WO2019181015A1 - 研磨液、研磨液セット及び研磨方法 - Google Patents

研磨液、研磨液セット及び研磨方法 Download PDF

Info

Publication number
WO2019181015A1
WO2019181015A1 PCT/JP2018/035464 JP2018035464W WO2019181015A1 WO 2019181015 A1 WO2019181015 A1 WO 2019181015A1 JP 2018035464 W JP2018035464 W JP 2018035464W WO 2019181015 A1 WO2019181015 A1 WO 2019181015A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
mass
less
preferable
liquid
Prior art date
Application number
PCT/JP2018/035464
Other languages
English (en)
French (fr)
Inventor
友洋 岩野
貴彬 松本
友美 久木田
智康 長谷川
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2019/011853 priority Critical patent/WO2019182057A1/ja
Priority to TW108109836A priority patent/TW201940653A/zh
Publication of WO2019181015A1 publication Critical patent/WO2019181015A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • the present invention relates to a polishing liquid, a polishing liquid set, and a polishing method.
  • CMP Chemical Mechanical Polishing
  • STI shallow trench isolation
  • Examples of the most frequently used polishing liquid include silica-based polishing liquids containing silica (silicon oxide) particles such as fumed silica and colloidal silica as abrasive grains.
  • the silica-based polishing liquid is characterized by high versatility, and a wide variety of materials can be polished regardless of insulating materials and conductive materials by appropriately selecting the abrasive content, pH, additives, and the like.
  • a polishing liquid mainly for an insulating material such as silicon oxide the demand for a polishing liquid containing cerium compound particles as an abrasive is also increasing.
  • a cerium oxide-based polishing liquid containing cerium oxide particles as abrasive grains can polish silicon oxide at high speed even with a lower abrasive grain content than a silica-based polishing liquid (see, for example, Patent Documents 1 and 2 below).
  • JP-A-10-106994 Japanese Patent Application Laid-Open No. 08-022970
  • a laminated body having an insulating material (e.g., silicon oxide) disposed on the substrate is polished. In such polishing, the polishing of the insulating material is stopped by the stopper. That is, the polishing of the insulating material is stopped when the stopper is exposed.
  • the polishing amount of the insulating material for example, the film thickness to be removed in the insulating film
  • the degree of polishing is controlled by polishing the insulating material until the stopper is exposed. Yes.
  • an object of the present invention is to provide a polishing liquid, a polishing liquid set, and a polishing method capable of improving the polishing selectivity of an insulating material with respect to a stopper material.
  • the polishing liquid according to one aspect of the present invention contains abrasive grains, polyol, aminocarboxylic acid, aminosulfonic acid, and liquid medium, and the abrasive grains have a positive zeta potential.
  • Such a polishing liquid can improve the polishing selectivity of the insulating material with respect to the stopper material.
  • the constituents of the polishing liquid described above are stored separately in a first liquid and a second liquid, and the first liquid contains the abrasive grains, A liquid medium, and the second liquid includes the polyol, the aminocarboxylic acid, the aminosulfonic acid, and a liquid medium. According to such a polishing liquid set, the same effects as those of the above-described polishing liquid can be obtained.
  • a polishing method is performed using the above polishing liquid or a polishing liquid obtained by mixing the first liquid and the second liquid in the above polishing liquid set.
  • a polishing step for polishing the polishing surface is provided. According to such a polishing method, the same effect as that of the above-described polishing liquid can be obtained.
  • the polishing selectivity of the insulating material with respect to the stopper material can be improved.
  • ADVANTAGE OF THE INVENTION According to this invention, use of the polishing liquid can be provided for the planarization process of the base
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or lower limit value of a numerical range of a certain step can be arbitrarily combined with the upper limit value or lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. “A or B” only needs to include either A or B, and may include both.
  • the materials exemplified in this specification can be used singly or in combination of two or more unless otherwise specified.
  • each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • the term “process” is not limited to an independent process, and is included in this term if the intended effect of the process is achieved even when it cannot be clearly distinguished from other processes.
  • polishing liquid is defined as a composition that touches the surface to be polished during polishing.
  • the phrase “polishing liquid” itself does not limit the components contained in the polishing liquid.
  • the polishing liquid according to the present embodiment contains abrasive grains.
  • Abrasive grains are also referred to as “abrasive particles”, but are referred to herein as “abrasive grains”.
  • Abrasive grains are generally solid particles, and are removed by mechanical action (physical action) of abrasive grains and chemical action of abrasive grains (mainly the surface of the abrasive grains) during polishing. Although it is considered that an object is removed, the present invention is not limited to this.
  • the polishing liquid according to this embodiment is, for example, a polishing liquid for CMP.
  • the polishing liquid according to this embodiment contains abrasive grains, polyol, aminocarboxylic acid, aminosulfonic acid, and a liquid medium, and the zeta potential of the abrasive grains is positive.
  • the polishing selectivity (insulating material polishing rate / stopper material polishing rate) of an insulating material (eg, silicon oxide) with respect to a stopper material (eg, silicon nitride) can be improved.
  • the present inventors presume the factors that achieve such an effect as follows. However, the factors are not limited to the following. That is, zwitterionic compounds such as aminocarboxylic acid and aminosulfonic acid have a cation part (for example, amino group) and an anion part (for example, carboxyl group and sulfonic acid group) in the same molecule.
  • aminocarboxylic acid and aminosulfonic acid When aminocarboxylic acid and aminosulfonic acid are used after using polyol, aminocarboxylic acid and aminosulfonic acid can adhere to the surface of the stopper. At this time, the anion portion adheres to the stopper, and the cation portion faces outward with respect to the stopper. In this case, since the surface of the stopper to which the zwitterionic compound adheres is positively charged, the surface of the stopper repels abrasive grains having a positive zeta potential. Thereby, the polishing rate of the stopper material is suppressed. On the other hand, when the polyol adheres to the surface of the abrasive grains, the surface of the abrasive grains becomes hydrophilic.
  • Insulating materials eg, silicon oxide
  • stopper materials tend to be more hydrophilic than stopper materials, and thus have an affinity for polyols having hydroxyl groups.
  • rate of an insulating material improves.
  • the polishing selectivity of the insulating material with respect to the stopper material is improved.
  • the polishing liquid according to the present embodiment contains abrasive grains having a positive zeta potential in the polishing liquid.
  • Abrasive grains are made of cerium oxide (for example, ceria (cerium (IV) oxide)), silica, alumina, zirconia, yttria, and hydroxides of tetravalent metal elements from the viewpoint of easily polishing an insulating material at a high polishing rate.
  • cerium oxide for example, ceria (cerium (IV) oxide)
  • silica silica
  • alumina alumina
  • zirconia zirconia
  • yttria yttria
  • hydroxides of tetravalent metal elements from the viewpoint of easily polishing an insulating material at a high polishing rate.
  • at least one selected from the group consisting of cerium oxide is included.
  • An abrasive can be used individually by 1 type or in combination of 2 or more types.
  • the “tetravalent metal element hydroxide” is a compound containing a tetravalent metal (M 4+ ) and at least one hydroxide ion (OH ⁇ ).
  • the hydroxide of the tetravalent metal element may contain anions other than hydroxide ions (for example, nitrate ions NO 3 ⁇ and sulfate ions SO 4 2 ⁇ ).
  • a hydroxide of a tetravalent metal element may include an anion (for example, nitrate ion NO 3 ⁇ and sulfate ion SO 4 2 ⁇ ) bonded to the tetravalent metal element.
  • a hydroxide of a tetravalent metal element can be produced by reacting a salt (metal salt) of a tetravalent metal element with an alkali source (base).
  • the tetravalent metal element hydroxide preferably contains cerium hydroxide (tetravalent cerium hydroxide) from the viewpoint of easily improving the polishing rate of the insulating material.
  • Cerium hydroxide can be produced by reacting a cerium salt with an alkali source (base).
  • the cerium hydroxide is preferably prepared by mixing a cerium salt and an alkaline solution (for example, an alkaline aqueous solution). Thereby, particles having a very small particle diameter can be obtained, and an excellent polishing scratch reduction effect can be easily obtained.
  • Cerium hydroxide can be obtained by mixing a cerium salt solution (for example, a cerium salt aqueous solution) and an alkali solution. Examples of the cerium salt include Ce (NO 3 ) 4 , Ce (SO 4 ) 2 , Ce (NH 4 ) 2 (NO 3 ) 6 , Ce (NH 4 ) 4 (SO 4 ) 4 and the like.
  • Ce (OH) a X b electron-withdrawing anions (X c ⁇ ) act to improve the reactivity of hydroxide ions, and the abundance of Ce (OH) a X b increases. It is considered that the polishing rate is improved with this.
  • Examples of the anion (X c ⁇ ) include NO 3 ⁇ and SO 4 2 ⁇ . It is considered that the particles containing cerium hydroxide can contain not only Ce (OH) a X b but also Ce (OH) 4 , CeO 2 and the like.
  • the particles containing cerium hydroxide contain Ce (OH) a Xb after the particles are thoroughly washed with pure water and then subjected to FT-IR ATR method (Fourier transformed Infrared Spectrometer Total Reflection method, Fourier transform infrared) This can be confirmed by a method of detecting a peak corresponding to an anion (X c ⁇ ) by a spectrophotometer total reflection measurement method). The presence of an anion (X c ⁇ ) can also be confirmed by XPS (X-ray Photoelectron Spectroscopy, X-ray photoelectron spectroscopy).
  • the lower limit of the content of cerium oxide is based on the whole abrasive grains (the whole abrasive grains contained in the polishing liquid; the same applies hereinafter) from the viewpoint of easily improving the polishing rate of the insulating material.
  • the lower limit of the average particle size of the abrasive grains in the slurry in the polishing liquid or the polishing liquid set described below is preferably 16 nm or more, more preferably 20 nm or more, and more preferably 30 nm or more. More preferably, 40 nm or more is particularly preferable, 50 nm or more is very preferable, 100 nm or more is very preferable, 120 nm or more is more preferable, 150 nm or more is more preferable, and 155 nm or more is still more preferable.
  • the upper limit of the average grain size of the abrasive grains is preferably 1050 nm or less, more preferably 1000 nm or less, still more preferably 800 nm or less, particularly preferably 600 nm or less, and particularly preferably 500 nm or less, from the viewpoint of easily suppressing scratches on the surface to be polished.
  • 400 nm or less is very preferable, 300 nm or less is still more preferable, 200 nm or less is more preferable, and 160 nm or less is still more preferable.
  • the average particle size of the abrasive grains is more preferably 16 to 1050 nm, and further preferably 20 to 1000 nm.
  • the “average particle diameter” of the abrasive grains means the average secondary particle diameter of the abrasive grains.
  • the average particle diameter of the abrasive grains is a volume average particle diameter, and a light diffraction scattering type particle size distribution meter (for example, a product manufactured by Microtrack Bell Co., Ltd.) is used for a polishing liquid or a slurry in a polishing liquid set described later. Name: Microtrack MT3300EXII).
  • the zeta potential (surface potential) of the abrasive grains in the polishing liquid is positive from the viewpoint of suppressing the polishing rate of the stopper material (the zeta potential exceeds 0 mV).
  • the lower limit of the zeta potential of the abrasive is preferably 10 mV or more, more preferably 20 mV or more, further preferably 25 mV or more, particularly preferably 30 mV or more, and particularly preferably 40 mV or more, from the viewpoint of easily suppressing the polishing rate of the stopper material. 50 mV or more is very preferable.
  • the upper limit of the zeta potential of the abrasive grains is not particularly limited, but is preferably 200 mV or less. From these viewpoints, the zeta potential of the abrasive grains is more preferably 10 to 200 mV.
  • the zeta potential of the abrasive grains can be measured using, for example, a dynamic light scattering type zeta potential measuring device (for example, trade name: DelsaNano C, manufactured by Beckman Coulter, Inc.).
  • the zeta potential of the abrasive can be adjusted using an additive. For example, by bringing a monocarboxylic acid (for example, acetic acid) into contact with abrasive grains containing cerium oxide, abrasive grains having a positive zeta potential can be obtained.
  • a monocarboxylic acid for example, acetic acid
  • the abrasive grain which has a negative zeta potential can be obtained by making the material (for example, polyacrylic acid) which has ammonium dihydrogen phosphate, a carboxyl group, etc. with the abrasive grain containing a cerium oxide.
  • the lower limit of the abrasive content is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, based on the total mass of the polishing liquid, from the viewpoint of easily improving the polishing rate of the insulating material.
  • 0.02% by mass or more is more preferable, 0.03% by mass or more is particularly preferable, 0.04% by mass or more is very preferable, 0.05% by mass or more is very preferable, and 0.07% by mass or more is even more preferable.
  • 0.1 mass% or more is more preferable.
  • the upper limit of the abrasive content is preferably 20% by mass or less, more preferably 15% by mass or less, and more preferably 10% by mass based on the total mass of the polishing liquid from the viewpoint of easily obtaining excellent abrasive dispersion stability.
  • the following is more preferable, 5% by mass or less is particularly preferable, 4% by mass or less is very preferable, 3% by mass or less is very preferable, 1% by mass or less is more preferable, 0.5% by mass or less is more preferable, Is more preferably 3% by mass or less, particularly preferably 0.2% by mass or less, and extremely preferably 0.15% by mass or less.
  • the content of the abrasive grains is more preferably 0.005 to 20% by mass, and still more preferably 0.01 to 10% by mass based on the total mass of the polishing liquid.
  • the abrasive grains may include composite particles composed of a plurality of particles in contact with each other.
  • the abrasive grains may include composite particles including first particles and second particles in contact with the first particles, and the composite particles and free particles (eg, contact with the first particles). Second particles).
  • the abrasive includes first particles and second particles in contact with the first particles, and the particle size of the second particles is larger than the particle size of the first particles. It is preferable that the first particles contain cerium oxide and the second particles contain a cerium compound. By using such abrasive grains, it is easy to improve the polishing rate of the insulating material (for example, silicon oxide). As the reason why the polishing rate of the insulating material is improved as described above, for example, the following reasons can be given. However, the reason is not limited to the following.
  • the first particles containing cerium oxide and having a larger particle size than the second particles have a stronger mechanical action (mechanical property) on the insulating material than the second particles.
  • the second particle containing a cerium compound and having a smaller particle size than the first particle has a smaller mechanical action on the insulating material than the first particle, but the specific surface area of the entire particle. Since (surface area per unit mass) is large, the chemical action (chemical property) on the insulating material is strong. Thus, a synergistic effect of improving the polishing rate can be easily obtained by using the first particles having a strong mechanical action and the second particles having a strong chemical action in combination.
  • cerium compound of the second particles examples include cerium hydroxide and cerium oxide.
  • cerium compound of the second particles a compound different from cerium oxide can be used.
  • the cerium compound preferably contains cerium hydroxide from the viewpoint of easily improving the polishing rate of the insulating material.
  • the particle size of the second particles is preferably smaller than the particle size of the first particles.
  • the magnitude relationship between the particle sizes of the first particles and the second particles can be determined from the SEM image of the composite particles.
  • particles having a small particle size have a high reaction activity because they have a larger surface area per unit mass than particles having a large particle size.
  • the mechanical action (mechanical polishing force) of particles having a small particle size is smaller than that of particles having a large particle size.
  • even when the particle size of the second particle is smaller than the particle size of the first particle, it is possible to express the synergistic effect of the first particle and the second particle. Yes, it is possible to easily achieve both excellent reaction activity and mechanical action.
  • the lower limit of the particle size of the first particles is preferably 15 nm or more, more preferably 25 nm or more, further preferably 35 nm or more, particularly preferably 40 nm or more, and particularly preferably 50 nm or more from the viewpoint of easily improving the polishing rate of the insulating material.
  • the upper limit of the particle size of the first particles is preferably 1000 nm or less, more preferably 800 nm or less, from the viewpoint that the dispersibility of the abrasive grains is easily improved and the viewpoint that the surface to be polished is easily suppressed from being damaged.
  • the particle size of the first particles is more preferably 15 to 1000 nm.
  • the above-mentioned range may be sufficient as the average particle diameter (average secondary particle diameter) of 1st particle
  • the lower limit of the particle size of the second particles is preferably 1 nm or more, more preferably 2 nm or more, and further preferably 3 nm or more from the viewpoint of easily improving the polishing rate of the insulating material.
  • the upper limit of the particle size of the second particles is preferably 50 nm or less, more preferably 30 nm or less, from the viewpoint that the dispersibility of the abrasive grains is easily improved and the viewpoint that the surface to be polished is easily suppressed from being scratched. 25 nm or less is more preferable, 20 nm or less is particularly preferable, 15 nm or less is extremely preferable, and 10 nm or less is very preferable. From these viewpoints, the particle size of the second particles is more preferably 1 to 50 nm. The above-mentioned range may be sufficient as the average particle diameter (average secondary particle diameter) of a 2nd particle.
  • the first particle can have a negative zeta potential.
  • the second particle can have a positive zeta potential.
  • the composite particle including the first particle and the second particle is obtained by bringing the first particle and the second particle into contact with each other using a homogenizer, a nanomizer, a ball mill, a bead mill, a sonicator, or the like, and mutually opposite charges. It can be obtained by contacting the first particles having the second particles with the second particles, contacting the first particles with the second particles in a state where the content of the particles is small, and the like.
  • the lower limit of the content of the cerium oxide in the first particle is the entire first particle (the entire first particle contained in the polishing liquid; the same applies hereinafter) from the viewpoint of easily improving the polishing rate of the insulating material.
  • 50 mass% or more is preferable, 70 mass% or more is more preferable, 90 mass% or more is further preferable, and 95 mass% or more is particularly preferable.
  • the first particle may be in an aspect substantially composed of cerium oxide (an aspect in which 100% by mass of the first particle is substantially cerium oxide).
  • the lower limit of the content of the cerium compound in the second particle is based on the entire second particle (the entire second particle contained in the polishing liquid; the same applies hereinafter) from the viewpoint of easily improving the polishing rate of the insulating material. 50 mass% or more is preferable, 70 mass% or more is more preferable, 90 mass% or more is further more preferable, and 95 mass% or more is especially preferable.
  • the second particle may be in an aspect substantially composed of a cerium compound (an aspect in which 100% by mass of the second particle is substantially a cerium compound).
  • the content of the first particles in the abrasive grains containing composite particles is preferably in the following range based on the entire abrasive grains.
  • the lower limit of the content of the first particles is preferably 50% by mass or more, more preferably more than 50% by mass, still more preferably 60% by mass or more, and 70% by mass from the viewpoint of easily improving the polishing rate of the insulating material.
  • % Or more is particularly preferable, 75% by weight or more is very preferable, 80% by weight or more is very preferable, 85% by weight or more is even more preferable, and 90% by weight or more is more preferable.
  • the upper limit of the content of the first particles is preferably 95% by mass or less, more preferably 93% by mass or less, and still more preferably 91% by mass or less from the viewpoint of easily improving the polishing rate of the insulating material. From these viewpoints, the content of the first particles is more preferably 50 to 95% by mass.
  • the content of the second particles in the abrasive grains containing composite particles is preferably in the following range based on the entire abrasive grains.
  • the lower limit of the content of the second particles is preferably 5% by mass or more, more preferably 7% by mass or more, and still more preferably 9% by mass or more from the viewpoint of easily improving the polishing rate of the insulating material.
  • the upper limit of the content of the second particles is preferably 50% by mass or less, more preferably less than 50% by mass, still more preferably 40% by mass or less, and further preferably 30% by mass or less from the viewpoint of easily improving the polishing rate of the insulating material.
  • the content of the second particles is more preferably 5 to 50% by mass.
  • the content of cerium oxide in the abrasive grains containing composite particles is preferably in the following range based on the entire abrasive grains.
  • the lower limit of the cerium oxide content is preferably 50% by mass or more, more preferably more than 50% by mass, still more preferably 60% by mass or more, and 70% by mass from the viewpoint of easily improving the polishing rate of the insulating material.
  • the above is particularly preferable, 75% by mass or more is very preferable, 80% by mass or more is very preferable, 85% by mass or more is more preferable, and 90% by mass or more is more preferable.
  • the upper limit of the cerium oxide content is preferably 95% by mass or less, more preferably 93% by mass or less, and still more preferably 91% by mass or less from the viewpoint of easily improving the polishing rate of the insulating material. From these viewpoints, the content of cerium oxide is more preferably 50 to 95% by mass.
  • the content of cerium hydroxide in the abrasive grains containing composite particles is preferably in the following range based on the entire abrasive grains.
  • the lower limit of the cerium hydroxide content is preferably 5% by mass or more, more preferably 7% by mass or more, and still more preferably 9% by mass or more from the viewpoint of easily improving the polishing rate of the insulating material.
  • the upper limit of the cerium hydroxide content is preferably 50% by mass or less, more preferably less than 50% by mass, still more preferably 40% by mass or less, and further preferably 30% by mass or less from the viewpoint of easily improving the polishing rate of the insulating material.
  • cerium hydroxide is more preferably 5 to 50% by mass.
  • the content of the first particles is preferably in the following range based on the total amount of the first particles and the second particles.
  • the lower limit of the content of the first particles is preferably 50% by mass or more, more preferably more than 50% by mass, still more preferably 60% by mass or more, and 70% by mass from the viewpoint of easily improving the polishing rate of the insulating material. % Or more is particularly preferable, 75% by weight or more is very preferable, 80% by weight or more is very preferable, 85% by weight or more is even more preferable, and 90% by weight or more is more preferable.
  • the upper limit of the content of the first particles is preferably 95% by mass or less, more preferably 93% by mass or less, and still more preferably 91% by mass or less from the viewpoint of easily improving the polishing rate of the insulating material. From these viewpoints, the content of the first particles is more preferably 50 to 95% by mass.
  • the content of the second particles is preferably in the following range based on the total amount of the first particles and the second particles.
  • the lower limit of the content of the second particles is preferably 5% by mass or more, more preferably 7% by mass or more, and still more preferably 9% by mass or more from the viewpoint of easily improving the polishing rate of the insulating material.
  • the upper limit of the content of the second particles is preferably 50% by mass or less, more preferably less than 50% by mass, still more preferably 40% by mass or less, and further preferably 30% by mass or less from the viewpoint of easily improving the polishing rate of the insulating material.
  • the content of the second particles is more preferably 5 to 50% by mass.
  • the content of the first particles in the polishing liquid is preferably in the following range based on the total mass of the polishing liquid.
  • the lower limit of the content of the first particles is preferably 0.005% by mass or more, more preferably 0.008% by mass or more, and further preferably 0.01% by mass or more from the viewpoint of easily improving the polishing rate of the insulating material.
  • 0.05% by mass or more is particularly preferable, 0.08% by mass or more is very preferable, and 0.09% by mass or more is very preferable.
  • the upper limit of the content of the first particles is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, from the viewpoint of easily increasing the storage stability of the polishing liquid.
  • Mass% or less is particularly preferable, 0.3 mass% or less is very preferable, 0.2 mass% or less is very preferable, and 0.1 mass% or less is even more preferable. From these viewpoints, the content of the first particles is more preferably 0.005 to 5% by mass.
  • the content of the second particles in the polishing liquid is preferably in the following range based on the total mass of the polishing liquid.
  • the lower limit of the content of the second particles is preferably 0.005% by mass or more from the viewpoint of further improving the chemical interaction between the abrasive grains and the surface to be polished and improving the polishing rate of the insulating material, 0.008 mass% or more is more preferable, and 0.009 mass% or more is still more preferable.
  • the upper limit of the content of the second particles makes it easy to avoid agglomeration of the abrasive grains, and further improves the chemical interaction between the abrasive grains and the surface to be polished, thereby effectively utilizing the characteristics of the abrasive grains.
  • 5% by mass or less is preferable, 3% by mass or less is more preferable, 1% by mass or less is more preferable, 0.5% by mass or less is particularly preferable, 0.1% by mass or less is extremely preferable, 05% by mass or less is very preferable, 0.04% by mass or less is more preferable, 0.035% by mass or less is more preferable, 0.03% by mass or less is further preferable, and 0.02% by mass or less is particularly preferable. 0.01 mass% or less is very preferable. From these viewpoints, the content of the second particles is more preferably 0.005 to 5% by mass.
  • the content of cerium oxide in the polishing liquid containing abrasive grains including composite particles is preferably in the following range based on the total mass of the polishing liquid.
  • the lower limit of the cerium oxide content is preferably 0.005% by mass or more, more preferably 0.008% by mass or more, and still more preferably 0.01% by mass or more from the viewpoint of easily improving the polishing rate of the insulating material.
  • 0.05 mass% or more is particularly preferable, 0.08 mass% or more is extremely preferable, and 0.09 mass% or more is very preferable.
  • the upper limit of the cerium oxide content is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, and 0.5% by mass from the viewpoint of easily increasing the storage stability of the polishing liquid. % Or less is particularly preferable, 0.3% by mass or less is very preferable, 0.2% by mass or less is very preferable, and 0.1% by mass or less is even more preferable. From these viewpoints, the content of the cerium oxide is more preferably 0.005 to 5% by mass.
  • the content of cerium hydroxide in the polishing liquid containing abrasive grains including composite particles is preferably in the following range based on the total mass of the polishing liquid.
  • the lower limit of the content of cerium hydroxide is preferably 0.005% by mass or more from the viewpoint of further improving the chemical interaction between the abrasive grains and the surface to be polished and improving the polishing rate of the insulating material, 0.008 mass% or more is more preferable, and 0.009 mass% or more is still more preferable.
  • the upper limit of the content of cerium hydroxide makes it easier to avoid agglomeration of the abrasive grains, and further improves the chemical interaction between the abrasive grains and the surface to be polished, effectively utilizing the characteristics of the abrasive grains.
  • 5% by mass or less is preferable, 3% by mass or less is more preferable, 1% by mass or less is more preferable, 0.5% by mass or less is particularly preferable, 0.1% by mass or less is extremely preferable, 05% by mass or less is very preferable, 0.04% by mass or less is more preferable, 0.035% by mass or less is more preferable, 0.03% by mass or less is further preferable, and 0.02% by mass or less is particularly preferable. 0.01 mass% or less is very preferable. From these viewpoints, the content of cerium hydroxide is more preferably 0.005 to 5% by mass.
  • the polishing liquid according to this embodiment contains an additive.
  • the “additive” refers to a substance contained in the polishing liquid in addition to the abrasive grains and the liquid medium.
  • the polishing liquid according to this embodiment contains a polyol (excluding a compound corresponding to aminocarboxylic acid or aminosulfonic acid).
  • a polyol is a compound having two or more hydroxyl groups in the molecule.
  • Polyols include polyglycerin, polyvinyl alcohol, polyalkylene glycol (polyethylene glycol, etc.), polyoxyalkylene glycol, polyoxyalkylene sorbitol ether (polyoxypropylene sorbitol ether, etc.), polyoxyalkylene condensate of ethylenediamine (ethylenediamine tetrapolyoxy) Ethylene polyoxypropylene), 2,2-bis (4-polyoxyalkylene-oxyphenyl) propane, polyoxyalkylene glyceryl ether, polyoxyalkylene diglyceryl ether, polyoxyalkylene trimethylol propane ether (polyoxyethylene trimethylol propane ether) Propane ether, etc.), pentaerythritol polyoxyalkylene ether (pentaerythritol) Le polyoxypropylene ether), such as polyoxyalkylene methyl glucoside and the like.
  • the polyol may contain a polyol having
  • the polyol preferably contains a polyether polyol (polyol having a polyether structure) from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the polyether polyol preferably has a polyoxyalkylene group.
  • the number of carbon atoms of oxyalkylene in the polyoxyalkylene group of the polyol is preferably 1 or more and more preferably 2 or more from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the number of carbon atoms of the oxyalkylene in the polyoxyalkylene group is preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material. From these viewpoints, the carbon number is more preferably 1 to 5.
  • the polyoxyalkylene group may be a homopolymer chain or a copolymer chain.
  • the copolymer chain may be a block polymer chain or a random polymer chain.
  • the polyol contains at least one selected from the group consisting of polyoxyalkylene trimethylol propane ether, pentaerythritol polyoxyalkylene ether, and polyalkylene glycol from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material. It is more preferable that it contains at least one selected from the group consisting of polyoxyethylene trimethylol propane ether, pentaerythritol polyoxyethylene ether, and polyethylene glycol, from polyoxyethylene trimethylol propane ether and polyethylene glycol. More preferably, at least one selected from the group consisting of:
  • the lower limit of the molecular weight of the polyol is preferably 100 or more, more preferably 200 or more, still more preferably 300 or more, and particularly preferably 330 or more, from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the upper limit of the molecular weight of the polyol is preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, particularly preferably 1000 or less, particularly preferably 800 or less, and extremely preferably 500 or less from the viewpoint of easily improving the polishing rate of the insulating material. Is very preferable, and 400 or less is even more preferable. From these viewpoints, the molecular weight of the polyol is more preferably from 100 to 5,000.
  • the molecular weight of the polyol may be a weight average molecular weight.
  • the weight average molecular weight of the compound having a hydroxyl group and a polyoxyalkylene group may exceed 1000, 2000 or more, 3000 or more, or 4000 or more.
  • the weight average molecular weight can be measured, for example, under the following conditions by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
  • the lower limit of the polyol content is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on the total mass of the polishing liquid, from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material.
  • 0.2% by mass or more is more preferable, 0.3% by mass or more is particularly preferable, and 0.4% by mass or more is extremely preferable.
  • the upper limit of the polyol content is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, based on the total mass of the polishing liquid, from the viewpoint of easily improving the polishing rate of the insulating material.
  • the polyol content is more preferably 0.05 to 5.0% by mass based on the total mass of the polishing liquid.
  • the polishing liquid according to this embodiment contains an aminocarboxylic acid.
  • a compound corresponding to aminosulfonic acid shall not belong to aminocarboxylic acid.
  • An aminocarboxylic acid can be used individually by 1 type or in combination of 2 or more types.
  • the molecular weight of the aminocarboxylic acid is preferably 300 or less, more preferably 250 or less, even more preferably 200 or less, particularly preferably 180 or less, and particularly preferably 175 or less, from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material.
  • 170 or less is very preferable, 150 or less is even more preferable, and 130 or less is more preferable.
  • the molecular weight of the aminocarboxylic acid may be 120 or less and may be 100 or less.
  • the molecular weight of the aminocarboxylic acid may be 50 or more, may be 60 or more, and may be 70 or more.
  • the molecular weight of the aminocarboxylic acid may be 50-300.
  • the isoelectric point (pI) of aminocarboxylic acid is preferably smaller than 7.0 from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the upper limit of the isoelectric point of the aminocarboxylic acid is preferably 6.8 or less, more preferably 6.5 or less, and particularly preferably 6.3 or less, from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material. 6.0 or less is very preferable.
  • the upper limit of the isoelectric point of aminocarboxylic acid is 5.9 or less, 5.8 or less, 5.7 or less, 5.65 or less, 5.6 or less, 5.5 or less, or 5.1 or less, Good.
  • the lower limit of the isoelectric point of the aminocarboxylic acid may be 2.0 or more, 2.5 or more, 3.0 or more, or 4.0 or more.
  • the isoelectric point of the aminocarboxylic acid may be 2.0 or more and less than 7.0.
  • the isoelectric point of aminocarboxylic acid can be measured with a potentiometer (for example, “Hiranuma Automatic Titrator COM-1750 Series” manufactured by Hiranuma Sangyo Co., Ltd.) according to JIS K 0113.
  • the lower limit of the acid dissociation constant of aminocarboxylic acid (pKa, negative common logarithm of the equilibrium constant Ka (logarithm of the reciprocal number)) may be a value greater than 0, 1.0 or more, 1.5 or more, 2.0 As described above, it may be 2.1 or more, or 2.3 or more.
  • the upper limit of the acid dissociation constant of aminocarboxylic acid may be 8.0 or less, 7.0 or less, 5.0 or less, 4.0 or less, 3.0 or less, or 2.5 or less.
  • the acid dissociation constant means the first-stage pKa1 (the same applies hereinafter).
  • the aminocarboxylic acid has an amino group as a cation part and a carboxyl group as an anion part.
  • the aminocarboxylic acid may be at least one selected from the group consisting of neutral aminocarboxylic acids and acidic aminocarboxylic acids.
  • Neutral amino acids include aliphatic amino acids such as glycine, alanine, valine, leucine and isoleucine; oxyamino acids such as serine and threonine; sulfur-containing amino acids such as cysteine, cystine and methionine; aromatic amino acids such as phenylalanine, tyrosine and tryptophan
  • An acetic acid amino acid amide such as asparagine and glutamine
  • Examples of acidic amino acids include aspartic acid and glutamic acid.
  • Aminocarboxylic acid preferably includes at least one selected from the group consisting of glycine, valine, serine, cysteine, glutamine, and glutamic acid from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material, More preferably, it contains at least one selected from the group consisting of valine and cysteine.
  • the lower limit of the content of aminocarboxylic acid is preferably 0.01% by mass or more, preferably 0.03% by mass or more, based on the total mass of the polishing liquid, from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material. Is more preferably 0.05% by mass or more, particularly preferably 0.08% by mass or more, and extremely preferably 0.1% by mass or more.
  • the upper limit of the content of aminocarboxylic acid is preferably 1.0% by mass or less, more preferably 0.8% by mass or less, based on the total mass of the polishing liquid, from the viewpoint of easily improving the polishing rate of the insulating material.
  • the content of aminocarboxylic acid is more preferably 0.01 to 1.0% by mass based on the total mass of the polishing liquid.
  • the polishing liquid according to this embodiment contains aminosulfonic acid.
  • Aminosulfonic acid can be used individually by 1 type or in combination of 2 or more types.
  • the molecular weight of aminosulfonic acid is preferably 300 or less, more preferably 250 or less, still more preferably 200 or less, particularly preferably 180 or less, and particularly preferably 175 or less, from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material. preferable.
  • the molecular weight of aminosulfonic acid may be 170 or less, 150 or less, 130 or less, 120 or less, or 100 or less.
  • the molecular weight of aminosulfonic acid may be 50 or more, may be 60 or more, and may be 70 or more.
  • the molecular weight of aminosulfonic acid may be 50-300.
  • Aminosulfonic acid has an amino group as a cation part and has a sulfonic acid group as an anion part.
  • the aminosulfonic acid include sulfamic acid, aliphatic aminosulfonic acid, aromatic aminosulfonic acid and the like.
  • aliphatic aminosulfonic acid examples include aminomethanesulfonic acid, aminoethanesulfonic acid (for example, 1-aminoethanesulfonic acid and 2-aminoethanesulfonic acid (also called taurine)), aminopropanesulfonic acid (for example, 1-aminoethanesulfonic acid). Aminopropane-2-sulfonic acid, 2-aminopropane-1-sulfonic acid) and the like.
  • Aromatic aminosulfonic acid is defined as an aromatic compound having an amino group and a sulfonic acid group (preferably an aromatic hydrocarbon).
  • Aromatic amino sulfonic acids include amino benzene sulfonic acids (eg, alteranilic acid (also known as 2-aminobenzene sulfonic acid), methanyl acid (also known as 3-aminobenzene sulfonic acid), and sulfanilic acid (also known as 4-aminobenzene sulfonic acid).
  • diaminobenzenesulfonic acid for example, 2,4-diaminobenzenesulfonic acid and 3,4-diaminobenzenesulfonic acid
  • aminonaphthalenesulfonic acid and the like.
  • the aromatic aminosulfonic acid preferably contains sulfanilic acid from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the pKa of aminosulfonic acid is preferably larger than 0 from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the lower limit of the pKa of aminosulfonic acid is preferably 0.2 or more, more preferably 0.5 or more, from the viewpoint that the polishing rate of the insulating material is easily improved and the polishing selectivity of the insulating material with respect to the stopper material is easily improved. Is more preferable, 0.7 or more is particularly preferable, and 0.9 or more is very preferable.
  • the lower limit of the pKa of aminosulfonic acid is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.5 or less, from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material. 2 or less is particularly preferable. From these viewpoints, the pKa of aminosulfonic acid is more preferably greater than 0 and not greater than 5.0.
  • the lower limit of the pKa of aminosulfonic acid may be 3.0 or less, 2.5 or less, 2.0 or less, 1.5 or less, 1.2 or less, or 1.0 or less.
  • the pH of a 1% by mass aqueous solution of aminosulfonic acid is preferably 4 or less.
  • the pH of a 1% by mass aqueous solution of aminosulfonic acid is more preferably 3 or less, further preferably 2 or less, and particularly preferably 1.5 or less.
  • the aminosulfonic acid preferably contains at least one selected from the group consisting of sulfamic acid, aliphatic aminosulfonic acid, and aromatic aminosulfonic acid from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material. More preferably, it contains at least one selected from the group consisting of sulfamic acid and aromatic aminosulfonic acid, and more preferably contains sulfamic acid.
  • the lower limit of the content of aminosulfonic acid is preferably 0.001% by mass or more, preferably 0.005% by mass or more, based on the total mass of the polishing liquid, from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material. Is more preferably 0.01% by mass or more, particularly preferably exceeding 0.01% by mass, extremely preferably 0.02% by mass or more, very preferably exceeding 0.02% by mass, 0.025 mass% or more is still more preferable, and 0.03 mass% or more is more preferable.
  • the upper limit of the content of aminosulfonic acid is preferably 1.0% by mass or less, more preferably 0.8% by mass or less, based on the total mass of the polishing liquid, from the viewpoint of easily improving the polishing rate of the insulating material. 0.5% by mass or less is more preferable, 0.4% by mass or less is particularly preferable, 0.3% by mass or less is extremely preferable, 0.2% by mass or less is very preferable, and 0.1% by mass or less is even more preferable. Preferably, 0.05 mass% or less is more preferable. From these viewpoints, the content of aminosulfonic acid is more preferably 0.001 to 1.0% by mass based on the total mass of the polishing liquid.
  • the total amount of aminocarboxylic acid and aminosulfonic acid is preferably in the following range based on the total mass of the polishing liquid.
  • the lower limit of the total amount of aminocarboxylic acid and aminosulfonic acid is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, from the viewpoint of easily improving the polishing selectivity of the insulating material with respect to the stopper material.
  • 05 mass% or more is more preferable, 0.08 mass% or more is particularly preferable, 0.1 mass% or more is very preferable, 0.15 mass% or more is very preferable, and 0.2 mass% or more is even more preferable.
  • the upper limit of the total amount of aminocarboxylic acid and aminosulfonic acid is preferably 1.0% by mass or less, more preferably 0.8% by mass or less, and more preferably 0.5% by mass or less from the viewpoint of easily improving the polishing rate of the insulating material. Is more preferable, 0.4 mass% or less is particularly preferable, 0.3 mass% or less is very preferable, and 0.25 mass% or less is very preferable. From these viewpoints, the total amount of aminocarboxylic acid and aminosulfonic acid is more preferably 0.01 to 1.0% by mass.
  • the polishing liquid according to this embodiment may contain any additive (except for compounds corresponding to polyol, aminocarboxylic acid or aminosulfonic acid).
  • optional additives include water-soluble polymers, oxidizing agents (for example, hydrogen peroxide), dispersing agents (for example, phosphoric acid inorganic salts), and the like.
  • Water-soluble polymer is defined as a polymer that dissolves 0.1 g or more in 100 g of water.
  • water-soluble polymers examples include polyacrylic acid polymers such as polyacrylic acid, polyacrylic acid copolymers, polyacrylic acid salts, and polyacrylic acid copolymer salts; polymethacrylic acid such as polymethacrylic acid and polymethacrylic acid salts. Examples include acid polymers.
  • the liquid medium in the polishing liquid according to this embodiment is not particularly limited, but water such as deionized water or ultrapure water is preferable.
  • the content of the liquid medium may be the remainder of the polishing liquid excluding the content of other components and is not particularly limited.
  • the lower limit of the pH of the polishing liquid according to the present embodiment is preferably 2.0 or more, more preferably 2.2 or more, still more preferably 2.5 or more, from the viewpoint of easily obtaining excellent abrasive dispersion stability. 3.0 or more is particularly preferable, 3.1 or more is very preferable, and 3.2 or more is very preferable.
  • the upper limit of the pH is preferably 4.5 or less, more preferably 4.2 or less, still more preferably 4.0 or less, and particularly preferably 3.6 or less, from the viewpoint of easily obtaining excellent abrasive dispersion stability. From these viewpoints, the pH of the polishing liquid is more preferably 2.0 to 4.5.
  • the pH of the polishing liquid is defined as the pH at a liquid temperature of 25 ° C.
  • the pH of the polishing liquid can be adjusted by an acid component such as an inorganic acid or an organic acid; an alkali component such as ammonia, sodium hydroxide, tetramethylammonium hydroxide (TMAH), imidazole, or alkanolamine.
  • a buffer may be added to stabilize the pH.
  • a buffer may be added as a buffer (a solution containing a buffer). Examples of such a buffer include acetate buffer and phthalate buffer.
  • the pH of the polishing liquid according to this embodiment can be measured with a pH meter (for example, model number PHL-40 manufactured by Toa DKK Corporation). Specifically, for example, after calibrating two pH meters using a phthalate pH buffer solution (pH: 4.01) and a neutral phosphate pH buffer solution (pH: 6.86) as standard buffers, Then, the pH meter electrode is put into the polishing liquid, and the value after 2 minutes has passed and stabilized is measured.
  • the temperature of the standard buffer solution and the polishing solution are both 25 ° C.
  • the polishing liquid according to the present embodiment may be stored as a one-part polishing liquid containing at least abrasive grains, polyol, aminocarboxylic acid, aminosulfonic acid, and a liquid medium.
  • the slurry includes, for example, at least abrasive grains and a liquid medium.
  • the additive liquid contains at least a polyol, an aminocarboxylic acid, an aminosulfonic acid, and a liquid medium, for example.
  • the polyol, aminocarboxylic acid, aminosulfonic acid, optional additive, and buffering agent are preferably included in the additive liquid among the slurry and the additive liquid.
  • the constituents of the polishing liquid may be stored as a polishing liquid set divided into three or more liquids.
  • the slurry and additive liquid are mixed immediately before or during polishing to prepare a polishing liquid.
  • the one-component polishing liquid may be stored as a polishing liquid storage liquid in which the content of the liquid medium is reduced, and may be diluted with the liquid medium during polishing.
  • the multi-liquid type polishing liquid set may be stored as a slurry storage liquid and an additive liquid storage liquid with a reduced content of the liquid medium, and may be diluted with the liquid medium during polishing.
  • the polishing method according to the present embodiment is a surface to be polished using the one-part polishing liquid or a polishing liquid obtained by mixing a slurry and an additive liquid in the polishing liquid set ( A polishing step for polishing the surface to be polished of the substrate) may be provided.
  • the surface to be polished may contain silicon oxide and may further contain silicon nitride.
  • the polishing method according to the present embodiment may be a method for polishing a substrate having an insulating material and silicon nitride.
  • the one-part polishing liquid or a slurry and an additive liquid in the polishing liquid set are mixed.
  • a polishing step of selectively polishing the insulating material with respect to silicon nitride may be provided using the polishing liquid obtained in this manner.
  • the base may have, for example, a member containing an insulating material and a member containing silicon nitride.
  • the polishing method according to the present embodiment may be a method for polishing a substrate having a first member including silicon nitride and a second member including an insulating material and disposed on the first member.
  • the polishing step is a step of polishing the second member until the first member is exposed using the one-part polishing liquid or a polishing liquid obtained by mixing the slurry and the additive liquid in the polishing liquid set. You may have.
  • the first member and the second member are obtained using the one-component polishing liquid or the polishing liquid obtained by mixing the slurry and the additive liquid in the polishing liquid set after the first member is exposed.
  • “Selectively polishing material A with respect to material B” means that the polishing rate of material A is higher than the polishing rate of material B under the same polishing conditions. More specifically, for example, the material A is polished with a polishing rate ratio of the polishing rate of the material A to the polishing rate of the material B of 10 or more.
  • the polishing liquid is supplied between the material to be polished and the polishing pad in a state where the material to be polished of the substrate having the material to be polished is pressed against the polishing pad (polishing cloth) of the polishing surface plate.
  • the surface to be polished of the material to be polished is polished by relatively moving the substrate and the polishing surface plate.
  • at least a part of the material to be polished is removed by polishing.
  • Examples of the substrate to be polished include a substrate to be polished.
  • Examples of the substrate to be polished include a substrate in which a material to be polished is formed on a substrate related to semiconductor element manufacturing (for example, a semiconductor substrate on which an STI pattern, a gate pattern, a wiring pattern, etc. are formed).
  • Examples of the material to be polished include an insulating material such as silicon oxide (excluding a material corresponding to a stopper material); a stopper material such as silicon nitride.
  • the material to be polished may be a single material or a plurality of materials. When a plurality of materials are exposed on the surface to be polished, they can be regarded as materials to be polished.
  • the material to be polished may be in the form of a film (film to be polished), and may be a silicon oxide film, a silicon nitride film, or the like.
  • the polishing liquid according to this embodiment is preferably used for polishing a surface to be polished containing silicon oxide.
  • a stopper polishing stop layer disposed under the insulating material, and a substrate (semiconductor substrate or the like) disposed under the stopper
  • the insulating material can be polished.
  • the stopper material constituting the stopper is preferably silicon nitride, which is a material having a lower polishing rate than the insulating material.
  • Examples of a method for producing a material to be polished by the polishing liquid according to this embodiment include a low pressure CVD method, a quasi-atmospheric pressure CVD method, a plasma CVD method, and other CVD methods; a spin coating method in which a liquid material is applied to a rotating substrate. Etc.
  • the polishing method according to this embodiment will be described by taking a polishing method of a substrate (for example, a substrate having an insulating material formed on a semiconductor substrate) as an example.
  • a polishing apparatus a general polishing apparatus having a holder capable of holding a substrate having a surface to be polished and a polishing surface plate to which a polishing pad can be attached can be used.
  • Each of the holder and the polishing surface plate is provided with a motor capable of changing the rotation speed.
  • a polishing apparatus for example, a polishing apparatus (model number: FREX300) manufactured by Ebara Corporation can be used.
  • polishing pad general nonwoven fabric, foam, non-foam, etc.
  • the material of the polishing pad is polyurethane, acrylic resin, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly-4-methylpentene, cellulose, cellulose ester, polyamide (for example, nylon (trade name)) And aramid), polyimide, polyimide amide, polysiloxane copolymer, oxirane compound, phenol resin, polystyrene, polycarbonate, epoxy resin and the like.
  • the material of the polishing pad is preferably at least one selected from the group consisting of foamed polyurethane and non-foamed polyurethane, particularly from the viewpoint of further improving the polishing rate and flatness. It is preferable that the polishing pad is grooved so that the polishing liquid accumulates.
  • the upper limit of the rotation speed of the polishing platen is preferably 200 min ⁇ 1 or less so that the substrate does not pop out, and the upper limit of the polishing pressure (working load) applied to the substrate causes polishing flaws. From the viewpoint of sufficiently suppressing this, 15 psi (103 kPa) or less is preferable.
  • limiting in this supply amount it is preferable that the surface of a polishing pad is always covered with polishing liquid.
  • the substrate after polishing is preferably washed well under running water to remove particles adhering to the substrate.
  • dilute hydrofluoric acid or ammonia water may be used in addition to pure water, and a brush may be used in combination to increase cleaning efficiency.
  • the lower limit of the polishing rate ratio of the insulating material (for example, silicon oxide) to the stopper material (for example, silicon nitride) is preferably 10 or more.
  • the polishing rate ratio is less than 10
  • the polishing rate of the insulating material relative to the polishing rate of the stopper material is small, and it tends to be difficult to stop polishing at a predetermined position when forming the STI.
  • the polishing rate ratio is 10 or more, the polishing can be easily stopped, which is more suitable for the formation of STI.
  • the lower limit of the polishing rate ratio of the insulating material to the stopper material is more preferably 15 or more, further preferably 20 or more, and particularly preferably 25 or more.
  • This embodiment can also be used for polishing a premetal insulating material.
  • the premetal insulating material include silicon oxide, phosphorus-silicate glass, boron-phosphorus-silicate glass, silicon oxyfluoride, and fluorinated amorphous carbon.
  • This embodiment can also be applied to materials other than insulating materials such as silicon oxide.
  • materials include high dielectric constant materials such as Hf-based, Ti-based, and Ta-based oxides; semiconductor materials such as silicon, amorphous silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, and organic semiconductors; GeSbTe Inorganic conductive materials such as ITO; Polymer resins such as polyimides, polybenzoxazoles, acrylics, epoxies, and phenols.
  • This embodiment can be applied not only to a film-like object to be polished, but also to various substrates composed of glass, silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, sapphire, plastic, and the like.
  • image display devices such as TFTs and organic ELs
  • optical parts such as photomasks, lenses, prisms, optical fibers, and single crystal scintillators
  • optical elements such as optical switching elements and optical waveguides
  • a light emitting element such as a solid-state laser and a blue laser LED
  • a magnetic storage device such as a magnetic disk and a magnetic head.
  • cerium oxide slurry Preparation of cerium oxide slurry> Mixing cerium oxide particles (first particles) with Wako Pure Chemical Industries, Ltd. trade name: ammonium dihydrogen phosphate (molecular weight: 99.99), 5.0 masses of cerium oxide particles. A cerium oxide slurry (pH: 7) containing% (solid content) was prepared. The compounding amount of ammonium dihydrogen phosphate was adjusted to 1% by mass based on the total amount of cerium oxide particles.
  • the resulting precipitate (precipitate containing cerium hydroxide) was subjected to solid-liquid separation by centrifuging (4000 min ⁇ 1 , 5 minutes) and then removing the liquid phase by decantation. After mixing 10 g of particles obtained by solid-liquid separation and 990 g of water, the particles are dispersed in water using an ultrasonic cleaning machine, and contain cerium hydroxide particles (second particles). A hydroxide slurry (particle content: 1.0 mass%) was prepared.
  • the average particle size (average secondary particle size) of the cerium hydroxide particles in the cerium hydroxide slurry was measured using a product name: N5 manufactured by Beckman Coulter, Inc., it was 10 nm.
  • the measuring method is as follows. First, about 1 mL of a measurement sample (cerium hydroxide slurry, aqueous dispersion) containing 1.0 mass% cerium hydroxide particles was placed in a 1 cm square cell, and then the cell was placed in N5. The refractive index of the N5 soft measurement sample information was set to 1.333, the viscosity was set to 0.887 mPa ⁇ s, the measurement was performed at 25 ° C., and the value displayed as Unimodal Size Mean was read.
  • the cerium hydroxide particles contained at least a part of particles having nitrate ions bonded to the cerium element. Moreover, since the particles having hydroxide ions bonded to the cerium element are contained in at least a part of the cerium hydroxide particles, it was confirmed that the cerium hydroxide particles contain cerium hydroxide. From these results, it was confirmed that the hydroxide of cerium contains hydroxide ions bonded to the cerium element.
  • Example 1 ⁇ Preparation of polishing liquid for CMP> (Example 1)
  • the cerium hydroxide slurry and deionized water were mixed while stirring at a rotation speed of 300 rpm using a two-blade stirring blade to obtain a mixed solution.
  • the cerium oxide slurry is mixed with the mixed solution while stirring the mixed solution, and then irradiated with ultrasonic waves using an ultrasonic cleaner (device name: US-105) manufactured by SNDI Co., Ltd. Stir.
  • the polishing slurry for CMP containing 0.1% by weight of abrasive grains, 0.50% by weight of polyol, 0.20% by weight of glycine and 0.03% by weight of sulfamic acid Got.
  • the polishing liquid for CMP contains composite particles containing, as abrasive grains, cerium oxide particles and cerium hydroxide particles in contact with the cerium oxide particles.
  • the cerium oxide particles and the cerium hydroxide The mass ratio with the particles was 10: 1 (cerium oxide: cerium hydroxide).
  • Example 2 A polishing slurry for CMP was prepared in the same manner as in Example 1 except that glycine was changed to the aminocarboxylic acid shown in Table 1.
  • Example 5 A polishing slurry for CMP was prepared in the same manner as in Example 1 except that polyoxyethylene trimethylolpropane ether was changed to polyethylene glycol (manufactured by NOF Corporation, PEG 4000, weight average molecular weight 4000).
  • Example 1 A polishing slurry for CMP was prepared in the same manner as in Example 5 except that aminocarboxylic acid and aminosulfonic acid were not used (deionized water was increased).
  • Example 2 A polishing slurry for CMP was prepared in the same manner as in Example 1 except that no polyol and aminosulfonic acid were used (deionized water was increased).
  • ⁇ Zeta potential of abrasive grains> An appropriate amount of a polishing slurry for CMP was put into Delsa Nano C manufactured by Beckman Coulter Co., Ltd., and the measurement was performed twice at 25 ° C. The average value of the displayed zeta potential was obtained as the zeta potential. As a result, the zeta potential of the abrasive grains was +55 mV.
  • ⁇ Average particle size of abrasive grains> A trade name manufactured by Microtrack Bell Co., Ltd .: An appropriate amount of CMP polishing liquid was put into Microtrack MT3300EXII, and the average particle size of the abrasive grains was measured. The displayed average particle size value was obtained as the average particle size (average secondary particle size). The average grain size of the abrasive grains in the CMP polishing liquid was 155 nm.
  • ⁇ PH of polishing liquid for CMP The pH of the polishing liquid for CMP was evaluated under the following conditions. The results are shown in Tables 1 and 2. Measurement temperature: 25 ° C Measuring device: manufactured by Toa DKK Corporation, model number PHL-40 Measurement method: Two-point calibration using a standard buffer (phthalate pH buffer, pH: 4.01 (25 ° C.); neutral phosphate pH buffer, pH: 6.86 (25 ° C.)) Thereafter, the electrode was put into a polishing slurry for CMP, and the pH after being stabilized for 2 minutes or more was measured with the measuring device.
  • a standard buffer phthalate pH buffer, pH: 4.01 (25 ° C.); neutral phosphate pH buffer, pH: 6.86 (25 ° C.)
  • a pattern wafer, which will be described later, polished until the silicon nitride film was exposed was polished for 30 seconds using the CMP polishing liquid.
  • the silicon nitride film and the silicon oxide film are exposed on the surface to be polished.
  • Wafer cleaning After CMP, the wafer was cleaned with water, and then dried with a spin dryer.
  • Non-pattern wafer A TEOS wafer having a TEOS film (silicon oxide film) with a thickness of 1 ⁇ m formed by a CVD method on a silicon substrate was used.
  • a pattern wafer on which a simulated pattern was formed a 764 wafer (trade name, diameter: 300 mm) manufactured by SEMATECH was used.
  • a silicon nitride film is stacked on a silicon substrate as a stopper (stopper film), and then a trench is formed in an exposure process, and an insulating film is formed on the silicon substrate and the silicon nitride film so as to fill the stopper and the trench. It was a wafer obtained by laminating a silicon oxide film (SiO 2 film).
  • the silicon oxide film was formed by the HDP (High Density Plasma) method.
  • the line & space is a simulated pattern in which an active portion masked by a stopper film that is a convex portion and a trench portion in which a groove that is a concave portion is formed are alternately arranged.
  • the line and space has a pitch of 100 ⁇ m means that the total width of the line portion and the space portion is 100 ⁇ m.
  • the line and space is 100 ⁇ m pitch and the convex pattern density is 50%” means a pattern in which convex width: 50 ⁇ m and concave width: 50 ⁇ m are alternately arranged.
  • the silicon nitride film is formed by polishing the wafer using a known CMP polishing liquid having self-stopping properties (a characteristic that the polishing speed decreases when the residual step amount of the simulated pattern decreases).
  • An exposed wafer was used.
  • HS-8005-D4 (trade name) manufactured by Hitachi Chemical Co., Ltd.
  • HS-7303GP (trade name) manufactured by Hitachi Chemical Co., Ltd.
  • water are mixed at 1: 1.2: 7.8.
  • a wafer in a state of being polished using a polishing liquid blended at a ratio until a convex silicon nitride film in a 100 ⁇ m pitch 50% density pattern was exposed was used.
  • polishing selectivity ratio of silicon oxide to silicon nitride (the polishing rate of silicon oxide / the polishing rate of silicon nitride) was calculated. The results are shown in Tables 1 and 2. The residual film thickness of the TEOS film (silicon oxide film) polished and cleaned under the above conditions was measured. Further, the residual film thickness of the silicon nitride film on the convex portion of the patterned wafer polished and cleaned under the above conditions was measured.
  • polishing rate of the film to be polished (initial film thickness of the film to be polished (nm) ⁇ remaining film thickness of the film to be polished (nm)) / polishing time (min))

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

砥粒と、ポリオールと、アミノカルボン酸と、アミノスルホン酸と、液状媒体と、を含有し、前記砥粒のゼータ電位が正である、研磨液。

Description

研磨液、研磨液セット及び研磨方法
 本発明は、研磨液、研磨液セット及び研磨方法に関する。
 近年の半導体素子の製造工程では、高密度化及び微細化のための加工技術の重要性がますます高まっている。加工技術の一つであるCMP(ケミカル・メカニカル・ポリッシング:化学機械研磨)技術は、半導体素子の製造工程において、シャロートレンチ分離(シャロー・トレンチ・アイソレーション。以下「STI」という。)の形成、プリメタル絶縁材料又は層間絶縁材料の平坦化、プラグ又は埋め込み金属配線の形成等に必須の技術となっている。
 最も多用されている研磨液としては、例えば、砥粒として、ヒュームドシリカ、コロイダルシリカ等のシリカ(酸化珪素)粒子を含むシリカ系研磨液が挙げられる。シリカ系研磨液は、汎用性が高いことが特徴であり、砥粒含有量、pH、添加剤等を適切に選択することで、絶縁材料及び導電材料を問わず幅広い種類の材料を研磨できる。
 一方で、主に酸化珪素等の絶縁材料を対象とした研磨液として、セリウム化合物粒子を砥粒として含む研磨液の需要も拡大している。例えば、セリウム酸化物粒子を砥粒として含むセリウム酸化物系研磨液は、シリカ系研磨液よりも低い砥粒含有量でも高速に酸化珪素を研磨できる(例えば、下記特許文献1及び2参照)。
特開平10-106994号公報 特開平08-022970号公報
 STI等を形成するためのCMP技術においては、凹凸パターンを有する基板と、基板の凸部上に配置されたストッパ(ストッパ材料を含む研磨停止層)と、基板の凹部を埋めるように基板及びストッパの上に配置された絶縁材料(例えば酸化珪素)と、を有する積層体の研磨が行われる。このような研磨では、絶縁材料の研磨がストッパにより停止される。すなわち、ストッパが露出した段階で絶縁材料の研磨を停止させる。これは絶縁材料の研磨量(例えば絶縁膜における除去される膜厚)を人為的に制御することが難しいためであり、ストッパが露出するまで絶縁材料を研磨することにより研磨の程度を制御している。このような研磨では、基板の凸部上に配置されたストッパの過研磨を抑制しつつ絶縁部材を研磨する必要がある。このような観点から、研磨液に対しては、ストッパ材料に対する絶縁材料の研磨選択性を向上させることが求められている。
 そこで、本発明は、ストッパ材料に対する絶縁材料の研磨選択性を向上させることが可能な研磨液、研磨液セット及び研磨方法を提供することを目的とする。
 本発明の一側面に係る研磨液は、砥粒と、ポリオールと、アミノカルボン酸と、アミノスルホン酸と、液状媒体と、を含有し、前記砥粒のゼータ電位が正である。
 このような研磨液によれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させることができる。
 本発明の他の一側面に係る研磨液セットは、上述の研磨液の構成成分が第1の液と第2の液とに分けて保存され、前記第1の液が、前記砥粒と、液状媒体と、を含み、前記第2の液が、前記ポリオールと、前記アミノカルボン酸と、前記アミノスルホン酸と、液状媒体と、を含む。このような研磨液セットによれば、上述の研磨液と同様の前記効果を得ることができる。
 本発明の他の一側面に係る研磨方法は、上述の研磨液、又は、上述の研磨液セットにおける前記第1の液と前記第2の液とを混合して得られる研磨液を用いて被研磨面を研磨する研磨工程を備えている。このような研磨方法によれば、上述の研磨液と同様の前記効果を得ることができる。
 本発明によれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させることができる。本発明によれば、酸化珪素を含む被研磨面の研磨への研磨液の使用を提供することができる。本発明によれば、ストッパ材料に対する絶縁材料の選択的研磨への研磨液の使用を提供することができる。本発明によれば、窒化珪素に対する酸化珪素の選択的研磨への研磨液の使用を提供することができる。本発明によれば、半導体素子の製造技術である基体表面の平坦化工程への研磨液の使用を提供することができる。本発明によれば、STI絶縁材料、プリメタル絶縁材料又は層間絶縁材料の平坦化工程への研磨液の使用を提供することができる。
 以下、本発明の実施形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。
<定義>
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、一種を単独で又は二種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において、「研磨液」(polishing liquid、abrasive)とは、研磨時に被研磨面に触れる組成物として定義される。「研磨液」という語句自体は、研磨液に含有される成分を何ら限定しない。後述するように、本実施形態に係る研磨液は砥粒(abrasive grain)を含有する。砥粒は、「研磨粒子」(abrasive particle)ともいわれるが、本明細書では「砥粒」という。砥粒は、一般的には固体粒子であって、研磨時に、砥粒が有する機械的作用(物理的作用)、及び、砥粒(主に砥粒の表面)の化学的作用によって、除去対象物が除去(remove)されると考えられるが、これに限定されない。
<研磨液及び研磨液セット>
 本実施形態に係る研磨液は、例えばCMP用研磨液である。本実施形態に係る研磨液は、砥粒と、ポリオールと、アミノカルボン酸と、アミノスルホン酸と、液状媒体と、を含有し、前記砥粒のゼータ電位が正である。
 本実施形態に係る研磨液によれば、ストッパ材料(例えば窒化珪素)に対する絶縁材料(例えば酸化珪素)の研磨選択性(絶縁材料の研磨速度/ストッパ材料の研磨速度)を向上させることができる。本発明者らは、このような効果が奏される要因を下記のように推測している。但し、要因は下記に限定されない。
 すなわち、アミノカルボン酸及びアミノスルホン酸のような双性イオン化合物は、同一分子内にカチオン部(例えばアミノ基)とアニオン部(例えばカルボキシル基及びスルホン酸基)とを有する。ポリオールを用いた上でアミノカルボン酸及びアミノスルホン酸を用いると、アミノカルボン酸及びアミノスルホン酸がストッパの表面に付着することができる。このとき、アニオン部がストッパに付着し、カチオン部はストッパに対して外側を向く。この場合、双性イオン化合物が付着したストッパの表面は正に帯電することから、このストッパの表面は、ゼータ電位が正である砥粒と反発する。これにより、ストッパ材料の研磨速度が抑制される。
 一方、ポリオールが砥粒の表面に付着することにより砥粒の表面が親水化する。また、絶縁材料(例えば酸化珪素)は、ストッパ材料と比べて親水性が高い傾向があるため、水酸基を有するポリオールに対して親和性を有する。これにより、ポリオールを介して絶縁材料と砥粒とが接触しやすいため、絶縁材料の研磨速度が向上する。
 以上より、ストッパ材料に対する絶縁材料の研磨選択性が向上する。
(砥粒)
 本実施形態に係る研磨液は、研磨液中において正のゼータ電位を有する砥粒を含有する。砥粒は、絶縁材料を高い研磨速度で研磨しやすい観点から、セリウム酸化物(例えば、セリア(酸化セリウム(IV)))、シリカ、アルミナ、ジルコニア、イットリア及び4価金属元素の水酸化物からなる群より選択される少なくとも一種を含むことが好ましく、セリウム酸化物を含むことがより好ましい。砥粒は、一種を単独で又は二種以上を組み合わせて使用することができる。
 「4価金属元素の水酸化物」とは、4価の金属(M4+)と、少なくとも1つの水酸化物イオン(OH)とを含む化合物である。4価金属元素の水酸化物は、水酸化物イオン以外の陰イオン(例えば、硝酸イオンNO 及び硫酸イオンSO 2-)を含んでいてもよい。例えば、4価金属元素の水酸化物は、4価金属元素に結合した陰イオン(例えば、硝酸イオンNO 及び硫酸イオンSO 2-)を含んでいてもよい。4価金属元素の水酸化物は、4価金属元素の塩(金属塩)とアルカリ源(塩基)とを反応させることにより作製できる。
 4価金属元素の水酸化物は、絶縁材料の研磨速度を向上させやすい観点から、セリウム水酸化物(4価セリウムの水酸化物)を含むことが好ましい。セリウム水酸化物は、セリウム塩とアルカリ源(塩基)とを反応させることにより作製できる。セリウム水酸化物は、セリウム塩とアルカリ液(例えばアルカリ水溶液)とを混合することにより作製されることが好ましい。これにより、粒径が極めて細かい粒子を得ることができ、優れた研磨傷の低減効果を得やすい。セリウム水酸化物は、セリウム塩溶液(例えばセリウム塩水溶液)とアルカリ液とを混合することにより得ることができる。セリウム塩としては、Ce(NO、Ce(SO、Ce(NH(NO、Ce(NH(SO等が挙げられる。
 セリウム水酸化物の製造条件等に応じて、4価セリウム(Ce4+)、1~3個の水酸化物イオン(OH)及び1~3個の陰イオン(Xc-)からなるCe(OH)(式中、a+b×c=4である)を含む粒子が生成すると考えられる(なお、このような粒子もセリウム水酸化物である)。Ce(OH)では、電子吸引性の陰イオン(Xc-)が作用して水酸化物イオンの反応性が向上しており、Ce(OH)の存在量が増加するに伴い研磨速度が向上すると考えられる。陰イオン(Xc-)としては、例えば、NO 及びSO 2-が挙げられる。セリウム水酸化物を含む粒子は、Ce(OH)だけでなく、Ce(OH)、CeO等も含み得ると考えられる。
 セリウム水酸化物を含む粒子がCe(OH)を含むことは、粒子を純水でよく洗浄した後に、FT-IR ATR法(Fourier transform Infra Red Spectrometer Attenuated Total Reflection法、フーリエ変換赤外分光光度計全反射測定法)で、陰イオン(Xc-)に該当するピークを検出する方法により確認できる。XPS法(X-ray Photoelectron Spectroscopy、X線光電子分光法)により、陰イオン(Xc-)の存在を確認することもできる。
 砥粒がセリウム酸化物を含む場合、セリウム酸化物の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、砥粒全体(研磨液に含まれる砥粒全体。以下同様)を基準として、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、80質量%以上が極めて好ましく、90質量%以上が非常に好ましい。
 研磨液、又は、後述する研磨液セットにおけるスラリ中の砥粒の平均粒径の下限は、絶縁材料の研磨速度を向上させやすい観点から、16nm以上が好ましく、20nm以上がより好ましく、30nm以上が更に好ましく、40nm以上が特に好ましく、50nm以上が極めて好ましく、100nm以上が非常に好ましく、120nm以上がより一層好ましく、150nm以上がより好ましく、155nm以上が更に好ましい。砥粒の平均粒径の上限は、被研磨面に傷がつくことを抑制しやすい観点から、1050nm以下が好ましく、1000nm以下がより好ましく、800nm以下が更に好ましく、600nm以下が特に好ましく、500nm以下が極めて好ましく、400nm以下が非常に好ましく、300nm以下がより一層好ましく、200nm以下がより好ましく、160nm以下が更に好ましい。これらの観点から、砥粒の平均粒径は、16~1050nmであることがより好ましく、20~1000nmであることが更に好ましい。
 砥粒の「平均粒径」とは、砥粒の平均二次粒径を意味する。例えば、砥粒の平均粒径は、体積平均粒径であり、研磨液、又は、後述する研磨液セットにおけるスラリについて、光回折散乱式粒度分布計(例えば、マイクロトラック・ベル株式会社製の商品名:マイクロトラックMT3300EXII)を用いて測定することができる。
 研磨液中における砥粒のゼータ電位(表面電位)は、ストッパ材料の研磨速度を抑制する観点から、正である(ゼータ電位が0mVを超える)。砥粒のゼータ電位の下限は、ストッパ材料の研磨速度を抑制しやすい観点から、10mV以上が好ましく、20mV以上がより好ましく、25mV以上が更に好ましく、30mV以上が特に好ましく、40mV以上が極めて好ましく、50mV以上が非常に好ましい。砥粒のゼータ電位の上限は、特に限定されないが、200mV以下が好ましい。これらの観点から、砥粒のゼータ電位は、10~200mVがより好ましい。
 砥粒のゼータ電位は、例えば、動的光散乱式ゼータ電位測定装置(例えば、ベックマン・コールター株式会社製、商品名:DelsaNano C)を用いて測定することができる。砥粒のゼータ電位は、添加剤を用いて調整できる。例えば、セリウム酸化物を含有する砥粒にモノカルボン酸(例えば酢酸)を接触させることにより、正のゼータ電位を有する砥粒を得ることができる。また、セリウム酸化物を含有する砥粒に、リン酸二水素アンモニウム、カルボキシル基を有する材料(例えばポリアクリル酸)等を接触させることにより、負のゼータ電位を有する砥粒を得ることができる。
 砥粒の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、研磨液の全質量を基準として、0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.02質量%以上が更に好ましく、0.03質量%以上が特に好ましく、0.04質量%以上が極めて好ましく、0.05質量%以上が非常に好ましく、0.07質量%以上がより一層好ましく、0.1質量%以上がより好ましい。砥粒の含有量の上限は、優れた砥粒の分散安定性を得やすい観点から、研磨液の全質量を基準として、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、5質量%以下が特に好ましく、4質量%以下が極めて好ましく、3質量%以下が非常に好ましく、1質量%以下がより一層好ましく、0.5質量%以下がより好ましく、0.3質量%以下が更に好ましく、0.2質量%以下が特に好ましく、0.15質量%以下が極めて好ましい。これらの観点から、砥粒の含有量は、研磨液の全質量を基準として0.005~20質量%であることがより好ましく、0.01~10質量%であることが更に好ましい。
 砥粒は、互いに接触した複数の粒子から構成される複合粒子を含んでいてよい。例えば、砥粒は、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含む複合粒子を含んでいてよく、複合粒子と遊離粒子(例えば、第1の粒子と接触していない第2の粒子)とを含んでいてよい。
 砥粒は、複合粒子を含む態様として、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含み、第2の粒子の粒径が第1の粒子の粒径よりも小さく、第1の粒子がセリウム酸化物を含有し、第2の粒子がセリウム化合物を含有する態様であることが好ましい。このような砥粒を用いることにより絶縁材料(例えば酸化珪素)の研磨速度を向上させやすい。このように絶縁材料の研磨速度が向上する理由としては、例えば、下記の理由が挙げられる。但し、理由は下記に限定されない。
 すなわち、セリウム酸化物を含有すると共に、第2の粒子よりも大きい粒径を有する第1の粒子は、第2の粒子と比較して、絶縁材料に対する機械的作用(メカニカル性)が強い。一方、セリウム化合物を含有すると共に、第1の粒子よりも小さい粒径を有する第2の粒子は、第1の粒子と比較して、絶縁材料に対する機械的作用は小さいものの、粒子全体における比表面積(単位質量当たりの表面積)が大きいため、絶縁材料に対する化学的作用(ケミカル性)が強い。このように、機械的作用が強い第1の粒子と、化学的作用が強い第2の粒子と、を併用することにより研磨速度向上の相乗効果が得られやすい。
 第2の粒子のセリウム化合物としては、セリウム水酸化物、セリウム酸化物等が挙げられる。第2の粒子のセリウム化合物としては、セリウム酸化物とは異なる化合物を用いることができる。セリウム化合物は、絶縁材料の研磨速度を向上させやすい観点から、セリウム水酸化物を含むことが好ましい。
 第2の粒子の粒径は、第1の粒子の粒径よりも小さいことが好ましい。第1の粒子及び第2の粒子の粒径の大小関係は、複合粒子のSEM画像等から判別することができる。一般的に、粒径が小さい粒子では、粒径が大きい粒子に比べて単位質量当たりの表面積が大きいことから反応活性が高い。一方、粒径が小さい粒子の機械的作用(機械的研磨力)は、粒径が大きい粒子に比べて小さい。しかしながら、本実施形態においては、第2の粒子の粒径が第1の粒子の粒径より小さい場合であっても、第1の粒子及び第2の粒子の相乗効果を発現させることが可能であり、優れた反応活性及び機械的作用を容易に両立することができる。
 第1の粒子の粒径の下限は、絶縁材料の研磨速度を向上させやすい観点から、15nm以上が好ましく、25nm以上がより好ましく、35nm以上が更に好ましく、40nm以上が特に好ましく、50nm以上が極めて好ましく、80nm以上が非常に好ましく、100nm以上がより一層好ましい。第1の粒子の粒径の上限は、砥粒の分散性が向上しやすい観点、及び、被研磨面に傷がつくことが抑制されやすい観点から、1000nm以下が好ましく、800nm以下がより好ましく、600nm以下が更に好ましく、400nm以下が特に好ましく、300nm以下が極めて好ましく、200nm以下が非常に好ましく、150nm以下がより一層好ましい。これらの観点から、第1の粒子の粒径は、15~1000nmであることがより好ましい。第1の粒子の平均粒径(平均二次粒径)が上述の範囲であってもよい。
 第2の粒子の粒径の下限は、絶縁材料の研磨速度を向上させやすい観点から、1nm以上が好ましく、2nm以上がより好ましく、3nm以上が更に好ましい。第2の粒子の粒径の上限は、砥粒の分散性が向上しやすい観点、及び、被研磨面に傷がつくことが抑制されやすい観点から、50nm以下が好ましく、30nm以下がより好ましく、25nm以下が更に好ましく、20nm以下が特に好ましく、15nm以下が極めて好ましく、10nm以下が非常に好ましい。これらの観点から、第2の粒子の粒径は、1~50nmであることがより好ましい。第2の粒子の平均粒径(平均二次粒径)が上述の範囲であってもよい。
 第1の粒子は、負のゼータ電位を有することができる。第2の粒子は、正のゼータ電位を有することができる。
 第1の粒子及び第2の粒子を含む複合粒子は、ホモジナイザー、ナノマイザー、ボールミル、ビーズミル、超音波処理機等を用いて第1の粒子と第2の粒子とを接触させること、互いに相反する電荷を有する第1の粒子と第2の粒子とを接触させること、粒子の含有量が少ない状態で第1の粒子と第2の粒子とを接触させることなどにより得ることができる。
 第1の粒子におけるセリウム酸化物の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、第1の粒子の全体(研磨液に含まれる第1の粒子の全体。以下同様)を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上が特に好ましい。第1の粒子は、実質的にセリウム酸化物からなる態様(実質的に第1の粒子の100質量%がセリウム酸化物である態様)であってもよい。
 第2の粒子におけるセリウム化合物の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、第2の粒子の全体(研磨液に含まれる第2の粒子の全体。以下同様)を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上が特に好ましい。第2の粒子は、実質的にセリウム化合物からなる態様(実質的に第2の粒子の100質量%がセリウム化合物である態様)であってもよい。
 研磨液に特定の波長の光を透過させた際に分光光度計によって得られる下記式の吸光度の値により第2の粒子の含有量を推定することができる。すなわち、粒子が特定の波長の光を吸収する場合、当該粒子を含む領域の光透過率が減少する。光透過率は、粒子による吸収だけでなく、散乱によっても減少するが、第2の粒子では、散乱の影響が小さい。そのため、本実施形態では、下記式によって算出される吸光度の値により第2の粒子の含有量を推定することができる。
 吸光度 =-LOG10(光透過率[%]/100)
 複合粒子を含む砥粒における第1の粒子の含有量は、砥粒全体を基準として下記の範囲が好ましい。第1の粒子の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、75質量%以上が極めて好ましく、80質量%以上が非常に好ましく、85質量%以上がより一層好ましく、90質量%以上がより好ましい。第1の粒子の含有量の上限は、絶縁材料の研磨速度を向上させやすい観点から、95質量%以下が好ましく、93質量%以下がより好ましく、91質量%以下が更に好ましい。これらの観点から、第1の粒子の含有量は、50~95質量%であることがより好ましい。
 複合粒子を含む砥粒における第2の粒子の含有量は、砥粒全体を基準として下記の範囲が好ましい。第2の粒子の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、5質量%以上が好ましく、7質量%以上がより好ましく、9質量%以上が更に好ましい。第2の粒子の含有量の上限は、絶縁材料の研磨速度を向上させやすい観点から、50質量%以下が好ましく、50質量%未満がより好ましく、40質量%以下が更に好ましく、30質量%以下が特に好ましく、25質量%以下が極めて好ましく、20質量%以下が非常に好ましく、15質量%以下がより一層好ましく、10質量%以下がより好ましい。これらの観点から、第2の粒子の含有量は、5~50質量%であることがより好ましい。
 複合粒子を含む砥粒におけるセリウム酸化物の含有量は、砥粒全体を基準として下記の範囲が好ましい。セリウム酸化物の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、75質量%以上が極めて好ましく、80質量%以上が非常に好ましく、85質量%以上がより一層好ましく、90質量%以上がより好ましい。セリウム酸化物の含有量の上限は、絶縁材料の研磨速度を向上させやすい観点から、95質量%以下が好ましく、93質量%以下がより好ましく、91質量%以下が更に好ましい。これらの観点から、セリウム酸化物の含有量は、50~95質量%であることがより好ましい。
 複合粒子を含む砥粒におけるセリウム水酸化物の含有量は、砥粒全体を基準として下記の範囲が好ましい。セリウム水酸化物の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、5質量%以上が好ましく、7質量%以上がより好ましく、9質量%以上が更に好ましい。セリウム水酸化物の含有量の上限は、絶縁材料の研磨速度を向上させやすい観点から、50質量%以下が好ましく、50質量%未満がより好ましく、40質量%以下が更に好ましく、30質量%以下が特に好ましく、25質量%以下が極めて好ましく、20質量%以下が非常に好ましく、15質量%以下がより一層好ましく、10質量%以下がより好ましい。これらの観点から、セリウム水酸化物の含有量は、5~50質量%であることがより好ましい。
 第1の粒子の含有量は、第1の粒子及び第2の粒子の合計量を基準として下記の範囲が好ましい。第1の粒子の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、75質量%以上が極めて好ましく、80質量%以上が非常に好ましく、85質量%以上がより一層好ましく、90質量%以上がより好ましい。第1の粒子の含有量の上限は、絶縁材料の研磨速度を向上させやすい観点から、95質量%以下が好ましく、93質量%以下がより好ましく、91質量%以下が更に好ましい。これらの観点から、第1の粒子の含有量は、50~95質量%であることがより好ましい。
 第2の粒子の含有量は、第1の粒子及び第2の粒子の合計量を基準として下記の範囲が好ましい。第2の粒子の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、5質量%以上が好ましく、7質量%以上がより好ましく、9質量%以上が更に好ましい。第2の粒子の含有量の上限は、絶縁材料の研磨速度を向上させやすい観点から、50質量%以下が好ましく、50質量%未満がより好ましく、40質量%以下が更に好ましく、30質量%以下が特に好ましく、25質量%以下が極めて好ましく、20質量%以下が非常に好ましく、15質量%以下がより一層好ましく、10質量%以下がより好ましい。これらの観点から、第2の粒子の含有量は、5~50質量%であることがより好ましい。
 研磨液における第1の粒子の含有量は、研磨液の全質量を基準として下記の範囲が好ましい。第1の粒子の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.05質量%以上が特に好ましく、0.08質量%以上が極めて好ましく、0.09質量%以上が非常に好ましい。第1の粒子の含有量の上限は、研磨液の保存安定性を高くしやすい観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.3質量%以下が極めて好ましく、0.2質量%以下が非常に好ましく、0.1質量%以下がより一層好ましい。これらの観点から、第1の粒子の含有量は、0.005~5質量%であることがより好ましい。
 研磨液における第2の粒子の含有量は、研磨液の全質量を基準として下記の範囲が好ましい。第2の粒子の含有量の下限は、砥粒と被研磨面との化学的な相互作用が更に向上して絶縁材料の研磨速度を向上させやすい観点から、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.009質量%以上が更に好ましい。第2の粒子の含有量の上限は、砥粒の凝集を避けることが容易になると共に、砥粒と被研磨面との化学的な相互作用が更に良好となり、砥粒の特性を有効に活用しやすい観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.1質量%以下が極めて好ましく、0.05質量%以下が非常に好ましく、0.04質量%以下がより一層好ましく、0.035質量%以下がより好ましく、0.03質量%以下が更に好ましく、0.02質量%以下が特に好ましく、0.01質量%以下が極めて好ましい。これらの観点から、第2の粒子の含有量は、0.005~5質量%であることがより好ましい。
 複合粒子を含む砥粒を含有する研磨液におけるセリウム酸化物の含有量は、研磨液の全質量を基準として下記の範囲が好ましい。セリウム酸化物の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.05質量%以上が特に好ましく、0.08質量%以上が極めて好ましく、0.09質量%以上が非常に好ましい。セリウム酸化物の含有量の上限は、研磨液の保存安定性を高くしやすい観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.3質量%以下が極めて好ましく、0.2質量%以下が非常に好ましく、0.1質量%以下がより一層好ましい。これらの観点から、セリウム酸化物の含有量は、0.005~5質量%であることがより好ましい。
 複合粒子を含む砥粒を含有する研磨液におけるセリウム水酸化物の含有量は、研磨液の全質量を基準として下記の範囲が好ましい。セリウム水酸化物の含有量の下限は、砥粒と被研磨面との化学的な相互作用が更に向上して絶縁材料の研磨速度を向上させやすい観点から、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.009質量%以上が更に好ましい。セリウム水酸化物の含有量の上限は、砥粒の凝集を避けることが容易になると共に、砥粒と被研磨面との化学的な相互作用が更に良好となり、砥粒の特性を有効に活用しやすい観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.1質量%以下が極めて好ましく、0.05質量%以下が非常に好ましく、0.04質量%以下がより一層好ましく、0.035質量%以下がより好ましく、0.03質量%以下が更に好ましく、0.02質量%以下が特に好ましく、0.01質量%以下が極めて好ましい。これらの観点から、セリウム水酸化物の含有量は、0.005~5質量%であることがより好ましい。
(添加剤)
 本実施形態に係る研磨液は、添加剤を含有する。ここで、「添加剤」とは、砥粒及び液状媒体以外に研磨液が含有する物質を指す。
[ポリオール]
 本実施形態に係る研磨液は、ポリオール(アミノカルボン酸又はアミノスルホン酸に該当する化合物を除く)を含有する。ポリオールとは、分子中に2個以上の水酸基を有している化合物である。
 ポリオールとしては、ポリグリセリン、ポリビニルアルコール、ポリアルキレングリコール(ポリエチレングリコール等)、ポリオキシアルキレングリコール、ポリオキシアルキレンソルビトールエーテル(ポリオキシプロピレンソルビトールエーテル等)、エチレンジアミンのポリオキシアルキレン縮合物(エチレンジアミンテトラポリオキシエチレンポリオキシプロピレン等)、2,2-ビス(4-ポリオキシアルキレン-オキシフェニル)プロパン、ポリオキシアルキレングリセリルエーテル、ポリオキシアルキレンジグリセリルエーテル、ポリオキシアルキレントリメチロールプロパンエーテル(ポリオキシエチレントリメチロールプロパンエーテル等)、ペンタエリスリトールポリオキシアルキレンエーテル(ペンタエリスリトールポリオキシプロピレンエーテル等)、ポリオキシアルキレンメチルグルコシドなどが挙げられる。ポリオールは、芳香族基を有しないポリオールを含んでいてよい。ポリオールは、一種を単独で又は二種以上を組み合わせて使用することができる。
 ポリオールは、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、ポリエーテルポリオール(ポリエーテル構造を有するポリオール)を含むことが好ましい。ポリエーテルポリオールは、ポリオキシアルキレン基を有することが好ましい。
 ポリオールのポリオキシアルキレン基におけるオキシアルキレンの炭素数は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、1以上が好ましく、2以上がより好ましい。ポリオキシアルキレン基におけるオキシアルキレンの炭素数は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、5以下が好ましく、4以下がより好ましく、3以下が更に好ましい。これらの観点から、前記炭素数は、1~5がより好ましい。ポリオキシアルキレン基は、単独重合鎖であってもよく、共重合鎖であってもよい。共重合鎖は、ブロック重合鎖であってもよく、ランダム重合鎖であってもよい。
 ポリオールは、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、ポリオキシアルキレントリメチロールプロパンエーテル、ペンタエリスリトールポリオキシアルキレンエーテル、及び、ポリアルキレングリコールからなる群より選ばれる少なくとも一種を含むことが好ましく、ポリオキシエチレントリメチロールプロパンエーテル、ペンタエリスリトールポリオキシエチレンエーテル、及び、ポリエチレングリコールからなる群より選ばれる少なくとも一種を含むことがより好ましく、ポリオキシエチレントリメチロールプロパンエーテル、及び、ポリエチレングリコールからなる群より選ばれる少なくとも一種を含むことが更に好ましい。
 ポリオールの分子量の下限は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、100以上が好ましく、200以上がより好ましく、300以上が更に好ましく、330以上が特に好ましい。ポリオールの分子量の上限は、絶縁材料の研磨速度が向上しやすい観点から、5000以下が好ましく、4000以下がより好ましく、3000以下が更に好ましく、1000以下が特に好ましく、800以下が極めて好ましく、500以下が非常に好ましく、400以下がより一層好ましい。これらの観点から、ポリオールの分子量は、100~5000がより好ましい。
 ポリオールがポリオキシアルキレン基を有する場合、ポリオールの分子量は重量平均分子量であってよい。水酸基及びポリオキシアルキレン基を有する化合物の重量平均分子量は、1000を超えてよく、2000以上であってよく、3000以上であってよく、4000以上であってよい。重量平均分子量は、例えば、標準ポリスチレンの検量線を用いてゲルパーミエーションクロマトグラフィー法(GPC)により下記の条件で測定することができる。
 使用機器:日立L-6000型[株式会社日立製作所製]
 カラム:ゲルパックGL-R420+ゲルパックGL-R430+ゲルパックGL-R440[日立化成株式会社製 商品名、計3本]
 溶離液:テトラヒドロフラン
 測定温度:40℃
 流量:1.75mL/min
 検出器:L-3300RI[株式会社日立製作所製]
 ポリオールの含有量の下限は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、研磨液の全質量を基準として、0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.2質量%以上が更に好ましく、0.3質量%以上が特に好ましく、0.4質量%以上が極めて好ましい。ポリオールの含有量の上限は、絶縁材料の研磨速度が向上しやすい観点から、研磨液の全質量を基準として、5.0質量%以下が好ましく、3.0質量%以下がより好ましく、2.0質量%以下が更に好ましく、1.0質量%以下が特に好ましく、0.5質量%以下が極めて好ましい。これらの観点から、ポリオールの含有量は、研磨液の全質量を基準として0.05~5.0質量%がより好ましい。
[アミノカルボン酸]
 本実施形態に係る研磨液は、アミノカルボン酸を含有する。アミノスルホン酸に該当する化合物は、アミノカルボン酸に帰属しないものとする。アミノカルボン酸は、一種を単独で又は二種以上を組み合わせて使用することができる。
 アミノカルボン酸の分子量は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、300以下が好ましく、250以下がより好ましく、200以下が更に好ましく、180以下が特に好ましく、175以下が極めて好ましく、170以下が非常に好ましく、150以下がより一層好ましく、130以下がより好ましい。アミノカルボン酸の分子量は、120以下であってよく、100以下であってよい。アミノカルボン酸の分子量は、50以上であってよく、60以上であってよく、70以上であってよい。アミノカルボン酸の分子量は、50~300であってよい。
 アミノカルボン酸の等電点(pI)は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、7.0より小さいことが好ましい。アミノカルボン酸の等電点の上限は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、6.8以下がより好ましく、6.5以下が更に好ましく、6.3以下が特に好ましく、6.0以下が極めて好ましい。アミノカルボン酸の等電点の上限は、5.9以下、5.8以下、5.7以下、5.65以下、5.6以下、5.5以下、又は、5.1以下であってよい。アミノカルボン酸の等電点の下限は、2.0以上、2.5以上、3.0以上、又は、4.0以上であってよい。アミノカルボン酸の等電点は、2.0以上7.0未満であってよい。アミノカルボン酸の等電点は、JIS K 0113に準拠して、電位差測定装置(例えば、平沼産業株式会社製の「平沼自動滴定装置 COM-1750シリーズ」)によって測定することができる。
 アミノカルボン酸の酸解離定数(pKa、平衡定数Kaの負の常用対数(逆数の対数))の下限は、0より大きい値であってよく、1.0以上、1.5以上、2.0以上、2.1以上、又は、2.3以上であってよい。アミノカルボン酸の酸解離定数の上限は、8.0以下、7.0以下、5.0以下、4.0以下、3.0以下、又は、2.5以下であってよい。酸解離定数が複数存在する場合、酸解離定数は第一段階のpKa1を意味する(以下同様)。
 アミノカルボン酸は、カチオン部としてアミノ基を有し、アニオン部としてカルボキシル基を有する。アミノカルボン酸は、中性アミノカルボン酸及び酸性アミノカルボン酸からなる群より選ばれる少なくとも一種であってよい。中性アミノ酸としては、グリシン、アラニン、バリン、ロイシン、イソロイシン等の脂肪族アミノ酸;セリン、トレオニン等のオキシアミノ酸;システイン、シスチン、メチオニン等の含硫アミノ酸;フェニルアラニン、チロシン、トリプトファン等の芳香族アミノ酸;アスパラギン、グルタミン等の酢酸アミノ酸アミドなどが挙げられる。酸性アミノ酸としては、アスパラギン酸、グルタミン酸等が挙げられる。アミノカルボン酸は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、グリシン、バリン、セリン、システイン、グルタミン、及び、グルタミン酸からなる群より選ばれる少なくとも一種を含むことが好ましく、グリシン、バリン及びシステインからなる群より選ばれる少なくとも一種を含むことがより好ましい。
 アミノカルボン酸の含有量の下限は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、研磨液の全質量を基準として、0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましく、0.08質量%以上が特に好ましく、0.1質量%以上が極めて好ましい。アミノカルボン酸の含有量の上限は、絶縁材料の研磨速度が向上しやすい観点から、研磨液の全質量を基準として、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.5質量%以下が更に好ましく、0.4質量%以下が特に好ましく、0.3質量%以下が極めて好ましく、0.2質量%以下が非常に好ましい。これらの観点から、アミノカルボン酸の含有量は、研磨液の全質量を基準として0.01~1.0質量%がより好ましい。
[アミノスルホン酸]
 本実施形態に係る研磨液は、アミノスルホン酸を含有する。アミノスルホン酸は、一種を単独で又は二種以上を組み合わせて使用することができる。
 アミノスルホン酸の分子量は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、300以下が好ましく、250以下がより好ましく、200以下が更に好ましく、180以下が特に好ましく、175以下が極めて好ましい。アミノスルホン酸の分子量は、170以下であってよく、150以下であってよく、130以下であってよく、120以下であってよく、100以下であってよい。アミノスルホン酸の分子量は、50以上であってよく、60以上であってよく、70以上であってよい。アミノスルホン酸の分子量は、50~300であってよい。
 アミノスルホン酸は、カチオン部としてアミノ基を有し、アニオン部としてスルホン酸基を有する。アミノスルホン酸としては、スルファミン酸、脂肪族アミノスルホン酸、芳香族アミノスルホン酸等が挙げられる。
 脂肪族アミノスルホン酸としては、アミノメタンスルホン酸、アミノエタンスルホン酸(例えば、1-アミノエタンスルホン酸、及び、2-アミノエタンスルホン酸(別名タウリン))、アミノプロパンスルホン酸(例えば、1-アミノプロパン-2-スルホン酸、及び、2-アミノプロパン-1-スルホン酸)等が挙げられる。
 芳香族アミノスルホン酸は、アミノ基及びスルホン酸基を有する芳香族化合物(好ましくは芳香族炭化水素)として定義される。芳香族アミノスルホン酸としては、アミノベンゼンスルホン酸(例えば、オルタニル酸(別名2-アミノベンゼンスルホン酸)、メタニル酸(別名3-アミノベンゼンスルホン酸)、及び、スルファニル酸(別名4-アミノベンゼンスルホン酸))、ジアミノベンゼンスルホン酸(例えば、2,4-ジアミノベンゼンスルホン酸、及び、3,4-ジアミノベンゼンスルホン酸)、アミノナフタレンスルホン酸等が挙げられる。芳香族アミノスルホン酸は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、スルファニル酸を含むことが好ましい。
 アミノスルホン酸のpKaは、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、0より大きいことが好ましい。アミノスルホン酸のpKaの下限は、絶縁材料の研磨速度が向上しやすい観点、及び、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、0.2以上がより好ましく、0.5以上が更に好ましく、0.7以上が特に好ましく、0.9以上が極めて好ましい。アミノスルホン酸のpKaの下限は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、5.0以下が好ましく、4.0以下がより好ましく、3.5以下が更に好ましく、3.2以下が特に好ましい。これらの観点から、アミノスルホン酸のpKaは、0より大きく5.0以下であることがより好ましい。アミノスルホン酸のpKaの下限は、3.0以下、2.5以下、2.0以下、1.5以下、1.2以下、又は、1.0以下であってよい。
 アミノスルホン酸の1質量%水溶液(アミノスルホン酸及び水からなる混合物)のpHは、4以下であることが好ましい。この場合、共存するアミノカルボン酸のカルボキシル基におけるプロトンの乖離を抑えやすいことから、当該カルボキシル基を吸着基として機能させやすいため、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい。同様の観点から、アミノスルホン酸の1質量%水溶液のpHは、3以下がより好ましく、2以下が更に好ましく、1.5以下が特に好ましい。
 アミノスルホン酸は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、スルファミン酸、脂肪族アミノスルホン酸、及び、芳香族アミノスルホン酸からなる群より選ばれる少なくとも一種を含むことが好ましく、スルファミン酸、及び、芳香族アミノスルホン酸からなる群より選ばれる少なくとも一種を含むことがより好ましく、スルファミン酸を含むことが更に好ましい。
 アミノスルホン酸の含有量の下限は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、研磨液の全質量を基準として、0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.01質量%を超えることが特に好ましく、0.02質量%以上が極めて好ましく、0.02質量%を超えることが非常に好ましく、0.025質量%以上がより一層好ましく、0.03質量%以上がより好ましい。アミノスルホン酸の含有量の上限は、絶縁材料の研磨速度が向上しやすい観点から、研磨液の全質量を基準として、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.5質量%以下が更に好ましく、0.4質量%以下が特に好ましく、0.3質量%以下が極めて好ましく、0.2質量%以下が非常に好ましく、0.1質量%以下がより一層好ましく、0.05質量%以下がより好ましい。これらの観点から、アミノスルホン酸の含有量は、研磨液の全質量を基準として0.001~1.0質量%がより好ましい。
 アミノカルボン酸及びアミノスルホン酸の総量は、研磨液の全質量を基準として下記の範囲が好ましい。アミノカルボン酸及びアミノスルホン酸の総量の下限は、ストッパ材料に対する絶縁材料の研磨選択性を向上させやすい観点から、0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましく、0.08質量%以上が特に好ましく、0.1質量%以上が極めて好ましく、0.15質量%以上が非常に好ましく、0.2質量%以上がより一層好ましい。アミノカルボン酸及びアミノスルホン酸の総量の上限は、絶縁材料の研磨速度が向上しやすい観点から、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.5質量%以下が更に好ましく、0.4質量%以下が特に好ましく、0.3質量%以下が極めて好ましく、0.25質量%以下が非常に好ましい。これらの観点から、アミノカルボン酸及びアミノスルホン酸の総量は、0.01~1.0質量%がより好ましい。
[任意の添加剤]
 本実施形態に係る研磨液は、任意の添加剤(ポリオール、アミノカルボン酸又はアミノスルホン酸に該当する化合物を除く)を含有していてもよい。任意の添加剤としては、水溶性高分子、酸化剤(例えば過酸化水素)、分散剤(例えばリン酸系無機塩)等が挙げられる。「水溶性高分子」とは、水100gに対して0.1g以上溶解する高分子として定義する。水溶性高分子としては、ポリアクリル酸、ポリアクリル酸共重合体、ポリアクリル酸塩、ポリアクリル酸共重合体塩等のポリアクリル酸系ポリマ;ポリメタクリル酸、ポリメタクリル酸塩等のポリメタクリル酸系ポリマなどが挙げられる。
(液状媒体)
 本実施形態に係る研磨液における液状媒体としては、特に制限はないが、脱イオン水、超純水等の水が好ましい。液状媒体の含有量は、他の構成成分の含有量を除いた研磨液の残部でよく、特に限定されない。
(研磨液の特性)
 本実施形態に係る研磨液のpHの下限は、優れた砥粒の分散安定性を得やすい観点から、2.0以上が好ましく、2.2以上がより好ましく、2.5以上が更に好ましく、3.0以上が特に好ましく、3.1以上が極めて好ましく、3.2以上が非常に好ましい。pHの上限は、優れた砥粒の分散安定性を得やすい観点から、4.5以下が好ましく、4.2以下がより好ましく、4.0以下が更に好ましく、3.6以下が特に好ましい。これらの観点から、研磨液のpHは、2.0~4.5がより好ましい。研磨液のpHは、液温25℃におけるpHと定義する。
 研磨液のpHは、無機酸、有機酸等の酸成分;アンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド(TMAH)、イミダゾール、アルカノールアミン等のアルカリ成分などによって調整できる。pHを安定化させるため、緩衝剤を添加してもよい。緩衝液(緩衝剤を含む液)として緩衝剤を添加してもよい。このような緩衝液としては、酢酸塩緩衝液、フタル酸塩緩衝液等が挙げられる。
 本実施形態に係る研磨液のpHは、pHメータ(例えば、東亜ディーケーケー株式会社製の型番PHL-40)で測定することができる。具体的には例えば、フタル酸塩pH緩衝液(pH:4.01)及び中性リン酸塩pH緩衝液(pH:6.86)を標準緩衝液として用いてpHメータを2点校正した後、pHメータの電極を研磨液に入れ、2分以上経過して安定した後の値を測定する。標準緩衝液及び研磨液の液温は、共に25℃とする。
 本実施形態に係る研磨液は、砥粒と、ポリオールと、アミノカルボン酸と、アミノスルホン酸と、液状媒体と、を少なくとも含む一液式研磨液として保存してもよく、前記研磨液の構成成分がスラリ(第1の液)と添加液(第2の液)とに分けて保存される複数液式(例えば二液式)の研磨液セットとして保存してもよい。スラリは、例えば、砥粒と、液状媒体とを少なくとも含む。添加液は、例えば、ポリオールと、アミノカルボン酸と、アミノスルホン酸と、液状媒体とを少なくとも含む。ポリオール、アミノカルボン酸、アミノスルホン酸、任意の添加剤、及び、緩衝剤は、スラリ及び添加液のうち添加液に含まれることが好ましい。なお、前記研磨液の構成成分は、三液以上に分けた研磨液セットとして保存してもよい。
 前記研磨液セットにおいては、研磨直前又は研磨時に、スラリ及び添加液が混合されて研磨液が作製される。また、一液式研磨液は、液状媒体の含有量を減じた研磨液用貯蔵液として保存されると共に、研磨時に液状媒体で希釈して用いられてもよい。複数液式の研磨液セットは、液状媒体の含有量を減じたスラリ用貯蔵液及び添加液用貯蔵液として保存されると共に、研磨時に液状媒体で希釈して用いられてもよい。
<研磨方法>
 本実施形態に係る研磨方法(基体の研磨方法等)は、前記一液式研磨液、又は、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて被研磨面(基体の被研磨面等)を研磨する研磨工程を備えていてよい。被研磨面は、酸化珪素を含んでいてよく、窒化珪素を更に含んでいてよい。
 本実施形態に係る研磨方法は、絶縁材料及び窒化珪素を有する基体の研磨方法であってもよく、例えば、前記一液式研磨液、又は、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて、絶縁材料を窒化珪素に対して選択的に研磨する研磨工程を備えていてもよい。この場合、基体は、例えば、絶縁材料を含む部材と、窒化珪素を含む部材とを有していてもよい。
 本実施形態に係る研磨方法は、窒化珪素を含む第1部材と、絶縁材料を含むと共に第1部材上に配置された第2部材と、を有する基体の研磨方法であってよい。研磨工程は、前記一液式研磨液、又は、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて、第1部材が露出するまで第2部材を研磨する工程を有していてよい。研磨工程は、第1部材が露出した後に、前記一液式研磨液、又は、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて、第1部材及び第2部材を研磨する工程を有していてよい。
 「材料Aを材料Bに対して選択的に研磨する」とは、同一研磨条件において、材料Aの研磨速度が、材料Bの研磨速度よりも高いことをいう。より具体的には、例えば、材料Bの研磨速度に対する材料Aの研磨速度の研磨速度比が10以上で材料Aを研磨することをいう。
 研磨工程では、例えば、被研磨材料を有する基体の当該被研磨材料を研磨定盤の研磨パッド(研磨布)に押圧した状態で、前記研磨液を被研磨材料と研磨パッドとの間に供給し、基体と研磨定盤とを相対的に動かして被研磨材料の被研磨面を研磨する。研磨工程では、例えば、被研磨材料の少なくとも一部を研磨により除去する。
 研磨対象である基体としては、被研磨基板等が挙げられる。被研磨基板としては、例えば、半導体素子製造に係る基板(例えば、STIパターン、ゲートパターン、配線パターン等が形成された半導体基板)上に被研磨材料が形成された基体が挙げられる。被研磨材料としては、酸化珪素等の絶縁材料(ストッパ材料に該当する材料を除く);窒化珪素等のストッパ材料などが挙げられる。被研磨材料は、単一の材料であってもよく、複数の材料であってもよい。複数の材料が被研磨面に露出している場合、それらを被研磨材料と見なすことができる。被研磨材料は、膜状(被研磨膜)であってもよく、酸化珪素膜、窒化珪素膜等であってもよい。
 このような基板上に形成された被研磨材料(例えば、酸化珪素等の絶縁材料)を前記研磨液で研磨し、余分な部分を除去することによって、被研磨材料の表面の凹凸を解消し、被研磨材料の表面全体にわたって平滑な面を得ることができる。本実施形態に係る研磨液は、酸化珪素を含む被研磨面を研磨するために使用されることが好ましい。
 本実施形態では、少なくとも表面に酸化珪素を含む絶縁材料と、絶縁材料の下層に配置されたストッパ(研磨停止層)と、ストッパの下に配置された基板(半導体基板等)とを有する基体における絶縁材料を研磨することができる。ストッパを構成するストッパ材料は、絶縁材料よりも研磨速度が低い材料である窒化珪素が好ましい。
 本実施形態に係る研磨液により研磨される被研磨材料の作製方法としては、低圧CVD法、準常圧CVD法、プラズマCVD法等のCVD法;回転する基板に液体原料を塗布する回転塗布法などが挙げられる。
 以下、基体(例えば、半導体基板上に形成された絶縁材料を有する基体)の研磨方法を一例に挙げて、本実施形態に係る研磨方法を説明する。本実施形態に係る研磨方法において、研磨装置としては、被研磨面を有する基体を保持可能なホルダーと、研磨パッドを貼り付け可能な研磨定盤とを有する一般的な研磨装置を使用できる。ホルダー及び研磨定盤のそれぞれには、回転数が変更可能なモータ等が取り付けてある。研磨装置としては、例えば、荏原製作所株式会社製の研磨装置(型番:FREX300)を使用できる。
 研磨パッドとしては、一般的な不織布、発泡体、非発泡体等が使用できる。研磨パッドの材質としては、ポリウレタン、アクリル樹脂、ポリエステル、アクリル-エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4-メチルペンテン、セルロース、セルロースエステル、ポリアミド(例えば、ナイロン(商標名)及びアラミド)、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂等の樹脂が使用できる。研磨パッドの材質としては、特に、研磨速度及び平坦性に更に優れる観点から、発泡ポリウレタン及び非発泡ポリウレタンからなる群より選択される少なくとも一種が好ましい。研磨パッドには、研磨液がたまるような溝加工が施されていることが好ましい。
 研磨条件に制限はないが、研磨定盤の回転速度の上限は、基体が飛び出さないように200min-1以下が好ましく、基体にかける研磨圧力(加工荷重)の上限は、研磨傷が発生することを充分に抑制する観点から、15psi(103kPa)以下が好ましい。研磨している間、ポンプ等で連続的に研磨液を研磨パッドに供給することが好ましい。この供給量に制限はないが、研磨パッドの表面が常に研磨液で覆われていることが好ましい。
 研磨終了後の基体は、流水中でよく洗浄して、基体に付着した粒子を除去することが好ましい。洗浄には、純水以外に希フッ酸又はアンモニア水を併用してもよく、洗浄効率を高めるためにブラシを併用してもよい。また、洗浄後は、スピンドライヤ等を用いて、基体に付着した水滴を払い落としてから基体を乾燥させることが好ましい。
 本実施形態は、STIの形成に好適に使用できる。STIを形成するためには、ストッパ材料(例えば窒化珪素)に対する絶縁材料(例えば酸化珪素)の研磨速度比の下限は、10以上であることが好ましい。前記研磨速度比が10未満であると、ストッパ材料の研磨速度に対する絶縁材料の研磨速度の大きさが小さく、STIを形成する際に所定の位置で研磨を停止しにくくなる傾向がある。一方、前記研磨速度比が10以上であれば、研磨の停止が容易になり、STIの形成に更に好適である。ストッパ材料に対する絶縁材料の研磨速度比の下限は、15以上がより好ましく、20以上が更に好ましく、25以上が特に好ましい。
 本実施形態は、プリメタル絶縁材料の研磨にも使用できる。プリメタル絶縁材料としては、酸化珪素、リン-シリケートガラス、ボロン-リン-シリケートガラス、シリコンオキシフロリド、フッ化アモルファスカーボン等が挙げられる。
 本実施形態は、酸化珪素等の絶縁材料以外の材料にも適用できる。このような材料としては、Hf系、Ti系、Ta系酸化物等の高誘電率材料;シリコン、アモルファスシリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、有機半導体等の半導体材料;GeSbTe等の相変化材料;ITO等の無機導電材料;ポリイミド系、ポリベンゾオキサゾール系、アクリル系、エポキシ系、フェノール系等のポリマ樹脂材料などが挙げられる。
 本実施形態は、膜状の研磨対象だけでなく、ガラス、シリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、サファイヤ、プラスチック等から構成される各種基板にも適用できる。
 本実施形態は、半導体素子の製造だけでなく、TFT、有機EL等の画像表示装置;フォトマスク、レンズ、プリズム、光ファイバー、単結晶シンチレータ等の光学部品;光スイッチング素子、光導波路等の光学素子;固体レーザ、青色レーザLED等の発光素子;磁気ディスク、磁気ヘッド等の磁気記憶装置などの製造に用いることができる。
 以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例に限定されるものではない。
<セリウム酸化物スラリの準備>
 セリウム酸化物粒子(第1の粒子)と、和光純薬工業株式会社製の商品名:リン酸二水素アンモニウム(分子量:97.99)とを混合して、セリウム酸化物粒子を5.0質量%(固形分含量)含有するセリウム酸化物スラリ(pH:7)を調製した。リン酸二水素アンモニウムの配合量は、セリウム酸化物粒子の全量を基準として1質量%に調整した。
 マイクロトラック・ベル株式会社製の商品名:マイクロトラックMT3300EXII内にセリウム酸化物スラリを適量投入し、セリウム酸化物粒子の平均粒径を測定した。表示された平均粒径値を平均粒径(平均二次粒径)として得た。セリウム酸化物スラリにおけるセリウム酸化物粒子の平均粒径は145nmであった。
 ベックマン・コールター株式会社製の商品名:DelsaNano C内に適量のセリウム酸化物スラリを投入し、25℃において測定を2回行った。表示されたゼータ電位の平均値をゼータ電位として得た。セリウム酸化物スラリにおけるセリウム酸化物粒子のゼータ電位は-55mVであった。
<セリウム水酸化物スラリの準備>
(セリウム水酸化物の合成)
 480gのCe(NH(NO50質量%水溶液(日本化学産業株式会社製、商品名:CAN50液)を7450gの純水と混合して溶液を得た。次いで、この溶液を撹拌しながら、750gのイミダゾール水溶液(10質量%水溶液、1.47mol/L)を5mL/minの混合速度で滴下して、セリウム水酸化物を含む沈殿物を得た。セリウム水酸化物の合成は、温度20℃、撹拌速度500min-1で行った。撹拌は、羽根部全長5cmの3枚羽根ピッチパドルを用いて行った。
 得られた沈殿物(セリウム水酸化物を含む沈殿物)を遠心分離(4000min-1、5分間)した後にデカンテーションで液相を除去することによって固液分離を施した。固液分離により得られた粒子10gと、水990gと、を混合した後、超音波洗浄機を用いて粒子を水に分散させて、セリウム水酸化物粒子(第2の粒子)を含有するセリウム水酸化物スラリ(粒子の含有量:1.0質量%)を調製した。
(平均粒径の測定)
 ベックマン・コールター株式会社製、商品名:N5を用いてセリウム水酸化物スラリにおけるセリウム水酸化物粒子の平均粒径(平均二次粒径)を測定したところ、10nmであった。測定法は次のとおりである。まず、1.0質量%のセリウム水酸化物粒子を含む測定サンプル(セリウム水酸化物スラリ。水分散液)を1cm角のセルに約1mL入れた後、N5内にセルを設置した。N5のソフトの測定サンプル情報の屈折率を1.333、粘度を0.887mPa・sに設定し、25℃において測定を行い、Unimodal Size Meanとして表示される値を読み取った。
(ゼータ電位の測定)
 ベックマン・コールター株式会社製の商品名:DelsaNano C内に適量のセリウム水酸化物スラリを投入し、25℃において測定を2回行った。表示されたゼータ電位の平均値をゼータ電位として得た。セリウム水酸化物スラリにおけるセリウム水酸化物粒子のゼータ電位は+50mVであった。
(セリウム水酸化物粒子の構造分析)
 セリウム水酸化物スラリを適量採取し、真空乾燥してセリウム水酸化物粒子を単離した後に純水で充分に洗浄して試料を得た。得られた試料について、FT-IR ATR法による測定を行ったところ、水酸化物イオン(OH)に基づくピークの他に、硝酸イオン(NO )に基づくピークが観測された。また、同試料について、窒素に対するXPS(N-XPS)測定を行ったところ、NH に基づくピークは観測されず、硝酸イオンに基づくピークが観測された。これらの結果より、セリウム水酸化物粒子は、セリウム元素に結合した硝酸イオンを有する粒子を少なくとも一部含有することが確認された。また、セリウム元素に結合した水酸化物イオンを有する粒子がセリウム水酸化物粒子の少なくとも一部に含有されることから、セリウム水酸化物粒子がセリウム水酸化物を含有することが確認された。これらの結果より、セリウムの水酸化物が、セリウム元素に結合した水酸化物イオンを含むことが確認された。
<CMP用研磨液の調製>
(実施例1)
 2枚羽根の撹拌羽根を用いて300rpmの回転数で撹拌しながら、前記セリウム水酸化物スラリと、脱イオン水とを混合して混合液を得た。続いて、前記混合液を撹拌しながら前記セリウム酸化物スラリを前記混合液に混合した後、株式会社エスエヌディ製の超音波洗浄機(装置名:US-105)を用いて超音波を照射しながら撹拌した。続いて、ポリオール(日本乳化剤株式会社製、商品名:TMP-60、ポリオキシエチレントリメチロールプロパンエーテル)と、グリシン(アミノカルボン酸、pI=5.97)と、スルファミン酸(pKa=0.99、1質量%水溶液のpH:1.2)と、脱イオン水とを混合した。これにより、CMP用研磨液の全質量を基準として、砥粒0.1質量%、ポリオール0.50質量%、グリシン0.20質量%及びスルファミン酸0.03質量%を含有するCMP用研磨液を得た。CMP用研磨液は、砥粒として、セリウム酸化物粒子と、当該セリウム酸化物粒子に接触したセリウム水酸化物粒子と、を含む複合粒子を含有しており、セリウム酸化物粒子とセリウム水酸化物粒子との質量比は10:1(セリウム酸化物:セリウム水酸化物)であった。
(実施例2~3)
 グリシンを表1に記載のアミノカルボン酸に変更したこと以外は実施例1と同様にしてCMP用研磨液を調製した。
(実施例4)
 スルファミン酸をスルファニル酸(pKa=3.01、1質量%水溶液のpH:2.5)に変更したこと以外は実施例1と同様にしてCMP用研磨液を調製した。
(実施例5)
 ポリオキシエチレントリメチロールプロパンエーテルをポリエチレングリコール(日油株式会社製、PEG4000、重量平均分子量4000)に変更したこと以外は実施例1と同様にしてCMP用研磨液を調製した。
(比較例1)
 アミノカルボン酸及びアミノスルホン酸を用いなかった(脱イオン水を増量した)こと以外は実施例5と同様にしてCMP用研磨液を調製した。
(比較例2)
 ポリオール及びアミノスルホン酸を用いなかった(脱イオン水を増量した)こと以外は実施例1と同様にしてCMP用研磨液を調製した。
(比較例3)
 ポリオール及びアミノカルボン酸を用いなかった(脱イオン水を増量した)こと以外は実施例4と同様にしてCMP用研磨液を調製した。
(比較例4)
 アミノスルホン酸を用いなかった(脱イオン水を増量した)こと以外は実施例5と同様にしてCMP用研磨液を調製した。
(比較例5)
 アミノカルボン酸を用いなかった(脱イオン水を増量した)こと、及び、スルファミン酸をスルファニル酸(pKa=3.01、1質量%水溶液のpH:2.5)に変更したこと以外は実施例5と同様にしてCMP用研磨液を調製した。
(比較例6)
 スルファミン酸をp-トルエンスルホン酸(pKa=-2.80、1質量%水溶液のpH:1.0)に変更したこと以外は実施例5と同様にしてCMP用研磨液を調製した。
<砥粒のゼータ電位>
 ベックマン・コールター株式会社製の商品名:DelsaNano C内に適量のCMP用研磨液を投入し、25℃において測定を2回行った。表示されたゼータ電位の平均値をゼータ電位として得た。その結果、砥粒のゼータ電位は+55mVであった。
<砥粒の平均粒径>
 マイクロトラック・ベル株式会社製の商品名:マイクロトラックMT3300EXII内にCMP用研磨液を適量投入し、砥粒の平均粒径を測定した。表示された平均粒径値を平均粒径(平均二次粒径)として得た。CMP用研磨液における砥粒の平均粒径は155nmであった。
<CMP用研磨液のpH>
 CMP用研磨液のpHを下記の条件で評価した。結果を表1及び表2に示す。
 測定温度:25℃
 測定装置:東亜ディーケーケー株式会社製、型番PHL-40
 測定方法:標準緩衝液(フタル酸塩pH緩衝液、pH:4.01(25℃);中性リン酸塩pH緩衝液、pH:6.86(25℃))を用いて2点校正した後、電極をCMP用研磨液に入れ、2分以上経過して安定した後のpHを前記測定装置により測定した。
<CMP評価>
 前記CMP用研磨液を用いて下記研磨条件で被研磨基板を研磨した。
 研磨装置:型番FREX300(荏原製作所株式会社製)
 CMP用研磨液流量:250mL/min
 被研磨基板:下記ノンパターンウエハ及びパターンウエハ
 研磨パッド:独立気泡を有する発泡ポリウレタン樹脂(ROHM AND HAAS ELECTRONIC MATERIALS CMP INC.製、型番IC1010)
 研磨圧力:21kPa(210hPa)
 被研磨基板と研磨定盤との回転数:被研磨基板/研磨定盤=107/100rpm
 研磨時間:前記CMP用研磨液を用いて下記ノンパターンウエハのTEOS膜を30秒間研磨した。また、窒化珪素膜が露出するまで研磨を行った後述のパターンウエハを、前記CMP用研磨液を用いて30秒間研磨した。パターンウエハの研磨では、被研磨面に窒化珪素膜及び酸化珪素膜が露出している。この場合、酸化珪素膜の存在が寄与することにより、ノンパターンウエハの窒化珪素膜を研磨する場合と比較して窒化珪素膜が研磨されやすい状態で窒化珪素の研磨速度の抑制効果を確認できる。
 ウエハの洗浄:CMP処理後、水で洗浄した後、スピンドライヤで乾燥させた。
[ノンパターンウエハ]
 CVD法で成膜された厚さ1μmのTEOS膜(酸化珪素膜)をシリコン基板上に有するTEOSウエハを用いた。
[パターンウエハ]
 模擬パターンが形成されたパターンウエハとして、SEMATECH社製、764ウエハ(商品名、直径:300mm)を用いた。当該パターンウエハは、ストッパ(ストッパ膜)として窒化珪素膜をシリコン基板上に積層後、露光工程においてトレンチを形成し、ストッパ及びトレンチを埋めるように、シリコン基板及び窒化珪素膜の上に絶縁膜として酸化珪素膜(SiO膜)を積層することにより得られたウエハであった。酸化珪素膜は、HDP(High Density Plasma)法により成膜されたものであった。
 前記パターンウエハとしては、ライン(凸部)&スペース(凹部)が100μmピッチであり且つ凸部パターン密度が50%である部分を有するウエハを使用した。ライン&スペースとは、模擬的なパターンであり、凸部であるストッパ膜でマスクされたActive部と、凹部である溝が形成されたTrench部とが交互に並んだパターンである。例えば、「ライン&スペースが100μmピッチ」とは、ライン部とスペ-ス部との幅の合計が100μmであることを意味する。また、例えば、「ライン&スペースが100μmピッチであり且つ凸部パターン密度が50%」とは、凸部幅:50μmと、凹部幅:50μmとが交互に並んだパターンを意味する。
 パターンウエハの研磨評価に際しては、セルフストップ性(模擬パターンの残段差量が小さくなると研磨速度が低下する特性)を有する公知のCMP用研磨液を用いて前記ウエハを研磨することにより窒化珪素膜が露出した状態となったウエハを用いた。具体的には、日立化成株式会社製のHS-8005-D4(商品名)と、日立化成株式会社製のHS-7303GP(商品名)と、水とを1:1.2:7.8の比率で配合した研磨液を用いて、100μmピッチ50%密度パターンにおける凸部の窒化珪素膜が露出するまで研磨した状態のウエハを用いた。
[研磨選択比の評価]
 下記の手順にて酸化珪素の研磨速度及び窒化珪素の研磨速度を得た後、窒化珪素に対する酸化珪素の研磨選択比(酸化珪素の研磨速度/窒化珪素の研磨速度)を算出した。結果を表1及び表2に示す。
 前記条件で研磨及び洗浄したTEOS膜(酸化珪素膜)の残膜厚を測定した。また、前記条件で研磨及び洗浄したパターンウエハの凸部の窒化珪素膜の残膜厚を測定した。被研磨膜(TEOS膜及び窒化珪素膜)の初期の膜厚及び研磨後の膜厚の差分(残膜厚)と、研磨時間とから下記式より被研磨膜の研磨速度を求めた。なお、研磨前後での各被研磨膜の膜厚は、光干渉式膜厚測定装置(ナノメトリクス社製、商品名:Nanospec AFT-5100)を用いて求めた。
 被研磨膜の研磨速度=(被研磨膜の初期膜厚(nm)-被研磨膜の残膜厚(nm))/研磨時間(min))
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (11)

  1.  砥粒と、ポリオールと、アミノカルボン酸と、アミノスルホン酸と、液状媒体と、を含有し、
     前記砥粒のゼータ電位が正である、研磨液。
  2.  前記アミノカルボン酸の等電点が7.0より小さい、請求項1に記載の研磨液。
  3.  前記アミノスルホン酸のpKaが0より大きい、請求項1又は2に記載の研磨液。
  4.  前記ポリオールがポリエーテルポリオールを含む、請求項1~3のいずれか一項に記載の研磨液。
  5.  前記ポリオールの含有量が0.05~5.0質量%である、請求項1~4のいずれか一項に記載の研磨液。
  6.  前記アミノカルボン酸の含有量が0.01~1.0質量%である、請求項1~5のいずれか一項に記載の研磨液。
  7.  前記アミノスルホン酸の含有量が0.001~1.0質量%である、請求項1~6のいずれか一項に記載の研磨液。
  8.  請求項1~7のいずれか一項に記載の研磨液の構成成分が第1の液と第2の液とに分けて保存され、前記第1の液が、前記砥粒と、液状媒体と、を含み、前記第2の液が、前記ポリオールと、前記アミノカルボン酸と、前記アミノスルホン酸と、液状媒体と、を含む、研磨液セット。
  9.  請求項1~7のいずれか一項に記載の研磨液、又は、請求項8に記載の研磨液セットにおける前記第1の液と前記第2の液とを混合して得られる研磨液を用いて被研磨面を研磨する研磨工程を備える、研磨方法。
  10.  前記被研磨面が酸化珪素を含む、請求項9に記載の研磨方法。
  11.  前記被研磨面が窒化珪素を更に含み、
     前記研磨工程において酸化珪素を窒化珪素に対して選択的に研磨する、請求項10に記載の研磨方法。
PCT/JP2018/035464 2018-03-22 2018-09-25 研磨液、研磨液セット及び研磨方法 WO2019181015A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/011853 WO2019182057A1 (ja) 2018-03-22 2019-03-20 研磨液、研磨液セット及び研磨方法
TW108109836A TW201940653A (zh) 2018-03-22 2019-03-21 研磨液、研磨液套組及研磨方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/011464 2018-03-22
PCT/JP2018/011464 WO2019180887A1 (ja) 2018-03-22 2018-03-22 研磨液、研磨液セット及び研磨方法

Publications (1)

Publication Number Publication Date
WO2019181015A1 true WO2019181015A1 (ja) 2019-09-26

Family

ID=67986997

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/011464 WO2019180887A1 (ja) 2018-03-22 2018-03-22 研磨液、研磨液セット及び研磨方法
PCT/JP2018/035464 WO2019181015A1 (ja) 2018-03-22 2018-09-25 研磨液、研磨液セット及び研磨方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011464 WO2019180887A1 (ja) 2018-03-22 2018-03-22 研磨液、研磨液セット及び研磨方法

Country Status (2)

Country Link
TW (1) TW201940653A (ja)
WO (2) WO2019180887A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113214741B (zh) * 2021-04-24 2022-03-11 深圳市撒比斯科技有限公司 一种高稳定的cmp抛光液

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052988A1 (ja) * 2013-10-10 2015-04-16 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2015098197A1 (ja) * 2013-12-26 2015-07-02 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105869B2 (ja) * 2006-04-27 2012-12-26 花王株式会社 研磨液組成物
JP2012186339A (ja) * 2011-03-07 2012-09-27 Hitachi Chem Co Ltd 研磨液及びこの研磨液を用いた基板の研磨方法
JP6360311B2 (ja) * 2014-01-21 2018-07-18 株式会社フジミインコーポレーテッド 研磨用組成物およびその製造方法
JP6720791B2 (ja) * 2016-09-13 2020-07-08 Agc株式会社 研磨剤と研磨方法、および研磨用添加液

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052988A1 (ja) * 2013-10-10 2015-04-16 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
WO2015098197A1 (ja) * 2013-12-26 2015-07-02 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法

Also Published As

Publication number Publication date
TW201940653A (zh) 2019-10-16
WO2019180887A1 (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
JP7067614B2 (ja) 研磨液、研磨液セット及び研磨方法
JP7056728B2 (ja) 研磨液、研磨液セット及び研磨方法
JP6798610B2 (ja) 研磨液、研磨液セット及び研磨方法
JP6966000B2 (ja) スラリ及び研磨方法
WO2019181015A1 (ja) 研磨液、研磨液セット及び研磨方法
JP7235164B2 (ja) 研磨液、研磨液セット及び研磨方法
JP7041135B2 (ja) 改善されたディッシングおよびパターン選択性を有する酸化物および窒化物選択性のcmp組成物
WO2018142516A1 (ja) 研磨液、研磨液セット及び研磨方法
WO2018179062A1 (ja) 研磨液、研磨液セット、添加液及び研磨方法
WO2019182057A1 (ja) 研磨液、研磨液セット及び研磨方法
WO2018179064A1 (ja) スラリ及び研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP