WO2019180868A1 - 画像生成装置、画像生成方法および画像生成プログラム - Google Patents
画像生成装置、画像生成方法および画像生成プログラム Download PDFInfo
- Publication number
- WO2019180868A1 WO2019180868A1 PCT/JP2018/011367 JP2018011367W WO2019180868A1 WO 2019180868 A1 WO2019180868 A1 WO 2019180868A1 JP 2018011367 W JP2018011367 W JP 2018011367W WO 2019180868 A1 WO2019180868 A1 WO 2019180868A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- generated
- identifying
- result
- generator
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/19—Recognition using electronic means
- G06V30/191—Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06V30/19147—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/32—Digital ink
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30168—Image quality inspection
Definitions
- the present invention relates to an image generation apparatus, an image generation method, and an image generation program that generate an image for learning that includes desired features.
- GAN Generalized Adversal Network
- Stacked Autoencoder a method that a model is learned only with normal data and an abnormality is determined when the similarity between input and output is low.
- Patent Document 1 even when only a small number of images showing defects generated in defective products of the inspection object are obtained, a discriminator for identifying whether or not the inspection object is a good product can be learned.
- a visual inspection classifier generator is described.
- the defect image on the pseudo defect image is a non-defective product or a defective product on the pseudo defect image with respect to a plurality of pseudo defect images that simulate the defect image generated on the surface of the inspection object. Pass / fail judgment information indicating which one of these is supported.
- the apparatus described in patent document 1 determines the boundary which discriminate
- Non-Patent Document 1 describes a method for generating an image by machine learning (DCGAN: Deep Convolutional General Network). The method described in Non-Patent Document 1 generates a photo-like image from random noise by applying a convolution network to an existing GAN.
- DCGAN Deep Convolutional General Network
- Some objects for image recognition may have specific features that are sufficiently small compared to the entire area.
- the transmission line arc trace (lightning strike trace) represents an abnormal state
- it is a feature existing in a small range as compared with the entire transmission line range. That is, most regions of the image including the abnormal part are normal regions. For this reason, for example, even if an image representing an abnormal state is generated using the method described in Non-Patent Document 1, a specific feature is buried in the entire image. There is a problem that it is difficult to generate. The same applies to the generation of the pseudo defect image described in Patent Document 1.
- an object of the present invention is to provide an image generation apparatus, an image generation method, and an image generation program that can generate a learning image that improves the accuracy of image recognition.
- An image generation apparatus includes an image generation unit that generates an image using a generator, an identification unit that identifies whether or not an image targeted for a feature included in a target image is included using a classifier, The generator is minimized so as to minimize the first error indicating the degree of divergence between the result of identifying the generated image generated by the generator using the classifier and the correct label associated with the generated image.
- First update means for updating, results of identifying a generated image, a first real image including features of the target image, and a second real image not including features of the target image using a classifier, and each image
- a second updating means for updating the discriminator so as to minimize the second error indicating the degree of deviation from the correct answer label associated with.
- the image generation method of the present invention generates an image using a generator, determines whether or not an image targeting a feature included in a target image is included, and uses the identifier to generate an image generated by the generator.
- the generator is updated so as to minimize the first error indicating the divergence between the result of identifying the generated image using the classifier and the correct label associated with the generated image, and the generated image, the target
- the discriminator is updated so as to minimize the second error to be expressed.
- the image generation program of the present invention includes an image generation process for generating an image using a generator in a computer, and an identification process for identifying whether or not an image targeting a feature of a target image is included using a classifier
- the generator so as to minimize the first error indicating the degree of divergence between the result of identifying the generated image, which is an image generated by the generator, using the classifier and the correct label associated with the generated image
- a second update process for updating the discriminator is performed so as to minimize the second error indicating the degree of deviation from the correct label associated with each image.
- a learning image that improves the accuracy of image recognition can be generated.
- the image generation apparatus of the present invention generates an image that the user wants to use as a learning image (hereinafter referred to as a target image).
- the target image is an image having some characteristic desired by the user, and can be said to be an image that the user wants to generate.
- a transmission line arc trace (lightning strike) is an example of the feature.
- the image generation apparatus has a learning image that includes the above-described features, and is used for learning in a situation where an image that does not include the features is likely to be generated (the feature is likely to be buried). It is preferably applied when generating an image.
- the transmission line arc trace (lightning strike) is a feature existing in a small range as compared with the entire transmission line range. Therefore, even if it is attempted to generate an abnormal image including a transmission line arc trace (lightning strike trace) by a general method, it can be said that an image not including the feature (that is, a normal image) is easily generated.
- the image generation apparatus of the present invention generates a learning image including such features.
- FIG. 1 is a block diagram showing a configuration example of an embodiment of an image generation apparatus of the present invention.
- the image generation apparatus 100 includes a storage unit 10, an image generation unit 20, an identification unit 30, a first update unit 40, and a second update unit 50.
- the storage unit 10 stores an image identified by the identification unit 30 described later.
- the storage unit 10 includes an image 11 including a feature of the target image (hereinafter referred to as a first actual image) and an image 12 including no feature of the target image (hereinafter referred to as a second actual image).
- the first actual image can be said to be a target image.
- the first actual image and the second actual image are stored in the storage unit 10 in advance by a user or the like.
- the image generation means 20 generates an image using a generator.
- an image generated by the image generation means 20 may be referred to as a generated image.
- the generator is realized by an arbitrary model capable of generating an image, and an example thereof is a neural network.
- the contents (for example, parameters, etc.) of the generator are sequentially updated by first update means 40 described later.
- first update means 40 described later.
- a case where the generator is realized by a neural network will be described as an example.
- the image generation means 20 may generate an image from a given random number, for example, or may generate a new image from a reference image. Since a method for generating a new image from a random number or a reference image is widely known, detailed description thereof is omitted here.
- the image generation unit 20 inputs the generated image to the identification unit 30.
- the identifying unit 30 identifies whether the target image includes the characteristics of the target image described above.
- the identification unit 30 identifies an image using a classifier.
- the classifier is realized by an arbitrary model such as a binary classifier or a multinomial classifier that can classify a target image into two or more types, and an example thereof is a neural network.
- the contents (for example, parameters, etc.) of the discriminator are sequentially updated by second update means 50 described later.
- second update means 50 described later.
- the images to be identified by the identifying unit 30 are the first actual image and the second actual image stored in the storage unit 10 in addition to the generated image.
- the identification unit 30 outputs the correct answer label corresponding to the target image together with the identification result of the target image.
- the discriminating means 30 outputs a correct answer label used for updating the generator and a correct answer label used for updating the discriminator.
- the correct label used for updating the generator is referred to as a first output set
- the correct label used for updating the discriminator is referred to as a second output set.
- the identifying unit 30 outputs a result of identifying the generated image and a correct answer label indicating that it is a target image.
- the identifying unit 30 when the identification target is a generated image, the identifying unit 30 outputs a result of identifying the generated image and a correct answer label indicating that it is not a target image.
- the identification target is the first actual image
- the identifying unit 30 outputs a result of identifying the first actual image and a correct label indicating that the target image is the target image.
- the identification unit 30 outputs a result of identifying the second actual image and a correct answer label indicating that it is not the target image.
- the reason for outputting such a correct label is as follows.
- the generator is desired to generate an image such that the classifier identifies the generated image as the target image. Therefore, the generator needs learning data such as the first output set as described above.
- the classifier identifies the first actual image as the target image and identifies the second actual image as not the target image. Therefore, the discriminator needs learning data in which a correct answer label indicating that the first actual image is a target image is set, and a correct answer label indicating that the second actual image is not a target image is set.
- the goal is to cause the generator to generate an image including the characteristics of the target image. Therefore, learning data in which a correct label indicating that the generated image is not the target image is associated with the generated image is prepared in the discriminator. Thereby, learning data for generating an image such as the first actual image can be provided to the generator. In other words, by preparing such learning data, it is possible to suppress the generation of an image such as the second actual image.
- the result identified as the target image is represented as “1”, and the result identified as not the target image is represented as “0”.
- a correct answer label indicating that it is not the target image is represented as “0”, and a correct label indicating that it is the target image is represented as “1”.
- the correct answer label is not limited to the case where it is represented by a binary value of 0 or 1.
- the target image likelihood may be represented by a value between 0 and 1 depending on the degree of the target image likelihood.
- FIG. 2 is an explanatory diagram showing an example of an operation for outputting learning data.
- the image generation means 20 generates a generated image by the generator 20a based on the noise 13a.
- the identification unit 30 identifies the generated image, the first actual image 11a, and the second actual image 12a using the classifier 30a.
- the identification unit 30 outputs learning data in which the identification result (1 or 0) of the generated image is associated with the correct answer label “1” as the learning data D1 (that is, the first output set) of the generator 20a. Further, the identification unit 30 uses the learning data D2 (that is, the second output set) of the classifier 30a as the learning data in which the identification result (1 or 0) of the first actual image is associated with the correct label “1”. Learning data in which the identification result (1 or 0) of the second actual image is associated with the correct label “0”, and learning data in which the identification result (1 or 0) of the generated image is associated with the correct label “0” Is output.
- the first update means 40 updates the generator used when the image generation means 20 generates an image. Specifically, the first update means 40 identifies an error (hereinafter referred to as the first error) indicating the degree of divergence between the result of identifying the generated image using the classifier and the correct label associated with the generated image. Update the generator to minimize.
- the first error an error indicating the degree of divergence between the result of identifying the generated image using the classifier and the correct label associated with the generated image. Update the generator to minimize.
- the first output set is used to update the generator. That is, the identification unit 30 outputs the result of identifying the generated image and the correct label indicating the target image as learning data for updating the generator. Therefore, the first updating unit 40 updates the generator so as to minimize the first error that represents the degree of deviation between the result of identifying the generated image and the correct label indicating that it is the target image.
- the first updating unit 40 updates the generator so as to minimize the degree of deviation (error).
- the method for updating the generator is determined according to the generator to be used.
- the first update unit 40 may learn a parameter that minimizes the degree of divergence using the first output set output from the identification unit 30 as learning data.
- the first updating unit 40 may optimize the generator parameters so as to minimize the loss function E.
- the loss function E shown below is an example, and any method that can optimize the parameters of the generator may be used.
- Equation 1 N represents the number of data, and K represents the number of classes to be classified.
- tk′n in Equation 1 is a correct label vector for the n-th input data, and is expressed in the form of Equation 2 illustrated below.
- the vector illustrated in Equation 2 is a so-called 1-of-k vector that represents 1 only in the k-th element.
- P k ′ (x n ) in Equation 1 represents the probability that the nth input data belongs to the class k ′.
- P k ′ (x n ) is calculated by Expression 3 exemplified below.
- Equation 3 f k (x n ) is an output value of class k for the n-th input data x n , and x n is a probability that x n belongs to class k.
- the second updating unit 50 updates the discriminator used when the discriminating unit 30 identifies the image. Specifically, the second update unit 50 uses the discriminator to identify the generated image, the first actual image, and the second actual image, and the degree of divergence between the correct label associated with each image. The discriminator is updated so as to minimize an error (hereinafter, referred to as a second error) representing.
- a second error an error representing.
- the method by which the second update means 50 calculates the divergence degree (error) is the same as the method by which the first update means 40 calculates the divergence degree (error).
- the method for updating the classifier is also determined according to the classifier to be used. For example, when the discriminator is a neural network, the second updating unit 50 may learn a parameter that minimizes the degree of divergence using the second output set output from the discriminating unit 30 as learning data.
- the method in which the second updating unit 50 learns the parameters may be the same as or different from the method in which the first updating unit 40 learns the parameters.
- the second updating unit 50 updates the parameters of the discriminator based on the same method as the first updating unit 40.
- the loss based on the learning data using the correct image is E 1
- the loss based on the learning data using the first real image is E 2
- the loss based on the learning data using the second real image is E 3 .
- the second update unit 50 determines the degree of divergence between the result of identifying the generated image and the correct label indicating that it is not the target image, and the correct label indicating that the result of identifying the first actual image is the target image. And the discriminator are updated so as to minimize the second error including the degree of divergence and the degree of divergence between the result of identifying the second actual image and the correct answer label indicating that it is not the target image.
- the image generation means 20, the identification means 30, the first update means 40, and the second update means 50 are realized by a CPU of a computer that operates according to a program (image generation program).
- the program is stored in the storage unit 10 of the image generation apparatus 100, and the CPU reads the program and operates as the image generation unit 20, the identification unit 30, the first update unit 40, and the second update unit 50 according to the program. May be.
- each of the image generation unit 20, the identification unit 30, the first update unit 40, and the second update unit 50 may be realized by dedicated hardware.
- FIG. 3 is a flowchart illustrating an operation example of the image generation apparatus 100 according to the present embodiment.
- the image generation means 20 generates an image using a generator (step S11). Then, the identification unit 30 identifies whether the generated image can be said to be a target image (step S12). Similarly, the identification unit 30 identifies whether or not the first actual image can be said to be the target image (step S13), and identifies whether or not the second actual image can be said to be the target image (step S14). In addition, the process of step S11 and step S12, the process of step S13, and the process of step S14 may be performed in parallel.
- the first update means 40 calculates a first error from the identification result of the generated image (step S15). Then, the first updating unit 40 updates the generator so as to minimize the first error (step S16).
- the second update means 50 calculates a second error from the identification result of the generated image, the identification result of the first actual image, and the identification result of the second actual image (step S17). Then, the second update unit 50 updates the discriminator so as to minimize the second error (step S18). In addition, the process of step S15 and step S16, the process of step S17, and the process of step S18 may be performed in parallel.
- the image generation unit 20 generates an image using the generator, and the identification unit 30 determines whether or not the image targeted for the feature included in the target image is included. Identify using. Then, the first updating means 40 sets the generator so as to minimize the first error indicating the divergence between the result of identifying the generated image using the classifier and the correct label associated with the generated image. Update.
- the second update unit 50 represents the degree of divergence between the result of identifying the generated image, the first actual image, and the second actual image using the classifier and the correct label associated with each image. Update the classifier to minimize the second error.
- a learning image that improves the accuracy of image recognition can be generated. That is, in this embodiment, since the generator is updated so as to generate a target image, more appropriate target images can be generated as learning images.
- FIG. 4 is an explanatory diagram showing an example of an image generated as a result of learning the generator using only the first actual image.
- FIG. 5 is an explanatory diagram illustrating an example of an image generated as a result of learning a generator using the first real image and the second real image.
- an image X1 including the number “7” is prepared as the first actual image.
- an image G1 was generated.
- images similar to the number “1” were generated for the images g1 to g4.
- an image Xp1 including the number “7” is prepared as the first actual image
- an image Xn1 including the number “1” is prepared as the second actual image.
- an image G2 is generated.
- generation of an image similar to the number “1” is suppressed, and an image including the number “7” as a whole is generated. It was done.
- FIG. 6 is a block diagram showing an outline of an image generation apparatus according to the present invention.
- the image generation device 80 (for example, the image generation device 100) according to the present invention is an image generation unit 81 (for example, the image generation unit 20) that generates an image using a generator, and an image that targets features of the target image.
- the identification means 82 (for example, the identification means 30) for identifying whether or not the generated image is included, the result of identifying the generated image, which is an image generated by the generator, using the identifier and the generated image
- the first update unit 83 (for example, the first update unit 40) for updating the generator so as to minimize the first error indicating the degree of deviation from the correct answer label associated with the
- the first actual image including the features that the image has and the second actual image that does not include the features included in the target image using the classifier and the degree of divergence between the correct label associated with each image
- Second updating means 84 for updating the sea urchin identifier (e.g., the second updating means 50) and a.
- a generator capable of generating a target image can be learned, so that a learning image that improves the accuracy of image recognition can be generated.
- the second update unit 84 also determines the degree of divergence between the result of identifying the generated image and the correct label indicating that it is not the target image, and the difference between the result of identifying the first actual image and the correct label indicating that the target image is the target image.
- the discriminator may be updated so as to minimize the second error including the degree and the discrepancy between the result of identifying the second actual image and the correct label indicating that it is not the target image.
- the first update unit 83 may update the generator so as to minimize the first error indicating the divergence between the result of identifying the generated image and the correct label indicating the target image.
- the identification means 82 may output a correct answer label corresponding to the target image together with the result of identifying the target image.
- the first updating unit 83 updates the generator so as to minimize the first error between the result of identifying the generated image and the output correct label, and the second updating unit 84 identifies the generated image.
- the difference between the result and the correct label, the difference between the result of identifying the first actual image and the output correct label, and the difference between the result of identifying the second actual image and the output correct label The classifier may be updated to minimize the second error it contains.
- the identification unit 82 outputs a result of identifying the generated image and a correct answer label indicating that the target image is not a target image. Outputs the result of identifying one real image and the correct answer label indicating that it is the target image. If the target image is the second real image, the result indicating that the second real image is identified and the correct answer indicating that it is not the target image.
- the second update means 84 outputs the discrepancy between the result of identifying the generated image and the correct label, the discrepancy between the result of identifying the first actual image and the correct label, and the second actual image.
- the discriminator may be updated so as to minimize the second error including the degree of deviation between the identified result and the correct answer label.
- the identifying unit 82 outputs a result of identifying the generated image and a correct answer label indicating that it is not the target image
- the first updating unit 83 identifies the result of identifying the generated image
- the generator may be updated to minimize the first error between the correct answer label and the correct answer label.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Quality & Reliability (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Image Analysis (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
画像生成手段81は、生成器を用いて画像を生成する。識別手段82は、目標画像が有する特徴を対象とする画像が含むか否かを、識別器を用いて識別する。第一更新手段83は、生成器により生成された画像である生成画像を識別器を用いて識別した結果とその生成画像に対応付けられた正解ラベルとの乖離度を表す第一の誤差を最小化するように生成器を更新する。第二更新手段84は、生成画像、目標画像が有する特徴を含む第一実画像、および、目標画像が有する特徴を含まない第二実画像を識別器を用いて識別した結果と、各画像に対応付けられた正解ラベルとの乖離度を表す第二の誤差を最小化するように識別器を更新する。
Description
本発明は、所望の特徴を含むような学習用画像を生成する画像生成装置、画像生成方法および画像生成プログラムに関する。
労働人口の減少が進む中、点検や検査などを実施する熟練の保守作業員による正常か異常かの判断を、画像認識技術で支援、または、自動化したいという要求が高まっている。画像認識では、現場で収集した大量の学習用画像を用いて認識精度を向上させる必要がある。しかし、一般に、異常な状態は発生頻度が低いため、十分な量の学習用画像を収集することが難しい。
そのため、少ないデータからモデルを学習する方法が各種提案されている。例えば、GAN(Generative Adversarial Network)は、訓練データを学習し、それらのデータと似たような新しいデータを生成するモデルである。また、正常データのみでモデルを学習し、入力と出力の類似度が低ければ異常と判定する方法(例えば、Stacked Autoencoder)も知られている。
また、特許文献1には、検査対象物の不良品に生じた欠陥を写した画像が少数しか得られない場合でも、検査対象物が良品か否かを識別する識別器を学習させることができる外観検査用識別器生成装置が記載されている。特許文献1に記載された装置は、検査対象物の表面に生じる欠陥の像を擬似的に表した複数の擬似欠陥画像について、擬似欠陥画像上の欠陥の像が検査対象物の良品または不良品の何れに対応するかを表す良否判定情報を取得する。そして、特許文献1に記載された装置は、複数の擬似欠陥画像と対応する良否判定情報から検査対象物の良品と不良品とを識別する境界を決定し、欠陥の像についての特徴量とその境界に従って決定されるその特徴量に対する検査対象物の良否判定結果を表す値との組である学習サンプルを複数生成する。
また、非特許文献1には、機械学習により画像を生成する方法(DCGAN:Deep Convolutional Generative Adversarial Network)が記載されている。非特許文献1に記載された方法は、既存のGANに畳み込みネットワークを適用することでランダムノイズから写真並みの画像を生成する。
Alec Radford, Luke Metz, Soumith Chintala, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016
画像認識を行う対象の中には、特定の特徴が全体の領域に比べて十分小さい場合も存在する。例えば、送電線アーク痕(落雷跡)は、異常状態を表していると言えるが、送電線全体の範囲と比較すると、小さい範囲に存在する特徴である。すなわち、異常部分を含む画像のほとんどの領域は正常領域である。そのため、例えば、非特許文献1に記載された方法を用いて異常状態を表す画像を生成しようとしても、特定の特徴が全体の中で埋もれてしまう結果、画像認識の精度改善に寄与する画像を生成するのが難しいという問題がある。これは、特許文献1に記載された疑似欠陥画像を生成する場合にも、同様のことが言える。
そこで、本発明は、画像認識の精度を向上させる学習用画像を生成できる画像生成装置、画像生成方法および画像生成プログラムを提供することを目的とする。
本発明の画像生成装置は、生成器を用いて画像を生成する画像生成手段と、目標画像が有する特徴を対象とする画像が含むか否かを、識別器を用いて識別する識別手段と、生成器により生成された画像である生成画像を識別器を用いて識別した結果とその生成画像に対応付けられた正解ラベルとの乖離度を表す第一の誤差を最小化するように生成器を更新する第一更新手段と、生成画像、目標画像が有する特徴を含む第一実画像、および、目標画像が有する特徴を含まない第二実画像を識別器を用いて識別した結果と、各画像に対応付けられた正解ラベルとの乖離度を表す第二の誤差を最小化するように識別器を更新する第二更新手段とを備えたことを特徴とする。
本発明の画像生成方法は、生成器を用いて画像を生成し、目標画像が有する特徴を対象とする画像が含むか否かを、識別器を用いて識別し、生成器により生成された画像である生成画像を識別器を用いて識別した結果とその生成画像に対応付けられた正解ラベルとの乖離度を表す第一の誤差を最小化するように生成器を更新し、生成画像、目標画像が有する特徴を含む第一実画像、および、目標画像が有する特徴を含まない第二実画像を識別器を用いて識別した結果と、各画像に対応付けられた正解ラベルとの乖離度を表す第二の誤差を最小化するように識別器を更新することを特徴とする。
本発明の画像生成プログラムは、コンピュータに、生成器を用いて画像を生成する画像生成処理、目標画像が有する特徴を対象とする画像が含むか否かを、識別器を用いて識別する識別処理、生成器により生成された画像である生成画像を識別器を用いて識別した結果とその生成画像に対応付けられた正解ラベルとの乖離度を表す第一の誤差を最小化するように生成器を更新する第一更新処理、および、生成画像、目標画像が有する特徴を含む第一実画像、および、目標画像が有する特徴を含まない第二実画像を識別器を用いて識別した結果と、各画像に対応付けられた正解ラベルとの乖離度を表す第二の誤差を最小化するように識別器を更新する第二更新処理を実行させることを特徴とする。
本発明によれば、画像認識の精度を向上させる学習用画像を生成できる。
以下、本発明の実施形態を図面を参照して説明する。本発明の画像生成装置は、ユーザが学習用画像として利用したい画像(以下、目標画像と記す。)を生成する。言い換えると、目標画像は、ユーザが所望する何らかの特徴を有する画像であり、ユーザが生成したい画像と言える。例えば、上述する送電線の例では、送電線アーク痕(落雷跡)が特徴の一例である。
また、本発明の画像生成装置は、上述する特徴を含む学習用画像が少なく、かつ、その特徴を含まない画像が生成されやすい(その特徴が埋もれてしまう可能性が高い)状況で、学習用画像を生成する場合に好適に適用される。例えば、上述する送電線アーク痕(落雷跡)の例では、送電線全体の範囲と比較すると、送電線アーク痕(落雷跡)は、小さい範囲に存在する特徴である。そのため、一般的な方法で送電線アーク痕(落雷跡)を含むような異常画像を生成しようとしても、その特徴を含まない画像(すなわち、正常画像)が生成されやすい状況と言える。本発明の画像生成装置は、そのような特徴を含むような学習用画像を生成する。
図1は、本発明の画像生成装置の一実施形態の構成例を示すブロック図である。本実施形態の画像生成装置100は、記憶部10と、画像生成手段20と、識別手段30と、第一更新手段40と、第二更新手段50とを備えている。
記憶部10は、後述する識別手段30が識別する画像を記憶する。具体的には、記憶部10は、目標画像が有する特徴を含む画像11(以下、第一実画像と記す。)と、目標画像が有する特徴を含まない画像12(以下、第二実画像と記す。)を記憶する。すなわち、第一実画像は、目標画像と言うこともできる。第一実画像および第二実画像は、ユーザ等により予め記憶部10に記憶される。
画像生成手段20は、生成器を用いて画像を生成する。以下の説明では、画像生成手段20(生成器)が生成した画像のことを、生成画像と記すこともある。生成器は、画像を生成可能な任意のモデルにより実現され、その一例がニューラルネットワークである。生成器は、後述する第一更新手段40により、その内容(例えば、パラメータ等)が逐次更新される。以下、生成器がニューラルネットワークで実現される場合を例に説明する。
画像生成手段20は、例えば、与えられた乱数から画像を生成してもよく、基準とする画像から新たな画像を生成してもよい。なお、乱数や基準とする画像から新たな画像を生成する方法は広く知られているため、ここでは詳細な説明は省略する。画像生成手段20は、生成画像を識別手段30に入力する。
識別手段30は、対象とする画像が、上述する目標画像が有する特徴を含むか否かを識別する。本実施形態では、識別手段30は、識別器を用いて画像を識別する。識別器は、対象とする画像を2種類以上に分類可能な二項分類器や多項分類器などの任意のモデルにより実現され、その一例がニューラルネットワークである。識別器は、後述する第二更新手段50により、その内容(例えば、パラメータ等)が逐次更新される。以下、識別器がニューラルネットワークで実現される場合を例に説明する。
識別手段30が識別する対象の画像は、生成画像の他、記憶部10に記憶された第一実画像および第二実画像である。識別手段30は、対象の画像の識別結果とともに、対象の画像に応じた正解ラベルを出力する。
ここで、識別手段30は、生成器の更新に用いられる正解ラベルと、識別器の更新に用いられる正解ラベルとをそれぞれ出力する。以下、生成器の更新に用いられる正解ラベルを第一の出力セット、識別器の更新に用いられる正解ラベルを第二の出力セットと記す。
まず、第一の出力セットとして、識別対象が生成画像の場合、識別手段30は、生成画像を識別した結果と、目標画像であることを示す正解ラベルを出力する。
次に、第二の出力セットとして、識別対象が生成画像の場合、識別手段30は、生成画像を識別した結果と、目標画像でないことを示す正解ラベルを出力する。また、識別対象が第一実画像の場合、識別手段30は、第一実画像を識別した結果と、目標画像であることを示す正解ラベルを出力する。さらに、識別対象が第二実画像の場合、識別手段30は、第二実画像を識別した結果と、目標画像でないことを示す正解ラベルを出力する。
このような正解ラベルを出力する理由は以下の通りである。
まず、生成器は、識別器が生成画像を目標画像と識別するような画像を生成することが望まれる。そこで、生成器には、上述するような第一の出力セットのような学習用データが必要になる。一方、識別器は、第一実画像を目標画像と識別し、第二実画像を目標画像でないと識別することが望まれる。そこで、識別器には、第一実画像に目標画像であることを示す正解ラベルが設定され、第二実画像に目標画像でないことを示す正解ラベルが設定された学習用データが必要になる。
まず、生成器は、識別器が生成画像を目標画像と識別するような画像を生成することが望まれる。そこで、生成器には、上述するような第一の出力セットのような学習用データが必要になる。一方、識別器は、第一実画像を目標画像と識別し、第二実画像を目標画像でないと識別することが望まれる。そこで、識別器には、第一実画像に目標画像であることを示す正解ラベルが設定され、第二実画像に目標画像でないことを示す正解ラベルが設定された学習用データが必要になる。
さらに、本実施形態では、生成器に目標画像が有する特徴を含む画像を生成させることが目標である。そこで、識別器には、生成画像に目標画像でないことを示す正解ラベルが対応付けられた学習用データを準備する。これにより、生成器に対して、第一実画像のような画像を生成するような学習データを提供できる。言い換えると、このような学習用データを準備することで、第二実画像のような画像を生成することを抑制できる。
以下の説明では、目標画像であると識別された結果を“1”と表わし、目標画像でないと識別された結果を“0”と表わす。また、目標画像でないことを示す正解ラベルを“0”と表わし、目標画像であることを示す正解ラベルを“1”と表わす。ただし、正解ラベルは、0または1の2値で表される場合に限定されず、例えば、目標画像らしさの度合いに応じて0から1の間の値で目標画像らしさを表していてもよい。
図2は、学習用データを出力する動作の例を示す説明図である。画像生成手段20は、ノイズ13aに基づいて生成器20aにより生成画像を生成する。識別手段30は、識別器30aを用いて、生成画像、第一実画像11a、および、第二実画像12aを識別する。識別手段30は、生成器20aの学習データD1(すなわち、第一の出力セット)として、生成画像の識別結果(1または0)と、正解ラベル“1”を対応付けた学習データを出力する。また、識別手段30は、識別器30aの学習データD2(すなわち、第二の出力セット)として、第一実画像の識別結果(1または0)と、正解ラベル“1”を対応付けた学習データ、第二実画像の識別結果(1または0)と、正解ラベル“0”を対応付けた学習データ及び生成画像の識別結果(1または0)と、正解ラベル“0”を対応付けた学習データを出力する。
第一更新手段40は、画像生成手段20が画像を生成する際に用いる生成器を更新する。具体的には、第一更新手段40は、識別器を用いて生成画像を識別した結果と、その生成画像に対応付けられた正解ラベルとの乖離度を表す誤差(以下、第一の誤差と記す。)を最小化するように生成器を更新する。
生成器の更新には、第一の出力セットが用いられる。すなわち、識別手段30は、生成器を更新するための学習データとして、生成画像を識別した結果と目標画像であることを示す正解ラベルとを出力する。そこで、第一更新手段40は、生成画像を識別した結果と目標画像であることを示す正解ラベルとの乖離度を表す第一の誤差を最小化するように生成器を更新する。
例えば、生成画像の識別結果が、目標画像であることを表す値“1”である場合、目標画像であることを示す正解ラベル“1”との乖離度は0になる。一方、生成画像の識別結果が、目標画像でないことを表す値“0”である場合、目標画像であることを示す正解ラベル“1”との乖離度は1になる。そこで、第一更新手段40は、乖離度(誤差)を最小化するように生成器を更新する。
生成器を更新する方法は、用いる生成器に応じて決定される。例えば、生成器がニューラルネットワークの場合、第一更新手段40は、識別手段30が出力した第一の出力セットを学習データとして、乖離度を最小化するようなパラメータを学習してもよい。
例えば、損失関数Eを以下に例示する式1のように定義した場合、第一更新手段40は、この損失関数Eを最小化するように生成器のパラメータを最適化してもよい。なお、下記に示す損失関数Eは例示であり、生成器のパラメータを最適化可能な任意の方法が用いられれば良い。
式1において、Nはデータ数を表わし、Kは分類するクラスの数を表わす。また、式
1におけるtk´nは、n番目の入力データに対する正解ラベルのベクトルであり、以下に例示する式2のような形式で表される。式2に例示するベクトルは、k番目の要素のみ1を表す、いわゆる1-of-kベクトルである。
1におけるtk´nは、n番目の入力データに対する正解ラベルのベクトルであり、以下に例示する式2のような形式で表される。式2に例示するベクトルは、k番目の要素のみ1を表す、いわゆる1-of-kベクトルである。
tn= (0,…,0,1,0,…,0) (式2)
また、式1におけるPk´(xn)は、n番目の入力データがクラスk´に属する確率を示す。Pk´(xn)は、以下に例示する式3で算出される。
式3において、fk(xn)は、n番目の入力データxnに対するクラスkの出力値であり、xnがクラスkに属する確率である。
第二更新手段50は、識別手段30が画像を識別する際に用いる識別器を更新する。具体的には、第二更新手段50は、識別器を用いて生成画像、第一実画像、および、第二実画像を識別した結果と、各画像に対応付けられた正解ラベルとの乖離度を表す誤差(以下、第二の誤差と記す。)を最小化するように識別器を更新する。
第二更新手段50が乖離度(誤差)を算出する方法は、第一更新手段40が乖離度(誤差)を算出する方法と同様である。また、識別器を更新する方法も、用いる識別器に応じて決定される。例えば、識別器がニューラルネットワークの場合、第二更新手段50は、識別手段30が出力した第二の出力セットを学習データとして、乖離度を最小化するようなパラメータを学習してもよい。
なお、第二更新手段50がパラメータを学習する方法は、第一更新手段40がパラメータを学習する方法と同様であってもよく、異なっていてもよい。例えば、第二更新手段50が第一更新手段40と同様の方法に基づいて識別器のパラメータを更新するとする。この場合、正解画像を用いた学習データに基づく損失をE1、第一実画像を用いた学習データに基づく損失をE2、第二実画像を用いた学習データに基づく損失をE3としたとき、第二更新手段50は、3つの損失の総和E=E1+E2+E3を最小化するように識別器のパラメータを最適化してもよい。
このようにして、第二更新手段50は、生成画像を識別した結果と目標画像でないことを示す正解ラベルとの乖離度、第一実画像を識別した結果と目標画像であることを示す正解ラベルとの乖離度、および、第二実画像を識別した結果と目標画像でないことを示す正解ラベルとの乖離度を含む第二の誤差を最小化するように識別器を更新する。
画像生成手段20と、識別手段30と、第一更新手段40と、第二更新手段50とは、プログラム(画像生成プログラム)に従って動作するコンピュータのCPUによって実現される。例えば、プログラムは、画像生成装置100の記憶部10に記憶され、CPUは、そのプログラムを読み込み、プログラムに従って、画像生成手段20、識別手段30、第一更新手段40および第二更新手段50として動作してもよい。また、画像生成手段20と、識別手段30と、第一更新手段40と、第二更新手段50とは、それぞれが専用のハードウェアで実現されていてもよい。
次に、本実施形態の画像生成装置100の動作を説明する。図3は、本実施形態の画像生成装置100の動作例を示すフローチャートである。
画像生成手段20は、生成器を用いて画像を生成する(ステップS11)。そして、識別手段30は、生成画像が目的画像と言えるか否か識別する(ステップS12)。同様に、識別手段30は、第一実画像が目的画像と言えるか否かを識別し(ステップS13)、第二実画像が目的画像と言えるか否かを識別する(ステップS14)。なお、ステップS11およびステップS12の処理、ステップS13の処理、並びに、ステップS14の処理は、並列に行われてもよい。
第一更新手段40は、生成画像の識別結果から第一の誤差を計算する(ステップS15)。そして、第一更新手段40は、第一の誤差を最小化するように生成器を更新する(ステップS16)。
第二更新手段50は、生成画像の識別結果、第一実画像の識別結果、及び、第二実画像の識別結果から第二の誤差を計算する(ステップS17)。そして、第二更新手段50は、第二の誤差を最小化するように識別器を更新する(ステップS18)。なお、ステップS15およびステップS16の処理、並びに、ステップS17の処理およびステップS18の処理は、並列に行われてもよい。
以上のように、本実施形態では、画像生成手段20が、生成器を用いて画像を生成し、識別手段30が、目標画像が有する特徴を対象とする画像が含むか否かを、識別器を用いて識別する。そして、第一更新手段40が、識別器を用いて生成画像を識別した結果とその生成画像に対応付けられた正解ラベルとの乖離度を表す第一の誤差を最小化するように生成器を更新する。また、第二更新手段50が、識別器を用いて、生成画像、第一実画像、および、第二実画像を識別した結果と、各画像に対応付けられた正解ラベルとの乖離度を表す第二の誤差を最小化するように識別器を更新する。
よって、画像認識の精度を向上させる学習用画像を生成できる。すなわち、本実施形態では、生成器が目標画像を生成できるように更新されるため、より多くの適切な目標画像を学習用画像として生成できる。
以下、具体的な実施例により本発明を説明するが、本発明の範囲は以下に説明する内容に限定されない。本実施例では、数字の「7」を目標画像として、第一実画像のみを用いた生成器の学習と、第一実画像および第二実画像を用いた識別器および生成器の学習とを行い、生成される画像を比較した。
図4は、第一実画像のみを用いて生成器を学習した結果生成された画像の例を示す説明図である。また、図5は、第一実画像および第二実画像を用いて生成器を学習した結果生成された画像の例を示す説明図である。
図4に示す例では、第一実画像として、数字の「7」を含む画像X1を準備した。この画像X1を用いて生成器を学習した結果、画像G1が生成されたが、生成された画像G1のうち、画像g1~g4は、数字の「1」に似た画像が生成された。
一方、図5に示す例では、第一実画像として、数字の「7」を含む画像Xp1と、第二実画像として、数字の「1」を含む画像Xn1を準備した。この画像Xp1および画像Xn1を用いて生成器および識別器を学習した結果、画像G2が生成された。この実施例では、第二実画像に数字の「1」を含む画像を用いた結果、数字の「1」に似た画像の生成が抑制され、全体として数字の「7」を含む画像が生成された。
次に、本発明の概要を説明する。図6は、本発明による画像生成装置の概要を示すブロック図である。本発明による画像生成装置80(例えば、画像生成装置100)は、生成器を用いて画像を生成する画像生成手段81(例えば、画像生成手段20)と、目標画像が有する特徴を対象とする画像が含むか否かを、識別器を用いて識別する識別手段82(例えば、識別手段30)と、生成器により生成された画像である生成画像を識別器を用いて識別した結果とその生成画像に対応付けられた正解ラベルとの乖離度を表す第一の誤差を最小化するように生成器を更新する第一更新手段83(例えば、第一更新手段40)と、生成画像、目標画像が有する特徴を含む第一実画像、および、目標画像が有する特徴を含まない第二実画像を識別器を用いて識別した結果と、各画像に対応付けられた正解ラベルとの乖離度を表す第二の誤差を最小化するように識別器を更新する第二更新手段84(例えば、第二更新手段50)とを備えている。
そのような構成により、目標画像を生成可能な生成器を学習できるため、画像認識の精度を向上させる学習用画像を生成できる。
また、第二更新手段84は、生成画像を識別した結果と目標画像でないことを示す正解ラベルとの乖離度、第一実画像を識別した結果と目標画像であることを示す正解ラベルとの乖離度、および、第二実画像を識別した結果と目標画像でないことを示す正解ラベルとの乖離度を含む第二の誤差を最小化するように識別器を更新してもよい。
また、第一更新手段83は、生成画像を識別した結果と目標画像であることを示す正解ラベルとの乖離度を表す第一の誤差を最小化するように生成器を更新してもよい。
また、識別手段82は、対象の画像を識別した結果とともに、その対象の画像に応じた正解ラベルを出力してもよい。そして、第一更新手段83は、生成画像を識別した結果と出力された正解ラベルとの第一の誤差を最小化するように生成器を更新し、第二更新手段84は、生成画像を識別した結果と正解ラベルとの乖離度、第一実画像を識別した結果と出力された正解ラベルとの乖離度、および、第二実画像を識別した結果と出力された正解ラベルとの乖離度を含む第二の誤差を最小化するように識別器を更新してもよい。
また、識別手段82は、対象の画像が生成画像の場合、その生成画像を識別した結果と目標画像でないことを示す正解ラベルとを出力し、対象の画像が第一実画像の場合、その第一実画像を識別した結果と目標画像であることを示す正解ラベルとを出力し、対象の画像が第二実画像の場合、その第二実画像を識別した結果と目標画像でないことを示す正解ラベルとを出力し、第二更新手段84は、生成画像を識別した結果と正解ラベルとの乖離度、第一実画像を識別した結果と正解ラベルとの乖離度、および、第二実画像を識別した結果と正解ラベルとの乖離度を含む第二の誤差を最小化するように識別器を更新してもよい。
また、識別手段82は、対象の画像が生成画像の場合、その生成画像を識別した結果と目標画像でないことを示す正解ラベルとを出力し、第一更新手段83は、生成画像を識別した結果と正解ラベルとの第一の誤差を最小化するように生成器を更新してもよい。
10 記憶部
11,11a 第一実画像
12,12a 第二実画像
13a ノイズ
20 画像生成手段
20a 生成器
30 識別手段
30a 識別器
40 第一更新手段
50 第二更新手段
100 画像生成装置
D1,D2 学習データ
X1,Xp1 第一実画像
Xn1 第二実画像
G1,G2 生成画像
11,11a 第一実画像
12,12a 第二実画像
13a ノイズ
20 画像生成手段
20a 生成器
30 識別手段
30a 識別器
40 第一更新手段
50 第二更新手段
100 画像生成装置
D1,D2 学習データ
X1,Xp1 第一実画像
Xn1 第二実画像
G1,G2 生成画像
Claims (8)
- 生成器を用いて画像を生成する画像生成手段と、
目標画像が有する特徴を対象とする画像が含むか否かを、識別器を用いて識別する識別手段と、
前記生成器により生成された画像である生成画像を前記識別器を用いて識別した結果と当該生成画像に対応付けられた正解ラベルとの乖離度を表す第一の誤差を最小化するように前記生成器を更新する第一更新手段と、
前記生成画像、前記目標画像が有する特徴を含む第一実画像、および、前記目標画像が有する特徴を含まない第二実画像を前記識別器を用いて識別した結果と、各画像に対応付けられた正解ラベルとの乖離度を表す第二の誤差を最小化するように前記識別器を更新する第二更新手段とを備えた
ことを特徴とする画像生成装置。 - 第二更新手段は、生成画像を識別した結果と目標画像でないことを示す正解ラベルとの乖離度、第一実画像を識別した結果と目標画像であることを示す正解ラベルとの乖離度、および、第二実画像を識別した結果と目標画像でないことを示す正解ラベルとの乖離度を含む第二の誤差を最小化するように識別器を更新する
請求項1記載の画像生成装置。 - 第一更新手段は、生成画像を識別した結果と目標画像であることを示す正解ラベルとの乖離度を表す第一の誤差を最小化するように生成器を更新する
請求項1または請求項2記載の画像生成装置。 - 識別手段は、対象の画像を識別した結果とともに、当該対象の画像に応じた正解ラベルを出力し、
第一更新手段は、生成画像を識別した前記結果と前記正解ラベルとの第一の誤差を最小化するように生成器を更新し、
第二更新手段は、生成画像を識別した前記結果と前記正解ラベルとの乖離度、第一実画像を識別した前記結果と前記正解ラベルとの乖離度、および、第二実画像を識別した前記結果と前記正解ラベルとの乖離度を含む第二の誤差を最小化するように識別器を更新する
請求項1から請求項3のうちのいずれか1項に記載の画像生成装置。 - 識別手段は、対象の画像が生成画像の場合、当該生成画像を識別した結果と目標画像でないことを示す正解ラベルとを出力し、対象の画像が第一実画像の場合、当該第一実画像を識別した結果と目標画像であることを示す正解ラベルとを出力し、対象の画像が第二実画像の場合、当該第二実画像を識別した結果と目標画像でないことを示す正解ラベルとを出力し、
第二更新手段は、生成画像を識別した前記結果と前記正解ラベルとの乖離度、第一実画像を識別した前記結果と前記正解ラベルとの乖離度、および、第二実画像を識別した前記結果と前記正解ラベルとの乖離度を含む第二の誤差を最小化するように識別器を更新する
請求項1から請求項4のうちのいずれか1項に記載の画像生成装置。 - 識別手段は、対象の画像が生成画像の場合、当該生成画像を識別した結果と目標画像でないことを示す正解ラベルとを出力し、
第一更新手段は、生成画像を識別した前記結果と前記正解ラベルとの第一の誤差を最小化するように生成器を更新する
請求項1から請求項5のうちのいずれか1項に記載の画像生成装置。 - 生成器を用いて画像を生成し、
目標画像が有する特徴を対象とする画像が含むか否かを、識別器を用いて識別し、
前記生成器により生成された画像である生成画像を前記識別器を用いて識別した結果と当該生成画像に対応付けられた正解ラベルとの乖離度を表す第一の誤差を最小化するように前記生成器を更新し、
前記生成画像、前記目標画像が有する特徴を含む第一実画像、および、前記目標画像が有する特徴を含まない第二実画像を前記識別器を用いて識別した結果と、各画像に対応付けられた正解ラベルとの乖離度を表す第二の誤差を最小化するように前記識別器を更新する
ことを特徴とする画像生成方法。 - コンピュータに、
生成器を用いて画像を生成する画像生成処理、
目標画像が有する特徴を対象とする画像が含むか否かを、識別器を用いて識別する識別処理、
前記生成器により生成された画像である生成画像を前記識別器を用いて識別した結果と当該生成画像に対応付けられた正解ラベルとの乖離度を表す第一の誤差を最小化するように前記生成器を更新する第一更新処理、および、
前記生成画像、前記目標画像が有する特徴を含む第一実画像、および、前記目標画像が有する特徴を含まない第二実画像を前記識別器を用いて識別した結果と、各画像に対応付けられた正解ラベルとの乖離度を表す第二の誤差を最小化するように前記識別器を更新する第二更新処理
を実行させるための画像生成プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/982,871 US11373285B2 (en) | 2018-03-22 | 2018-03-22 | Image generation device, image generation method, and image generation program |
PCT/JP2018/011367 WO2019180868A1 (ja) | 2018-03-22 | 2018-03-22 | 画像生成装置、画像生成方法および画像生成プログラム |
JP2020507205A JP6988995B2 (ja) | 2018-03-22 | 2018-03-22 | 画像生成装置、画像生成方法および画像生成プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/011367 WO2019180868A1 (ja) | 2018-03-22 | 2018-03-22 | 画像生成装置、画像生成方法および画像生成プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019180868A1 true WO2019180868A1 (ja) | 2019-09-26 |
Family
ID=67986054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/011367 WO2019180868A1 (ja) | 2018-03-22 | 2018-03-22 | 画像生成装置、画像生成方法および画像生成プログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US11373285B2 (ja) |
JP (1) | JP6988995B2 (ja) |
WO (1) | WO2019180868A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111126446A (zh) * | 2019-11-29 | 2020-05-08 | 西安工程大学 | 一种机器人视觉工业产品缺陷图像数据增广方法 |
WO2022044150A1 (ja) * | 2020-08-26 | 2022-03-03 | 三菱重工業株式会社 | 画像生成装置、画像生成方法およびプログラム |
JP2022045449A (ja) * | 2020-09-09 | 2022-03-22 | 株式会社東芝 | 学習装置、方法およびプログラム |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011214903A (ja) * | 2010-03-31 | 2011-10-27 | Denso It Laboratory Inc | 外観検査装置、外観検査用識別器の生成装置及び外観検査用識別器生成方法ならびに外観検査用識別器生成用コンピュータプログラム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10600185B2 (en) * | 2017-03-08 | 2020-03-24 | Siemens Healthcare Gmbh | Automatic liver segmentation using adversarial image-to-image network |
US20190147320A1 (en) * | 2017-11-15 | 2019-05-16 | Uber Technologies, Inc. | "Matching Adversarial Networks" |
US10540578B2 (en) * | 2017-12-21 | 2020-01-21 | International Business Machines Corporation | Adapting a generative adversarial network to new data sources for image classification |
US10937540B2 (en) * | 2017-12-21 | 2021-03-02 | International Business Machines Coporation | Medical image classification based on a generative adversarial network trained discriminator |
US10592779B2 (en) * | 2017-12-21 | 2020-03-17 | International Business Machines Corporation | Generative adversarial network medical image generation for training of a classifier |
-
2018
- 2018-03-22 US US16/982,871 patent/US11373285B2/en active Active
- 2018-03-22 JP JP2020507205A patent/JP6988995B2/ja active Active
- 2018-03-22 WO PCT/JP2018/011367 patent/WO2019180868A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011214903A (ja) * | 2010-03-31 | 2011-10-27 | Denso It Laboratory Inc | 外観検査装置、外観検査用識別器の生成装置及び外観検査用識別器生成方法ならびに外観検査用識別器生成用コンピュータプログラム |
Non-Patent Citations (3)
Title |
---|
ITO, HIDEMASA ET AL.: "Deep learning data augmentation technique to improve image recognition accuracy", TOSHIBA REVIEW, vol. 72, no. 4, 30 September 2017 (2017-09-30), pages 18 - 21 * |
RADFORD, ALEC ET AL.: "UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS", ICLR 2016, vol. 2016, pages 1 - 16, XP055399452 * |
TAKAHASHI, TOSHIHIRO: "Pattern Recognition and Media Understanding", IEICE TECHN. REPORT. THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. 117, no. 238, 5 October 2017 (2017-10-05), pages 95 - 100, ISSN: 0913-5685 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111126446A (zh) * | 2019-11-29 | 2020-05-08 | 西安工程大学 | 一种机器人视觉工业产品缺陷图像数据增广方法 |
CN111126446B (zh) * | 2019-11-29 | 2023-04-07 | 西安工程大学 | 一种机器人视觉工业产品缺陷图像数据增广方法 |
WO2022044150A1 (ja) * | 2020-08-26 | 2022-03-03 | 三菱重工業株式会社 | 画像生成装置、画像生成方法およびプログラム |
JPWO2022044150A1 (ja) * | 2020-08-26 | 2022-03-03 | ||
JP7392166B2 (ja) | 2020-08-26 | 2023-12-05 | 三菱重工業株式会社 | 画像生成装置、画像生成方法およびプログラム |
JP2022045449A (ja) * | 2020-09-09 | 2022-03-22 | 株式会社東芝 | 学習装置、方法およびプログラム |
JP7408515B2 (ja) | 2020-09-09 | 2024-01-05 | 株式会社東芝 | 学習装置、方法およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019180868A1 (ja) | 2021-02-25 |
US11373285B2 (en) | 2022-06-28 |
JP6988995B2 (ja) | 2022-01-05 |
US20210056675A1 (en) | 2021-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Maeda et al. | Generative adversarial network for road damage detection | |
CN109741292B (zh) | 用对抗自编码器检测第一图像数据集当中异常图像的方法 | |
US11568270B2 (en) | Non-transitory computer-readable storage medium storing improved generative adversarial network implementation program, improved generative adversarial network implementation apparatus, and learned model generation method | |
WO2020008919A1 (ja) | 機械学習装置及び方法 | |
US12056210B2 (en) | AI-based pre-training model determination system, and AI-based vision inspection management system using same for product production lines | |
KR20210039927A (ko) | 제품 분류 시스템 및 방법 | |
US20170200274A1 (en) | Human-Shape Image Segmentation Method | |
JP2020123330A (ja) | ニューラルネットワーク学習に利用されるオートラベリングされたイメージのうちでラベル検収のためのサンプルイメージを取得する方法、及びそれを利用したサンプルイメージ取得装置 | |
US12051187B2 (en) | AI-based new learning model generation system for vision inspection on product production line | |
JP2015087903A (ja) | 情報処理装置及び情報処理方法 | |
WO2019180868A1 (ja) | 画像生成装置、画像生成方法および画像生成プログラム | |
JP2018026122A5 (ja) | ||
WO2019187594A1 (ja) | 学習装置、学習方法および学習プログラム | |
CN112633309A (zh) | 基于贝叶斯优化的查询高效的黑盒对抗攻击 | |
KR20210127069A (ko) | 융합 모델 신경망의 성능 제어 방법 | |
JP7150918B2 (ja) | 試料の検査のためのアルゴリズムモジュールの自動選択 | |
JP2017162069A (ja) | 最適化方法、最適化装置、プログラムおよび画像処理装置 | |
EP3965020A1 (en) | A model for a rapid continual anomaly detector | |
WO2021095509A1 (ja) | 推定システム、推定装置および推定方法 | |
JP5298552B2 (ja) | 判別装置、判別方法及びプログラム | |
CN117456272A (zh) | 一种基于对比学习的自监督异常检测方法 | |
WO2021079460A1 (ja) | 検出方法、検出プログラムおよび情報処理装置 | |
KR102018788B1 (ko) | 이미지 분류 시스템 및 방법 | |
US20200387792A1 (en) | Learning device and learning method | |
US20230094940A1 (en) | System and method for deep learning based continuous federated learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18910493 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020507205 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18910493 Country of ref document: EP Kind code of ref document: A1 |