WO2019181293A1 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
WO2019181293A1
WO2019181293A1 PCT/JP2019/005215 JP2019005215W WO2019181293A1 WO 2019181293 A1 WO2019181293 A1 WO 2019181293A1 JP 2019005215 W JP2019005215 W JP 2019005215W WO 2019181293 A1 WO2019181293 A1 WO 2019181293A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
internal combustion
combustion engine
control device
setting unit
Prior art date
Application number
PCT/JP2019/005215
Other languages
French (fr)
Japanese (ja)
Inventor
一浩 押領司
赤城 好彦
秀文 岩城
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019181293A1 publication Critical patent/WO2019181293A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device for an internal combustion engine mounted on a vehicle or the like, and particularly to a control device for an internal combustion engine having an ignition function for igniting an air-fuel mixture formed in a combustion chamber.
  • variable compression ratio control with variable compression ratio exhaust circulation combustion control (EGR) that recirculates exhaust gas to suppress abnormal combustion
  • lean combustion control that leans the air-fuel mixture in the cylinder and burns it.
  • Patent Document 1 discloses a technique for appropriately setting the sustaining current of the spark plug based on the operating conditions of the internal combustion engine.
  • the technique of Patent Document 1 sets a maintenance current mainly according to the flow rate of the air-fuel mixture, and is not sufficient for improving the ignition performance.
  • An object of the present invention is to provide a control device for an internal combustion engine that improves ignition performance and fuel consumption performance by igniting an air-fuel mixture satisfactorily.
  • An internal combustion engine control apparatus is an internal combustion engine control apparatus that controls an internal combustion engine that includes an ignition coil and an ignition plug, and is related to an operating condition of the internal combustion engine or ignition of the ignition plug.
  • a target supply energy calculation unit that calculates the amount of energy required for ignition of the air-fuel mixture supplied to the combustion chamber of the internal combustion engine based on a physical quantity, and a current related to a waveform of a current supplied to the spark plug according to the energy amount
  • a current waveform generation unit configured to generate waveform data; and a power control unit configured to control power supplied to the spark plug according to the current waveform data.
  • An internal combustion engine control apparatus is an internal combustion engine control apparatus that controls an internal combustion engine that includes an ignition coil and an ignition plug.
  • An energy calculation unit that calculates an amount of energy required for ignition of the air-fuel mixture supplied to the combustion chamber of the internal combustion engine based on a related physical quantity, and supplies the spark plug according to a calculation result of the energy calculation unit
  • a current waveform generation unit that generates current waveform data relating to a current waveform, and a power control unit that controls power supplied to the spark plug according to the current waveform data.
  • the current waveform generator includes an initial current, a sustain current larger than the initial current, and a current change rate indicating a degree of change per unit time of the current between the initial current and the sustain current. Set.
  • control device for an internal combustion engine that improves the ignition performance and fuel consumption performance by favorably igniting the air-fuel mixture.
  • FIG. 2 is a functional block diagram showing a configuration of an ECU 200.
  • FIG. 3 is a block diagram illustrating an example of a more detailed configuration of a current waveform generation unit 207.
  • FIG. It is a graph explaining the significance of setting the optimal current change rate Rcc .
  • Rcc current change rate
  • FIG. 3 is a schematic view showing discharge between both electrodes of a spark plug 105.
  • 6 is a conceptual diagram illustrating an example of a method (operation) for setting a target supply energy E tar in a target supply energy setting unit 206.
  • FIG. The relationship between the initial current i ini and the amount of expansion of the discharge path of the spark plug 105 when the flow rate of the air-fuel mixture around the spark plug 105 is a predetermined value is shown.
  • the method of calculation of heating duration Delta] t R in the heating duration calculation unit 2073 is a schematic view illustrating the. It is a schematic view for explaining a method of setting the current change rate R cc at a current change rate setting unit 2074 (operation). 10 is a flowchart illustrating a correction procedure in a correction unit 2075.
  • FIG. 1 shows a basic configuration of an internal combustion engine provided with a fuel injection control device according to a first embodiment of the present invention.
  • an internal combustion engine 100 as a control target of the first embodiment is controlled by an ECU 200 as a fuel injection control device and an accelerator opening sensor 300 that detects an accelerator opening.
  • the internal combustion engine 100 includes a piston 101, an intake valve 102, and an exhaust valve 103 in a cylinder.
  • the internal combustion engine 100 can be an internal combustion engine having a plurality of, for example, four cylinders, but FIG. 1 representatively shows only one of the plurality of cylinders.
  • the piston 101 is connected to a crankshaft (not shown).
  • the crankshaft is composed of a main shaft and a subshaft, and the subshaft is connected to the piston 101 via a connecting rod.
  • variable compression ratio mechanism may be provided in which the distance between the main shaft and the sub shaft or the length of the connecting rod is variable.
  • the cylinder head is provided with an ignition plug 105 and an ignition coil 106. Further, the cylinder head is provided with a fuel injection valve 107 that directly injects fuel into the combustion chamber in the cylinder. Although not shown, the water jacket of the cylinder may be provided with a coolant temperature sensor.
  • An intake pipe 110 for introducing air sucked into the internal combustion engine 100 is provided upstream of the intake valve 102, and exhaust gas discharged from the cylinder is discharged downstream of the exhaust valve 103.
  • An exhaust pipe 111 is provided.
  • the intake pipe 110 includes an intercooler 112 that cools the intake air, a throttle valve 113 that adjusts the intake air amount according to the accelerator opening, a surge tank 114 that adjusts the flow of intake air, and a part of the intake passage that is narrowed.
  • a tumble control valve (TCV) 115 is provided for generating turbulence (tumble) in the intake air flow.
  • the exhaust pipe 111 communicates with an exhaust passage 121, and a three-way catalyst 123, an air-fuel ratio sensor 124, and a turbine 125b are provided in the exhaust passage 121.
  • the three-way catalyst 123 is for purifying the exhaust gas
  • the air-fuel ratio sensor 124 is a sensor for detecting the air-fuel ratio of the exhaust gas.
  • the turbine 125b generates a driving force for driving the compressor 125a using the energy of the exhaust gas.
  • the exhaust passage 121 is branched to an EGR pipe 126 on the downstream side of the three-way catalyst 123.
  • the EGR pipe 126 is a pipe for recirculating (recirculating) the exhaust gas EGR gas to the intake side.
  • the EGR pipe 126 includes an EGR cooler 127 that cools the EGR, an EGR valve 128 that adjusts the amount of EGR gas, and a pressure sensor 133 that measures the pressure before and after the EGR valve 128.
  • a three-way catalyst 129 different from the three-way catalyst 123 is provided further downstream of the exhaust passage 121.
  • the intake pipe 110 communicates with the intake passage 130 on the compressor 125a side.
  • the intake passage 130 is provided with a mass flow meter 131 for measuring the air flow rate and a pressure adjusting valve 132 for adjusting the intake pressure.
  • the aforementioned EGR pipe 126 is connected to the intake passage 130.
  • the intake pipe 110 is provided with an oxygen concentration sensor 134 for detecting the oxygen concentration of the mixed gas on the intake side (the gas obtained by mixing the intake air supplied from the intake passage 130 and the EGR gas).
  • the ECU 200 calculates a required torque based on detection signals from accelerator opening sensor 300 and various sensor signals.
  • the ECU 200 determines the opening degree of the pressure adjustment valve 132, the opening degree of the throttle valve 113, the injection pulse period of the fuel injection valve 107, the ignition timing of the ignition plug 105, based on the operating state of the internal combustion engine 100 obtained from the outputs of various sensors.
  • the main operating amounts of the internal combustion engine 100 such as the opening / closing timing of the intake valve 102 and the exhaust valve 103 and the opening degree of the EGR valve 128 are calculated.
  • the mixed gas flows into the combustion chamber R1 through the intercooler 112, the intake pipe 110, the surge tank 114, and the tumble valve 115 and the intake valve 102.
  • fuel is injected from the fuel injection valve 107 to form an air-fuel mixture in the combustion chamber R1.
  • the air-fuel mixture is ignited and burned by a spark generated from the spark plug 105 at a predetermined ignition timing.
  • the piston 101 is pushed down by the combustion pressure generated by the combustion of the mixer, and becomes a driving force of the internal combustion engine 100.
  • the exhaust gas after combustion is sent to the three-way catalyst 123 through the exhaust valve 103, the exhaust pipe 111, and the turbine 125b. After the NOx, CO, and HC components are purified in the three-way catalyst 123, the exhaust gas passes through the exhaust passage 121. It is purified again by the three-way catalyst 129 and discharged outside.
  • a part of the exhaust gas is introduced into the intake passage 130 as EGR gas through the EGR pipe 126, the EGR cooler 127, and the EGR valve 128, and the intake air and the EGR gas are merged in this introduction region.
  • the mixed gas composed of intake air and EGR gas passes through the intake pipe 110 and the like and reaches the combustion chamber R1.
  • FIG. 2 is a functional block diagram showing the configuration of the ECU 200 according to the first embodiment.
  • the ECU 200 generally includes an input circuit 201, a CPU 202, a RAM 203, a ROM 204, an input / output port 205, a target supply energy setting unit 206, a current waveform generation unit 207, various drive circuits 208 to 213, and a power control unit 214.
  • the input circuit 201 is an interface circuit that receives detection signals from various sensors.
  • the CPU 202 is an arithmetic control circuit that controls the entire ECU 200.
  • a RAM 203 is a storage unit for temporarily storing various types of input / output data.
  • the ROM 204 stores a control program describing the contents of arithmetic processing.
  • the input / output port 205 causes the detection signal input from the input circuit 201 to be input to the CPU 202 via the RAM 203 (after being temporarily stored), and the signals transferred from the CPU 202, RAM 203, and ROM 204 to be supplied to various drive circuits 208 to 213. It has the function to output toward Of the detection signals sent to the input circuit 201, the detection signal inputted as an analog signal is inputted after being converted into a digital signal by an A / D converter (not shown) provided in the input circuit 201.
  • the target supply energy setting unit 206 sets a target supply energy E tar as an amount of energy to be supplied to the spark plug 105 in accordance with a given operating condition of the internal combustion engine and a physical quantity related to ignition of the spark plug 105.
  • the current waveform generation unit 207 has a function of generating current waveform data related to the waveform of the pulsed current supplied to the spark plug 105 according to the set target supply energy E tar .
  • the drive circuits 208 to 213 include a pressure adjustment valve drive circuit 208, a throttle valve drive circuit 209, a variable valve mechanism (VTC) drive circuit 210, an injection valve drive circuit 211, an ignition signal output circuit 212, and an EGR valve drive circuit. 213.
  • the pressure adjustment valve drive circuit 208 is an actuator that drives the pressure adjustment valve 132.
  • the throttle valve drive circuit 209 is an actuator that drives the throttle valve 113.
  • the VTC drive circuit 210 is an actuator (valve drive circuit) that drives the intake valve 102 and the exhaust valve 103.
  • the injection valve drive circuit 211 is an actuator that drives the fuel injection valve 107.
  • the ignition signal output circuit 212 outputs an ignition signal for igniting the ignition plug 105.
  • the EGR valve drive circuit 213 is an actuator (valve drive circuit) that drives the EGR valve 128.
  • the power control unit 213 is a control circuit that performs current control and voltage control for supplying power to the ignition plug 105 according to the current waveform data generated by the current waveform generation unit 207.
  • FIG. 3 is a block diagram illustrating an example of a more detailed configuration of the current waveform generation unit 207.
  • the current waveform generation unit 207 includes a sustain current setting unit 2071, an initial current setting unit 2072, a heating duration calculation unit 2073, a current change rate setting unit 2074, and a correction unit 2075.
  • the current waveform generator 207 generates current waveform data for generating a current waveform having the initial current i ini , the current change rate R cc , and the sustain current i tar as shown in the lower right of FIG. To do.
  • the initial current i ini is a current at the rising edge of the current pulse waveform.
  • the sustain current i tar is a current that is maintained at least in the subsequent stage of the current pulse waveform and becomes a target value for current increase, and is a current that is larger than the initial current i ini .
  • the current change rate R cc represents the degree of change (slope) of the current per unit time when the current value increases from the initial current i ini to the sustain current i tar .
  • Current waveform data is generated by sequentially determining the initial current i ini , the sustain current i tar and the current change rate R cc .
  • the sustain current setting unit 2071 sets the above-described sustain current i tar according to the target supply energy E tar set by the target supply energy setting unit 206.
  • the target supply energy setting unit 206 is a target supply energy as an amount of energy to be supplied to the spark plug 105 in accordance with the operating condition given to the internal combustion engine 100 and a physical quantity related to ignition of the spark plug 105.
  • E tar has a function of setting.
  • pressure information relating to the pressure of the air-fuel mixture passing through the spark plug 105, temperature information of the air-fuel mixture, composition information of the air-fuel mixture, and flow rate information of the air-fuel mixture are input as physical quantities related to ignition of the spark plug 105. .
  • Other physical quantities may be included, and combinations thereof are arbitrary.
  • the initial current setting unit 2072 sets an initial current i ini that is an initial value of a current pulse to be supplied to the spark plug 105 in accordance with an operation condition given to the internal combustion engine 100 and a physical quantity related to ignition of the spark plug 105. It has a function.
  • the heating duration calculation unit 2073 starts from the rising edge of the current pulse waveform according to the operating condition given to the internal combustion engine 100, the physical quantity related to ignition of the ignition plug 105, and the maintenance current i tar set by the maintenance current setting unit 2071. , And has a function of calculating the heating duration ⁇ t R which is the time until the sustain current i tar is reached.
  • the correction unit 2075 is an achievable energy E o that is energy that is expected to be achieved by the sustain current i tar set by the sustain current setting unit 2071, the heating duration ⁇ t R calculated by the heating duration calculation unit 2073, and the like. And the achievable energy E o is compared with the target supply energy E tar described above. Then, the correction unit 2075 corrects physical quantities such as the sustain current i tar and the current change rate R cc according to the comparison result.
  • the internal combustion engine control apparatus of the present embodiment ensures the length of the discharge path of the spark plug 105 by setting an appropriate current change rate Rcc when setting the current to be supplied to the spark plug 105, Enough supply energy between the gaps can be ensured, whereby the mixture can be favorably ignited to improve the ignition performance and fuel efficiency.
  • FIG. 4 is a graph showing examples of current pulse waveforms having different current change rates R cc and changes in various physical quantities obtained thereby
  • FIG. 5 shows current pulses (1) having different current change rates R cc.
  • 3 is a graph showing differences in characteristics of (3) to (3)
  • the top graph in FIG. 4 shows waveforms (1) to (3) of current pulses flowing through the spark plug 105.
  • (1) is a current pulse waveform of the first comparative example, which is a waveform with a very large current change rate Rcc .
  • (3) is a current pulse waveform of the second comparative example, in which the current change rate R cc is small and the waveform gradually reaches the sustain current i tar .
  • (2) is an example of a current pulse waveform employed in the first embodiment.
  • the length of the discharge path between both electrodes of the spark plug 105 varies depending on the voltage and current between both electrodes, and may vary depending on the flow rate of the air-fuel mixture.
  • the waveform of (2) can be the largest in the extension of the discharge path of the spark plug 105.
  • the increase in current cannot catch up with the extension of the discharge path in the first discharge, and re-discharge occurs after the extension of the small discharge path.
  • the elongation of the discharge path becomes about half of the waveforms of (1) and (2), which is not preferable.
  • the gap voltage of the spark plug 105 has almost no difference between the waveform (1) and the waveform (2).
  • the waveform of (2) has a smaller current change rate than the waveform of (1), It is substantially equivalent to the waveform of (1).
  • the waveform of (2) is larger in the extension of the discharge path than the waveform of (1), and the generated energy between the gaps is also the same as that of (1) Almost inferior.
  • the target supply energy E tar can be defined by the following theoretical formula that defines the energy required to realize self-ignition to the air-fuel mixture and flame kernel growth.
  • is the density of the air-fuel mixture
  • c p is the specific heat
  • T tar is the target temperature
  • T adv is the ignition timing temperature
  • L is the cylinder diameter (electrode diameter) of the discharge path
  • d is the distance between the electrodes
  • h is a constant
  • T “plug” indicates plug temperature
  • E FL indicates flame growth energy
  • the target supply energy E tar can be formed according to a target supply energy map as shown in FIG. A plurality of maps are provided for each different air-fuel ratio or EGR rate, and each map has data of the target supply energy E tar defined for each combination of the engine speed and the indicated mean effective pressure (IMEP). is doing.
  • the target supply energy T tar can be uniquely determined by determining the air-fuel ratio or the EGR rate and then determining the rotational speed and IMEP.
  • the extension amount of the discharge path can be predicted according to the inter-electrode voltage V g , the inter-electrode distance d, the flow rate u of the air-fuel mixture between the electrodes, the pressure p of the cylinder of the internal combustion engine 100, and the like. It is also possible to determine the sustain current i tar based on.
  • the target supply energy setting unit 206 can also input the engine speed as an operating condition of the internal combustion engine.
  • the sustain current setting unit 2071 can set the sustain current i tar to a smaller value as the engine speed is smaller.
  • the opening degree of the tumble control valve 115 can be input to the target supply energy setting unit 206 as the operating condition of the internal combustion engine.
  • the sustain current setting unit 2071 can set the sustain current i tar to a smaller value as the opening degree of the tumble control valve 115 is larger. Furthermore, the sustaining current setting unit 2071 can set the sustaining current i tar to a smaller value as the flow velocity u sp is smaller.
  • FIG. 8 shows the relationship between the initial current i ini and the amount of expansion of the discharge path of the spark plug 105 when the flow rate of the air-fuel mixture around the spark plug 105 is a predetermined value.
  • the initial current i ini in the example of FIG. 8, in the initial current i ini small area, but also increased the elongation amount of the discharge path in accordance with an initial current i ini increases, it becomes more than a certain value initial current i ini, elongation amount of the discharge path Is saturated. Therefore, in the example of FIG. 8, the initial current i ini can be determined in consideration of other factors within a range where saturation of the extension amount of the discharge path is not observed. For example, as shown in FIG. 9, it is also possible to determine the initial current i ini in consideration of the waveform of the secondary current and secondary voltage of the secondary coil (not shown) of the ignition coil 106. Further, the initial current i ini can be determined in consideration of the discharge path followability C.
  • the discharge path follow-up property C is a numerical value indicating the degree (ease of ease) that the length of the discharge path varies following the change in the pressure of the air-fuel mixture.
  • the discharge path followability C can be expressed as a function of the cylinder temperature T, the pressure p, and the like by, for example, the following expression.
  • C ref is a constant
  • T o is the reference temperature
  • Po is the reference pressure
  • the initial current i ini When the discharge path followability C is large, the initial current i ini can be set large, and when the discharge path followability C is small, the initial current i ini can also be set small. As shown in FIG. 10, the discharge path follow-up property C increases as the cylinder temperature T increases, and increases as the pressure p increases. For this reason, the initial current setting unit 2072 can set the initial current i ini to a smaller value as the pressure p is smaller. The same applies to the engine speed, and the initial current setting unit 2072 can set the initial current i ini to a smaller value as the engine speed is lower.
  • the initial current setting unit 2072 can set the initial current i ini to a smaller value as the opening degree of the tumble control valve 115 is larger. Furthermore, the initial current setting unit 2072 can set the current change rate Rcc to a smaller value as the flow velocity usp is smaller. Further, as is clear from the above [Equation 3], the initial current setting unit 2072 can set the initial current i ini to a smaller value as the flow velocity around the spark plug 105 is smaller.
  • the heating duration calculation unit 2073 uses the maintenance current i tar set by the maintenance current setting unit 2071 as a factor in addition to the operating conditions given to the internal combustion engine 100 and the physical quantities related to ignition of the spark plug 105.
  • the heating duration ⁇ t R is calculated. Specifically, as shown in FIG. 11, the flow velocity u around the spark plug 105 specified from the discharge path elongation L specified from the sustain current i tar , the engine speed and the opening of the tumble control valve 115.
  • the heating duration ⁇ t R is specified by the following formula based on the discharge path follow-up property C specified from the information on sp 1 and temperature and pressure.
  • the current change rate setting unit 2074 can set the current change rate R cc to a larger value as the pressure p increases. Further, the current change rate setting unit 2074 can set the current change rate Rcc to a larger value as the cylinder temperature T is higher. Moreover, the current change rate setting unit 2074 can set the current change rate Rcc to a larger value as the engine speed increases. In addition, the current change rate setting unit 2074 can set the current change rate R cc to a smaller value as the opening degree of the tumble control valve 115 is larger. Furthermore, the current change rate setting unit 2074 can set the current change rate R cc to a smaller value as the flow velocity u sp increases.
  • the current change rate setting unit 2074 calculates, in a case of setting the current change rate R cc, prior to the time when the elongation amount of the discharge path of the spark plug 105 is maximized, the target electric energy calculating unit (206) It is preferable to set the current change rate Rcc so that a current and voltage corresponding to the target supply energy amount E tar are supplied to the spark plug 105. That is, it is preferable to control the current so that the target supply energy amount Etar flows through the spark plug 105 before the extension amount of the discharge path of the spark plug 105 reaches the maximum. By setting the current change rate Rcc in this manner, the elongation of the discharge path can be stably increased, and the occurrence of misfire can be reliably prevented.
  • the power control unit 214 supplies current according to the set current waveform data.
  • FIG. 13 is a flowchart illustrating an example of a correction procedure in the correction unit 2075.
  • an achievable energy E o that is an achievable energy by various set numerical values is calculated.
  • the correction unit 2075 corrects the sustain current i tar and sets the correction value i tar ′ as a new sustain current (step S15).
  • the sustain current i tar is corrected to a lower value, and the achievable energy E o is also adjusted to a value substantially equal to the target supply energy E tar .
  • the correction unit 2075 corrects the sustain current i tar and sets the correction value i tar ′ as a new sustain current (step S16).
  • the sustain current i tar is corrected to a larger value, and the achievable energy E o is also adjusted to a value substantially equal to the target supply energy E tar .
  • the current change rate R cc is corrected in step S17.
  • the current change rate R cc ′ (i tar ′ ⁇ i ini ) / (a ⁇ ⁇ t R ) is expressed as a new current change rate R using the newly obtained correction value i tar ′ of the sustain current itar. cc .
  • the example of the correction operation in the correction unit 2075 has been described above. In the above example, the case where the correction is performed on the sustain current i tar and the current change rate R cc has been described. Instead, the initial current i ini , the sustain current i tar and the current change rate R cc are corrected. It is also possible to adopt. It is also possible to perform correction only for the current change rate Rcc .
  • the primary coil of the ignition coil 106 is composed of a first coil and a second coil connected in series.
  • the discharge current is supplied to the first coil and the overlap current is supplied to the second coil. The operation when applied is shown.
  • FIG. 14 shows a waveform when the engine speed gradually increases
  • FIG. 15 shows a waveform when the load gradually increases
  • FIG. 16 shows a waveform when the air-fuel ratio changes. Is shown.
  • FIG. 14 shows how the heating duration ⁇ t R gradually decreases as the engine speed increases.
  • FIG. 15 shows how the initial current i ini gradually increases as the load gradually increases.
  • FIG. 16 shows how the sustain current i tar increases as the air-fuel ratio increases.
  • the target supply energy calculation unit 206 calculates the amount of energy required for ignition in the combustion chamber of the internal combustion engine based on a predetermined factor.
  • the current waveform generation unit 207 data relating to the waveform of the current supplied to the spark plug is generated according to this energy amount.
  • the power control unit 213 controls power according to the current waveform data. According to this, the waveform of the current supplied to the spark plug is optimized, and the air-fuel mixture can be favorably ignited to improve the ignition performance and fuel consumption performance.
  • a reference supply energy map is provided to obtain the target supply energy E tar .
  • the reference supply energy map is map data for obtaining a reference supply energy E base that serves as a reference for obtaining the target supply energy E tar .
  • the reference supply energy map is a set of reference supply energy E base values defined for each combination of engine speed and indicated mean effective pressure (IMEP).
  • IMEP engine speed and indicated mean effective pressure
  • One set of engine speed value and indicated mean effective pressure The value of one reference supply energy E base is determined.
  • the target supply energy E tar can be calculated, for example, as a value obtained by multiplying the value of the reference supply energy E base by the value of the function F of the air-fuel ratio A / F, the EGR rate Y EGR , and the ignition timing temperature TADV. it can.
  • the third embodiment an internal combustion engine control apparatus according to a third embodiment will be described with reference to FIG. Since the basic configuration of the third embodiment is the same as that of the first embodiment (FIGS. 1 to 3), duplicate description is omitted. However, in the third embodiment, the method of setting the sustain current i tar in the sustain current setting unit 2071 is different from that of the first embodiment.
  • a standard sustain current map is provided to obtain the sustain current I tar .
  • the standard maintenance current map is map data for obtaining a standard maintenance current i base that is a reference for obtaining the standard current i tar .
  • the standard maintenance current map is different for each different air-fuel ratio or EGR rate, for example.
  • Each map is a standard maintenance current defined for each combination of engine speed and indicated mean effective pressure (IMEP). It is a set of i base values. When one set of engine speed value and indicated mean effective pressure value are determined, one standard maintenance current iase value is determined. Thereafter, the standard current i tar can be calculated as a value obtained by multiplying the value of the standard sustain current i base by a predetermined variable, for example.
  • IMEP indicated mean effective pressure
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • EGR valve 130 ... intake passage, 131 ... mass flow meter, 132 ... pressure regulating valve, 133 ... pressure sensor, 134 ... oxygen concentration sensor, 201 ... input circuit, 205 ... input / output port, 206 ... target Supply energy -Setting unit, 207 ... Current waveform generation unit, 208 ... Pressure adjustment valve drive circuit, 209 ... Throttle valve drive circuit, 210 ... Variable valve mechanism (VTC) drive circuit, 211 ... Injection valve drive circuit, 212 ... Ignition signal output circuit 213, EGR valve drive circuit, 214, power control unit, 300, accelerator opening sensor.
  • VTC Variable valve mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Provided is an internal combustion engine control device that favorably ignites an air-fuel mixture to improve ignition performance and fuel performance. The internal combustion engine control device controls an internal combustion engine provided with an ignition coil and an ignition plug and is provided with: a target supply energy calculation unit that calculates an energy amount required to ignite an air-fuel mixture supplied to a combustion chamber of the internal combustion engine on the basis of an operation condition of the internal combustion engine or a physical quantity related to ignition of the ignition plug; a current waveform generation unit that generates, in accordance with the energy amount, current waveform data related to the waveform of a current supplied to the ignition plug; and a power control unit that controls power supplied to the ignition plug in accordance with the current waveform data.

Description

内燃機関制御装置Internal combustion engine control device
 本発明は、車両等に搭載される内燃機関の制御装置に係り、特に燃焼室内に形成された混合気を着火する点火機能を備えた内燃機関の制御装置に関するものである。 The present invention relates to a control device for an internal combustion engine mounted on a vehicle or the like, and particularly to a control device for an internal combustion engine having an ignition function for igniting an air-fuel mixture formed in a combustion chamber.
 環境保全と資源有効活用の観点から、自動車の更なる高効率化と排気清浄化が要求されている。高効率化の手段としては、内燃機関の高圧縮比化とダウンサイジングがある。高圧縮比化とダウンサイジングがされた内燃機関では、燃焼室内の圧力が上昇して混合気が高温化し、異常燃焼を誘発しやすい。このため、圧縮比を可変とする可変圧縮比制御、或いは異常燃焼を抑制するため排気ガスを還流する排気循環燃焼制御(EGR)、或いは気筒内混合気を希薄にして燃焼するというリーン燃焼制御が適用される傾向にある。これら複数の制御方法が、1つの内燃機関において複合的に組み合わせて使用されることもある。 From the viewpoint of environmental conservation and effective use of resources, further improvements in automobile efficiency and exhaust purification are required. As means for improving the efficiency, there are a high compression ratio and downsizing of the internal combustion engine. In an internal combustion engine with a high compression ratio and downsizing, the pressure in the combustion chamber rises and the air-fuel mixture becomes hot, and abnormal combustion is likely to occur. Therefore, variable compression ratio control with variable compression ratio, exhaust circulation combustion control (EGR) that recirculates exhaust gas to suppress abnormal combustion, or lean combustion control that leans the air-fuel mixture in the cylinder and burns it. Tend to be applied. A plurality of these control methods may be used in combination in a single internal combustion engine.
 排気清浄化の観点において、混合気の着火に失敗して失火現象を生じることは排気清浄化に悪影響を与えるので、この失火現象の対策が重要である。例えば、気筒内の混合気の流動によって点火プラグで発生する放電が吹き消え、これによって失火現象を生じることが知られている。上述したようなEGR制御やリーン燃焼制御が適用された内燃機関においては、燃焼室内の圧力の変動が大きく、また燃焼室内の気流の変化も大きいため、失火現象に対する対策が特に重要となる。 ∙ From the viewpoint of exhaust purification, it is important to take measures against this misfire phenomenon because the failure of ignition of the air-fuel mixture and the occurrence of a misfire phenomenon adversely affects the exhaust purification. For example, it is known that the discharge generated in the spark plug is blown out by the flow of the air-fuel mixture in the cylinder, thereby causing a misfire phenomenon. In an internal combustion engine to which the above-described EGR control or lean combustion control is applied, the pressure variation in the combustion chamber is large and the change in the air flow in the combustion chamber is also large, so that a countermeasure against the misfire phenomenon is particularly important.
 失火現象の抑制のため、例えば特許文献1では、内燃機関の運転条件などに基づいて、点火プラグの維持電流を適切に設定する技術が開示されている。しかし、この特許文献1の技術は、主に混合気の流速に応じて維持電流を設定するものであり、着火性能の向上のためには十分ではない。 In order to suppress the misfire phenomenon, for example, Patent Document 1 discloses a technique for appropriately setting the sustaining current of the spark plug based on the operating conditions of the internal combustion engine. However, the technique of Patent Document 1 sets a maintenance current mainly according to the flow rate of the air-fuel mixture, and is not sufficient for improving the ignition performance.
特開2017-2791号公報JP 2017-2791 A
 本発明の目的は、混合気への着火を良好に行って着火性能及び燃費性能を向上させた内燃機関の制御装置を提供することにある。 An object of the present invention is to provide a control device for an internal combustion engine that improves ignition performance and fuel consumption performance by igniting an air-fuel mixture satisfactorily.
 本発明の第1の態様に係る内燃機関制御装置は、点火コイルと点火プラグを備えた内燃機関を制御する内燃機関制御装置において、前記内燃機関の運転条件、又は前記点火プラグの点火に関連する物理量に基づいて、前記内燃機関の燃焼室に供給される混合気の着火に必要なエネルギー量を算出する目標供給エネルギー算出部と、前記エネルギー量に従い、前記点火プラグに供給する電流の波形に関する電流波形データを生成する電流波形生成部と、前記電流波形データに従って前記点火プラグに供給する電力を制御する電力制御部とを備える。
 また、本発明の第2の態様に係る内燃機関制御装置は、点火コイルと点火プラグを備えた内燃機関を制御する内燃機関制御装置において、前記内燃機関の運転条件、又は前記点火プラグの点火に関連する物理量に基づいて、前記内燃機関の燃焼室に供給される混合気の着火に必要なエネルギー量を算出するエネルギー算出部と、前記エネルギー算出部での算出結果に従い、前記点火プラグに供給する電流の波形に関する電流波形データを生成する電流波形生成部と、前記電流波形データに従って前記点火プラグに供給する電力を制御する電力制御部とを備える。前記電流波形生成部は、初期電流と、前記初期電流よりも大きい維持電流と、前記初期電流と前記維持電流との間での前記電流の単位時間当たりの変化の度合を示す電流変化率とを設定する。
An internal combustion engine control apparatus according to a first aspect of the present invention is an internal combustion engine control apparatus that controls an internal combustion engine that includes an ignition coil and an ignition plug, and is related to an operating condition of the internal combustion engine or ignition of the ignition plug. A target supply energy calculation unit that calculates the amount of energy required for ignition of the air-fuel mixture supplied to the combustion chamber of the internal combustion engine based on a physical quantity, and a current related to a waveform of a current supplied to the spark plug according to the energy amount A current waveform generation unit configured to generate waveform data; and a power control unit configured to control power supplied to the spark plug according to the current waveform data.
An internal combustion engine control apparatus according to a second aspect of the present invention is an internal combustion engine control apparatus that controls an internal combustion engine that includes an ignition coil and an ignition plug. An energy calculation unit that calculates an amount of energy required for ignition of the air-fuel mixture supplied to the combustion chamber of the internal combustion engine based on a related physical quantity, and supplies the spark plug according to a calculation result of the energy calculation unit A current waveform generation unit that generates current waveform data relating to a current waveform, and a power control unit that controls power supplied to the spark plug according to the current waveform data. The current waveform generator includes an initial current, a sustain current larger than the initial current, and a current change rate indicating a degree of change per unit time of the current between the initial current and the sustain current. Set.
 本発明によれば、混合気への着火を良好に行って着火性能及び燃費性能を向上させた内燃機関の制御装置を提供することができる。 According to the present invention, it is possible to provide a control device for an internal combustion engine that improves the ignition performance and fuel consumption performance by favorably igniting the air-fuel mixture.
第1の実施の形態に係る燃料噴射制御装置を備えた内燃機関の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the internal combustion engine provided with the fuel-injection control apparatus which concerns on 1st Embodiment. ECU200の構成を示す機能ブロック図である。2 is a functional block diagram showing a configuration of an ECU 200. FIG. 電流波形生成部207のより詳細な構成の一例を示すブロック図である。3 is a block diagram illustrating an example of a more detailed configuration of a current waveform generation unit 207. FIG. 最適な電流変化率Rccを設定することの意義について説明するグラフである。It is a graph explaining the significance of setting the optimal current change rate Rcc . 異なる電流変化率Rccを有する電流パルスの特性の差を示すグラフである。It is a graph which shows the difference of the characteristic of the current pulse which has different current change rate Rcc . 点火プラグ105の両電極の間の放電を示す概略図である。FIG. 3 is a schematic view showing discharge between both electrodes of a spark plug 105. 目標供給エネルギー設定部206における目標供給エネルギーEtarの設定の方法(動作)の例を説明する概念図である6 is a conceptual diagram illustrating an example of a method (operation) for setting a target supply energy E tar in a target supply energy setting unit 206. FIG. 点火プラグ105の周囲の混合気の流速が所定の値の場合における、初期電流iiniと、点火プラグ105の放電路の伸び量との関係を示している。The relationship between the initial current i ini and the amount of expansion of the discharge path of the spark plug 105 when the flow rate of the air-fuel mixture around the spark plug 105 is a predetermined value is shown. 点火コイル106の2次側コイル(図示せず)の2次電流や2次電圧の波形の例を示している。The example of the waveform of the secondary current and secondary voltage of the secondary side coil (not shown) of the ignition coil 106 is shown. 放電路追従性Cと、他のファクターとの関係を示すグラフである。It is a graph which shows the relationship between the discharge path followable | trackability C and another factor. 加熱継続期間計算部2073での加熱継続期間Δtの計算の方法を説明する概略図である。The method of calculation of heating duration Delta] t R in the heating duration calculation unit 2073 is a schematic view illustrating the. 電流変化率設定部2074での電流変化率Rccの設定の方法(動作)を説明する概略図である。It is a schematic view for explaining a method of setting the current change rate R cc at a current change rate setting unit 2074 (operation). 補正部2075での補正の手順を示すフローチャートである。10 is a flowchart illustrating a correction procedure in a correction unit 2075. 第1の実施の形態による電流パルス波形データ及び放電電流の例を説明するグラフである。It is a graph explaining the example of the current pulse waveform data and discharge current by 1st Embodiment. 第1の実施の形態による電流パルス波形データ及び放電電流の例を説明するグラフである。It is a graph explaining the example of the current pulse waveform data and discharge current by 1st Embodiment. 第1の実施の形態による電流パルス波形データ及び放電電流の例を説明するグラフである。It is a graph explaining the example of the current pulse waveform data and discharge current by 1st Embodiment. 第2の実施の形態を説明する概略図である。It is the schematic explaining 2nd Embodiment. 第3の実施の形態を説明する概略図である。It is the schematic explaining 3rd Embodiment.
 以下、添付図面を参照して本実施の形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本開示の原理に則った実施の形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味においても限定するものではない。 Hereinafter, the present embodiment will be described with reference to the accompanying drawings. In the accompanying drawings, functionally identical elements may be denoted by the same numbers. Note that the attached drawings show an embodiment and an implementation example according to the principle of the present disclosure, but these are for the purpose of understanding the present disclosure, and are never used to interpret the present disclosure in a limited manner. It is not a thing. The descriptions in this specification are merely exemplary, and are not intended to limit the scope of the claims or the application in any way whatsoever.
 本実施の形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。 This embodiment has been described in sufficient detail for those skilled in the art to practice the present disclosure, but other implementations and configurations are possible and depart from the scope and spirit of the technical idea of the present disclosure. It is necessary to understand that the configuration and structure can be changed and various elements can be replaced. Therefore, the following description should not be interpreted as being limited to this.
[第1の実施の形態]
 図1は、本発明の第1の実施の形態に係る燃料噴射制御装置を備えた内燃機関の基本構成を示している。
[First Embodiment]
FIG. 1 shows a basic configuration of an internal combustion engine provided with a fuel injection control device according to a first embodiment of the present invention.
<基本構成>
 図1に示すように、第1の実施の形態の制御対象としての内燃機関100は、燃料噴射制御装置としてのECU200と、アクセル開度を検出するアクセル開度センサ300とにより制御される。
 内燃機関100は、気筒(シリンダ)内にピストン101、吸気バルブ102、排気バルブ103を備えている。内燃機関100は、一例としては、複数、例えば4個の気筒を有した内燃機関とすることができるが、図1は、複数の気筒のうちの1つの気筒のみを代表的に図示している。
 ピストン101は、図示しないクランクシャフトが接続されている。クランクシャフトはメインシャフトとサブシャフトにより構成され、サブシャフトはコネクティングロッドを介してピストン101に連結されている。ここで、メインシャフトとサブシャフトの距離、或いはコネクティングロッドの長さは可変とする可変圧縮比機構を備えても良い。この可変圧縮比機構を備えることにより、ピストンのストローク量を変更することが可能となり、これによって燃焼室内圧力を可変とすることができる。
<Basic configuration>
As shown in FIG. 1, an internal combustion engine 100 as a control target of the first embodiment is controlled by an ECU 200 as a fuel injection control device and an accelerator opening sensor 300 that detects an accelerator opening.
The internal combustion engine 100 includes a piston 101, an intake valve 102, and an exhaust valve 103 in a cylinder. As an example, the internal combustion engine 100 can be an internal combustion engine having a plurality of, for example, four cylinders, but FIG. 1 representatively shows only one of the plurality of cylinders. .
The piston 101 is connected to a crankshaft (not shown). The crankshaft is composed of a main shaft and a subshaft, and the subshaft is connected to the piston 101 via a connecting rod. Here, a variable compression ratio mechanism may be provided in which the distance between the main shaft and the sub shaft or the length of the connecting rod is variable. By providing this variable compression ratio mechanism, it is possible to change the stroke amount of the piston, thereby making the pressure in the combustion chamber variable.
 シリンダヘッドには点火プラグ105と点火コイル106が備えられている。更に、シリンダヘッドには、シリンダ内の燃焼室内に燃料を直接噴射する燃料噴射弁107が設けられている。図示は省略するが、シリンダのウォータジャケットには冷却水の水温センサが備えられていてもよい。 The cylinder head is provided with an ignition plug 105 and an ignition coil 106. Further, the cylinder head is provided with a fuel injection valve 107 that directly injects fuel into the combustion chamber in the cylinder. Although not shown, the water jacket of the cylinder may be provided with a coolant temperature sensor.
 また、吸気バルブ102の上流側には、内燃機関100に吸入される空気を導入するための吸気管110が設けられ、排気バルブ103の下流側には、シリンダから排出される排気ガスを排出するための排気管111が設けられている。
 吸気管110には、吸気を冷却するインタークーラ112、アクセル開度に応じて吸気量を調節するスロットルバルブ113、吸気の流れを調節するためのサージタンク114、及び吸気流路の一部狭めて吸気流に乱れ(タンブル)を生じさせるタンブル制御バルブ(TCV)115が設けられている。
 また、排気管111は、排気通路121に連通されており、この排気通路121には、三元触媒123と、空燃比センサ124と、タービン125bとが設けられている。三元触媒123は、排気ガスを浄化するためのものであり、空燃比センサ124は、排気ガスの空燃比を検出するセンサである。また、タービン125bは、排気ガスのエネルギーを利用してコンプレッサ125aを駆動するための駆動力を発生させる。
An intake pipe 110 for introducing air sucked into the internal combustion engine 100 is provided upstream of the intake valve 102, and exhaust gas discharged from the cylinder is discharged downstream of the exhaust valve 103. An exhaust pipe 111 is provided.
The intake pipe 110 includes an intercooler 112 that cools the intake air, a throttle valve 113 that adjusts the intake air amount according to the accelerator opening, a surge tank 114 that adjusts the flow of intake air, and a part of the intake passage that is narrowed. A tumble control valve (TCV) 115 is provided for generating turbulence (tumble) in the intake air flow.
The exhaust pipe 111 communicates with an exhaust passage 121, and a three-way catalyst 123, an air-fuel ratio sensor 124, and a turbine 125b are provided in the exhaust passage 121. The three-way catalyst 123 is for purifying the exhaust gas, and the air-fuel ratio sensor 124 is a sensor for detecting the air-fuel ratio of the exhaust gas. Further, the turbine 125b generates a driving force for driving the compressor 125a using the energy of the exhaust gas.
 なお、排気通路121は、三元触媒123の下流側でEGR配管126に分岐されている。このEGR配管126は、排気ガスEGRガスとして吸気側に還流(再循環)させるための配管である。EGR配管126には、EGRを冷却するEGRクーラ127と、EGRガス量を調整するEGRバルブ128と、EGRバルブ128の前後の圧力を計測する圧力センサ133が備えられている。また、排気通路121の更に下流には、三元触媒123とは別の三元触媒129が備えられている。 Note that the exhaust passage 121 is branched to an EGR pipe 126 on the downstream side of the three-way catalyst 123. The EGR pipe 126 is a pipe for recirculating (recirculating) the exhaust gas EGR gas to the intake side. The EGR pipe 126 includes an EGR cooler 127 that cools the EGR, an EGR valve 128 that adjusts the amount of EGR gas, and a pressure sensor 133 that measures the pressure before and after the EGR valve 128. Further, a three-way catalyst 129 different from the three-way catalyst 123 is provided further downstream of the exhaust passage 121.
 吸気管110は、コンプレッサ125aの側において吸気通路130に連通されている。この吸気通路130には、空気流量を計測する質量流量計131と、吸気圧を調整する圧力調整バルブ132とが設けられている。前述のEGR配管126は、この吸気通路130に接続されている。また、吸気管110には、吸気側の混合ガス(吸気通路130から供給された吸入空気とEGRガスとを混合させたガス)の酸素濃度を検出する酸素濃度センサ134が設けられている。 The intake pipe 110 communicates with the intake passage 130 on the compressor 125a side. The intake passage 130 is provided with a mass flow meter 131 for measuring the air flow rate and a pressure adjusting valve 132 for adjusting the intake pressure. The aforementioned EGR pipe 126 is connected to the intake passage 130. Further, the intake pipe 110 is provided with an oxygen concentration sensor 134 for detecting the oxygen concentration of the mixed gas on the intake side (the gas obtained by mixing the intake air supplied from the intake passage 130 and the EGR gas).
 ECU200は、アクセル開度センサ300の検出信号や各種センサ信号に基づいて要求トルクを演算する。ECU200は各種センサの出力から得られる内燃機関100の運転状態に基づいて、圧力調整バルブ132の開度、スロットルバルブ113の開度、燃料噴射弁107の噴射パルス期間、点火プラグ105の点火時期、吸気バルブ102および排気バルブ103の開閉時期、EGRバルブ128の開度などの内燃機関100の主要な作動量を演算する。 ECU 200 calculates a required torque based on detection signals from accelerator opening sensor 300 and various sensor signals. The ECU 200 determines the opening degree of the pressure adjustment valve 132, the opening degree of the throttle valve 113, the injection pulse period of the fuel injection valve 107, the ignition timing of the ignition plug 105, based on the operating state of the internal combustion engine 100 obtained from the outputs of various sensors. The main operating amounts of the internal combustion engine 100 such as the opening / closing timing of the intake valve 102 and the exhaust valve 103 and the opening degree of the EGR valve 128 are calculated.
 混合ガスは、インタークーラ112、吸気管110、サージタンク114、及びタンブルバルブ115を通り吸気バルブ102を経て燃焼室R1内に流入する。この混合ガスは、燃料が燃料噴射弁107から噴射され、燃焼室R1内に混合気を形成する。混合気は所定の点火時期で点火プラグ105から発生される火花により着火・燃焼する。その混合器の燃焼による燃焼圧により、ピストン101が押し下げられ、内燃機関100の駆動力となる。
 燃焼後の排気ガスは、排気バルブ103、排気管111、タービン125bを経て三元触媒123に送られ、三元触媒123内でNOx、CO、HC成分が浄化された後、排気通路121を経て三元触媒129で再度浄化されて外部に排出される。
The mixed gas flows into the combustion chamber R1 through the intercooler 112, the intake pipe 110, the surge tank 114, and the tumble valve 115 and the intake valve 102. As for this mixed gas, fuel is injected from the fuel injection valve 107 to form an air-fuel mixture in the combustion chamber R1. The air-fuel mixture is ignited and burned by a spark generated from the spark plug 105 at a predetermined ignition timing. The piston 101 is pushed down by the combustion pressure generated by the combustion of the mixer, and becomes a driving force of the internal combustion engine 100.
The exhaust gas after combustion is sent to the three-way catalyst 123 through the exhaust valve 103, the exhaust pipe 111, and the turbine 125b. After the NOx, CO, and HC components are purified in the three-way catalyst 123, the exhaust gas passes through the exhaust passage 121. It is purified again by the three-way catalyst 129 and discharged outside.
 また、排気ガスの一部は、EGRガスとしてEGR配管126、EGRクーラ127、EGRバルブ128を経て吸気通路130に導入され、この導入領域で吸入空気とEGRガスとが合流される。吸入空気とEGRガスからなる混合ガスは、吸気管110等を通過して燃焼室R1に到達する。 Further, a part of the exhaust gas is introduced into the intake passage 130 as EGR gas through the EGR pipe 126, the EGR cooler 127, and the EGR valve 128, and the intake air and the EGR gas are merged in this introduction region. The mixed gas composed of intake air and EGR gas passes through the intake pipe 110 and the like and reaches the combustion chamber R1.
 図2は、第1の実施の形態のECU200の構成を、機能ブロック図により示している。
 ECU200は、入力回路201、CPU202、RAM203、ROM204、入出力ポート205、目標供給エネルギー設定部206、電流波形生成部207、各種駆動回路208~213、及び電力制御部214から大略構成されている。
FIG. 2 is a functional block diagram showing the configuration of the ECU 200 according to the first embodiment.
The ECU 200 generally includes an input circuit 201, a CPU 202, a RAM 203, a ROM 204, an input / output port 205, a target supply energy setting unit 206, a current waveform generation unit 207, various drive circuits 208 to 213, and a power control unit 214.
 入力回路201は、各種センサから検出信号の入力を受けるインタフェース回路である。CPU202は、ECU200の全体の制御を司る演算制御回路である。RAM203は入出力される各種データを一時記憶するための記憶部である。ROM204は、演算処理内容を記述した制御プログラムを記憶する。入出力ポート205は、入力回路201から入力される検出信号をRAM203を介して(一時記憶させた後)CPU202に入力させるとともに、CPU202、RAM203、ROM204から転送された信号を各種駆動回路208~213に向けて出力する機能を有する。入力回路201に送られる検出信号のうち、アナログ信号で入力される検出信号は、入力回路201に設けられたA/D変換器(図示せず)によりデジタル信号に変換されてから入力される。 The input circuit 201 is an interface circuit that receives detection signals from various sensors. The CPU 202 is an arithmetic control circuit that controls the entire ECU 200. A RAM 203 is a storage unit for temporarily storing various types of input / output data. The ROM 204 stores a control program describing the contents of arithmetic processing. The input / output port 205 causes the detection signal input from the input circuit 201 to be input to the CPU 202 via the RAM 203 (after being temporarily stored), and the signals transferred from the CPU 202, RAM 203, and ROM 204 to be supplied to various drive circuits 208 to 213. It has the function to output toward Of the detection signals sent to the input circuit 201, the detection signal inputted as an analog signal is inputted after being converted into a digital signal by an A / D converter (not shown) provided in the input circuit 201.
 目標供給エネルギー設定部206は、内燃機関の与えられた運転条件、及び点火プラグ105の点火に関連する物理量に従い、点火プラグ105に供給すべきエネルギーの量としての目標供給エネルギーEtarを設定する機能を有する。電流波形生成部207は、設定された目標供給エネルギーEtarに従い、点火プラグ105に供給するパルス状の電流の波形に関する電流波形データを生成する機能を有する。 The target supply energy setting unit 206 sets a target supply energy E tar as an amount of energy to be supplied to the spark plug 105 in accordance with a given operating condition of the internal combustion engine and a physical quantity related to ignition of the spark plug 105. Have The current waveform generation unit 207 has a function of generating current waveform data related to the waveform of the pulsed current supplied to the spark plug 105 according to the set target supply energy E tar .
 駆動回路208~213は、一例として、圧力調整バルブ駆動回路208、スロットルバルブ駆動回路209、可変バルブ機構(VTC)駆動回路210、噴射弁駆動回路211、点火信号出力回路212、及びEGRバルブ駆動回路213を備える。圧力調整バルブ駆動回路208は、圧力調整バルブ132を駆動するアクチュエータである。また、スロットルバルブ駆動回路209は、スロットルバルブ113を駆動するアクチュエータである。VTC駆動回路210は、吸気バルブ102及び排気バルブ103を駆動するアクチュエータ(弁駆動回路)である。噴射弁駆動回路211は、燃料噴射弁107を駆動するアクチュエータである。点火信号出力回路212は、点火プラグ105を点火させるための点火信号を出力する。EGRバルブ駆動回路213は、EGRバルブ128を駆動するアクチュエータ(弁駆動回路)である。また、電力制御部213は、電流波形生成部207で生成された電流波形データに従った電力を点火プラグ105に供給するための電流制御及び電圧制御を行う制御回路である。 For example, the drive circuits 208 to 213 include a pressure adjustment valve drive circuit 208, a throttle valve drive circuit 209, a variable valve mechanism (VTC) drive circuit 210, an injection valve drive circuit 211, an ignition signal output circuit 212, and an EGR valve drive circuit. 213. The pressure adjustment valve drive circuit 208 is an actuator that drives the pressure adjustment valve 132. The throttle valve drive circuit 209 is an actuator that drives the throttle valve 113. The VTC drive circuit 210 is an actuator (valve drive circuit) that drives the intake valve 102 and the exhaust valve 103. The injection valve drive circuit 211 is an actuator that drives the fuel injection valve 107. The ignition signal output circuit 212 outputs an ignition signal for igniting the ignition plug 105. The EGR valve drive circuit 213 is an actuator (valve drive circuit) that drives the EGR valve 128. The power control unit 213 is a control circuit that performs current control and voltage control for supplying power to the ignition plug 105 according to the current waveform data generated by the current waveform generation unit 207.
<電流波形生成部207>
 図3は、電流波形生成部207のより詳細な構成の一例を示すブロック図である。電流波形生成部207は、一例として、維持電流設定部2071、初期電流設定部2072、加熱継続期間計算部2073、電流変化率設定部2074、及び補正部2075を備えている。これにより、電流波形生成部207は、図3の右下に示すように、初期電流iini、電流変化率Rcc、及び維持電流itarを有する電流波形を生成するための電流波形データを生成する。初期電流iiniは、電流パルス波形の立ち上がりにおける電流である。また、維持電流itarは、当該電流パルス波形の少なくとも後段において維持され、電流上昇の目標値となる電流であり、初期電流iiniよりも大きい電流である。また、電流変化率Rccは、初期電流iiniから維持電流itarへと電流値が増大する場合における電流の単位時間当たりの変化の度合(傾き)を表している。初期電流iini、維持電流itar、電流変化率Rccが順次決定されることにより電流波形データが生成される。
<Current waveform generation unit 207>
FIG. 3 is a block diagram illustrating an example of a more detailed configuration of the current waveform generation unit 207. As an example, the current waveform generation unit 207 includes a sustain current setting unit 2071, an initial current setting unit 2072, a heating duration calculation unit 2073, a current change rate setting unit 2074, and a correction unit 2075. As a result, the current waveform generator 207 generates current waveform data for generating a current waveform having the initial current i ini , the current change rate R cc , and the sustain current i tar as shown in the lower right of FIG. To do. The initial current i ini is a current at the rising edge of the current pulse waveform. In addition, the sustain current i tar is a current that is maintained at least in the subsequent stage of the current pulse waveform and becomes a target value for current increase, and is a current that is larger than the initial current i ini . The current change rate R cc represents the degree of change (slope) of the current per unit time when the current value increases from the initial current i ini to the sustain current i tar . Current waveform data is generated by sequentially determining the initial current i ini , the sustain current i tar and the current change rate R cc .
 維持電流設定部2071は、目標供給エネルギー設定部206で設定された目標供給エネルギーEtarに従って、上述の維持電流itarを設定する。
 目標供給エネルギー設定部206は、前述のように、内燃機関100に与えられた運転条件、及び点火プラグ105の点火に関連する物理量に従い、点火プラグ105に供給すべきエネルギーの量としての目標供給エネルギーEtarを設定する機能を有する。ここでは、点火プラグ105の点火に関連する物理量として、点火プラグ105を通過する混合気の圧力に関する圧力情報、混合気の温度情報、混合気の組成情報、及び混合気の流速情報が入力される。これ以外の物理量が含まれていても良いし、その組み合わせは任意である。
The sustain current setting unit 2071 sets the above-described sustain current i tar according to the target supply energy E tar set by the target supply energy setting unit 206.
As described above, the target supply energy setting unit 206 is a target supply energy as an amount of energy to be supplied to the spark plug 105 in accordance with the operating condition given to the internal combustion engine 100 and a physical quantity related to ignition of the spark plug 105. E tar has a function of setting. Here, pressure information relating to the pressure of the air-fuel mixture passing through the spark plug 105, temperature information of the air-fuel mixture, composition information of the air-fuel mixture, and flow rate information of the air-fuel mixture are input as physical quantities related to ignition of the spark plug 105. . Other physical quantities may be included, and combinations thereof are arbitrary.
 初期電流設定部2072は、内燃機関100に与えられた運転条件、及び点火プラグ105の点火に関連する物理量に従い、点火プラグ105に供給すべき電流パルスの初期値である初期電流iiniを設定する機能を有する。 The initial current setting unit 2072 sets an initial current i ini that is an initial value of a current pulse to be supplied to the spark plug 105 in accordance with an operation condition given to the internal combustion engine 100 and a physical quantity related to ignition of the spark plug 105. It has a function.
 加熱継続期間計算部2073は、内燃機関100に与えられた運転条件、点火プラグ105の点火に関連する物理量、及び維持電流設定部2071で設定された維持電流itarに従い、電流パルス波形の立ち上がりから、維持電流itarに達するまでの間の時間である加熱継続期間Δtを計算する機能を有する。 The heating duration calculation unit 2073 starts from the rising edge of the current pulse waveform according to the operating condition given to the internal combustion engine 100, the physical quantity related to ignition of the ignition plug 105, and the maintenance current i tar set by the maintenance current setting unit 2071. , And has a function of calculating the heating duration Δt R which is the time until the sustain current i tar is reached.
 電流変化率設定部2074は、維持電流設定部2071で設定された維持電流itar、初期電流設定部2072で設定された初期電流iini、及び加熱継続期間計算部2073で計算された加熱継続期間Δtに基づき、電流変化率Rcc=di/dtを設定する。 The current change rate setting unit 2074 includes the sustain current i tar set by the sustain current setting unit 2071, the initial current i ini set by the initial current setting unit 2072, and the heating duration calculated by the heating duration calculation unit 2073. Based on Δt R , a current change rate R cc = di / dt is set.
 補正部2075は、維持電流設定部2071で設定された維持電流itar、加熱継続期間計算部2073で計算された加熱継続期間Δt等により達成可能と予想されるエネルギーである達成可能エネルギーEを計算し、この達成可能エネルギーEと、前述の目標供給エネルギーEtarとを比較する。そして、補正部2075は、この比較の結果に従い、維持電流itarや電流変化率Rccなどの物理量を補正する。 The correction unit 2075 is an achievable energy E o that is energy that is expected to be achieved by the sustain current i tar set by the sustain current setting unit 2071, the heating duration Δt R calculated by the heating duration calculation unit 2073, and the like. And the achievable energy E o is compared with the target supply energy E tar described above. Then, the correction unit 2075 corrects physical quantities such as the sustain current i tar and the current change rate R cc according to the comparison result.
 本実施の形態の内燃機関制御装置は、点火プラグ105に与える電流を設定する場合に、適切な電流変化率Rccを設定することで、点火プラグ105の放電路の長さを確保するとともに、十分なギャップ間供給エネルギーを確保し、これにより、混合気への着火を良好に行って着火性能及び燃費性能を向上させることができる。 The internal combustion engine control apparatus of the present embodiment ensures the length of the discharge path of the spark plug 105 by setting an appropriate current change rate Rcc when setting the current to be supplied to the spark plug 105, Enough supply energy between the gaps can be ensured, whereby the mixture can be favorably ignited to improve the ignition performance and fuel efficiency.
 図4及び図5を参照して、最適な電流変化率Rccを設定することの意義について説明する。図4は、異なる電流変化率Rccを有する電流パルス波形の例と、それにより得られる各種物理量の変化を示すグラフであり、図5は、異なる電流変化率Rccを有する電流パルス(1)~(3)の特性の差を示すグラフである。
 図4の一番上のグラフは、点火プラグ105に流れる電流パルスの波形(1)~(3)を示している。(1)は第1の比較例の電流パルス波形であり、電流変化率Rccが非常に大きい波形である。(3)は第2の比較例の電流パルス波形であり、電流変化率Rccが小さく、緩やかに維持電流itarに到達する波形である。(2)が、第1の実施の形態で採用される電流パルス波形の一例である。
Referring to FIGS. 4 and 5, will be explained the significance of setting the optimum current change rate R cc. FIG. 4 is a graph showing examples of current pulse waveforms having different current change rates R cc and changes in various physical quantities obtained thereby, and FIG. 5 shows current pulses (1) having different current change rates R cc. 3 is a graph showing differences in characteristics of (3) to (3)
The top graph in FIG. 4 shows waveforms (1) to (3) of current pulses flowing through the spark plug 105. (1) is a current pulse waveform of the first comparative example, which is a waveform with a very large current change rate Rcc . (3) is a current pulse waveform of the second comparative example, in which the current change rate R cc is small and the waveform gradually reaches the sustain current i tar . (2) is an example of a current pulse waveform employed in the first embodiment.
 図6に示すように、点火プラグ105の両電極の間の放電路の長さは、両電極間の電圧や電流によって変化し、更に混合気の流速によって変化し得る。
 図4の2番目のグラフに示すように、点火プラグ105の放電路の伸びは、(2)の波形が最も大きくなり得ることが判る。放電路の伸びが大きくなることにより、例えば燃焼室内の圧力が高い場合などにおいても、着火性能を維持することができる。(3)の波形では、初回の放電での放電路の伸びに電流の増加が追い付かず、小さい放電路の伸びの後再放電が発生してしまう。その結果、放電路の伸びは(1)、(2)の波形の半分程度となってしまい、好ましくない。
As shown in FIG. 6, the length of the discharge path between both electrodes of the spark plug 105 varies depending on the voltage and current between both electrodes, and may vary depending on the flow rate of the air-fuel mixture.
As shown in the second graph of FIG. 4, it can be seen that the waveform of (2) can be the largest in the extension of the discharge path of the spark plug 105. By increasing the elongation of the discharge path, the ignition performance can be maintained even when the pressure in the combustion chamber is high, for example. In the waveform (3), the increase in current cannot catch up with the extension of the discharge path in the first discharge, and re-discharge occurs after the extension of the small discharge path. As a result, the elongation of the discharge path becomes about half of the waveforms of (1) and (2), which is not preferable.
 一方、図4の3番目のグラフに示すように、点火プラグ105のギャップ間電圧は、(1)の波形と(2)の波形とで殆ど差が無い。また、図4の一番下のグラフに示すように、点火プラグ105のギャップ間発生エネルギーに関しては、(2)の波形は、(1)の波形に比べ電流変化率が小さいにも拘わらず、(1)の波形と略同等である。図5に示すように、初回の放電における比較においても、(2)の波形は、放電路の伸びが(1)の波形よりも大きく、ギャップ間発生エネルギーに関しても、(1)の屁系と殆ど見劣りしない。このように、適切な大きさの電流変化率Rccを有する電流パルス波形を生成することで、ギャップ間発生エネルギーを確保しつつ、放電路の伸びを大きくすることができ、これにより混合気への着火を良好に行って着火性能及び燃費性能を向上させることができる。 On the other hand, as shown in the third graph of FIG. 4, the gap voltage of the spark plug 105 has almost no difference between the waveform (1) and the waveform (2). Further, as shown in the bottom graph of FIG. 4, regarding the generated energy between the gaps of the spark plug 105, the waveform of (2) has a smaller current change rate than the waveform of (1), It is substantially equivalent to the waveform of (1). As shown in FIG. 5, also in the comparison in the first discharge, the waveform of (2) is larger in the extension of the discharge path than the waveform of (1), and the generated energy between the gaps is also the same as that of (1) Almost inferior. In this way, by generating a current pulse waveform having a current change rate R cc of an appropriate magnitude, it is possible to increase the extension of the discharge path while ensuring the energy generated between the gaps, and thereby to the air-fuel mixture. The ignition performance and the fuel consumption performance can be improved by performing the ignition of the fuel.
 <目標供給エネルギー設定部206の動作>
 目標供給エネルギー設定部206における目標供給エネルギーEtarの設定の方法(動作)の一例を説明する。
 目標供給エネルギーEtarは、混合気への自着火及び火炎核成長を実現するのに必要なエネルギーを定めた以下の理論式により定義することができる。
<Operation of Target Supply Energy Setting Unit 206>
An example of a method (operation) for setting the target supply energy E tar in the target supply energy setting unit 206 will be described.
The target supply energy E tar can be defined by the following theoretical formula that defines the energy required to realize self-ignition to the air-fuel mixture and flame kernel growth.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ただし、ρは混合気の密度、cは比熱、Ttarは目標温度、Tadvは点火時期温度、Lは放電路の円筒径(電極径)、dは電極間距離、hは定数、Tplugはプラグ温度、EFLは火炎成長エネルギーを示す。 Where ρ is the density of the air-fuel mixture, c p is the specific heat, T tar is the target temperature, T adv is the ignition timing temperature, L is the cylinder diameter (electrode diameter) of the discharge path, d is the distance between the electrodes, h is a constant, T “plug” indicates plug temperature, and “E FL” indicates flame growth energy.
 目標供給エネルギー設定部206における目標供給エネルギーEtarの設定の方法(動作)の別の例を図7を参照して説明する。目標供給エネルギーEtarは、一例として、図7に示すような目標供給エネルギーマップに従って結成することができる。異なる空燃比又はEGR率毎に複数のマップが設けられており、個々のマップは、エンジン回転数と図示平均有効圧(IMEP)との組み合わせ毎に規定された目標供給エネルギーEtarのデータを有している。このマップによれば、空燃比又はEGR率が定まり、次いで回転数とIMEPが定まることにより、一意に目標供給エネルギーTtarを決定することができる。 Another example of a method (operation) for setting the target supply energy E tar in the target supply energy setting unit 206 will be described with reference to FIG. For example, the target supply energy E tar can be formed according to a target supply energy map as shown in FIG. A plurality of maps are provided for each different air-fuel ratio or EGR rate, and each map has data of the target supply energy E tar defined for each combination of the engine speed and the indicated mean effective pressure (IMEP). is doing. According to this map, the target supply energy T tar can be uniquely determined by determining the air-fuel ratio or the EGR rate and then determining the rotational speed and IMEP.
<維持電流設定部2071の動作>
 次に、維持設定部2071での維持電流itarの設定の方法(動作)の一例を説明する。
 一例として、点火プラグ105の電極間電圧をV、電極間距離をd、電極間の混合気の流速をu、内燃機関100の気筒の圧力をp、c、α、βを定数とした場合、目標供給エネルギーEtarと維持電流itarは、次の式[数2]に示す関係を有する。目標供給エネルギーEtarが決まると、この数式に従って維持電流itarを定めることができる。
<Operation of Sustain Current Setting Unit 2071>
Next, an example of a method (operation) for setting the sustain current i tar in the sustain setting unit 2071 will be described.
As an example, the voltage between the electrodes of the spark plug 105 is V g , the distance between the electrodes is d, the flow rate of the air-fuel mixture between the electrodes is u, and the cylinder pressure of the internal combustion engine 100 is p, co , α, and β are constants. In this case, the target supply energy E tar and the maintenance current i tar have a relationship represented by the following formula [Equation 2]. When the target supply energy E tar is determined, the maintenance current i tar can be determined according to this mathematical formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、電極間電圧V、電極間距離d、電極間の混合気の流速u、内燃機関100の気筒の圧力pなどに従って放電路の伸び量は予測することができ、この放電路の伸び量に基づいて、維持電流itarを定めることも可能である。 Further, the extension amount of the discharge path can be predicted according to the inter-electrode voltage V g , the inter-electrode distance d, the flow rate u of the air-fuel mixture between the electrodes, the pressure p of the cylinder of the internal combustion engine 100, and the like. It is also possible to determine the sustain current i tar based on.
 なお、この数式[数2]から分かるように、目標供給エネルギーEtarが一定である場合においては、気筒の圧力pが小さいほど、維持電流itarを小さい値に設定することができる。また、混合気の流速uが小さいほど、維持電流itarを小さい値に設定することができる。また、目標供給エネルギー設定部206には、内燃機関の運転条件としてエンジン回転数を入力することもできる。この場合、維持電流設定部2071は、エンジン回転数が小さいほど、維持電流itarを小さい値に設定することができる。
 また、目標供給エネルギー設定部206には、内燃機関の運転条件としてタンブル制御バルブ115の開度を入力することできる。この場合、維持電流設定部2071は、タンブル制御バルブ115の開度が大きいほど、維持電流itarを小さい値に設定することができる。更に、維持電流定部2071は、流速uspが小さいほど、維持電流itarを小さい値に設定することができる。
As can be seen from the equation [Equation 2], when the target supply energy E tar is constant, the smaller the cylinder pressure p, the smaller the sustain current i tar can be set. Further, the smaller the flow velocity u of the air-fuel mixture, the smaller the sustain current i tar can be set. The target supply energy setting unit 206 can also input the engine speed as an operating condition of the internal combustion engine. In this case, the sustain current setting unit 2071 can set the sustain current i tar to a smaller value as the engine speed is smaller.
Further, the opening degree of the tumble control valve 115 can be input to the target supply energy setting unit 206 as the operating condition of the internal combustion engine. In this case, the sustain current setting unit 2071 can set the sustain current i tar to a smaller value as the opening degree of the tumble control valve 115 is larger. Furthermore, the sustaining current setting unit 2071 can set the sustaining current i tar to a smaller value as the flow velocity u sp is smaller.
<初期電流設定部2072の動作>
 続いて、初期電流設定部2072での初期電流iiniの設定の方法を、図8~図10を参照して説明する。図8は、点火プラグ105の周囲の混合気の流速が所定の値の場合における、初期電流iiniと、点火プラグ105の放電路の伸び量との関係を示している。
<Operation of Initial Current Setting Unit 2072>
Next, a method for setting the initial current i ini in the initial current setting unit 2072 will be described with reference to FIGS. FIG. 8 shows the relationship between the initial current i ini and the amount of expansion of the discharge path of the spark plug 105 when the flow rate of the air-fuel mixture around the spark plug 105 is a predetermined value.
 この図8の例では、初期電流iiniが小さい領域では、初期電流iiniが増加するに従って放電路の伸び量も増加するが、初期電流iiniがある値以上になると、放電路の伸び量は飽和する。このため、図8の例では、放電路の伸び量の飽和が見られない範囲において、他のファクターも考慮して初期電流iiniを決定することができる。例えば、図9に示すように、点火コイル106の2次側コイル(図示せず)の2次電流や2次電圧の波形も考慮して、初期電流iiniを決定することも可能である。また、初期電流iiniは、放電路追従性Cも考慮しつつ決定することができる。放電路追従性Cとは、放電路の長さが、混合気の圧力の変化に追従して放電路の長さが変動する度合(しやすさ)を示した数値である。放電路追従性Cは、図10に示すように、気筒の温度T、圧力pなどの関数として、例えば以下の式で表すことができる。 In the example of FIG. 8, in the initial current i ini small area, but also increased the elongation amount of the discharge path in accordance with an initial current i ini increases, it becomes more than a certain value initial current i ini, elongation amount of the discharge path Is saturated. Therefore, in the example of FIG. 8, the initial current i ini can be determined in consideration of other factors within a range where saturation of the extension amount of the discharge path is not observed. For example, as shown in FIG. 9, it is also possible to determine the initial current i ini in consideration of the waveform of the secondary current and secondary voltage of the secondary coil (not shown) of the ignition coil 106. Further, the initial current i ini can be determined in consideration of the discharge path followability C. The discharge path follow-up property C is a numerical value indicating the degree (ease of ease) that the length of the discharge path varies following the change in the pressure of the air-fuel mixture. As shown in FIG. 10, the discharge path followability C can be expressed as a function of the cylinder temperature T, the pressure p, and the like by, for example, the following expression.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、Crefは定数、uspは点火プラグ105の周囲の混合気の流速[m/s]、Tは基準温度、Poは基準圧力である。 Here, C ref is a constant, the u sp velocity of the mixture around the spark plug 105 [m / s], T o is the reference temperature, Po is the reference pressure.
 放電路追従性Cが大きい場合、初期電流iiniも大きく設定することができ、放電路追従性Cが小さい場合、初期電流iiniも小さく設定することができる。図10に示すように、放電路追従性Cは、気筒の温度Tが大きいほど大きくなり、圧力pが大きいほど大きくなる。このため、初期電流設定部2072は、圧力pが小さいほど、初期電流iiniを小さい値に設定することができる。また、エンジン回転数に関しても同様であり、初期電流設定部2072は、エンジン回転数が小さいほど、初期電流iiniを小さい値に設定することができる。また、タンブル制御バルブ115の開度についても同様であり、初期電流設定部2072は、タンブル制御バルブ115の開度が大きいほど、初期電流iiniを小さい値に設定することができる。更に、初期電流設定部2072は、流速uspが小さいほど、電流変化率Rccを小さい値に設定することができる。
 また、上述の[数3]からも明らかなように、初期電流設定部2072は、点火プラグ105の周囲の流速が小さいほど、初期電流iiniを小さい値に設定することができる。
When the discharge path followability C is large, the initial current i ini can be set large, and when the discharge path followability C is small, the initial current i ini can also be set small. As shown in FIG. 10, the discharge path follow-up property C increases as the cylinder temperature T increases, and increases as the pressure p increases. For this reason, the initial current setting unit 2072 can set the initial current i ini to a smaller value as the pressure p is smaller. The same applies to the engine speed, and the initial current setting unit 2072 can set the initial current i ini to a smaller value as the engine speed is lower. The same applies to the opening degree of the tumble control valve 115, and the initial current setting unit 2072 can set the initial current i ini to a smaller value as the opening degree of the tumble control valve 115 is larger. Furthermore, the initial current setting unit 2072 can set the current change rate Rcc to a smaller value as the flow velocity usp is smaller.
Further, as is clear from the above [Equation 3], the initial current setting unit 2072 can set the initial current i ini to a smaller value as the flow velocity around the spark plug 105 is smaller.
<加熱継続期間計算部2073の動作>
 次に、加熱継続期間計算部2073での加熱継続期間Δtの計算の方法を、図11を参照して説明する。前述の通り、加熱継続期間計算部2073は、内燃機関100に与えられた運転条件、点火プラグ105の点火に関連する物理量に加え、維持電流設定部2071で設定された維持電流itarもファクターとして加熱継続期間Δtを計算する。具体的には、図11に示すように、維持電流itarから特定される放電路の伸び量L、エンジン回転数やタンブル制御バルブ115の開度から特定される点火プラグ105の周囲の流速usp、及び温度や圧力の情報から特定される放電路追従性Cに基づいて、加熱継続期間Δtは、次の式により特定される。
<Operation of Heating Duration Calculation Unit 2073>
Next, a method for calculating the heating duration Δt R in the heating duration calculation unit 2073 will be described with reference to FIG. As described above, the heating duration calculation unit 2073 uses the maintenance current i tar set by the maintenance current setting unit 2071 as a factor in addition to the operating conditions given to the internal combustion engine 100 and the physical quantities related to ignition of the spark plug 105. The heating duration Δt R is calculated. Specifically, as shown in FIG. 11, the flow velocity u around the spark plug 105 specified from the discharge path elongation L specified from the sustain current i tar , the engine speed and the opening of the tumble control valve 115. The heating duration Δt R is specified by the following formula based on the discharge path follow-up property C specified from the information on sp 1 and temperature and pressure.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
<電流変化率設定部2074の動作>
 電流変化率設定部2074での電流変化率Rccの設定の方法(動作)を、図12を参照して説明する。
 電流変化率Rccは、図12に示すように、加熱継続期間計算部2073で求められた加熱継続期間Δtと、維持電流itar、及び初期電流iiniとに基づいて、以下の式に基づいて決定することができる。
<Operation of Current Change Rate Setting Unit 2074>
A method (operation) for setting the current change rate R cc in the current change rate setting unit 2074 will be described with reference to FIG.
As shown in FIG. 12, the current change rate R cc is expressed by the following equation based on the heating duration Δt R obtained by the heating duration calculation unit 2073, the sustain current i tar , and the initial current i ini. Can be determined based on.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 なお、電流変化率Rccは、維持電流itarと上記の関係にあるので、電流変化率設定部2074は、圧力pが大きいほど、電流変化率Rccを大きい値に設定することができる。また、電流変化率設定部2074は、気筒の温度Tが高いほど、電流変化率Rccを大きい値に設定することができる。また、電流変化率設定部2074は、エンジン回転数が大きいほど、電流変化率Rccを大きい値に設定することができる。加えて、電流変化率設定部2074は、タンブル制御バルブ115の開度が大きいほど、電流変化率Rccを小さい値に設定することができる。更に、電流変化率設定部2074は、流速uspが大きいほど、電流変化率Rccを小さい値に設定することができる。 Since the current change rate R cc has the above relationship with the sustain current i tar , the current change rate setting unit 2074 can set the current change rate R cc to a larger value as the pressure p increases. Further, the current change rate setting unit 2074 can set the current change rate Rcc to a larger value as the cylinder temperature T is higher. Moreover, the current change rate setting unit 2074 can set the current change rate Rcc to a larger value as the engine speed increases. In addition, the current change rate setting unit 2074 can set the current change rate R cc to a smaller value as the opening degree of the tumble control valve 115 is larger. Furthermore, the current change rate setting unit 2074 can set the current change rate R cc to a smaller value as the flow velocity u sp increases.
 また、電流変化率設定部2074は、電流変化率Rccを設定する場合において、点火プラグ105の放電路の伸び量が最大となる時点よりも前に、目標供給エネルギー算出部(206)により算出した目標供給エネルギー量Etarに相当する電流及び電圧を点火プラグ105に供給するよう、電流変化率Rccを設定することが好ましい。すなわち、点火プラグ105の放電路の伸び量が最大となる前に、目標供給エネルギー量Etarを点火プラグ105に流すように電流を制御するのが好ましい。このように電流変化率Rccが設定されることにより、放電路の伸びを安定的に大きくすることができ、失火の発生を確実に防止することができる。電力制御部214は、この設定された電流波形データに従って電流を供給する。 The current change rate setting unit 2074 calculates, in a case of setting the current change rate R cc, prior to the time when the elongation amount of the discharge path of the spark plug 105 is maximized, the target electric energy calculating unit (206) It is preferable to set the current change rate Rcc so that a current and voltage corresponding to the target supply energy amount E tar are supplied to the spark plug 105. That is, it is preferable to control the current so that the target supply energy amount Etar flows through the spark plug 105 before the extension amount of the discharge path of the spark plug 105 reaches the maximum. By setting the current change rate Rcc in this manner, the elongation of the discharge path can be stably increased, and the occurrence of misfire can be reliably prevented. The power control unit 214 supplies current according to the set current waveform data.
<補正部2075の動作>
 以上のようにして、目標供給エネルギーEtar、維持電流itar、初期電流iini、加熱継続期間Δt、電流変化率Rccが得られたら、補正部2075において、得られた値の補正が行われる。
<Operation of Correction Unit 2075>
When the target supply energy E tar , the maintenance current i tar , the initial current i ini , the heating duration Δt R , and the current change rate R cc are obtained as described above, the correction unit 2075 corrects the obtained values. Done.
 図13は、補正部2075における補正の手順の一例を示すフローチャートである。
 まず、ステップS11では、設定された各種数値により達成可能なエネルギーである達成可能エネルギーEが計算される。一例として、達成可能エネルギーEは、E=V×itar×Δtにより計算し得る。
FIG. 13 is a flowchart illustrating an example of a correction procedure in the correction unit 2075.
First, in step S11, an achievable energy E o that is an achievable energy by various set numerical values is calculated. As an example, the achievable energy E o may be calculated by E o = V g × i tar × Δt R.
 続いて、ステップS12、S13では、達成可能エネルギーEと、前述の目標供給エネルギーEtarとを比較して、両者の大小関係を判定する。もし、Eo=Etar(又はE≒Etar)であれば、補正を行わず(ステップS14)、補正部2075は、得られた数値をそのまま電流波形データとして出力する。 Subsequently, in steps S12 and S13, the achievable energy E o is compared with the target supply energy E tar described above, and the magnitude relationship between the two is determined. If Eo = E tar (or E o ≈E tar ), no correction is performed (step S14), and the correction unit 2075 outputs the obtained numerical value as it is as current waveform data.
 一方、E>Etarである場合(S12のYes)、補正部2075は維持電流itarに補正を行い、補正値itar’を新たな維持電流とする(ステップS15)。補正値itar’は、例えばitar’=max(Itar×Etar/E、ilim,b)に設定される(ただし、ilim,bは維持電流itarの下限値である)。これにより、維持電流itarはより低い値に補正され、達成可能エネルギーEも目標供給エネルギーEtarと略等しい値に調整される。 On the other hand, if E o > E tar (Yes in S12), the correction unit 2075 corrects the sustain current i tar and sets the correction value i tar ′ as a new sustain current (step S15). The correction value i tar ′ is set to, for example, i tar ′ = max (I tar × E tar / E o , i lim, b ) (where i lim, b is the lower limit value of the sustain current i tar ). . Thereby, the sustain current i tar is corrected to a lower value, and the achievable energy E o is also adjusted to a value substantially equal to the target supply energy E tar .
 E<Etarである場合(S13のYes)、補正部2075は維持電流itarに補正を行い、補正値itar’を新たな維持電流とする(ステップS16)。補正値itar’は、例えばitar’=min(Itar×Etar/E、ilim,u)に設定される(ただし、ilim,uは維持電流itarの上限値である)。これにより、維持電流itarはより大きい値に補正され、達成可能エネルギーEも目標供給エネルギーEtarと略等しい値に調整される。 When E o <E tar (Yes in S13), the correction unit 2075 corrects the sustain current i tar and sets the correction value i tar ′ as a new sustain current (step S16). The correction value i tar ′ is set to, for example, i tar ′ = min (I tar × E tar / E o , i lim, u ) (where i lim, u is the upper limit value of the sustain current i tar ). . Thereby, the sustain current i tar is corrected to a larger value, and the achievable energy E o is also adjusted to a value substantially equal to the target supply energy E tar .
 ステップs15又はS16で維持電流itarの補正がなされると(itar→itar’)続いてステップS17で電流変化率Rccの補正が行われる。ここでは、新たに得られた維持電流itarの補正値itar’を用いて、電流変化率Rcc’=(itar’-iini)/(a×Δt)が新たな電流変化率Rccとされる。
 以上、補正部2075における補正の動作についての一例を説明した。上記の例では、維持電流itar及び電流変化率Rccについて補正を行う場合を説明したが、これに代えて、初期電流iini、維持電流itar及び電流変化率Rccについて補正を行う構成を採用することも可能である。電流変化率Rccについてのみ補正を行うことも可能である。
When the sustain current itar is corrected in step s15 or S16 (i tar → i tar '), the current change rate R cc is corrected in step S17. Here, the current change rate R cc ′ = (i tar ′ −i ini ) / (a × Δt R ) is expressed as a new current change rate R using the newly obtained correction value i tar ′ of the sustain current itar. cc .
The example of the correction operation in the correction unit 2075 has been described above. In the above example, the case where the correction is performed on the sustain current i tar and the current change rate R cc has been described. Instead, the initial current i ini , the sustain current i tar and the current change rate R cc are corrected. It is also possible to adopt. It is also possible to perform correction only for the current change rate Rcc .
 図14~図16に、この第1の実施の形態による電流パルス波形データ及び放電電流の例を説明する。なお、図14~図16は、点火コイル106の1次側のコイルが、直列接続された第1コイルと第2コイルとからなり、放電電流は第1コイルに、重ね電流は第2コイルに印加される場合の動作を示している。 14 to 16, an example of current pulse waveform data and discharge current according to the first embodiment will be described. 14 to 16, the primary coil of the ignition coil 106 is composed of a first coil and a second coil connected in series. The discharge current is supplied to the first coil and the overlap current is supplied to the second coil. The operation when applied is shown.
 図14は、エンジン回転速度が徐々に増加する場合の波形を示しており、図15は、負荷が徐々に増大する場合の波形を示しており、図16は、空燃比が変化する場合の波形を示している。
 図14は、エンジン回転速度が増加するのに従って、加熱継続期間Δtが徐々に減っていく様子を示している。図15は負荷が徐々に増加するのに従って、初期電流iiniが徐々に増大する様子を示している。図16は、空燃比が増加するに従って、維持電流itarが増大していく様子を示している。
FIG. 14 shows a waveform when the engine speed gradually increases, FIG. 15 shows a waveform when the load gradually increases, and FIG. 16 shows a waveform when the air-fuel ratio changes. Is shown.
FIG. 14 shows how the heating duration Δt R gradually decreases as the engine speed increases. FIG. 15 shows how the initial current i ini gradually increases as the load gradually increases. FIG. 16 shows how the sustain current i tar increases as the air-fuel ratio increases.
<第1の実施の形態の効果>
 以上説明したように、第1の実施の形態の内燃機関制御装置によれば、目標供給エネルギー算出部206において、所定のファクターに基づいて、内燃機関の燃焼室において着火に必要なエネルギー量が算出され、電流波形生成部207において、このエネルギー量に従って点火プラグに供給する電流の波形に関するデータが生成される。そして、この電流波形データに従って電力制御部213において電力の制御がなされる。これによれば、点火プラグに供給する電流の波形が最適化され、混合気への着火を良好に行って着火性能及び燃費性能を向上させることができる。
<Effect of the first embodiment>
As described above, according to the internal combustion engine control apparatus of the first embodiment, the target supply energy calculation unit 206 calculates the amount of energy required for ignition in the combustion chamber of the internal combustion engine based on a predetermined factor. In the current waveform generation unit 207, data relating to the waveform of the current supplied to the spark plug is generated according to this energy amount. The power control unit 213 controls power according to the current waveform data. According to this, the waveform of the current supplied to the spark plug is optimized, and the air-fuel mixture can be favorably ignited to improve the ignition performance and fuel consumption performance.
[第2の実施の形態]
 次に、第2の実施の形態に係る内燃機関制御装置を、図17を参照して説明する。この第2の実施の形態の基本構成は、第1の実施の形態と同様であるので(図1~図3)、重複する説明は省略する。ただし、この第2の実施の形態では、目標供給エネルギー設定部206における目標供給エネルギーEtarの設定の方法が第1の実施の形態とは異なっている。
[Second Embodiment]
Next, an internal combustion engine control apparatus according to a second embodiment will be described with reference to FIG. Since the basic configuration of the second embodiment is the same as that of the first embodiment (FIGS. 1 to 3), duplicate description is omitted. However, in the second embodiment, the method of setting the target supply energy E tar in the target supply energy setting unit 206 is different from that of the first embodiment.
 この第2の実施の形態では、目標供給エネルギーEtarを求めるために、基準供給エネルギーマップを備えている。基準供給エネルギーマップは、目標供給エネルギーEtarを求める基準となる、基準供給エネルギーEbaseを求めるためのマップデータである。基準供給エネルギーマップは、エンジン回転数と図示平均有効圧(IMEP)との組み合わせ毎に規定される基準供給エネルギーEbaseの値の集合であり、1組のエンジン回転数の値と図示平均有効圧の値とが決まると、1つの基準供給エネルギーEbaseの値が決定される。その後、目標供給エネルギーEtarは、例えばこの基準供給エネルギーEbaseの値に、空燃比A/F、EGR率YEGR、及び点火時期温度TADVの関数Fの値を乗算した値として算出することができる。 In the second embodiment, a reference supply energy map is provided to obtain the target supply energy E tar . The reference supply energy map is map data for obtaining a reference supply energy E base that serves as a reference for obtaining the target supply energy E tar . The reference supply energy map is a set of reference supply energy E base values defined for each combination of engine speed and indicated mean effective pressure (IMEP). One set of engine speed value and indicated mean effective pressure The value of one reference supply energy E base is determined. Thereafter, the target supply energy E tar can be calculated, for example, as a value obtained by multiplying the value of the reference supply energy E base by the value of the function F of the air-fuel ratio A / F, the EGR rate Y EGR , and the ignition timing temperature TADV. it can.
[第3の実施の形態]
 次に、第3の実施の形態に係る内燃機関制御装置を、図18を参照して説明する。この第3の実施の形態の基本構成は、第1の実施の形態と同様であるので(図1~図3)、重複する説明は省略する。ただし、この第3の実施の形態では、維持電流設定部2071における維持電流itarの設定の方法が第1の実施の形態とは異なっている。
 この第3の実施の形態では、維持電流Itarを求めるために、標準維持電流マップを備えている。標準維持電流マップは、標準電流itarを求める基準となる、標準維持電流ibaseを求めるためのマップデータである。標準維持電流マップは、例えば異なる空燃比又はEGR率毎に、異なるマップとされており、個々のマップは、エンジン回転数と図示平均有効圧(IMEP)との組み合わせ毎に規定される標準維持電流ibaseの値の集合である。1組のエンジン回転数の値と図示平均有効圧の値とが決まると、1つの標準維持電流iaseの値が決定される。その後、標準電流itarは、例えばこの標準維持電流ibaseの値に、所定の変数を乗算した値として算出することができる。
[Third embodiment]
Next, an internal combustion engine control apparatus according to a third embodiment will be described with reference to FIG. Since the basic configuration of the third embodiment is the same as that of the first embodiment (FIGS. 1 to 3), duplicate description is omitted. However, in the third embodiment, the method of setting the sustain current i tar in the sustain current setting unit 2071 is different from that of the first embodiment.
In the third embodiment, a standard sustain current map is provided to obtain the sustain current I tar . The standard maintenance current map is map data for obtaining a standard maintenance current i base that is a reference for obtaining the standard current i tar . The standard maintenance current map is different for each different air-fuel ratio or EGR rate, for example. Each map is a standard maintenance current defined for each combination of engine speed and indicated mean effective pressure (IMEP). It is a set of i base values. When one set of engine speed value and indicated mean effective pressure value are determined, one standard maintenance current iase value is determined. Thereafter, the standard current i tar can be calculated as a value obtained by multiplying the value of the standard sustain current i base by a predetermined variable, for example.
[その他]
 尚、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
[Others]
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
100…内燃機関、 101…ピストン、 102…吸気バルブ、 103…排気バルブ、 105…点火プラグ、 106…点火コイル、 107…燃料噴射弁、 110…吸気管、 111…排気管、 112…インタークーラ、 113…スロットルバルブ、 114…サージタンク、 115…タンブル制御バルブ、 121…排気通路、 123、129…三元触媒、 124…空燃比センサ、 125a…コンプレッサ、 125b…タービン、 126…EGR配管、 127…EGRクーラ、 128…EGRバルブ、 130…吸気通路、 131…質量流量計、 132…圧力調整バルブ、 133…圧力センサ、 134…酸素濃度センサ、 201…入力回路、 205…入出力ポート、 206…目標供給エネルギー設定部、 207…電流波形生成部、 208…圧力調整バルブ駆動回路、 209…スロットルバルブ駆動回路、 210…可変バルブ機構(VTC)駆動回路、 211…噴射弁駆動回路、 212…点火信号出力回路、 213…EGRバルブ駆動回路、 、214…電力制御部、 300…アクセル開度センサ。 DESCRIPTION OF SYMBOLS 100 ... Internal combustion engine, 101 ... Piston, 102 ... Intake valve, 103 ... Exhaust valve, 105 ... Ignition plug, 106 ... Ignition coil, 107 ... Fuel injection valve, 110 ... Intake pipe, 111 ... Exhaust pipe, 112 ... Intercooler, 113 ... Throttle valve, 114 ... Surge tank, 115 ... Tumble control valve, 121 ... Exhaust passage, 123, 129 ... Three-way catalyst, 124 ... Air-fuel ratio sensor, 125a ... Compressor, 125b ... Turbine, 126 ... EGR piping, 127 ... EGR cooler, 128 ... EGR valve, 130 ... intake passage, 131 ... mass flow meter, 132 ... pressure regulating valve, 133 ... pressure sensor, 134 ... oxygen concentration sensor, 201 ... input circuit, 205 ... input / output port, 206 ... target Supply energy -Setting unit, 207 ... Current waveform generation unit, 208 ... Pressure adjustment valve drive circuit, 209 ... Throttle valve drive circuit, 210 ... Variable valve mechanism (VTC) drive circuit, 211 ... Injection valve drive circuit, 212 ... Ignition signal output circuit 213, EGR valve drive circuit, 214, power control unit, 300, accelerator opening sensor.

Claims (23)

  1.  点火コイルと点火プラグを備えた内燃機関を制御する内燃機関制御装置において、
     前記内燃機関の運転条件、又は前記点火プラグの点火に関連する物理量に基づいて、前記内燃機関の燃焼室に供給される混合気の着火に必要なエネルギー量を算出する目標供給エネルギー算出部と、
     前記エネルギー量に従い、前記点火プラグに供給する電流の波形に関する電流波形データを生成する電流波形生成部と、
     前記電流波形データに従って前記点火プラグに供給する電力を制御する電力制御部とを備えたことを特徴とする内燃機関制御装置。
    In an internal combustion engine controller for controlling an internal combustion engine provided with an ignition coil and an ignition plug,
    A target supply energy calculation unit that calculates an amount of energy required for ignition of an air-fuel mixture supplied to a combustion chamber of the internal combustion engine based on an operating condition of the internal combustion engine or a physical quantity related to ignition of the spark plug;
    A current waveform generator for generating current waveform data relating to a waveform of a current supplied to the spark plug according to the energy amount;
    An internal combustion engine control device comprising: an electric power control unit that controls electric power supplied to the spark plug according to the current waveform data.
  2.  前記電流波形生成部は、前記電流が維持電流に達する場合までの前記電流の単位時間当たりの変化の度合を示す電流変化率を設定する電流変化率設定部を更に備える、請求項1に記載の内燃機関制御装置。 The current waveform generation unit further includes a current change rate setting unit that sets a current change rate indicating a degree of change per unit time of the current until the current reaches a sustain current. Internal combustion engine control device.
  3.  前記電流波形生成部は、前記電流の初期値である初期電流を設定する初期電流設定部を更に備えた、請求項1又は2に記載の内燃機関制御装置。 3. The internal combustion engine control device according to claim 1, wherein the current waveform generation unit further includes an initial current setting unit that sets an initial current that is an initial value of the current.
  4.  前記電流波形生成部は、前記電流の目標値である維持電流を設定する維持電流設定部を更に備えた、請求項1~3のいずれか1項に記載の内燃機関制御装置。 The internal combustion engine control device according to any one of claims 1 to 3, wherein the current waveform generation unit further includes a maintenance current setting unit that sets a maintenance current that is a target value of the current.
  5.  前記電流波形生成部は、前記電流による加熱が継続される加熱継続期間を計算する加熱継続期間計算部を更に備える、請求項4に記載の内燃機関制御装置。 The internal combustion engine control device according to claim 4, wherein the current waveform generation unit further includes a heating duration calculation unit that calculates a heating duration during which heating by the current is continued.
  6.  前記電流波形生成部で設定した電流波形データにより必要なエネルギーを得られるか否かに従い、前記電流波形データを補正する補正部を更に備えた、請求項1~5のいずれか1項に記載の内燃機関制御装置。 The correction unit according to any one of claims 1 to 5, further comprising a correction unit that corrects the current waveform data according to whether or not necessary energy can be obtained from the current waveform data set by the current waveform generation unit. Internal combustion engine control device.
  7.  前記電力制御部は、前記点火プラグの放電路の伸び量が最大となる前に、前記目標供給エネルギー算出部により算出したエネルギー量を前記点火プラグに流すように電流を制御する、請求項1に記載の内燃機関制御装置。 The power control unit controls the current so that the amount of energy calculated by the target supply energy calculation unit flows through the spark plug before the extension amount of the discharge path of the spark plug reaches a maximum. The internal combustion engine control apparatus described.
  8.  前記物理量は前記内燃機関の気筒の圧力であり、
     前記電流変化率設定部は、前記気筒の圧力が大きいほど、前記電流変化率を大きい値に設定する、請求項2に記載の内燃機関制御装置。
    The physical quantity is a pressure of a cylinder of the internal combustion engine,
    The internal combustion engine control device according to claim 2, wherein the current change rate setting unit sets the current change rate to a larger value as the pressure of the cylinder increases.
  9.  前記物理量は前記内燃機関の気筒の温度であり、
     前記電流変化率設定部は、前記気筒の温度が高いほど、前記電流変化率を大きい値に設定する、請求項2に記載の内燃機関制御装置。
    The physical quantity is a temperature of a cylinder of the internal combustion engine,
    The internal combustion engine control device according to claim 2, wherein the current change rate setting unit sets the current change rate to a larger value as the temperature of the cylinder is higher.
  10.  前記内燃機関の運転条件はエンジン回転数であり、
     前記電流変化率設定部は、前記エンジン回転数が大きいほど、前記電流変化率を大きい値に設定する、請求項2に記載の内燃機関制御装置。
    The operating condition of the internal combustion engine is the engine speed,
    The internal combustion engine control device according to claim 2, wherein the current change rate setting unit sets the current change rate to a larger value as the engine speed increases.
  11.  前記内燃機関の運転条件はタンブル制御バルブの開度であり、
     前記電流変化率設定部は、前記タンブル制御バルブの開度が大きいほど、前記電流変化率を小さい値に設定する、請求項2に記載の内燃機関制御装置。
    The operating condition of the internal combustion engine is the opening of the tumble control valve,
    The internal combustion engine control device according to claim 2, wherein the current change rate setting unit sets the current change rate to a smaller value as the opening degree of the tumble control valve is larger.
  12.  前記内燃機関の運転条件は点火プラグ周囲の流速であり、
     前記電流変化率設定部は、前記流速が大きいほど、前記電流変化率を小さい値に設定する、請求項2に記載の内燃機関制御装置。
    The operating condition of the internal combustion engine is the flow velocity around the spark plug,
    The internal combustion engine control device according to claim 2, wherein the current change rate setting unit sets the current change rate to a smaller value as the flow velocity increases.
  13.  前記物理量は気筒の圧力であり、
     前記初期電流設定部は、前記気筒の圧力が小さいほど、前記初期電流を小さい値に設定する、請求項3に記載の内燃機関制御装置。
    The physical quantity is cylinder pressure,
    The internal combustion engine control device according to claim 3, wherein the initial current setting unit sets the initial current to a smaller value as the pressure in the cylinder is smaller.
  14.  前記内燃機関の運転条件はエンジン回転数であり、
     前記初期電流設定部は、前記エンジン回転数が小さいほど、前記初期電流を小さい値に設定する、請求項3に記載の内燃機関制御装置。
    The operating condition of the internal combustion engine is the engine speed,
    The internal combustion engine control device according to claim 3, wherein the initial current setting unit sets the initial current to a smaller value as the engine speed is smaller.
  15.  前記内燃機関の運転条件はタンブル制御バルブの開度であり、
     前記初期電流設定部は、前記タンブル制御バルブの開度が大きいほど、前記初期電流を小さい値に設定する、請求項3に記載の内燃機関制御装置。
    The operating condition of the internal combustion engine is the opening of the tumble control valve,
    The internal combustion engine control device according to claim 3, wherein the initial current setting unit sets the initial current to a smaller value as the opening of the tumble control valve is larger.
  16.  前記内燃機関の運転条件は点火プラグ周囲の流速であり、
     前記初期電流設定部は、前記点火プラグ周囲の流速が小さいほど、前記初期電流を小さい値に設定する、請求項3に記載の内燃機関制御装置。
    The operating condition of the internal combustion engine is the flow velocity around the spark plug,
    The internal combustion engine control device according to claim 3, wherein the initial current setting unit sets the initial current to a smaller value as the flow velocity around the spark plug is smaller.
  17.  前記物理量は前記内燃機関の気筒の圧力であり、
     前記維持電流設定部は、前記気筒の圧力が小さいほど、前記維持電流を小さい値に設定する、請求項4に記載の内燃機関制御装置。
    The physical quantity is a pressure of a cylinder of the internal combustion engine,
    The internal combustion engine control device according to claim 4, wherein the maintenance current setting unit sets the maintenance current to a smaller value as the pressure of the cylinder is smaller.
  18.  前記内燃機関の運転条件はエンジン回転数であり、
     前記維持電流設定部は、前記エンジン回転数が小さいほど、前記維持電流を小さい値に設定する、請求項4に記載の内燃機関制御装置。
    The operating condition of the internal combustion engine is the engine speed,
    The internal combustion engine control device according to claim 4, wherein the maintenance current setting unit sets the maintenance current to a smaller value as the engine speed is smaller.
  19.  前記内燃機関の運転条件はタンブル制御バルブの開度であり、
     前記維持電流設定部は、前記タンブル制御バルブの開度が大きいほど、前記維持電流を小さい値に設定する、請求項4に記載の内燃機関制御装置。
    The operating condition of the internal combustion engine is the opening of the tumble control valve,
    The internal combustion engine control device according to claim 4, wherein the maintenance current setting unit sets the maintenance current to a smaller value as the opening degree of the tumble control valve is larger.
  20.  前記内燃機関の運転条件は点火プラグ周囲の流速であり、
     前記維持電流設定部は、前記点火プラグ周囲の流速が小さいほど、前記維持電流を小さい値に設定する、請求項4に記載の内燃機関制御装置。
    The operating condition of the internal combustion engine is the flow velocity around the spark plug,
    The internal combustion engine control device according to claim 4, wherein the maintenance current setting unit sets the maintenance current to a smaller value as the flow velocity around the spark plug is smaller.
  21.  点火コイルと点火プラグを備えた内燃機関を制御する内燃機関制御装置において、
     前記内燃機関の運転条件、又は前記点火プラグの点火に関連する物理量に基づいて、前記内燃機関の燃焼室に供給される混合気の着火に必要なエネルギー量を算出するエネルギー算出部と、
     前記エネルギー算出部での算出結果に従い、前記点火プラグに供給する電流の波形に関する電流波形データを生成する電流波形生成部と、
     前記電流波形データに従って前記点火プラグに供給する電力を制御する電力制御部と
     を備え、
     前記電流波形生成部は、初期電流と、前記初期電流よりも大きい維持電流と、前記初期電流と前記維持電流との間での前記電流の単位時間当たりの変化の度合を示す電流変化率とを設定することを特徴とする内燃機関制御装置。
    In an internal combustion engine controller for controlling an internal combustion engine provided with an ignition coil and an ignition plug,
    An energy calculating unit that calculates an amount of energy required for ignition of an air-fuel mixture supplied to a combustion chamber of the internal combustion engine based on an operating condition of the internal combustion engine or a physical quantity related to ignition of the spark plug;
    According to the calculation result in the energy calculation unit, a current waveform generation unit that generates current waveform data related to the waveform of the current supplied to the spark plug;
    A power control unit for controlling the power supplied to the spark plug according to the current waveform data,
    The current waveform generator includes an initial current, a sustain current larger than the initial current, and a current change rate indicating a degree of change per unit time of the current between the initial current and the sustain current. An internal combustion engine control device characterized by setting.
  22.  前記電流波形生成部で設定した電流波形データにより必要なエネルギーを得られるか否かに従い、前記電流波形データを補正する補正部を更に備えた、請求項21に記載の内燃機関制御装置。 The internal combustion engine control device according to claim 21, further comprising a correction unit that corrects the current waveform data according to whether or not necessary energy can be obtained from the current waveform data set by the current waveform generation unit.
  23.  前記電力制御部は、前記点火プラグの放電路の伸び量が最大となる前に、前記エネルギー算出部により算出したエネルギー量を前記点火プラグに流すように電流を制御する、請求項21に記載の内燃機関制御装置。 The said electric power control part controls an electric current so that the energy amount computed by the said energy calculation part may be sent through the said ignition plug before the amount of expansion of the discharge path of the said ignition plug becomes the maximum. Internal combustion engine control device.
PCT/JP2019/005215 2018-03-20 2019-02-14 Internal combustion engine control device WO2019181293A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018053050A JP6908548B2 (en) 2018-03-20 2018-03-20 Internal combustion engine controller
JP2018-053050 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019181293A1 true WO2019181293A1 (en) 2019-09-26

Family

ID=67986399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005215 WO2019181293A1 (en) 2018-03-20 2019-02-14 Internal combustion engine control device

Country Status (2)

Country Link
JP (1) JP6908548B2 (en)
WO (1) WO2019181293A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022269976A1 (en) * 2021-06-21 2022-12-29 日立Astemo株式会社 Internal combustion engine control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533983A (en) * 2012-09-17 2015-11-26 プロメテウス アプライド テクノロジーズ,エルエルシー Time-varying spark current to improve spark plug performance and durability
JP2016217190A (en) * 2015-05-15 2016-12-22 株式会社日本自動車部品総合研究所 Ignition device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533983A (en) * 2012-09-17 2015-11-26 プロメテウス アプライド テクノロジーズ,エルエルシー Time-varying spark current to improve spark plug performance and durability
JP2016217190A (en) * 2015-05-15 2016-12-22 株式会社日本自動車部品総合研究所 Ignition device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022269976A1 (en) * 2021-06-21 2022-12-29 日立Astemo株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JP2019163745A (en) 2019-09-26
JP6908548B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
US10358971B2 (en) Control apparatus for internal combustion engine
US9784207B2 (en) Control apparatus for internal combustion engine
JP2017186984A (en) Control device of internal combustion engine
US10066574B2 (en) Control apparatus for internal combustion engine
JP2016084812A (en) Control method of binary fuel engine
JP2007297992A (en) Control device for internal combustion engine
JP2008291717A (en) Control device for homogeneous charge compression ignition engine
JP2019183809A (en) Control device of internal combustion engine
JP6206158B2 (en) Control system for spark ignition internal combustion engine
JP2018040264A (en) Control device for internal combustion engine
JP2019194461A (en) Control device for compression ignition type engine
WO2019181293A1 (en) Internal combustion engine control device
JP2018003780A (en) Control device of internal combustion engine
WO2020255789A1 (en) Internal combustion engine control device
JP6476102B2 (en) Control device for internal combustion engine
US20190120163A1 (en) Dual-fuel internal combustion engine
JP2020094554A (en) Control device of internal combustion engine with sub-chamber
JP2010084733A (en) Fuel injection control device
JP6411951B2 (en) Control device for internal combustion engine
JP2018115645A (en) Self-ignition timing estimation device of internal combustion engine
JP6604259B2 (en) Control device for internal combustion engine
JP2014092093A (en) Control device for internal combustion engine
JP5400700B2 (en) Fuel injection control device for internal combustion engine
JP2020172862A (en) Internal combustion engine
JP2022076828A (en) Engine system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771629

Country of ref document: EP

Kind code of ref document: A1