31 antibody 14 days after implantation.
  • the part that appears black in vimentin staining is fibroblast, and the part that appears black in CD31 staining is vascular endothelial cell.
  • the scale bar in FIGS. 22 and 23 corresponds to 100 ⁇ m.
  • FIG. 24 shows the result of quantifying the area of positive cells from a vimentin-stained image.
  • FIG. 25 shows the result of quantifying the area of positive cells from the CD31-stained image.
  • FIG. 26 shows the results of quantifying the number of luminal structures from CD31 stained images.
  • the amount of sCNF sulphonic group contained in the hydrogel is 0.7 mmol / g or more, cell infiltration and angiogenesis are further promoted to induce tissue remodeling more easily. It was done. From the above viewpoint, the amount of the sulfonic group of sCNF is preferably 1.0 mmol / g or more, and more preferably 1.2 mmol / g or more.
  • FIG. 27 is an immunostained image using CD163 antibody and CD68 antibody 14 days after implantation. Note that the scale bar in FIG. 27 corresponds to 100 ⁇ m.
  • FIG. 28 shows the result of quantifying the area of positive cells from the CD163 stained image.
  • FIG. 29 shows the result of quantifying the area of positive cells from a CD68-stained image.
  • FIG. 30 shows the ratio of the area of positive cells obtained from the CD163-stained image and the area of positive cells obtained from the CD68-stained image.
  • M1 type involved in inflammation
  • M2 type related to tissue regeneration.
  • CD163 is a marker for M2 type macrophages. From the results of FIG. 27 to FIG. 30, when the amount of the sulfonic group of sCNF contained in the hydrogel is in the above numerical range, it is apparent that the number of CD163 positive cells is clearly increased and more M2-type macrophages are present. I understood. It is considered that tissue regeneration was further induced by producing humoral factors that promote tissue regeneration.
  • the hydrogel of the present invention is a biodegradable thixotropic material and is very useful for medical use as an injectable hydrogel.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The purpose of the present invention is to provide an injectable hydrogel which can be easily delivered with a catheter, etc. and has excellent substance permeability. The hydrogel according to an embodiment of the present invention contains nanofibers of sulfonated cellulose having a sulfone group in an amount of 0.1-7 mmol/g and at least one biodegradable polymer containing primary amino groups which is selected from the group consisting of gelatin, chitosan, collagen, albumin, fibronectin, laminin, elastin, and derivatives thereof, the weight ratio of the nanofibers to the at least one biodegradable polymer being 1:99 to 70:30.

Description

スルホン化セルロースナノファイバーを含むハイドロゲルHydrogels containing sulfonated cellulose nanofibers
 本発明は生分解性のハイドロゲルに関し、詳細にはスルホン化セルロースナノファイバーと第一級アミノ基を有する生分解性ポリマーを含む、インジェクタブルなハイドロゲルに関する。 The present invention relates to a biodegradable hydrogel, and more particularly to an injectable hydrogel comprising a sulfonated cellulose nanofiber and a biodegradable polymer having a primary amino group.
 カテーテル治療は、低侵襲な治療法として脳動脈瘤治療など広く医療現場で用いられている。脳動脈瘤は、脳の血管の一部が膨らんだものであり、破裂するとくも膜下出血を引き起こす疾患である。現在、カテーテルを用いて塞栓物質で動脈瘤を閉鎖する治療法が普及しており、開頭する必要のない低侵襲な治療法として重要となっている。 Catheter treatment is widely used in medical settings such as cerebral aneurysm treatment as a minimally invasive treatment method. A cerebral aneurysm is a disease in which part of a blood vessel in the brain swells and causes subarachnoid hemorrhage when it ruptures. Currently, a treatment method for closing an aneurysm with an embolic material using a catheter is widespread, and it is important as a minimally invasive treatment method that does not require craniotomy.
 塞栓物質としては、これまでにコイルが広く用いられてきており、ポリグリコール酸・乳酸共重合体をコートしたMatrix2 coils(Stryker,ΜSA)や非分解性高分子をコートしたHydrocoil embolic system(Microvention/Terumo,Japan)などが使用されている。しかしながら、操作中に動脈瘤を破裂させてしまう危険性や低い充填率、充填後の内皮化が不十分であること、非分解性であることなどに課題があった。また液体塞栓物質は、動脈瘤の中を完全に充填させることができる一方、シアノアクリレート(NBCA)やエチレンビニルアルコール(EVOH)コポリマー(Onyx,Covidien)などの非分解性の高分子を用いるため、高い細胞毒性及びそれらの漏出による他臓器での塞栓が起きるリスクがある。そのため、カテーテル等によってデリバリーが可能な、インジェクタブルな塞栓物質の開発が求められている。 Coils have been widely used as an embolic material so far, such as Matrix 2 coils coated with polyglycolic acid / lactic acid copolymer (Stryker, SA) and Hydrocoil embroidery system coated with non-degradable polymers (Microvention / Terumo, Japan) is used. However, there are problems such as the risk of rupturing the aneurysm during the operation, a low filling rate, insufficient endothelialization after filling, and non-degradability. The liquid embolic material can completely fill the aneurysm, while using a non-degradable polymer such as cyanoacrylate (NBCA) or ethylene vinyl alcohol (EVOH) copolymer (Onyx, Covidien). There is a risk of embolization in other organs due to high cytotoxicity and their leakage. Therefore, there is a demand for the development of an injectable embolic material that can be delivered by a catheter or the like.
 インジェクタブルな塞栓物質として、ポリマーにセルロースナノクリスタル又はウィスカーを添加して弾性率を高めたハイドロゲルが提案されている。例えば、アジピン酸ジヒドラジド等で修飾されたヒアルロン酸とアルデヒド化セルロースナノファイバーを含むハイドロゲル(非特許文献1)、カルボキシルメチルセルロースとデキストランとアルデヒド化セルロースナノファイバーを含むハイドロゲル(非特許文献2)、ゼラチンとアルデヒド化セルロースナノウィスカーを含むハイドロゲル(非特許文献3)等が提案されている。 As an injectable embolic material, a hydrogel in which cellulose nanocrystals or whiskers are added to the polymer to increase the elastic modulus has been proposed. For example, a hydrogel containing hyaluronic acid modified with adipic acid dihydrazide or the like and aldehyde-modified cellulose nanofiber (Non-patent Document 1), a hydrogel containing carboxymethyl cellulose, dextran and aldehyde-modified cellulose nanofiber (Non-Patent Document 2), A hydrogel containing gelatin and aldehyde-modified cellulose nanowhiskers (Non-patent Document 3) has been proposed.
 上記セルロースナノクリスタル又はウィスカーを含むハイドロゲルは、ダブルバレルシリンジを用いてナノクリスタル又はウィスカーと、ヒアルロン酸等を別々に注入しなければならず、コイルや液体塞栓物質等の単一物のデリバリーに比べて煩瑣である。これは、ナノクリスタル又はウィスカーとヒアルロン酸等は、混合されると直ちに化学反応して共有結合からなる架橋構造を形成してゲル化してしまい、デリバリーができなくなるか、大きな力を要し、無理に注入しようとするとゲル構造を損傷し得るからである。また、該架橋構造によりゲル内のポアサイズが制限され、物質透過を阻害する場合がある。 The hydrogel containing cellulose nanocrystals or whiskers must be separately injected with nanocrystals or whiskers and hyaluronic acid using a double barrel syringe. Compared to annoying. This is because when nanocrystals or whiskers and hyaluronic acid are mixed, they immediately react with each other to form a cross-linked structure consisting of covalent bonds, resulting in gelation, and delivery becomes impossible or requires great force. This is because the gel structure may be damaged if it is injected into the gel. Moreover, the pore size in the gel is limited by the cross-linked structure, and the substance permeation may be inhibited.
 そこで、本発明はカテーテル等で、より容易にデリバリーすることができ、物質透過性に優れるインジェクタブルハイドロゲルを提供することを目的とする。 Therefore, an object of the present invention is to provide an injectable hydrogel that can be more easily delivered with a catheter or the like and has excellent substance permeability.
 即ち、本発明は下記のものである:
 スルホン基を0.1~7ミリモル/gで備えるスルホン化セルロースのナノファイバーと、ゼラチン、キトサン、コラーゲン、アルブミン、フィブロネクチン、ラミニン、エラスチン及びその誘導体からなる群より選ばれる、第一級アミノ基を有する生分解性ポリマーの少なくとも一種を、重量比1:99~70:30で含むハイドロゲル。
That is, the present invention is as follows:
A sulfonated cellulose nanofiber having a sulfone group at 0.1 to 7 mmol / g, and a primary amino group selected from the group consisting of gelatin, chitosan, collagen, albumin, fibronectin, laminin, elastin and derivatives thereof A hydrogel comprising at least one biodegradable polymer having a weight ratio of 1:99 to 70:30.
 本発明のハイドロゲルはチキソトロピー性を有し、剪断力下で粘度が低下するので、ダブルバレルシリンジを用いずともデリバリーすることができる。また、架橋構造の少なくとも一部に、スルホン基を介した静電的な結合等の、応力により可逆的にゾルに戻る緩い結合を備え、共有結合のみによって緻密に架橋されたハイドロゲルに比べて、ポアサイズが大きく物質透過性に優れる。更に、セルロースナノファイバーが生分解性であるので、ハイドロゲルも生分解性である。加えて該ハイドロゲルは高い細胞接着性を有し、生体適合性及び親和性に優れる。 The hydrogel of the present invention has thixotropic properties, and its viscosity decreases under shearing force. Therefore, it can be delivered without using a double barrel syringe. In addition, at least part of the cross-linked structure has a loose bond that reversibly returns to the sol due to stress, such as an electrostatic bond via a sulfone group, compared to a hydrogel that is densely cross-linked only by covalent bonds The pore size is large and the material permeability is excellent. Furthermore, since cellulose nanofibers are biodegradable, hydrogels are also biodegradable. In addition, the hydrogel has high cell adhesion and is excellent in biocompatibility and affinity.
図1は、アルデヒド化セルロースのX線回折チャート(左)と結晶化度を示すグラフ(右)である。FIG. 1 is an X-ray diffraction chart (left) and a graph (right) showing crystallinity of aldehyde cellulose. 図2は、ピロ亜硫酸ナトリウムの仕込み量と得られたスルホン化セルロースのナノファイバーのスルホン基量の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the amount of sodium pyrosulfite charged and the amount of sulfonate groups of the sulfonated cellulose nanofibers obtained. 図3は、スルホン化セルロースのナノファイバーの電子顕微鏡写真である。FIG. 3 is an electron micrograph of sulfonated cellulose nanofibers. 図4は、生分解性試験におけるスルホン化セルロースのナノファイバーの重量減少(%)を示すグラフである。FIG. 4 is a graph showing weight loss (%) of sulfonated cellulose nanofibers in a biodegradability test. 図5は、スルホン化セルロースのナノファイバーとゼラチン溶液を混合して得られた本発明のハイドロゲルの写真である。FIG. 5 is a photograph of the hydrogel of the present invention obtained by mixing sulfonated cellulose nanofibers and a gelatin solution. 図6は、ハイドロゲルの断面の電子顕微鏡写真である。FIG. 6 is an electron micrograph of a cross section of the hydrogel. 図7は、ハイドロゲルのせん断弾性率の温度による変化を示すグラフである。FIG. 7 is a graph showing changes in the shear modulus of the hydrogel with temperature. 図8は、スルホン化セルロースのナノファイバー及びゼラチンの濃度とせん断弾性率の関係を示すグラフである。FIG. 8 is a graph showing the relationship between the concentration of sulfonated cellulose nanofibers and gelatin and the shear modulus. 図9は、ゼラチン溶液のpHとハイドロゲルのせん断弾性率の関係を示すグラフである。FIG. 9 is a graph showing the relationship between the pH of the gelatin solution and the shear modulus of the hydrogel. 図10は、ハイドロゲルのチキソトロピー性を示すグラフである。FIG. 10 is a graph showing the thixotropy of the hydrogel. 図11は、スルホン化セルロースのナノファイバーに代えて、ペンタエリスリトール-ポリ(エチレングリコール)エーテルテトラスクシンイミジル グルタレートでゼラチンを架橋して得られるPEGゲルの粘弾性試験の結果を示すグラフである。FIG. 11 is a graph showing the results of a viscoelasticity test of a PEG gel obtained by cross-linking gelatin with pentaerythritol-poly (ethylene glycol) ether tetrasuccinimidyl-glutarate instead of sulfonated cellulose nanofibers. . 図12は、ハイドロゲルと、PEGゲルの透過性を比較して示すグラフである。FIG. 12 is a graph showing a comparison of the permeability of hydrogel and PEG gel. 図13は、スルホン化セルロースのナノファイバーを含む培地で培養した細胞の電子顕微鏡写真(上段)と、細胞数を示すグラフ(下段)である。FIG. 13 is an electron micrograph (upper) of cells cultured in a medium containing sulfonated cellulose nanofibers and a graph (lower) of the number of cells. 図14は、スルホン化セルロースのナノファイバーを含む培地で培養した細胞の位相差顕微鏡写真(左)と、スルホン化セルロースのナノファイバーの濃度に対する細胞のアスペクト比を示すグラフ(右)である。FIG. 14 is a phase-contrast micrograph (left) of cells cultured in a medium containing sulfonated cellulose nanofibers, and a graph (right) showing the cell aspect ratio with respect to the concentration of sulfonated cellulose nanofibers. 図15は、本発明のハイドロゲル表面に接着した細胞(左:内皮細胞、右:繊維芽細胞)の位相差顕微鏡写真である。FIG. 15 is a phase contrast micrograph of cells (left: endothelial cells, right: fibroblasts) adhered to the hydrogel surface of the present invention. 図16は、本発明のハイドロゲルに内包された線維芽細胞の位相差顕微鏡写真である。FIG. 16 is a phase contrast micrograph of fibroblasts encapsulated in the hydrogel of the present invention. 図17は、ハイドロゲルに含まれるsCNFの単位重量当たりのスルホン基の量(mmol/g)と、アルブミンの吸着量との関係を表すグラフである。FIG. 17 is a graph showing the relationship between the amount of sulfone groups per unit weight of sCNF contained in the hydrogel (mmol / g) and the adsorption amount of albumin. 図18は、埋植から14日後のハイドロゲルを埋植していない組織(コントロール)とハイドロゲルを埋植した組織の組織切片のヘマトキシリン・エオシン(HE)染色の画像である。FIG. 18 is an image of hematoxylin and eosin (HE) staining of a tissue section of a tissue not implanted with hydrogel 14 days after implantation (control) and a tissue section of the tissue implanted with hydrogel. 図19は、各ハイドロゲルを埋植してから各日数後のHE染色画像である。FIG. 19 is an HE-stained image several days after each hydrogel was implanted. 図20は、ハイドロゲル内に浸潤した細胞の分布を定量してプロットしたグラフである。0は組織とハイドロゲルの境界、1はゲルの中央部分を表している。FIG. 20 is a graph in which the distribution of cells infiltrating into the hydrogel is quantified and plotted. 0 represents the boundary between the tissue and the hydrogel, and 1 represents the central part of the gel. 図21は、各ハイドロゲルに浸潤した細胞の深さを定量してプロットしたグラフである。FIG. 21 is a graph in which the depth of cells infiltrating each hydrogel is quantified and plotted. 図22は、埋植から14日後のビメンチン抗体及びCD31抗体を用いた免疫染色画像である。FIG. 22 is an immunostained image using vimentin antibody and CD31 antibody 14 days after implantation. 図23は、埋植から14日後のビメンチン抗体及びCD31抗体を用いた免疫染色画像である。FIG. 23 is an immunostained image using vimentin antibody and CD31 antibody 14 days after implantation. 図24は、ビメンチン染色画像から陽性細胞の面積を定量した結果である。FIG. 24 shows the result of quantifying the area of positive cells from a vimentin-stained image. 図25は、CD31染色画像から陽性細胞の面積を定量した結果である。FIG. 25 shows the result of quantifying the area of positive cells from the CD31-stained image. 図26は、CD31染色画像から管腔構造の数を定量した結果である。FIG. 26 shows the results of quantifying the number of luminal structures from CD31 stained images. 図27は、埋植から14日後のCD163抗体及びCD68抗体を用いた免疫染色画像である。FIG. 27 is an immunostained image using CD163 antibody and CD68 antibody 14 days after implantation. 図28は、CD163染色画像から陽性細胞の面積を定量した結果である。FIG. 28 shows the result of quantifying the area of positive cells from the CD163 stained image. 図29は、CD68染色画像から陽性細胞の面積を定量した結果である。FIG. 29 shows the result of quantifying the area of positive cells from a CD68-stained image. 図30は、CD163染色画像から得られた陽性細胞の面積とCD68染色画像から得られた陽性細胞の面積の比を表したものである。FIG. 30 shows the ratio of the area of positive cells obtained from the CD163-stained image and the area of positive cells obtained from the CD68-stained image.
<スルホン化セルロースのナノファイバー>
 スルホン化セルロースは、下記式(1)に示すグルコース単位の3位と4位の間が開環されて、スルホン化された構造を含むセルロースである。
Figure JPOXMLDOC01-appb-C000001
上式は、水中等においてスルホン基(-SOH)が解離された状態を示し、対カチオンはNaに限定されずプロトン、K等であってよい。
<Sulfonated cellulose nanofiber>
The sulfonated cellulose is a cellulose having a sulfonated structure in which the ring position between the 3rd and 4th positions of the glucose unit represented by the following formula (1) is opened.
Figure JPOXMLDOC01-appb-C000001
The above formula shows a state in which the sulfone group (—SO 3 H) is dissociated in water or the like, and the counter cation is not limited to Na + and may be a proton, K + or the like.
 スルホン化セルロースは、例えばHenrikki Liimatainenら,Cellulose(2013)20:741-749に記載された下記式に示す経路で合成することができる。
Figure JPOXMLDOC01-appb-C000002
 先ず、原料セルロースを水に分散させる。該分散液に、セルロース中のグルコース単位の量(k)を100モル%としたときに50~200モル%の過ヨウ素酸ナトリウム(NaIO)を添加し、遮光しながら、40~60℃で2~6時間撹拌することによって、アルデヒド化セルロースを生成する。減圧濾過によって未反応物を含む水溶液を除去し、超純水で洗浄する操作を数回繰り返した後に凍結乾燥することで、アルデヒド化セルロースの乾燥粉末を得る。上記式において、kの初期値を100モル%としたときに、mは1~80モル%、好ましくは10~50モル%である。mが前記下限値未満では生分解性を確保することが難しい。一方、mが前記上限値を超えると加水分解し易くなり、ナノファイバーの調製が困難になる。アルデヒド基の量は、水酸化ナトリウム水溶液を用いた導電率測定による中和滴定により求めることができ、0.5~8ミリモル/g、好ましくは1~7ミリモル/g、より好ましくは1~5ミリモル/gである。
The sulfonated cellulose can be synthesized by the route shown in the following formula described in, for example, Henrikki Liimatainen et al., Cellulose (2013) 20: 741-749.
Figure JPOXMLDOC01-appb-C000002
First, raw material cellulose is dispersed in water. 50-200 mol% sodium periodate (NaIO 4 ) was added to the dispersion when the amount of glucose units (k) in cellulose was 100 mol%, and the mixture was shielded from light at 40-60 ° C. Aldehydated cellulose is produced by stirring for 2-6 hours. An aqueous solution containing unreacted substances is removed by filtration under reduced pressure, and an operation of washing with ultrapure water is repeated several times, followed by freeze-drying to obtain a dry powder of aldehyde cellulose. In the above formula, when the initial value of k is 100 mol%, m is 1 to 80 mol%, preferably 10 to 50 mol%. If m is less than the lower limit, it is difficult to ensure biodegradability. On the other hand, when m exceeds the upper limit, hydrolysis tends to occur and it becomes difficult to prepare nanofibers. The amount of aldehyde groups can be determined by neutralization titration by conductivity measurement using an aqueous sodium hydroxide solution, and is 0.5 to 8 mmol / g, preferably 1 to 7 mmol / g, more preferably 1 to 5 Mmol / g.
 原料セルロースとしては、例えば、針葉樹系パルプ、広葉樹系パルプ、綿系パルプ等の植物、動物等から得られたセルロース、これらを用いた紙、古紙等を用いることができる。 As the raw material cellulose, for example, cellulose obtained from plants, animals, etc., such as softwood pulp, hardwood pulp and cotton pulp, paper using these, waste paper, and the like can be used.
 次いで、アルデヒド化セルロースを超純水に分散させ、ピロ亜硫酸ナトリウム(Na)を、アルデヒド基量を100モル%として20~200モル%、好ましくは50~150モル%で添加して、室温で12~24時間、撹拌しながら反応させる。生成物を遠心分離により回収し、超純水等で洗浄して未反応物を除去して精製した後、超音波ホモジナイザーによって10~30分間程度ホモジナイズすることによって、スルホン化セルロースのナノファイバー(「sCNF」と略す場合がある)を得ることができる。収率は、約80~90%である。 Next, the aldehyde cellulose is dispersed in ultrapure water, and sodium pyrosulfite (Na 2 S 2 O 5 ) is added at 20 to 200 mol%, preferably 50 to 150 mol%, with the amount of aldehyde groups being 100 mol%. The reaction is allowed to proceed with stirring at room temperature for 12-24 hours. The product is recovered by centrifugation, washed with ultrapure water, etc. to remove unreacted material and purified, and then homogenized with an ultrasonic homogenizer for about 10 to 30 minutes to obtain sulfonated cellulose nanofibers (“ may be abbreviated as “sCNF”). The yield is about 80-90%.
 図3は実施例で調製したsCNFの電子顕微鏡写真である。sCNFは電子顕微鏡で観察される繊維の直径が数nm~100nmであり、好ましくは3~20nmである。アスペクト比(繊維長/繊維径)については、約30~1000である。 FIG. 3 is an electron micrograph of sCNF prepared in the example. The diameter of the fiber observed with an electron microscope is several nm to 100 nm, preferably 3 to 20 nm. The aspect ratio (fiber length / fiber diameter) is about 30 to 1000.
 sCNFは生分解性である。本発明において「生分解性」は37℃のpH7.4のリン酸緩衝生理食塩水(PBS)中で、sCNFの重量が1日で1%以上減少したことにより確認した。この生分解性は、原料セルロースのグルコース単位の量(k)の初期値を100モル%としたとき、m+n、即ち開環された単位が、少なくとも1モル%、好ましくは10~50モル%であることによるものと考えられる。また、sCNFは開環単位を有することによって、X線回折測定による結晶化度が20~70%であり、90%程度の結晶化度を有する原料セルロースに比べて低い。 SCNF is biodegradable. In the present invention, “biodegradability” was confirmed by reducing the weight of sCNF by 1% or more in one day in phosphate buffered saline (PBS) at pH 7.4 at 37 ° C. This biodegradability is defined as m + n, that is, the number of ring-opened units is at least 1 mol%, preferably 10 to 50 mol%, when the initial value of the amount (k) of glucose units in the raw cellulose is 100 mol%. It is thought to be due to some. Further, sCNF has a ring-opening unit, so that the crystallinity by X-ray diffraction measurement is 20 to 70%, which is lower than the raw cellulose having a crystallinity of about 90%.
 スルホン化セルロースのナノファイバーはスルホン基を0.1~7ミリモル/gで備える。スルホン基の量は水酸化ナトリウム水溶液を用いた導電率測定による中和滴定により求めることができる。スルホン基が前記下限値未満のセルロースでは、ファイバー間の静電的な反発が弱いためか、ナノファイバーを形成し難い。スルホン基の上限については特に限定はないが、実際上、上記値より多いものを調製するのは困難である。好ましくは、ナノファイバーが遠心分離で容易に回収できる点で、sCNFはスルホン基量が0.1~2.5ミリモル/g、より好ましくは0.1~2ミリモル/gである。すなわち、sCNFは下記式(2)で表されるものが好ましく使用される。
Figure JPOXMLDOC01-appb-C000003
式(2)中、k、m、及び、nは、各繰り返し単位のモル%を表し、特に制限されないが、kは25~95モル%が好ましく、40~90モル%がより好ましい。mは4~70モル%が好ましく、7~60モル%がより好ましい。nは1~70モル%が好ましく、10~30モル%がより好ましい。
Sulfonated cellulose nanofibers have sulfone groups at 0.1-7 mmol / g. The amount of the sulfone group can be determined by neutralization titration by conductivity measurement using an aqueous sodium hydroxide solution. In cellulose whose sulfone group is less than the lower limit, it is difficult to form nanofibers because the electrostatic repulsion between fibers is weak. The upper limit of the sulfone group is not particularly limited, but in practice, it is difficult to prepare one having more than the above value. Preferably, sCNF has a sulfone group content of 0.1 to 2.5 mmol / g, more preferably 0.1 to 2 mmol / g, in that nanofibers can be easily recovered by centrifugation. That is, sCNF represented by the following formula (2) is preferably used.
Figure JPOXMLDOC01-appb-C000003
In the formula (2), k, m and n represent mol% of each repeating unit and are not particularly limited, but k is preferably 25 to 95 mol%, more preferably 40 to 90 mol%. m is preferably 4 to 70 mol%, more preferably 7 to 60 mol%. n is preferably 1 to 70 mol%, more preferably 10 to 30 mol%.
 なお、sCNFは、上記以外の繰り返し単位を有していてもよい。上記以外の繰り返し単位としては特に制限されないが、例えば、以下に掲げる繰り返し単位が挙げられる。 In addition, sCNF may have a repeating unit other than the above. Although it does not restrict | limit especially as repeating units other than the above, For example, the repeating unit hung up below is mentioned.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
<第一級アミノ基を有する生分解性ポリマー>
 第一級アミノ基を有する生分解性ポリマー(以下「生分解性ポリマー」と略する)は、ヒトの体内又は体表面において、加水分解、酵素分解、微生物分解等により分解可能なポリマーであり、第一級アミノ基を有するものである。但し、第一級アミノ基に加えて、スルホン基と反応し得る第二アミノ基、第三級アミノ基があってもよいことはいうまでもない。このような好ましい生分解性ポリマーの例としては、キトサン等の多糖類、コラーゲン、ゼラチン、アルブミン、ラミニン等のポリペプチド、フィブロネクチン等の糖タンパク、エラスチン等の繊維類、及びこれらの誘導体が包含され、これらの遺伝子組み換え体であってもよい。これらのうち、ポリペプチドが好ましく、中でもゼラチン又はその誘導体が最も好ましい。
<Biodegradable polymer having primary amino group>
A biodegradable polymer having a primary amino group (hereinafter abbreviated as “biodegradable polymer”) is a polymer that can be decomposed by hydrolysis, enzymatic degradation, microbial degradation, etc. in the human body or body surface, It has a primary amino group. However, it goes without saying that in addition to the primary amino group, there may be a secondary amino group and a tertiary amino group capable of reacting with the sulfone group. Examples of such preferable biodegradable polymers include polysaccharides such as chitosan, polypeptides such as collagen, gelatin, albumin and laminin, glycoproteins such as fibronectin, fibers such as elastin, and derivatives thereof. These gene recombinants may be used. Of these, polypeptides are preferred, with gelatin or derivatives thereof being most preferred.
 ゼラチンは動物由来でも魚由来でもよい。また、ゼラチンは酸処理ゼラチン、アルカリ処理ゼラチン、又は、遺伝子組み換えゼラチンのいずれであってもよく、好ましくはアルカリ処理ゼラチンであり、より好ましくは低エンドトキシン化ゼラチンである。また、該ゼラチンの分子量の範囲は、重量平均分子量(Mw)が30,000~150,000が好ましく、50,000~120,000であることがより好ましい。該分子量は、ゲル浸透クロマトグラフィー(GPC)により定法に従い測定することができる。 Gelatin may be derived from animals or fish. The gelatin may be acid-treated gelatin, alkali-treated gelatin, or genetically modified gelatin, preferably alkali-treated gelatin, more preferably low endotoxinized gelatin. The molecular weight range of the gelatin is preferably a weight average molecular weight (Mw) of 30,000 to 150,000, and more preferably 50,000 to 120,000. The molecular weight can be measured by gel permeation chromatography (GPC) according to a conventional method.
 ゼラチン誘導体としては、下記式(3)で示される構造を含むものを用いることができる。
 
GltnNH-CHR        (3)
 
 上式において、「Gltn」はゼラチン残基であり、Rは炭素数1~11のアルキル基であり、Rは水素原子又は炭素数1~11のアルキル基である。Nは、ゼラチン中の主としてリジン(Lys)のε-アミノ基由来である。好ましくは、Rが水素原子である。該誘導体は、アルキル基を有するので、組織への接着性に優れ、足場材料としても好適である。
As the gelatin derivative, one containing a structure represented by the following formula (3) can be used.

GltnNH—CHR 1 R 2 (3)

In the above formula, “Gltn” is a gelatin residue, R 1 is an alkyl group having 1 to 11 carbon atoms, and R 2 is a hydrogen atom or an alkyl group having 1 to 11 carbon atoms. N is mainly derived from the ε-amino group of lysine (Lys) in gelatin. Preferably, R 2 is a hydrogen atom. Since the derivative has an alkyl group, it has excellent adhesion to tissue and is also suitable as a scaffold material.
 Rが炭素数1~5のアルキル基である場合、Rと同じでも互いに異なっていてもよい。該アルキル基は、分岐を有していてもよい。該アルキル基の例としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。好ましくは、Rが炭素数1~3の直鎖アルキル基であり、Rが水素原子である。 When R 2 is an alkyl group having 1 to 5 carbon atoms, it may be the same as or different from R 1 . The alkyl group may have a branch. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group. Preferably, R 1 is a linear alkyl group having 1 to 3 carbon atoms, and R 2 is a hydrogen atom.
 該ゼラチン誘導体中の誘導化率は、疎水性基が結合されたイミノ基の、原料ゼラチン中のアミノ基量に対するモル%で、20~80モル%、好ましくは30~70モル%である。言い換えれば、得られたゼラチン誘導体におけるイミノ基/アミノ基(モル比)は、20/80~80/20であり、好ましくは30/70~70/30である。 The derivatization rate in the gelatin derivative is 20 to 80 mol%, preferably 30 to 70 mol% in terms of mol% of the imino group to which the hydrophobic group is bonded, based on the amount of amino group in the raw material gelatin. In other words, the imino group / amino group (molar ratio) in the obtained gelatin derivative is 20/80 to 80/20, preferably 30/70 to 70/30.
 該ゼラチン誘導体は、ゼラチン水溶液に、アルデヒドもしくはケトン、例えばドデカナール、テトラデカナール、デシルエチルケトンを添加し、30~80℃、0.5~12時間、撹拌してシッフ塩基を形成した後、シアノ水素化ホウ素ナトリウム(NaBHCN)、水素化トリアセトキシホウ素ナトリウム(NaBH(OAc))、2-ピコリンボラン、ピリジンボラン等を用いて還元することによって調製することができる。 The gelatin derivative is prepared by adding an aldehyde or ketone, for example, dodecanal, tetradecanal, or decylethylketone, to a gelatin aqueous solution and stirring to form a Schiff base at 30 to 80 ° C. for 0.5 to 12 hours. It can be prepared by reduction using sodium borohydride (NaBH 3 CN), sodium triacetoxyborohydride (NaBH (OAc) 3 ), 2-picoline borane, pyridine borane and the like.
<ハイドロゲル>
 ハイドロゲルは、水を含むゲルを意味する。本発明のハイドロゲルは、sCNFと生分解性ポリマーを重量比1:99~70:30、好ましくは10:90~40:60、で含む。ここで、重量比は乾燥状態での重量の比である。ハイドロゲル中の水分量は、特に制限されないが、典型的には、該ハイドロゲルの重量の50~99重量%で適宜調製されることが好ましい。特に、ハイドロゲルをカテーテルでデリバリーする場合、水分量が90~99重量%であることが好ましい。
<Hydrogel>
Hydrogel means a gel containing water. The hydrogel of the present invention comprises sCNF and biodegradable polymer in a weight ratio of 1:99 to 70:30, preferably 10:90 to 40:60. Here, the weight ratio is a weight ratio in a dry state. The amount of water in the hydrogel is not particularly limited, but typically it is preferably prepared as appropriate at 50 to 99% by weight of the hydrogel. In particular, when the hydrogel is delivered by a catheter, the water content is preferably 90 to 99% by weight.
 本発明の実施形態に係るハイドロゲルは、典型的には、sCNFを0.5~2.5重量%でpH6~8の超純水又は緩衝液に分散させた液と、生分解性ポリマーをpH8~10の緩衝液に、1~30重量%で溶解した溶液を、30~40C程度に加温しながら、ミキサー等の公知の撹拌手段によって、上記の重量比範囲となる量比で混合することで調製することができる。混合直後から粘度が上昇してゲル化反応が始まる。但し、後述する実施例で示す通り、ゲル化が平衡に達して、弾性率が最高値に達するには時間がかかる場合があり、その溶液のpHに依存することが見出された。この傾向は生分解性ポリマーがゼラチンの場合に顕著である。
 例えば、手術等において、短時間で硬い塞栓を形成したい場合には、ゼラチン水溶液のpHを9~10にすることが好ましい。
The hydrogel according to an embodiment of the present invention typically includes a liquid in which sCNF is dispersed in ultrapure water or a buffer having a pH of 6 to 8 at 0.5 to 2.5% by weight, and a biodegradable polymer. While heating a solution of 1 to 30% by weight in a buffer solution having a pH of 8 to 10 to about 30 to 40 ° C., by a known stirring means such as a mixer, the amount ratio is within the above weight ratio range. It can be prepared by mixing. The viscosity increases immediately after mixing and the gelation reaction begins. However, as shown in Examples described later, it has been found that gelation reaches equilibrium and the elastic modulus reaches a maximum value, which may take time and depends on the pH of the solution. This tendency is remarkable when the biodegradable polymer is gelatin.
For example, when it is desired to form a hard embolus in a short time during surgery or the like, the pH of the gelatin aqueous solution is preferably 9-10.
 ハイドロゲルは、既に述べた生分解性に加えて、チキソトロピー性を有することを特徴とする。これは、本発明を限定する趣旨ではないが、sCNFと生分解性ポリマーが、少なくとも部分的に、例えば静電相互作用、水素結合等の弱い物理的な相互作用に基づくネットワーク構造を形成していることによるものと考えられる。また、ナノクリスタルやウィスカーに比べてアスクペクト比が高いナノファイバーを使用していることも寄与していると考えられる。該ハイドロゲルは剪断力を与えることによって粘度が下がるので、カテーテル、注射器等によるインジェクションに好適である。 Hydrogel is characterized by having thixotropic properties in addition to the biodegradability already described. This is not intended to limit the present invention, but the sCNF and the biodegradable polymer form a network structure based at least in part on weak physical interactions such as electrostatic interactions, hydrogen bonds, etc. It is thought to be due to The use of nanofibers with a higher aspect ratio than nanocrystals and whiskers is also considered to contribute. Since the viscosity of the hydrogel is lowered by applying a shearing force, it is suitable for injection with a catheter, a syringe, or the like.
 本発明のハイドロゲルの他の特徴として、ゲルの内部構造が挙げられる。ナノファイバーというコロイドからなる本発明のハイドロゲルはコロイドゲルとして考えることができ、一般的に用いられる分子同士が架橋してできる分子ゲルとはその構造が大きく異なる。分子ゲルの場合ポアサイズが5nm程度であるのに対し、コロイドゲルは数十nmのポアを有していると考えられる。そのため、物質透過性が高く、栄養や増殖因子をより透過させることが期待される。 Another feature of the hydrogel of the present invention is the internal structure of the gel. The hydrogel of the present invention comprising a colloid called nanofiber can be considered as a colloid gel, and its structure is greatly different from that of a molecular gel formed by crosslinking molecules generally used. In the case of a molecular gel, the pore size is about 5 nm, whereas the colloidal gel is considered to have a pore of several tens of nm. Therefore, the substance permeability is high, and it is expected that the nutrients and growth factors are further permeated.
<添加剤等>
 本発明のハイドロゲルにデリバリーしたい各種薬剤、タンパク質等を配合し、これらの局所デリバリー担体、又は徐放性デリバリー担体として使用してもよい。薬剤としては、例えばステロイド等の抗炎症薬、抗血栓薬、抗生物質、線維芽細胞増殖因子、血管内皮細胞増殖因子、肝細胞増殖因子等の成長因子が挙げられる。
<Additives>
Various drugs, proteins and the like to be delivered to the hydrogel of the present invention may be blended and used as a local delivery carrier or a sustained release delivery carrier. Examples of the drug include growth factors such as anti-inflammatory drugs such as steroids, antithrombotic drugs, antibiotics, fibroblast growth factor, vascular endothelial growth factor, and hepatocyte growth factor.
<用途>
 本発明のハイドロゲルは、医療用インジェクタブルハイドロゲルとして好適に使用される。例えば、脳動脈瘤治療、冠動脈塞栓療法、心筋梗塞治療に用いることができる。心筋梗塞は、血管の閉塞によって心筋組織が壊死する不可逆的な病態であり、梗塞後には心機能の低下や不整脈によって心不全に陥る可能性がある。生体活性を付与したハイドロゲルを足場として梗塞部位に注入することで、心室壁を厚く保ち、ネクローシスや炎症反応、心筋リモデリングを抑制するとともに、周囲からの細胞浸潤を誘導し、新生血管を形成させることで、組織の再生を促進させることができると期待される。更には、細胞や機能性タンパク質を内包してデリバリーすることで、膵島デリバリー治療や増殖因子のデリバリーなどの適用も期待される。その他、本発明のハイドロゲルを、ハイドロキシアパタイトやリン酸カルシウムなどの人工骨に混合することでインジェクタブルな人工骨として、創傷被覆材として、また生体組織用の接着剤としての用途も考えられる。
<Application>
The hydrogel of the present invention is suitably used as a medical injectable hydrogel. For example, it can be used for cerebral aneurysm treatment, coronary embolization therapy, and myocardial infarction treatment. Myocardial infarction is an irreversible pathological condition in which myocardial tissue is necrotized due to occlusion of blood vessels, and after infarction, heart failure may occur due to a decrease in cardiac function or arrhythmia. Injecting bioactive hydrogel into the infarct site as a scaffold keeps the ventricle wall thick, suppresses necrosis, inflammatory reaction, and myocardial remodeling, induces cellular infiltration from the surroundings, and forms new blood vessels It is expected that the regeneration of the organization can be promoted. Furthermore, by including cells and functional proteins for delivery, islet delivery therapy and growth factor delivery are expected. In addition, the hydrogel of the present invention may be used as an injectable artificial bone by mixing it with an artificial bone such as hydroxyapatite or calcium phosphate, as a wound dressing, or as an adhesive for living tissue.
 本発明のハイドロゲルは、ハイドロゲルの形態として供してもよいが、スルホン化セルロースのナノファイバーを含む第1剤と、生分解性ポリマーを含む第2剤からなる2剤型の形態で供されてよい。例えば、第1剤がスルホン化セルロースのナノファイバーの分散液であり、第2剤が生分解性ポリマーの水溶液であり、これらを施術の際に混合してインジェクトし、又は、ダブルバレルシリンジによりインジェクトしてもよい。 The hydrogel of the present invention may be provided in the form of a hydrogel, but is provided in the form of a two-agent type comprising a first agent containing sulfonated cellulose nanofibers and a second agent containing a biodegradable polymer. It's okay. For example, the first agent is a dispersion of nanofibers of sulfonated cellulose, the second agent is an aqueous solution of a biodegradable polymer, these are mixed and injected at the time of treatment, or by a double barrel syringe You may inject.
 以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
 <スルホン化セルロースナノファイバー(sCNF)の調製>
 非特許文献1を参考にして、表1に示すスルホン化セルロース1~8を合成し、スルホン化セルロースナノファイバー(sCNF1~8)を得た。
 第一段階として、セルロースを原料としてアルデヒド化セルロースを作製した。1gのろ紙粉末(ADVANTEC、メッシュ:40-100、繊維長:150-400μm)を撹拌子で撹拌しながら100mLの超純水に分散させた。得られた分散物に、過ヨウ素酸ナトリウム(NaIO)をセルロース中のグルコース単位のモル数に対して0.5~2当量の割合で、それぞれ添加した。遮光しながら、オイルバス中50Cで4時間撹拌することによって、グルコース単位中の3位と4位の間で開環することによって、アルデヒド化セルロースを調製した。反応物を減圧濾過することによって未反応物を含む水溶液を除去し、超純水で洗浄した。この操作を3回繰り返すことで洗浄を行い、最後に凍結乾燥することで、アルデヒド化セルロースの乾燥粉末を得た。生成されたアルデヒド基量を、中和滴定法によって定量した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.
<Preparation of sulfonated cellulose nanofiber (sCNF)>
With reference to Non-Patent Document 1, sulfonated cellulose 1-8 shown in Table 1 were synthesized to obtain sulfonated cellulose nanofibers (sCNF1-8).
As the first step, aldehyde-modified cellulose was prepared using cellulose as a raw material. 1 g of filter paper powder (ADVANTEC, mesh: 40-100, fiber length: 150-400 μm) was dispersed in 100 mL of ultrapure water while stirring with a stir bar. To the obtained dispersion, sodium periodate (NaIO 4 ) was added at a ratio of 0.5 to 2 equivalents relative to the number of moles of glucose units in cellulose. Aldehydated cellulose was prepared by ring-opening between the 3rd and 4th positions in the glucose unit by stirring for 4 hours at 50 ° C. in an oil bath while shielding from light. The reaction product was filtered under reduced pressure to remove the aqueous solution containing unreacted material, and washed with ultrapure water. This operation was repeated 3 times for washing, and finally freeze-dried to obtain a dry powder of aldehyde cellulose. The amount of aldehyde groups produced was quantified by neutralization titration.
 続いて、スルホン化処理によってスルホン化セルロースナノファイバーを合成した。上記のようにして得られた1gのアルデヒド化セルロースを100mLの超純水に分散させ、ピロ亜硫酸ナトリウム(Na)をアルデヒド基に対して、0.05~2.5当量の割合で、それぞれ添加した。撹拌しながら室温で12~24時間反応させ、スルホン化処理を行った。得られた生成物を、4000rpm、30分の遠心分離によって回収し、超純水によって洗浄した。この操作を3回行うことで、未反応物を除去し精製した。最後に、超音波ホモジナイザー(150W、40kHz、60%パワー、BRANSON)によって10~30分間ホモジナイズすることでスルホン化セルロースナノファイバーを得た。 Subsequently, sulfonated cellulose nanofibers were synthesized by sulfonation treatment. 1 g of the aldehyded cellulose obtained as described above was dispersed in 100 mL of ultrapure water, and sodium pyrosulfite (Na 2 S 2 O 5 ) was added in an amount of 0.05 to 2.5 equivalents relative to the aldehyde group. Each was added in proportion. The mixture was allowed to react at room temperature for 12 to 24 hours with stirring to carry out sulfonation treatment. The obtained product was recovered by centrifugation at 4000 rpm for 30 minutes and washed with ultrapure water. By performing this operation three times, unreacted substances were removed and purified. Finally, sulfonated cellulose nanofibers were obtained by homogenizing with an ultrasonic homogenizer (150 W, 40 kHz, 60% power, BRANSON) for 10 to 30 minutes.
 各アルデヒド化セルロースのグルコース単位の開環割合、アルデヒド基量を、滴定法により測定した。結果を表1に示す。同表から分かるように、グルコース単位に対する過ヨウ素酸ナトリウムの仕込み量を0.5~2当量まで変化させることで、開環するグルコース単位及びそれによって生成するアルデヒド基の量を制御することができる。 The percentage of ring opening of glucose units and the amount of aldehyde groups in each aldehyde cellulose were measured by a titration method. The results are shown in Table 1. As can be seen from the table, by changing the amount of sodium periodate to 0.5 to 2 equivalents per glucose unit, the amount of glucose units to be opened and the amount of aldehyde groups produced thereby can be controlled. .
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 <X線回折測定>
 過ヨウ素酸ナトリウムを用いた開環反応によって、セルロースの結晶性がどのように変化するかを評価するため、X線回折測定(XRD)を行った(図1、左図)。XRD測定の結果より、グルコース単位の開環割合の増大に伴ってセルロース由来のピーク(14.6、16.5、22.8)が減少しており、結晶性が低下することが示された。アモルファス構造由来の18のピークと22.8の比から結晶化度を算出したところ、もともと90%であった結晶化度が開環反応に伴って徐々に減少し、グルコース単位の7%を開環したsCNF1では83%の結晶化度、30%を開環したsCNF2では70%の結晶化度、40%を開環したsCNF3では68%の結晶化度であった(図1、右図)。開環割合が62%のsCNF4では23%まで結晶化度が減少しており、分解性が向上していることが予測される。このように、開環反応を制御することで、セルロースの結晶性及び分解性が制御できることが示された。
<X-ray diffraction measurement>
In order to evaluate how the crystallinity of cellulose changes due to the ring-opening reaction using sodium periodate, X-ray diffraction measurement (XRD) was performed (FIG. 1, left figure). From the results of XRD measurement, it was shown that the peak derived from cellulose (14.6, 16.5, 22.8 o ) decreased as the ring-opening ratio of glucose units decreased, and the crystallinity decreased. It was. When the crystallinity was calculated from the ratio of 18 o peak derived from the amorphous structure and 22.8 o , the crystallinity, which was originally 90%, gradually decreased with the ring-opening reaction, and 7% of glucose units. The sCNF1 with the ring opened has a crystallinity of 83%, the sCNF2 with the ring opened 30% has a crystallinity of 70%, and the sCNF3 with the ring opened 40% has a crystallinity of 68% (FIG. 1, right). Figure). With sCNF4 having a ring opening ratio of 62%, the degree of crystallinity is reduced to 23%, and it is predicted that the decomposability is improved. Thus, it was shown that the crystallinity and degradability of cellulose can be controlled by controlling the ring-opening reaction.
<ピロ亜硫酸ナトリウム量とスルホン基量の関係>
 各スルホン化セルロースナノファイバーを超音波ホモジナイザーで処理した後、スルホン基量を滴定法により測定した(表1)。ピロ亜硫酸ナトリウムの量がアルデヒド基に対して、それぞれ、0.05~0.5当量であったときのスルホン化セルロースナノファイバーのスルホン基量を図2に示す。同図から分かるように、開環割合とアルデヒド基量が同じであってもピロ亜硫酸ナトリウムの量を変化させることでセルロースナノファイバー中のスルホン基量を制御することができた。
<Relationship between sodium pyrosulfite amount and sulfone group amount>
After each sulfonated cellulose nanofiber was treated with an ultrasonic homogenizer, the amount of sulfone group was measured by a titration method (Table 1). FIG. 2 shows the sulfone group amount of the sulfonated cellulose nanofiber when the amount of sodium pyrosulfite is 0.05 to 0.5 equivalent to the aldehyde group, respectively. As can be seen from the figure, the amount of sulfone groups in cellulose nanofibers could be controlled by changing the amount of sodium pyrosulfite even when the ring-opening ratio and the amount of aldehyde groups were the same.
<電子顕微鏡観察>
 ピロ亜硫酸ナトリウムがアルデヒド基の50モル%のsCNF3、及び150モル%仕込みのスルホン化セルロースナノファイバーは、超音波処理によって機械的に細断することで図3の電子顕微鏡写真に示すようなsCNFを調製することができた。
<Electron microscope observation>
The sulfonated cellulose nanofiber containing 50 mol% of sodium pyrosulfite with an aldehyde group and 150 mol% of the sulfonated cellulose nanofiber is mechanically shredded by ultrasonic treatment to form sCNF as shown in the electron micrograph of FIG. Could be prepared.
<生分解性>
 sCNFの生分解性を、グルコース単位の開環割合が7%のsCNF1及び62%のsCNF4を用いて、37℃において調べた。各sCNF100mgを、5mLのPBS(pH=7.4)に分散し、24時間ごとに不溶解性物の重量を測って、重量減少を測定した。比較として、原料セルロース(ろ紙粉末、ADVANTEC社)を用いた。図4に結果を示す。sCNF1は1日で約5%、sCNF4は約15%減少した。このように生分解性は、グルコース単位の開環割合に依存するので、他のsCNFはsCNF1と4の間の値となると予測される。これに対して、原料セルロースは1日ではほとんど重量が減少しなかった。
<Biodegradability>
The biodegradability of sCNF was examined at 37 ° C. using sCNF1 with a glucose unit ring-opening ratio of 7% and sCNF4 with 62%. Each sCNF (100 mg) was dispersed in 5 mL of PBS (pH = 7.4), and the insoluble material was weighed every 24 hours to measure the weight loss. For comparison, raw material cellulose (filter paper powder, ADVANTEC) was used. The results are shown in FIG. sCNF1 decreased by about 5% in one day and sCNF4 decreased by about 15%. Thus, since biodegradability depends on the ring-opening ratio of glucose units, other sCNF is predicted to be a value between sCNF1 and 4. On the other hand, the weight of raw material cellulose hardly decreased in one day.
<ハイドロゲルの調製>
 各sCNFとゼラチンからなるハイドロゲル(sCNFゲル)を合成した。2.5重量%のsCNF3の分散液(超純水、pH=7)と37Cに加温した20重量%のブタ皮アルカリ処理ゼラチン(新田ゼラチン社)溶液(0.1Mホウ酸バッファー、pH=8.5)を、ボルテックスミキサーを用いて、素早く等量混合することでsCNFゲル3を調製した。混合した瞬間からゲル化反応が始まり、数分以内には図5の写真に示すようにゲル化した。同様にして、sCNF1、2、4、7についてもsCNFゲルを得た。得られたsCNFゲル3を凍結乾燥して液体窒素に浸漬後粉砕して、ゲルの断面を電子顕微鏡で観察した。図6に電子顕微鏡写真を示す。同図から、sCNFゲルが約10~80μm径の孔を有することが分かる。図6において、高倍率の写真(左)は、孔の壁部分の拡大である。
<Preparation of hydrogel>
A hydrogel (sCNF gel) composed of each sCNF and gelatin was synthesized. 2.5 wt% sCNF3 dispersion (ultra pure water, pH = 7) and 20 wt% pig skin alkali-treated gelatin (Nitta Gelatin) heated to 37 ° C (0.1 M borate buffer) SCNF gel 3 was prepared by rapidly mixing an equal amount using a vortex mixer. The gelation reaction started from the moment of mixing and gelled within a few minutes as shown in the photograph of FIG. Similarly, sCNF gels were obtained for sCNF1, 2, 4, and 7. The obtained sCNF gel 3 was freeze-dried, immersed in liquid nitrogen and pulverized, and the cross section of the gel was observed with an electron microscope. FIG. 6 shows an electron micrograph. From the figure, it can be seen that the sCNF gel has pores with a diameter of about 10 to 80 μm. In FIG. 6, the high-magnification photograph (left) is an enlargement of the wall portion of the hole.
<粘弾性評価>
 得られたハイドロゲルの力学特性を評価するために、粘弾性測定装置(Rheoplus、アントンパール社)を用いてsCNFゲルの粘弾性評価を行った(図7)。5重量%のsCNF3の分散液(超純水、pH=7)と37Cに加温した20重量%のブタ皮アルカリ処理ゼラチン溶液(0.1Mホウ酸バッファー、pH=8.5)を50μLずつ素早く混合して得られた溶液100μLを粘弾性測定装置のステージにのせ、直径10mmの円盤状の治具で固定し、10Cから測定を開始し、1分に1Cずつ昇温しながら50Cまで測定を行った。測定時の周波数は1Hz、ひずみは1%で実験を行った。ゼラチンは30C付近に相転移温度(ゲル化温度)を有しているため、低温ではゲル、30C以上では溶解し液状となる。これは温度上昇によって水素結合が開裂するためである。一方で、sCNFゲル3においては、30C以上でも相転移は起こらず、生体組織の温度である37Cにおいても1kPaという高いせん断弾性率を示しており、ゼラチンのみの場合と比較して1000倍増加した。これは、sCNF3とゼラチンとの間で相互作用が働くことで、ネットワーク構造が形成されたためであると考えられる。このことより、sCNFとゼラチンを組み合わせることで、ゲル化が起こり、37Cでも高い弾性率を有するゲルが作製できることが分かった。
<Viscoelasticity evaluation>
In order to evaluate the mechanical properties of the obtained hydrogel, the viscoelasticity of the sCNF gel was evaluated using a viscoelasticity measuring device (Rheoplus, Anton Paar) (FIG. 7). A dispersion of 5% by weight of sCNF3 (ultra pure water, pH = 7) and 20% by weight of pig skin alkali-treated gelatin solution (0.1M borate buffer, pH = 8.5) heated to 37 ° C. 100 μL of the solution obtained by quickly mixing 50 μL at a time is placed on the stage of a viscoelasticity measuring device, fixed with a disk-shaped jig having a diameter of 10 mm, measurement is started from 10 ° C., and 1 ° C. is increased per minute. Measurements were taken up to 50 ° C. while warming. The experiment was conducted at a frequency of 1 Hz and a strain of 1%. Since gelatin has a phase transition temperature (gelation temperature) in the vicinity of 30 ° C., it is gel at a low temperature, and dissolves and becomes liquid at 30 ° C. or higher. This is because the hydrogen bond is cleaved by the temperature rise. On the other hand, in sCNF gel 3, phase transition does not occur even at 30 ° C. or higher, and a high shear elastic modulus of 1 kPa is exhibited even at 37 ° C., which is the temperature of living tissue, compared to the case of gelatin alone. Increased 1000 times. This is presumably because the network structure was formed by the interaction between sCNF3 and gelatin. From this, it was found that by combining sCNF and gelatin, gelation occurred, and a gel having a high elastic modulus could be produced even at 37 ° C.
<sCNFとゼラチンの濃度の影響>
 sCNFゲルの作製条件と力学特性の関係を明らかにするために、sCNF及びゼラチンの濃度の影響を調べた。0.5~2.5重量%のsCNF3の溶液(超純水、pH=7)と、1~30重量%のゼラチン各溶液を50μLずつ素早く混合して得られた溶液100μLを粘弾測定装置のステージにのせ、直径10mmの円盤状の治具で固定し、37Cにおける粘弾性特性を評価した(図8)。測定時の周波数は1Hz、ひずみは1%で実験を行った。図8に示すように、sCNF及びゼラチンの濃度を増加させるとせん断弾性率が増加した。sCNF及びゼラチンそれぞれの濃度を調整することで、数Paから1000Paまで幅広く力学特性を変化させることができた。
<Influence of sCNF and gelatin concentration>
In order to clarify the relationship between the preparation conditions of sCNF gel and the mechanical properties, the effects of the concentrations of sCNF and gelatin were examined. An apparatus for measuring viscoelasticity 100 μL of a solution obtained by rapidly mixing 50 μL each of a 0.5 to 2.5 wt% sCNF3 solution (ultra pure water, pH = 7) and 1 to 30 wt% gelatin each solution And was fixed with a disk-shaped jig having a diameter of 10 mm, and viscoelastic properties at 37 ° C. were evaluated (FIG. 8). The experiment was conducted at a frequency of 1 Hz and a strain of 1%. As shown in FIG. 8, the shear modulus increased with increasing concentrations of sCNF and gelatin. By adjusting the concentrations of sCNF and gelatin, the mechanical properties could be varied widely from several Pa to 1000 Pa.
<ゼラチン溶液のpHの影響>
 sCNF3の2.5重量%溶液(超純水、pH=7)と、20重量%のゼラチン溶液のpHを8~10に変えて、ゲル化速度への影響を調べた(図9)。pH=8では5分でゲル化するものの、ハイドロゲルのせん断弾性率が平衡に達するまでに6時間必要とした。一方pH=9及びpH=10のゼラチン溶液を用いると即座にゲル化し、10分以内にせん断弾性率が1kPaに達した。
<Effect of pH of gelatin solution>
The effect on the gelation rate was examined by changing the pH of a 2.5 wt% solution of sCNF3 (ultra pure water, pH = 7) and the 20 wt% gelatin solution to 8-10 (FIG. 9). Although it gelled in 5 minutes at pH = 8, it took 6 hours for the hydroelastic shear modulus to reach equilibrium. On the other hand, when gelatin solutions with pH = 9 and pH = 10 were used, gelation occurred immediately and the shear modulus reached 1 kPa within 10 minutes.
<ハイドロゲルの粘弾性試験>
 2.5重量%のsCNF3の溶液(超純水、pH=7)と、20重量%のゼラチン溶液を50μLずつ素早く混合して得られた溶液100μLを粘弾測定装置のステージにのせ、直径10mmの円盤状の治具で固定し、37Cで5分ごとにひずみを1%と1000%へ変化させることでチキソトロピー性を評価した。1000%ひずみによってゲルがいったんは破壊され弾性率が低下したが、1%のひずみに戻すと、再び弾性率が回復していた(図10)。これは、本発明のハイドロゲルの結合様式が可逆的なものであることを示す。これに対して比較対象として、末端N‐ヒドロキシスクシンイミドで修飾されたカルボキシル基を有する4分岐ポリエチレングリコール(ペンタエリスリトール-ポリ(エチレングリコール)エーテルテトラスクシンイミジル グルタレート、Mw=20,000)でゼラチンを架橋したゲル(以下「PEG-G」又は「PEGゲル」という)で同様の実験を行った(図11)。その結果、3サイクル後には、貯蔵弾性率が元の20%程度まで低下していた。一方で、本発明のハイドロゲル(sCNF-G)は3サイクル後も貯蔵弾性率が元の値まで回復しており、チキソトロピー性を有していることが示された。
<Viscoelasticity test of hydrogel>
A solution of 2.5% by weight of sCNF3 (ultra-pure water, pH = 7) and a 20% by weight gelatin solution were mixed quickly by 50 μL, and 100 μL of the solution was placed on the stage of the viscoelasticity measuring device, and the diameter was 10 mm. The thixotropy was evaluated by changing the strain from 1% to 1000% every 5 minutes at 37 ° C. The gel was once destroyed by the 1000% strain and the elastic modulus was lowered, but when the strain was returned to 1%, the elastic modulus was restored again (FIG. 10). This indicates that the binding mode of the hydrogel of the present invention is reversible. On the other hand, as a comparative object, gelatin with 4-branched polyethylene glycol (pentaerythritol-poly (ethylene glycol) ether tetrasuccinimidyl glutarate, Mw = 20,000) having a carboxyl group modified with terminal N-hydroxysuccinimide A similar experiment was conducted using a gel crosslinked with (hereinafter referred to as “PEG-G” or “PEG gel”) (FIG. 11). As a result, after 3 cycles, the storage elastic modulus was reduced to about 20%. On the other hand, the hydrogel (sCNF-G) of the present invention recovered to its original value after 3 cycles, indicating that it has thixotropic properties.
<透過性試験>
 高い分子量を有するフルオロセイン(FITC)で蛍光ラベル化されたデキストラン(Mw=2,000,000Da)を用いて、ゲルの透過性試験を行った(図12)。2.5重量%のsCNF3の分散液(超純水、pH=7)と37Cに加温した20重量%のブタ皮アルカリ処理ゼラチン溶液(0.1Mホウ酸バッファー、pH=8.5)を素早く50μLずつ混合して得られた溶液100μLを24ウェルトランスウェルインサート(コーニング社)内に添加し、1日ゲル化させた後、超純水2mLを加えて1日かけて膨潤させた。比較として上記PEG-Gを同様に処理した。その後、1mg/mLのFITC-デキストラン(Mw=2,000,000Da,流体力学半径~50nm)を200μL添加し、プレート側には1mLのPBSを添加した。所定時間ごとに50μLの溶液をインサート下側から取り出し、50μLのPBSを補充した。得られた溶液の蛍光強度を、マイクロプレートリーダーを用いて測定し、検量線から透過率を評価した。その結果、分子ゲル(PEG-G)と比較して、sCNFゲル3は50nmという巨大な分子をより透過させることが明らかとなった。また、速度定数は、sCNFゲルが6.4×10-5-1、PEG-Gが1.6×10-5-1となっており、約4倍透過性に優れることが示された。
<Permeability test>
Gel permeability was tested using dextran (Mw = 2,000,000 Da) fluorescently labeled with fluorescein (FITC) having a high molecular weight (FIG. 12). A dispersion of 2.5% by weight of sCNF3 (ultra pure water, pH = 7) and 20% by weight of pig skin alkali-treated gelatin solution (0.1M borate buffer, pH = 8.5) heated to 37 ° C. 100 μL of the solution obtained by quickly mixing 50 μL each in a 24-well transwell insert (Corning), gelled for 1 day, and then added with 2 mL of ultrapure water to swell for 1 day. . For comparison, the above PEG-G was treated in the same manner. Thereafter, 200 μL of 1 mg / mL FITC-dextran (Mw = 2,000,000 Da, hydrodynamic radius˜50 nm) was added, and 1 mL of PBS was added to the plate side. Every predetermined time, 50 μL of the solution was taken out from the lower side of the insert and supplemented with 50 μL of PBS. The fluorescence intensity of the obtained solution was measured using a microplate reader, and the transmittance was evaluated from a calibration curve. As a result, it became clear that the sCNF gel 3 permeates a huge molecule of 50 nm more than the molecular gel (PEG-G). The rate constant is 6.4 × 10 −5 h −1 for sCNF gel and 1.6 × 10 −5 h −1 for PEG-G, indicating that the permeability is about 4 times better. It was.
<sCNFが細胞機能に与える影響>
 sCNFを細胞培養液中に分散させ、培養細胞に与えることで、細胞機能に与える影響をin vitro試験で評価した。L929マウス線維芽細胞(理研)は、RPMI1640培地(10%ウシ胎児血清、1%ペニシリンストレプトマイシン)を用いて37C、5%COのインキュベーターで培養した。5×10個のL929細胞を96ウェルプレートに播種し、24時間培養した。その後、sCNF3を12.5μg/mLの濃度で懸濁した培地をL929細胞に添加し、培養を継続した。sCNFを添加した日を0日目として、1、2、3日後に細胞数カウンティングキット(WST-8、DOJINDO)を用いて細胞数を定量し、3日後のサンプルに関しては、固定と脱水処理を行った後に、SEM観察を行った(図13上段)。sCNFは基板上に集積してフィルムのような構造を形成しており、細胞の足場として接着に関与していることが示唆された。
 細胞数については、sCNFを添加した細胞は未添加のサンプルと同様に増殖しており、有意な差はみられなかった(図13下段)。
<Effect of sCNF on cell function>
The effect on cell function was evaluated by in vitro test by dispersing sCNF in a cell culture medium and giving it to cultured cells. L929 mouse fibroblasts (RIKEN) were cultured in a 37 ° C., 5% CO 2 incubator using RPMI 1640 medium (10% fetal bovine serum, 1% penicillin streptomycin). 5 × 10 3 L929 cells were seeded in a 96-well plate and cultured for 24 hours. Thereafter, a medium in which sCNF3 was suspended at a concentration of 12.5 μg / mL was added to L929 cells, and the culture was continued. The day when sCNF was added was defined as day 0. After 1, 2, and 3 days, the number of cells was quantified using a cell count counting kit (WST-8, DOJINDO), and the sample after 3 days was fixed and dehydrated. After performing, SEM observation was performed (the upper part of FIG. 13). sCNF accumulated on the substrate to form a film-like structure, suggesting that it is involved in adhesion as a cell scaffold.
Regarding the number of cells, the cells to which sCNF had been added proliferated in the same manner as the samples to which sCNF had not been added, and no significant difference was observed (lower row in FIG. 13).
 一方で、細胞の形態を位相差顕微鏡で観察すると、sCNFの濃度依存的な細胞の伸展が観察された(図14左、×40)。この画像観察から、細胞の長軸と短軸の長さの比(アスペクト比)を算出し比較すると、sCNF50μg/mL以上の濃度で、未添加と比較して優位に細胞伸展が促進されていた(図14右、×40)。これは、sCNF上のスルホン基が培地中のたんぱく質(フィブロネクチンなど)を吸着し、細胞の足場としてのマトリックスを培養中に構築したためであると考えられる。このように、本発明のハイドロゲルは、再生医療に適用することも期待される。 On the other hand, when the cell morphology was observed with a phase-contrast microscope, sCNF concentration-dependent cell extension was observed (FIG. 14, left, x40). From this image observation, the ratio (aspect ratio) of the major axis to the minor axis of the cell was calculated and compared, and at a concentration of sCNF of 50 μg / mL or more, cell extension was promoted predominately compared with no addition. (FIG. 14, right, x40). This is thought to be because the sulfone group on sCNF adsorbs proteins (such as fibronectin) in the medium, and a matrix as a cell scaffold was constructed in the culture. Thus, the hydrogel of the present invention is expected to be applied to regenerative medicine.
<ハイドロゲルへの細胞接着試験>
 2.5重量%のsCNF3の分散液(超純水、pH=7)と37Cに加温した20重量%のブタ皮アルカリ処理ゼラチン溶液(0.1Mホウ酸バッファー、pH=8.5)を100μLずつ素早く混合して得られた溶液200μLを48ウェルプレートに添加し、1日ゲル化させた後、超純水2mLを加えて1日かけて膨潤させた。得られたゲルを1時間のUV照射によって滅菌処理した。1x10個のヒト臍帯静脈由来血管内皮細胞(HUVEC、Lonza社)又は2x10個のヒト皮膚由来線維芽細胞(NHDF、Lonza社)をゲル上に播種し、HUVECはEGM-2培地で、NHDFはFGM培地(Lonza社)で、それぞれ、37C、5%COのインキュベーターで24時間培養した。その後、位相差顕微鏡によって観察を行った(図15、×40)。どちらの細胞もゲル表面に良好な接着・伸展が確認された。本発明のハイドロゲルは高い細胞接着性と親和性を有していることが示された。
<Cell adhesion test to hydrogel>
A dispersion of 2.5% by weight of sCNF3 (ultra pure water, pH = 7) and 20% by weight of pig skin alkali-treated gelatin solution (0.1M borate buffer, pH = 8.5) heated to 37 ° C. 200 μL of a solution obtained by quickly mixing 100 μL each) was added to a 48-well plate and gelled for 1 day, and then 2 mL of ultrapure water was added to swell for 1 day. The resulting gel was sterilized by UV irradiation for 1 hour. 1 × 10 4 human umbilical vein-derived vascular endothelial cells (HUVEC, Lonza) or 2 × 10 4 human skin-derived fibroblasts (NHDF, Lonza) were seeded on a gel. Were cultured in FGM medium (Lonza) for 24 hours in an incubator of 37 ° C. and 5% CO 2 , respectively. Then, it observed with the phase-contrast microscope (FIG. 15, * 40). Both cells were confirmed to have good adhesion and extension on the gel surface. It was shown that the hydrogel of the present invention has high cell adhesion and affinity.
<ハイドロゲルへの細胞の内包実験>
 37Cに加温した20重量%のブタ皮アルカリ処理ゼラチン溶液(0.1Mホウ酸バッファー、pH=8)に1x10個のNHDFを混合したものと、2.5重量%のsCNF3の分散液(超純水、pH=7)を素早く100μLずつ混合して得られた溶液200μLを48ウェルプレートに添加し、ゲル化させた。3分間静置後に、FGM培地を1mL添加し37C、5%COのインキュベーターで培養した。その後、位相差顕微鏡によって観察を行った(図16、×40)。ゲルに内包されたNHDFはゲル内部でも良好な接着及び伸展をしている様子が確認された。本発明のハイドロゲルは、細胞の内包が可能であることから、細胞デリバリーに応用できることが示された。
<Cell inclusion experiment in hydrogel>
Dispersion of 1 × 10 5 NHDFs mixed with 20% by weight pig skin alkali-treated gelatin solution (0.1M borate buffer, pH = 8) heated to 37 ° C. and 2.5% by weight of sCNF3 200 μL of a solution obtained by quickly mixing 100 μL of the liquid (ultra pure water, pH = 7) was added to a 48-well plate and gelled. After standing for 3 minutes, 1 mL of FGM medium was added and cultured in an incubator of 37 ° C., 5% CO 2 . Then, it observed with the phase-contrast microscope (FIG. 16, * 40). It was confirmed that the NHDF encapsulated in the gel was well bonded and stretched inside the gel. It was shown that the hydrogel of the present invention can be applied to cell delivery because it can encapsulate cells.
<ハイドロゲルへのタンパク質吸着実験>
 表1に「6」と記載したのと同様の方法により作製し、スルホン基量が0.5mmol/gであるsCNFの2重量%の分散液(超純水、pH=7)と37Cに加温した20重量%のブタ皮アルカリ処理ゼラチン(新田ゼラチン社)溶液(0.1Mホウ酸バッファー、pH=8.5)とを、ボルテックスミキサーを用いて、素早く等量混合し、厚さ1mmのシリコンモールドへ入れ、4℃で24時間インキュベートすることでsCNFハイドロゲルを調製した。上記ハイドロゲルをPBS中で24時間洗浄した後に、10mmのパンチで打ち抜き、1mg/mLのFluorescein isocyanateでラベル化されたウシ血清アルブミン溶液に浸漬し、24時間37℃でインキュベートした。次に、PBSで3回洗浄後、100μg/mLのコラゲナーゼ溶液でゲルを溶解し、96ウェルプレートに移し、蛍光強度をマイクロプレートリーダーで測定した。ハイドロゲルに吸着したアルブミンの量は検量線から算出した。
<Protein adsorption experiment to hydrogel>
A sCNF dispersion (ultra pure water, pH = 7) having a sulfone group amount of 0.5 mmol / g and 37 ° C. was prepared by the same method as described as “6” in Table 1. A vortex mixer is used to quickly mix an equal amount of a 20% by weight pig skin alkali-treated gelatin (Nitta Gelatin) solution (0.1M borate buffer, pH = 8.5) heated to A sCNF hydrogel was prepared by placing in a 1 mm thick silicon mold and incubating at 4 ° C. for 24 hours. The hydrogel was washed in PBS for 24 hours, punched out with a 10 mm punch, immersed in a bovine serum albumin solution labeled with 1 mg / mL fluorescein isocynate, and incubated at 37 ° C. for 24 hours. Next, after washing three times with PBS, the gel was dissolved with a 100 μg / mL collagenase solution, transferred to a 96-well plate, and the fluorescence intensity was measured with a microplate reader. The amount of albumin adsorbed on the hydrogel was calculated from a calibration curve.
 また、上記sCNFに代えて、表1に「7」と記載したのと同様の方法で作製し、スルホン基量が1.2mmol/gであるsCNF、表1に「8」と記載したのと同様の方法で作製し、スルホン基量が1.7mmol/gであるsCNFを用いて上記と同様の試験を行った。結果を図17に示した。 Also, instead of the above sCNF, it was prepared by the same method as described in Table 1 as “7”, and the amount of sulfone group was 1.2 mmol / g, and in Table 1, “8” was described. The same test was performed using sCNF produced by the same method and having a sulfone group amount of 1.7 mmol / g. The results are shown in FIG.
 図17に示した結果から、ハイドロゲルに含まれるsCNFの単位重量当たりのスルホン基の量(mmol/g)が増加するにつれて、アルブミンの吸着量が増加した。 
 これは負に帯電したスルホン基とアルブミン中の正に帯電した部分が静電相互作用したためであると考えられる。このことから、本発明の実施形態に係るハイドロゲルは体内のサイトカインや増殖因子を吸着することで体内で機能を発現すると期待される。
From the results shown in FIG. 17, the amount of adsorbed albumin increased as the amount of sulfone groups per unit weight (mmol / g) of sCNF contained in the hydrogel increased.
This is considered to be due to the electrostatic interaction between the negatively charged sulfone group and the positively charged portion of albumin. From this, the hydrogel according to the embodiment of the present invention is expected to exhibit functions in the body by adsorbing cytokines and growth factors in the body.
 より詳細には、ハイドロゲルに含まれるsCNFのスルホン基量が、0.4mmol/g以上であると、ハイドロゲルは優れたアルブミン吸着性能を有し、スルホン基量が0.5mmol/gを超えると、ハイドロゲルはより優れたタンパク質吸着性能を有し、スルホン基量が1.0mmol/g以上であると、ハイドロゲルは更に優れたタンパク質吸着性能を有し、スルホン基量が1.0mmol/gを超えると、ハイドロゲルは特に優れたタンパク質吸着性能を有し、スルホン基量が1.7mmol/g以上であると、ハイドロゲルは最も優れたタンパク質吸着性能を有する。 More specifically, when the amount of sulfonic group of sCNF contained in the hydrogel is 0.4 mmol / g or more, the hydrogel has an excellent albumin adsorption performance, and the amount of sulfone group exceeds 0.5 mmol / g. When the hydrogel has a better protein adsorption performance and the sulfone group amount is 1.0 mmol / g or more, the hydrogel has a better protein adsorption performance and the sulfone group amount is 1.0 mmol / g. If it exceeds g, the hydrogel has particularly excellent protein adsorption performance, and if the amount of the sulfone group is 1.7 mmol / g or more, the hydrogel has the most excellent protein adsorption performance.
<ハイドロゲルのラット皮下への埋植試験>
 本実験は、物質・材料研究機構の動物実験安全委員会に承認された実験計画に基づいて行われた。マウス(C57BL/6J、メス、6-8週齢)を2.5%イソフルランによる吸入麻酔下で、背部の毛を剃り70%エタノールで消毒した後に、背部皮下に直径5mm厚さ1mmのディスク状のハイドロゲルを埋入した。
<Hydrogel implantation test in rats>
This experiment was conducted based on an experimental design approved by the Animal Experiment Safety Committee of the National Institute for Materials Science. Mice (C57BL / 6J, female, 6-8 weeks old) under inhalation anesthesia with 2.5% isoflurane, shaved back hair and sterilized with 70% ethanol, then subcutaneously in the shape of a disc with a diameter of 5 mm and a thickness of 1 mm The hydrogel was embedded.
 なお、上記ハイドロゲルは、2重量%のsCNFと20%ゼラチン(タンパク質吸着実験と同様のもの)とを当量混合することにより作製したものである。なお、sCNFは、表1に「6」、「7」、及び、「8」と記載したのと同様の方法により作製し、スルホン基量がそれぞれ0.5mmol/g、1.2mmol/g、1.7mmol/gであるものを用いた。
 表2には、使用したハイドロゲルの「試料名称」と、上記ハイドロゲルに含まれるsCNFの作製方法、スルホン基量をまとめて示した。
Figure JPOXMLDOC01-appb-T000006
The hydrogel is prepared by mixing an equivalent amount of 2% by weight of sCNF and 20% gelatin (similar to the protein adsorption experiment). In addition, sCNF was produced by the same method as described in Table 1 as “6”, “7”, and “8”, and the sulfone group amounts were 0.5 mmol / g, 1.2 mmol / g, What was 1.7 mmol / g was used.
Table 2 summarizes the “sample name” of the hydrogel used, the method for producing sCNF contained in the hydrogel, and the amount of sulfone groups.
Figure JPOXMLDOC01-appb-T000006
 上記ハイドロゲルはUV(紫外線)照射によって滅菌した。次に、ハイドロゲルを埋植した日を0日目として、3、7、及び、14日後に、ソムノペンチルを過剰投与し、マウスを屠殺した。その後、周辺組織を取り出し、10%ホルマリンで固定し、組織切片を作製し(材料の中心部分)、染色した。結果を図18~図21に示した。
 図18は、埋植から14日後のハイドロゲルを埋植していない組織(コントロール)とハイドロゲルを埋植した組織の組織切片のヘマトキシリン・エオシン(HE)染色の画像である。なお、図18中、黒色の破線で囲まれた範囲は、埋植したハイドロゲルを示している。なお、図18中のスケールバーは1mmに対応する。
 図19は、各ハイドロゲルを埋植してから各日数後のHE染色画像である。なお、図19中、白色の破線はホストの組織とハイドロゲルとの境界を示しており、破線で挟まれた範囲は、ハイドロゲルを示している。また、上記破線で挟まれた範囲において、黒色に見える部分は、ハイドロゲルであり、灰色に見える部分は、浸潤した細胞と細胞が産生した細胞外マトリックス成分である。なお、図19中のスケールバーは、300μmに対応する。
 図20は、ハイドロゲル内に浸潤した細胞の分布を定量したものである。0は組織とハイドロゲルの境界、1はゲルの中央部分を表している。
 図21は、各ハイドロゲルに浸潤した細胞の深さを定量したものである。
The hydrogel was sterilized by UV (ultraviolet) irradiation. Next, the day when the hydrogel was implanted was defined as day 0, and 3, 7, and 14 days later, somnopentyl was overdosed and the mice were sacrificed. Thereafter, the surrounding tissue was taken out and fixed with 10% formalin to prepare a tissue section (center part of the material) and stained. The results are shown in FIGS.
FIG. 18 is an image of hematoxylin and eosin (HE) staining of a tissue section of a tissue not implanted with hydrogel 14 days after implantation (control) and a tissue section of the tissue implanted with hydrogel. In addition, the range enclosed with the black broken line in FIG. 18 has shown the embedded hydrogel. Note that the scale bar in FIG. 18 corresponds to 1 mm.
FIG. 19 is an HE-stained image several days after each hydrogel was implanted. In FIG. 19, the white broken line indicates the boundary between the host structure and the hydrogel, and the range between the broken lines indicates the hydrogel. Moreover, in the range sandwiched by the broken lines, the portion that appears black is hydrogel, and the portion that appears gray is infiltrated cells and extracellular matrix components produced by the cells. Note that the scale bar in FIG. 19 corresponds to 300 μm.
FIG. 20 quantifies the distribution of cells infiltrated into the hydrogel. 0 represents the boundary between the tissue and the hydrogel, and 1 represents the central part of the gel.
FIG. 21 quantifies the depth of cells infiltrating each hydrogel.
 図18~図21に示すように、埋植から3日後にはどのサンプルにおいても細胞浸潤は見られないが、7日後には浸潤が起きており、特に1.2-sNC、及び、1.7-sNCにおいては、14日後には完全にホストの細胞によって内部まで浸潤が起きていた。 As shown in FIGS. 18 to 21, no cell infiltration was observed in any sample 3 days after implantation, but invasion occurred 7 days later, in particular 1.2-sNC and 1. In 7-sNC, after 14 days, the host cells completely invaded the cells.
 次に、どの細胞が浸潤しているかを調べるため、14日後のサンプルに対してビメンチン及びCD31による免疫染色を行った。結果を、図22~図26に示した。
 図22、及び、図23は、埋植から14日後のビメンチン抗体及びCD31抗体を用いた免疫染色画像である。図中、ビメンチン染色では黒色で見える部分が線維芽細胞、CD31染色では黒色で見える部分が管腔構造を有するものが血管内皮細胞である。なお、図22、及び、図23中のスケールバーは、100μmに対応する。
 図24は、ビメンチン染色画像から陽性細胞の面積を定量した結果である。
 図25は、CD31染色画像から陽性細胞の面積を定量した結果である。
 図26は、CD31染色画像から管腔構造の数を定量した結果である。
Next, in order to examine which cells were infiltrated, the samples after 14 days were subjected to immunostaining with vimentin and CD31. The results are shown in FIGS.
FIG. 22 and FIG. 23 are immunostained images using vimentin antibody and CD31 antibody 14 days after implantation. In the figure, the part that appears black in vimentin staining is fibroblast, and the part that appears black in CD31 staining is vascular endothelial cell. Note that the scale bar in FIGS. 22 and 23 corresponds to 100 μm.
FIG. 24 shows the result of quantifying the area of positive cells from a vimentin-stained image.
FIG. 25 shows the result of quantifying the area of positive cells from the CD31-stained image.
FIG. 26 shows the results of quantifying the number of luminal structures from CD31 stained images.
 上記のビメンチン染色の結果から、多くの線維芽細胞がゲル内に浸潤していることが明らかとなった。また、1.2-sNC、及び、1.7-sNCにおいては血管の数が他のサンプルと比較して多くなっていた。これらのことより、ハイドロゲルに含まれるsCNFのスルホン基量が、0.7mmol/g以上であると、細胞浸潤と血管新生をより促進することで、組織リモデリングをより誘導しやすいことが示唆された。上記観点からは、sCNFのスルホン基量は1.0mmol/g以上が好ましく、1.2mmol/g以上がより好ましい。 From the results of vimentin staining described above, it was revealed that many fibroblasts were infiltrated into the gel. In 1.2-sNC and 1.7-sNC, the number of blood vessels was larger than in other samples. From these, it is suggested that when the amount of sCNF sulphonic group contained in the hydrogel is 0.7 mmol / g or more, cell infiltration and angiogenesis are further promoted to induce tissue remodeling more easily. It was done. From the above viewpoint, the amount of the sulfonic group of sCNF is preferably 1.0 mmol / g or more, and more preferably 1.2 mmol / g or more.
 より詳細なメカニズム理解するために、マクロファージの染色を行った。結果を図27~図30に示した。
 図27は、埋植から14日後のCD163抗体及びCD68抗体を用いた免疫染色画像である。なお、図27中のスケールバーは100μmに対応する。
 図28は、CD163染色画像から陽性細胞の面積を定量した結果である。
 図29は、CD68染色画像から陽性細胞の面積を定量した結果である。
 図30は、CD163染色画像から得られた陽性細胞の面積とCD68染色画像から得られた陽性細胞の面積の比を表したものである。
In order to understand the mechanism in more detail, macrophage staining was performed. The results are shown in FIGS.
FIG. 27 is an immunostained image using CD163 antibody and CD68 antibody 14 days after implantation. Note that the scale bar in FIG. 27 corresponds to 100 μm.
FIG. 28 shows the result of quantifying the area of positive cells from the CD163 stained image.
FIG. 29 shows the result of quantifying the area of positive cells from a CD68-stained image.
FIG. 30 shows the ratio of the area of positive cells obtained from the CD163-stained image and the area of positive cells obtained from the CD68-stained image.
 マクロファージには炎症に関わるM1型と組織再生に関わるM2型があり、ゲル内におけるM2型マクロファージの数を調べることで、組織再生との関連性が分かると考えた。CD163はM2型のマクロファージのマーカーである。図27~図30の結果から、ハイドロゲルに含まれるsCNFのスルホン基量が、上記数値範囲であると、明らかにCD163陽性の細胞がより増えており、M2型マクロファージがより多く存在することが分かった。この細胞が組織再生を促す液性因子を産生することで、組織再生がより誘導されたと考えられる。 There are two types of macrophages, M1 type involved in inflammation and M2 type related to tissue regeneration. By examining the number of M2 type macrophages in the gel, we thought that the relationship with tissue regeneration could be understood. CD163 is a marker for M2 type macrophages. From the results of FIG. 27 to FIG. 30, when the amount of the sulfonic group of sCNF contained in the hydrogel is in the above numerical range, it is apparent that the number of CD163 positive cells is clearly increased and more M2-type macrophages are present. I understood. It is considered that tissue regeneration was further induced by producing humoral factors that promote tissue regeneration.
 本発明のハイドロゲルは、生分解性のチキソトロピー性材料であり、インジェクタブルハイドロゲルとして医療用途に大変有用である。
 
The hydrogel of the present invention is a biodegradable thixotropic material and is very useful for medical use as an injectable hydrogel.

Claims (10)

  1.  スルホン基を0.1~7ミリモル/gで備えるスルホン化セルロースのナノファイバーと、ゼラチン、キトサン、コラーゲン、アルブミン、フィブロネクチン、ラミニン、エラスチン及びその誘導体からなる群より選ばれる第一級アミノ基を有する生分解性ポリマーの少なくとも一種を、重量比1:99~70:30で含むハイドロゲル。 A sulfonated cellulose nanofiber having a sulfone group at 0.1 to 7 mmol / g and a primary amino group selected from the group consisting of gelatin, chitosan, collagen, albumin, fibronectin, laminin, elastin and derivatives thereof A hydrogel containing at least one biodegradable polymer in a weight ratio of 1:99 to 70:30.
  2.  該第一級アミノ基を有する生分解性ポリマーが、ゼラチン又はその誘導体である、請求項1記載のハイドロゲル。 The hydrogel according to claim 1, wherein the biodegradable polymer having a primary amino group is gelatin or a derivative thereof.
  3.  該スルホン化セルロースのナノファイバーがスルホン基を0.1~2ミリモル/gで備える、請求項1又は2記載のハイドロゲル。 The hydrogel according to claim 1 or 2, wherein the sulfonated cellulose nanofiber has a sulfone group at 0.1 to 2 mmol / g.
  4.  該ゼラチンもしくはその誘導体がアルカリ処理された動物由来もしくは魚由来である、請求項2又は3記載のハイドロゲル。 The hydrogel according to claim 2 or 3, wherein the gelatin or a derivative thereof is derived from an alkali-treated animal or fish.
  5.  該ゼラチンもしくはその誘導体が低エンドトキシン化ゼラチンである、請求項2~4のいずれか1項記載のハイドロゲル。 The hydrogel according to any one of claims 2 to 4, wherein the gelatin or a derivative thereof is a low endotoxinized gelatin.
  6.  該ゼラチン誘導体が、下記式(3)で示される構造:
     
    GltnNH-CHR        (3)
     
     (上式において、Gltnはゼラチン残基であり、Rは炭素数1~11のアルキル基であり、Rは水素原子又は炭素数1~11のアルキル基である)
    を含むゼラチン誘導体である、請求項2~5のいずれか1項記載のハイドロゲル。
    The gelatin derivative has a structure represented by the following formula (3):

    GltnNH—CHR 1 R 2 (3)

    (In the above formula, Gltn is a gelatin residue, R 1 is an alkyl group having 1 to 11 carbon atoms, and R 2 is a hydrogen atom or an alkyl group having 1 to 11 carbon atoms)
    The hydrogel according to any one of claims 2 to 5, which is a gelatin derivative containing
  7.  該スルホン化セルロースのナノファイバーを含む第1剤と、該第一級アミノ基を有する生分解性ポリマーを含む第2剤からなる2剤型の形態で供される請求項1~6のいずれか1項記載のハイドロゲル。 7. The method according to claim 1, wherein the first agent comprising the sulfonated cellulose nanofibers and the second agent comprising the second agent comprising the biodegradable polymer having a primary amino group are used. The hydrogel according to item 1.
  8.  該第1剤が該スルホン化セルロースのナノファイバーの分散液であり、該第2剤が第一級アミノ基を有する生分解性ポリマーの水溶液である、請求項7記載のハイドロゲル。 The hydrogel according to claim 7, wherein the first agent is a dispersion of nanofibers of the sulfonated cellulose, and the second agent is an aqueous solution of a biodegradable polymer having a primary amino group.
  9.  請求項1~8のいずれか1項記載のハイドロゲルを含む、医療用インジェクタブルハイドロゲル。 A medical injectable hydrogel comprising the hydrogel according to any one of claims 1 to 8.
  10.  血管塞栓材である、請求項9記載の医療用インジェクタブルハイドロゲル。 The medical injectable hydrogel according to claim 9, which is a vascular embolization material.
PCT/JP2019/005245 2018-03-23 2019-02-14 Hydrogel containing sulfonated cellulose nanofibers WO2019181294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020507432A JP6869518B2 (en) 2018-03-23 2019-02-14 Hydrogel containing sulfonated cellulose nanofibers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-056762 2018-03-23
JP2018056762 2018-03-23
JP2018180112 2018-09-26
JP2018-180112 2018-09-26

Publications (1)

Publication Number Publication Date
WO2019181294A1 true WO2019181294A1 (en) 2019-09-26

Family

ID=67986400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005245 WO2019181294A1 (en) 2018-03-23 2019-02-14 Hydrogel containing sulfonated cellulose nanofibers

Country Status (2)

Country Link
JP (1) JP6869518B2 (en)
WO (1) WO2019181294A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3862016A4 (en) * 2018-10-04 2023-01-25 National Institute for Materials Science Angiogenesis promoter and therapeutic method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000513258A (en) * 1996-06-28 2000-10-10 ジョンソン・アンド・ジョンソン・メディカル・リミテッド Use of oxidized cellulose and its complexes for chronic wound healing
JP2006514843A (en) * 2002-09-18 2006-05-18 ジョンソン・アンド・ジョンソン・メディカル・リミテッド Wound dressing composition containing chitosan and oxidized cellulose
JP2013234292A (en) * 2012-05-10 2013-11-21 National Institute For Materials Science Branch-type polymer, crosslinked polymer, injectable hydrogel, and hydrogel-forming kit
JP2013541956A (en) * 2010-10-27 2013-11-21 ユー ピー エム キュンメネ コーポレーション Plant-derived cell culture material
JP2015530104A (en) * 2012-09-25 2015-10-15 ユー ピー エム キュンメネ コーポレーション 3D cell culture
US20170072091A1 (en) * 2014-05-15 2017-03-16 Postech Academy-Industry Foundation Hydrogel including surface-treated nanofiber and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000513258A (en) * 1996-06-28 2000-10-10 ジョンソン・アンド・ジョンソン・メディカル・リミテッド Use of oxidized cellulose and its complexes for chronic wound healing
JP2006514843A (en) * 2002-09-18 2006-05-18 ジョンソン・アンド・ジョンソン・メディカル・リミテッド Wound dressing composition containing chitosan and oxidized cellulose
JP2013541956A (en) * 2010-10-27 2013-11-21 ユー ピー エム キュンメネ コーポレーション Plant-derived cell culture material
JP2013234292A (en) * 2012-05-10 2013-11-21 National Institute For Materials Science Branch-type polymer, crosslinked polymer, injectable hydrogel, and hydrogel-forming kit
JP2015530104A (en) * 2012-09-25 2015-10-15 ユー ピー エム キュンメネ コーポレーション 3D cell culture
US20170072091A1 (en) * 2014-05-15 2017-03-16 Postech Academy-Industry Foundation Hydrogel including surface-treated nanofiber and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3862016A4 (en) * 2018-10-04 2023-01-25 National Institute for Materials Science Angiogenesis promoter and therapeutic method

Also Published As

Publication number Publication date
JPWO2019181294A1 (en) 2020-12-03
JP6869518B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
Li et al. Moist-retaining, self-recoverable, bioadhesive, and transparent in situ forming hydrogels to accelerate wound healing
Pandit et al. Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications
US11590259B2 (en) Composition and kits for pseudoplastic microgel matrices
Hong et al. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds
Xie et al. Multifunctional carboxymethyl chitosan/oxidized dextran/sodium alginate hydrogels as dressing for hemostasis and closure of infected wounds
JP4667486B2 (en) Water-soluble elastin crosslinking agent
CA2512730C (en) Hydroxyphenyl cross-linked macromolecular network and applications thereof
Abed et al. Influence of polysaccharide composition on the biocompatibility of pullulan/dextran‐based hydrogels
Wang et al. Shape-recoverable hyaluronic acid–waterborne polyurethane hybrid cryogel accelerates hemostasis and wound healing
JP2018511622A5 (en)
Pal et al. Therapeutic neovascularization promoted by injectable hydrogels
Xu et al. Crosslinking effect of dialdehyde cholesterol modified starch nanoparticles on collagen hydrogel
Zhang et al. A highly transparent, elastic, injectable sericin hydrogel induced by ultrasound
KR20190007826A (en) An adhesion prevention agent comprising injectable thermosensitive wood based-oxidized cellulose nanofiber
Bashiri et al. 3D-printed placental-derived bioinks for skin tissue regeneration with improved angiogenesis and wound healing properties
Ding et al. Photopolymerizable, immunomodulatory hydrogels of gelatin methacryloyl and carboxymethyl chitosan as all-in-one strategic dressing for wound healing
Wang et al. Injectable double-network hydrogel for corneal repair
KR102194155B1 (en) Thermo-responsive biomaterial comprising thermo-responsive protein conjugated-mussel adhesive protein
Kamnoore et al. Hydroxyapatite nanoparticle-enriched thiolated polymer-based biocompatible scaffold can improve skin tissue regeneration
JP2023537323A (en) Biocompatible injectable and in situ gelling hydrogels and preparation and application of biocompatible injectable and in situ gelling hydrogels based on cellulose nanofibrils for tissue and organ repair
JP6869518B2 (en) Hydrogel containing sulfonated cellulose nanofibers
Ansari et al. A review of advanced hydrogels for cartilage tissue engineering
Safikhani et al. Fabrication, and characterization of crosslinked sodium alginate/hyaluronic acid/gelatin 3Dprinted heparin-loaded scaffold
WO2013078770A1 (en) Injectable gelling material
de Barros et al. Injectable nanoengineered adhesive hydrogel for treating enterocutaneous fistulas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507432

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770348

Country of ref document: EP

Kind code of ref document: A1