WO2019180962A1 - Transmission device, reception device, radio communication method, and radio communication system - Google Patents

Transmission device, reception device, radio communication method, and radio communication system Download PDF

Info

Publication number
WO2019180962A1
WO2019180962A1 PCT/JP2018/011901 JP2018011901W WO2019180962A1 WO 2019180962 A1 WO2019180962 A1 WO 2019180962A1 JP 2018011901 W JP2018011901 W JP 2018011901W WO 2019180962 A1 WO2019180962 A1 WO 2019180962A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio resource
radio
buffer area
axis direction
subcarrier interval
Prior art date
Application number
PCT/JP2018/011901
Other languages
French (fr)
Japanese (ja)
Inventor
晋 細川
義博 河▲崎▼
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2018/011901 priority Critical patent/WO2019180962A1/en
Publication of WO2019180962A1 publication Critical patent/WO2019180962A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a transmission device, a reception device, a wireless communication method, and a wireless communication system in a next-generation mobile communication system.
  • a wireless communication system (which can also be referred to as a mobile communication system) such as a mobile phone system (cellular system)
  • the wireless communication (which can also be referred to as mobile communication) is further increased in speed and capacity.
  • the next generation wireless communication technology is being discussed in order to make it easier.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A LTE-A
  • next generation mobile communication systems after the 5G system, for example, services such as tactile communication and augmented reality that require different levels of communication performance are expected.
  • the 5G system adopts a design policy that can change the radio frame structure flexibly. ing.
  • LTE Rel. In 8-12 (which can also be referred to as a 4G system), the subcarrier spacing (SCS) is fixed at 15 kHz, whereas in the 5G system, signals with different subcarrier spacing are transmitted simultaneously in parallel. It is being considered.
  • 3GPP TS 36.211 V14.4.0 (2017-09) 3GPP TS 36.212 V14.4.0 (2017-09) 3GPP TS 36.213 V14.4.0 (2017-09) 3GPP TS 36.300 V14.4.0 (2017-09) 3GPP TS 36.321 V14.4.0 (2017-09) 3GPP TS 36.322 V14.1.0 (2017-09) 3GPP TS 36.323 V14.4.0 (2017-09) 3GPP TS 36.331 V14.4.0 (2017-09) 3GPP TS 36.413 V14.4.0 (2017-09) 3GPP TS 36.423 V14.4.0 (2017-09) 3GPP TS 36.425 V14.0.0 (2017-03) 3GPP TS 37.340 V2.0.0 (2017-12) 3GPP TS 38.201 V1.1.0 (2017-11) 3GPP TS 38.202 V1.1.0 (2017-11) 3GPP TS 38.211 V1.2.0 (2017-11) 3GPP TS 38.
  • the 5G system adopts a design policy that can flexibly change the radio frame structure.
  • the radio frame structure of the 5G system it is conceivable to change the SCS and the symbol length for each radio resource.
  • Such a set of parameters defining the radio frame structure may be referred to as “numerology”.
  • the radio frame structure of the 5G system may include radio resources defined by a plurality of different nuclologies (also referred to as a plurality of different subcarrier spacings (SCS)).
  • SCS subcarrier spacings
  • the disclosed technology is a transmitter, a receiver, a radio communication method, a radio, and a radio apparatus that can appropriately perform radio communication even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used.
  • SCS subcarrier intervals
  • a transmission device capable of wireless communication with one or more receiving devices by using a plurality of subcarriers having at least one or more subcarrier intervals, wherein the plurality of subcarriers are in a time axis direction.
  • the first radio resource having subcarriers at the first subcarrier interval is a second radio resource different in the frequency axis direction and different from the first subcarrier interval.
  • a buffer area arranged in at least some of the subcarriers having the second subcarrier interval that the second radio resource has Share setting information with at least one of the one or more receiving devices and follow the setting information for the second radio resource. Configured to wirelessly transmit assign transmission data.
  • radio communication can be performed appropriately.
  • SCS subcarrier intervals
  • FIG. 1 is a diagram illustrating an example of an operation mode of a plurality of different subcarrier intervals (SCS) in the wireless communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a radio frame structure in the radio communication system according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a frequency-time-space structure of subframes in the wireless communication system according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of inter-SCS interference that may occur in the frequency space-time structure of subframes in the wireless communication system according to the first embodiment.
  • FIG. 1 is a diagram illustrating an example of an operation mode of a plurality of different subcarrier intervals (SCS) in the wireless communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a radio frame structure in the radio communication system according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a frequency-time-space structure of subframes in
  • FIG. 5 is a diagram illustrating an example of a buffer region arranged in a part of the radio resource in the frequency space-time structure of the subframe in the radio communication system according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a sequence of sharing setting information between the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 according to the first embodiment.
  • FIG. 7 is a diagram schematically illustrating an example of a configuration of setting information shared between the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 according to the first embodiment.
  • FIG. 8 is a diagram illustrating an example of a process flow in the transmission device of the wireless communication system according to the first embodiment.
  • FIG. 9 is a diagram illustrating an example of a process flow in the reception device of the wireless communication system according to the first embodiment.
  • FIG. 10 is a diagram illustrating an example of the configuration of the SS / PBCH block as the first radio resource according to the second embodiment.
  • FIG. 11 is a diagram illustrating an example of arrangement of SS / PBCH blocks in the radio frame structure of the radio communication system according to the second embodiment.
  • FIG. 12 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency time-space structure of the subframe in the radio communication system according to the second embodiment.
  • FIG. 13 is a diagram schematically illustrating an example of a configuration of setting information shared between the transmission device and the reception device in the wireless communication system according to the second embodiment.
  • FIG. 14 is a diagram schematically illustrating a further example of the configuration of the setting information shared between the transmission device and the reception device in the wireless communication system according to the second embodiment.
  • FIG. 15 is a diagram illustrating an example of a wireless communication sequence in the wireless communication system 1 according to the second embodiment.
  • FIG. 16 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency space-time structure of the subframe in the radio communication system according to the third embodiment.
  • FIG. 17 is a diagram illustrating an example of a wireless communication sequence in the wireless communication system 1 according to the third embodiment.
  • FIG. 15 is a diagram illustrating an example of a wireless communication sequence in the wireless communication system 1 according to the second embodiment.
  • FIG. 16 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency space-time structure of the subframe in the radio communication system according to the third embodiment.
  • FIG. 17 is a diagram illustrating an example of a wireless communication sequence
  • FIG. 18 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency spatio-temporal structure of the subframe in the radio communication system according to the fourth embodiment.
  • FIG. 19 is a diagram schematically illustrating an example of a configuration of setting information related to a buffer area according to the fourth embodiment.
  • FIG. 20 is a diagram illustrating an example of a wireless communication sequence in the wireless communication system 1 according to the fourth embodiment.
  • FIG. 21 is a diagram illustrating an example of a hardware configuration of the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1.
  • inter-SCS subcarrier intervals
  • a guard band also referred to as a sub guard band
  • SCS subcarrier intervals
  • radio resource utilization efficiency also referred to as frequency utilization efficiency
  • the 5G system is likely to be affected by inter-SCS interference.
  • inter-SCS interference For example, allocation of not only UHF (Ultra High Frequency) band and SHF (Special High Frequency) band but also EHF (Extremely High Frequency) band such as 80 GHz band as a frequency band used in 5G system is being considered.
  • the propagation path environment and the like can vary greatly depending on the frequency band actually used. Therefore, in a 5G system, it can be said that the influence of inter-SCS interference is likely to occur because the propagation path environment and the like greatly vary according to the frequency band actually used. In other words, even if radio resources do not have overlapping portions in the frequency direction between a plurality of different subcarrier intervals (SCS), the influence of inter-SCS interference may occur depending on the actually used frequency band. I can say that.
  • the 5G system is likely to be affected by inter-SCS interference.
  • the maximum value of the frequency bandwidth used in the 5G system is 400 MHz (TR (38.802 section 5.3).
  • the propagation path environment and the like can vary greatly depending on the position of the radio resource in the frequency direction.
  • the influence of inter-SCS interference occurs depending on the position of the radio resource in the frequency axis direction. I can say that I get.
  • the inventors of the present invention have such technical restrictions as eMBB (enhanced Mobile Broadband) that is an ultra-high-speed and large-capacity data transmission service, and URLLC (Ultra-Reliable and low Low Latency) that is ultra-reliable and low-delay communication.
  • Communication and mMTC (massive Machine Type Communications), which is a wireless service with very large number of connections, has acquired unique knowledge that it can be an obstacle to realizing various wireless services.
  • the 5G system in the present disclosure is an example of a mobile communication system (also referred to as a next-generation radio communication system) that supports a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS). .
  • SCS subcarrier intervals
  • a conventional mobile communication system for example, 4G system
  • the above-described inter-SCS interference may occur. Note that problems can arise.
  • Non-Patent Document 1 to Non-Patent Document 38 are incorporated herein by reference.
  • Example 1 In the wireless communication system 1 according to Example 1, when using a radio frame structure including a plurality of radio resources defined by a plurality of different subcarrier intervals (SCS), the first subcarrier interval
  • the first radio resource having a subcarrier is a second radio resource that is different in the frequency axis direction
  • the second radio resource having a subcarrier having a second subcarrier interval different from the first subcarrier interval is Setting information indicating that transmission data is not allocated to a part of subcarriers with a carrier interval is shared between the transmission device and the reception device. Then, according to the shared setting information, transmission data is allocated to the second radio resource, and is wirelessly transmitted from the transmission device to the reception device.
  • FIG. 1 is a diagram illustrating an example of an operation mode of a plurality of different subcarrier intervals (SCS) in the wireless communication system according to the first embodiment.
  • SCS subcarrier intervals
  • radio resources first radio resources, first subcarrier intervals (SCS # 1)
  • SCS # 1 first radio resources, first subcarrier intervals (SCS # 1)
  • a first BWP which may also be referred to as BandWidth Part
  • a radio resource which may also be referred to as a second radio resource, a second BWP
  • subcarriers which may also be referred to as subcarriers
  • the first radio resource and the second radio resource exemplified in FIG. 1 are examples of radio resources arranged close to each other on the frequency axis.
  • the plurality of different subcarrier intervals (SCS) in the present disclosure is not limited to two SCSs.
  • radio resources also referred to as third radio resources
  • having subcarriers with a third subcarrier interval different from the first subcarrier interval and the second subcarrier interval may be arranged.
  • each of the n subcarriers is arranged on the frequency axis at the first subcarrier interval (A21).
  • each of the m subcarriers is arranged on the frequency axis at the second subcarrier interval (A22).
  • the number n of subcarriers of the first radio resource and the number m of subcarriers of the second radio resource can be determined according to the channel bandwidth allocated to each radio resource. In the discussion on the standardization of 5G systems, it is considered that a bandwidth of a maximum of 400 MHz can be allocated. Note that the example of FIG. 1 schematically shows the arrangement of subcarriers, and may be different from the power distribution on the frequency axis of each subcarrier. For example, each subcarrier may be arranged by a frequency division multiplexing method or may be arranged by an orthogonal frequency division multiplexing method.
  • the second subcarrier interval (A22) is larger than the first subcarrier interval (A21).
  • the subcarrier interval may correspond to the center frequency interval between two adjacent subcarriers.
  • 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 15 ⁇ 2 ⁇ kHz ( ⁇ is a positive integer including 0), and the like are considered as subcarrier intervals.
  • a guard band (which may also be referred to as a sub guard band or a sub guard interval) (A23) is arranged between the first radio resource and the second radio resource.
  • the first radio resource illustrated in FIG. 1 is arranged close to the second radio resource via the subguard band (A23).
  • the first radio resource and the second radio resource are adjacent to each other via the subguard band (A23).
  • the subguard band (A23) is narrowed in order to improve the frequency utilization efficiency.
  • the arrangement of the sub guard band (A23) may be omitted.
  • FIG. 2 is a diagram illustrating an example of a radio frame structure in the radio communication system according to the first embodiment.
  • one radio frame has a time length of 10 ms (milliseconds) and includes 10 subframes.
  • 1 subframe has a time length of 1 ms, and the internal structure differs depending on the subcarrier time interval (SCS) (which may also be referred to as “Numerology”).
  • SCS subcarrier time interval
  • one subframe with an SCS of 15 kHz consists of one slot (one slot)
  • one subframe with an SCS of 30 kHz consists of two slots (two slots)
  • One subframe with an SCS of 60 kHz consists of 4 slots (4 slots)
  • one subframe with an SCS of 120 kHz consists of 16 slots (16 slots)
  • one subframe with an SCS of 240 kHz has 32 slots It is considered to be composed of (32 slots).
  • the subframe having the first subcarrier interval (SCS # 1) is configured by one slot.
  • the first subcarrier interval (SCS # 1) in FIG. 2 is, for example, 15 kHz.
  • the subframe having the second subcarrier interval (SCS # 2) is composed of two slots.
  • the second subcarrier interval (SCS # 2) in FIG. 2 is, for example, 30 kHz.
  • the time length of one slot may be different depending on the subcarrier interval (which may also be referred to as SCS or Numerology) of radio resources. For example, if the first subcarrier interval (SCS # 1) in FIG. 2 is 15 kHz and the second subcarrier interval (SCS # 2) is 30 kHz, the slot of the first subcarrier interval is 1 ms, A slot with two subcarrier intervals is 0.5 ms. In other words, the time length of one slot is shorter as the number of slots included in one subframe increases.
  • SCS subcarrier interval
  • Numerology the subcarrier interval of radio resources. For example, if the first subcarrier interval (SCS # 1) in FIG. 2 is 15 kHz and the second subcarrier interval (SCS # 2) is 30 kHz, the slot of the first subcarrier interval is 1 ms, A slot with two subcarrier intervals is 0.5 ms. In other words, the time length of one slot is shorter as the number of slots included in one subframe increases.
  • one slot is composed of 14 symbols (14 symbols) at any subcarrier interval (SCS).
  • SCS subcarrier interval
  • FIG. 3 is a diagram illustrating an example of a frequency-time-space structure of a subframe in the wireless communication system according to the first embodiment.
  • a plurality of radio resources also referred to as resource elements, RE (Resource Element) partitioned by both the time axis direction and the frequency axis direction are shown.
  • RE Resource Element
  • one cell (one cell) in the lattice-like frequency space-time structure illustrated in FIG. 3 may correspond to one resource element (one resource element).
  • One resource element may correspond to one symbol in the time axis direction.
  • one resource element can correspond to one subcarrier (one subcarrier) in the frequency axis direction.
  • FIG. 3 is a diagram illustrating an example of a frequency-time-space structure of a subframe in the wireless communication system according to the first embodiment.
  • a plurality of radio resources also referred to as resource elements, RE (Resource Element) partitioned by both the time axis direction and the frequency axis direction are shown.
  • the number of cells in the frequency axis direction is schematically shown, and can be changed according to the bandwidth of the radio resource used in the radio communication system.
  • the number of squares in the frequency axis direction can be changed according to the trend of the discussion regarding standardization of the 5G system.
  • the first subcarrier interval (SCS # 1) is 15 kHz, which is narrower than the second subcarrier interval (SCS # 2) of 30 kHz. For this reason, in the frequency axis direction, the cells of the first subcarrier interval (SCS # 1) are narrower than the cells of the second subcarrier interval (SCS # 2).
  • the subframe with the first subcarrier interval (SCS # 1) has one slot (B10)
  • the subframe with the second subcarrier interval (SCS # 2) has two slots ( B20, B21). Therefore, in the time axis direction, the grid of the first subcarrier interval (SCS # 1) is longer than the grid of the second subcarrier interval (SCS # 2).
  • FIG. 4 is a diagram illustrating an example of inter-SCS interference that may occur in the frequency space-time structure of subframes in the wireless communication system according to the first embodiment.
  • the inter-SCS from the radio resource with the second subcarrier interval (SCS # 1) An example of how the influence of interference occurs is shown.
  • the radio of the first subcarrier interval (SCS # 1) is performed in the partial area (B201, B211) of the radio resource (B20, B21) of the second subcarrier interval (SCS # 2).
  • the radio of the first subcarrier interval (SCS # 1) is performed.
  • An example of how the influence of inter-SCS interference from resources occurs is shown.
  • the range in which the influence due to the inter-SCS interference occurs is an example, and may change according to the fluctuation of the propagation path environment and the like.
  • FIG. 5 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency space-time structure of the subframe in the radio communication system according to the first embodiment.
  • some areas (B201, B211) of the radio resources (B20, B21) of the second subcarrier interval (SCS # 2) are set as buffer areas according to the setting information.
  • the buffer area (B201, B211) is a part of the radio resource, but transmission data is not allocated.
  • the reception device of the wireless communication system can exclude the radio resource corresponding to the buffer area (B201, B211) set according to the setting information shared with the transmission device from the decoding target.
  • the buffer area (B201, B211) may be referred to as a data unallocated area, an unallocated area, a data unallocated radio resource, an unallocated radio resource, or the like.
  • the buffer area (B201, B211) may have a side surface as a sub guard band extended according to the setting information shared with the transmission apparatus.
  • the buffer areas (B201, B211) may be referred to as a guard area, a guard band area, a sub guard band area, an extended guard band area, an extended sub guard band area, or the like.
  • the second subcarrier interval (SCS # 2) is caused by the buffer regions (B201, B211) arranged in a part of the radio resources (B20, B21) of the second subcarrier interval (SCS # 2). 2)
  • the influence of inter-SCS interference from the radio resource (B20, B21) to the radio resource (B10) in the first subcarrier interval (SCS # 1) can be suppressed.
  • the transmission power is not allocated to the buffer area (B201, B211) of the second radio resource (B20, B21), thereby reducing the signal power of the subcarrier corresponding to the buffer area (B201, B211).
  • the range of such buffer areas (B201, B211) may be determined in advance at the time of designing the transmission device and the reception device.
  • the range of the buffer area (B201, B211) is set by setting information that is dynamically shared between the transmission device and the reception device during operation of the wireless communication system. May be.
  • the range in which the influence due to the inter-SCS interference occurs can vary depending on the fluctuation of the propagation path environment and the like. For this reason, in consideration of improving the frequency utilization efficiency, setting information related to the buffer area (B201, B211) suitable for the situation during operation of the wireless communication system is dynamically shared between the transmission device and the reception device. May be preferred.
  • FIG. 6 is a diagram illustrating an example of a sequence for sharing setting information between the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 according to the first embodiment.
  • the wireless terminal 10 and the wireless base station 20 illustrated in FIG. 6 may have both aspects of a receiving device and a transmitting device, respectively.
  • the radio terminal 10 corresponds to a receiving device in the downlink and can correspond to a transmitting device in the uplink.
  • the radio base station 20 corresponds to a transmission device in the downlink and can correspond to a reception device in the uplink.
  • the wireless terminal 10 and the wireless base station 20 may be communication devices that comply with the 5G system standard.
  • the setting information sharing sequence illustrated in FIG. 6 may be executed at an arbitrary timing.
  • the radio resource used for transmitting the setting information may be any type.
  • PBCH Physical Broadcast CHannel
  • the sequence illustrated in FIG. 6 is linked to the cycle in which the PBCH is mapped. May be executed.
  • Information transmitted through the PBCH that is repeatedly broadcast at such a predetermined cycle includes, for example, MIB (Master Information Block) and SIB1 (System Information Block 1). Information may be stored.
  • the radio base station 20 transmits the setting information using an arbitrary radio resource (S1).
  • the wireless terminal 10 can share the setting information with the wireless base station 20 by receiving the setting information transmitted from the wireless base station 20.
  • the radio base station 20 has a side as a receiving device, but may transmit setting information as illustrated in FIG.
  • the radio terminal 10 has an aspect as a transmission device, but may receive setting information from the radio base station 20 as illustrated in FIG.
  • the radio resource for transmitting the setting information may be any radio resource in the radio communication system 1.
  • the setting information may be stored in an RRC (Radio Resource Control) message transmitted from the radio base station 20.
  • RRC messages include an RRC connection setup (RRCConnectionSetup) message and an RRC connection reconfiguration (RRCConnectionReconfiguration) message.
  • the radio base station 20 may store and transmit setting information in downlink control information (which may also be referred to as DCI (Downlink Control Information)).
  • DCI Downlink Control Information
  • the DCI in which the setting information is stored may be mapped to PDCCH (Physical Downlink Control CHannel) or may be mapped to EPDCCH (Enhanced PDCCH).
  • PDCCH Physical Downlink Control CHannel
  • EPDCCH Enhanced PDCCH
  • the method of storing the setting information in DCI and transmitting it is suitable when the radio communication system 1 allows the arrangement of the first radio resource and the second radio resource to be dynamically changed.
  • the DCI having information related to the allocation of the second radio resource relates to the buffer area in the second radio resource.
  • the setting information may be notified.
  • the second radio resource in which the buffer area is arranged may be a downlink radio resource or an uplink radio resource.
  • DCI is named as downlink control information, it can be used not only for notification of downlink resource allocation but also for notification of uplink resource allocation.
  • FIG. 7 is a diagram schematically illustrating an example of a configuration of setting information shared between the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 according to the first embodiment.
  • the setting information (T10) illustrated in FIG. 7 includes buffer area information (T11) indicating information related to the buffer area.
  • the buffer area information (T11) includes, for example, data unallocated area information, unallocated area information, data unallocated radio resource information, unallocated radio resource information, guard area information, guard band area information, sub-guard band area information, extension It may be referred to as guard band region information, extended sub guard band region information, or the like.
  • the buffer area information (T11) illustrated in FIG. 7 may include information indicating a radio resource set as the buffer area.
  • the buffer area information (T11) is information for specifying a radio resource set as a buffer area on the frequency axis (also referred to as frequency information), and information for specifying the radio resource on the time axis (also referred to as time information). Or a combination of frequency information and time information.
  • the frequency information includes, for example, information indicating the position on the frequency axis of a radio resource set as a buffer area (may be referred to as frequency position information, frequency offset information, etc.), and the width of the radio resource on the frequency axis.
  • Information (which may be referred to as frequency bandwidth information, bandwidth information, etc.) or a combination of these information.
  • the time information includes, for example, information indicating the position on the time axis of the radio resource set as the buffer area (may be referred to as time position information, time offset information, etc.), and the width of the radio resource on the time axis. May be information (which may be referred to as time width information, duration information, etc.) or a combination of these information.
  • FIG. 8 is a diagram illustrating an example of a process flow in the transmission device of the wireless communication system according to the first embodiment.
  • the process flow illustrated in FIG. 8 may be executed at any timing during operation of the wireless communication system.
  • the transmission device may have a second radio resource arranged in a region different from the first radio resource at the first subcarrier interval in the frequency axis direction, and the second sub resource different from the first subcarrier interval. It is determined whether there are subcarriers with a carrier interval (S101).
  • S101 when the subcarrier interval of the subcarriers included in the second radio resource is the same as the first subcarrier interval of the first radio resource, the transmitting apparatus differs from the first subcarrier interval in the second radio resource. It may be determined that there are no subcarriers at the second subcarrier interval (NO in S101). Note that the determination process of S101 may be executed at least once after the transmission apparatus is activated.
  • the transmitting apparatus may execute the determination process of S101 after executing the determination process of S101 once, and until the radio frame structure is changed, or may not execute the determination process of S101. May be.
  • the transmitting apparatus is the uplink radio terminal 10
  • the determination process in S101 may be omitted.
  • the uplink transmission apparatus may omit the determination process of S101.
  • the transmission device when it is determined that the second radio resource has subcarriers with a second subcarrier interval different from the first subcarrier interval of the first radio resource (YES in S101), the transmission device The setting information regarding the buffer area arranged in a part of the area is shared with the receiving apparatus (S102).
  • the radio base station 20 having an aspect as a transmission device may transmit setting information regarding the buffer area.
  • the radio terminal 10 having the aspect as the transmission apparatus may receive the setting information related to the buffer area from the radio base station 20 having the aspect as the reception apparatus.
  • the transmitting apparatus sets a buffer area in a partial area of the second radio resource according to the setting information shared with the receiving apparatus, and transmits transmission data (S103).
  • the transmission apparatus may map the transmission data to the radio resource while avoiding the radio resource corresponding to the buffer area.
  • the transmission device may reduce the transmission power of the radio resource corresponding to the buffer area, for example, to a substantially zero value among the second radio resources to which the transmission data is mapped.
  • the transmission apparatus may perform processing (which may also be referred to as puncturing or rate matching) for thinning out transmission data mapped to the radio resource corresponding to the buffer area.
  • the transmission device Transmission data may be transmitted without arranging a buffer area in the radio resource (S104).
  • the above is an example of the processing flow in the transmission apparatus of the wireless communication system according to the first embodiment.
  • FIG. 9 is a diagram illustrating an example of a process flow in the reception device of the wireless communication system according to the first embodiment.
  • the process flow illustrated in FIG. 9 may be executed at any timing during operation of the wireless communication system.
  • the receiving apparatus has a second radio resource arranged in a region different in the frequency axis direction from the first radio resource at the first subcarrier interval, and the second sub resource different from the first subcarrier interval. It is determined whether there are subcarriers with a carrier interval (S201). In S201, the receiving apparatus determines that the second radio resource is different from the first subcarrier interval when the subcarrier interval of the subcarriers included in the second radio resource is the same as the first subcarrier interval of the first radio resource. It may be determined that there are no subcarriers at the second subcarrier interval (NO in S201). Note that the determination processing in S201 may be executed only once after the reception apparatus is activated.
  • the receiving apparatus may execute the determination process of S201 after executing the determination process of S201 once, and until the radio frame structure is changed, or may not execute the determination process of S201. May be.
  • the determination process in S201 may be omitted.
  • the downlink receiving apparatus may omit the determination process of S201.
  • the receiving device when it is determined that the second radio resource has subcarriers with a second subcarrier interval different from the first subcarrier interval of the first radio resource (YES in S201), the receiving device The setting information regarding the buffer area arranged in a part of the area is shared with the transmission apparatus (S202).
  • the radio terminal 10 having the aspect as the reception apparatus may receive the setting information regarding the buffer area from the radio base station 20 having the aspect as the transmission apparatus.
  • the radio base station 20 having a side as a receiving apparatus may transmit setting information regarding the buffer area.
  • the receiving device receives the transmission data from the transmitting device by excluding the radio resource corresponding to the buffer area in the second radio resource from the decoding target according to the setting information shared with the transmitting device (S203).
  • the reception apparatus may perform processing (also referred to as puncturing or de-rate matching) of thinning out transmission data (which may also be referred to as reception data) extracted from radio resources corresponding to the buffer area.
  • the receiving device may receive the transmission data mapped to the second radio resource (S204).
  • the above is an example of the processing flow in the receiving apparatus of the wireless communication system according to the first embodiment.
  • the first radio resources at the first subcarrier interval are used.
  • a buffer area is arranged in the second radio resource having a second subcarrier interval different from that of the first subcarrier.
  • the range of the buffer area is set by setting information dynamically shared between the transmission device and the reception device during operation of the wireless communication system.
  • the Therefore, the arrangement of the buffer areas can be dynamically changed according to the setting information related to the buffer areas suitable for the situation during operation of the wireless communication system.
  • SCS subcarrier intervals
  • Example 2 a more specific application example is shown about a 1st radio
  • the first radio resource is an SS / PBCH (Synchronization Signal / Physical Broad CHannel) block which is a kind of downlink radio resource.
  • the second radio resource is a downlink radio resource, and is a radio resource other than the SS / PBCH block, and may be, for example, a PDSCH (Physical Downlink Shared ⁇ ⁇ CHannel) that can be used for transmitting user data.
  • the receiving device may correspond to the radio terminal 10 and the transmitting device may correspond to the radio base station 20.
  • FIG. 10 is a diagram illustrating an example of the configuration of the SS / PBCH block as the first radio resource according to the second embodiment.
  • the time axis is arranged in the horizontal direction
  • the frequency axis is arranged in the vertical direction.
  • the SS / PBCH block (B30) illustrated in FIG. 10 is composed of four symbols (also referred to as OFDM symbols), and each symbol is composed of 240 subcarriers.
  • the SS / PBCH block includes a signal arranged in a radio resource at a predetermined position, such as PSS (Primary Synchronization Signal), SSS (Secondary Synchronization Signal), PBCH (Physical Broad Channel).
  • PSS and SSS are signals that can be used to ensure synchronization between the receiving device and the transmitting device, as the name synchronization signal is given.
  • the SS / PBCH block is a signal that can be used to establish and maintain synchronization between the receiving device and the transmitting device. Therefore, the degradation of the transmission quality of the SS / PBCH block can affect the establishment / maintenance of synchronization between the receiving device and the transmitting device.
  • Synchronization between the receiving device and the transmitting device is important for appropriately performing wireless communication between the receiving device and the transmitting device. In other words, when synchronization between the reception device and the transmission device fails, it is difficult to appropriately perform wireless communication between the reception device and the transmission device.
  • the second radio resource arranged at a different position on the frequency axis from the downlink first radio resource (SS / PBCH block) It may be advantageous to arrange the buffer area over the buffer area in the first radio resource. This is because the buffer area arranged in the second radio resource is expected to prevent deterioration of the transmission quality of the SS / PBCH block due to inter-SCS interference.
  • Such an SS / PBCH block can be repeatedly transmitted at a predetermined period.
  • FIG. 11 is a diagram illustrating an example of the arrangement of SS / PBCH blocks in the radio frame structure of the radio communication system according to the second embodiment.
  • one radio frame has a time length of 10 ms (milliseconds) and is configured by 10 subframes.
  • the SS / PBCH block can be arranged, for example, in the first two subframes (subframe [0], subframe [1]) in one radio frame.
  • the position of the subframe in which the SS / PBCH block is arranged is not limited to the example of FIG. 11 and can be changed according to the operation mode of the wireless communication system.
  • the variations of the SS / PBCH block arrangement are detailed in TS38.213 ⁇ 4.1 Cell search, for example.
  • the subframe illustrated in FIG. 11 has a time length of 1 ms and is composed of one slot. Note that, as described above, the internal structure of a subframe may change according to a subcarrier time interval (SCS) (also referred to as numeric).
  • SCS subcarrier time interval
  • the internal structure of subframe [0] in which the SS / PBCH block is arranged is shown in an enlarged manner.
  • the internal structure of subframe [1] is the same as that of subframe [0], and is not shown.
  • the SS / PBCH block includes four symbol groups from symbol [2] to symbol [5], and symbols [8] to [11] among 14 symbols included in one slot. ] Of four symbol groups.
  • the subframe [0] and the subframe [1] have the same internal structure, and thus the SS / PBCH block appears four times in one radio frame.
  • four SS / PBCH blocks (which may also be referred to as first radio resources) are arranged.
  • FIG. 12 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency space-time structure of the subframe in the radio communication system according to the second embodiment.
  • the above-described SS / PBCH blocks (B30-1 and B30-2) are arranged as the first radio resource at the first subcarrier interval (SCS # 1).
  • PDSCH (B40, B41) to which user data or the like can be mapped as the second radio resource at the second subcarrier interval (SCS # 2) is arranged.
  • the slot (1 slot1for SCS # 2) of the second subcarrier interval (SCS # 2) has a time axis that is longer than the slot of the first subcarrier interval (SCS # 1) (1 slot for SCS # 1). Half length in direction.
  • the second subcarrier interval (SCS # 2) is different from the first subcarrier interval (SCS # 1) of the SS / PBCH block (B30-1, B30-2) which is the first radio resource.
  • Buffer areas (B401, B411) are arranged in a part of the radio resources (B40, B41). As described above, the buffer areas (B401, B411) are partially included in the second radio resources (B40, B41) that may be affected by the inter-SCS interference on the first radio resources (B30-1, B30-2). ) Can be expected to properly establish and maintain synchronization between the transmission device and the reception device in the wireless communication system.
  • the buffer area (B401, B411) may be arranged in the second radio resource, for example, in an area close to the first radio resource.
  • the buffer areas (B401, B411) illustrated in FIG. 12 are arranged at positions adjacent to the first radio resources (B30-1, B30-2) in the frequency axis direction.
  • adjoining in the frequency axis direction does not necessarily mean that the arrangement of both in the frequency axis direction is continuous.
  • the first radio resource (B30-1, B30-2) and the buffer area (B401, B411) have proximity in the frequency axis direction to such an extent that the influence of inter-SCS interference can be suppressed. Good.
  • the buffer areas (B401, B411) illustrated in FIG. 12 are arranged at positions overlapping with the first radio resources (B30-1, B30-2) in the time axis direction.
  • overlapping in the time axis direction does not necessarily mean that both arrangements have the same time width in the time axis direction.
  • the first radio resource (B30-1) and the buffer area (B401) need only have redundancy in the time axis direction to such an extent that the influence of inter-SCS interference can be suppressed.
  • the buffer area (B401) may be shorter or longer in the time axis direction than the first radio resource (B30-1). The same applies to the relationship between the first radio resource (B30-2) and the buffer area (B411).
  • the position and size of the buffer region (B401, B411) in the frequency axis direction are indicated by the offset (offset) and the width (width).
  • the offset (offset) indicates the position of the buffer region (B401, B411) from the reference point in the frequency axis direction in the frequency time-space structure of the subframe shown in FIG. In FIG. 12, the offset (offset) may be the same as the value indicating the position of the second radio resource (B40, B41).
  • the width indicates the length (width) of the buffer region (B401, B411) in the frequency axis direction.
  • the buffer area (B401, B411) indicates the position and size in the time axis direction by the offset (offset-1, offset-2) and the width (width-1, width-2). It is.
  • the positions and sizes of the buffer areas (B401, B411) in the time axis direction may be determined based on, for example, the arrangement pattern of SS / PBCH blocks (also referred to as first radio resources) illustrated in FIG. Good.
  • the SS / PBCH block arrangement pattern can be changed according to the operation mode of the wireless communication system.
  • the start position and width of the buffer area (B401, B411) in the time axis direction may be determined according to the operation mode of the wireless communication system.
  • the relationship between the operation mode of the wireless communication system and the SS / PBCH block arrangement variation is detailed in, for example, TS38.213 ⁇ 4.1 Cell search.
  • the subframe to which the arrangement pattern of the buffer areas (B401, B411) illustrated in FIG. 12 is applied may be determined based on the subframe to which the SS / PBCH block arrangement pattern is applied.
  • the subframe to which the SS / PBCH block arrangement pattern is applied is detailed in, for example, TS38.213 ⁇ 4.1 Cell search.
  • FIG. 13 is a diagram schematically illustrating an example of a configuration of setting information shared between the transmission device and the reception device in the wireless communication system according to the second embodiment.
  • the setting information (T10A) illustrated in FIG. 13 includes buffer area information (T11A) indicating information on the buffer areas (B401, B411).
  • the buffer area information (T11A) includes, for example, data unallocated area information, unallocated area information, data unallocated radio resource information, unallocated radio resource information, guard area information, guard band area information, sub-guard band area information, extension It may be referred to as guard band region information, extended sub guard band region information, or the like.
  • the buffer area information (T11A) illustrated in FIG. 13 includes, as information indicating radio resources set as the buffer areas (B401, B411), a buffer area frequency offset (T11A-1) and a buffer area frequency bandwidth (T11A). -2).
  • Buffer area frequency offset (T11A-1) indicates, for example, the start position of the buffer area from the reference point in the frequency axis direction of the radio frame in the radio communication system.
  • a value indicating the start position of the buffer area in the frequency axis direction can be stored in the field of the buffer area frequency offset (T11A-1) in the buffer area information (T11A).
  • the buffer region frequency offset (T11A-1) is, for example, an RB (Resource Block) number (which may also be referred to as a value in RB units) or an RE (Resource Element) number (which may also be referred to as a value in RE units). Also good.
  • the buffer region frequency offset (T11A-1) is not necessarily expressed by one parameter, and may be expressed by a plurality of parameters. In other words, the buffer region frequency offset (T11A-1) only needs to indicate the start position of the buffer region in the frequency axis direction, and any data representation may be used.
  • the buffer area frequency offset (T11A-1) may indicate the start position of the buffer area in the frequency axis direction by a bitmap having a bit string of a plurality of digits.
  • Buffer area frequency bandwidth (T11A-2) indicates the length (width) of the buffer area in the frequency axis direction. In other words, a value indicating the length (width) of the buffer area in the frequency axis direction is stored in the field of the buffer area frequency bandwidth (T11A-2) in the buffer area information (T11A).
  • the buffer region frequency bandwidth (T11A-2) may be, for example, the number of RBs or the number of REs.
  • the buffer region frequency bandwidth (T11A-2) is not necessarily expressed by one parameter, and may be expressed by a plurality of parameters. In other words, the buffer region frequency bandwidth (T11A-2) only needs to indicate the length (width) of the buffer region in the frequency axis direction, and any data representation may be used.
  • the buffer region frequency bandwidth (T11A-2) may indicate the length (width) of the buffer region in the frequency axis direction by a bitmap having a bit string of a plurality of digits.
  • one bitmap may serve as both the buffer domain frequency offset (T11A-1) and the buffer domain frequency bandwidth (T11A-2).
  • FIG. 14 is a diagram schematically illustrating another example of the configuration of the setting information shared between the transmission device and the reception device in the wireless communication system according to the second embodiment.
  • the setting information (T10A) illustrated in FIG. 14 includes buffer area information (T11A) indicating information regarding the buffer areas (B401, B411), as in FIG.
  • the buffer area information (T11A) in FIG. 14 specifies information (also referred to as frequency information) for specifying the buffer area (B401, B411) on the frequency axis, and specifies the buffer area (B401, B411) on the time axis.
  • Information (which may also be referred to as time information).
  • time information which may also be referred to as time information.
  • the frequency information includes a buffer region frequency offset (T11A-1) and a buffer region frequency bandwidth (T11A-2).
  • the time information includes a buffer area time offset (T11A-3) and a buffer area time width (T11A-4).
  • the time information is illustrated as having only one set of information of the buffer area time offset (T11A-3) and the buffer area time width (T11A-4).
  • the disclosure is not limited to this.
  • two or more information sets of the buffer area time offset (T11A-3) and the buffer area time width (T11A-4) may be provided.
  • the content of the frequency information in FIG. 14 is the same as the buffer region frequency offset (T11A-1) and the buffer region frequency bandwidth (T11A-2) illustrated in FIG. .
  • Buffer area time offset (T11A-3) indicates, for example, the position of the buffer area from the reference point in the time axis direction of the frequency time space structure of the subframe.
  • the buffer area time offset (T11A-3) field in the buffer area information (T11A) can store a value indicating the position of the buffer area in the time axis direction.
  • the buffer area time offset (T11A-3) may be, for example, a symbol number.
  • the buffer area time offset (T11A-3) is not necessarily expressed by one parameter, and may be expressed by a plurality of parameters. In other words, the buffer area time offset (T11A-3) is only required to indicate the position of the buffer area in the time axis direction, and any data representation may be used.
  • the buffer area time offset (T11A-3) may indicate the position of the buffer area in the time axis direction by a bitmap having a bit string of a plurality of digits.
  • Buffer area time width (T11A-4) indicates the size (also referred to as length and width) of the buffer area in the time axis direction.
  • the buffer area time width (T11A-4) field in the buffer area information (T11A) stores a value indicating the size of the buffer area in the time axis direction.
  • the buffer area time width (T11A-4) may be, for example, the number of symbols.
  • the buffer area time width (T11A-4) is not necessarily expressed by one parameter, and may be expressed by a plurality of parameters. In other words, the buffer area time width (T11A-4) only needs to indicate the length (width) of the buffer area in the time axis direction, and any data representation may be used.
  • the buffer area time width (T11A-4) may indicate the length (width) of the buffer area in the time axis direction by a bit map having a bit string of a plurality of digits.
  • one bitmap may serve as both the buffer area time offset (T11A-3) and the buffer area time width (T11A-4).
  • the arrangement of the buffer areas (B401, B411) in one subframe can be indicated by a bitmap of at least 28 bits.
  • the position and size of the buffer area according to the second embodiment may be determined based on the arrangement of the SS / PBCH block that is the first radio resource.
  • the setting information regarding the position and size of the buffer area in the time axis direction according to the second embodiment may be used as the setting information regarding the position and size of the buffer area in the time axis direction according to the second embodiment.
  • the setting information related to the SS / PBCH block arrangement can be used as setting information related to the position and size of the buffer area in the time axis direction according to the second embodiment.
  • FIG. 15 is a diagram illustrating an example of a wireless communication sequence in the wireless communication system 1 according to the second embodiment.
  • the radio communication system 1 illustrated in FIG. 15 includes a radio terminal 10 as a downlink reception device and a radio base station 20 as a downlink transmission device.
  • the wireless terminal 10 and the wireless base station 20 may be communication devices that comply with the 5G system standard.
  • the sequence illustrated in FIG. 15 is an excerpt of a part of a series of processes related to downlink data transmission.
  • the processing related to the connection establishment between the wireless terminal 10 and the wireless base station 20 is not shown.
  • the radio base station 20 executes downlink scheduling processing and allocates downlink radio resources (second radio resources) to downlink data (DL data) addressed to the radio terminal 10 ( S21). Then, the radio base station 20 allows the second radio resource allocated to the downlink data to influence the inter-SCS interference on the SS / PBCH block (first radio resource) and / or the frequency axis direction. Or you may determine whether it has proximity in a time-axis direction (S22).
  • the first radio resource is a radio resource having a first subcarrier interval
  • the second radio resource is a radio resource having a second subcarrier interval different from the first subcarrier interval.
  • the radio base station 20 for example, when the second radio resource is arranged in the same subframe as the subframe in which the SS / PBCH block (first radio resource) is arranged, It may be determined that the influence of inter-SCS interference may be exerted on the SS / PBCH block (first radio resource).
  • the radio base station 20 determines that the second radio resource can affect inter-SCS interference on the SS / PBCH block (first radio resource)
  • the radio base station 20 is arranged in a part of the second radio resource.
  • the setting information (Buffer area configuration) related to the buffer area is transmitted to the wireless terminal 10 by DCI, for example (S23).
  • the radio base station 20 may store setting information (Buffer area configuration) related to the buffer area in a predetermined information field of DCI.
  • the DCI may also store information (DL ⁇ scheduling information) related to the second radio resource allocated to the downlink data addressed to the radio terminal 10.
  • Such DCI may be transmitted by PDCCH, for example, and may be transmitted by EPDCCH.
  • the setting information (Buffer area configuration) related to the buffer area according to the second embodiment is obtained when the wireless terminal 10 as the downlink receiving device receives the setting information from the wireless base station 20 as the downlink transmitting device. It is shared between the terminal 10 and the radio base station 20.
  • the DCI format of S23 may be, for example, Format1_0 or Format1_1, and is detailed in TS38.212 ⁇ 7.3.1.27.3DCI formats for scheduling of PDSCH.
  • the DCI in S23 may have a configuration in which setting information indicating the buffer area according to the present embodiment is added to the DCI format detailed in TS38.212 ⁇ 7.3.1.2.
  • the radio base station 20 arranges the buffer area in the second radio resource for mapping the downlink data (DL data) according to the setting information (Buffer area configuration) related to the buffer area, and includes the buffer area and includes the downlink data (DL).
  • the second radio resource (PDSCH (with buffer area)) to which data is mapped and the first radio resource (SS / PBCH) are transmitted (S24). Accordingly, it is possible to suppress the influence of inter-SCS interference on the first radio resource (SS / PBCH) while transmitting downlink data (DL (data) addressed to the radio terminal 10 using the second radio resource.
  • the buffer area suppresses the influence of inter-SCS interference from the first radio resource to the second radio resource while suppressing the influence of inter-SCS interference from the second radio resource to the first radio resource. obtain.
  • the wireless terminal 10 receives downlink data (DL data) from the second wireless resource (PDSCH (with Buffer area)) including the buffer area according to the setting information (Buffer area configuration) regarding the buffer area received in S23. obtain.
  • the first radio resource (SS / PBCH) transmitted in S24 may be received by another radio terminal not shown in FIG. In other words, the radio terminal 10 shown in FIG. 15 may or may not receive the first radio resource (SS / PBCH) transmitted in S24.
  • the DCI transmitted in S23 and the second radio resource and the first radio resource transmitted in S24 may be transmitted in the same subframe or transmitted in different subframes. May be.
  • the first radio resources having the first subcarrier interval are used.
  • a buffer area is arranged in the second radio resource having a second subcarrier interval different from that of the first subcarrier.
  • the range of the buffer area is set by setting information dynamically shared between the transmission device and the reception device during operation of the wireless communication system.
  • the Therefore, the arrangement of the buffer areas can be dynamically changed according to the setting information related to the buffer areas suitable for the situation during operation of the wireless communication system.
  • SCS subcarrier intervals
  • the first radio resource (SS / PBCH block) of the synchronization signal used for the synchronization process between the transmission device and the reception device of the wireless communication system The buffer region is arranged in a partial region of the second radio resource (for example, PDSCH) that can influence the inter-SCS interference.
  • the first radio resource (SS / PBCH block) while suppressing the influence of inter-SCS interference from the second radio resource to the first radio resource (SS / PBCH block) by the buffer area arranged in the second radio resource The influence of inter-SCS interference on the second radio resource can be suppressed.
  • radio communication can be performed appropriately.
  • SCS subcarrier intervals
  • Example 3 In Example 3, another specific application example is shown about a 1st radio
  • the first radio resource is PRACH (Physical Random Access CHannel) which is a kind of uplink radio resource.
  • the second radio resource is an uplink radio resource and is a radio resource other than the PRACH, and may be, for example, a PUSCH (Physical Uplink Shared) CHannel) that can be used for transmission of user data.
  • the receiving device may correspond to the radio base station 20, and the transmitting device may correspond to the radio terminal 10.
  • the PRACH resource is used when the radio terminal 10 that is an uplink transmission device establishes a connection with the radio base station 20 that is an uplink reception device or performs resynchronization by initial access or handover. obtain.
  • connection establishment between the transmission device (wireless terminal 10) and the reception device (wireless base station 20) may fail.
  • connection establishment between the transmission device (wireless terminal 10) and the reception device (wireless base station 20) fails, it is difficult to appropriately perform wireless communication between the transmission device and the reception device. .
  • the second radio resource in the second radio resource arranged at a different position on the frequency axis from the uplink first radio resource (PRACH). It may be more advantageous to arrange the buffer area in the first radio resource than to arrange the buffer area in the first radio resource. This is because the buffer area arranged in the second radio resource is expected to prevent the deterioration of the transmission quality of the PRACH resource due to the inter-SCS interference.
  • FIG. 16 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency time-space structure of the subframe in the radio communication system according to the third embodiment.
  • PRACH (C20) is arrange
  • the slot (1 slot for SCS # 2) of the second subcarrier interval (SCS # 2) has a time axis greater than that of the first subcarrier interval (SCS # 1) (1 slot for SCS # 1). Half length in direction.
  • a buffer area (C101) is arranged.
  • the buffer communication area (C101) is arranged in a partial area of the second radio resource (C10) that can affect the first radio resource (C20) due to the inter-SCS interference, so that the radio communication system
  • the process regarding the initial connection between the transmitting apparatus and the receiving apparatus can be appropriately executed.
  • the buffer area (C101) may be arranged in the second radio resource, for example, in an area close to the first radio resource (PRACH).
  • the buffer region (C101) illustrated in FIG. 16 is arranged at a position adjacent to the first radio resource (C20) in the frequency axis direction.
  • adjoining in the frequency axis direction does not necessarily mean that the arrangement of both in the frequency axis direction is continuous.
  • the first radio resource (C20) and the buffer region (C101) need only have proximity in the frequency axis direction to such an extent that the influence of inter-SCS interference can be suppressed.
  • the buffer area (C101) illustrated in FIG. 16 is arranged at a position overlapping the first radio resource (C20) in the time axis direction.
  • overlapping in the time axis direction does not necessarily mean that both arrangements have the same time width in the time axis direction.
  • the first radio resource (C20) and the buffer area (C101) need only have redundancy in the time axis direction to such an extent that the influence of inter-SCS interference can be suppressed.
  • the buffer area (C101) may be shorter or longer in the time axis direction than the first radio resource (C20).
  • the position and size of the buffer region (C101) in the frequency axis direction are indicated by an offset in the frequency axis direction and a width.
  • the offset (offset) in the frequency axis direction indicates the position of the buffer region (C101) from the reference point in the frequency axis direction in the frequency spatio-temporal structure of the subframe shown in FIG.
  • the offset (offset) in the frequency axis direction may be the same as the value indicating the position of the second radio resource (C10).
  • the width indicates the size (width) of the buffer region (C101) in the frequency axis direction.
  • the position and size of the buffer region (C101) in the time axis direction are indicated by the offset in the time axis direction and the width.
  • the position and size of the buffer region (C101) in the time axis direction may be determined based on, for example, an arrangement pattern of PRACH (C20) at the first subcarrier interval (SCS # 1).
  • the arrangement pattern of the PRACH (C20) can be changed according to the operation mode of the wireless communication system.
  • the position (offset) and size (width) of the buffer region (C101) in the time axis direction may be determined according to the operation mode of the wireless communication system.
  • the relationship between the operation mode of the wireless communication system and the PRACH (C20) arrangement variation is detailed in, for example, TS 38.211 ⁇ 6.3.3.26.3Mapping to physical resources. Further, the subframe to which the arrangement pattern of the buffer area (C101) illustrated in FIG. 16 is applied may be determined based on the subframe to which the arrangement pattern of PRACH (C20) is applied. The subframe to which the PRACH (C20) arrangement pattern is applied is detailed in, for example, TS38.211 Table 6.3.3.2-2: Random access configurations for FR1 and pared spectrum.
  • the setting information regarding the buffer area according to the third embodiment is the same as that of the first and second embodiments, detailed description thereof is omitted.
  • the setting information regarding the buffer area is shared between the transmission device and the reception device in the wireless communication system according to the third embodiment.
  • a buffer area is arranged in the uplink radio resource
  • the transmission apparatus may correspond to the radio terminal 10
  • the reception apparatus may correspond to the radio base station 20.
  • the setting information related to the buffer area according to the third embodiment may be transmitted from the radio base station 20 that is the reception device to the radio terminal 10 that is the transmission device.
  • the position and size of the buffer area according to the third embodiment may be determined based on the arrangement of the PRACH resource that is the first radio resource.
  • the setting information related to the PRACH resource may be used as the setting information related to the PRACH resource.
  • the setting information regarding the PRACH resource can be used as setting information regarding the position and size of the buffer area according to the third embodiment in the time axis direction.
  • FIG. 17 is a diagram illustrating an example of a wireless communication sequence in the wireless communication system 1 according to the third embodiment.
  • the radio communication system 1 illustrated in FIG. 17 includes a radio terminal 10A as an uplink transmission device, a radio base station 20 as an uplink reception device, and other radio terminals 10B.
  • the radio terminal 10A, the radio terminal 10B, and the radio base station 20 may be communication devices that comply with, for example, a 5G system standard.
  • the sequence illustrated in FIG. 17 is an excerpt of a part of a series of processes related to uplink data transmission.
  • the processing related to connection establishment between the wireless terminal 10 ⁇ / b> A and the wireless base station 20 is not shown.
  • the radio base station 20 transmits system information (System information) including setting information (PRACH configuration) related to the first radio resource (PRACH) to the radio terminals 10A and 10B (S31).
  • System information system information
  • the radio terminals 10 ⁇ / b> A and 10 ⁇ / b> B can know the setting information (PRACH ⁇ configuration) related to the first radio resource (PRACH) by receiving the system information transmitted from the radio base station 20.
  • the radio base station 20 may individually transmit the system information to the radio terminals 10A and 10B, or may broadcast the system information to the radio terminals 10A and 10B using a broadcast channel (PBCH). .
  • PBCH broadcast channel
  • system information is an example of a signal for notifying the radio terminals 10A and 10B of setting information (PRACH configuration) related to the first radio resource (PRACH), and the present disclosure is not limited thereto. Absent.
  • the radio base station 20 may notify the setting information to the radio terminals 10A and 10B using an RRC (Radio Resource Control) message.
  • RRC Radio Resource Control
  • the radio base station 20 executes, for example, an uplink scheduling process, and allocates an uplink radio resource (second radio resource) to the radio terminal 10A (S32).
  • the radio base station 20 may receive a scheduling request (SR) signal from the radio terminal 10A.
  • the radio terminal 10A may transmit an SR signal requesting allocation of uplink radio resources to the radio base station 20 before S32 is executed.
  • SR scheduling request
  • the radio base station 20 is close in the frequency axis direction and / or the time axis direction to the extent that the second radio resource allocated to the radio terminal 10A can affect the first radio resource (PRACH) by inter-SCS interference. It may be determined whether or not it has sex (S33).
  • the first radio resource is a radio resource having a first subcarrier interval
  • the second radio resource is a radio resource having a second subcarrier interval different from the first subcarrier interval.
  • the radio base station 20 determines that the second radio resource is the first radio resource. It may be determined that the influence of inter-SCS interference may be exerted on the resource (PRACH).
  • the radio base station 20 determines that the second radio resource can affect inter-SCS interference on the first radio resource (PRACH)
  • the radio base station 20 relates to a buffer area arranged in a partial area of the second radio resource.
  • the setting information (Buffer area configuration) is transmitted to the wireless terminal 10A by DCI, for example (S34).
  • the radio base station 20 may store setting information (Buffer area configuration) related to the buffer area in a predetermined information field of DCI.
  • the DCI may also store information (UL scheduling grant) related to the second radio resource allocated to the radio terminal 10A.
  • Such DCI may be transmitted by PDCCH, for example, and may be transmitted by EPDCCH.
  • the configuration information (Buffer area configuration) related to the buffer area according to the third embodiment is obtained when the radio terminal 10A as an uplink transmission apparatus receives the setting information from the radio base station 20 as an uplink reception apparatus. It is shared between the terminal 10A and the radio base station 20.
  • the DCI format of S34 may be, for example, Format0_0 or Format0_1, and is detailed in TS38.212 ⁇ 7.3.1.1 ⁇ DCI formats for scheduling of PUSCH.
  • the DCI of S34 may have a configuration in which setting information indicating the buffer area according to the present embodiment is added to the DCI format detailed in TS38.212 ⁇ 7.3.1.1.
  • the radio terminal 10A arranges the buffer area in the second radio resource to which the uplink data (UL data) is mapped according to the setting information (Buffer area configuration) related to the buffer area, and includes the buffer area and the uplink data (UL).
  • the second radio resource (PUSCH (with buffer area)) to which data is mapped is transmitted (S35). It is assumed that the first radio resource (PRACH) is reserved in the subframe having the second radio resource transmitted from the radio terminal 10A.
  • the other radio terminal 10B may transmit a signal having a predetermined signal sequence (Random Access Preamble) using the first radio resource according to the setting information (PRACH configuration) of S31 (S36).
  • the first radio resource transmitted in S36 and the second radio resource transmitted in S35 are included in the same subframe.
  • the second radio resource is permitted to be transmitted from the radio terminal 10A of the second radio resource to which the uplink data (UL data) is mapped by the buffer area arranged in the second radio resource.
  • the influence of inter-SCS interference from the resource to the first radio resource (PRACH) may be suppressed.
  • the buffer region arranged in the second radio resource can suppress the influence of inter-SCS interference from the first radio resource (PRACH) to the second radio resource.
  • the radio base station 20 performs uplink data (UL) from the second radio resource including the buffer area (PUSCH (with buffer area)) according to the setting information (Buffer area configuration) regarding the buffer area shared with the radio terminal 10A in S34. data). Further, the radio base station 20 can receive the first radio resource (PRACH) transmitted from the radio terminal 10B in S36.
  • UL uplink data
  • PUSCH buffer area
  • Buffer area configuration setting information regarding the buffer area shared with the radio terminal 10A in S34. data
  • the radio base station 20 can receive the first radio resource (PRACH) transmitted from the radio terminal 10B in S36.
  • the first radio resources having the first subcarrier interval are used.
  • a buffer area is arranged in the second radio resource having a second subcarrier interval different from that of the first subcarrier.
  • the range of the buffer area is set by setting information dynamically shared between the transmission device and the reception device during operation of the wireless communication system.
  • the Therefore, the arrangement of the buffer areas can be dynamically changed according to the setting information related to the buffer areas suitable for the situation during operation of the wireless communication system.
  • SCS subcarrier intervals
  • an uplink first radio resource used for processing related to an initial connection between a transmission device and a reception device of a wireless communication system.
  • a buffer region is arranged in a partial region of the second radio resource (for example, PUSCH) that can affect the inter-SCS interference.
  • the influence of inter-SCS interference from the second radio resource to the first radio resource (PRACH) can be suppressed by the buffer region arranged in the second radio resource.
  • the buffer region arranged in the second radio resource can suppress the influence of inter-SCS interference from the first radio resource (PRACH) to the second radio resource.
  • radio communication can be performed appropriately.
  • SCS subcarrier intervals
  • Example 4 In Example 4, another specific application example is shown about a 1st radio
  • a plurality of first radio resources are arranged in one subframe.
  • Such a first radio resource is, for example, PUSCH which is a kind of uplink radio resource.
  • the second radio resource is PUSCH (Msg: 3) (which may also be referred to as Msg3 PUSCH) in a RACH (Random Access CHannel) sequence.
  • the receiving device may correspond to the radio base station 20, and the transmitting device may correspond to the radio terminal 10.
  • FIG. 18 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency space-time structure of the subframe in the radio communication system according to the fourth embodiment.
  • PUSCH (D10) and PUSCH (D11) are arranged as the first radio resources of the first subcarrier interval (SCS # 1).
  • Msg3gPUSCH (D20) is arranged as the second radio resource at the second subcarrier interval (SCS # 2).
  • the slot (1 slot for SCS # 1) of the first subcarrier interval (SCS # 1) has a time axis that is longer than the slot (1 slot for SCS # 2) of the second subcarrier interval (SCS # 2).
  • Half length in direction is provided.
  • a plurality of buffer areas (D201, D202) are arranged in the part. In this way, a plurality of buffer areas (D201, D202) are arranged in a partial area of the second radio resource (D20) that may affect the first radio resources (D10, D11) due to inter-SCS interference.
  • uplink data transmission can be appropriately performed between the transmission device and the reception device in the wireless communication system.
  • the buffer area (D201) may be arranged in the second radio resource, for example, in an area close to the first radio resource (D10).
  • the buffer area (D202) may be arranged in the second radio resource, for example, in an area close to the first radio resource (D11).
  • the buffer region (D201) illustrated in FIG. 18 is arranged at a position adjacent to the first radio resource (D10) in the frequency axis direction.
  • the buffer region (D202) illustrated in FIG. 18 is arranged at a position adjacent to the first radio resource (D11) in the frequency axis direction.
  • adjoining in the frequency axis direction does not necessarily mean that the arrangement of both in the frequency axis direction is continuous.
  • the first radio resource (D10) and the buffer area (D201) need only have proximity in the frequency axis direction to such an extent that the influence of inter-SCS interference can be suppressed.
  • the buffer area (D201) illustrated in FIG. 18 is arranged at a position overlapping with the first radio resource (D10) in the time axis direction.
  • the buffer area (D202) illustrated in FIG. 18 is arranged at a position overlapping the first radio resource (D11) in the time axis direction.
  • overlapping in the time axis direction does not necessarily mean that both arrangements have the same time width in the time axis direction.
  • the first radio resource (D10) and the buffer area (D201) need only have redundancy in the time axis direction to such an extent that the influence of inter-SCS interference can be suppressed.
  • the buffer area (D201) may be shorter or longer in the time axis direction than the first radio resource (D10). The same applies to the first radio resource (D11) and the buffer area (D202).
  • the position and size of the buffer region (D201) in the frequency axis direction are indicated by an offset (offset-1) in the frequency axis direction and a width (width-1).
  • the offset (offset-1) in the frequency axis direction indicates the position of the buffer region (D201) from the reference point in the frequency axis direction in the frequency spatio-temporal structure of the subframe shown in FIG.
  • the offset (offset-1) in the frequency axis direction may be a value indicating the relative position of the buffer region (D201) in the second radio resource (D20).
  • the offset (offset-1) in the frequency axis direction may be a value indicating a relative position with the lower end of the second radio resource (D20) as the reference position (0).
  • the width (width-1) indicates the size (width) of the buffer region (D201) in the frequency axis direction.
  • the position and size of the buffer region (D202) in the frequency axis direction are indicated by the offset (offset-2) in the frequency axis direction and the width (width-2).
  • the offset (offset-2) in the frequency axis direction indicates the position of the buffer region (D202) from the reference point in the frequency axis direction in the frequency spatio-temporal structure of the subframe shown in FIG.
  • the offset (offset-2) in the frequency axis direction may be a value indicating the relative position of the buffer region (D202).
  • the offset (offset-2) in the frequency axis direction may be a value indicating a relative position with the lower end of the second radio resource (D20) as the reference position (0).
  • the width (width-2) indicates the size (width) of the buffer region (D202) in the frequency axis direction.
  • the position and size of the buffer region (D201) in the time axis direction are indicated by the offset (offset-1) in the time axis direction and the width (width-1).
  • the position and size of the buffer area (D201) in the time axis direction may be determined based on, for example, the arrangement of the first radio resource (D10).
  • the arrangement of the first radio resource (D10) is changed according to the result of allocation scheduling of the first radio resource (D10) to uplink data (UL data) (which may also be referred to as the first uplink scheduling result). obtain.
  • the position (offset-1) and width (width-1) of the buffer region (D201) in the time axis direction may be determined according to the first uplink scheduling result.
  • the position and size of the buffer region (D202) in the time axis direction are indicated by the offset (offset-2) and the width (width-2) in the time axis direction.
  • the position and size of the buffer area (D202) in the time axis direction may be determined based on the arrangement of the first radio resource (D11), for example.
  • the arrangement of the first radio resource (D11) is changed according to the result of allocation scheduling of the first radio resource (D11) for uplink data (UL data) (which may also be referred to as the second uplink scheduling result). obtain.
  • the position (offset-2) and width (width-2) of the buffer region (D202) in the time axis direction may be determined according to the second uplink scheduling result.
  • the second radio resource according to the fourth embodiment has a plurality of buffer areas (D201, D202)
  • the setting information regarding the buffer areas (D201, D202) is the buffer areas (D201, D202). ) Of buffer area information corresponding to the number of.
  • FIG. 19 is a diagram schematically illustrating an example of the configuration of the setting information related to the buffer area according to the fourth embodiment.
  • the setting information (T10B) illustrated in FIG. 19 includes a plurality of buffer area information (T11B) indicating information related to the buffer areas (D201, D202), and the number of buffer area information indicating the number K of buffer area information (T11B) ( T12B).
  • the setting information (T10B) is for the first radio resource (D10).
  • the buffer area information number K is, for example, “2”.
  • the buffer area information (T11B) in FIG. 19 specifies information (also referred to as frequency information) for specifying the buffer area (D201, D202) on the frequency axis, and specifies the buffer area (D201, D202) on the time axis.
  • Information (which may also be referred to as time information).
  • the frequency information includes a buffer region frequency offset (T11B-1) and a buffer region frequency bandwidth (T11B-2).
  • the time information includes a buffer area time offset (T11B-3) and a buffer area time width (T11B-4). Since the characteristics of each information element in the buffer area information (T11B) are the same as those in FIG. 14, detailed description thereof is omitted.
  • FIG. 20 is a diagram illustrating an example of a wireless communication sequence in the wireless communication system 1 according to the fourth embodiment.
  • the radio communication system 1 illustrated in FIG. 20 includes radio terminals 10A and 10B as uplink transmission apparatuses and a radio base station 20 as an uplink reception apparatus.
  • the radio terminal 10A, the radio terminal 10B, and the radio base station 20 may be communication devices that comply with, for example, a 5G system standard.
  • the sequence illustrated in FIG. 20 is an excerpt of a part of a series of processes related to uplink data transmission.
  • the processing related to the connection establishment between the radio terminal 10 ⁇ / b> A and the radio base station 20 is not shown.
  • the radio terminal 10A may transmit an SR (UL Scheduling request) signal requesting allocation of uplink radio resources (S41).
  • SR UL Scheduling request
  • S41 uplink radio resources
  • the radio terminal 10A may not execute transmission of an SR signal in S41.
  • the radio terminal 10B transmits a predetermined preamble signal (Random Access Preamble) (Msg: 1) to the radio base station 20 using the PRACH, which is an uplink common resource in the random access procedure.
  • a predetermined preamble signal Random Access Preamble
  • Msg Random Access Preamble
  • the SR signal in S41 and the preamble signal in S42 may be transmitted in the same subframe or in different subframes. Further, the transmission timing of the SR signal in S41 may be before or after the transmission timing of the preamble signal in S42.
  • the radio base station 20 executes, for example, uplink scheduling processing and allocates uplink radio resources (first radio resource, second radio resource) to each radio terminal (10A, 10B) (S43).
  • the radio base station 20 may allocate the first radio resource (for example, D10, D11; PUSCH in FIG. 18) to the radio terminal 10A that has transmitted the SR signal.
  • the radio base station 20 can allocate a second radio resource (for example, D20; Msg3MPUSCH in FIG. 18) to the radio terminal 10B that has transmitted the preamble signal.
  • the radio base station 20 uses the second radio resource (Msg3 ⁇ ⁇ PUSCH) allocated to the radio terminal 10B as the first radio resource (PUSCH) allocated to the radio terminal 10A. It may be determined whether or not there is proximity in the frequency axis direction and / or the time axis direction to such an extent that inter-SCS interference can be affected (S44).
  • the first radio resource (PUSCH) is a radio resource having a first subcarrier interval
  • the second radio resource (Msg3 PUSCH) is a radio resource having a second subcarrier interval different from the first subcarrier interval. .
  • the radio base station 20 sets a range in which the second radio resource (Msg3 PUSCH) allocated to the radio terminal 10B overlaps with the first radio resource (PUSCH) allocated to the radio terminal 10A in the time axis direction. If so, it may be determined that the second radio resource can affect inter-SCS interference on the first radio resource.
  • Msg3 PUSCH the second radio resource allocated to the radio terminal 10B overlaps with the first radio resource (PUSCH) allocated to the radio terminal 10A in the time axis direction.
  • the radio base station 20 Based on the scheduling result of the uplink radio resource in S43, the radio base station 20 transmits information (UL ⁇ scheduling grant) related to the first radio resource allocated to the radio terminal 10A to the radio terminal 10A by DCI, for example. (S45).
  • the radio base station 20 may store information on the first radio resource (UL scheduling) in a predetermined information field of DCI.
  • DCI may be transmitted by PDCCH, for example, and may be transmitted by EPDCCH.
  • the setting information (Buffer area configuration) regarding the buffer area arranged in the area is transmitted to the wireless terminal 10B by DCI, for example (S46).
  • the radio base station 20 may store setting information (Buffer area configuration) related to the buffer area in a predetermined information field of DCI.
  • information (UL scheduling grant (Msg: 2)) regarding the second radio resource (Msg3 PUSCH) allocated to the radio terminal 10B may be stored.
  • Such DCI may be transmitted by PDCCH, for example, and may be transmitted by EPDCCH.
  • the radio base station 20 transmits DCI including setting information (Buffer area configuration) related to the buffer area by PDCCH or EPDCCH, and information (UL scheduling grant (Msg: 2) about the second radio resource (Msg3 PUSCH) ) May be transmitted on the PDSCH.
  • the radio base station 20 may transmit a random access response (RA response) message storing information on the second radio resource (Msg3 PUSCH) (UL schedulingMgrant (Msg: 2)) using the PDSCH (S46). ).
  • RA response random access response
  • the configuration information (Buffer area configuration) related to the buffer area according to the fourth embodiment is obtained when the radio terminal 10B as the uplink transmission device receives the setting information from the radio base station 20 as the uplink reception device. It is shared between the terminal 10B and the radio base station 20.
  • the DCI format of S46 may be, for example, Format0_0 or Format0_1, and is detailed in TS38.211 ⁇ 7.3.1.1 DCI formats for scheduling of PUSCH.
  • the DCI in S46 may have a configuration in which setting information indicating the buffer area according to the present embodiment is added to the DCI format detailed in TS 38.211 ⁇ 7.3.1.1.
  • the DCI of S45 and the DCI of S46 may be transmitted in the same subframe or may be transmitted in different subframes.
  • the radio terminal 10A transmits the first radio resource (PUSCH) to which the uplink data (UL data) is mapped according to the information about the first radio resource (UL scheduling data) (S47).
  • PUSCH first radio resource
  • UL data uplink data
  • S47 information about the first radio resource
  • the radio terminal 10B transmits an RRC connection request message (Msg: 3) in the random access procedure as uplink data (UL data) according to the information (UL scheduling grant (Msg: 2)) regarding the second radio resource ( S48).
  • the radio terminal 10B arranges the buffer area in the second radio resource to which the RRC connection request message (Msg: 3) is mapped according to the setting information (Buffer area configuration) related to the buffer area, includes the buffer area, and RRC. Transmit the second radio resource (UL data (Msg: 3) (with Buffer area) [PUSCH]) (also called Msg3 PUSCH (with Buffer area)) to which the connection request message (Msg: 3) is mapped ( S48).
  • the first radio resource (PUSCH) in S47 and the second radio resource (Msg3 PUSCH (with Buffer area)) in S48 may be transmitted in the same subframe, or different subframes. May be transmitted.
  • the first radio resource (PUSCH) of S47 and the second radio resource (Msg3 PUSCH (with Buffer area)) of S48 are transmitted in the same subframe, they are arranged in the second radio resource.
  • the buffer region can suppress the influence of inter-SCS interference from the second radio resource to the first radio resource.
  • the buffer area arranged in the second radio resource can suppress the influence of inter-SCS interference from the first radio resource to the second radio resource.
  • the radio base station 20 transmits uplink data (Msg3 PUSCH (with Buffer area)) from the second radio resource (Msg3 PUSCH (with Buffer area)) according to the setting information (Buffer area configuration) related to the buffer area shared with the radio terminal 10B in S46. RRC connection request message as UL data) may be received. Also, the radio base station 20 can receive the first radio resource (PUSCH) transmitted from the radio terminal 10A in S47.
  • the above is a specific application example of the first radio resource and the second radio resource in the fourth embodiment. Since the points omitted in the fourth embodiment are the same as those in the first embodiment, refer to the description of the first embodiment as appropriate.
  • the first radio resources having the first subcarrier interval are used.
  • a buffer area is arranged in the second radio resource having a second subcarrier interval different from that of the first subcarrier.
  • the range of the buffer area is set by setting information dynamically shared between the transmission device and the reception device during operation of the wireless communication system.
  • the Therefore, the arrangement of the buffer areas can be dynamically changed according to the setting information related to the buffer areas suitable for the situation during operation of the wireless communication system.
  • SCS subcarrier intervals
  • the RRC connection request message (Msg: 3) in the random access procedure between the transmission device and the reception device of the wireless communication system is mapped.
  • the second radio resource (Msg3gPUSCH) and the first radio resource (PUSCH) to which uplink data is mapped can be affected by inter-SCS interference
  • a part of the second radio resource (Msg3 PUSCH) The buffer area is arranged in the area.
  • the buffer region arranged in the second radio resource (Msg3gPUSCH) can suppress the influence of inter-SCS interference from the second radio resource (Msg3 PUSCH) to the first radio resource (PUSCH).
  • the buffer area arranged in the second radio resource can suppress the influence of inter-SCS interference from the first radio resource (PUSCH) to the second radio resource (Msg3 PUSCH).
  • PUSCH first radio resource
  • Msg3 PUSCH second radio resource
  • radio communication can be performed appropriately.
  • Such an operation is useful for realizing various wireless services such as eMBB, URLLC, and mMTC in the 5G system.
  • FIG. 21 is a diagram illustrating an example of a hardware configuration of the radio terminal (UE) 10 and the radio base station (gNB) 20 in the radio communication system 1.
  • the UE 10 is an example of an uplink transmission device and an example of a downlink reception device.
  • the gNB 20 is an example of a reception device in the uplink and an example of a transmission device in the downlink.
  • the UE 10 includes a wireless communication circuit 101, a processing circuit 102, and a memory 103.
  • the UE 10 may include an antenna, a display device such as a liquid crystal display, an input device such as a touch panel, a battery such as a lithium-ion rechargeable battery.
  • the wireless communication circuit 101 receives a baseband signal (which may be referred to as a wireless signal or a digital wireless signal) from the processing circuit 102, and receives a wireless signal (second wireless signal, Configured to radiate the radio signal to space via an antenna. Thereby, UE10 can transmit a radio signal to gNB20.
  • the wireless communication circuit 101 is configured to receive a wireless signal input from an antenna, convert the wireless signal into a baseband signal, and supply the baseband signal to the processing circuit 102. Thereby, UE10 can receive the radio signal from gNB20.
  • the wireless communication circuit 101 is configured to be able to transmit and receive wireless signals and has a function of performing wireless communication with the gNB 20.
  • the wireless communication circuit 101 can be communicably connected to the processing circuit 102 via a transmission circuit mounted inside the UE 10.
  • a transmission circuit mounted inside the UE 10. Examples of such a transmission circuit include a transmission circuit compliant with standards such as M-PHY and Dig-RF.
  • the processing circuit 102 (which may be referred to as a processor circuit or an arithmetic circuit) is a circuit configured to perform baseband signal processing.
  • the processing circuit 102 is configured to generate a baseband signal (which may be referred to as a wireless signal or a digital wireless signal) based on a protocol stack in the wireless communication system 1 and output the baseband signal to the wireless communication circuit 101.
  • the processing circuit 102 is configured to perform reception processing such as demodulation and decoding on the baseband signal input from the wireless communication circuit 101 based on the protocol stack in the wireless communication system 1.
  • the processing circuit 102 sequentially processes the first data addressed to the gNB 20 from the upper layer to the lower layer according to the protocol stack procedure in which the wireless communication function is divided into a plurality of layers. Based on the second data obtained in this way, the wireless communication circuit 101 has a side as a circuit that transmits a wireless signal.
  • the processing circuit 102 is a circuit that sequentially processes a radio signal received via the radio communication circuit 101 from a lower layer to an upper layer according to a protocol stack procedure in which the radio communication function is divided into a plurality of layers. It has a side.
  • receiving a baseband signal input from the wireless communication circuit 101 has a side of receiving a wireless signal from the gNB 20 via the wireless communication circuit 101.
  • the processing circuit 102 may be an arithmetic device that realizes the operation of the UE 10 according to each of the above-described embodiments by reading and executing a program stored in the memory 103, for example. In other words, the processing circuit 102 executes the processing flow in the operation of the UE 10 according to each of the above-described embodiments (for example, the operations shown in FIGS. 6, 8, 9, 15, 17, and 20). It has a side as a subject. Examples of the processing circuit 102 include a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), and combinations thereof. Note that the processing circuit 102 may be a multi-core processor including two or more cores. Further, the processing circuit 102 may include two or more processing circuits 102 according to each layer in the protocol stack of the wireless communication system 1.
  • the processing circuit 102 may be referred to as a C-CPU.
  • the UE 10 may include a processor circuit that may be referred to as an A-CPU that executes an application.
  • the processing circuit 102 may be mounted on a single chip together with a processor circuit that may be referred to as an A-CPU, or may be mounted as an individual chip. As described above, the processing circuit 102 has a side surface as a control unit having a function of controlling the operation of the UE 10.
  • the memory 103 is a circuit configured to store and hold data and programs related to baseband signal processing executed by the processing circuit 102.
  • the memory 103 includes at least one or both of a nonvolatile storage device and a volatile storage device. Examples include RAM (Random Access Memory), ROM (Read Only Memory), SSD (Solid State Drive), HDD (Hard Disk Drive), and the like.
  • a memory 103 is a general term for various storage devices such as a main storage device and an auxiliary storage device. Similar to the processing circuit 102, the memory 103 may include two or more memories 103 according to each layer in the protocol stack of the wireless communication system 1.
  • 21 includes a wireless communication circuit 201, a processing circuit 202, a memory 203, and a wired communication circuit 204.
  • the radio communication circuit 201 receives a baseband signal from the processing circuit 202 in the downlink, generates a radio signal having a predetermined output level from the baseband signal, and radiates the radio signal to space via the antenna. Composed. In addition, the radio communication circuit 201 is configured to receive a radio signal input from an antenna in the uplink, convert the radio signal into a baseband signal, and supply the baseband signal to the processing circuit 202.
  • the wireless communication circuit 201 can be communicably connected to the processing circuit 202 via a transmission path such as CPRI (Common Public Radio Interface), and is also referred to as RRH (Remote Radio Head) or RRE (Remote Radio Equipment). Can be done.
  • CPRI Common Public Radio Interface
  • RRH Remote Radio Head
  • RRE Remote Radio Equipment
  • the combination of the wireless communication circuit 201 and the processing circuit 202 is not limited to one-to-one, and a plurality of processing circuits 202 are associated with one wireless communication circuit 201 or a plurality of wireless communication circuits 201 are combined. It is also possible to associate one processing circuit 202 or a plurality of wireless communication circuits 201 with a plurality of processing circuits 202.
  • the wireless communication circuit 201 has a side surface as a communication unit (also referred to as a transmission / reception unit or a second transmission / reception unit) having a function of performing wireless communication with the UE 10.
  • the processing circuit 202 is a circuit configured to perform baseband signal processing.
  • the processing circuit 202 is configured to generate a baseband signal based on a protocol stack in the wireless communication system and output the baseband signal to the wireless communication circuit 201 in the downlink.
  • the processing circuit 202 is configured to perform reception processing such as demodulation and decoding on the baseband signal input from the wireless communication circuit 201 on the uplink based on a protocol stack in the wireless communication system.
  • the processing circuit 202 sequentially processes transmission data addressed to the UE 10 as the receiving apparatus from the upper layer to the lower layer according to the protocol stack procedure in which the wireless communication function is divided into a plurality of layers.
  • the processing circuit 202 sequentially processes a radio signal received via the radio communication circuit 201 from a lower layer to an upper layer according to a protocol stack procedure in which the radio communication function is divided into a plurality of layers. And has a side surface as a circuit.
  • receiving an input of a baseband signal from the radio communication circuit 201 in the uplink has a side of receiving a radio signal from the UE 10 via the radio communication circuit 201.
  • the processing circuit 202 reads and executes a program stored in the memory 203, for example, to thereby operate the gNB 20 according to the above-described embodiments (for example, FIG. 6, FIG. 8, FIG. 9, FIG. 15, FIG. 17).
  • the operation device that realizes the operation shown in FIG. Examples of the processing circuit 202 include a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array).
  • the processing circuit 202 may be a multi-core processor including two or more cores. Further, the processing circuit 202 may include two or more processing circuits 202 according to each layer in the protocol stack of the wireless communication system.
  • a processing circuit 202 that executes processing as a MAC entity belonging to the MAC layer, a processing circuit 202 that executes processing as an RLC entity belonging to the RLC layer, and a processing circuit that executes processing as a PDCP entity belonging to the PDCP layer 202 may be individually implemented.
  • the processing circuit 202 has a side surface as a control unit having a function of controlling the operation of the radio base station 20 (which may be referred to as a second control unit in order to be distinguished from the control unit of the UE 10).
  • the processing circuit 202 executes a process of transmitting various setting information (for example, first setting information and second setting information) to the UE 10.
  • various types of setting information may be referred to as control signals.
  • the memory 203 is a circuit configured to store and hold data and programs related to baseband signal processing executed by the processing circuit 202.
  • the memory 203 includes at least a nonvolatile storage device and / or a volatile storage device. Examples include RAM (Random Access Memory), ROM (Read Only Memory), SSD (Solid State Drive), HDD (Hard Disk Drive), and the like.
  • a memory 203 is a general term for various storage devices such as a main storage device and an auxiliary storage device. Similar to the processing circuit 202, the memory 203 may include two or more memories 203 depending on each layer in the protocol stack of the wireless communication system.
  • a memory 203 used for processing as a MAC entity belonging to the MAC layer a memory 203 used for processing as an RLC entity belonging to the RLC layer, and a memory 203 used for processing as a PDCP entity belonging to the PDCP layer May be implemented individually.
  • the wired communication circuit 204 converts the packet data into a format that can be output to another device and transmits the packet data to another device, or extracts data from the packet data received from the other device, and the memory 203 or processing circuit Or output to 202 or the like.
  • Examples of other devices include other radio base stations, MME (Mobility Management Entity), SGW (Serving Gateway), and the like.
  • MME and SGW are also called core nodes, and the logical communication interface used for communication with the core nodes can also be called S1 interfaces.
  • a logical communication interface used for communication with other radio base stations may also be referred to as an X2 interface.
  • each embodiment and modification in the present disclosure is an example for embodying the technical idea of the present invention, and the present invention is limited to the configuration of each embodiment and modification. And is equally applicable to other embodiments within the scope of the claims.
  • the terms in this disclosure may be renamed in future 5G system specifications.
  • one or more alternative names listed for a term in the present disclosure may be synonymous with each other.
  • wireless communication system 10 wireless terminal (UE) 101 wireless communication circuit 102 processing circuit 103 memory 20 wireless base station (gNB) 201 wireless communication circuit 202 processing circuit 203 memory 204 wired communication circuit

Abstract

[Problem] To provide a technique capable of performing appropriate communication even in a case of using a radio frame structure including radio resources having a plurality of different subcarrier spacings. [Solution] A transmission device of the present disclosure configured such that: the transmission device is able to radio-communicate with one or more reception devices by use of a plurality of subcarriers having different subcarrier spacings; for a second radio resource which is of radio resources in which the plurality of subcarriers are defined in the time axis direction and in the frequency axis direction and which is different, in the frequency axis direction, from a first radio resource having the subcarriers of a first subcarrier spacing and which has subcarriers of a second subcarrier spacing different from the first subcarrier spacing, the transmission device shares, with at least one of the one or more reception devices, setting information indicating a buffer area arranged in part of the subcarriers having the second subcarrier spacing the second radio resource has; and the transmission device allocates, according to the setting information, transmission data to the second radio resource and then transmits the transmission data.

Description

送信装置、受信装置、無線通信方法及び無線通信システムTransmitting apparatus, receiving apparatus, radio communication method, and radio communication system
 本発明は、次世代移動通信システムにおける送信装置、受信装置、無線通信方法及び無線通信システムに関する。 The present invention relates to a transmission device, a reception device, a wireless communication method, and a wireless communication system in a next-generation mobile communication system.
 近年、携帯電話システム(セルラーシステム)等の無線通信システム(移動通信システムとも称され得る)について様々なユースケースを想定し、無線通信(移動通信とも称され得る)の更なる高速化・大容量化等を図るため、次世代の無線通信技術について議論が行われている。例えば、標準化団体である3GPP(3rd Generation Partnership Project)では、LTE(Long Term Evolution)(LTE Rel.8とも称され得る)と呼ばれる通信規格や、LTEの無線通信技術をベースとしたLTE-アドバンスト(LTE-Advanced)(LTE-A、LTE Rel.10、11又は12とも称され得る)と呼ばれる通信規格の仕様策定を既に行い、その機能の拡張のための検討作業が継続的に行われている。例えば、ITU-R(International Telecommunication Union Radio communications sector)から提示された運用シナリオや技術要件の内容を実現する第五世代移動通信システム(5Gシステムとも称され得る)の標準化に関する議論が行われている。 In recent years, assuming various use cases for a wireless communication system (which can also be referred to as a mobile communication system) such as a mobile phone system (cellular system), the wireless communication (which can also be referred to as mobile communication) is further increased in speed and capacity. The next generation wireless communication technology is being discussed in order to make it easier. For example, 3GPP (3rd Generation Partnership Project), which is a standardization organization, has developed a communication standard called LTE (Long Term Evolution (also referred to as LTE Rel. 8)) and LTE-Advanced (based on LTE wireless communication technology). LTE-Advanced) (which can also be referred to as LTE-A, LTE Rel. 10, 11 or 12) has already been established, and studies for expanding its functions are being continuously conducted. . For example, discussions have been held on the standardization of the fifth generation mobile communication system (also referred to as 5G system) that realizes the contents of the operation scenarios and technical requirements presented by ITU-R (International Telecommunication Union Radio Communications communications sector). .
 5Gシステム以降の次世代移動通信システムにおいては、例えば、触覚通信や拡張現実など、従来と異なるレベルの通信性能が要求されるサービスの登場が期待されている。そのような新たなサービスに対応するため、あるいは、周波数帯域に応じて伝搬路特性等が大きく異なり得ることに対応するため、5Gシステムでは、無線フレーム構造を柔軟に変更し得る設計方針が採られている。例えば、LTE Rel.8-12(4Gシステムとも称され得る)では、サブキャリア間隔(SCS: SubCarrier Spacing)が15kHzで固定であったのに対し、5Gシステムでは、異なるサブキャリア間隔の信号を同時並列的に伝送することが検討されている。 In the next generation mobile communication systems after the 5G system, for example, services such as tactile communication and augmented reality that require different levels of communication performance are expected. In order to cope with such new services, or to cope with the fact that propagation path characteristics and the like can vary greatly depending on the frequency band, the 5G system adopts a design policy that can change the radio frame structure flexibly. ing. For example, LTE Rel. In 8-12 (which can also be referred to as a 4G system), the subcarrier spacing (SCS) is fixed at 15 kHz, whereas in the 5G system, signals with different subcarrier spacing are transmitted simultaneously in parallel. It is being considered.
国際公開第2017/164222号International Publication No. 2017/164222
 上述のように、5Gシステムでは、無線フレーム構造を柔軟に変更し得る設計方針が採られている。例えば、5Gシステムの無線フレーム構造において、無線リソース毎にSCSやシンボル長を異ならせることが考えられる。この様な無線フレーム構造を規定するパラメータのセットは、ニューメロロジ(numerology)と称されてもよい。別言すると、5Gシステムの無線フレーム構造は、複数の異なるニューメロロジ(複数の異なるサブキャリア間隔(SCS)とも称され得る)により規定された無線リソースを含み得る。 As described above, the 5G system adopts a design policy that can flexibly change the radio frame structure. For example, in the radio frame structure of the 5G system, it is conceivable to change the SCS and the symbol length for each radio resource. Such a set of parameters defining the radio frame structure may be referred to as “numerology”. In other words, the radio frame structure of the 5G system may include radio resources defined by a plurality of different nuclologies (also referred to as a plurality of different subcarrier spacings (SCS)).
 しかし、5Gシステムの標準化に関する議論では、基本的なシステム設計が主に検討されており、5Gシステムの無線サービスを実現するための具体的な実装技術については十分な検討がなされているとは言い難い。例えば、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた無線通信の実装上の課題などについては、議論があまり進んでいないのが実情である。 However, in the discussion on standardization of the 5G system, basic system design is mainly studied, and it is said that sufficient implementation technology for realizing the 5G system wireless service has been sufficiently studied. hard. For example, the actual situation is that there is not much discussion about the problems in implementing radio communication using a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS).
 開示の技術は、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合でも適切に無線通信を行うことができる送信装置、受信装置、無線通信方法、無線通信システムを提供することを目的とする。 The disclosed technology is a transmitter, a receiver, a radio communication method, a radio, and a radio apparatus that can appropriately perform radio communication even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used. An object is to provide a communication system.
 開示の一側面によれば、少なくとも一以上のサブキャリア間隔を有する複数の副搬送波により一以上の受信装置との無線通信が可能な送信装置であって、前記複数の副搬送波が時間軸方向と周波数軸方向とにより区画された無線リソースのうち、第一サブキャリア間隔の副搬送波を有する第一無線リソースとは周波数軸方向において異なる第二無線リソースであって、第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有する前記第二無線リソースについて、前記第二無線リソースが有する前記第二サブキャリア間隔を有する副搬送波のうち少なくとも一部の副搬送波において配置される緩衝領域を示す設定情報を、前記一以上の受信装置の少なくとも一つと共有し、前記第二無線リソースに対して、前記設定情報に従って送信データを割当てて無線送信するように構成される。 According to one aspect of the disclosure, a transmission device capable of wireless communication with one or more receiving devices by using a plurality of subcarriers having at least one or more subcarrier intervals, wherein the plurality of subcarriers are in a time axis direction. Among the radio resources partitioned by the frequency axis direction, the first radio resource having subcarriers at the first subcarrier interval is a second radio resource different in the frequency axis direction and different from the first subcarrier interval. For the second radio resource having subcarriers having a second subcarrier interval, a buffer area arranged in at least some of the subcarriers having the second subcarrier interval that the second radio resource has Share setting information with at least one of the one or more receiving devices and follow the setting information for the second radio resource. Configured to wirelessly transmit assign transmission data.
 開示の技術の一側面によれば、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合でも適切に無線通信を行うことができる。 According to one aspect of the disclosed technology, even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, radio communication can be performed appropriately.
図1は、実施例1に係る無線通信システムにおける複数の異なるサブキャリア間隔(SCS)の運用形態の一例を示す図である。FIG. 1 is a diagram illustrating an example of an operation mode of a plurality of different subcarrier intervals (SCS) in the wireless communication system according to the first embodiment. 図2は、実施例1に係る無線通信システムにおける無線フレームの構造の一例を示す図である。FIG. 2 is a diagram illustrating an example of a radio frame structure in the radio communication system according to the first embodiment. 図3は、実施例1に係る無線通信システムにおけるサブフレームの周波数時間空間構造の一例を示す図である。FIG. 3 is a diagram illustrating an example of a frequency-time-space structure of subframes in the wireless communication system according to the first embodiment. 図4は、実施例1に係る無線通信システムにおけるサブフレームの周波数時間空間構造において生じ得るinter-SCS干渉の一例を示す図である。FIG. 4 is a diagram illustrating an example of inter-SCS interference that may occur in the frequency space-time structure of subframes in the wireless communication system according to the first embodiment. 図5は、実施例1に係る無線通信システムにおけるサブフレームの周波数時間空間構造において無線リソースの一部に配置された緩衝領域の一例を示す図である。FIG. 5 is a diagram illustrating an example of a buffer region arranged in a part of the radio resource in the frequency space-time structure of the subframe in the radio communication system according to the first embodiment. 図6は、実施例1に係る無線通信システム1における無線端末10と無線基地局20との間で設定情報を共有するシーケンスの一例を示す図である。FIG. 6 is a diagram illustrating an example of a sequence of sharing setting information between the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 according to the first embodiment. 図7は、実施例1に係る無線通信システム1における無線端末10と無線基地局20との間で共有される設定情報の構成の一例を概略的に示す図である。FIG. 7 is a diagram schematically illustrating an example of a configuration of setting information shared between the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 according to the first embodiment. 図8は、実施例1に係る無線通信システムの送信装置における処理の流れの一例を示す図である。FIG. 8 is a diagram illustrating an example of a process flow in the transmission device of the wireless communication system according to the first embodiment. 図9は、実施例1に係る無線通信システムの受信装置における処理の流れの一例を示す図である。FIG. 9 is a diagram illustrating an example of a process flow in the reception device of the wireless communication system according to the first embodiment. 図10は、実施例2に係る第一無線リソースとしてのSS/PBCHブロックの構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of the configuration of the SS / PBCH block as the first radio resource according to the second embodiment. 図11は、実施例2に係る無線通信システムの無線フレーム構造におけるSS/PBCHブロックの配置の一例を示す図である。FIG. 11 is a diagram illustrating an example of arrangement of SS / PBCH blocks in the radio frame structure of the radio communication system according to the second embodiment. 図12は、実施例2に係る無線通信システムにおけるサブフレームの周波数時間空間構造において無線リソースの一部に配置された緩衝領域の一例を示す図である。FIG. 12 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency time-space structure of the subframe in the radio communication system according to the second embodiment. 図13は、実施例2に係る無線通信システムにおける送信装置と受信装置との間で共有される設定情報の構成の一例を概略的に示す図である。FIG. 13 is a diagram schematically illustrating an example of a configuration of setting information shared between the transmission device and the reception device in the wireless communication system according to the second embodiment. 図14は、実施例2に係る無線通信システムにおける送信装置と受信装置との間で共有される設定情報の構成のさらなる一例を概略的に示す図である。FIG. 14 is a diagram schematically illustrating a further example of the configuration of the setting information shared between the transmission device and the reception device in the wireless communication system according to the second embodiment. 図15は、実施例2に係る無線通信システム1における無線通信のシーケンスの一例を示す図である。FIG. 15 is a diagram illustrating an example of a wireless communication sequence in the wireless communication system 1 according to the second embodiment. 図16は、実施例3に係る無線通信システムにおけるサブフレームの周波数時間空間構造において無線リソースの一部に配置された緩衝領域の一例を示す図である。FIG. 16 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency space-time structure of the subframe in the radio communication system according to the third embodiment. 図17は、実施例3に係る無線通信システム1における無線通信のシーケンスの一例を示す図である。FIG. 17 is a diagram illustrating an example of a wireless communication sequence in the wireless communication system 1 according to the third embodiment. 図18は、実施例4に係る無線通信システムにおけるサブフレームの周波数時間空間構造において無線リソースの一部に配置された緩衝領域の一例を示す図である。FIG. 18 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency spatio-temporal structure of the subframe in the radio communication system according to the fourth embodiment. 図19は、実施例4に係る緩衝領域に関する設定情報の構成の一例を概略的に示す図である。FIG. 19 is a diagram schematically illustrating an example of a configuration of setting information related to a buffer area according to the fourth embodiment. 図20は、実施例4に係る無線通信システム1における無線通信のシーケンスの一例を示す図である。FIG. 20 is a diagram illustrating an example of a wireless communication sequence in the wireless communication system 1 according to the fourth embodiment. 図21は、無線通信システム1における無線端末10と無線基地局20とのハードウェア構成の一例を示す図である。FIG. 21 is a diagram illustrating an example of a hardware configuration of the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1.
 上述の如く、5Gシステムにおける議論はまだ開始されたばかりである。例えば、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた無線通信の実装上の課題などについては、議論があまり進んでいないのが実情である。 As mentioned above, the discussion on the 5G system has just started. For example, the actual situation is that there is not much discussion about the problems in implementing radio communication using a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS).
 本発明の発明者らは、この様な5Gシステムの無線フレーム構造について鋭意検討を行った結果、伝搬路環境の変動等により複数の異なるサブキャリア間隔(SCS)間(inter-SCSとも称され得る)で干渉が生じ得ることを見出した。本開示において、この様な干渉のことを、説明の便宜上、inter-SCS干渉と称する。 As a result of intensive studies on the radio frame structure of such a 5G system, the inventors of the present invention can also be referred to as a plurality of different subcarrier intervals (SCS) (inter-SCS) due to fluctuations in the propagation path environment and the like. ) Found that interference can occur. In the present disclosure, such interference is referred to as inter-SCS interference for convenience of explanation.
 例えば、5Gシステムでは、無線リソース利用効率(周波数の利用効率とも称され得る)を向上させるため、複数の異なるサブキャリア間隔(SCS)の間に設けられるガードバンド(サブガードバンドとも称され得る)の狭小化を行うことが考えられる。そのため、5Gシステムでは、狭小化されたガードバンドを超えて、inter-SCS干渉の影響が生じやすいと言える。別言すると、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合、複数の異なるサブキャリア間隔(SCS)間で無線リソースが周波数方向で重複する部分を有さなくとも、inter-SCS干渉の影響が生じ得る。 For example, in a 5G system, a guard band (also referred to as a sub guard band) provided between a plurality of different subcarrier intervals (SCS) in order to improve radio resource utilization efficiency (also referred to as frequency utilization efficiency). It is conceivable to narrow down. Therefore, in the 5G system, it can be said that the influence of inter-SCS interference tends to occur beyond the narrowed guard band. In other words, when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, a portion in which radio resources overlap in the frequency direction between a plurality of different subcarrier intervals (SCS). Even if not, the influence of inter-SCS interference may occur.
 周波数帯域の観点からも、5Gシステムは、inter-SCS干渉の影響が生じやすいと言える。例えば、5Gシステムで使用される周波数帯域として、UHF(Ultra High Frequency)帯やSHF(Special High Frequency)帯のみならず、80GHz帯などのEHF(Extremely High Frequency)帯の割当ても検討されており、実際に使用される周波数帯に応じて伝搬路環境等は大きく変動し得る。そのため、5Gシステムでは、実際に使用される周波数帯に応じて伝搬路環境等が大きく変動することで、inter-SCS干渉の影響が生じやすいと言える。別言すると、複数の異なるサブキャリア間隔(SCS)間で無線リソースが周波数方向で重複する部分を有さなくとも、実際に使用される周波数帯に応じてinter-SCS干渉の影響が生じ得ると言える。 From the viewpoint of frequency band, it can be said that the 5G system is likely to be affected by inter-SCS interference. For example, allocation of not only UHF (Ultra High Frequency) band and SHF (Special High Frequency) band but also EHF (Extremely High Frequency) band such as 80 GHz band as a frequency band used in 5G system is being considered. The propagation path environment and the like can vary greatly depending on the frequency band actually used. Therefore, in a 5G system, it can be said that the influence of inter-SCS interference is likely to occur because the propagation path environment and the like greatly vary according to the frequency band actually used. In other words, even if radio resources do not have overlapping portions in the frequency direction between a plurality of different subcarrier intervals (SCS), the influence of inter-SCS interference may occur depending on the actually used frequency band. I can say that.
 周波数帯域幅の観点からも、5Gシステムは、inter-SCS干渉の影響が生じやすいと言える。例えば、5Gシステムで使用される周波数帯域幅の最大値は、400MHzとされている(TR 38.802 section 5.3 )。そのため、無線リソースの周波数方向の位置に応じて伝搬路環境等は大きく変動し得る。別言すると、複数の異なるサブキャリア間隔(SCS)の無線リソース間で周波数軸方向において重複する部分を有さなくとも、無線リソースの周波数軸方向の位置に応じてinter-SCS干渉の影響が生じ得ると言える。 From the viewpoint of frequency bandwidth, it can be said that the 5G system is likely to be affected by inter-SCS interference. For example, the maximum value of the frequency bandwidth used in the 5G system is 400 MHz (TR (38.802 section 5.3). For this reason, the propagation path environment and the like can vary greatly depending on the position of the radio resource in the frequency direction. In other words, even if there are no overlapping portions in the frequency axis direction between a plurality of radio resources having different subcarrier intervals (SCS), the influence of inter-SCS interference occurs depending on the position of the radio resource in the frequency axis direction. I can say that I get.
 しかし、5Gシステムの標準化に関する議論では、無線フレーム構造を柔軟に変更し得る設計方針が採られたものの、上述のinter-SCS干渉の影響を抑制する具体的な方策は何も決められていない。その結果、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合、inter-SCS干渉の影響を受けることで、無線サービスの通信品質が劣化し、データの再送信による伝送遅延が生じ得る。 However, in the discussion on the standardization of the 5G system, a design policy capable of flexibly changing the radio frame structure has been adopted, but no specific measure for suppressing the influence of the above-described inter-SCS interference has been determined. As a result, when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, the communication quality of the radio service deteriorates due to the influence of inter-SCS interference, and the data Transmission delay due to retransmission may occur.
 本発明の発明者らは、この様な技術的制約は、超高速大容量のデータ伝送サービスであるeMBB(enhanced Mobile Broadband)や、超高信頼低遅延通信であるURLLC(Ultra-Reliable and Low Latency Communications)や、超大量接続の無線サービスであるmMTC(massive Machine Type Communications)などの多様な無線サービスを実現する上で障害となり得る、という独自の知見を得るに至った。なお、本開示における5Gシステムは、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造をサポートする移動通信システム(次世代無線通信システムとも称され得る)の一例である。従来の移動通信システム(例えば4Gシステム)においても、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造をサポートするように拡張された場合、上述のinter-SCS干渉の問題が生じ得ることに留意されたい。 The inventors of the present invention have such technical restrictions as eMBB (enhanced Mobile Broadband) that is an ultra-high-speed and large-capacity data transmission service, and URLLC (Ultra-Reliable and low Low Latency) that is ultra-reliable and low-delay communication. Communication) and mMTC (massive Machine Type Communications), which is a wireless service with very large number of connections, has acquired unique knowledge that it can be an obstacle to realizing various wireless services. Note that the 5G system in the present disclosure is an example of a mobile communication system (also referred to as a next-generation radio communication system) that supports a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS). . In a conventional mobile communication system (for example, 4G system), when extended to support a radio frame structure including radio resources defined by a plurality of different subcarrier spacings (SCS), the above-described inter-SCS interference may occur. Note that problems can arise.
 以下、図面を参照して本発明を実施するための形態(以下、実施形態、実施例とも称する)について説明する。以下に示す実施形態の構成は、本発明の技術思想を具体化するための一例を示したものであり、本発明をこの実施形態の構成に限定することを意図するものではなく、特許請求の範囲に含まれるその他の実施形態にも等しく適用し得るものである。例えば、PDCSH(Physical Downlink Shared Channel)、PBCH(Physical Broadcast Channel)、PUSCH(Physical Uplink Shared Channel)などの各種信号の名称については、今後の5Gシステムの仕様策定において、名称が変更され得ることも考えられる。本開示は、本発明の構成要素をこれらの名称を用いたものに限定する意図ではないことに留意されたい。 Hereinafter, modes for carrying out the present invention (hereinafter also referred to as embodiments and examples) will be described with reference to the drawings. The configuration of the embodiment described below is an example for embodying the technical idea of the present invention, and is not intended to limit the present invention to the configuration of this embodiment. The present invention can be equally applied to other embodiments included in the scope. For example, the names of various signals such as PDCSH (Physical Downlink Shared Channel), PBCH (Physical Downlink Shared Channel), and PUSCH (Physical Uplink Shared Channel) may be changed in future 5G system specifications. It is done. It should be noted that this disclosure is not intended to limit the components of the invention to those using these names.
 また、以下に示す各実施例は、適宜組み合わせて実施してもよいことはいうまでもない。ここで、非特許文献1ないし非特許文献38の全ての内容は、参照することによりここに援用される。 Needless to say, the following embodiments may be implemented in combination as appropriate. Here, the entire contents of Non-Patent Document 1 to Non-Patent Document 38 are incorporated herein by reference.
 <実施例1> 実施例1に係る無線通信システム1では、複数の異なるサブキャリア間隔(SCS)により規定された複数の無線リソースを含む無線フレーム構造を使用する場合に、第一サブキャリア間隔の副搬送波を有する第一無線リソースとは周波数軸方向において異なる第二無線リソースであって、第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有する第二無線リソースについて、第二サブキャリア間隔の副搬送波の一部に対する送信データの未割当てを示す設定情報が、送信装置と受信装置とで共有される。そして、共有された設定情報に従って、第二無線リソースに対する送信データの割当てが行われて、送信装置から受信装置に無線送信される。これにより複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合でも、inter-SCS干渉を抑制することができ、送信装置は受信装置と適切に無線通信を行うことができる。 <Example 1> In the wireless communication system 1 according to Example 1, when using a radio frame structure including a plurality of radio resources defined by a plurality of different subcarrier intervals (SCS), the first subcarrier interval The first radio resource having a subcarrier is a second radio resource that is different in the frequency axis direction, and the second radio resource having a subcarrier having a second subcarrier interval different from the first subcarrier interval is Setting information indicating that transmission data is not allocated to a part of subcarriers with a carrier interval is shared between the transmission device and the reception device. Then, according to the shared setting information, transmission data is allocated to the second radio resource, and is wirelessly transmitted from the transmission device to the reception device. As a result, even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, inter-SCS interference can be suppressed, and the transmission apparatus can appropriately perform radio communication with the reception apparatus. It can be carried out.
 図1は、実施例1に係る無線通信システムにおける複数の異なるサブキャリア間隔(SCS)の運用形態の一例を示す図である。図1の例では、複数の異なるサブキャリア間隔(SCS)(複数の異なるNumerologyとも称され得る)として、第一サブキャリア間隔(SCS#1)の副搬送波を有する無線リソース(第一無線リソース、第一BWP(BandWidth Part)とも称され得る)と、第二サブキャリア間隔の副搬送波(サブキャリアとも称され得る)を有する無線リソース(第二無線リソース、第二BWPとも称され得る)とが、周波数軸上に配置されている。図1に例示される第一無線リソースと第二無線リソースとは、周波数軸上で近接して配置される無線リソースの一例である。なお、本開示における複数の異なるサブキャリア間隔(SCS)は2個のSCSに限定されるものではない。例えば、第一サブキャリア間隔及び第二サブキャリア間隔とは異なる第三サブキャリア間隔の副搬送波を有する無線リソース(第三無線リソースとも称され得る)が配置されてもよい。 FIG. 1 is a diagram illustrating an example of an operation mode of a plurality of different subcarrier intervals (SCS) in the wireless communication system according to the first embodiment. In the example of FIG. 1, as a plurality of different subcarrier intervals (SCS) (which may also be referred to as a plurality of different numbers), radio resources (first radio resources, first subcarrier intervals (SCS # 1)) having subcarriers A first BWP (which may also be referred to as BandWidth Part)) and a radio resource (which may also be referred to as a second radio resource, a second BWP) having subcarriers (which may also be referred to as subcarriers) having a second subcarrier interval. Is arranged on the frequency axis. The first radio resource and the second radio resource exemplified in FIG. 1 are examples of radio resources arranged close to each other on the frequency axis. Note that the plurality of different subcarrier intervals (SCS) in the present disclosure is not limited to two SCSs. For example, radio resources (also referred to as third radio resources) having subcarriers with a third subcarrier interval different from the first subcarrier interval and the second subcarrier interval may be arranged.
 図1の第一無線リソースでは、n個のサブキャリアの各々が、第一サブキャリア間隔(A21)で周波数軸上に並ぶ。図1の第二無線リソースでは、m個のサブキャリアの各々が、第二サブキャリア間隔(A22)で周波数軸上に並ぶ。第一無線リソースのサブキャリアの個数n、第二無線リソースのサブキャリアの個数mは、各々の無線リソースに割当てられるチャネル帯域幅に応じて決定され得る。5Gシステムの標準化に関する議論では、最大400MHzの帯域幅の割当てを可能とすることが検討されている。なお、図1の例は、サブキャリアの配置を概略的に示したものであり、各サブキャリアの周波数軸上での電力分布とは異なり得る。例えば、各サブキャリアは、周波数分割多重化方式で配置されてもよいし、直交周波数分割多重方式で配置されてもよい。 In the first radio resource of FIG. 1, each of the n subcarriers is arranged on the frequency axis at the first subcarrier interval (A21). In the second radio resource of FIG. 1, each of the m subcarriers is arranged on the frequency axis at the second subcarrier interval (A22). The number n of subcarriers of the first radio resource and the number m of subcarriers of the second radio resource can be determined according to the channel bandwidth allocated to each radio resource. In the discussion on the standardization of 5G systems, it is considered that a bandwidth of a maximum of 400 MHz can be allocated. Note that the example of FIG. 1 schematically shows the arrangement of subcarriers, and may be different from the power distribution on the frequency axis of each subcarrier. For example, each subcarrier may be arranged by a frequency division multiplexing method or may be arranged by an orthogonal frequency division multiplexing method.
 図1の例では、第一サブキャリア間隔(A21)よりも、第二サブキャリア間隔(A22)の方が大きい。ここで、サブキャリア間隔は、隣接する2個のサブキャリアの中心周波数の間隔に相当し得る。5Gシステムの標準化に関する議論では、サブキャリア間隔として、15kHz、30kHz、60kHz、120kHz、240kHz、15×2μkHz(μは0を含む正の整数)などが選択肢として検討されている。 In the example of FIG. 1, the second subcarrier interval (A22) is larger than the first subcarrier interval (A21). Here, the subcarrier interval may correspond to the center frequency interval between two adjacent subcarriers. In the discussion on standardization of the 5G system, 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 15 × 2 μ kHz (μ is a positive integer including 0), and the like are considered as subcarrier intervals.
 図1の例では、第一無線リソースと第二無線リソースとの間に、ガードバンド(サブガードバンドまたはサブガードインターバルとも称され得る)(A23)が配置されている。別言すると、図1に例示される第一無線リソースは、サブガードバンド(A23)を介して、第二無線リソースに近接して配置される。ある側面では、第一無線リソースと第二無線リソースとは、サブガードバンド(A23)を介して隣接する関係にあると言い得る。上述のとおり、5Gシステムの標準化に関する議論では、周波数の利用効率を向上させるため、サブガードバンド(A23)の狭小化が行われる。例えば、サブガードバンド(A23)の配置を省略しても良い。 In the example of FIG. 1, a guard band (which may also be referred to as a sub guard band or a sub guard interval) (A23) is arranged between the first radio resource and the second radio resource. In other words, the first radio resource illustrated in FIG. 1 is arranged close to the second radio resource via the subguard band (A23). In one aspect, it can be said that the first radio resource and the second radio resource are adjacent to each other via the subguard band (A23). As described above, in the discussion on the standardization of the 5G system, the subguard band (A23) is narrowed in order to improve the frequency utilization efficiency. For example, the arrangement of the sub guard band (A23) may be omitted.
 図2は、実施例1に係る無線通信システムにおける無線フレームの構造の一例を示す図である。図2の例では、1無線フレームは10ms(ミリ秒)の時間長を有し、10個のサブフレームで構成される。 FIG. 2 is a diagram illustrating an example of a radio frame structure in the radio communication system according to the first embodiment. In the example of FIG. 2, one radio frame has a time length of 10 ms (milliseconds) and includes 10 subframes.
 1サブフレームは、1msの時間長を有し、サブキャリア時間間隔(SCS)(Numerologyとも称され得る)などに応じて内部構造が異なる。例えば、5Gシステムの標準化に関する議論では、SCSが15kHzの1サブフレームは1スロット(1個のスロット)で構成され、SCSが30kHzの1サブフレームは2スロット(2個のスロット)で構成され、SCSが60kHzの1サブフレームは4スロット(4個のスロット)で構成され、SCSが120kHzの1サブフレームは16スロット(16個のスロット)で構成され、SCSが240kHzの1サブフレームは32スロット(32個のスロット)で構成されることが検討されている。 1 subframe has a time length of 1 ms, and the internal structure differs depending on the subcarrier time interval (SCS) (which may also be referred to as “Numerology”). For example, in the discussion on standardization of a 5G system, one subframe with an SCS of 15 kHz consists of one slot (one slot), and one subframe with an SCS of 30 kHz consists of two slots (two slots), One subframe with an SCS of 60 kHz consists of 4 slots (4 slots), one subframe with an SCS of 120 kHz consists of 16 slots (16 slots), and one subframe with an SCS of 240 kHz has 32 slots It is considered to be composed of (32 slots).
 図2の例では、第一サブキャリア間隔(SCS#1)のサブフレームは、1個のスロットで構成されている。別言すると、上述の5Gシステムの標準化に関する議論の動向によれば、図2の第一サブキャリア間隔(SCS#1)は、例えば15kHzである。また、図2の例では、第二サブキャリア間隔(SCS#2)のサブフレームは、2個のスロットで構成されている。別言すると、上述の5Gシステムの標準化に関する議論の動向によれば、図2の第二サブキャリア間隔(SCS#2)は、例えば30kHzである。 In the example of FIG. 2, the subframe having the first subcarrier interval (SCS # 1) is configured by one slot. In other words, according to the trend of the discussion regarding the standardization of the 5G system described above, the first subcarrier interval (SCS # 1) in FIG. 2 is, for example, 15 kHz. In the example of FIG. 2, the subframe having the second subcarrier interval (SCS # 2) is composed of two slots. In other words, according to the trend of the discussion regarding the standardization of the 5G system described above, the second subcarrier interval (SCS # 2) in FIG. 2 is, for example, 30 kHz.
 図2に例示されるように、無線リソースのサブキャリア間隔(SCS,Numerologyとも称され得る)に応じて、1スロットが有する時間長は異なり得る。例えば、図2の第一サブキャリア間隔(SCS#1)が15kHzであり、第二サブキャリア間隔(SCS#2)が30kHzであるとすると、第一サブキャリア間隔のスロットは1msであり、第二サブキャリア間隔のスロットは0.5msである。別言すると、1サブフレームに含まれるスロットの個数が増えるほど、1スロットの時間長は短い。 As illustrated in FIG. 2, the time length of one slot may be different depending on the subcarrier interval (which may also be referred to as SCS or Numerology) of radio resources. For example, if the first subcarrier interval (SCS # 1) in FIG. 2 is 15 kHz and the second subcarrier interval (SCS # 2) is 30 kHz, the slot of the first subcarrier interval is 1 ms, A slot with two subcarrier intervals is 0.5 ms. In other words, the time length of one slot is shorter as the number of slots included in one subframe increases.
 図2に例示される無線フレーム構造では、いずれのサブキャリア間隔(SCS)でも、1個のスロットは14シンボル(14個のシンボル)で構成される。別言すると、サブキャリア間隔に応じて1シンボルの時間長は異なり得る。 In the radio frame structure illustrated in FIG. 2, one slot is composed of 14 symbols (14 symbols) at any subcarrier interval (SCS). In other words, the time length of one symbol may vary depending on the subcarrier interval.
 図3は、実施例1に係る無線通信システムにおけるサブフレームの周波数時間空間構造の一例を示す図である。図3の例では、時間軸方向と周波数軸方向との両軸により区画された複数の無線リソース(リソースエレメント、RE(Resource Element)とも称され得る)が示される。別言すると、図3に例示される格子状の周波数時間空間構造における1マス(1個のマス)は、1リソースエレメント(1個のリソースエレメント)に相当し得る。1リソースエレメントは、時間軸方向における1シンボルに相当し得る。また、1リソースエレメントは、周波数軸方向における1サブキャリア(1個のサブキャリア)に相当し得る。なお、図3の例示において、周波数軸方向におけるマス目の数は概略的に示したものであり、無線通信システムにおいて使用される無線リソースの帯域幅に応じて変更され得る。また、図3の例示において、周波数軸方向におけるマス目の数は、5Gシステムの標準化に関する議論の動向に応じて変更され得る。 FIG. 3 is a diagram illustrating an example of a frequency-time-space structure of a subframe in the wireless communication system according to the first embodiment. In the example of FIG. 3, a plurality of radio resources (also referred to as resource elements, RE (Resource Element)) partitioned by both the time axis direction and the frequency axis direction are shown. In other words, one cell (one cell) in the lattice-like frequency space-time structure illustrated in FIG. 3 may correspond to one resource element (one resource element). One resource element may correspond to one symbol in the time axis direction. Further, one resource element can correspond to one subcarrier (one subcarrier) in the frequency axis direction. In the illustration of FIG. 3, the number of cells in the frequency axis direction is schematically shown, and can be changed according to the bandwidth of the radio resource used in the radio communication system. In the example of FIG. 3, the number of squares in the frequency axis direction can be changed according to the trend of the discussion regarding standardization of the 5G system.
 図3の例では、第一サブキャリア間隔(SCS#1)は15kHzであり、第二サブキャリア間隔(SCS#2)の30kHzよりも狭い。そのため、周波数軸方向において、第一サブキャリア間隔(SCS#1)のマス目は、第二サブキャリア間隔(SCS#2)のマス目よりも狭い。 In the example of FIG. 3, the first subcarrier interval (SCS # 1) is 15 kHz, which is narrower than the second subcarrier interval (SCS # 2) of 30 kHz. For this reason, in the frequency axis direction, the cells of the first subcarrier interval (SCS # 1) are narrower than the cells of the second subcarrier interval (SCS # 2).
 図3の例では、第一サブキャリア間隔(SCS#1)のサブフレームは1個のスロット(B10)を有し、第二サブキャリア間隔(SCS#2)のサブフレームは2個のスロット(B20、B21)を有する。そのため、時間軸方向において、第一サブキャリア間隔(SCS#1)のマス目は、第二サブキャリア間隔(SCS#2)のマス目よりも長い。 In the example of FIG. 3, the subframe with the first subcarrier interval (SCS # 1) has one slot (B10), and the subframe with the second subcarrier interval (SCS # 2) has two slots ( B20, B21). Therefore, in the time axis direction, the grid of the first subcarrier interval (SCS # 1) is longer than the grid of the second subcarrier interval (SCS # 2).
 図4は、実施例1に係る無線通信システムにおけるサブフレームの周波数時間空間構造において生じ得るinter-SCS干渉の一例を示す図である。図4の例では、第一サブキャリア間隔(SCS#1)の無線リソース(B10)の一部の領域(B101)において、第二サブキャリア間隔(SCS#2)の無線リソースからのinter-SCS干渉による影響が生じている様子の一例が示される。また、図4の例では、第二サブキャリア間隔(SCS#2)の無線リソース(B20、B21)の一部の領域(B201、B211)において、第一サブキャリア間隔(SCS#1)の無線リソースからのinter-SCS干渉による影響が生じている様子の一例が示される。なお、図4の例示において、inter-SCS干渉による影響が生じる範囲は一例であって、伝搬路環境等の変動に応じて変わり得る。 FIG. 4 is a diagram illustrating an example of inter-SCS interference that may occur in the frequency space-time structure of subframes in the wireless communication system according to the first embodiment. In the example of FIG. 4, in a partial region (B101) of the radio resource (B10) with the first subcarrier interval (SCS # 1), the inter-SCS from the radio resource with the second subcarrier interval (SCS # 2). An example of how the influence of interference occurs is shown. Further, in the example of FIG. 4, in the partial area (B201, B211) of the radio resource (B20, B21) of the second subcarrier interval (SCS # 2), the radio of the first subcarrier interval (SCS # 1) is performed. An example of how the influence of inter-SCS interference from resources occurs is shown. In the illustration of FIG. 4, the range in which the influence due to the inter-SCS interference occurs is an example, and may change according to the fluctuation of the propagation path environment and the like.
 図5は、実施例1に係る無線通信システムにおけるサブフレームの周波数時間空間構造において無線リソースの一部に配置された緩衝領域の一例を示す図である。図5の例では、第二サブキャリア間隔(SCS#2)の無線リソース(B20、B21)の一部の領域(B201、B211)が、設定情報に従って緩衝領域として設定される。 FIG. 5 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency space-time structure of the subframe in the radio communication system according to the first embodiment. In the example of FIG. 5, some areas (B201, B211) of the radio resources (B20, B21) of the second subcarrier interval (SCS # 2) are set as buffer areas according to the setting information.
 緩衝領域(B201、B211)は、無線リソースの一部の領域であるが、送信データの割当てが行われない。別言すると、無線通信システムの受信装置は、送信装置と共有された設定情報に従って設定された緩衝領域(B201、B211)に相当する無線リソースを、デコードの対象から除外し得る。なお、緩衝領域(B201、B211)は、データ未割当て領域、未割当て領域、データ未割当て無線リソース、未割当て無線リソースなどと称されてもよい。また、緩衝領域(B201、B211)は、送信装置と共有された設定情報に従って拡張されたサブガードバンドとしての側面を有し得る。別言すると、緩衝領域(B201、B211)は、ガード領域、ガードバンド領域、サブガードバンド領域、拡張ガードバンド領域、拡張サブガードバンド領域などと称されてもよい。 The buffer area (B201, B211) is a part of the radio resource, but transmission data is not allocated. In other words, the reception device of the wireless communication system can exclude the radio resource corresponding to the buffer area (B201, B211) set according to the setting information shared with the transmission device from the decoding target. The buffer area (B201, B211) may be referred to as a data unallocated area, an unallocated area, a data unallocated radio resource, an unallocated radio resource, or the like. Further, the buffer area (B201, B211) may have a side surface as a sub guard band extended according to the setting information shared with the transmission apparatus. In other words, the buffer areas (B201, B211) may be referred to as a guard area, a guard band area, a sub guard band area, an extended guard band area, an extended sub guard band area, or the like.
 図5の例示では、第二サブキャリア間隔(SCS#2)の無線リソース(B20、B21)の一部の領域に配置された緩衝領域(B201、B211)により、第二サブキャリア間隔(SCS#2)の無線リソース(B20、B21)から第一サブキャリア間隔(SCS#1)の無線リソース(B10)へのinter-SCS干渉の影響を抑制することができる。別言すると、第二無線リソース(B20、B21)の緩衝領域(B201、B211)に対して送信データが割当てられないことで、緩衝領域(B201、B211)に相当するサブキャリアの信号電力を低減させることができ、周波数軸上で第二無線リソースに近接する第一無線リソースへのinter-SCS干渉の影響を抑制することが期待できる。また、緩衝領域(B201、B211)により、第一無線リソースから第二無線リソースへのinter-SCS干渉の影響を抑制することも期待できる。 In the example of FIG. 5, the second subcarrier interval (SCS # 2) is caused by the buffer regions (B201, B211) arranged in a part of the radio resources (B20, B21) of the second subcarrier interval (SCS # 2). 2) The influence of inter-SCS interference from the radio resource (B20, B21) to the radio resource (B10) in the first subcarrier interval (SCS # 1) can be suppressed. In other words, the transmission power is not allocated to the buffer area (B201, B211) of the second radio resource (B20, B21), thereby reducing the signal power of the subcarrier corresponding to the buffer area (B201, B211). It can be expected that the influence of inter-SCS interference on the first radio resource adjacent to the second radio resource on the frequency axis is suppressed. It can also be expected that the buffer area (B201, B211) suppresses the influence of inter-SCS interference from the first radio resource to the second radio resource.
 この様な緩衝領域(B201、B211)の範囲は、送信装置及び受信装置の設計時に予め決定しておいてもよい。あるいは、周波数の利用効率を向上させる観点からは、無線通信システムの運用時に、送信装置と受信装置との間で動的に共有される設定情報により、緩衝領域(B201、B211)の範囲が設定されてもよい。上述した様に、inter-SCS干渉による影響が生じる範囲は、伝搬路環境等の変動に応じて変わり得る。そのため、周波数の利用効率の向上という配慮からは、無線通信システムの運用時の状況に適した緩衝領域(B201、B211)に関する設定情報を、送信装置と受信装置との間で動的に共有することが好ましいと言い得る。 The range of such buffer areas (B201, B211) may be determined in advance at the time of designing the transmission device and the reception device. Alternatively, from the viewpoint of improving frequency utilization efficiency, the range of the buffer area (B201, B211) is set by setting information that is dynamically shared between the transmission device and the reception device during operation of the wireless communication system. May be. As described above, the range in which the influence due to the inter-SCS interference occurs can vary depending on the fluctuation of the propagation path environment and the like. For this reason, in consideration of improving the frequency utilization efficiency, setting information related to the buffer area (B201, B211) suitable for the situation during operation of the wireless communication system is dynamically shared between the transmission device and the reception device. May be preferred.
 図6は、実施例1に係る無線通信システム1における無線端末10と無線基地局20との間で設定情報を共有するシーケンスの一例を示す図である。図6に例示される無線端末10と無線基地局20とは、それぞれ、受信装置と送信装置との両方の側面を有し得ることに留意されたい。例えば、無線端末10は、下りリンクにおける受信装置に相当し、上りリンクにおける送信装置に相当し得る。また、無線基地局20は、下りリンクにおける送信装置に相当し、上りリンクにおける受信装置に相当し得る。無線端末10と無線基地局20は、例えば、5Gシステムの標準規格に準拠する通信装置であってもよい。 FIG. 6 is a diagram illustrating an example of a sequence for sharing setting information between the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 according to the first embodiment. It should be noted that the wireless terminal 10 and the wireless base station 20 illustrated in FIG. 6 may have both aspects of a receiving device and a transmitting device, respectively. For example, the radio terminal 10 corresponds to a receiving device in the downlink and can correspond to a transmitting device in the uplink. Further, the radio base station 20 corresponds to a transmission device in the downlink and can correspond to a reception device in the uplink. For example, the wireless terminal 10 and the wireless base station 20 may be communication devices that comply with the 5G system standard.
 図6に例示される設定情報の共有化シーケンスは、任意のタイミングで実行されてもよい。別言すると、設定情報の伝送に用いる無線リソースは、どの様な種類であってもよい。例えば、無線基地局20から所定の周期で繰り返し報知されるPBCH(Physical Broadcast CHannel)の無線リソースにより設定情報を送信する場合、図6に例示されるシーケンスを、PBCHがマッピングされる周期に連動して実行するようにしてもよい。この様な所定の周期で繰り返し報知されるPBCHにより送信される情報としては、例えば、MIB(Master Information Block)や、SIB1(System Information Block 1)などがあり、これらの報知情報に本開示の設定情報を格納してもよい。 The setting information sharing sequence illustrated in FIG. 6 may be executed at an arbitrary timing. In other words, the radio resource used for transmitting the setting information may be any type. For example, when setting information is transmitted by radio resources of PBCH (Physical Broadcast CHannel) repeatedly broadcast from the radio base station 20 at a predetermined cycle, the sequence illustrated in FIG. 6 is linked to the cycle in which the PBCH is mapped. May be executed. Information transmitted through the PBCH that is repeatedly broadcast at such a predetermined cycle includes, for example, MIB (Master Information Block) and SIB1 (System Information Block 1). Information may be stored.
 図6に例示されるように、設定情報の共有化シーケンスにおいて、無線基地局20は、任意の無線リソースにより、設定情報を送信する(S1)。これにより、無線端末10は、無線基地局20から送信された設定情報を受信することで、設定情報を無線基地局20と共有できる。なお、上りリンクの場合、無線基地局20は、受信装置としての側面を有するが、図6に例示されるように設定情報を送信してもよい。別言すると、上りリンクにおいて、無線端末10は、送信装置としての側面を有するが、図6に例示されるように設定情報を、無線基地局20から受信してもよい。 As illustrated in FIG. 6, in the setting information sharing sequence, the radio base station 20 transmits the setting information using an arbitrary radio resource (S1). Thereby, the wireless terminal 10 can share the setting information with the wireless base station 20 by receiving the setting information transmitted from the wireless base station 20. Note that, in the case of uplink, the radio base station 20 has a side as a receiving device, but may transmit setting information as illustrated in FIG. In other words, in the uplink, the radio terminal 10 has an aspect as a transmission device, but may receive setting information from the radio base station 20 as illustrated in FIG.
 上述のとおり、設定情報を送信するための無線リソースは、無線通信システム1における何れの無線リソースであってもよい。例えば、無線基地局20から送信されるRRC(RadioResourceControl)メッセージに、設定情報が格納されてもよい。この様なRRCメッセージとしては、例えば、RRCコネクション設定(RRCConnectionSetup)メッセージや、RRCコネクション再設定(RRCConnectionReconfiguration)メッセージなどがある。 As described above, the radio resource for transmitting the setting information may be any radio resource in the radio communication system 1. For example, the setting information may be stored in an RRC (Radio Resource Control) message transmitted from the radio base station 20. Examples of such RRC messages include an RRC connection setup (RRCConnectionSetup) message and an RRC connection reconfiguration (RRCConnectionReconfiguration) message.
 また、例えば、無線基地局20は、下りリンク制御情報(DCI(Downlink Control Information)とも称され得る)に、設定情報を格納して送信してもよい。この場合、設定情報が格納されたDCIは、PDCCH(Physical Downlink Control CHannel)にマッピングされてもよいし、EPDCCH(Enhanced PDCCH)にマッピングされてもよい。設定情報をDCIに格納して送信する方式は、第一無線リソースと第二無線リソースとの配置が動的に変更され得ることを無線通信システム1が許容する場合に好適である。例えば、無線端末10に対する送信データ(ユーザデータとも称され得る)用の第二無線リソースの割当てを通知する場合、第二無線リソースの割当てに関する情報を有するDCIにより、第二無線リソースにおける緩衝領域に関する設定情報を通知してもよい。ここで、緩衝領域が配置される第二無線リソースは、下りリンクの無線リソースであってもよいし、上りリンクの無線リソースであってもよい。別言すると、DCIは、下りリンク制御情報という名称がつけられているが、下りリンクのリソース割当ての通知だけでなく、上りリンクのリソース割当ての通知にも用いられ得る。 Also, for example, the radio base station 20 may store and transmit setting information in downlink control information (which may also be referred to as DCI (Downlink Control Information)). In this case, the DCI in which the setting information is stored may be mapped to PDCCH (Physical Downlink Control CHannel) or may be mapped to EPDCCH (Enhanced PDCCH). The method of storing the setting information in DCI and transmitting it is suitable when the radio communication system 1 allows the arrangement of the first radio resource and the second radio resource to be dynamically changed. For example, when notifying the allocation of the second radio resource for transmission data (which may also be referred to as user data) to the radio terminal 10, the DCI having information related to the allocation of the second radio resource relates to the buffer area in the second radio resource. The setting information may be notified. Here, the second radio resource in which the buffer area is arranged may be a downlink radio resource or an uplink radio resource. In other words, although DCI is named as downlink control information, it can be used not only for notification of downlink resource allocation but also for notification of uplink resource allocation.
 図7は、実施例1に係る無線通信システム1における無線端末10と無線基地局20との間で共有される設定情報の構成の一例を概略的に示す図である。図7に例示される設定情報(T10)は、緩衝領域に関する情報を示す緩衝領域情報(T11)を含む。緩衝領域情報(T11)は、例えば、データ未割当て領域情報、未割当て領域情報、データ未割当て無線リソース情報、未割当て無線リソース情報、ガード領域情報、ガードバンド領域情報、サブガードバンド領域情報、拡張ガードバンド領域情報、拡張サブガードバンド領域情報などと称されてもよい。 FIG. 7 is a diagram schematically illustrating an example of a configuration of setting information shared between the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 according to the first embodiment. The setting information (T10) illustrated in FIG. 7 includes buffer area information (T11) indicating information related to the buffer area. The buffer area information (T11) includes, for example, data unallocated area information, unallocated area information, data unallocated radio resource information, unallocated radio resource information, guard area information, guard band area information, sub-guard band area information, extension It may be referred to as guard band region information, extended sub guard band region information, or the like.
 図7に例示される緩衝領域情報(T11)は、緩衝領域として設定される無線リソースを示す情報を含み得る。緩衝領域情報(T11)は、緩衝領域として設定される無線リソースを周波数軸上で特定する情報(周波数情報とも称され得る)や、当該無線リソースを時間軸上で特定する情報(時間情報とも称され得る)や、周波数情報と時間情報との組合せを含んでもよい。 The buffer area information (T11) illustrated in FIG. 7 may include information indicating a radio resource set as the buffer area. The buffer area information (T11) is information for specifying a radio resource set as a buffer area on the frequency axis (also referred to as frequency information), and information for specifying the radio resource on the time axis (also referred to as time information). Or a combination of frequency information and time information.
 周波数情報は、例えば、緩衝領域として設定される無線リソースの周波数軸上での位置を示す情報(周波数位置情報、周波数オフセット情報などと称され得る)や、当該無線リソースの周波数軸上での幅を示す情報(周波数帯域幅情報、帯域幅情報などと称され得る)や、これらの情報の組合せであってもよい。 The frequency information includes, for example, information indicating the position on the frequency axis of a radio resource set as a buffer area (may be referred to as frequency position information, frequency offset information, etc.), and the width of the radio resource on the frequency axis. Information (which may be referred to as frequency bandwidth information, bandwidth information, etc.) or a combination of these information.
 時間情報は、例えば、緩衝領域として設定される無線リソースの時間軸上での位置を示す情報(時間位置情報、時間オフセット情報などと称され得る)や、当該無線リソースの時間軸上での幅を示す情報(時間幅情報、継続時間長情報などと称され得る)や、これらの情報の組合せであってもよい。 The time information includes, for example, information indicating the position on the time axis of the radio resource set as the buffer area (may be referred to as time position information, time offset information, etc.), and the width of the radio resource on the time axis. May be information (which may be referred to as time width information, duration information, etc.) or a combination of these information.
 図8は、実施例1に係る無線通信システムの送信装置における処理の流れの一例を示す図である。図8に例示される処理の流れは、無線通信システムの運用時の何れのタイミングで実行されてもよい。 FIG. 8 is a diagram illustrating an example of a process flow in the transmission device of the wireless communication system according to the first embodiment. The process flow illustrated in FIG. 8 may be executed at any timing during operation of the wireless communication system.
 例えば、送信装置は、無線フレーム構造において、第一サブキャリア間隔の第一無線リソースとは周波数軸方向において異なる領域に配置される第二無線リソースが、第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有するかを判定する(S101)。S101において、送信装置は、第二無線リソースが有する副搬送波のサブキャリア間隔が、第一無線リソースの第一サブキャリア間隔と同じである場合、第二無線リソースが第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有しないと判定してもよい(S101でNO)。なお、S101の判定処理は、送信装置の起動後に少なくとも一回実行されればよい。別言すると、送信装置は、S101の判定処理を一回実行した後、無線フレーム構造が変更されるまでの期間、S101の判定処理を実行してもよいし、S101の判定処理を実行しなくてもよい。なお、送信装置が、上りリンクの無線端末10である場合、S101の判定処理を省略してもよい。別言すると、上りリンクの送信装置は、S101の判定処理を省略してもよい。 For example, in the radio frame structure, the transmission device may have a second radio resource arranged in a region different from the first radio resource at the first subcarrier interval in the frequency axis direction, and the second sub resource different from the first subcarrier interval. It is determined whether there are subcarriers with a carrier interval (S101). In S101, when the subcarrier interval of the subcarriers included in the second radio resource is the same as the first subcarrier interval of the first radio resource, the transmitting apparatus differs from the first subcarrier interval in the second radio resource. It may be determined that there are no subcarriers at the second subcarrier interval (NO in S101). Note that the determination process of S101 may be executed at least once after the transmission apparatus is activated. In other words, the transmitting apparatus may execute the determination process of S101 after executing the determination process of S101 once, and until the radio frame structure is changed, or may not execute the determination process of S101. May be. When the transmitting apparatus is the uplink radio terminal 10, the determination process in S101 may be omitted. In other words, the uplink transmission apparatus may omit the determination process of S101.
 S101において、第二無線リソースが第一無線リソースの第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有すると判定した場合(S101でYES)、送信装置は、第二無線リソースの一部の領域に配置される緩衝領域に関する設定情報を受信装置と共有する(S102)。S102において、例えば下りリンクの場合、送信装置としての側面を有する無線基地局20は、緩衝領域に関する設定情報を送信してもよい。また、S102において、例えば上りリンクの場合、送信装置としての側面を有する無線端末10は、緩衝領域に関する設定情報を、受信装置としての側面を有する無線基地局20から受信してもよい。 In S101, when it is determined that the second radio resource has subcarriers with a second subcarrier interval different from the first subcarrier interval of the first radio resource (YES in S101), the transmission device The setting information regarding the buffer area arranged in a part of the area is shared with the receiving apparatus (S102). In S102, for example, in the case of downlink, the radio base station 20 having an aspect as a transmission device may transmit setting information regarding the buffer area. In S102, for example, in the case of uplink, the radio terminal 10 having the aspect as the transmission apparatus may receive the setting information related to the buffer area from the radio base station 20 having the aspect as the reception apparatus.
 送信装置は、受信装置と共有した設定情報に従って、第二無線リソースの一部の領域に緩衝領域を設定し、送信データを送信する(S103)。S103において、送信装置は、例えば、緩衝領域に相当する無線リソースを避けて、送信データを無線リソースにマッピングしてもよい。あるいは、S103において、送信装置は、例えば、送信データがマッピングされた第二無線リソースのうち、緩衝領域に相当する無線リソースの送信電力を例えば略ゼロ値に低減してもよい。別言すると、S103において、送信装置は、緩衝領域に相当する無線リソースにマッピングされる送信データを間引く処理(パンクチャリング、レートマッチングとも称され得る)を行ってもよい。 The transmitting apparatus sets a buffer area in a partial area of the second radio resource according to the setting information shared with the receiving apparatus, and transmits transmission data (S103). In S103, for example, the transmission apparatus may map the transmission data to the radio resource while avoiding the radio resource corresponding to the buffer area. Alternatively, in S103, for example, the transmission device may reduce the transmission power of the radio resource corresponding to the buffer area, for example, to a substantially zero value among the second radio resources to which the transmission data is mapped. In other words, in S103, the transmission apparatus may perform processing (which may also be referred to as puncturing or rate matching) for thinning out transmission data mapped to the radio resource corresponding to the buffer area.
 一方、S101において、第二無線リソースが第一無線リソースの第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有しないと判定した場合(S101でNO)、送信装置は、第二無線リソースに緩衝領域を配置せずに、送信データを送信してもよい(S104)。 On the other hand, if it is determined in S101 that the second radio resource does not have a subcarrier having a second subcarrier interval different from the first subcarrier interval of the first radio resource (NO in S101), the transmission device Transmission data may be transmitted without arranging a buffer area in the radio resource (S104).
 以上が、実施例1に係る無線通信システムの送信装置における処理の流れの一例である。 The above is an example of the processing flow in the transmission apparatus of the wireless communication system according to the first embodiment.
 図9は、実施例1に係る無線通信システムの受信装置における処理の流れの一例を示す図である。図9に例示される処理の流れは、無線通信システムの運用時の何れのタイミングで実行されてもよい。 FIG. 9 is a diagram illustrating an example of a process flow in the reception device of the wireless communication system according to the first embodiment. The process flow illustrated in FIG. 9 may be executed at any timing during operation of the wireless communication system.
 例えば、受信装置は、無線フレーム構造において、第一サブキャリア間隔の第一無線リソースとは周波数軸方向において異なる領域に配置される第二無線リソースが、第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有するかを判定する(S201)。S201において、受信装置は、第二無線リソースが有する副搬送波のサブキャリア間隔が、第一無線リソースの第一サブキャリア間隔と同じである場合、第二無線リソースが第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有しないと判定してもよい(S201でNO)。なお、S201の判定処理は、受信装置の起動後に一回実行されるだけでもよい。別言すると、受信装置は、S201の判定処理を一回実行した後、無線フレーム構造が変更されるまでの期間、S201の判定処理を実行してもよいし、S201の判定処理を実行しなくてもよい。なお、受信装置が、下りリンクの無線端末10である場合、S201の判定処理を省略してもよい。別言すると、下りリンクの受信装置は、S201の判定処理を省略してもよい。 For example, in the radio frame structure, the receiving apparatus has a second radio resource arranged in a region different in the frequency axis direction from the first radio resource at the first subcarrier interval, and the second sub resource different from the first subcarrier interval. It is determined whether there are subcarriers with a carrier interval (S201). In S201, the receiving apparatus determines that the second radio resource is different from the first subcarrier interval when the subcarrier interval of the subcarriers included in the second radio resource is the same as the first subcarrier interval of the first radio resource. It may be determined that there are no subcarriers at the second subcarrier interval (NO in S201). Note that the determination processing in S201 may be executed only once after the reception apparatus is activated. In other words, the receiving apparatus may execute the determination process of S201 after executing the determination process of S201 once, and until the radio frame structure is changed, or may not execute the determination process of S201. May be. When the receiving device is the downlink radio terminal 10, the determination process in S201 may be omitted. In other words, the downlink receiving apparatus may omit the determination process of S201.
 S201において、第二無線リソースが第一無線リソースの第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有すると判定した場合(S201でYES)、受信装置は、第二無線リソースの一部の領域に配置される緩衝領域に関する設定情報を送信装置と共有する(S202)。S202において、例えば下りリンクの場合、受信装置としての側面を有する無線端末10は、緩衝領域に関する設定情報を、送信装置としての側面を有する無線基地局20から受信してもよい。また、S202において、例えば上りリンクの場合、受信装置としての側面を有する無線基地局20は、緩衝領域に関する設定情報を送信してもよい。 In S201, when it is determined that the second radio resource has subcarriers with a second subcarrier interval different from the first subcarrier interval of the first radio resource (YES in S201), the receiving device The setting information regarding the buffer area arranged in a part of the area is shared with the transmission apparatus (S202). In S202, for example, in the case of downlink, the radio terminal 10 having the aspect as the reception apparatus may receive the setting information regarding the buffer area from the radio base station 20 having the aspect as the transmission apparatus. In S202, for example, in the case of uplink, the radio base station 20 having a side as a receiving apparatus may transmit setting information regarding the buffer area.
 受信装置は、送信装置と共有した設定情報に従って、第二無線リソース内の緩衝領域に相当する無線リソースをデコード対象から除外して、送信装置からの送信データを受信する(S203)。S203において、受信装置は、緩衝領域に相当する無線リソースから抽出された送信データ(受信データとも称され得る)を間引く処理(パンクチャリング、デ・レートマッチングとも称され得る)を行ってもよい。 The receiving device receives the transmission data from the transmitting device by excluding the radio resource corresponding to the buffer area in the second radio resource from the decoding target according to the setting information shared with the transmitting device (S203). In S203, the reception apparatus may perform processing (also referred to as puncturing or de-rate matching) of thinning out transmission data (which may also be referred to as reception data) extracted from radio resources corresponding to the buffer area.
 一方、S201において、第二無線リソースが第一無線リソースの第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有しないと判定した場合(S201でNO)、受信装置は、緩衝領域に関する処理を省略し、送信装置により第二無線リソースにマッピングされた送信データを受信してもよい(S204)。 On the other hand, if it is determined in S201 that the second radio resource does not have a subcarrier having a second subcarrier interval different from the first subcarrier interval of the first radio resource (NO in S201), the receiving device The transmission data mapped to the second radio resource may be received by the transmission device (S204).
 以上が、実施例1に係る無線通信システムの受信装置における処理の流れの一例である。 The above is an example of the processing flow in the receiving apparatus of the wireless communication system according to the first embodiment.
 以上に開示される実施例1の一側面によれば、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いる場合に、第一サブキャリア間隔の第一無線リソースとは異なる第二サブキャリア間隔の第二無線リソースにおいて、緩衝領域が配置される。第二無線リソースに緩衝領域を配置することで、第二無線リソースと第一無線リソースとの間でのinter-SCS干渉の影響を抑制することができる。その結果、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合でも、適切に無線通信を行うことができるようになる。このような作用は、5Gシステムにおいて、eMBB、URLLC、mMTCなどの多様な無線サービスを実現するうえで有用である。 According to one aspect of the first embodiment disclosed above, when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, the first radio resources at the first subcarrier interval are used. A buffer area is arranged in the second radio resource having a second subcarrier interval different from that of the first subcarrier. By arranging the buffer area in the second radio resource, it is possible to suppress the influence of inter-SCS interference between the second radio resource and the first radio resource. As a result, even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, radio communication can be performed appropriately. Such an operation is useful for realizing various wireless services such as eMBB, URLLC, and mMTC in the 5G system.
 以上に開示される実施例1の他の一側面によれば、無線通信システムの運用時に、送信装置と受信装置との間で動的に共有される設定情報により、緩衝領域の範囲が設定される。そのため、無線通信システムの運用時の状況に適した緩衝領域に関する設定情報に従って、緩衝領域の配置を動的に変更することができる。その結果、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合でも、より適切に無線通信を行うことができるようになる。このような作用は、5Gシステムにおいて、eMBB、URLLC、mMTCなどの多様な無線サービスを実現するうえで有用である。 According to another aspect of the first embodiment disclosed above, the range of the buffer area is set by setting information dynamically shared between the transmission device and the reception device during operation of the wireless communication system. The Therefore, the arrangement of the buffer areas can be dynamically changed according to the setting information related to the buffer areas suitable for the situation during operation of the wireless communication system. As a result, even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, radio communication can be performed more appropriately. Such an operation is useful for realizing various wireless services such as eMBB, URLLC, and mMTC in the 5G system.
<実施例2> 実施例2では、第一無線リソースと第二無線リソースとについて、より具体的な適用例が示される。実施例2の適用例では、第一無線リソースは、下りリンクの無線リソースの一種であるSS/PBCH(Synchronization Signal / Physical Broad CHannel)ブロックである。第二無線リソースは、下りリンクの無線リソースであって、SS/PBCHブロック以外の無線リソースであり、例えば、ユーザデータの送信に用いられ得るPDSCH(Physical Downlink Shared CHannel)であってもよい。なお、下りリンクの場合、受信装置は無線端末10に相当し、送信装置は無線基地局20に相当し得る。 <Example 2> In Example 2, a more specific application example is shown about a 1st radio | wireless resource and a 2nd radio | wireless resource. In the application example of the second embodiment, the first radio resource is an SS / PBCH (Synchronization Signal / Physical Broad CHannel) block which is a kind of downlink radio resource. The second radio resource is a downlink radio resource, and is a radio resource other than the SS / PBCH block, and may be, for example, a PDSCH (Physical Downlink Shared 得 る CHannel) that can be used for transmitting user data. In the case of downlink, the receiving device may correspond to the radio terminal 10 and the transmitting device may correspond to the radio base station 20.
 図10は、実施例2に係る第一無線リソースとしてのSS/PBCHブロックの構成の一例を示す図である。なお、図10では、横方向に時間軸が配置され、縦方向に周波数軸が配置される。 FIG. 10 is a diagram illustrating an example of the configuration of the SS / PBCH block as the first radio resource according to the second embodiment. In FIG. 10, the time axis is arranged in the horizontal direction, and the frequency axis is arranged in the vertical direction.
 図10に例示されるSS/PBCHブロック(B30)は4つのシンボル(OFDMシンボルとも称され得る)で構成され、各シンボルは240個のサブキャリアで構成される。別言すると、図10に例示されるSS/PBCHブロック(B30)は、960個(4×240=960)のリソースエレメント(REとも称され得る)を有する。 The SS / PBCH block (B30) illustrated in FIG. 10 is composed of four symbols (also referred to as OFDM symbols), and each symbol is composed of 240 subcarriers. In other words, the SS / PBCH block (B30) illustrated in FIG. 10 has 960 (4 × 240 = 960) resource elements (which may also be referred to as REs).
 また、SS/PBCHブロックは、PSS(Primary Synchronization Signal)、SSS(Secondary Synchronization Signal)、PBCH(Physical Broad CHannel)などの所定の位置の無線リソースに配置された信号を含む。例えば、PSS及びSSSは、同期信号という名称が付けられているように、受信装置と送信装置との間で同期を確保するために用いられ得る信号である。別言すると、SS/PBCHブロックは、受信装置と送信装置との間で同期を確立・維持するために用いられ得る信号である。そのため、SS/PBCHブロックの伝送品質の劣化は、受信装置と送信装置との間の同期の確立・維持に影響を与え得る。受信装置と送信装置との間の同期は、受信装置と送信装置との間で適切に無線通信を行うために重要である。別言すると、受信装置と送信装置との間の同期に失敗した場合、受信装置と送信装置との間で、適切に無線通信を行うことが困難になる。 Also, the SS / PBCH block includes a signal arranged in a radio resource at a predetermined position, such as PSS (Primary Synchronization Signal), SSS (Secondary Synchronization Signal), PBCH (Physical Broad Channel). For example, PSS and SSS are signals that can be used to ensure synchronization between the receiving device and the transmitting device, as the name synchronization signal is given. In other words, the SS / PBCH block is a signal that can be used to establish and maintain synchronization between the receiving device and the transmitting device. Therefore, the degradation of the transmission quality of the SS / PBCH block can affect the establishment / maintenance of synchronization between the receiving device and the transmitting device. Synchronization between the receiving device and the transmitting device is important for appropriately performing wireless communication between the receiving device and the transmitting device. In other words, when synchronization between the reception device and the transmission device fails, it is difficult to appropriately perform wireless communication between the reception device and the transmission device.
 受信装置と送信装置との間の同期の確保を重視する観点からは、下りリンクの第一無線リソース(SS/PBCHブロック)とは周波数軸上で異なる位置に配置される第二無線リソース内に緩衝領域を配置する方が、第一無線リソースに緩衝領域を配置するよりも、有利かもしれない。第二無線リソース内に配置された緩衝領域により、inter-SCS干渉によるSS/PBCHブロックの伝送品質の劣化を防止することが期待されるためである。この様なSS/PBCHブロックは、所定の周期で繰り返し送信され得る。 From the viewpoint of emphasizing ensuring synchronization between the receiving device and the transmitting device, the second radio resource arranged at a different position on the frequency axis from the downlink first radio resource (SS / PBCH block) It may be advantageous to arrange the buffer area over the buffer area in the first radio resource. This is because the buffer area arranged in the second radio resource is expected to prevent deterioration of the transmission quality of the SS / PBCH block due to inter-SCS interference. Such an SS / PBCH block can be repeatedly transmitted at a predetermined period.
 図11は、実施例2に係る無線通信システムの無線フレーム構造におけるSS/PBCHブロックの配置の一例を示す図である。図11の例では、図2の例と同様に、1無線フレームは10ms(ミリ秒)の時間長を有し、10個のサブフレームで構成される。このような無線フレーム構造において、SS/PBCHブロックは、例えば、1無線フレームにおける先頭の2個のサブフレーム(サブフレーム[0]、サブフレーム[1])に配置され得る。なお、SS/PBCHブロックが配置されるサブフレームの位置は、図11の例に限定されるものではなく、無線通信システムの運用形態に応じて変更され得る。SS/PBCHブロックの配置のバリエーションについては、例えば、TS38.213§4.1 Cell searchに詳しい。 FIG. 11 is a diagram illustrating an example of the arrangement of SS / PBCH blocks in the radio frame structure of the radio communication system according to the second embodiment. In the example of FIG. 11, similarly to the example of FIG. 2, one radio frame has a time length of 10 ms (milliseconds) and is configured by 10 subframes. In such a radio frame structure, the SS / PBCH block can be arranged, for example, in the first two subframes (subframe [0], subframe [1]) in one radio frame. Note that the position of the subframe in which the SS / PBCH block is arranged is not limited to the example of FIG. 11 and can be changed according to the operation mode of the wireless communication system. The variations of the SS / PBCH block arrangement are detailed in TS38.213 § 4.1 Cell search, for example.
 図11に例示されるサブフレームは、1msの時間長を有し、1スロットで構成される。なお、上述した様に、サブフレームの内部構造は、サブキャリア時間間隔(SCS)(Numerologyとも称され得る)などに応じて変わり得る。 The subframe illustrated in FIG. 11 has a time length of 1 ms and is composed of one slot. Note that, as described above, the internal structure of a subframe may change according to a subcarrier time interval (SCS) (also referred to as numeric).
 図11では、SS/PBCHブロックが配置されるサブフレーム[0]の内部構造が拡大して図示される。サブフレーム[1]の内部構造については、サブフレーム[0]と同様であるため、図示を省略している。図11に例示されるように、SS/PBCHブロックは、1スロットに含まれる14シンボルのうち、シンボル[2]~シンボル[5]の4個のシンボル群と、シンボル[8]~シンボル[11]の4個のシンボル群とに配置される。図11に例示される無線フレーム構造では、サブフレーム[0]とサブフレーム[1]とは同様の内部構造を有するため、SS/PBCHブロックが1無線フレーム内に4回出現する。別言すると、図11に例示される無線フレーム構造において、4個のSS/PBCHブロック(第一無線リソースとも称され得る)が配置される。 In FIG. 11, the internal structure of subframe [0] in which the SS / PBCH block is arranged is shown in an enlarged manner. The internal structure of subframe [1] is the same as that of subframe [0], and is not shown. As illustrated in FIG. 11, the SS / PBCH block includes four symbol groups from symbol [2] to symbol [5], and symbols [8] to [11] among 14 symbols included in one slot. ] Of four symbol groups. In the radio frame structure illustrated in FIG. 11, the subframe [0] and the subframe [1] have the same internal structure, and thus the SS / PBCH block appears four times in one radio frame. In other words, in the radio frame structure illustrated in FIG. 11, four SS / PBCH blocks (which may also be referred to as first radio resources) are arranged.
 図12は、実施例2に係る無線通信システムにおけるサブフレームの周波数時間空間構造において無線リソースの一部に配置された緩衝領域の一例を示す図である。図12の例では、第一サブキャリア間隔(SCS#1)の第一無線リソースとして上述のSS/PBCHブロック(B30-1、B30-2)が配置されている。また、図12の例では、第二サブキャリア間隔(SCS#2)の第二無線リソースとしてユーザデータなどがマッピングされ得るPDSCH(B40、B41)が配置されている。図12の例示において、第二サブキャリア間隔(SCS#2)のスロット(1slot for SCS#2)は、第一サブキャリア間隔(SCS#1)のもの(1slot for SCS#1)よりも時間軸方向において半分の長さである。 FIG. 12 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency space-time structure of the subframe in the radio communication system according to the second embodiment. In the example of FIG. 12, the above-described SS / PBCH blocks (B30-1 and B30-2) are arranged as the first radio resource at the first subcarrier interval (SCS # 1). In the example of FIG. 12, PDSCH (B40, B41) to which user data or the like can be mapped as the second radio resource at the second subcarrier interval (SCS # 2) is arranged. In the example of FIG. 12, the slot (1 slot1for SCS # 2) of the second subcarrier interval (SCS # 2) has a time axis that is longer than the slot of the first subcarrier interval (SCS # 1) (1 slot for SCS # 1). Half length in direction.
 図12において、第一無線リソースであるSS/PBCHブロック(B30-1、B30-2)の第一サブキャリア間隔(SCS#1)とは異なる第二サブキャリア間隔(SCS#2)の第二無線リソース(B40、B41)の一部に緩衝領域(B401、B411)が配置される。この様に、第一無線リソース(B30-1、B30-2)に対してinter-SCS干渉による影響を及ぼし得る第二無線リソース(B40、B41)の一部の領域に緩衝領域(B401、B411)を配置することで、無線通信システムにおける送信装置と受信装置との間での同期を適切に確立・維持させることが期待できる。 In FIG. 12, the second subcarrier interval (SCS # 2) is different from the first subcarrier interval (SCS # 1) of the SS / PBCH block (B30-1, B30-2) which is the first radio resource. Buffer areas (B401, B411) are arranged in a part of the radio resources (B40, B41). As described above, the buffer areas (B401, B411) are partially included in the second radio resources (B40, B41) that may be affected by the inter-SCS interference on the first radio resources (B30-1, B30-2). ) Can be expected to properly establish and maintain synchronization between the transmission device and the reception device in the wireless communication system.
 緩衝領域(B401、B411)は、第二無線リソースにおいて、例えば、第一無線リソースに近接する領域に配置されてもよい。図12に例示される緩衝領域(B401、B411)は、周波数軸方向において、第一無線リソース(B30-1、B30-2)と隣接する位置に配置される。ここで、周波数軸方向において隣接するとは、必ずしも周波数軸方向における両者の配置が連続するとは限らない。例えば、第一無線リソース(B30-1、B30-2)と緩衝領域(B401、B411)とは、inter-SCS干渉の影響を抑制し得る程度に周波数軸方向における近接性を有していればよい。 The buffer area (B401, B411) may be arranged in the second radio resource, for example, in an area close to the first radio resource. The buffer areas (B401, B411) illustrated in FIG. 12 are arranged at positions adjacent to the first radio resources (B30-1, B30-2) in the frequency axis direction. Here, adjoining in the frequency axis direction does not necessarily mean that the arrangement of both in the frequency axis direction is continuous. For example, if the first radio resource (B30-1, B30-2) and the buffer area (B401, B411) have proximity in the frequency axis direction to such an extent that the influence of inter-SCS interference can be suppressed. Good.
 また、図12に例示される緩衝領域(B401、B411)は、時間軸方向において、第一無線リソース(B30-1、B30-2)と重複する位置に配置される。ここで、時間軸方向において重複するとは、必ずしも時間軸方向において両者の配置が同一の時間幅であるとは限らない。例えば、第一無線リソース(B30-1)と緩衝領域(B401)とは、inter-SCS干渉の影響を抑制し得る程度に時間軸方向における重複性を有していればよい。別言すると、緩衝領域(B401)は、第一無線リソース(B30-1)よりも、時間軸方向において短くてもよいし、長くてもよい。第一無線リソース(B30-2)と緩衝領域(B411)との関係性についても同様である。 Further, the buffer areas (B401, B411) illustrated in FIG. 12 are arranged at positions overlapping with the first radio resources (B30-1, B30-2) in the time axis direction. Here, overlapping in the time axis direction does not necessarily mean that both arrangements have the same time width in the time axis direction. For example, the first radio resource (B30-1) and the buffer area (B401) need only have redundancy in the time axis direction to such an extent that the influence of inter-SCS interference can be suppressed. In other words, the buffer area (B401) may be shorter or longer in the time axis direction than the first radio resource (B30-1). The same applies to the relationship between the first radio resource (B30-2) and the buffer area (B411).
 図12の例示において、緩衝領域(B401、B411)は、オフセット(offset)と、幅(width)とにより、周波数軸方向における位置と大きさが示される。オフセット(offset)は、図12に示すサブフレームの周波数時間空間構造における周波数軸方向の基準点からの緩衝領域(B401、B411)の位置を示す。図12において、オフセット(offset)は、第二無線リソース(B40、B41)の位置を示す値と同じであってもよい。幅(width)は、周波数軸方向における緩衝領域(B401、B411)の長さ(幅)を示す。 In the illustration of FIG. 12, the position and size of the buffer region (B401, B411) in the frequency axis direction are indicated by the offset (offset) and the width (width). The offset (offset) indicates the position of the buffer region (B401, B411) from the reference point in the frequency axis direction in the frequency time-space structure of the subframe shown in FIG. In FIG. 12, the offset (offset) may be the same as the value indicating the position of the second radio resource (B40, B41). The width indicates the length (width) of the buffer region (B401, B411) in the frequency axis direction.
 図12の例示において、緩衝領域(B401、B411)は、オフセット(offset-1、offset-2)と、幅(width-1、width-2)とにより、時間軸方向における位置と大きさが示される。時間軸方向における緩衝領域(B401、B411)の位置と大きさは、例えば、図11に例示されるSS/PBCHブロック(第一無線リソースとも称され得る)の配置パターンに基づいて決定されてもよい。上述のとおり、SS/PBCHブロックの配置パターンは、無線通信システムの運用形態に応じて変更され得る。別言すると、無線通信システムの運用形態に応じて、時間軸方向における緩衝領域(B401、B411)の開始位置と幅が決定されてもよい。なお、無線通信システムの運用形態とSS/PBCHブロックの配置のバリエーションとの関係については、例えば、TS38.213§4.1 Cell searchに詳しい。また、図12に例示される緩衝領域(B401、B411)の配置パターンが適用されるサブフレームは、SS/PBCHブロックの配置パターンが適用されるサブフレームに基づいて決定されてもよい。SS/PBCHブロックの配置パターンが適用されるサブフレームについては、例えば、TS38.213§4.1 Cell searchに詳しい。 In the illustration of FIG. 12, the buffer area (B401, B411) indicates the position and size in the time axis direction by the offset (offset-1, offset-2) and the width (width-1, width-2). It is. The positions and sizes of the buffer areas (B401, B411) in the time axis direction may be determined based on, for example, the arrangement pattern of SS / PBCH blocks (also referred to as first radio resources) illustrated in FIG. Good. As described above, the SS / PBCH block arrangement pattern can be changed according to the operation mode of the wireless communication system. In other words, the start position and width of the buffer area (B401, B411) in the time axis direction may be determined according to the operation mode of the wireless communication system. The relationship between the operation mode of the wireless communication system and the SS / PBCH block arrangement variation is detailed in, for example, TS38.213 §4.1 Cell search. Also, the subframe to which the arrangement pattern of the buffer areas (B401, B411) illustrated in FIG. 12 is applied may be determined based on the subframe to which the SS / PBCH block arrangement pattern is applied. The subframe to which the SS / PBCH block arrangement pattern is applied is detailed in, for example, TS38.213 §4.1 Cell search.
 図13は、実施例2に係る無線通信システムにおける送信装置と受信装置との間で共有される設定情報の構成の一例を概略的に示す図である。図13に例示される設定情報(T10A)は、緩衝領域(B401、B411)に関する情報を示す緩衝領域情報(T11A)を含む。緩衝領域情報(T11A)は、例えば、データ未割当て領域情報、未割当て領域情報、データ未割当て無線リソース情報、未割当て無線リソース情報、ガード領域情報、ガードバンド領域情報、サブガードバンド領域情報、拡張ガードバンド領域情報、拡張サブガードバンド領域情報などと称されてもよい。 FIG. 13 is a diagram schematically illustrating an example of a configuration of setting information shared between the transmission device and the reception device in the wireless communication system according to the second embodiment. The setting information (T10A) illustrated in FIG. 13 includes buffer area information (T11A) indicating information on the buffer areas (B401, B411). The buffer area information (T11A) includes, for example, data unallocated area information, unallocated area information, data unallocated radio resource information, unallocated radio resource information, guard area information, guard band area information, sub-guard band area information, extension It may be referred to as guard band region information, extended sub guard band region information, or the like.
 図13に例示される緩衝領域情報(T11A)は、緩衝領域(B401、B411)として設定される無線リソースを示す情報として、緩衝領域周波数オフセット(T11A-1)と、緩衝領域周波数帯域幅(T11A-2)とを含む。 The buffer area information (T11A) illustrated in FIG. 13 includes, as information indicating radio resources set as the buffer areas (B401, B411), a buffer area frequency offset (T11A-1) and a buffer area frequency bandwidth (T11A). -2).
 緩衝領域周波数オフセット(T11A-1)は、例えば、無線通信システムにおける無線フレームの周波数軸方向の基準点からの緩衝領域の開始位置を示す。別言すると、緩衝領域情報(T11A)における緩衝領域周波数オフセット(T11A-1)のフィールドには、周波数軸方向における緩衝領域の開始位置を示す値が格納され得る。緩衝領域周波数オフセット(T11A-1)は、例えば、RB(Resource Block)番号(RB単位の値とも称され得る)や、RE(Resource Element)番号(RE単位の値とも称され得る)であってもよい。緩衝領域周波数オフセット(T11A-1)は、必ずしも一つのパラメータで表現されるとは限らず、複数のパラメータにより表現されてもよい。別言すると、緩衝領域周波数オフセット(T11A-1)は、周波数軸方向における緩衝領域の開始位置を示すことができればよく、何れのデータ表現を用いてもよい。例えば、緩衝領域周波数オフセット(T11A-1)は、複数桁のビット列を有するビットマップにより、周波数軸方向における緩衝領域の開始位置を示してもよい。 Buffer area frequency offset (T11A-1) indicates, for example, the start position of the buffer area from the reference point in the frequency axis direction of the radio frame in the radio communication system. In other words, a value indicating the start position of the buffer area in the frequency axis direction can be stored in the field of the buffer area frequency offset (T11A-1) in the buffer area information (T11A). The buffer region frequency offset (T11A-1) is, for example, an RB (Resource Block) number (which may also be referred to as a value in RB units) or an RE (Resource Element) number (which may also be referred to as a value in RE units). Also good. The buffer region frequency offset (T11A-1) is not necessarily expressed by one parameter, and may be expressed by a plurality of parameters. In other words, the buffer region frequency offset (T11A-1) only needs to indicate the start position of the buffer region in the frequency axis direction, and any data representation may be used. For example, the buffer area frequency offset (T11A-1) may indicate the start position of the buffer area in the frequency axis direction by a bitmap having a bit string of a plurality of digits.
 緩衝領域周波数帯域幅(T11A-2)は、周波数軸方向における緩衝領域の長さ(幅)を示す。別言すると、緩衝領域情報(T11A)における緩衝領域周波数帯域幅(T11A-2)のフィールドには、周波数軸方向における緩衝領域の長さ(幅)を示す値が格納される。緩衝領域周波数帯域幅(T11A-2)は、例えば、RB数や、RE数であってもよい。緩衝領域周波数帯域幅(T11A-2)は、必ずしも一つのパラメータで表現されるとは限らず、複数のパラメータにより表現されてもよい。別言すると、緩衝領域周波数帯域幅(T11A-2)は、周波数軸方向における緩衝領域の長さ(幅)を示すことができればよく、何れのデータ表現を用いてもよい。例えば、緩衝領域周波数帯域幅(T11A-2)は、複数桁のビット列を有するビットマップにより、周波数軸方向における緩衝領域の長さ(幅)を示してもよい。この場合、一つのビットマップが、緩衝領域周波数オフセット(T11A-1)と、緩衝領域周波数帯域幅(T11A-2)との両方を兼ねてもよい。 Buffer area frequency bandwidth (T11A-2) indicates the length (width) of the buffer area in the frequency axis direction. In other words, a value indicating the length (width) of the buffer area in the frequency axis direction is stored in the field of the buffer area frequency bandwidth (T11A-2) in the buffer area information (T11A). The buffer region frequency bandwidth (T11A-2) may be, for example, the number of RBs or the number of REs. The buffer region frequency bandwidth (T11A-2) is not necessarily expressed by one parameter, and may be expressed by a plurality of parameters. In other words, the buffer region frequency bandwidth (T11A-2) only needs to indicate the length (width) of the buffer region in the frequency axis direction, and any data representation may be used. For example, the buffer region frequency bandwidth (T11A-2) may indicate the length (width) of the buffer region in the frequency axis direction by a bitmap having a bit string of a plurality of digits. In this case, one bitmap may serve as both the buffer domain frequency offset (T11A-1) and the buffer domain frequency bandwidth (T11A-2).
 図14は、実施例2に係る無線通信システムにおける送信装置と受信装置との間で共有される設定情報の構成のさらなる一例を概略的に示す図である。図14に例示される設定情報(T10A)は、図13と同様に、緩衝領域(B401、B411)に関する情報を示す緩衝領域情報(T11A)を含む。図14の緩衝領域情報(T11A)は、緩衝領域(B401、B411)を周波数軸上で特定する情報(周波数情報とも称され得る)と、緩衝領域(B401、B411)を時間軸上で特定する情報(時間情報とも称され得る)とを含む。図14の例において、周波数情報は、緩衝領域周波数オフセット(T11A-1)と、緩衝領域周波数帯域幅(T11A-2)とを含む。図14の例において、時間情報は、緩衝領域時間オフセット(T11A-3)と、緩衝領域時間幅(T11A-4)とを含む。図14の例において、時間情報は、緩衝領域時間オフセット(T11A-3)と、緩衝領域時間幅(T11A-4)との情報セットを一組しか有さないように図示されているが、本開示はこれに限定されない。例えば、緩衝領域時間オフセット(T11A-3)と、緩衝領域時間幅(T11A-4)との情報セットを二組以上有してもよい。周波数情報についても同様である。なお、図14の周波数情報の内容については、図13に例示される緩衝領域周波数オフセット(T11A-1)及び緩衝領域周波数帯域幅(T11A-2)と同様であるため、詳細な説明を省略する。 FIG. 14 is a diagram schematically illustrating another example of the configuration of the setting information shared between the transmission device and the reception device in the wireless communication system according to the second embodiment. The setting information (T10A) illustrated in FIG. 14 includes buffer area information (T11A) indicating information regarding the buffer areas (B401, B411), as in FIG. The buffer area information (T11A) in FIG. 14 specifies information (also referred to as frequency information) for specifying the buffer area (B401, B411) on the frequency axis, and specifies the buffer area (B401, B411) on the time axis. Information (which may also be referred to as time information). In the example of FIG. 14, the frequency information includes a buffer region frequency offset (T11A-1) and a buffer region frequency bandwidth (T11A-2). In the example of FIG. 14, the time information includes a buffer area time offset (T11A-3) and a buffer area time width (T11A-4). In the example of FIG. 14, the time information is illustrated as having only one set of information of the buffer area time offset (T11A-3) and the buffer area time width (T11A-4). The disclosure is not limited to this. For example, two or more information sets of the buffer area time offset (T11A-3) and the buffer area time width (T11A-4) may be provided. The same applies to the frequency information. The content of the frequency information in FIG. 14 is the same as the buffer region frequency offset (T11A-1) and the buffer region frequency bandwidth (T11A-2) illustrated in FIG. .
 緩衝領域時間オフセット(T11A-3)は、例えば、サブフレームの周波数時間空間構造の時間軸方向における基準点からの緩衝領域の位置を示す。別言すると、緩衝領域情報(T11A)における緩衝領域時間オフセット(T11A-3)のフィールドには、時間軸方向における緩衝領域の位置を示す値が格納され得る。緩衝領域時間オフセット(T11A-3)は、例えば、シンボル番号であってもよい。緩衝領域時間オフセット(T11A-3)は、必ずしも一つのパラメータで表現されるとは限らず、複数のパラメータにより表現されてもよい。別言すると、緩衝領域時間オフセット(T11A-3)は、時間軸方向における緩衝領域の位置を示すことができればよく、何れのデータ表現を用いてもよい。例えば、緩衝領域時間オフセット(T11A-3)は、複数桁のビット列を有するビットマップにより、時間軸方向における緩衝領域の位置を示してもよい。 Buffer area time offset (T11A-3) indicates, for example, the position of the buffer area from the reference point in the time axis direction of the frequency time space structure of the subframe. In other words, the buffer area time offset (T11A-3) field in the buffer area information (T11A) can store a value indicating the position of the buffer area in the time axis direction. The buffer area time offset (T11A-3) may be, for example, a symbol number. The buffer area time offset (T11A-3) is not necessarily expressed by one parameter, and may be expressed by a plurality of parameters. In other words, the buffer area time offset (T11A-3) is only required to indicate the position of the buffer area in the time axis direction, and any data representation may be used. For example, the buffer area time offset (T11A-3) may indicate the position of the buffer area in the time axis direction by a bitmap having a bit string of a plurality of digits.
 緩衝領域時間幅(T11A-4)は、時間軸方向における緩衝領域の大きさ(長さ、幅とも称され得る)を示す。別言すると、緩衝領域情報(T11A)における緩衝領域時間幅(T11A-4)のフィールドには、時間軸方向における緩衝領域の大きさを示す値が格納される。緩衝領域時間幅(T11A-4)は、例えば、シンボル数であってもよい。緩衝領域時間幅(T11A-4)は、必ずしも一つのパラメータで表現されるとは限らず、複数のパラメータにより表現されてもよい。別言すると、緩衝領域時間幅(T11A-4)は、時間軸方向における緩衝領域の長さ(幅)を示すことができればよく、何れのデータ表現を用いてもよい。例えば、緩衝領域時間幅(T11A-4)は、複数桁のビット列を有するビットマップにより、時間軸方向における緩衝領域の長さ(幅)を示してもよい。この場合、一つのビットマップが、緩衝領域時間オフセット(T11A-3)と、緩衝領域時間幅(T11A-4)との両方を兼ねてもよい。図12の例の場合、第二サブキャリア間隔(SCS#2)の第二無線リソース(B40、B41)は、1サブフレームにつき2スロット(2個のスロット)を含むため、合計28シンボル(14シンボル×2スロット=28シンボル)で構成されてもよい。この場合、少なくとも28ビットのビットマップにより、1サブフレームにおける緩衝領域(B401、B411)の配置を示すことができる。 Buffer area time width (T11A-4) indicates the size (also referred to as length and width) of the buffer area in the time axis direction. In other words, the buffer area time width (T11A-4) field in the buffer area information (T11A) stores a value indicating the size of the buffer area in the time axis direction. The buffer area time width (T11A-4) may be, for example, the number of symbols. The buffer area time width (T11A-4) is not necessarily expressed by one parameter, and may be expressed by a plurality of parameters. In other words, the buffer area time width (T11A-4) only needs to indicate the length (width) of the buffer area in the time axis direction, and any data representation may be used. For example, the buffer area time width (T11A-4) may indicate the length (width) of the buffer area in the time axis direction by a bit map having a bit string of a plurality of digits. In this case, one bitmap may serve as both the buffer area time offset (T11A-3) and the buffer area time width (T11A-4). In the example of FIG. 12, since the second radio resources (B40, B41) of the second subcarrier interval (SCS # 2) include 2 slots (2 slots) per subframe, a total of 28 symbols (14 (Symbol × 2 slots = 28 symbols). In this case, the arrangement of the buffer areas (B401, B411) in one subframe can be indicated by a bitmap of at least 28 bits.
 上述した様に、実施例2に係る緩衝領域の位置と大きさは、第一無線リソースであるSS/PBCHブロックの配置に基づいて決定されてもよい。例えば、実施例2に係る緩衝領域の時間軸方向における位置と大きさに関する設定情報は、SS/PBCHブロックの配置に関する設定情報を流用してもよい。別言すると、SS/PBCHブロックの配置に関する設定情報は、実施例2に係る緩衝領域の時間軸方向における位置と大きさに関する設定情報として用いられ得る。 As described above, the position and size of the buffer area according to the second embodiment may be determined based on the arrangement of the SS / PBCH block that is the first radio resource. For example, as the setting information regarding the position and size of the buffer area in the time axis direction according to the second embodiment, the setting information regarding the arrangement of the SS / PBCH blocks may be used. In other words, the setting information related to the SS / PBCH block arrangement can be used as setting information related to the position and size of the buffer area in the time axis direction according to the second embodiment.
 図15は、実施例2に係る無線通信システム1における無線通信のシーケンスの一例を示す図である。図15に例示される無線通信システム1は、下りリンクの受信装置としての無線端末10と、下りリンクの送信装置としての無線基地局20とを有する。無線端末10と無線基地局20は、例えば、5Gシステムの標準規格に準拠する通信装置であってもよい。 FIG. 15 is a diagram illustrating an example of a wireless communication sequence in the wireless communication system 1 according to the second embodiment. The radio communication system 1 illustrated in FIG. 15 includes a radio terminal 10 as a downlink reception device and a radio base station 20 as a downlink transmission device. For example, the wireless terminal 10 and the wireless base station 20 may be communication devices that comply with the 5G system standard.
 図15に例示されるシーケンスは、下りリンクのデータ送信に関する一連の処理の一部を抜粋したものである。図15の例示では、例えば、無線端末10と無線基地局20との間でのコネクション確立に関する処理などについて、図示を省略している。 The sequence illustrated in FIG. 15 is an excerpt of a part of a series of processes related to downlink data transmission. In the illustration of FIG. 15, for example, the processing related to the connection establishment between the wireless terminal 10 and the wireless base station 20 is not shown.
 図15において、無線基地局20は、例えば、下りリンクのスケジューリング処理を実行し、無線端末10宛ての下りリンクのデータ(DL data)に対する下りリンク無線リソース(第二無線リソース)の割当てを行う(S21)。そして、無線基地局20は、下りリンクのデータに割当てられた第二無線リソースが、SS/PBCHブロック(第一無線リソース)にinter-SCS干渉の影響を及ぼし得る程度に、周波数軸方向及び/又は時間軸方向において近接性を有するか否かを判定してもよい(S22)。なお、第一無線リソースは、第一サブキャリア間隔の無線リソースであり、第二無線リソースは、第一サブキャリア間隔とは異なる第二サブキャリア間隔の無線リソースである。 In FIG. 15, for example, the radio base station 20 executes downlink scheduling processing and allocates downlink radio resources (second radio resources) to downlink data (DL data) addressed to the radio terminal 10 ( S21). Then, the radio base station 20 allows the second radio resource allocated to the downlink data to influence the inter-SCS interference on the SS / PBCH block (first radio resource) and / or the frequency axis direction. Or you may determine whether it has proximity in a time-axis direction (S22). The first radio resource is a radio resource having a first subcarrier interval, and the second radio resource is a radio resource having a second subcarrier interval different from the first subcarrier interval.
 S22において、無線基地局20は、例えば、第二無線リソースが、SS/PBCHブロック(第一無線リソース)が配置されるサブフレームと同じサブフレームに配置される場合に、第二無線リソースが、SS/PBCHブロック(第一無線リソース)にinter-SCS干渉の影響を及ぼし得ると判定してもよい。 In S22, the radio base station 20, for example, when the second radio resource is arranged in the same subframe as the subframe in which the SS / PBCH block (first radio resource) is arranged, It may be determined that the influence of inter-SCS interference may be exerted on the SS / PBCH block (first radio resource).
 無線基地局20は、第二無線リソースが、SS/PBCHブロック(第一無線リソース)にinter-SCS干渉の影響を及ぼし得ると判定した場合、第二無線リソースの一部の領域に配置される緩衝領域に関する設定情報(Buffer area configuration)を、例えばDCIにより、無線端末10へ送信する(S23)。別言すると、無線基地局20は、緩衝領域に関する設定情報(Buffer area configuration)を、DCIの所定の情報フィールドに格納してもよい。DCIには、無線端末10宛ての下りリンクのデータに対して割当てた第二無線リソースに関する情報(DL scheduling information)も格納されてもよい。この様なDCIは、例えば、PDCCHで送信されてもよいし、EPDCCHで送信されてもよい。実施例2に係る緩衝領域に関する設定情報(Buffer area configuration)は、下りリンクの受信装置としての無線端末10が当該設定情報を下りリンクの送信装置としての無線基地局20から受信することで、無線端末10と無線基地局20との間で共有される。この場合、S23のDCIのフォーマットは、例えば、Format1_0やFormat1_1などであってもよく、TS38.212§7.3.1.2 DCI formats for scheduling of PDSCHに詳しい。別言すると、S23のDCIは、TS38.212§7.3.1.2に詳述されるDCIフォーマットに、本実施例に係る緩衝領域を示す設定情報が追加された構成であってもよい。 When the radio base station 20 determines that the second radio resource can affect inter-SCS interference on the SS / PBCH block (first radio resource), the radio base station 20 is arranged in a part of the second radio resource. The setting information (Buffer area configuration) related to the buffer area is transmitted to the wireless terminal 10 by DCI, for example (S23). In other words, the radio base station 20 may store setting information (Buffer area configuration) related to the buffer area in a predetermined information field of DCI. The DCI may also store information (DL 第二 scheduling information) related to the second radio resource allocated to the downlink data addressed to the radio terminal 10. Such DCI may be transmitted by PDCCH, for example, and may be transmitted by EPDCCH. The setting information (Buffer area configuration) related to the buffer area according to the second embodiment is obtained when the wireless terminal 10 as the downlink receiving device receives the setting information from the wireless base station 20 as the downlink transmitting device. It is shared between the terminal 10 and the radio base station 20. In this case, the DCI format of S23 may be, for example, Format1_0 or Format1_1, and is detailed in TS38.212 §7.3.1.27.3DCI formats for scheduling of PDSCH. In other words, the DCI in S23 may have a configuration in which setting information indicating the buffer area according to the present embodiment is added to the DCI format detailed in TS38.212 §7.3.1.2.
 無線基地局20は、緩衝領域に関する設定情報(Buffer area configuration)に従って、下りリンクのデータ(DL data)をマッピングする第二無線リソースに緩衝領域を配置し、緩衝領域を含み下りリンクのデータ(DL data)がマッピングされた第二無線リソース(PDSCH(with Buffer area))と、第一無線リソース(SS/PBCH)とを送信する(S24)。これにより、第二無線リソースにより無線端末10宛ての下りリンクのデータ(DL data)を送信しつつ、第一無線リソース(SS/PBCH)へのinter-SCS干渉の影響を抑制し得る。別言すると、緩衝領域により、第二無線リソースから第一無線リソースへのinter-SCS干渉の影響を抑制しつつ、第一無線リソースから第二無線リソースへのinter-SCS干渉の影響を抑制し得る。 The radio base station 20 arranges the buffer area in the second radio resource for mapping the downlink data (DL data) according to the setting information (Buffer area configuration) related to the buffer area, and includes the buffer area and includes the downlink data (DL The second radio resource (PDSCH (with buffer area)) to which data is mapped and the first radio resource (SS / PBCH) are transmitted (S24). Accordingly, it is possible to suppress the influence of inter-SCS interference on the first radio resource (SS / PBCH) while transmitting downlink data (DL (data) addressed to the radio terminal 10 using the second radio resource. In other words, the buffer area suppresses the influence of inter-SCS interference from the first radio resource to the second radio resource while suppressing the influence of inter-SCS interference from the second radio resource to the first radio resource. obtain.
 無線端末10は、S23で受信した緩衝領域に関する設定情報(Buffer area configuration)に従って、緩衝領域を含む第二無線リソース(PDSCH(with Buffer area))から、下りリンクのデータ(DL data)を受信し得る。なお、S24で送信される第一無線リソース(SS/PBCH)は、図15において図示されない他の無線端末により受信されてもよい。別言すると、図15に示される無線端末10は、S24で送信される第一無線リソース(SS/PBCH)を受信してもよいし、受信しなくてもよい。 The wireless terminal 10 receives downlink data (DL data) from the second wireless resource (PDSCH (with Buffer area)) including the buffer area according to the setting information (Buffer area configuration) regarding the buffer area received in S23. obtain. Note that the first radio resource (SS / PBCH) transmitted in S24 may be received by another radio terminal not shown in FIG. In other words, the radio terminal 10 shown in FIG. 15 may or may not receive the first radio resource (SS / PBCH) transmitted in S24.
 図15の例において、S23で送信されるDCIと、S24で送信される第二無線リソース及び第一無線リソースとは、同じ一つのサブフレームで送信されてもよいし、異なるサブフレームで送信されてもよい。 In the example of FIG. 15, the DCI transmitted in S23 and the second radio resource and the first radio resource transmitted in S24 may be transmitted in the same subframe or transmitted in different subframes. May be.
 以上が、実施例2における第一無線リソースと第二無線リソースとの具体的な適用例である。なお、実施例2において説明を省略した点については、実施例1と同様であるため、適宜、実施例1の説明を参照されたい。 The above is a specific application example of the first radio resource and the second radio resource in the second embodiment. Since the points omitted in the second embodiment are the same as those in the first embodiment, refer to the description of the first embodiment as appropriate.
 以上に開示される実施例2の一側面によれば、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いる場合に、第一サブキャリア間隔の第一無線リソースとは異なる第二サブキャリア間隔の第二無線リソースにおいて、緩衝領域が配置される。第二無線リソースに緩衝領域を配置することで、第二無線リソースと第一無線リソースとの間でのinter-SCS干渉の影響を抑制することができる。その結果、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合でも、適切に無線通信を行うことができるようになる。このような作用は、5Gシステムにおいて、eMBB、URLLC、mMTCなどの多様な無線サービスを実現するうえで有用である。 According to one aspect of the second embodiment disclosed above, when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, the first radio resources having the first subcarrier interval are used. A buffer area is arranged in the second radio resource having a second subcarrier interval different from that of the first subcarrier. By arranging the buffer area in the second radio resource, it is possible to suppress the influence of inter-SCS interference between the second radio resource and the first radio resource. As a result, even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, radio communication can be performed appropriately. Such an operation is useful for realizing various wireless services such as eMBB, URLLC, and mMTC in the 5G system.
 以上に開示される実施例2の他の一側面によれば、無線通信システムの運用時に、送信装置と受信装置との間で動的に共有される設定情報により、緩衝領域の範囲が設定される。そのため、無線通信システムの運用時の状況に適した緩衝領域に関する設定情報に従って、緩衝領域の配置を動的に変更することができる。その結果、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合でも、より適切に無線通信を行うことができるようになる。このような作用は、5Gシステムにおいて、eMBB、URLLC、mMTCなどの多様な無線サービスを実現するうえで有用である。 According to another aspect of the second embodiment disclosed above, the range of the buffer area is set by setting information dynamically shared between the transmission device and the reception device during operation of the wireless communication system. The Therefore, the arrangement of the buffer areas can be dynamically changed according to the setting information related to the buffer areas suitable for the situation during operation of the wireless communication system. As a result, even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, radio communication can be performed more appropriately. Such an operation is useful for realizing various wireless services such as eMBB, URLLC, and mMTC in the 5G system.
 以上に開示される実施例2の更なる他の一側面によれば、無線通信システムの送信装置と受信装置との間での同期処理に用いられる同期信号の第一無線リソース(SS/PBCHブロック)に対してinter-SCS干渉の影響を及ぼし得る第二無線リソース(例えばPDSCH)の一部の領域に、緩衝領域が配置される。第二無線リソースに配置された緩衝領域により、第二無線リソースから第一無線リソース(SS/PBCHブロック)へのinter-SCS干渉の影響を抑制しつつ、第一無線リソース(SS/PBCHブロック)から第二無線リソースへのinter-SCS干渉の影響を抑制することができる。その結果、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合でも、適切に無線通信を行うことができるようになる。このような作用は、5Gシステムにおいて、eMBB、URLLC、mMTCなどの多様な無線サービスを実現するうえで有用である。 According to still another aspect of the second embodiment disclosed above, the first radio resource (SS / PBCH block) of the synchronization signal used for the synchronization process between the transmission device and the reception device of the wireless communication system The buffer region is arranged in a partial region of the second radio resource (for example, PDSCH) that can influence the inter-SCS interference. The first radio resource (SS / PBCH block) while suppressing the influence of inter-SCS interference from the second radio resource to the first radio resource (SS / PBCH block) by the buffer area arranged in the second radio resource The influence of inter-SCS interference on the second radio resource can be suppressed. As a result, even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, radio communication can be performed appropriately. Such an operation is useful for realizing various wireless services such as eMBB, URLLC, and mMTC in the 5G system.
<実施例3> 実施例3では、第一無線リソースと第二無線リソースとについて、もう一つの具体的な適用例が示される。実施例3の適用例では、第一無線リソースは、上りリンクの無線リソースの一種であるPRACH(Physical Random Access CHannel)である。第二無線リソースは、上りリンクの無線リソースであって、PRACH以外の無線リソースであり、例えば、ユーザデータの送信に用いられ得るPUSCH(Physical Uplink Shared CHannel)であってもよい。なお、上りリンクの場合、受信装置は無線基地局20に相当し、送信装置は無線端末10に相当し得る。 <Example 3> In Example 3, another specific application example is shown about a 1st radio | wireless resource and a 2nd radio | wireless resource. In the application example of the third embodiment, the first radio resource is PRACH (Physical Random Access CHannel) which is a kind of uplink radio resource. The second radio resource is an uplink radio resource and is a radio resource other than the PRACH, and may be, for example, a PUSCH (Physical Uplink Shared) CHannel) that can be used for transmission of user data. In the case of uplink, the receiving device may correspond to the radio base station 20, and the transmitting device may correspond to the radio terminal 10.
 PRACHリソースは、上りリンクの送信装置である無線端末10が、初期アクセスやハンドオーバなどにより、上りリンクの受信装置である無線基地局20とコネクション確立を行う場合や再同期を行う場合などに使用され得る。inter-SCS干渉によりPRACHリソースの伝送品質が低下すると、送信装置(無線端末10)と受信装置(無線基地局20)との間でのコネクション確立などに失敗し得る。送信装置(無線端末10)と受信装置(無線基地局20)との間でのコネクション確立などに失敗した場合、送信装置と受信装置との間で、適切に無線通信を行うことが困難になる。そのため、例えば、受信装置と送信装置との間でのコネクション確立を重視する観点からは、上りリンクの第一無線リソース(PRACH)とは周波数軸上で異なる位置に配置される第二無線リソース内に緩衝領域を配置する方が、第一無線リソースに緩衝領域を配置するよりも、有利かもしれない。第二無線リソースに配置された緩衝領域により、inter-SCS干渉によるPRACHリソースの伝送品質の劣化を防止することが期待されるためである。 The PRACH resource is used when the radio terminal 10 that is an uplink transmission device establishes a connection with the radio base station 20 that is an uplink reception device or performs resynchronization by initial access or handover. obtain. When the transmission quality of the PRACH resource decreases due to inter-SCS interference, connection establishment between the transmission device (wireless terminal 10) and the reception device (wireless base station 20) may fail. When the connection establishment between the transmission device (wireless terminal 10) and the reception device (wireless base station 20) fails, it is difficult to appropriately perform wireless communication between the transmission device and the reception device. . Therefore, for example, from the viewpoint of emphasizing connection establishment between the receiving device and the transmitting device, the second radio resource in the second radio resource arranged at a different position on the frequency axis from the uplink first radio resource (PRACH). It may be more advantageous to arrange the buffer area in the first radio resource than to arrange the buffer area in the first radio resource. This is because the buffer area arranged in the second radio resource is expected to prevent the deterioration of the transmission quality of the PRACH resource due to the inter-SCS interference.
 図16は、実施例3に係る無線通信システムにおけるサブフレームの周波数時間空間構造において無線リソースの一部に配置された緩衝領域の一例を示す図である。図16の例では、第一サブキャリア間隔(SCS#1)の第一無線リソースとしてPRACH(C20)が配置されている。また、図16の例では、第二サブキャリア間隔(SCS#2)の第二無線リソースとしてユーザデータなどがマッピングされ得るPUSCH(C10、C11)が配置されている。図16の例示において、第二サブキャリア間隔(SCS#2)のスロット(1slot for SCS#2)は、第一サブキャリア間隔(SCS#1)のもの(1slot for SCS#1)よりも時間軸方向において半分の長さである。 FIG. 16 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency time-space structure of the subframe in the radio communication system according to the third embodiment. In the example of FIG. 16, PRACH (C20) is arrange | positioned as a 1st radio | wireless resource of a 1st subcarrier space | interval (SCS # 1). In the example of FIG. 16, PUSCH (C10, C11) to which user data and the like can be mapped as the second radio resource at the second subcarrier interval (SCS # 2) is arranged. In the example of FIG. 16, the slot (1 slot for SCS # 2) of the second subcarrier interval (SCS # 2) has a time axis greater than that of the first subcarrier interval (SCS # 1) (1 slot for SCS # 1). Half length in direction.
 図16において、第一無線リソースであるPRACH(C20)の第一サブキャリア間隔(SCS#1)とは異なる第二サブキャリア間隔(SCS#2)の第二無線リソース(C10)の一部に緩衝領域(C101)が配置される。この様に、第一無線リソース(C20)に対してinter-SCS干渉による影響を及ぼし得る第二無線リソース(C10)の一部の領域に緩衝領域(C101)を配置することで、無線通信システムにおける送信装置と受信装置との間での初期接続に関する処理を適切に実行することができる。 In FIG. 16, a part of the second radio resource (C10) having a second subcarrier interval (SCS # 2) different from the first subcarrier interval (SCS # 1) of PRACH (C20) that is the first radio resource. A buffer area (C101) is arranged. In this way, the buffer communication area (C101) is arranged in a partial area of the second radio resource (C10) that can affect the first radio resource (C20) due to the inter-SCS interference, so that the radio communication system The process regarding the initial connection between the transmitting apparatus and the receiving apparatus can be appropriately executed.
 緩衝領域(C101)は、第二無線リソースにおいて、例えば、第一無線リソース(PRACH)に近接する領域に配置されてもよい。図16に例示される緩衝領域(C101)は、周波数軸方向において、第一無線リソース(C20)と隣接する位置に配置される。ここで、周波数軸方向において隣接するとは、必ずしも周波数軸方向における両者の配置が連続するとは限らない。例えば、第一無線リソース(C20)と緩衝領域(C101)とは、inter-SCS干渉の影響を抑制し得る程度に周波数軸方向における近接性を有していればよい。 The buffer area (C101) may be arranged in the second radio resource, for example, in an area close to the first radio resource (PRACH). The buffer region (C101) illustrated in FIG. 16 is arranged at a position adjacent to the first radio resource (C20) in the frequency axis direction. Here, adjoining in the frequency axis direction does not necessarily mean that the arrangement of both in the frequency axis direction is continuous. For example, the first radio resource (C20) and the buffer region (C101) need only have proximity in the frequency axis direction to such an extent that the influence of inter-SCS interference can be suppressed.
 また、図16に例示される緩衝領域(C101)は、時間軸方向において、第一無線リソース(C20)と重複する位置に配置される。ここで、時間軸方向において重複するとは、必ずしも時間軸方向において両者の配置が同一の時間幅であるとは限らない。例えば、第一無線リソース(C20)と緩衝領域(C101)とは、inter-SCS干渉の影響を抑制し得る程度に時間軸方向における重複性を有していればよい。別言すると、緩衝領域(C101)は、第一無線リソース(C20)よりも、時間軸方向において短くてもよいし、長くてもよい。 Further, the buffer area (C101) illustrated in FIG. 16 is arranged at a position overlapping the first radio resource (C20) in the time axis direction. Here, overlapping in the time axis direction does not necessarily mean that both arrangements have the same time width in the time axis direction. For example, the first radio resource (C20) and the buffer area (C101) need only have redundancy in the time axis direction to such an extent that the influence of inter-SCS interference can be suppressed. In other words, the buffer area (C101) may be shorter or longer in the time axis direction than the first radio resource (C20).
 図16の例示において、緩衝領域(C101)は、周波数軸方向におけるオフセット(offset)と、幅(width)とにより、周波数軸方向における位置と大きさが示される。周波数軸方向におけるオフセット(offset)は、図16に示すサブフレームの周波数時間空間構造における周波数軸方向の基準点からの緩衝領域(C101)の位置を示す。図16において、周波数軸方向におけるオフセット(offset)は、第二無線リソース(C10)の位置を示す値と同じであってもよい。幅(width)は、周波数軸方向における緩衝領域(C101)の大きさ(幅)を示す。 In the illustration of FIG. 16, the position and size of the buffer region (C101) in the frequency axis direction are indicated by an offset in the frequency axis direction and a width. The offset (offset) in the frequency axis direction indicates the position of the buffer region (C101) from the reference point in the frequency axis direction in the frequency spatio-temporal structure of the subframe shown in FIG. In FIG. 16, the offset (offset) in the frequency axis direction may be the same as the value indicating the position of the second radio resource (C10). The width indicates the size (width) of the buffer region (C101) in the frequency axis direction.
 図16の例示において、緩衝領域(C101)は、時間軸方向におけるオフセット(offset)と、幅(width)とにより、時間軸方向における位置と大きさが示される。時間軸方向における緩衝領域(C101)の位置と大きさは、例えば、第一サブキャリア間隔(SCS#1)のPRACH(C20)の配置パターンに基づいて決定されてもよい。PRACH(C20)の配置パターンは、無線通信システムの運用形態に応じて変更され得る。別言すると、無線通信システムの運用形態に応じて、時間軸方向における緩衝領域(C101)の位置(offset)と大きさ(width)が決定されてもよい。なお、無線通信システムの運用形態とPRACH(C20)の配置のバリエーションとの関係については、例えば、TS38.211§6.3.3.2 Mapping to physical resourcesに詳しい。また、図16に例示される緩衝領域(C101)の配置パターンが適用されるサブフレームは、PRACH(C20)の配置パターンが適用されるサブフレームに基づいて決定されてもよい。PRACH(C20)の配置パターンが適用されるサブフレームについては、例えば、TS38.211 Table 6.3.3.2-2: Random access configurations for FR1 and pared spectrumに詳しい。 In the illustration of FIG. 16, the position and size of the buffer region (C101) in the time axis direction are indicated by the offset in the time axis direction and the width. The position and size of the buffer region (C101) in the time axis direction may be determined based on, for example, an arrangement pattern of PRACH (C20) at the first subcarrier interval (SCS # 1). The arrangement pattern of the PRACH (C20) can be changed according to the operation mode of the wireless communication system. In other words, the position (offset) and size (width) of the buffer region (C101) in the time axis direction may be determined according to the operation mode of the wireless communication system. The relationship between the operation mode of the wireless communication system and the PRACH (C20) arrangement variation is detailed in, for example, TS 38.211 §6.3.3.26.3Mapping to physical resources. Further, the subframe to which the arrangement pattern of the buffer area (C101) illustrated in FIG. 16 is applied may be determined based on the subframe to which the arrangement pattern of PRACH (C20) is applied. The subframe to which the PRACH (C20) arrangement pattern is applied is detailed in, for example, TS38.211 Table 6.3.3.2-2: Random access configurations for FR1 and pared spectrum.
 実施例3に係る緩衝領域に関する設定情報は、実施例1及び実施例2と同様であるため、詳細な説明を省略する。別言すると、実施例3に係る無線通信システムにおける送信装置と受信装置との間でも、緩衝領域に関する設定情報が共有される。実施例3では、上りリンクの無線リソースに緩衝領域が配置され、送信装置は無線端末10に相当し、受信装置は無線基地局20に相当し得る。この場合、実施例3に係る緩衝領域に関する設定情報は、受信装置である無線基地局20から、送信装置である無線端末10に送信されてもよい。 Since the setting information regarding the buffer area according to the third embodiment is the same as that of the first and second embodiments, detailed description thereof is omitted. In other words, the setting information regarding the buffer area is shared between the transmission device and the reception device in the wireless communication system according to the third embodiment. In the third embodiment, a buffer area is arranged in the uplink radio resource, the transmission apparatus may correspond to the radio terminal 10, and the reception apparatus may correspond to the radio base station 20. In this case, the setting information related to the buffer area according to the third embodiment may be transmitted from the radio base station 20 that is the reception device to the radio terminal 10 that is the transmission device.
 上述した様に、実施例3に係る緩衝領域の位置と大きさは、第一無線リソースであるPRACHリソースの配置に基づいて決定されてもよい。例えば、実施例3に係る緩衝領域の時間軸方向における位置と大きさに関する設定情報は、PRACHリソースに関する設定情報を流用してもよい。別言すると、PRACHリソースに関する設定情報は、実施例3に係る緩衝領域の時間軸方向における位置と大きさに関する設定情報として用いられ得る。 As described above, the position and size of the buffer area according to the third embodiment may be determined based on the arrangement of the PRACH resource that is the first radio resource. For example, as the setting information related to the position and size of the buffer area in the time axis direction according to the third embodiment, the setting information related to the PRACH resource may be used. In other words, the setting information regarding the PRACH resource can be used as setting information regarding the position and size of the buffer area according to the third embodiment in the time axis direction.
 図17は、実施例3に係る無線通信システム1における無線通信のシーケンスの一例を示す図である。図17に例示される無線通信システム1は、上りリンクの送信装置としての無線端末10Aと、上りリンクの受信装置としての無線基地局20と、その他の無線端末10Bとを有する。無線端末10A、無線端末10B、及び無線基地局20は、例えば、5Gシステムの標準規格に準拠する通信装置であってもよい。 FIG. 17 is a diagram illustrating an example of a wireless communication sequence in the wireless communication system 1 according to the third embodiment. The radio communication system 1 illustrated in FIG. 17 includes a radio terminal 10A as an uplink transmission device, a radio base station 20 as an uplink reception device, and other radio terminals 10B. The radio terminal 10A, the radio terminal 10B, and the radio base station 20 may be communication devices that comply with, for example, a 5G system standard.
 図17に例示されるシーケンスは、上りリンクのデータ送信に関する一連の処理の一部を抜粋したものである。図17の例示では、例えば、無線端末10Aと無線基地局20との間でのコネクション確立に関する処理などについて、図示を省略している。 The sequence illustrated in FIG. 17 is an excerpt of a part of a series of processes related to uplink data transmission. In the illustration of FIG. 17, for example, the processing related to connection establishment between the wireless terminal 10 </ b> A and the wireless base station 20 is not shown.
 図17において、無線基地局20は、第一無線リソース(PRACH)に関する設定情報(PRACH configuration)を含むシステム情報(System information)を無線端末10A及び10Bへ送信する(S31)。無線端末10A及び10Bは、無線基地局20から送信されたシステム情報を受信することで、第一無線リソース(PRACH)に関する設定情報(PRACH configuration)を知得することができる。S31において、無線基地局20は、当該システム情報を、無線端末10A及び10Bに対して個別に送信してもよいし、報知チャネル(PBCH)を用いて無線端末10A及び10Bに報知してもよい。図17において、システム情報は、第一無線リソース(PRACH)に関する設定情報(PRACH configuration)を無線端末10A及び10Bに通知するための信号の一例であって、本開示はこれに限定されるものではない。例えば、無線基地局20は、RRC(Radio Resource Control)メッセージを用いて、当該設定情報を無線端末10A及び10Bに通知してもよい。 In FIG. 17, the radio base station 20 transmits system information (System information) including setting information (PRACH configuration) related to the first radio resource (PRACH) to the radio terminals 10A and 10B (S31). The radio terminals 10 </ b> A and 10 </ b> B can know the setting information (PRACH 情報 configuration) related to the first radio resource (PRACH) by receiving the system information transmitted from the radio base station 20. In S31, the radio base station 20 may individually transmit the system information to the radio terminals 10A and 10B, or may broadcast the system information to the radio terminals 10A and 10B using a broadcast channel (PBCH). . In FIG. 17, system information is an example of a signal for notifying the radio terminals 10A and 10B of setting information (PRACH configuration) related to the first radio resource (PRACH), and the present disclosure is not limited thereto. Absent. For example, the radio base station 20 may notify the setting information to the radio terminals 10A and 10B using an RRC (Radio Resource Control) message.
 無線基地局20は、例えば、上りリンクのスケジューリング処理を実行し、無線端末10Aに対する上りリンク無線リソース(第二無線リソース)の割当てを行う(S32)。なお、S32を実行する前に、無線基地局20は、無線端末10Aからのスケジューリングリクエスト(SR)信号を受信してもよい。別言すると、無線端末10Aは、S32が実行される前に、上りリンクの無線リソースの割当てを要求するSR信号を、無線基地局20へ送信してもよい。 The radio base station 20 executes, for example, an uplink scheduling process, and allocates an uplink radio resource (second radio resource) to the radio terminal 10A (S32). Note that before executing S32, the radio base station 20 may receive a scheduling request (SR) signal from the radio terminal 10A. In other words, the radio terminal 10A may transmit an SR signal requesting allocation of uplink radio resources to the radio base station 20 before S32 is executed.
 無線基地局20は、無線端末10Aに割当てられた第二無線リソースが、第一無線リソース(PRACH)にinter-SCS干渉の影響を及ぼし得る程度に、周波数軸方向及び/又は時間軸方向において近接性を有するか否かを判定してもよい(S33)。なお、第一無線リソースは、第一サブキャリア間隔の無線リソースであり、第二無線リソースは、第一サブキャリア間隔とは異なる第二サブキャリア間隔の無線リソースである。 The radio base station 20 is close in the frequency axis direction and / or the time axis direction to the extent that the second radio resource allocated to the radio terminal 10A can affect the first radio resource (PRACH) by inter-SCS interference. It may be determined whether or not it has sex (S33). The first radio resource is a radio resource having a first subcarrier interval, and the second radio resource is a radio resource having a second subcarrier interval different from the first subcarrier interval.
 S33において、無線基地局20は、例えば、第二無線リソースが、第一無線リソース(PRACH)が配置されるサブフレームと同じサブフレームに配置される場合に、第二無線リソースが、第一無線リソース(PRACH)にinter-SCS干渉の影響を及ぼし得ると判定してもよい。 In S33, for example, when the second radio resource is arranged in the same subframe as the subframe in which the first radio resource (PRACH) is arranged, the radio base station 20 determines that the second radio resource is the first radio resource. It may be determined that the influence of inter-SCS interference may be exerted on the resource (PRACH).
 無線基地局20は、第二無線リソースが、第一無線リソース(PRACH)にinter-SCS干渉の影響を及ぼし得ると判定した場合、第二無線リソースの一部の領域に配置される緩衝領域に関する設定情報(Buffer area configuration)を、例えばDCIにより、無線端末10Aへ送信する(S34)。別言すると、無線基地局20は、緩衝領域に関する設定情報(Buffer area configuration)を、DCIの所定の情報フィールドに格納してもよい。DCIには、無線端末10Aに対して割当てた第二無線リソースに関する情報(UL scheduling grant)も格納されてもよい。この様なDCIは、例えば、PDCCHで送信されてもよいし、EPDCCHで送信されてもよい。実施例3に係る緩衝領域に関する設定情報(Buffer area configuration)は、上りリンクの送信装置としての無線端末10Aが当該設定情報を上りリンクの受信装置としての無線基地局20から受信することで、無線端末10Aと無線基地局20との間で共有される。この場合、S34のDCIのフォーマットは、例えば、Format0_0やFormat0_1などであってもよく、TS38.212§7.3.1.1 DCI formats for scheduling of PUSCHに詳しい。別言すると、S34のDCIは、TS38.212§7.3.1.1に詳述されるDCIフォーマットに、本実施例に係る緩衝領域を示す設定情報が追加された構成であってもよい。 When the radio base station 20 determines that the second radio resource can affect inter-SCS interference on the first radio resource (PRACH), the radio base station 20 relates to a buffer area arranged in a partial area of the second radio resource. The setting information (Buffer area configuration) is transmitted to the wireless terminal 10A by DCI, for example (S34). In other words, the radio base station 20 may store setting information (Buffer area configuration) related to the buffer area in a predetermined information field of DCI. The DCI may also store information (UL scheduling grant) related to the second radio resource allocated to the radio terminal 10A. Such DCI may be transmitted by PDCCH, for example, and may be transmitted by EPDCCH. The configuration information (Buffer area configuration) related to the buffer area according to the third embodiment is obtained when the radio terminal 10A as an uplink transmission apparatus receives the setting information from the radio base station 20 as an uplink reception apparatus. It is shared between the terminal 10A and the radio base station 20. In this case, the DCI format of S34 may be, for example, Format0_0 or Format0_1, and is detailed in TS38.212§7.3.1.1§DCI formats for scheduling of PUSCH. In other words, the DCI of S34 may have a configuration in which setting information indicating the buffer area according to the present embodiment is added to the DCI format detailed in TS38.212 §7.3.1.1.
 無線端末10Aは、緩衝領域に関する設定情報(Buffer area configuration)に従って、上りリンクのデータ(UL data)がマッピングされる第二無線リソースに緩衝領域を配置し、緩衝領域を含み上りリンクのデータ(UL data)がマッピングされた第二無線リソース(PUSCH(with Buffer area))を送信する(S35)。なお、無線端末10Aから送信される第二無線リソースを有するサブフレームには、第一無線リソース(PRACH)が予約されているものとする。 The radio terminal 10A arranges the buffer area in the second radio resource to which the uplink data (UL data) is mapped according to the setting information (Buffer area configuration) related to the buffer area, and includes the buffer area and the uplink data (UL The second radio resource (PUSCH (with buffer area)) to which data is mapped is transmitted (S35). It is assumed that the first radio resource (PRACH) is reserved in the subframe having the second radio resource transmitted from the radio terminal 10A.
 他の無線端末10Bは、S31の設定情報(PRACH configuration)に従って、所定の信号系列(Random Access Preamble)を有する信号を、第一無線リソースを用いて送信するかもしれない(S36)。なお、S36で送信される第一無線リソースと、S35で送信される第二無線リソースとは、同じ一つのサブフレームに含まれるものとする。この場合であっても、第二無線リソースに配置された緩衝領域により、上りリンクのデータ(UL data)がマッピングされた第二無線リソースの無線端末10Aからの送信を許容しつつ、第二無線リソースから第一無線リソース(PRACH)へのinter-SCS干渉の影響を抑制し得る。また、第二無線リソースに配置された緩衝領域により、第一無線リソース(PRACH)から第二無線リソースへのinter-SCS干渉の影響を抑制し得る。 The other radio terminal 10B may transmit a signal having a predetermined signal sequence (Random Access Preamble) using the first radio resource according to the setting information (PRACH configuration) of S31 (S36). Note that the first radio resource transmitted in S36 and the second radio resource transmitted in S35 are included in the same subframe. Even in this case, the second radio resource is permitted to be transmitted from the radio terminal 10A of the second radio resource to which the uplink data (UL data) is mapped by the buffer area arranged in the second radio resource. The influence of inter-SCS interference from the resource to the first radio resource (PRACH) may be suppressed. Further, the buffer region arranged in the second radio resource can suppress the influence of inter-SCS interference from the first radio resource (PRACH) to the second radio resource.
 無線基地局20は、S34で無線端末10Aと共有した緩衝領域に関する設定情報(Buffer area configuration)に従って、緩衝領域を含む第二無線リソース(PUSCH(with Buffer area))から、上りリンクのデータ(UL data)を受信し得る。また、無線基地局20は、S36で無線端末10Bから送信された第一無線リソース(PRACH)を受信し得る。 The radio base station 20 performs uplink data (UL) from the second radio resource including the buffer area (PUSCH (with buffer area)) according to the setting information (Buffer area configuration) regarding the buffer area shared with the radio terminal 10A in S34. data). Further, the radio base station 20 can receive the first radio resource (PRACH) transmitted from the radio terminal 10B in S36.
 以上が、実施例3における第一無線リソースと第二無線リソースとの具体的な適用例である。なお、実施例3において説明を省略した点については、実施例1などと同様であるため、適宜、実施例1などの説明を参照されたい。 The above is a specific application example of the first radio resource and the second radio resource in the third embodiment. Since the points omitted in the third embodiment are the same as those in the first embodiment, refer to the description of the first embodiment and the like as appropriate.
 以上に開示される実施例3の一側面によれば、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いる場合に、第一サブキャリア間隔の第一無線リソースとは異なる第二サブキャリア間隔の第二無線リソースにおいて、緩衝領域が配置される。第二無線リソースに緩衝領域を配置することで、第二無線リソースと第一無線リソースとの間でのinter-SCS干渉の影響を抑制することができる。その結果、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合でも、適切に無線通信を行うことができるようになる。このような作用は、5Gシステムにおいて、eMBB、URLLC、mMTCなどの多様な無線サービスを実現するうえで有用である。 According to one aspect of the third embodiment disclosed above, when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, the first radio resources having the first subcarrier interval are used. A buffer area is arranged in the second radio resource having a second subcarrier interval different from that of the first subcarrier. By arranging the buffer area in the second radio resource, it is possible to suppress the influence of inter-SCS interference between the second radio resource and the first radio resource. As a result, even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, radio communication can be performed appropriately. Such an operation is useful for realizing various wireless services such as eMBB, URLLC, and mMTC in the 5G system.
 以上に開示される実施例3の他の一側面によれば、無線通信システムの運用時に、送信装置と受信装置との間で動的に共有される設定情報により、緩衝領域の範囲が設定される。そのため、無線通信システムの運用時の状況に適した緩衝領域に関する設定情報に従って、緩衝領域の配置を動的に変更することができる。その結果、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合でも、より適切に無線通信を行うことができるようになる。このような作用は、5Gシステムにおいて、eMBB、URLLC、mMTCなどの多様な無線サービスを実現するうえで有用である。 According to another aspect of the third embodiment disclosed above, the range of the buffer area is set by setting information dynamically shared between the transmission device and the reception device during operation of the wireless communication system. The Therefore, the arrangement of the buffer areas can be dynamically changed according to the setting information related to the buffer areas suitable for the situation during operation of the wireless communication system. As a result, even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, radio communication can be performed more appropriately. Such an operation is useful for realizing various wireless services such as eMBB, URLLC, and mMTC in the 5G system.
 以上に開示される実施例3の更なる他の一側面によれば、無線通信システムの送信装置と受信装置との間での初期接続に関する処理に用いられる上りリンクの第一無線リソース(PRACH)に対してinter-SCS干渉の影響を及ぼし得る第二無線リソース(例えばPUSCH)の一部の領域に、緩衝領域が配置される。第二無線リソースに配置された緩衝領域により、第二無線リソースから第一無線リソース(PRACH)へのinter-SCS干渉の影響を抑制することができる。また、第二無線リソースに配置された緩衝領域により、第一無線リソース(PRACH)から第二無線リソースへのinter-SCS干渉の影響を抑制することができる。その結果、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合でも、適切に無線通信を行うことができるようになる。このような作用は、5Gシステムにおいて、eMBB、URLLC、mMTCなどの多様な無線サービスを実現するうえで有用である。 According to still another aspect of the third embodiment disclosed above, an uplink first radio resource (PRACH) used for processing related to an initial connection between a transmission device and a reception device of a wireless communication system. A buffer region is arranged in a partial region of the second radio resource (for example, PUSCH) that can affect the inter-SCS interference. The influence of inter-SCS interference from the second radio resource to the first radio resource (PRACH) can be suppressed by the buffer region arranged in the second radio resource. In addition, the buffer region arranged in the second radio resource can suppress the influence of inter-SCS interference from the first radio resource (PRACH) to the second radio resource. As a result, even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, radio communication can be performed appropriately. Such an operation is useful for realizing various wireless services such as eMBB, URLLC, and mMTC in the 5G system.
<実施例4> 実施例4では、第一無線リソースと第二無線リソースとについて、もう一つの具体的な適用例が示される。実施例4の適用例では、一つのサブフレーム内に、複数の第一無線リソースが配置される。この様な第一無線リソースは、例えば、上りリンクの無線リソースの一種であるPUSCHである。第二無線リソースは、RACH(Random Access CHannel)シーケンスにおけるPUSCH(Msg:3)(Msg3 PUSCHとも称され得る)である。なお、上りリンクの場合、受信装置は無線基地局20に相当し、送信装置は無線端末10に相当し得る。 <Example 4> In Example 4, another specific application example is shown about a 1st radio | wireless resource and a 2nd radio | wireless resource. In the application example of the fourth embodiment, a plurality of first radio resources are arranged in one subframe. Such a first radio resource is, for example, PUSCH which is a kind of uplink radio resource. The second radio resource is PUSCH (Msg: 3) (which may also be referred to as Msg3 PUSCH) in a RACH (Random Access CHannel) sequence. In the case of uplink, the receiving device may correspond to the radio base station 20, and the transmitting device may correspond to the radio terminal 10.
 図18は、実施例4に係る無線通信システムにおけるサブフレームの周波数時間空間構造において無線リソースの一部に配置された緩衝領域の一例を示す図である。図18の例では、第一サブキャリア間隔(SCS#1)の第一無線リソースとしてPUSCH(D10)とPUSCH(D11)が配置されている。また、図18の例では、第二サブキャリア間隔(SCS#2)の第二無線リソースとしてMsg3 PUSCH(D20)が配置されている。図18の例示において、第一サブキャリア間隔(SCS#1)のスロット(1slot for SCS#1)は、第二サブキャリア間隔(SCS#2)のもの(1slot for SCS#2)よりも時間軸方向において半分の長さである。 FIG. 18 is a diagram illustrating an example of a buffer area arranged in a part of the radio resource in the frequency space-time structure of the subframe in the radio communication system according to the fourth embodiment. In the example of FIG. 18, PUSCH (D10) and PUSCH (D11) are arranged as the first radio resources of the first subcarrier interval (SCS # 1). In the example of FIG. 18, Msg3gPUSCH (D20) is arranged as the second radio resource at the second subcarrier interval (SCS # 2). In the example of FIG. 18, the slot (1 slot for SCS # 1) of the first subcarrier interval (SCS # 1) has a time axis that is longer than the slot (1 slot for SCS # 2) of the second subcarrier interval (SCS # 2). Half length in direction.
 図18において、第一無線リソースであるPUSCH(D10、D11)の第一サブキャリア間隔(SCS#1)とは異なる第二サブキャリア間隔(SCS#2)の第二無線リソース(D20)の一部に複数の緩衝領域(D201、D202)が配置される。この様に、第一無線リソース(D10、D11)に対してinter-SCS干渉による影響を及ぼし得る第二無線リソース(D20)の一部の領域に複数の緩衝領域(D201、D202)を配置することで、無線通信システムにおける送信装置と受信装置との間での上りリンクのデータ伝送を適切に実行することができる。 In FIG. 18, one second radio resource (D20) having a second subcarrier interval (SCS # 2) different from the first subcarrier interval (SCS # 1) of PUSCH (D10, D11), which is the first radio resource. A plurality of buffer areas (D201, D202) are arranged in the part. In this way, a plurality of buffer areas (D201, D202) are arranged in a partial area of the second radio resource (D20) that may affect the first radio resources (D10, D11) due to inter-SCS interference. Thus, uplink data transmission can be appropriately performed between the transmission device and the reception device in the wireless communication system.
 緩衝領域(D201)は、第二無線リソースにおいて、例えば、第一無線リソース(D10)に近接する領域に配置されてもよい。緩衝領域(D202)は、第二無線リソースにおいて、例えば、第一無線リソース(D11)に近接する領域に配置されてもよい。図18に例示される緩衝領域(D201)は、周波数軸方向において、第一無線リソース(D10)と隣接する位置に配置される。図18に例示される緩衝領域(D202)は、周波数軸方向において、第一無線リソース(D11)と隣接する位置に配置される。ここで、周波数軸方向において隣接するとは、必ずしも周波数軸方向における両者の配置が連続するとは限らない。例えば、第一無線リソース(D10)と緩衝領域(D201)とは、inter-SCS干渉の影響を抑制し得る程度に周波数軸方向における近接性を有していればよい。第一無線リソース(D11)と緩衝領域(D202)についても同様である。 The buffer area (D201) may be arranged in the second radio resource, for example, in an area close to the first radio resource (D10). The buffer area (D202) may be arranged in the second radio resource, for example, in an area close to the first radio resource (D11). The buffer region (D201) illustrated in FIG. 18 is arranged at a position adjacent to the first radio resource (D10) in the frequency axis direction. The buffer region (D202) illustrated in FIG. 18 is arranged at a position adjacent to the first radio resource (D11) in the frequency axis direction. Here, adjoining in the frequency axis direction does not necessarily mean that the arrangement of both in the frequency axis direction is continuous. For example, the first radio resource (D10) and the buffer area (D201) need only have proximity in the frequency axis direction to such an extent that the influence of inter-SCS interference can be suppressed. The same applies to the first radio resource (D11) and the buffer area (D202).
 また、図18に例示される緩衝領域(D201)は、時間軸方向において、第一無線リソース(D10)と重複する位置に配置される。図18に例示される緩衝領域(D202)は、時間軸方向において、第一無線リソース(D11)と重複する位置に配置される。ここで、時間軸方向において重複するとは、必ずしも時間軸方向において両者の配置が同一の時間幅であるとは限らない。例えば、第一無線リソース(D10)と緩衝領域(D201)とは、inter-SCS干渉の影響を抑制し得る程度に時間軸方向における重複性を有していればよい。別言すると、緩衝領域(D201)は、第一無線リソース(D10)よりも、時間軸方向において短くてもよいし、長くてもよい。第一無線リソース(D11)と緩衝領域(D202)についても同様である。 Further, the buffer area (D201) illustrated in FIG. 18 is arranged at a position overlapping with the first radio resource (D10) in the time axis direction. The buffer area (D202) illustrated in FIG. 18 is arranged at a position overlapping the first radio resource (D11) in the time axis direction. Here, overlapping in the time axis direction does not necessarily mean that both arrangements have the same time width in the time axis direction. For example, the first radio resource (D10) and the buffer area (D201) need only have redundancy in the time axis direction to such an extent that the influence of inter-SCS interference can be suppressed. In other words, the buffer area (D201) may be shorter or longer in the time axis direction than the first radio resource (D10). The same applies to the first radio resource (D11) and the buffer area (D202).
 図18の例示において、緩衝領域(D201)は、周波数軸方向におけるオフセット(offset-1)と、幅(width-1)とにより、周波数軸方向における位置と大きさが示される。周波数軸方向におけるオフセット(offset-1)は、図18に示すサブフレームの周波数時間空間構造における周波数軸方向の基準点からの緩衝領域(D201)の位置を示す。図18において、周波数軸方向におけるオフセット(offset-1)は、第二無線リソース(D20)内での緩衝領域(D201)の相対的な位置を示す値であってもよい。別言すると、周波数軸方向におけるオフセット(offset-1)は、第二無線リソース(D20)の下端を基準位置(0)とした相対的な位置を示す値であってもよい。幅(width-1)は、周波数軸方向における緩衝領域(D201)の大きさ(幅)を示す。 18, the position and size of the buffer region (D201) in the frequency axis direction are indicated by an offset (offset-1) in the frequency axis direction and a width (width-1). The offset (offset-1) in the frequency axis direction indicates the position of the buffer region (D201) from the reference point in the frequency axis direction in the frequency spatio-temporal structure of the subframe shown in FIG. In FIG. 18, the offset (offset-1) in the frequency axis direction may be a value indicating the relative position of the buffer region (D201) in the second radio resource (D20). In other words, the offset (offset-1) in the frequency axis direction may be a value indicating a relative position with the lower end of the second radio resource (D20) as the reference position (0). The width (width-1) indicates the size (width) of the buffer region (D201) in the frequency axis direction.
 図18の例示において、緩衝領域(D202)は、周波数軸方向におけるオフセット(offset-2)と、幅(width-2)とにより、周波数軸方向における位置と大きさが示される。周波数軸方向におけるオフセット(offset-2)は、図18に示すサブフレームの周波数時間空間構造における周波数軸方向の基準点からの緩衝領域(D202)の位置を示す。図18において、周波数軸方向におけるオフセット(offset-2)は、緩衝領域(D202)の相対的な位置を示す値であってもよい。別言すると、周波数軸方向におけるオフセット(offset-2)は、第二無線リソース(D20)の下端を基準位置(0)とした相対的な位置を示す値であってもよい。幅(width-2)は、周波数軸方向における緩衝領域(D202)の大きさ(幅)を示す。 18, the position and size of the buffer region (D202) in the frequency axis direction are indicated by the offset (offset-2) in the frequency axis direction and the width (width-2). The offset (offset-2) in the frequency axis direction indicates the position of the buffer region (D202) from the reference point in the frequency axis direction in the frequency spatio-temporal structure of the subframe shown in FIG. In FIG. 18, the offset (offset-2) in the frequency axis direction may be a value indicating the relative position of the buffer region (D202). In other words, the offset (offset-2) in the frequency axis direction may be a value indicating a relative position with the lower end of the second radio resource (D20) as the reference position (0). The width (width-2) indicates the size (width) of the buffer region (D202) in the frequency axis direction.
 図18の例示において、緩衝領域(D201)は、時間軸方向におけるオフセット(offset-1)と、幅(width-1)とにより、時間軸方向における位置と大きさが示される。時間軸方向における緩衝領域(D201)の位置と大きさは、例えば、第一無線リソース(D10)の配置に基づいて決定されてもよい。第一無線リソース(D10)の配置は、上りリンクのデータ(UL data)に対する第一無線リソース(D10)の割当てスケジューリングの結果(第一の上りリンクスケジューリング結果とも称され得る)に応じて変更され得る。別言すると、第一の上りリンクスケジューリング結果に応じて、時間軸方向における緩衝領域(D201)の位置(offset-1)と幅(width-1)が決定されてもよい。 18, the position and size of the buffer region (D201) in the time axis direction are indicated by the offset (offset-1) in the time axis direction and the width (width-1). The position and size of the buffer area (D201) in the time axis direction may be determined based on, for example, the arrangement of the first radio resource (D10). The arrangement of the first radio resource (D10) is changed according to the result of allocation scheduling of the first radio resource (D10) to uplink data (UL data) (which may also be referred to as the first uplink scheduling result). obtain. In other words, the position (offset-1) and width (width-1) of the buffer region (D201) in the time axis direction may be determined according to the first uplink scheduling result.
 図18の例示において、緩衝領域(D202)は、時間軸方向におけるオフセット(offset-2)と、幅(width-2)とにより、時間軸方向における位置と大きさが示される。時間軸方向における緩衝領域(D202)の位置と大きさは、例えば、第一無線リソース(D11)の配置に基づいて決定されてもよい。第一無線リソース(D11)の配置は、上りリンクのデータ(UL data)に対する第一無線リソース(D11)の割当てスケジューリングの結果(第二の上りリンクスケジューリング結果とも称され得る)に応じて変更され得る。別言すると、第二の上りリンクスケジューリング結果に応じて、時間軸方向における緩衝領域(D202)の位置(offset-2)と幅(width-2)が決定されてもよい。 18, the position and size of the buffer region (D202) in the time axis direction are indicated by the offset (offset-2) and the width (width-2) in the time axis direction. The position and size of the buffer area (D202) in the time axis direction may be determined based on the arrangement of the first radio resource (D11), for example. The arrangement of the first radio resource (D11) is changed according to the result of allocation scheduling of the first radio resource (D11) for uplink data (UL data) (which may also be referred to as the second uplink scheduling result). obtain. In other words, the position (offset-2) and width (width-2) of the buffer region (D202) in the time axis direction may be determined according to the second uplink scheduling result.
 図18に例示されるように、実施例4に係る第二無線リソースは複数の緩衝領域(D201、D202)を有するため、緩衝領域(D201、D202)に関する設定情報は、緩衝領域(D201、D202)の個数に応じた数の緩衝領域情報を有する。 As illustrated in FIG. 18, since the second radio resource according to the fourth embodiment has a plurality of buffer areas (D201, D202), the setting information regarding the buffer areas (D201, D202) is the buffer areas (D201, D202). ) Of buffer area information corresponding to the number of.
 図19は、実施例4に係る緩衝領域に関する設定情報の構成の一例を概略的に示す図である。図19に例示される設定情報(T10B)は、緩衝領域(D201、D202)に関する情報を示す複数の緩衝領域情報(T11B)と、緩衝領域情報(T11B)の個数Kを示す緩衝領域情報数(T12B)とを含む。2個の第一無線リソース(D10、D11)に対する2個の緩衝領域(D201、D202)が配置される図18の例によれば、設定情報(T10B)は、第一無線リソース(D10)用の緩衝領域(D201)を示す緩衝領域情報(T11B)と、第一無線リソース(D11)用の緩衝領域(D202)を示す緩衝領域情報(T11B)とを有する。この場合、緩衝領域情報数Kは、例えば「2」である。 FIG. 19 is a diagram schematically illustrating an example of the configuration of the setting information related to the buffer area according to the fourth embodiment. The setting information (T10B) illustrated in FIG. 19 includes a plurality of buffer area information (T11B) indicating information related to the buffer areas (D201, D202), and the number of buffer area information indicating the number K of buffer area information (T11B) ( T12B). According to the example of FIG. 18 in which two buffer areas (D201, D202) for two first radio resources (D10, D11) are arranged, the setting information (T10B) is for the first radio resource (D10). Buffer area information (T11B) indicating the buffer area (D201) and buffer area information (T11B) indicating the buffer area (D202) for the first radio resource (D11). In this case, the buffer area information number K is, for example, “2”.
 図19の緩衝領域情報(T11B)は、緩衝領域(D201、D202)を周波数軸上で特定する情報(周波数情報とも称され得る)と、緩衝領域(D201、D202)を時間軸上で特定する情報(時間情報とも称され得る)とを含む。図19の例において、周波数情報は、緩衝領域周波数オフセット(T11B-1)と、緩衝領域周波数帯域幅(T11B-2)とを含む。図19の例において、時間情報は、緩衝領域時間オフセット(T11B-3)と、緩衝領域時間幅(T11B-4)とを含む。緩衝領域情報(T11B)における各情報要素の特徴は、図14と同様であるため、詳細な説明を省略する。 The buffer area information (T11B) in FIG. 19 specifies information (also referred to as frequency information) for specifying the buffer area (D201, D202) on the frequency axis, and specifies the buffer area (D201, D202) on the time axis. Information (which may also be referred to as time information). In the example of FIG. 19, the frequency information includes a buffer region frequency offset (T11B-1) and a buffer region frequency bandwidth (T11B-2). In the example of FIG. 19, the time information includes a buffer area time offset (T11B-3) and a buffer area time width (T11B-4). Since the characteristics of each information element in the buffer area information (T11B) are the same as those in FIG. 14, detailed description thereof is omitted.
 図20は、実施例4に係る無線通信システム1における無線通信のシーケンスの一例を示す図である。図20に例示される無線通信システム1は、上りリンクの送信装置としての無線端末10A及び10Bと、上りリンクの受信装置としての無線基地局20とを有する。無線端末10A、無線端末10B、及び無線基地局20は、例えば、5Gシステムの標準規格に準拠する通信装置であってもよい。 FIG. 20 is a diagram illustrating an example of a wireless communication sequence in the wireless communication system 1 according to the fourth embodiment. The radio communication system 1 illustrated in FIG. 20 includes radio terminals 10A and 10B as uplink transmission apparatuses and a radio base station 20 as an uplink reception apparatus. The radio terminal 10A, the radio terminal 10B, and the radio base station 20 may be communication devices that comply with, for example, a 5G system standard.
 図20に例示されるシーケンスは、上りリンクのデータ送信に関する一連の処理の一部を抜粋したものである。図20の例示では、例えば、無線端末10Aと無線基地局20との間でのコネクション確立に関する処理などについて、図示を省略している。 The sequence illustrated in FIG. 20 is an excerpt of a part of a series of processes related to uplink data transmission. In the illustration of FIG. 20, for example, the processing related to the connection establishment between the radio terminal 10 </ b> A and the radio base station 20 is not shown.
 図20において、無線端末10Aは、上りリンクの無線リソースの割当てを要求するSR(UL Scheduling request)信号を送信してもよい(S41)。例えば、所定の周期で上りリンクの無線リソースを割当てるSPS(Semi-Persistence Scheduling)方式の場合、無線端末10Aは、S41におけるSR信号の送信を実行しないかもしれない。 In FIG. 20, the radio terminal 10A may transmit an SR (UL Scheduling request) signal requesting allocation of uplink radio resources (S41). For example, in the case of an SPS (Semi-Persistence Scheduling) scheme in which uplink radio resources are allocated in a predetermined cycle, the radio terminal 10A may not execute transmission of an SR signal in S41.
 無線端末10Bは、ランダムアクセス手順における上りリンクの共通リソースであるPRACHで、所定のプリアンブル信号(Random Access Preamble)(Msg:1)を無線基地局20へ送信する。なお、S41のSR信号とS42のプリアンブル信号とは、同じ一つのサブフレームで送信されてもよいし、異なるサブフレームで送信されてもよい。また、S41のSR信号の送信タイミングは、S42のプリアンブル信号の送信タイミングよりも、前であってもよいし、後であってもよい。 The radio terminal 10B transmits a predetermined preamble signal (Random Access Preamble) (Msg: 1) to the radio base station 20 using the PRACH, which is an uplink common resource in the random access procedure. Note that the SR signal in S41 and the preamble signal in S42 may be transmitted in the same subframe or in different subframes. Further, the transmission timing of the SR signal in S41 may be before or after the transmission timing of the preamble signal in S42.
 無線基地局20は、例えば、上りリンクのスケジューリング処理を実行し、各無線端末(10A、10B)に対する上りリンク無線リソース(第一無線リソース、第二無線リソース)の割当てを行う(S43)。S43において、無線基地局20は、SR信号を送信した無線端末10Aに対して、第一無線リソース(例えば、図18におけるD10、D11;PUSCH)を割当て得る。S43において、無線基地局20は、プリアンブル信号を送信した無線端末10Bに対して、第二無線リソース(例えば、図18におけるD20;Msg3 PUSCH)を割当て得る。 The radio base station 20 executes, for example, uplink scheduling processing and allocates uplink radio resources (first radio resource, second radio resource) to each radio terminal (10A, 10B) (S43). In S43, the radio base station 20 may allocate the first radio resource (for example, D10, D11; PUSCH in FIG. 18) to the radio terminal 10A that has transmitted the SR signal. In S43, the radio base station 20 can allocate a second radio resource (for example, D20; Msg3MPUSCH in FIG. 18) to the radio terminal 10B that has transmitted the preamble signal.
 無線基地局20は、S43の上りリンク無線リソースのスケジューリング結果に基づいて、無線端末10Bに割当てられた第二無線リソース(Msg3 PUSCH)が、無線端末10Aに割当てられた第一無線リソース(PUSCH)に対してinter-SCS干渉の影響を及ぼし得る程度に、周波数軸方向及び/又は時間軸方向において近接性を有するか否かを判定してもよい(S44)。なお、第一無線リソース(PUSCH)は、第一サブキャリア間隔の無線リソースであり、第二無線リソース(Msg3 PUSCH)は、第一サブキャリア間隔とは異なる第二サブキャリア間隔の無線リソースである。 Based on the scheduling result of the uplink radio resource in S43, the radio base station 20 uses the second radio resource (Msg3 上 り PUSCH) allocated to the radio terminal 10B as the first radio resource (PUSCH) allocated to the radio terminal 10A. It may be determined whether or not there is proximity in the frequency axis direction and / or the time axis direction to such an extent that inter-SCS interference can be affected (S44). The first radio resource (PUSCH) is a radio resource having a first subcarrier interval, and the second radio resource (Msg3 PUSCH) is a radio resource having a second subcarrier interval different from the first subcarrier interval. .
 S44において、無線基地局20は、無線端末10Bに割当てられた第二無線リソース(Msg3 PUSCH)が、時間軸方向において、無線端末10Aに割当てられた第一無線リソース(PUSCH)と重複する範囲を有する場合に、第二無線リソースが、第一無線リソースにinter-SCS干渉の影響を及ぼし得ると判定してもよい。 In S44, the radio base station 20 sets a range in which the second radio resource (Msg3 PUSCH) allocated to the radio terminal 10B overlaps with the first radio resource (PUSCH) allocated to the radio terminal 10A in the time axis direction. If so, it may be determined that the second radio resource can affect inter-SCS interference on the first radio resource.
 無線基地局20は、S43の上りリンク無線リソースのスケジューリング結果に基づいて、無線端末10Aに対して割当てた第一無線リソースに関する情報(UL scheduling grant)を、例えばDCIにより、無線端末10Aに送信する(S45)。別言すると、無線基地局20は、第一無線リソースに関する情報(UL scheduling grant)を、DCIの所定の情報フィールドに格納してもよい。この様なDCIは、例えば、PDCCHで送信されてもよいし、EPDCCHで送信されてもよい。 Based on the scheduling result of the uplink radio resource in S43, the radio base station 20 transmits information (UL 第一 scheduling grant) related to the first radio resource allocated to the radio terminal 10A to the radio terminal 10A by DCI, for example. (S45). In other words, the radio base station 20 may store information on the first radio resource (UL scheduling) in a predetermined information field of DCI. Such DCI may be transmitted by PDCCH, for example, and may be transmitted by EPDCCH.
 無線基地局20は、第二無線リソース(Msg3 PUSCH)が、第一無線リソース(PUSCH)にinter-SCS干渉の影響を及ぼし得ると判定した場合、第二無線リソース(Msg3 PUSCH)の一部の領域に配置される緩衝領域に関する設定情報(Buffer area configuration)を、例えばDCIにより、無線端末10Bへ送信する(S46)。別言すると、無線基地局20は、緩衝領域に関する設定情報(Buffer area configuration)を、DCIの所定の情報フィールドに格納してもよい。S46のDCIには、無線端末10Bに対して割当てた第二無線リソース(Msg3 PUSCH)に関する情報(UL scheduling grant(Msg:2))が格納されてもよい。この様なDCIは、例えば、PDCCHで送信されてもよいし、EPDCCHで送信されてもよい。S46において、無線基地局20は、緩衝領域に関する設定情報(Buffer area configuration)を含むDCIを、PDCCH又はEPDCCHで送信し、第二無線リソース(Msg3 PUSCH)に関する情報(UL scheduling grant(Msg:2))を、PDSCHで送信してもよい。例えば、無線基地局20は、第二無線リソース(Msg3 PUSCH)に関する情報(UL scheduling grant(Msg:2))を格納したランダムアクセス応答(RA response)メッセージを、PDSCHで送信してもよい(S46)。 When the radio base station 20 determines that the second radio resource (Msg3 PUSCH) can affect inter-SCS interference on the first radio resource (PUSCH), a part of the second radio resource (Msg3 PUSCH) The setting information (Buffer area configuration) regarding the buffer area arranged in the area is transmitted to the wireless terminal 10B by DCI, for example (S46). In other words, the radio base station 20 may store setting information (Buffer area configuration) related to the buffer area in a predetermined information field of DCI. In the DCI of S46, information (UL scheduling grant (Msg: 2)) regarding the second radio resource (Msg3 PUSCH) allocated to the radio terminal 10B may be stored. Such DCI may be transmitted by PDCCH, for example, and may be transmitted by EPDCCH. In S46, the radio base station 20 transmits DCI including setting information (Buffer area configuration) related to the buffer area by PDCCH or EPDCCH, and information (UL scheduling grant (Msg: 2) about the second radio resource (Msg3 PUSCH) ) May be transmitted on the PDSCH. For example, the radio base station 20 may transmit a random access response (RA response) message storing information on the second radio resource (Msg3 PUSCH) (UL schedulingMgrant (Msg: 2)) using the PDSCH (S46). ).
 実施例4に係る緩衝領域に関する設定情報(Buffer area configuration)は、上りリンクの送信装置としての無線端末10Bが当該設定情報を上りリンクの受信装置としての無線基地局20から受信することで、無線端末10Bと無線基地局20との間で共有される。この場合、S46のDCIのフォーマットは、例えば、Format0_0やFormat0_1などであってもよく、TS38.211§7.3.1.1 DCI formats for scheduling of PUSCHに詳しい。別言すると、S46のDCIは、TS38.211§7.3.1.1に詳述されるDCIフォーマットに、本実施例に係る緩衝領域を示す設定情報が追加された構成であってもよい。 The configuration information (Buffer area configuration) related to the buffer area according to the fourth embodiment is obtained when the radio terminal 10B as the uplink transmission device receives the setting information from the radio base station 20 as the uplink reception device. It is shared between the terminal 10B and the radio base station 20. In this case, the DCI format of S46 may be, for example, Format0_0 or Format0_1, and is detailed in TS38.211 §7.3.1.1 DCI formats for scheduling of PUSCH. In other words, the DCI in S46 may have a configuration in which setting information indicating the buffer area according to the present embodiment is added to the DCI format detailed in TS 38.211 §7.3.1.1.
 図20の例において、S45のDCIとS46のDCIとは、同じ一つのサブフレームで送信されてもよいし、異なるサブフレームで送信されてもよい。 In the example of FIG. 20, the DCI of S45 and the DCI of S46 may be transmitted in the same subframe or may be transmitted in different subframes.
 無線端末10Aは、第一無線リソースに関する情報(UL scheduling grant)に従って、上りリンクのデータ(UL data)がマッピングされた第一無線リソース(PUSCH)を送信する(S47)。 The radio terminal 10A transmits the first radio resource (PUSCH) to which the uplink data (UL data) is mapped according to the information about the first radio resource (UL scheduling data) (S47).
 無線端末10Bは、第二無線リソースに関する情報(UL scheduling grant(Msg:2))に従って、上りリンクのデータ(UL data)として、ランダムアクセス手順におけるRRC接続要求メッセージ(Msg:3)を送信する(S48)。S48において、無線端末10Bは、緩衝領域に関する設定情報(Buffer area configuration)に従って、RRC接続要求メッセージ(Msg:3)がマッピングされる第二無線リソースに緩衝領域を配置し、緩衝領域を含みかつRRC接続要求メッセージ(Msg:3)がマッピングされた第二無線リソース(UL data (Msg:3)(with Buffer area) [PUSCH])(Msg3 PUSCH (with Buffer area)とも称され得る)を送信する(S48)。 The radio terminal 10B transmits an RRC connection request message (Msg: 3) in the random access procedure as uplink data (UL data) according to the information (UL scheduling grant (Msg: 2)) regarding the second radio resource ( S48). In S48, the radio terminal 10B arranges the buffer area in the second radio resource to which the RRC connection request message (Msg: 3) is mapped according to the setting information (Buffer area configuration) related to the buffer area, includes the buffer area, and RRC. Transmit the second radio resource (UL data (Msg: 3) (with Buffer area) [PUSCH]) (also called Msg3 PUSCH (with Buffer area)) to which the connection request message (Msg: 3) is mapped ( S48).
 図20の例において、S47の第一無線リソース(PUSCH)とS48の第二無線リソース(Msg3 PUSCH(with Buffer area))とは、同じ一つのサブフレームで送信されてもよいし、異なるサブフレームで送信されてもよい。 In the example of FIG. 20, the first radio resource (PUSCH) in S47 and the second radio resource (Msg3 PUSCH (with Buffer area)) in S48 may be transmitted in the same subframe, or different subframes. May be transmitted.
 S47の第一無線リソース(PUSCH)とS48の第二無線リソース(Msg3 PUSCH(with Buffer area))とが、同じ一つのサブフレームで送信される場合であっても、第二無線リソースに配置された緩衝領域により、第二無線リソースから第一無線リソースへのinter-SCS干渉の影響を抑制し得る。また、第二無線リソースに配置された緩衝領域により、第一無線リソースから第二無線リソースへのinter-SCS干渉の影響を抑制し得る。 Even if the first radio resource (PUSCH) of S47 and the second radio resource (Msg3 PUSCH (with Buffer area)) of S48 are transmitted in the same subframe, they are arranged in the second radio resource. The buffer region can suppress the influence of inter-SCS interference from the second radio resource to the first radio resource. In addition, the buffer area arranged in the second radio resource can suppress the influence of inter-SCS interference from the first radio resource to the second radio resource.
 無線基地局20は、S46で無線端末10Bと共有した緩衝領域に関する設定情報(Buffer area configuration)に従って、緩衝領域を含む第二無線リソース(Msg3 PUSCH(with Buffer area))から、上りリンクのデータ(UL data)としてのRRC接続要求メッセージを受信し得る。また、無線基地局20は、S47で無線端末10Aから送信された第一無線リソース(PUSCH)を受信し得る。 The radio base station 20 transmits uplink data (Msg3 PUSCH (with Buffer area)) from the second radio resource (Msg3 PUSCH (with Buffer area)) according to the setting information (Buffer area configuration) related to the buffer area shared with the radio terminal 10B in S46. RRC connection request message as UL data) may be received. Also, the radio base station 20 can receive the first radio resource (PUSCH) transmitted from the radio terminal 10A in S47.
 以上が、実施例4における第一無線リソースと第二無線リソースとの具体的な適用例である。なお、実施例4において説明を省略した点については、実施例1などと同様であるため、適宜、実施例1などの説明を参照されたい。 The above is a specific application example of the first radio resource and the second radio resource in the fourth embodiment. Since the points omitted in the fourth embodiment are the same as those in the first embodiment, refer to the description of the first embodiment as appropriate.
 以上に開示される実施例4の一側面によれば、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いる場合に、第一サブキャリア間隔の第一無線リソースとは異なる第二サブキャリア間隔の第二無線リソースにおいて、緩衝領域が配置される。第二無線リソースに緩衝領域を配置することで、第二無線リソースと第一無線リソースとの間でのinter-SCS干渉の影響を抑制することができる。その結果、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合でも、適切に無線通信を行うことができるようになる。このような作用は、5Gシステムにおいて、eMBB、URLLC、mMTCなどの多様な無線サービスを実現するうえで有用である。 According to one aspect of the fourth embodiment disclosed above, when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, the first radio resources having the first subcarrier interval are used. A buffer area is arranged in the second radio resource having a second subcarrier interval different from that of the first subcarrier. By arranging the buffer area in the second radio resource, it is possible to suppress the influence of inter-SCS interference between the second radio resource and the first radio resource. As a result, even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, radio communication can be performed appropriately. Such an operation is useful for realizing various wireless services such as eMBB, URLLC, and mMTC in the 5G system.
 以上に開示される実施例4の他の一側面によれば、無線通信システムの運用時に、送信装置と受信装置との間で動的に共有される設定情報により、緩衝領域の範囲が設定される。そのため、無線通信システムの運用時の状況に適した緩衝領域に関する設定情報に従って、緩衝領域の配置を動的に変更することができる。その結果、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合でも、より適切に無線通信を行うことができるようになる。このような作用は、5Gシステムにおいて、eMBB、URLLC、mMTCなどの多様な無線サービスを実現するうえで有用である。 According to another aspect of the fourth embodiment disclosed above, the range of the buffer area is set by setting information dynamically shared between the transmission device and the reception device during operation of the wireless communication system. The Therefore, the arrangement of the buffer areas can be dynamically changed according to the setting information related to the buffer areas suitable for the situation during operation of the wireless communication system. As a result, even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, radio communication can be performed more appropriately. Such an operation is useful for realizing various wireless services such as eMBB, URLLC, and mMTC in the 5G system.
 以上に開示される実施例4の更なる他の一側面によれば、無線通信システムの送信装置と受信装置との間でのランダムアクセス手順におけるRRC接続要求メッセージ(Msg:3)がマッピングされる第二無線リソース(Msg3 PUSCH)と、上りリンクのデータがマッピングされる第一無線リソース(PUSCH)とが、inter-SCS干渉の影響を受け得る場合、第二無線リソース(Msg3 PUSCH)の一部の領域に緩衝領域が配置される。第二無線リソース(Msg3 PUSCH)に配置された緩衝領域により、第二無線リソース(Msg3 PUSCH)から第一無線リソース(PUSCH)へのinter-SCS干渉の影響を抑制することができる。また、第二無線リソース(Msg3 PUSCH)に配置された緩衝領域により、第一無線リソース(PUSCH)から第二無線リソース(Msg3 PUSCH)へのinter-SCS干渉の影響を抑制することができる。その結果、複数の異なるサブキャリア間隔(SCS)により規定された無線リソースを含む無線フレーム構造を用いた場合でも、適切に無線通信を行うことができるようになる。このような作用は、5Gシステムにおいて、eMBB、URLLC、mMTCなどの多様な無線サービスを実現するうえで有用である。 According to still another aspect of the fourth embodiment disclosed above, the RRC connection request message (Msg: 3) in the random access procedure between the transmission device and the reception device of the wireless communication system is mapped. When the second radio resource (Msg3gPUSCH) and the first radio resource (PUSCH) to which uplink data is mapped can be affected by inter-SCS interference, a part of the second radio resource (Msg3 PUSCH) The buffer area is arranged in the area. The buffer region arranged in the second radio resource (Msg3gPUSCH) can suppress the influence of inter-SCS interference from the second radio resource (Msg3 PUSCH) to the first radio resource (PUSCH). In addition, the buffer area arranged in the second radio resource (Msg3 PUSCH) can suppress the influence of inter-SCS interference from the first radio resource (PUSCH) to the second radio resource (Msg3 PUSCH). As a result, even when a radio frame structure including radio resources defined by a plurality of different subcarrier intervals (SCS) is used, radio communication can be performed appropriately. Such an operation is useful for realizing various wireless services such as eMBB, URLLC, and mMTC in the 5G system.
 <ハードウェア構成> 最後に、以上に開示する各実施例に用いられる装置のハードウェア構成について、簡単に説明する。図21は、無線通信システム1における無線端末(UE)10と無線基地局(gNB)20とのハードウェア構成の一例を示す図である。UE10は、上りリンクにおける送信装置の一例であり、下りリンクにおける受信装置の一例である。gNB20は、上りリンクにおける受信装置の一例であり、下りリンクにおける送信装置の一例である。 <Hardware configuration> Finally, the hardware configuration of the apparatus used in each of the embodiments disclosed above will be briefly described. FIG. 21 is a diagram illustrating an example of a hardware configuration of the radio terminal (UE) 10 and the radio base station (gNB) 20 in the radio communication system 1. The UE 10 is an example of an uplink transmission device and an example of a downlink reception device. The gNB 20 is an example of a reception device in the uplink and an example of a transmission device in the downlink.
 図21におけるUE10は、無線通信回路101、処理回路102、メモリ103を有する。なお、UE10は、アンテナや、液晶ディスプレイなどの表示装置や、タッチパネルなどの入力装置や、リチウムイオン二次電池(lithium-ion rechargeable battery)などのバッテリなどを備えてもよい。 21 includes a wireless communication circuit 101, a processing circuit 102, and a memory 103. Note that the UE 10 may include an antenna, a display device such as a liquid crystal display, an input device such as a touch panel, a battery such as a lithium-ion rechargeable battery.
 無線通信回路101は、処理回路102からベースバンド信号(無線信号、デジタル無線信号と称され得る)の供給を受けて、当該ベースバンド信号から所定の出力レベルの無線信号(第二の無線信号、アナログ無線信号と称され得る)を生成し、アンテナを介して無線信号を空間に放射するように構成される。これにより、UE10は、gNB20に無線信号を送信することができる。また、無線通信回路101は、アンテナから入力される無線信号を受信し、無線信号をベースバンド信号に変換し、処理回路102にベースバンド信号を供給するように構成される。これにより、UE10は、gNB20からの無線信号を受信することができる。上述のように、無線通信回路101は、無線信号の送受信が可能となるように構成され、gNB20との無線通信を行う機能を有する。 The wireless communication circuit 101 receives a baseband signal (which may be referred to as a wireless signal or a digital wireless signal) from the processing circuit 102, and receives a wireless signal (second wireless signal, Configured to radiate the radio signal to space via an antenna. Thereby, UE10 can transmit a radio signal to gNB20. The wireless communication circuit 101 is configured to receive a wireless signal input from an antenna, convert the wireless signal into a baseband signal, and supply the baseband signal to the processing circuit 102. Thereby, UE10 can receive the radio signal from gNB20. As described above, the wireless communication circuit 101 is configured to be able to transmit and receive wireless signals and has a function of performing wireless communication with the gNB 20.
 無線通信回路101は、UE10内部に実装された伝送回路を介して処理回路102と通信可能に接続され得る。この様な伝送回路としては、例えば、M-PHY、Dig-RFなどの規格に準拠した伝送回路が挙げられる。 The wireless communication circuit 101 can be communicably connected to the processing circuit 102 via a transmission circuit mounted inside the UE 10. Examples of such a transmission circuit include a transmission circuit compliant with standards such as M-PHY and Dig-RF.
 処理回路102(プロセッサ回路、演算回路と称され得る)は、ベースバンド信号処理を行うように構成される回路である。処理回路102は、無線通信システム1におけるプロトコルスタックに基づいてベースバンド信号(無線信号、デジタル無線信号と称され得る)を生成し、無線通信回路101にベースバンド信号を出力するように構成される。また、処理回路102は、無線通信回路101から入力されたベースバンド信号に対して、無線通信システム1におけるプロトコルスタックに基づいて復調・復号などの受信処理を行うように構成される。別言すれば、上りリンクにおいて、処理回路102は、無線通信の機能を複数のレイヤに分割したプロトコルスタックの手順に従って、gNB20宛ての第一データを上位層から下位レイヤへと送信データを順次処理して得られた第二データに基づいて、無線通信回路101に無線信号を送信させる回路としての側面を有する。また、処理回路102は、無線通信の機能を複数のレイヤに分割したプロトコルスタックの手順に従って、無線通信回路101を介して受信した無線信号を、下位レイヤから上位層へと順次処理する回路としての側面を有する。ここで、無線通信回路101からベースバンド信号の入力を受けることは、無線通信回路101を介してgNB20からの無線信号を受信するという側面を有する。 The processing circuit 102 (which may be referred to as a processor circuit or an arithmetic circuit) is a circuit configured to perform baseband signal processing. The processing circuit 102 is configured to generate a baseband signal (which may be referred to as a wireless signal or a digital wireless signal) based on a protocol stack in the wireless communication system 1 and output the baseband signal to the wireless communication circuit 101. . The processing circuit 102 is configured to perform reception processing such as demodulation and decoding on the baseband signal input from the wireless communication circuit 101 based on the protocol stack in the wireless communication system 1. In other words, in the uplink, the processing circuit 102 sequentially processes the first data addressed to the gNB 20 from the upper layer to the lower layer according to the protocol stack procedure in which the wireless communication function is divided into a plurality of layers. Based on the second data obtained in this way, the wireless communication circuit 101 has a side as a circuit that transmits a wireless signal. The processing circuit 102 is a circuit that sequentially processes a radio signal received via the radio communication circuit 101 from a lower layer to an upper layer according to a protocol stack procedure in which the radio communication function is divided into a plurality of layers. It has a side. Here, receiving a baseband signal input from the wireless communication circuit 101 has a side of receiving a wireless signal from the gNB 20 via the wireless communication circuit 101.
 処理回路102は、例えば、メモリ103に格納されたプログラムを読みだして実行することで、上述の各実施例に係るUE10の動作を実現する演算装置であってもよい。別言すると、処理回路102は、上述の各実施例に係るUE10の動作(例えば、図6、図8、図9、図15、図17、図20に示される動作)における処理の流れの実行主体としての側面を有する。処理回路102として、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、これらの組合せなどが挙げられる。なお、処理回路102は、二以上のコアを含むマルチコアプロセッサであっても良い。また、処理回路102は、無線通信システム1のプロトコルスタックにおける各レイヤに応じて、二以上の処理回路102を実装してもよい。 The processing circuit 102 may be an arithmetic device that realizes the operation of the UE 10 according to each of the above-described embodiments by reading and executing a program stored in the memory 103, for example. In other words, the processing circuit 102 executes the processing flow in the operation of the UE 10 according to each of the above-described embodiments (for example, the operations shown in FIGS. 6, 8, 9, 15, 17, and 20). It has a side as a subject. Examples of the processing circuit 102 include a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), and combinations thereof. Note that the processing circuit 102 may be a multi-core processor including two or more cores. Further, the processing circuit 102 may include two or more processing circuits 102 according to each layer in the protocol stack of the wireless communication system 1.
 処理回路102は、C-CPUと称されてもよい。UE10は、処理回路102の他に、アプリケーションを実行するA-CPUとも称され得るプロセッサ回路を実装してもよい。なお、処理回路102は、A-CPUとも称され得るプロセッサ回路とともに1チップで実装してもよいし、個別のチップとして実装してもよい。上述のように、処理回路102は、UE10の動作を制御する機能を有する制御部としての側面を有する。 The processing circuit 102 may be referred to as a C-CPU. In addition to the processing circuit 102, the UE 10 may include a processor circuit that may be referred to as an A-CPU that executes an application. The processing circuit 102 may be mounted on a single chip together with a processor circuit that may be referred to as an A-CPU, or may be mounted as an individual chip. As described above, the processing circuit 102 has a side surface as a control unit having a function of controlling the operation of the UE 10.
 メモリ103は、処理回路102で実行されるベースバンド信号処理に係るデータやプログラムを記憶保持するように構成される回路である。メモリ103は、不揮発性記憶装置と揮発性記憶装置の両方あるいは一方を少なくとも含んで構成される。たとえば、RAM(Random Access Memory)、ROM(Read Only Memory)、SSD(Solid State Drive)、HDD(Hard Disk Drive)などが挙げられる。図21において、メモリ103は、主記憶装置及び補助記憶装置などの各種記憶装置を総称したものである。なお、メモリ103は、処理回路102と同様に、無線通信システム1のプロトコルスタックにおける各レイヤに応じて、二以上のメモリ103を実装してもよい。 The memory 103 is a circuit configured to store and hold data and programs related to baseband signal processing executed by the processing circuit 102. The memory 103 includes at least one or both of a nonvolatile storage device and a volatile storage device. Examples include RAM (Random Access Memory), ROM (Read Only Memory), SSD (Solid State Drive), HDD (Hard Disk Drive), and the like. In FIG. 21, a memory 103 is a general term for various storage devices such as a main storage device and an auxiliary storage device. Similar to the processing circuit 102, the memory 103 may include two or more memories 103 according to each layer in the protocol stack of the wireless communication system 1.
 図21に例示されるgNB20は、無線通信回路201、処理回路202、メモリ203、有線通信回路204、を有する。 21 includes a wireless communication circuit 201, a processing circuit 202, a memory 203, and a wired communication circuit 204.
 無線通信回路201は、下りリンクにおいて、処理回路202からのベースバンド信号を受けて、ベースバンド信号から所定の出力レベルの無線信号を生成し、アンテナを介して無線信号を空間に放射するように構成される。また、無線通信回路201は、アップリンクにおいて、アンテナから入力される無線信号を受信し、無線信号をベースバンド信号に変換し、処理回路202へベースバンド信号を供給するように構成される。無線通信回路201は、CPRI(Common Public Radio Interface)などの伝送路を介して処理回路202と通信可能に接続させることも可能であり、RRH(Remote Radii Head)、RRE(Remote Radio Equipment)とも称され得る。また、無線通信回路201と処理回路202との組み合わせは、一対一に限定されるものではなく、一つの無線通信回路201に複数の処理回路202を対応付けたり、複数の無線通信回路201を一つの処理回路202に対応付けたり、複数の無線通信回路201を複数の処理回路202に対応付けることも可能である。上述のように、無線通信回路201は、UE10との無線通信を行う機能を有する通信部(送受信部、第二の送受信部とも称され得る)としての側面を有する。 The radio communication circuit 201 receives a baseband signal from the processing circuit 202 in the downlink, generates a radio signal having a predetermined output level from the baseband signal, and radiates the radio signal to space via the antenna. Composed. In addition, the radio communication circuit 201 is configured to receive a radio signal input from an antenna in the uplink, convert the radio signal into a baseband signal, and supply the baseband signal to the processing circuit 202. The wireless communication circuit 201 can be communicably connected to the processing circuit 202 via a transmission path such as CPRI (Common Public Radio Interface), and is also referred to as RRH (Remote Radio Head) or RRE (Remote Radio Equipment). Can be done. In addition, the combination of the wireless communication circuit 201 and the processing circuit 202 is not limited to one-to-one, and a plurality of processing circuits 202 are associated with one wireless communication circuit 201 or a plurality of wireless communication circuits 201 are combined. It is also possible to associate one processing circuit 202 or a plurality of wireless communication circuits 201 with a plurality of processing circuits 202. As described above, the wireless communication circuit 201 has a side surface as a communication unit (also referred to as a transmission / reception unit or a second transmission / reception unit) having a function of performing wireless communication with the UE 10.
 処理回路202は、ベースバンド信号処理を行うように構成される回路である。処理回路202は、ダウンリンクにおいて、無線通信システムにおけるプロトコルスタックに基づいてベースバンド信号を生成し、無線通信回路201にベースバンド信号を出力するように構成される。また、処理回路202は、アップリンクにおいて、無線通信回路201から入力されたベースバンド信号に対して、無線通信システムにおけるプロトコルスタックに基づいて復調・復号などの受信処理を行うように構成される。別言すると、下りリンクにおいて、処理回路202は、無線通信の機能を複数のレイヤに分割したプロトコルスタックの手順に従って、受信装置としてのUE10宛ての送信データを、上位レイヤから下位レイヤへと順次処理して、無線通信回路201を介して送信する回路としての側面を有する。また、上りリンクにおいて、処理回路202は、無線通信の機能を複数のレイヤに分割したプロトコルスタックの手順に従って、無線通信回路201を介して受信した無線信号を、下位レイヤから上位レイヤへと順次処理する回路としての側面を有する。ここで、アップリンクにおいて、無線通信回路201からベースバンド信号の入力を受けることは、無線通信回路201を介してUE10からの無線信号を受信するという側面を有する。 The processing circuit 202 is a circuit configured to perform baseband signal processing. The processing circuit 202 is configured to generate a baseband signal based on a protocol stack in the wireless communication system and output the baseband signal to the wireless communication circuit 201 in the downlink. Further, the processing circuit 202 is configured to perform reception processing such as demodulation and decoding on the baseband signal input from the wireless communication circuit 201 on the uplink based on a protocol stack in the wireless communication system. In other words, in the downlink, the processing circuit 202 sequentially processes transmission data addressed to the UE 10 as the receiving apparatus from the upper layer to the lower layer according to the protocol stack procedure in which the wireless communication function is divided into a plurality of layers. Thus, it has a side as a circuit for transmitting via the wireless communication circuit 201. In the uplink, the processing circuit 202 sequentially processes a radio signal received via the radio communication circuit 201 from a lower layer to an upper layer according to a protocol stack procedure in which the radio communication function is divided into a plurality of layers. And has a side surface as a circuit. Here, receiving an input of a baseband signal from the radio communication circuit 201 in the uplink has a side of receiving a radio signal from the UE 10 via the radio communication circuit 201.
 処理回路202は、例えば、メモリ203に格納されたプログラムを読みだして実行することで、上述の各実施例に係るgNB20の動作(例えば、図6、図8、図9、図15、図17、図20に示される動作)を実現する演算装置であってもよい。処理回路202として、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)やFPGA(Field Programmable Gate Array)などが挙げられる。なお、処理回路202は、二以上のコアを含むマルチコアプロセッサであっても良い。また、処理回路202は、無線通信システムのプロトコルスタックにおける各レイヤに応じて、二以上の処理回路202を実装してもよい。例えば、MACレイヤに属するMACエンティティとしての処理を実行する処理回路202と、RLCレイヤに属するRLCエンティティとしての処理を実行する処理回路202と、PDCPレイヤに属するPDCPエンティティとしての処理を実行する処理回路202とを、個別に実装してもよい。上述のように、処理回路202は、無線基地局20の動作を制御する機能を有する制御部(UE10の制御部と区別するために、第二の制御部と称され得る)としての側面を有する。例えば、処理回路202は、各種の設定情報(例えば第一の設定情報、第二の設定情報)をUE10に送信する処理を実行する。なお、各種の設定情報は、制御信号と称されてもよい。 The processing circuit 202 reads and executes a program stored in the memory 203, for example, to thereby operate the gNB 20 according to the above-described embodiments (for example, FIG. 6, FIG. 8, FIG. 9, FIG. 15, FIG. 17). The operation device that realizes the operation shown in FIG. Examples of the processing circuit 202 include a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array). Note that the processing circuit 202 may be a multi-core processor including two or more cores. Further, the processing circuit 202 may include two or more processing circuits 202 according to each layer in the protocol stack of the wireless communication system. For example, a processing circuit 202 that executes processing as a MAC entity belonging to the MAC layer, a processing circuit 202 that executes processing as an RLC entity belonging to the RLC layer, and a processing circuit that executes processing as a PDCP entity belonging to the PDCP layer 202 may be individually implemented. As described above, the processing circuit 202 has a side surface as a control unit having a function of controlling the operation of the radio base station 20 (which may be referred to as a second control unit in order to be distinguished from the control unit of the UE 10). . For example, the processing circuit 202 executes a process of transmitting various setting information (for example, first setting information and second setting information) to the UE 10. Note that various types of setting information may be referred to as control signals.
 メモリ203は、処理回路202で実行されるベースバンド信号処理に係るデータやプログラムを記憶保持するように構成される回路である。メモリ203は、不揮発性記憶装置と揮発性記憶装置の両方あるいは一方を少なくとも含んで構成される。たとえば、RAM(Random Access Memory)、ROM(Read Only Memory)、SSD(Solid State Drive)、HDD(Hard Disk Drive)などが挙げられる。図21において、メモリ203は、主記憶装置及び補助記憶装置などの各種記憶装置を総称したものである。なお、メモリ203は、処理回路202と同様に、無線通信システムのプロトコルスタックにおける各レイヤに応じて、二以上のメモリ203を実装してもよい。例えば、MACレイヤに属するMACエンティティとしての処理に用いられるメモリ203と、RLCレイヤに属するRLCエンティティとしての処理に用いられるメモリ203と、PDCPレイヤに属するPDCPエンティティとしての処理に用いられるメモリ203とを、個別に実装してもよい。 The memory 203 is a circuit configured to store and hold data and programs related to baseband signal processing executed by the processing circuit 202. The memory 203 includes at least a nonvolatile storage device and / or a volatile storage device. Examples include RAM (Random Access Memory), ROM (Read Only Memory), SSD (Solid State Drive), HDD (Hard Disk Drive), and the like. In FIG. 21, a memory 203 is a general term for various storage devices such as a main storage device and an auxiliary storage device. Similar to the processing circuit 202, the memory 203 may include two or more memories 203 depending on each layer in the protocol stack of the wireless communication system. For example, a memory 203 used for processing as a MAC entity belonging to the MAC layer, a memory 203 used for processing as an RLC entity belonging to the RLC layer, and a memory 203 used for processing as a PDCP entity belonging to the PDCP layer May be implemented individually.
 有線通信回路204は、他の装置へ出力可能なフォーマットのパケットデータに変換して他の装置へ送信したり、他の装置から受信したパケットデータからデータなどを抽出して、メモリ203や処理回路202などに出力したりする。他の装置の例としては、他の無線基地局やMME(Mobility Management Entity)やSGW(Serving Gateway)などがあり得る。MMEやSGWはコアノードとも称され、コアノードとの通信に用いられる論理的な通信インタフェースはS1インタフェースとも称され得る。他の無線基地局との通信に用いられる論理的な通信インタフェースはX2インタフェースとも称され得る。 The wired communication circuit 204 converts the packet data into a format that can be output to another device and transmits the packet data to another device, or extracts data from the packet data received from the other device, and the memory 203 or processing circuit Or output to 202 or the like. Examples of other devices include other radio base stations, MME (Mobility Management Entity), SGW (Serving Gateway), and the like. The MME and SGW are also called core nodes, and the logical communication interface used for communication with the core nodes can also be called S1 interfaces. A logical communication interface used for communication with other radio base stations may also be referred to as an X2 interface.
 以上の詳細な説明により、本開示の特徴点及び利点は明らかになるであろう。これは、特許請求の範囲がその精神及び権利範囲を逸脱しない範囲で前述のような本開示の特徴点及び利点にまで及ぶことを意図するものである。また、当該技術分野において通常の知識を有する者であれば、あらゆる改良及び変更に容易に想到できるはずである。したがって、発明性を有する開示の範囲を前述したものに限定する意図はなく、本明細書に開示された範囲に含まれる適当な改良物及び均等物に拠ることも可能である。例えば、本明細書に開示の各工程は、必ずしも処理の流れの一例として説明された順序に沿って時系列に処理する必要はなく、特許請求の範囲に記載された本発明の要旨の範囲内において、工程の順序を入れ替えてもよく、あるいは複数の工程を並列的に実行してもよい。なお、以上の詳細な説明で明らかにされる5Gシステムに生じ得る事情は、5Gシステムを一側面から検討した場合に見出し得るものであり、他の側面から検討した場合には、他の事情が見出され得ることに留意されたい。別言すると、本発明の特徴点及び利点は、以上の詳細な説明に明記された事情を解決する用途に限定されるものではない。 The features and advantages of the present disclosure will become apparent from the above detailed description. This is intended to cover the above features and advantages of the present disclosure without departing from the spirit and scope of the claims. Any person having ordinary knowledge in the technical field should be able to easily come up with any improvements and changes. Accordingly, there is no intention to limit the scope of the disclosure having inventive features to those described above, and appropriate improvements and equivalents included in the scope disclosed in the present specification can also be used. For example, the steps disclosed in this specification do not necessarily have to be processed in chronological order in the order described as an example of the processing flow, and are within the scope of the gist of the present invention described in the claims. , The order of the steps may be changed, or a plurality of steps may be executed in parallel. The situation that can occur in the 5G system, which is clarified in the above detailed description, can be found when the 5G system is examined from one side. When the other side is examined, there are other situations. Note that it can be found. In other words, the features and advantages of the present invention are not limited to applications that solve the circumstances specified in the above detailed description.
 最後に、本開示における各実施例及び変形例の構成は、本発明の技術的思想を具体化するための一例を示したものであり、本発明をこれら各実施例及び変形例の構成に限定することを意図するものではなく、特許請求の範囲に含まれるその他の実施形態にも等しく適用し得るものである。例えば、本開示における用語は、今後の5Gシステムの仕様策定において、名称が変更され得ることに留意されたい。また、本開示における用語に対して列挙される一以上の別称は、相互に同義であり得ることに留意されたい。 Finally, the configuration of each embodiment and modification in the present disclosure is an example for embodying the technical idea of the present invention, and the present invention is limited to the configuration of each embodiment and modification. And is equally applicable to other embodiments within the scope of the claims. For example, it should be noted that the terms in this disclosure may be renamed in future 5G system specifications. It should also be noted that one or more alternative names listed for a term in the present disclosure may be synonymous with each other.
1 無線通信システム
10 無線端末(UE)
101 無線通信回路
102 処理回路
103 メモリ
20 無線基地局(gNB)
201 無線通信回路
202 処理回路
203 メモリ
204 有線通信回路
1 wireless communication system 10 wireless terminal (UE)
101 wireless communication circuit 102 processing circuit 103 memory 20 wireless base station (gNB)
201 wireless communication circuit 202 processing circuit 203 memory 204 wired communication circuit

Claims (15)

  1.  少なくとも一以上のサブキャリア間隔を有する複数の副搬送波により一以上の受信装置との無線通信が可能な送信装置であって、
     前記複数の副搬送波が時間軸方向と周波数軸方向とにより区画された無線リソースのうち、第一サブキャリア間隔の副搬送波を有する第一無線リソースとは前記周波数軸方向において異なる第二無線リソースであって、前記第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有する前記第二無線リソースについて、前記第二無線リソースが有する前記第二サブキャリア間隔を有する副搬送波のうち少なくとも一部の副搬送波において配置される緩衝領域を示す設定情報を、前記一以上の受信装置の少なくとも一つと共有し、
     前記第二無線リソースに対して、前記設定情報に従って送信データを割当てて無線送信する、
    ことを特徴とする送信装置。
    A transmitter capable of wireless communication with one or more receivers by a plurality of subcarriers having at least one subcarrier interval,
    Among the radio resources in which the plurality of subcarriers are partitioned by the time axis direction and the frequency axis direction, the first radio resources having subcarriers at the first subcarrier interval are second radio resources that are different in the frequency axis direction. The second radio resource having a subcarrier having a second subcarrier interval different from the first subcarrier interval is at least one of the subcarriers having the second subcarrier interval that the second radio resource has. Sharing setting information indicating a buffer area arranged in a subcarrier of a part with at least one of the one or more receiving devices;
    For the second radio resource, transmission data is allocated according to the setting information and transmitted by radio.
    A transmission apparatus characterized by the above.
  2.  請求項1の送信装置であって、
     前記第一無線リソースと前記第二無線リソースとは、前記周波数軸方向に重複せず、前記周波数軸方向において近接し、
     前記設定情報は、前記第一無線リソースと前記時間軸方向において重複する前記第二無線リソースの部分に配置される前記緩衝領域の位置を示す、
    ことを特徴とする送信装置。
    The transmission device according to claim 1,
    The first radio resource and the second radio resource do not overlap in the frequency axis direction and are close in the frequency axis direction,
    The setting information indicates a position of the buffer area arranged in a part of the second radio resource overlapping with the first radio resource in the time axis direction.
    A transmission apparatus characterized by the above.
  3.  請求項1又は2の送信装置であって、
     前記設定情報は、下りリンク制御情報(DCI:Downlink Control Information)により、前記送信装置と前記受信装置との間で共有される、
    ことを特徴とする送信装置。
    The transmission device according to claim 1 or 2,
    The setting information is shared between the transmitting device and the receiving device by downlink control information (DCI).
    A transmission apparatus characterized by the above.
  4.  請求項1ないし3のいずれか一つの送信装置であって、
     前記設定情報は、リソースエレメントの単位、又は、複数の前記リソースエレメントで構成されるリソースブロックの単位により、前記緩衝領域の位置を示す、
    ことを特徴とする送信装置。
    The transmission device according to any one of claims 1 to 3,
    The setting information indicates a position of the buffer area by a resource element unit or a resource block unit composed of a plurality of resource elements.
    A transmission apparatus characterized by the above.
  5.  請求項1ないし4のいずれか一つの送信装置であって、
     前記送信装置は無線基地局であり、
     前記受信装置は無線端末であり、
     前記第一無線リソースはSS/PBCH(Synchronization Signal / Physical Broad CHannel)ブロックであり、
     前記第二無線リソースはPDSCH(Physical Downlink Shared CHannel)である、
    ことを特徴とする送信装置。
    The transmission device according to any one of claims 1 to 4, comprising:
    The transmitter is a radio base station;
    The receiving device is a wireless terminal;
    The first radio resource is an SS / PBCH (Synchronization Signal / Physical Broad CHannel) block,
    The second radio resource is PDSCH (Physical Downlink Shared CHannel),
    A transmission apparatus characterized by the above.
  6.  請求項1ないし4のいずれか一つの送信装置であって、
     前記送信装置は無線端末であり、
     前記受信装置は無線基地局であり、
     前記第一無線リソースはPRACH(Physical Random Access CHannel)又はMsg3 PUSCH(Message3 Physical Uplink Shared CHannel)であり、
     前記第二無線リソースは前記Msg3 PUSCH以外のPUSCH(Physical Uplink Shared CHannel)である、
    ことを特徴とする送信装置。
    The transmission device according to any one of claims 1 to 4, comprising:
    The transmitting device is a wireless terminal;
    The receiving device is a radio base station;
    The first radio resource is PRACH (Physical Random Access CHannel) or Msg3 PUSCH (Message3 Physical Uplink Shared CHannel),
    The second radio resource is a PUSCH (Physical Uplink Shared CHannel) other than the Msg3 PUSCH.
    A transmission apparatus characterized by the above.
  7.  少なくとも一以上のサブキャリア間隔を有する複数の副搬送波により送信装置との無線通信が可能な受信装置であって、
     前記複数の副搬送波が時間軸方向と周波数軸方向とにより区画された無線リソースのうち、第一サブキャリア間隔の副搬送波を有する第一無線リソースとは前記周波数軸方向において異なる第二無線リソースであって、前記第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有する前記第二無線リソースについて、前記第二無線リソースが有する前記第二サブキャリア間隔を有する副搬送波のうち少なくとも一部の副搬送波において配置される緩衝領域を示す設定情報を、前記送信装置と共有し、
     前記送信装置から送信された前記第二無線リソースからデータをデコードする際に、前記設定情報に示される前記緩衝領域に相当する前記第二無線リソースの部分をデコード対象から除外する、
    ことを特徴とする受信装置。
    A receiving device capable of wireless communication with a transmitting device by a plurality of subcarriers having at least one subcarrier interval,
    Among the radio resources in which the plurality of subcarriers are partitioned by the time axis direction and the frequency axis direction, the first radio resources having subcarriers at the first subcarrier interval are second radio resources that are different in the frequency axis direction. The second radio resource having a subcarrier having a second subcarrier interval different from the first subcarrier interval is at least one of the subcarriers having the second subcarrier interval that the second radio resource has. Sharing setting information indicating a buffer area arranged in a subcarrier of a part with the transmission device,
    When decoding data from the second radio resource transmitted from the transmission device, excluding a part of the second radio resource corresponding to the buffer area indicated in the setting information from decoding targets,
    A receiving apparatus.
  8.  請求項7の受信装置であって、
     前記第一無線リソースと前記第二無線リソースとは、前記周波数軸方向に重複せず、前記周波数軸方向において近接し、
     前記設定情報は、前記第一無線リソースと前記時間軸方向において重複する前記第二無線リソースの部分に配置される前記緩衝領域の位置を示す、
    ことを特徴とする受信装置。
    The receiving device according to claim 7, comprising:
    The first radio resource and the second radio resource do not overlap in the frequency axis direction and are close in the frequency axis direction,
    The setting information indicates a position of the buffer area arranged in a part of the second radio resource overlapping with the first radio resource in the time axis direction.
    A receiving apparatus.
  9.  請求項7又は8の受信装置であって、
     前記設定情報は、下りリンク制御情報(DCI:Downlink Control Information)により、前記送信装置と前記受信装置との間で共有される、
    ことを特徴とする受信装置。
    The receiving device according to claim 7 or 8, comprising:
    The setting information is shared between the transmitting device and the receiving device by downlink control information (DCI).
    A receiving apparatus.
  10.  請求項7ないし9のいずれか一つの受信装置であって、
     前記設定情報は、リソースエレメントの単位、又は、複数の前記リソースエレメントで構成されるリソースブロックの単位により、前記緩衝領域の位置を示す、
    ことを特徴とする受信装置。
    A receiving device according to any one of claims 7 to 9,
    The setting information indicates a position of the buffer area by a resource element unit or a resource block unit composed of a plurality of resource elements.
    A receiving apparatus.
  11.  請求項7ないし10のいずれか一つの受信装置であって、
     前記送信装置は無線基地局であり、
     前記受信装置は無線端末であり、
     前記第一無線リソースはSS/PBCH(Synchronization Signal / Physical Broad CHannel)ブロックであり、
     前記第二無線リソースはPDSCH(Physical Downlink Shared CHannel)である、
    ことを特徴とする受信装置。
    A receiving device according to any one of claims 7 to 10,
    The transmitter is a radio base station;
    The receiving device is a wireless terminal;
    The first radio resource is an SS / PBCH (Synchronization Signal / Physical Broad CHannel) block,
    The second radio resource is PDSCH (Physical Downlink Shared CHannel),
    A receiving apparatus.
  12.  請求項7ないし10のいずれか一つの受信装置であって、
     前記送信装置は無線端末であり、
     前記受信装置は無線基地局であり、
     前記第一無線リソースはPRACH(Physical Random Access CHannel)又はMsg3 PUSCH(Message3 Physical Uplink Shared CHannel)であり、
     前記第二無線リソースは前記Msg3 PUSCH以外のPUSCH(Physical Uplink Shared CHannel)である、
    ことを特徴とする受信装置。
    A receiving device according to any one of claims 7 to 10,
    The transmitting device is a wireless terminal;
    The receiving device is a radio base station;
    The first radio resource is PRACH (Physical Random Access CHannel) or Msg3 PUSCH (Message3 Physical Uplink Shared CHannel),
    The second radio resource is a PUSCH (Physical Uplink Shared CHannel) other than the Msg3 PUSCH.
    A receiving apparatus.
  13.  少なくとも一以上のサブキャリア間隔を有する複数の副搬送波により一以上の受信装置との無線通信が可能な送信装置において実行される無線通信方法であって、
     前記複数の副搬送波が時間軸方向と周波数軸方向とにより区画された無線リソースのうち、第一サブキャリア間隔の副搬送波を有する第一無線リソースとは前記周波数軸方向において異なる第二無線リソースであって、前記第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有する前記第二無線リソースについて、前記第二無線リソースが有する前記第二サブキャリア間隔を有する副搬送波のうち少なくとも一部の副搬送波において配置される緩衝領域を示す設定情報を、前記一以上の受信装置の少なくとも一つと共有し、
     前記第二無線リソースに対して、前記設定情報に従って送信データを割当てて無線送信する、
    ことを特徴とする無線通信方法。
    A wireless communication method executed in a transmission device capable of wireless communication with one or more receiving devices by a plurality of subcarriers having at least one subcarrier interval,
    Among the radio resources in which the plurality of subcarriers are partitioned by the time axis direction and the frequency axis direction, the first radio resources having subcarriers at the first subcarrier interval are second radio resources that are different in the frequency axis direction. The second radio resource having a subcarrier having a second subcarrier interval different from the first subcarrier interval is at least one of the subcarriers having the second subcarrier interval that the second radio resource has. Sharing setting information indicating a buffer area arranged in a subcarrier of a part with at least one of the one or more receiving devices;
    For the second radio resource, transmission data is allocated according to the setting information and transmitted by radio.
    A wireless communication method.
  14.  少なくとも一以上のサブキャリア間隔を有する複数の副搬送波により送信装置との無線通信が可能な受信装置において実行される無線通信方法であって、
     前記複数の副搬送波が時間軸方向と周波数軸方向とにより区画された無線リソースのうち、第一サブキャリア間隔の副搬送波を有する第一無線リソースとは前記周波数軸方向において異なる第二無線リソースであって、前記第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有する前記第二無線リソースについて、前記第二無線リソースが有する前記第二サブキャリア間隔を有する副搬送波のうち少なくとも一部の副搬送波において配置される緩衝領域を示す設定情報を、前記送信装置と共有し、
     前記送信装置から送信された前記第二無線リソースからデータをデコードする際に、前記設定情報に示される前記緩衝領域に相当する前記第二無線リソースの部分をデコード対象から除外する、
    ことを特徴とする無線通信方法。
    A wireless communication method executed in a receiving device capable of wireless communication with a transmitting device using a plurality of subcarriers having at least one subcarrier interval,
    Among the radio resources in which the plurality of subcarriers are partitioned by the time axis direction and the frequency axis direction, the first radio resources having subcarriers at the first subcarrier interval are second radio resources that are different in the frequency axis direction. The second radio resource having a subcarrier having a second subcarrier interval different from the first subcarrier interval is at least one of the subcarriers having the second subcarrier interval that the second radio resource has. Sharing setting information indicating a buffer area arranged in a subcarrier of a part with the transmission device,
    When decoding data from the second radio resource transmitted from the transmission device, excluding a part of the second radio resource corresponding to the buffer area indicated in the setting information from decoding targets,
    A wireless communication method.
  15.  一以上の受信装置と、少なくとも一以上のサブキャリア間隔を有する複数の副搬送波により前記一以上の受信装置との無線通信が可能な送信装置とを有する無線通信システムであって、
     前記送信装置は、
      前記複数の副搬送波が時間軸方向と周波数軸方向とにより区画された無線リソースのうち、第一サブキャリア間隔の副搬送波を有する第一無線リソースとは前記周波数軸方向において異なる第二無線リソースであって、前記第一サブキャリア間隔とは異なる第二サブキャリア間隔の副搬送波を有する前記第二無線リソースについて、前記第二無線リソースが有する前記第二サブキャリア間隔を有する副搬送波のうち少なくとも一部の副搬送波において配置される緩衝領域を示す設定情報を、前記一以上の受信装置の少なくとも一つと共有し、
      前記第二無線リソースに対して、前記設定情報に従って送信データを割当てて無線送信し、
     前記受信装置は、
      前記送信装置から送信された前記第二無線リソースからデータをデコードする際に、前記設定情報に示される前記緩衝領域に相当する前記第二無線リソースの部分をデコード対象から除外する、
    ことを特徴とする無線通信システム。
    A wireless communication system comprising one or more receiving devices and a transmitting device capable of wireless communication with the one or more receiving devices by a plurality of subcarriers having at least one or more subcarrier intervals,
    The transmitter is
    Among the radio resources in which the plurality of subcarriers are partitioned by the time axis direction and the frequency axis direction, the first radio resources having subcarriers at the first subcarrier interval are second radio resources that are different in the frequency axis direction. The second radio resource having a subcarrier having a second subcarrier interval different from the first subcarrier interval is at least one of the subcarriers having the second subcarrier interval that the second radio resource has. Sharing setting information indicating a buffer area arranged in a subcarrier of a part with at least one of the one or more receiving devices;
    For the second radio resource, transmission data is allocated according to the setting information and transmitted by radio,
    The receiving device is:
    When decoding data from the second radio resource transmitted from the transmission device, excluding a part of the second radio resource corresponding to the buffer area indicated in the setting information from decoding targets,
    A wireless communication system.
PCT/JP2018/011901 2018-03-23 2018-03-23 Transmission device, reception device, radio communication method, and radio communication system WO2019180962A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011901 WO2019180962A1 (en) 2018-03-23 2018-03-23 Transmission device, reception device, radio communication method, and radio communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011901 WO2019180962A1 (en) 2018-03-23 2018-03-23 Transmission device, reception device, radio communication method, and radio communication system

Publications (1)

Publication Number Publication Date
WO2019180962A1 true WO2019180962A1 (en) 2019-09-26

Family

ID=67986995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011901 WO2019180962A1 (en) 2018-03-23 2018-03-23 Transmission device, reception device, radio communication method, and radio communication system

Country Status (1)

Country Link
WO (1) WO2019180962A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021370A1 (en) * 2016-07-29 2018-02-01 株式会社Nttドコモ User terminal and wireless communication method
WO2018031664A1 (en) * 2016-08-10 2018-02-15 Idac Holdings, Inc. Methods for flexible resource usage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021370A1 (en) * 2016-07-29 2018-02-01 株式会社Nttドコモ User terminal and wireless communication method
WO2018031664A1 (en) * 2016-08-10 2018-02-15 Idac Holdings, Inc. Methods for flexible resource usage

Similar Documents

Publication Publication Date Title
US11723103B2 (en) Configuration for beam failure recovery
US11943066B2 (en) Packet duplication control
ES2905601T3 (en) Configuration of the physical channels depending on the frame structure
JP7390894B2 (en) Configurable intra-slot frequency hopping for variable length uplink control channels
US10931483B2 (en) Device-to-device (D2D) communication management techniques
KR101951210B1 (en) User equipment and evolved node-b and methods for random access for machine type communication
RU2577481C2 (en) Cross-scheduling for random access response
WO2016182052A1 (en) User terminal, wireless base station, and wireless communication method
US11516851B2 (en) User terminal and radio communication method
TW202031077A (en) Control resource set for ues having different bandwidth capabilities
JP2020522964A (en) Resource allocation related signaling method in wireless communication system and apparatus using the method
TWI753204B (en) Method, apparatus, and non-transitory computer-readable medium for implementing rach in nr
WO2018192015A1 (en) Method and device for configuring time-frequency resource transmission direction
US10959119B2 (en) Method and apparatus for configuring measurement gap for performing measurement in wireless communication system
JP2020031254A (en) Terminal device, base station device, communication method, and integrated circuit
TWI640215B (en) Methods and apparatus for cell access via anchor carrier
US20190261296A1 (en) Method for Transmitting Downlink Control Signal and Apparatus
JP2019503092A (en) Carrier hopping method, terminal and base station
JP7187314B2 (en) TERMINAL DEVICE, BASE STATION DEVICE, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
JPWO2017026324A1 (en) Terminal apparatus, communication method, and integrated circuit
US9491725B2 (en) User equipment and methods for device-to-device communication over an LTE air interface
CN114557046A (en) Apparatus and method for accessing network in wireless communication system
JP2022532574A (en) Reference coordinates for 2-step RACH resource configuration
WO2022028361A1 (en) Wireless access method and apparatus
WO2016063599A1 (en) Terminal device, integrated circuit, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP