WO2019180808A1 - Cell observation device - Google Patents

Cell observation device Download PDF

Info

Publication number
WO2019180808A1
WO2019180808A1 PCT/JP2018/011002 JP2018011002W WO2019180808A1 WO 2019180808 A1 WO2019180808 A1 WO 2019180808A1 JP 2018011002 W JP2018011002 W JP 2018011002W WO 2019180808 A1 WO2019180808 A1 WO 2019180808A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
partial
hologram
phase
Prior art date
Application number
PCT/JP2018/011002
Other languages
French (fr)
Japanese (ja)
Inventor
倫誉 山川
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020507159A priority Critical patent/JP7036192B2/en
Priority to PCT/JP2018/011002 priority patent/WO2019180808A1/en
Publication of WO2019180808A1 publication Critical patent/WO2019180808A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto

Definitions

  • the present invention relates to a cell observation apparatus for observing the state of a cell. More specifically, a hologram in which interference fringes between an object wave and a reference wave are recorded by a holographic microscope, and phase information and intensity information are obtained based on the hologram data.
  • the present invention relates to a cell observation apparatus that creates a phase image, an intensity image, and the like after calculation.
  • Digital holographic microscopes acquire interference fringes (holograms) formed on the detection surface of an image sensor or the like by the object light reflected or transmitted from the light source and the reference light directly reaching from the same light source. Then, phase information and amplitude (intensity) information are acquired by performing a light wave back-propagation calculation process based on the hologram, and an intensity image and a phase image are created as a reconstructed image.
  • a digital holographic microscope has an advantage that phase information at an arbitrary distance can be obtained at the stage of arithmetic processing after obtaining a hologram, so that it is not necessary to perform focusing one by one during photographing.
  • Digital holographic microscopes include in-line, off-axis, and phase shift types.
  • the configuration of an optical system for acquiring a hologram is mainly different.
  • the off-axis type the light emitted from the laser light source is usually divided into reference light and irradiation light that irradiates the object, and the object light and reference light that have passed through the object are incident on the irradiation light differently from each other. The light is incident on the image sensor at an angle.
  • the inline type the light emitted from the laser light source is irradiated on the object without being divided, and the object light that has passed through the object and the reference light that has passed through the vicinity of the object without passing through the object are combined. Incidently incident on the image sensor.
  • the phase shift type a hologram whose phase is different in a plurality of stages is obtained by changing the optical path length of the reference light divided using the phase shift interferometer in a plurality of stages.
  • Patent Document 1 Non-Patent Document 2
  • Patent Document 1 Non-Patent Document 2
  • Patent Document 2 has proposed a phase recovery method by iterative calculation of light wave propagation based on a hologram for a plurality of wavelength lights acquired by an inline digital holographic microscope. Is quite complex and computationally intensive.
  • a cell observation apparatus for observing living cells in culture, it is necessary to create a high-resolution image so that each cell can be observed in detail over a wide range of the entire culture plate or the entire well formed on the plate. is there.
  • holograms are acquired for each of a number of small regions obtained by finely dividing the observation target region (for example, the entire culture plate). It is necessary to obtain a two-dimensional distribution of phase information and amplitude information for each small region by performing arithmetic processing based on the above, and to reconstruct an image of the observation target region by synthesizing such two-dimensional distributions of a large number of small regions.
  • the entire surface of the culture plate is divided into about 900 small areas, and holograms for a plurality of wavelengths are obtained with high resolution (for example, 4000 ⁇ 3000 pixels / sheet) for each small area. It takes 1 hour or more from the start of measurement until the phase image reconstruction process is completed. That is, the phase image and the intensity image of the sample can be observed only after 1 hour or more has elapsed since the measurement start time.
  • the existing apparatus when a hologram image of the entire observation target area is obtained in the holographic microscope, it is immediately displayed on the computer screen for controlling the microscope, and the operator can confirm it. I am doing so. Unlike the phase image and intensity image obtained by image reconstruction, the hologram image provides almost no information about individual cells, but the outline of wells and large foreign objects in the culture plate can be sufficiently visually confirmed. . Therefore, if the operator looks at the displayed hologram image and confirms an abnormal state such as, for example, a failure in installing the culture plate in the apparatus or contamination of a large foreign object, the processing is stopped at that point and the situation is stopped. Confirm. As a result, with respect to some defects, it is possible to avoid performing a wasteful process by finding the defect before confirming the reconstructed phase image, that is, immediately after the end of imaging.
  • the hologram image is not an image in which individual cells can be clearly observed, and it is difficult to discriminate even if a small foreign substance or the like is mixed. Therefore, for example, even if the culture conditions of the cells are inappropriate and differentiation has progressed abnormally or cells that are different from the target are mixed, it is necessary to discard the sample. Therefore, it is not known until the phase image and the intensity image are confirmed, and wasteful time and manpower are consumed. For these reasons, there is a strong demand for an apparatus that can detect the above-described sample and imaging problems before the execution of a complicated and time-consuming process or even after the start of the process.
  • the present invention has been made to solve the above-described problems, and the object of the present invention is to perform phase processing on a sample containing cells by performing arithmetic processing such as phase recovery based on a hologram acquired by a holographic microscope.
  • a cell observation device that reconstructs an image or intensity image, it is possible to avoid wasting time and manpower by allowing the user to quickly and accurately grasp the occurrence of a sample failure or measurement failure. It is to provide a cell observation device.
  • the present invention made to solve the above problems is a cell observation device using a holographic microscope, a) a light source, b) a detection unit that acquires a hologram that is an interference fringe between the object wave and the reference wave when the sample including cells is irradiated with light emitted from the light source unit; c) a moving unit that moves one or both of the light source unit and the detection unit and the sample so that the measurement position on the sample moves; d) Measurement for controlling the light source unit, the detection unit, and the moving unit so as to repeat acquisition of the hologram at each measurement position in a predetermined observation target region while moving the measurement position on the sample by the moving unit.
  • a control unit e) calculating phase information and / or intensity information based on hologram data obtained at each measurement position in a predetermined observation target region under the control of the measurement control unit, and corresponding to the observation target region
  • a first reconstructed image creating unit for creating a phase image showing a two-dimensional distribution of phase information and / or an intensity image showing a two-dimensional distribution of intensity information
  • the creation department g) a display processing unit for displaying the partial phase image and / or the partial intensity image created by the second reconstructed image creating unit on the display unit; It is characterized by having.
  • the sample is a cell culture container
  • the maximum area where hologram data can be acquired by the holographic microscope is the whole culture container or a part of the culture container.
  • the culture container include a cell culture plate in which one or a plurality of wells are formed, a petri dish, and a culture flask for mass culture. Therefore, the cell observation apparatus according to the present invention is a suitable apparatus for non-invasive observation of living cells being cultured in such a culture container.
  • the moving unit moves the light source unit and the detection unit integrally with respect to the culture plate whose position is fixed, so that the light emitted from the light source unit on the culture plate is The irradiated measurement position is changed.
  • the measurement control unit irradiates light (generally coherent light) to one measurement position in the culture plate while moving the light source unit and the detection unit integrally in a stepwise manner by the moving unit, thereby detecting the detection unit.
  • the operation of acquiring data (hologram data) indicating the two-dimensional distribution of light intensity by the hologram formed on the detection surface is repeated.
  • the first reconstructed image creating unit calculates phase information and / or intensity information based on hologram data obtained at different measurement positions, and sets the observation target region based on the obtained phase information and / or intensity information. A corresponding phase image and / or intensity image is created.
  • the second reconstructed image creation unit has one measurement or one specific measurement position designated by the user prior to or in parallel with the processing by the first reconstructed image creation unit.
  • Phase information and / or intensity information is calculated based only on hologram data obtained within a position or within a predetermined range spanning a plurality of measurement positions, and a partial phase image and / or partial intensity image is calculated based on the obtained information. create.
  • the range in which this partial phase image and / or partial intensity image is created is limited to a much smaller area than the entire observation target area. That is, the partial phase image or the partial intensity image is an image corresponding to a very small part of the entire observation target region.
  • the display processing unit displays the partial phase image and / or the partial intensity image on the screen of the display unit.
  • the amount of hologram data that is the target of processing in the second reconstructed image creation unit is much smaller than that of hologram data that is the target of processing in the first reconstructed image creation unit. Therefore, the time required for the second reconstructed image creation unit to read the hologram data is much shorter than the time required for the first reconstructed image creation unit to read the hologram data, and the second reconstructed image creation The time required for the arithmetic processing and image reconstruction in the unit is much shorter than that in the first reconstructed image creating unit. Therefore, the partial phase image and the partial intensity image are displayed in a relatively short time from the time when the measurement is completed.
  • the partial phase image and the partial intensity image are images corresponding to a very small part of the entire observation target area, but are displayed when the user designates an appropriate or particularly important measurement position or range. From the partial phase image and the partial intensity image, it is possible to confirm the suitability of measurement (imaging), the presence or absence of cell abnormalities, the presence of foreign matter, and the like before the phase image of the entire observation target region is created. As a result, when the operator determines that the reconstruction process of the phase image or the like of the entire observation target region is unnecessary, the process is not performed or even if the process is started By canceling, it is possible to avoid wasting time and labor.
  • the holographic microscope system such as in-line type, off-axis type, and phase shift type is not limited.
  • the optical system has a simple configuration and the distance between the sample and the light source unit is changed in a plurality of stages.
  • An in-line configuration using holograms at a plurality of wavelengths is desirable in that the drive mechanism is simplified because it is not necessary.
  • a hologram image creating unit that creates a hologram image based on the hologram data obtained at each measurement position in the predetermined observation target region and displays the hologram image on the screen of the display unit; Instruction for the user to instruct the measurement position or range corresponding to the partial phase image and / or partial intensity image created by the second reconstructed image creation unit on the hologram image displayed by the hologram image creation unit An input section; It is good to set it as the structure further provided.
  • Hologram images can be displayed immediately after the measurement, unlike phase images. Further, even when measurement is being performed, a partial hologram image corresponding to the measurement position can be displayed every time measurement for one measurement position is completed. Since this hologram image is a two-dimensional distribution of light intensity corresponding to the hologram, the living cells are often not visualized sufficiently, but the edges of wells with large steps are sufficiently visible. . Therefore, the operator instructs the instruction input unit, for example, which partial phase image or partial intensity image of which well is to be viewed on the displayed hologram image during measurement execution or immediately after the measurement is completed. Thereby, the operator can confirm the partial phase image and partial intensity image of a desired measurement position and range in a short waiting time.
  • the partial phase image and the partial intensity image may be displayed.
  • cells are easy to see but foreign matters such as dust tend to be hard to see.
  • foreign substances tend to be visible, but cells tend not to be visible. Therefore, it is more preferable to display both the partial phase image and the partial intensity image in the same range.
  • the second reconstructed image creation unit creates a partial phase image and a partial intensity image corresponding to a specific measurement position or range
  • the display processing unit may be configured to display the partial phase image and the partial intensity image on the same screen.
  • the second reconstructed image creating unit creates a partial phase image and / or a partial intensity image at a plurality of focal positions
  • the display processing unit may include a focus instruction input unit for a user to indicate a focal position, and may display a partial phase image and / or a partial intensity image at the focal position instructed by the instruction input unit.
  • the focus instruction input unit includes a slider displayed on the screen and an operation unit that moves a knob of the slider, and the focus position changes according to the position of the knob. It can be set as the thing to do.
  • the sample is a culture plate in which a plurality of wells are formed
  • the display processing unit further includes a focus instruction input unit for a user to specify a focus position for each well
  • the first reconstructed image creating unit may be configured to create a phase image and / or an intensity image at the focal position for each well instructed by the focus instruction input unit.
  • the focal position of each well can be determined at the stage of creating the partial phase image and partial intensity image before creating the phase image and intensity image of the entire culture plate. As a result, only the phase image and intensity image at the focus position of each well need be created at the stage of creating the phase image and intensity image of the entire culture plate. Can be reduced.
  • the first reconstructed image creating unit and the second reconstructed image creating unit realize their functions with the same computer as the measurement control unit and the display processing unit or with a hardware circuit housed in the same housing.
  • each function may be realized by a separate computer or a completely separate hardware circuit.
  • the functions of the first reconstructed image creating unit and the second reconstructed image creating unit which require complicated calculations, are personal computers having the function of a measurement control unit that controls the holographic microscope main body responsible for measurement. It may be realized by a server (high performance computer) connected to the computer via a communication network.
  • the function of the display processing unit may be provided in the same personal computer as the measurement control unit, and display may be performed based on data received from the server.
  • the processes in the first reconstructed image creation unit and the second reconstructed image creation unit are basically the same, they can be substantially the same constituent elements.
  • the cell observation apparatus without waiting for a long time required to create a phase image and an intensity image of the entire observation range by image reconstruction processing based on hologram data acquired by measurement, work is performed.
  • the person can confirm the suitability of the measurement and the defect of the sample quickly and accurately. This avoids wasting time by avoiding the execution of image reconstruction processing when such troubles are confirmed, or by stopping it immediately even during execution. can do. As a result, cell observation work can be performed efficiently.
  • the whole block diagram of the cell observation apparatus which is one Example of this invention.
  • FIG. 1 is an overall configuration diagram of the cell observation apparatus of this embodiment
  • FIG. 2 is a schematic configuration diagram of a measurement terminal in the cell observation apparatus of this embodiment.
  • the cell observation apparatus of this embodiment includes a measurement terminal 1, a browsing terminal 3, and a server 5 connected via a communication network 4 such as the Internet or an intranet.
  • a communication network 4 such as the Internet or an intranet.
  • FIG. 1 one measuring terminal 1 and one browsing terminal 3 are shown, but an appropriate number of each can be provided.
  • the server 5 is a high-performance computer. As functional blocks embodied by dedicated software installed in the computer, a data transmission / reception unit 51, a hologram data storage unit 52, a first phase recovery calculation unit 53, a second A phase recovery calculation unit 54, a first image reconstruction unit 55, a second image reconstruction unit 56, an image data storage unit 57, and the like are provided. In addition, although the 1st phase recovery calculation part 53 and the 2nd phase recovery calculation part 54 are provided separately, and the 1st image reconstruction part 55 and the 2nd image reconstruction part 56 are provided separately, as mentioned later, The calculations executed by the first phase recovery calculation unit 53 and the second phase recovery calculation unit 54 are substantially the same, and are executed by the first image reconstruction unit 55 and the second image reconstruction unit 56. The processing is substantially the same with some exceptions. Thus, substantially they can be the same component.
  • the measurement terminal 1 includes a microscope observation unit 10 and a control / processing unit 20.
  • the microscopic observation unit 10 is an inline digital holographic microscope, and includes a light source unit 11 including a laser diode and the image sensor 12 as shown in FIG. Between the image sensor 12, a culture plate 13 including cells 14 that are observation objects is arranged.
  • the light source unit 11 and the image sensor 12 are integrally movable in two axial directions of the X axis and the Y axis that are orthogonal to each other by a moving unit 15 including a driving source such as a motor.
  • FIG. 2 only one light source unit 11 and one image sensor 12, i.e., one set, are shown in order to avoid complication of the drawing. Is provided with four sets sandwiching one culture plate 13 and, as will be described later, holograms for different measurement positions of one culture plate 13 by the four sets of light source units 11 and the image sensor 12. It is possible to obtain in parallel.
  • the entity of the control / processing unit 20 controls the operation of the microscopic observation unit 10 and sends the data acquired by the microscopic observation unit 10 to the server 5. Further, the control / processing unit 20 receives the data processed by the server 5 and displays it.
  • a personal computer PC
  • the control / processing unit 20 is connected to an input unit 201 that is a pointing device such as a keyboard and a mouse, and a display unit 202.
  • the browsing terminal 3 is a general PC. Then, the dedicated software installed in the PC can receive data from the server 5 and display an appropriate image formed based on the data.
  • FIG. 3 is a conceptual diagram for explaining image reconstruction processing in the cell observation apparatus of the present embodiment.
  • FIG. 3 (a) is a schematic top view of the culture plate 13 used in the cell observation apparatus of this example.
  • the culture plate 13 is formed with six wells 13a having a circular shape when viewed from above, and cells are cultured in the wells 13a.
  • the entire culture plate 13, that is, the entire rectangular range including the six wells 13 a is the observation target region.
  • the microscopic observation unit 10 includes four sets of a light source unit 11 and an image sensor 12, and each set of the light source unit 11 and the image sensor 12 has a total of 4 etc. as shown in FIG. It is responsible for collecting the hologram data of the four divided areas 81 divided. That is, the four sets of the light source unit 11 and the image sensor 12 share the collection of hologram data over the entire culture plate 13.
  • the range in which one set of the light source unit 11 and the image sensor 12 can be photographed at a time includes the one well 13a in the four-divided range 81 as shown in FIGS. 3B and 3C.
  • the four light source units 11 and the four image sensors 12 are respectively arranged in the vicinity of four vertices of a rectangle having the same size as the four-divided range 81 in the XY plane including the light source unit 11 and the image sensor 12.
  • the holograms for four different imaging units 83 on the culture plate 13 are simultaneously acquired.
  • the operator When collecting hologram data for the culture plate 13, the operator first sets the culture plate 13 on which the cells 14 to be observed are cultured at a predetermined position of the microscopic observation unit 10, and identifies the culture plate 13. Information such as a number and measurement date / time is input from the input unit 201 to instruct measurement execution. Upon receiving this measurement instruction, the imaging control unit 21 controls each part of the microscopic observation unit 10 to perform imaging.
  • one light source unit 11 irradiates a predetermined area (one imaging unit 83) of the culture plate 13 with coherent light having a small angle spread of about 10 °.
  • the coherent light (object light 17) that has passed through the culture plate 13 and the cells 14 reaches the image sensor 12 while interfering with the light (reference light 16) that has passed through the region adjacent to the cells 14 on the culture plate 13.
  • the object light 17 is light whose phase has changed when passing through the cell 14.
  • the reference light 16 is light which does not pass through the cell 14 and thus does not undergo phase change caused by the cell 14.
  • an interference image that is, a hologram
  • 2D light intensity distribution data hologram data
  • the four image sensors 12 acquire hologram data of regions corresponding to different imaging units 83 on the culture plate 13. Is done.
  • the light source unit 11 and the image sensor 12 are moved by the moving unit 15 in the X-axis direction and the Y-axis direction by a distance corresponding to one imaging unit 83 in the XY plane. It is sequentially moved in steps.
  • measurement is performed with 180 imaging units 83 included in the four-divided range 81, and measurement of the entire culture plate 13 is performed with the four sets of light source units 11 and the entire image sensor 12.
  • the hologram data obtained by the four image sensors 12 of the microscopic observation unit 10 in this way is stored in the hologram data storage unit 22 together with attribute information such as measurement date and time.
  • the data transmission / reception unit 23 uses the hologram data stored in the hologram data storage unit 22 as the measurement date and time, etc.
  • the attribute information is sequentially transferred to the server 5 via the communication network 4. It should be noted that raw, that is, unprocessed hologram data may be sent from each measurement terminal 1 to the server 5, but processing that corrects an error factor specific to each measurement terminal 1 as necessary.
  • the processed hologram data may be sent to the server 5.
  • the data transmitter / receiver 51 receives the hologram data sent from the measurement terminal 1, and identifies identification information for specifying the measurement terminal 1, identification information of the culture plate input at the time of imaging, measurement date and time, and the like.
  • Hologram data is stored in the hologram data storage unit 52 together with the attribute information.
  • the first phase recovery calculation unit 53 reads out the hologram data for each imaging unit from the hologram data storage unit 52 and restores the phase information by performing propagation calculation processing of the light wave, and intensity (amplitude) information. Ask for.
  • the first image reconstruction unit 55 performs the phase information and the intensity information. Based on the above, a phase image and an intensity image of the entire observation target region are formed.
  • the first image reconstruction unit 55 reconstructs the phase image of each imaging unit 83 based on the spatial distribution of the phase information calculated for each imaging unit 83, and connects the phase images in the narrow range.
  • a phase image of the observation target region that is, the entire culture plate 13 is formed.
  • an appropriate correction process may be performed so that the phase images at the boundaries of the imaging units 83 are smoothly connected.
  • an algorithm disclosed in known documents such as Patent Documents 1 and 2 may be used.
  • the reconstructed image obtained by normal processing is the highest resolution image obtained in principle from the acquired hologram data.
  • the resolution can be improved by binning processing based on the highest resolution phase image. You may make it produce the phase image of the resolution
  • the characteristic processing described below is executed so that the operator can quickly grasp the measurement failure or the contamination of the foreign matter after the measurement is completed.
  • FIG. 4 is an explanatory diagram of this characteristic processing operation
  • FIG. 5 is a diagram showing an example of a screen displayed on the measurement terminal after the end of photographing
  • FIG. 6 is a phase image of the designated measurement position displayed on the measurement terminal and It is a figure which shows an example of an intensity
  • the display processing unit 27 displays a captured image display screen 60 as shown in FIG.
  • an image display area 61 and a plate information display area 62 are arranged, and a “stop” button 63 is arranged at the lower right.
  • the plate information display area 62 attribute information such as the name (plate name) and identification number (plate ID) of the culture plate 13 during or after measurement is displayed.
  • the screen shown in FIG. 5 is the one after the measurement is completed, and no substantial image is displayed in the image display area 61 before the measurement is started.
  • the hologram image creation unit 24 is based on the obtained data for each imaging unit 83.
  • a hologram image showing a two-dimensional distribution of light intensity is created.
  • the hologram image created at this time is a thumbnail image with the lowest resolution.
  • the display processing unit 27 pastes and displays the created hologram thumbnail image at a position corresponding to each imaging unit in the image display area 61. That is, every time hologram data of one image pickup unit is newly obtained, a thumbnail image of the hologram based on the data is added to the image in the image display area 61 and displayed.
  • the operator monitors the hologram image displayed in the image display area 61 during the measurement, and clicks the “stop” button 63 when it can be determined that there is some problem. Then, the imaging control unit 21 receives this operation and stops measurement. As described above, when there is some problem in the measurement, it is possible to avoid spending time for the remaining useless measurement by quickly stopping the measurement.
  • the operator uses an pointing device such as a mouse that is a part of the input unit 201 to display the image display area 61 in the captured image display screen 60 shown in FIG.
  • the cursor is moved onto a desired one of a number of thumbnail images constituting the hologram image displayed on the screen.
  • the confirmation position designation accepting unit 25 accepts this operation, and displays a rectangular mark 66 indicating the selected imaging unit superimposed on the image.
  • the confirmation position designation receiving unit 25 recognizes one imaging unit selected at that time as a partial phase image creation target, and accordingly Then, the display processing unit 27 displays the designated position image display screen 70 as shown in FIG. 6 on the screen of the display unit 202.
  • An image display area 71 is provided on the designated position image display screen 70.
  • the confirmation position designation receiving unit 25 reads out the hologram data obtained for one designated imaging unit from the hologram data storage unit 22, and the data transmission / reception unit 23 sends the read data through the communication network 4 to the server 5. Forward to.
  • the hologram data transfer operation for one image pickup unit may be performed in parallel with the transfer operation of the hologram data of the entire imaging target region to the server 5 as described above, or preferentially. You may go. In the latter case, if the hologram data transfer operation for the entire imaging target area has already been started, the hologram data may be transferred for one imaging unit instructed to be temporarily interrupted.
  • the data transmission / reception unit 51 receives the hologram data for one imaging unit sent from the measurement terminal 1 as described above, and temporarily stores the data in the hologram data storage unit 52. Since the amount of data transferred at this time is much smaller than the amount of hologram data in the entire observation target area, the transfer time is also significantly shorter (see FIG. 4).
  • the second phase recovery calculation unit 54 reads out hologram data of one imaging unit stored in the hologram data storage unit 22 and performs light wave propagation calculation processing to restore phase information and obtain intensity information. Subsequently, the second image reconstruction unit 56 forms a partial phase image and a partial intensity image for one imaging unit based on the calculated phase information and intensity information. In addition, when calculating phase information and intensity information from hologram data, information on an arbitrary focal position can be calculated.
  • the focal position set at this time is a default value designated from the measurement terminal 1. (For example, the focus position set at the most recent past time point for the culture plate and well having the same identification number).
  • the image data constituting the partial phase image and the partial intensity image is stored in the image data storage unit 57 and sent from the data transmission / reception unit 51 to the measurement terminal 1. Since computation processing and image reconstruction processing need only be performed for one imaging unit, tiling processing etc. are unnecessary, so the processing time until the partial phase image and partial intensity image are formed is also the phase of the entire observation target region. This is much shorter than the time required to form the image and the intensity image (see FIG. 4).
  • the time required for transferring hologram data for one imaging unit selected and instructed by the operator and forming a partial phase image and a partial intensity image based on the data is short. Therefore, as described above in the measurement terminal 1, a part of the measurement terminal 1 is transferred from the server 5 to the measurement terminal 1 within a relatively short time from the time when the operator double-clicks the thumbnail image corresponding to one imaging unit. Image data constituting the phase image and the partial intensity image is sent. The sent image data is temporarily stored in the image data storage unit 26.
  • the display processing unit 27 creates a partial phase image and a partial intensity image based on the image data, and displays the two images side by side in the image display area 71 in the designated position image display screen 70.
  • the type of image displayed in the image display area 71 can be selected by putting a check mark in the display image selection check box 72, and only one of the partial phase image and the partial intensity image is displayed in the image display area 71. Can also be displayed.
  • the focal position of the displayed partial phase image and partial intensity image is 5450 ⁇ m.
  • the focus position set initially is not necessarily the focus position in cell observation, and it is necessary to change the focus position when observing a foreign object having a height different from that of the cell. Therefore, when observing partial phase images and partial intensity images at different focal positions, the operator sets conditions for determining a plurality of stages of focal positions in the slice condition setting area 73 in the designated position image display screen 70. That is, when the range of the focus position and the slice width (the step width of the focus position) are respectively input as numerical values, the number of slices (the number of steps of the focus position) is automatically calculated and displayed. These numerical values can also be left as default.
  • the focus designation receiving unit 28 receives this operation and instructs the server 5 on the set slice conditions.
  • the second phase recovery calculation unit 54 and the second image reconstruction unit 56 perform phase information at a plurality of focal positions according to the designated slice condition based on the hologram data for the selected one imaging unit. And intensity information are calculated, and a plurality of partial phase images and partial intensity images having different focal positions are formed.
  • the image data constituting the partial phase image and the partial intensity image at the plurality of focal positions are stored in the image data storage unit 57 and sent from the data transmission / reception unit 51 to the measurement terminal 1.
  • the sent image data is temporarily stored in the image data storage unit 26.
  • the focus designation receiving unit 28 obtains the focal position corresponding to the position of the knob on the slider, and the display processing unit 27 displays the image.
  • the partial phase image and the partial intensity image displayed in the display area 71 are updated to the image at the focal position.
  • the partial phase image and the partial intensity image at 11 different focal positions can be confirmed by operating the slider. The operator can find a focal position at which the cell to be observed can be most clearly observed by comparing partial phase images or partial intensity images at different focal positions.
  • the focus designation accepting unit 28 accepts this operation and informs the server 5 of the information on the designated focus position together with the identification number of the well in which the imaging unit such as the partial phase image currently displayed exists.
  • the instructed focal position is stored in the hologram data storage unit 52 in association with the well identification number, and the first phase recovery calculation unit 53 performs phase information and intensity of the imaging unit corresponding to the well with the identification number.
  • phase information and intensity information at the focal position associated with the identification number are calculated. That is, it is possible to determine the focal position for each well when creating the phase image and the intensity image of the entire imaging target region while checking the partial phase image and the partial intensity image on the measurement terminal 1.
  • the focal position that can be determined based on the partial phase image and the partial intensity image for one imaging unit is only for one well in which the imaging unit exists. Therefore, when it is desired to individually set the focal positions for all of the six wells, one imaging unit is selected for each well on the hologram image displayed in the image display area 61 of the captured image display screen 60. It is necessary to repeat the procedure of displaying the partial phase image and the partial intensity image for the imaging unit on the designated position image display screen 70, and further setting the slice conditions to create the slice image.
  • the focal position set for one well can be used for other wells.
  • an appropriate focal position is set for each well, and the phase image of only the focal position is set. And intensity images can be created and displayed. Thereby, it is possible to save the time required to create an image at an unnecessary focal position.
  • FIG. 7 is a diagram illustrating an example of a display screen when a hologram image and a partial phase image are displayed on the browsing terminal 3.
  • the slice image confirmation display screen 90 is provided with a hologram image display area 91 and a partial phase image display area 92.
  • a hologram image based on the hologram data stored in the hologram data storage unit 52 of the server 5 after shooting is displayed.
  • the hologram image to be displayed at this time can be appropriately selected by designating, for example, the identification number of the culture plate or the measurement date / time.
  • the operator wants to see a plurality of partial phase images having different focal positions, the operator designates one imaging unit on the hologram image, and sets conditions for determining a plurality of stages of focal positions in the slice condition setting area 93. Then, a “slice image preview” button 94 is clicked.
  • This instruction and setting contents are sent from the browsing terminal 3 to the server 5, and the second phase recovery calculation unit 54 and the second image reconstruction unit 56 of the server 5 store the hologram data of the designated imaging unit as described above.
  • the phase information at a plurality of focal positions designated based on is calculated, and a partial phase image is reconstructed for each focal position.
  • the image data which comprises the some partial phase image from which a focus position differs are transmitted to the terminal 3 for browsing.
  • the browsing terminal 3 displays the partial phase image in the partial phase image display area 92 based on the received image data. Further, the displayed partial phase image is changed to an image at a different focal position in accordance with the operation of the slider in the focal position selection operation area 95. Thereby, the operator can also confirm the partial phase image of the culture plate image
  • the partial phase image in the imaging unit is reconstructed from the hologram data of one imaging unit designated by the operator.
  • the partial phase image in the range may be reconstructed from the hologram data included in the specified range.
  • the range designated by the operator in the image may be enlarged and displayed.
  • the specified range is obtained after reconstructing the partial phase image and partial intensity image for that imaging unit. Only these images may be cut out and displayed.
  • the hologram image it is possible to specify not only one but also a plurality of imaging units on the hologram image, or to arbitrarily specify a range having a size larger than one imaging unit, and the specified plurality of imaging units or ranges.
  • the partial phase image and the partial intensity image corresponding to may be reconstructed and displayed.
  • the time is increased until a partial phase image or the like can be displayed. For this reason, it is preferable to predetermine the upper limit of the number of imaging units that can be specified and the width of the range based on the time constraint.
  • the microscopic observation unit 10 is an in-line type digital holographic microscope.
  • the microscopic observation unit 10 is not limited to the inline type as long as it acquires a hologram for each measurement position in the observation target region.
  • an off-axis type or phase shift type digital holographic microscope may be used.
  • First phase recovery calculation unit 54 Second phase recovery calculation unit 55 ... First image reconstruction unit 56 ... First Two-image reconstruction unit 57 ... Image data storage unit 60 ... Captured image display screen 61 ... Image display area 62 ... Plate information display area 63 ... "Stop” button 65 ... "Create image "Execute” button 66 ... Mark 70 ... Designated position image display screen 71 ... Image display area 72 ... Display image selection check box 73 ... Slice condition setting area 74 ... "Create slice image” button 75 ... Focus position selection operation area 76 ... "This "Set value to well focal position” button 90 ... Slice image confirmation display screen 91 ... Hologram image display area 92 ... Partial phase image display area 93 ... Slice condition setting area 94 ... "Slice image preview” button 95 ... Focus position selection operation region

Abstract

A display processing unit (27) presents a hologram of an entire observation target area on a display unit (202) after hologram data of an entire culture plate (13) is acquired via a microscopic observation unit (10) that is a holographic microscope. When a user designates a measurement position on the image for a phase image the user wishes to observe, a checking position designation accepting unit (25) transfers the hologram data for the designated measurement position to an external server, and the server performs phase recovery and image reconstruction to create a partial phase image. When receiving the image data making up the partial phase image, the display processing unit (27) presents the partial phase image on the display unit (202). The huge amount of hologram data for the entire observation target area requires much time to transfer and process the data, whereas the amount of hologram data at one measurement position is significantly small. Therefore, this device allows an operator to check a partial phase image to determine the suitability of the measurement and the presence or absence of defects in a sample before performing reconstruction of the phase image based on the hologram data of the entire observation target area.

Description

細胞観察装置Cell observation device
 本発明は細胞の状態を観察する細胞観察装置に関し、さらに詳しくは、ホログラフィ顕微鏡により物体波と参照波との干渉縞を記録したホログラムを取得し、そのホログラムデータに基づいて位相情報や強度情報を算出したうえで位相画像や強度画像等を作成する細胞観察装置に関する。 The present invention relates to a cell observation apparatus for observing the state of a cell. More specifically, a hologram in which interference fringes between an object wave and a reference wave are recorded by a holographic microscope, and phase information and intensity information are obtained based on the hologram data. The present invention relates to a cell observation apparatus that creates a phase image, an intensity image, and the like after calculation.
 再生医療分野では、近年、iPS細胞やES細胞等の多能性幹細胞を用いた研究が盛んに行われている。一般に細胞は透明であって通常の光学顕微鏡では観察しにくいため、従来、細胞の観察には位相差顕微鏡が広く利用されている。しかしながら、位相差顕微鏡では顕微画像を撮影する際に焦点合わせを行う必要があるため、広い観察対象領域を細かく区画したそれぞれの小領域についての顕微画像を取得するような場合、測定に時間が掛かりすぎるという問題がある。これを解決するため、近年、デジタルホログラフィ技術を用いたデジタルホログラフィック顕微鏡が開発され実用に供されている(特許文献1、2、非特許文献1等参照)。 In the field of regenerative medicine, research using pluripotent stem cells such as iPS cells and ES cells has been actively conducted in recent years. In general, since a cell is transparent and difficult to observe with a normal optical microscope, a phase contrast microscope has been widely used for cell observation. However, since it is necessary to perform focusing when taking a microscopic image in a phase contrast microscope, it takes a long time to measure when a microscopic image of each small region obtained by finely dividing a wide observation target region is acquired. There is a problem of too much. In order to solve this, in recent years, digital holographic microscopes using digital holography technology have been developed and put into practical use (see Patent Documents 1 and 2, Non-Patent Document 1, etc.).
 デジタルホログラフィック顕微鏡では、光源からの光が物体表面で反射又は透過してくる物体光と同一光源から直接到達する参照光とがイメージセンサ等の検出面で形成する干渉縞(ホログラム)を取得し、そのホログラムに基づいた光波の逆伝播演算処理等を実施することで位相情報や振幅(強度)情報を取得し、再構成画像として強度画像や位相画像を作成する。こうしたデジタルホログラフィック顕微鏡では、ホログラムを取得したあとの演算処理の段階で任意の距離における位相情報等を得ることができるため、撮影時にいちいち焦点合わせを行う必要がないという利点がある。 Digital holographic microscopes acquire interference fringes (holograms) formed on the detection surface of an image sensor or the like by the object light reflected or transmitted from the light source and the reference light directly reaching from the same light source. Then, phase information and amplitude (intensity) information are acquired by performing a light wave back-propagation calculation process based on the hologram, and an intensity image and a phase image are created as a reconstructed image. Such a digital holographic microscope has an advantage that phase information at an arbitrary distance can be obtained at the stage of arithmetic processing after obtaining a hologram, so that it is not necessary to perform focusing one by one during photographing.
 デジタルホログラフィック顕微鏡には、インライン(in-line)型、オフアクシス(off-axis)型、位相シフト型などの方式がある。これら各方式では主として、ホログラムを取得するための光学系の構成が相違している。オフアクシス型では通常、レーザ光源から出射した光を参照光と物体に照射される照射光とに分割し、該照射光に対し物体を透過して来た物体光と参照光とを互いに異なる入射角で以てイメージセンサに入射させる。一方、インライン型では、レーザ光源から出射した光を分割せずに物体に照射し、物体を透過して来た物体光と物体を透過せずに該物体の近傍を通過した参照光とを共にイメージセンサに略垂直に入射させる。また、位相シフト型では、位相シフト干渉計を用い分割した参照光の光路長を複数段階に変化させることで、位相が複数段階に相違するホログラムを取得する。 Digital holographic microscopes include in-line, off-axis, and phase shift types. In each of these methods, the configuration of an optical system for acquiring a hologram is mainly different. In the off-axis type, the light emitted from the laser light source is usually divided into reference light and irradiation light that irradiates the object, and the object light and reference light that have passed through the object are incident on the irradiation light differently from each other. The light is incident on the image sensor at an angle. On the other hand, in the inline type, the light emitted from the laser light source is irradiated on the object without being divided, and the object light that has passed through the object and the reference light that has passed through the vicinity of the object without passing through the object are combined. Incidently incident on the image sensor. Further, in the phase shift type, a hologram whose phase is different in a plurality of stages is obtained by changing the optical path length of the reference light divided using the phase shift interferometer in a plurality of stages.
 いずれの方式であってもデジタルホログラフィック顕微鏡では、取得したホログラムデータに基づいて光波の位相情報及び振幅情報を算出し、それを画像化する処理をコンピュータで行う必要がある。例えば特許文献1、非特許文献2等には、インライン型デジタルホログラフィック顕微鏡で取得される複数の波長光についてのホログラムに基づく光波伝播の反復計算による位相回復方法が提案されているが、こうした計算はかなり複雑で計算量も多い。 Regardless of which method is used, the digital holographic microscope needs to calculate the phase information and amplitude information of the light wave based on the acquired hologram data, and to perform processing for imaging it with a computer. For example, Patent Document 1, Non-Patent Document 2, and the like have proposed a phase recovery method by iterative calculation of light wave propagation based on a hologram for a plurality of wavelength lights acquired by an inline digital holographic microscope. Is quite complex and computationally intensive.
 培養中の生体細胞を観察するための細胞観察装置では、培養プレート全体又は該プレートに形成されているウェル全体の広い範囲について各細胞が詳細に観察できる程度の高い解像度の画像を作成する必要がある。デジタルホログラフィック顕微鏡を用いた細胞観察装置で、こうした位相画像や強度画像を得るためには、観察対象領域(例えば培養プレート全体)を細かく区切った多数の小領域についてそれぞれホログラムを取得し、そのホログラムに基づく演算処理を行って小領域毎の位相情報や振幅情報の2次元分布を求め、多数の小領域のそうした2次元分布を合成して観察対象領域についての画像を再構成する必要がある。 In a cell observation apparatus for observing living cells in culture, it is necessary to create a high-resolution image so that each cell can be observed in detail over a wide range of the entire culture plate or the entire well formed on the plate. is there. In order to obtain such a phase image and intensity image with a cell observation apparatus using a digital holographic microscope, holograms are acquired for each of a number of small regions obtained by finely dividing the observation target region (for example, the entire culture plate). It is necessary to obtain a two-dimensional distribution of phase information and amplitude information for each small region by performing arithmetic processing based on the above, and to reconstruct an image of the observation target region by synthesizing such two-dimensional distributions of a large number of small regions.
 上述したように、位相情報等の算出や画像の再構成処理の計算量はもともと多いため、多数の小領域毎にこうした計算を行う場合、その計算量はかなり膨大になる。そのため、或る程度性能の高いコンピュータを使用したとしても、測定を開始してから観察対象領域についての位相画像が再現されるまでには時間が掛かる。 As described above, since the amount of calculation of phase information and the like and image reconstruction processing are originally large, when such a calculation is performed for each of a large number of small regions, the amount of calculation is considerably large. Therefore, even if a computer with a certain degree of performance is used, it takes time until the phase image for the observation target region is reproduced after the measurement is started.
 本発明者らの検討によれば、例えば培養プレート全面を900個程度の小領域に分割し、各小領域についてそれぞれ高い解像度(例えば4000×3000画素/枚)で複数の波長についてのホログラムを取得する装置において、測定開始から位相画像の再構成処理が終了するまで1時間以上掛かる。即ち、測定開始時点から1時間以上の時間が経過したあとでないと、試料の位相画像や強度画像を観察することができない。 According to the study by the present inventors, for example, the entire surface of the culture plate is divided into about 900 small areas, and holograms for a plurality of wavelengths are obtained with high resolution (for example, 4000 × 3000 pixels / sheet) for each small area. It takes 1 hour or more from the start of measurement until the phase image reconstruction process is completed. That is, the phase image and the intensity image of the sample can be observed only after 1 hour or more has elapsed since the measurement start time.
 観察対象である培養プレート中に異物の混入などの不具合があったり、測定の失敗又は不手際があったりした場合、測定自体が無駄になるが、上述したようにそうした不具合が判明するのは測定開始時点からかなり時間が経過してからである。そのため、測定時間が無駄に費やされてしまうことになり、細胞の観察作業や解析作業の効率を低下させるという問題がある。 If there is a defect such as contamination of foreign matter in the culture plate to be observed, or if there is a measurement failure or omission, the measurement itself is wasted. This is after a considerable amount of time has elapsed since the time. Therefore, the measurement time is wasted, and there is a problem that the efficiency of cell observation work and analysis work is lowered.
 こうした課題に対し、既存の装置では、ホログラフィック顕微鏡において観察対象領域全体のホログラム画像が得られると、それを直ちに該顕微鏡の制御用のコンピュータの画面上に表示し、作業者がそれを確認できるようにしている。ホログラム画像は画像再構成によって得られる位相画像や強度画像とは異なり、個々の細胞についての情報は殆ど得られないものの、培養プレート中のウェルの輪郭や大きな異物などは十分に視認が可能である。そこで、作業者は表示されたホログラム画像を見て、例えば装置への培養プレートの設置の不具合や大きな異物の混入などの異常状態を確認したならば、その時点で処理の続行を中止させて状況を確認する。これにより、一部の不具合については、再構成された位相画像を確認する前に、即ち撮影終了の直後に、不具合を見つけて無駄な処理が実行されることを回避することができる。 In response to such a problem, in the existing apparatus, when a hologram image of the entire observation target area is obtained in the holographic microscope, it is immediately displayed on the computer screen for controlling the microscope, and the operator can confirm it. I am doing so. Unlike the phase image and intensity image obtained by image reconstruction, the hologram image provides almost no information about individual cells, but the outline of wells and large foreign objects in the culture plate can be sufficiently visually confirmed. . Therefore, if the operator looks at the displayed hologram image and confirms an abnormal state such as, for example, a failure in installing the culture plate in the apparatus or contamination of a large foreign object, the processing is stopped at that point and the situation is stopped. Confirm. As a result, with respect to some defects, it is possible to avoid performing a wasteful process by finding the defect before confirming the reconstructed phase image, that is, immediately after the end of imaging.
 しかしながら、上述したようにホログラム画像は位相画像や強度画像とは異なり、個々の細胞が明瞭に観察できる画像ではなく、小さな異物等が混入していても判別するには困難である。そのため、例えば細胞の培養条件が不適切あって分化が異常に進行してしまっていたり目的のものとは異なる細胞が混入してしまっていたりして廃棄する必要があるような試料であっても、位相画像や強度画像を確認するまで分からず、無駄な時間と人手を費やしてしまうことになる。こうしたことから、煩雑で時間が掛かる処理の実行前に或いは処理の実行開始後であってもその初期段階で、上述したような試料や撮影の不具合を検出できる装置が強く要望されている。 However, as described above, unlike the phase image and the intensity image, the hologram image is not an image in which individual cells can be clearly observed, and it is difficult to discriminate even if a small foreign substance or the like is mixed. Therefore, for example, even if the culture conditions of the cells are inappropriate and differentiation has progressed abnormally or cells that are different from the target are mixed, it is necessary to discard the sample. Therefore, it is not known until the phase image and the intensity image are confirmed, and wasteful time and manpower are consumed. For these reasons, there is a strong demand for an apparatus that can detect the above-described sample and imaging problems before the execution of a complicated and time-consuming process or even after the start of the process.
国際特許公開第2016/084420号International Patent Publication No. 2016/084420 特開平10-268740号公報JP-A-10-268740
 本発明は上記課題を解決するためになされたものであり、その目的とするところは、ホログラフィック顕微鏡により取得されたホログラムに基づいて位相回復等の演算処理を行って細胞を含む試料についての位相画像や強度画像を再構成する細胞観察装置において、試料の不具合や測定の不手際などの発生をユーザが迅速に且つ的確に把握することで、無駄な時間や人手を費やすことを回避することができる細胞観察装置を提供することである。 The present invention has been made to solve the above-described problems, and the object of the present invention is to perform phase processing on a sample containing cells by performing arithmetic processing such as phase recovery based on a hologram acquired by a holographic microscope. In a cell observation device that reconstructs an image or intensity image, it is possible to avoid wasting time and manpower by allowing the user to quickly and accurately grasp the occurrence of a sample failure or measurement failure. It is to provide a cell observation device.
 上記課題を解決するために成された本発明は、ホログラフィック顕微鏡を利用した細胞観察装置であって、
 a)光源部と、
 b)前記光源部からの出射光を細胞を含む試料に照射したときの物体波と参照波との干渉縞であるホログラムを取得する検出部と、
 c)前記試料上の測定位置が移動するように前記光源部及び前記検出部と前記試料との一方又は両方を移動させる移動部と、
 d)前記移動部により前記試料上の測定位置を移動させつつ所定の観察対象領域内の各測定位置におけるホログラムの取得を繰り返すように前記光源部、前記検出部、及び前記移動部を制御する測定制御部と、
 e)前記測定制御部による制御の下で、所定の観察対象領域内の各測定位置において得られたホログラムデータに基づいて位相情報及び/又は強度情報を算出するとともに、前記観察対象領域に対応する位相情報の2次元分布を示す位相画像及び/又は強度情報の2次元分布を示す強度画像を作成する第1再構成画像作成部と、
 f)前記第1再構成画像作成部による処理に先立って又は該処理と並行して、ユーザにより指定された特定の一又は複数の測定位置又は範囲において得られたホログラムデータに基づいて位相情報及び/又は強度情報を算出するとともに、当該測定位置又は範囲に対応する位相情報の2次元分布を示す部分位相画像及び/又は強度情報の2次元分布を示す部分強度画像を作成する第2再構成画像作成部と、
 g)前記第2再構成画像作成部で作成された部分位相画像及び/又は部分強度画像を表示部に表示する表示処理部と、
 を備えることを特徴としている。
The present invention made to solve the above problems is a cell observation device using a holographic microscope,
a) a light source,
b) a detection unit that acquires a hologram that is an interference fringe between the object wave and the reference wave when the sample including cells is irradiated with light emitted from the light source unit;
c) a moving unit that moves one or both of the light source unit and the detection unit and the sample so that the measurement position on the sample moves;
d) Measurement for controlling the light source unit, the detection unit, and the moving unit so as to repeat acquisition of the hologram at each measurement position in a predetermined observation target region while moving the measurement position on the sample by the moving unit. A control unit;
e) calculating phase information and / or intensity information based on hologram data obtained at each measurement position in a predetermined observation target region under the control of the measurement control unit, and corresponding to the observation target region A first reconstructed image creating unit for creating a phase image showing a two-dimensional distribution of phase information and / or an intensity image showing a two-dimensional distribution of intensity information;
f) Phase information based on hologram data obtained at one or more specific measurement positions or ranges designated by the user prior to or in parallel with the processing by the first reconstructed image creation unit And / or a second reconstructed image for calculating intensity information and creating a partial phase image showing a two-dimensional distribution of phase information corresponding to the measurement position or range and / or a partial intensity image showing a two-dimensional distribution of intensity information The creation department;
g) a display processing unit for displaying the partial phase image and / or the partial intensity image created by the second reconstructed image creating unit on the display unit;
It is characterized by having.
 本発明に係る細胞観察装置では、典型的には、前記試料は細胞の培養容器であり、前記ホログラフィック顕微鏡によるホログラムデータの取得が可能な最大の領域はその培養容器全体又はその一部の領域であるものとすることができる。上記培養容器は、一又は複数のウェルが形成された細胞培養プレート、シャーレ、大量培養を目的とした培養フラスコなどである。したがって、本発明に係る細胞観察装置は、こうした培養容器において培養中である生体細胞を非侵襲で観察するのに好適な装置である。 In the cell observation apparatus according to the present invention, typically, the sample is a cell culture container, and the maximum area where hologram data can be acquired by the holographic microscope is the whole culture container or a part of the culture container. It can be assumed that Examples of the culture container include a cell culture plate in which one or a plurality of wells are formed, a petri dish, and a culture flask for mass culture. Therefore, the cell observation apparatus according to the present invention is a suitable apparatus for non-invasive observation of living cells being cultured in such a culture container.
 本発明に係る細胞観察装置において、移動部は例えば、その位置が固定された培養プレートに対して光源部及び検出部を一体に移動させることで、該培養プレート上で光源部から出射した光が照射される測定位置を変化させる。測定制御部は該移動部により例えば光源部及び検出部を一体にステップ的に移動させつつ、培養プレート内の一つの測定位置に光(一般的にはコヒーレント光)を照射し、それにより検出部の検出面上に形成されるホログラムによる光強度の2次元分布を示すデータ(ホログラムデータ)を取得する、という動作を繰り返す。 In the cell observation device according to the present invention, for example, the moving unit moves the light source unit and the detection unit integrally with respect to the culture plate whose position is fixed, so that the light emitted from the light source unit on the culture plate is The irradiated measurement position is changed. The measurement control unit irradiates light (generally coherent light) to one measurement position in the culture plate while moving the light source unit and the detection unit integrally in a stepwise manner by the moving unit, thereby detecting the detection unit. The operation of acquiring data (hologram data) indicating the two-dimensional distribution of light intensity by the hologram formed on the detection surface is repeated.
 第1再構成画像作成部は、異なる測定位置においてそれぞれ得られたホログラムデータに基づいて位相情報及び/又は強度情報を算出し、得られた位相情報及び/又は強度情報に基づいて観察対象領域に対応する位相画像及び/又は強度画像を作成する。但し、一般に多数の測定位置での測定が行われるため、ホログラムデータは膨大な量であり、位相画像や強度画像の作成には時間が掛かる。一方、第2再構成画像作成部は、第1再構成画像作成部による処理よりも先行して又はその処理と並行して、ユーザにより指定された特定の一又は複数の測定位置か一つの測定位置中若しくは複数の測定位置に跨る所定の範囲において得られたホログラムデータのみに基づいて位相情報及び/又は強度情報を算出し、得られた情報に基づいて部分位相画像及び/又は部分強度画像を作成する。この部分位相画像及び/又は部分強度画像が作成される範囲は、観察対象領域全体に比べれば遙かに小さな領域に限定される。即ち、部分位相画像又は部分強度画像は観察対象領域全体の中のごく一部に対応する画像である。そして表示処理部はこの部分位相画像及び/又は部分強度画像を表示部の画面上に表示する。 The first reconstructed image creating unit calculates phase information and / or intensity information based on hologram data obtained at different measurement positions, and sets the observation target region based on the obtained phase information and / or intensity information. A corresponding phase image and / or intensity image is created. However, since measurements are generally performed at a large number of measurement positions, the amount of hologram data is enormous, and it takes time to create a phase image and an intensity image. On the other hand, the second reconstructed image creation unit has one measurement or one specific measurement position designated by the user prior to or in parallel with the processing by the first reconstructed image creation unit. Phase information and / or intensity information is calculated based only on hologram data obtained within a position or within a predetermined range spanning a plurality of measurement positions, and a partial phase image and / or partial intensity image is calculated based on the obtained information. create. The range in which this partial phase image and / or partial intensity image is created is limited to a much smaller area than the entire observation target area. That is, the partial phase image or the partial intensity image is an image corresponding to a very small part of the entire observation target region. The display processing unit displays the partial phase image and / or the partial intensity image on the screen of the display unit.
 第2再構成画像作成部での処理の対象であるホログラムデータの量は第1再構成画像作成部での処理の対象であるホログラムデータに比べて格段に少ない。そのため、第2再構成画像作成部がホログラムデータを読み込むのに要する時間は第1再構成画像作成部がホログラムデータを読み込むのに要する時間に比べて遙かに短いし、第2再構成画像作成部における演算処理や画像再構成に要する時間は第1再構成画像作成部におけるそれに比べて遙かに短い。そのため、部分位相画像や部分強度画像は、測定が終了した時点から比較的短い時間で表示される。 The amount of hologram data that is the target of processing in the second reconstructed image creation unit is much smaller than that of hologram data that is the target of processing in the first reconstructed image creation unit. Therefore, the time required for the second reconstructed image creation unit to read the hologram data is much shorter than the time required for the first reconstructed image creation unit to read the hologram data, and the second reconstructed image creation The time required for the arithmetic processing and image reconstruction in the unit is much shorter than that in the first reconstructed image creating unit. Therefore, the partial phase image and the partial intensity image are displayed in a relatively short time from the time when the measurement is completed.
 上述したように、部分位相画像や部分強度画像は観察対象領域全体の中のごく一部分に対応する画像であるが、ユーザが適切な又は特に重要な測定位置や範囲を指定することで、表示された部分位相画像や部分強度画像から、測定(撮影)の適否や細胞の異常の有無、或いは異物の混入などを、観察対象領域全体の位相画像が作成される前に確認することができる。それにより、観察対象領域全体の位相画像等の再構成処理が不要であると作業者が判断したときには、その処理を実施しないことで、或いは処理が開始されてしまっていてもその処理を途中で中止させることで、無駄な時間や手間が費やされることを回避することができる。 As described above, the partial phase image and the partial intensity image are images corresponding to a very small part of the entire observation target area, but are displayed when the user designates an appropriate or particularly important measurement position or range. From the partial phase image and the partial intensity image, it is possible to confirm the suitability of measurement (imaging), the presence or absence of cell abnormalities, the presence of foreign matter, and the like before the phase image of the entire observation target region is created. As a result, when the operator determines that the reconstruction process of the phase image or the like of the entire observation target region is unnecessary, the process is not performed or even if the process is started By canceling, it is possible to avoid wasting time and labor.
 なお、本発明において、インライン型、オフアクシス型、位相シフト型などのホログラフィック顕微鏡の方式は問わないが、光学系の構成が簡素であって試料と光源部との距離を複数段階に変化させる必要がないために駆動機構も簡素になるという点で、複数の波長におけるホログラムを利用するインライン型の構成が望ましい。 In the present invention, the holographic microscope system such as in-line type, off-axis type, and phase shift type is not limited. However, the optical system has a simple configuration and the distance between the sample and the light source unit is changed in a plurality of stages. An in-line configuration using holograms at a plurality of wavelengths is desirable in that the drive mechanism is simplified because it is not necessary.
 また本発明において、好ましくは、
 前記所定の観察対象領域内の各測定位置において得られたホログラムデータに基づくホログラム画像を作成して表示部の画面上に表示するホログラム画像作成部と、
 前記第2再構成画像作成部により作成される部分位相画像及び/又は部分強度画像に対応する測定位置又は範囲を、前記ホログラム画像作成部により表示されたホログラム画像上でユーザが指示するための指示入力部と、
 をさらに備える構成とするとよい。
In the present invention, preferably,
A hologram image creating unit that creates a hologram image based on the hologram data obtained at each measurement position in the predetermined observation target region and displays the hologram image on the screen of the display unit;
Instruction for the user to instruct the measurement position or range corresponding to the partial phase image and / or partial intensity image created by the second reconstructed image creation unit on the hologram image displayed by the hologram image creation unit An input section;
It is good to set it as the structure further provided.
 ホログラム画像は位相画像等と異なり、測定終了後直ちに表示することが可能である。また、測定中であっても一つの測定位置についての測定が終了する度にその測定位置に対応する部分的なホログラム画像を表示することもできる。このホログラム画像はホログラムに対応する光強度の2次元分布であるので、生体細胞については十分に可視化されないことが多いものの、大きな段差があるウェルの縁部などについては十分に視認可能な画像である。そこで、作業者は、測定実行中又は測定終了直後に、表示されたホログラム画像上で例えばどのウェルのどの部分の部分位相画像や部分強度画像を見たいかを指示入力部により指示する。これにより、作業者は所望の測定位置や範囲の部分位相画像や部分強度画像を短い待ち時間で確認することができる。 Hologram images can be displayed immediately after the measurement, unlike phase images. Further, even when measurement is being performed, a partial hologram image corresponding to the measurement position can be displayed every time measurement for one measurement position is completed. Since this hologram image is a two-dimensional distribution of light intensity corresponding to the hologram, the living cells are often not visualized sufficiently, but the edges of wells with large steps are sufficiently visible. . Therefore, the operator instructs the instruction input unit, for example, which partial phase image or partial intensity image of which well is to be viewed on the displayed hologram image during measurement execution or immediately after the measurement is completed. Thereby, the operator can confirm the partial phase image and partial intensity image of a desired measurement position and range in a short waiting time.
 また本発明では、部分位相画像と部分強度画像とのいずれか一方のみを表示するようにしてもよいが、部分位相画像では細胞は見え易いものの塵埃などの異物は見えにくい傾向にある。逆に、部分強度画像では異物は見え易いものの細胞は見えにくい傾向にある。したがって、より好ましくは、同じ範囲の部分位相画像と部分強度画像との両方を表示するほうがよい。 In the present invention, only one of the partial phase image and the partial intensity image may be displayed. However, in the partial phase image, cells are easy to see but foreign matters such as dust tend to be hard to see. On the other hand, in the partial intensity image, foreign substances tend to be visible, but cells tend not to be visible. Therefore, it is more preferable to display both the partial phase image and the partial intensity image in the same range.
 即ち、本発明において、好ましくは、
 前記第2再構成画像作成部は、特定の測定位置又は範囲に対応する部分位相画像及び部分強度画像を作成し、
 前記表示処理部は、前記部分位相画像及び前記部分強度画像を同一画面上に表示する構成とするとよい。
That is, in the present invention, preferably,
The second reconstructed image creation unit creates a partial phase image and a partial intensity image corresponding to a specific measurement position or range,
The display processing unit may be configured to display the partial phase image and the partial intensity image on the same screen.
 また、ホログラフィック顕微鏡で得られたホログラムデータを用いれば、演算処理によって異なる焦点位置の位相情報や強度情報を求めることができる。そこで、本発明において、
 前記第2再構成画像作成部は、複数の焦点位置における部分位相画像及び/又は部分強度画像を作成し、
 前記表示処理部は、ユーザが焦点位置を指示する焦点指示入力部を含み、該指示入力部により指示された焦点位置における部分位相画像及び/又は部分強度画像を表示する構成とするとよい。
In addition, if hologram data obtained by a holographic microscope is used, phase information and intensity information at different focal positions can be obtained by arithmetic processing. Therefore, in the present invention,
The second reconstructed image creating unit creates a partial phase image and / or a partial intensity image at a plurality of focal positions,
The display processing unit may include a focus instruction input unit for a user to indicate a focal position, and may display a partial phase image and / or a partial intensity image at the focal position instructed by the instruction input unit.
 また上記構成の一実施態様として、前記焦点指示入力部は、画面上に表示されたスライダーと、該スライダーのノブを移動させる操作部と、を含み、該ノブの位置に応じて焦点位置が変化するものである構成とすることができる。 As an embodiment of the above configuration, the focus instruction input unit includes a slider displayed on the screen and an operation unit that moves a knob of the slider, and the focus position changes according to the position of the knob. It can be set as the thing to do.
 この構成によれば、焦点位置が異なる部分位相画像や部分強度画像を容易に比較することができるので、作業者は、例えば細胞の状態が最も鮮明に観察できる部分位相画像を選択したうえで試料の良否や測定の適否などを判断することができる。それにより、より適切な判断を下すことができる。 According to this configuration, it is possible to easily compare partial phase images and partial intensity images with different focal positions, so that the operator can select a partial phase image with which the cell state can be observed most clearly, for example. It is possible to judge the quality of the product and the suitability of the measurement. Thereby, a more appropriate judgment can be made.
 また上記構成の別の実施態様として、
 前記試料は複数のウェルが形成された培養プレートであり、
 前記表示処理部より前記位相画像及び/又は強度画像が表示部に表示されるときに、ウェル毎にユーザが焦点位置を指示する焦点指示入力部をさらに備え、
 前記第1再構成画像作成部は、前記焦点指示入力部により指示されたウェル毎の焦点位置における位相画像及び/又は強度画像を作成する構成とすることもできる。
As another embodiment of the above configuration,
The sample is a culture plate in which a plurality of wells are formed,
When the phase image and / or the intensity image is displayed on the display unit from the display processing unit, the display processing unit further includes a focus instruction input unit for a user to specify a focus position for each well,
The first reconstructed image creating unit may be configured to create a phase image and / or an intensity image at the focal position for each well instructed by the focus instruction input unit.
 複数のウェルが培養プレートに形成されている場合、ウェルの底面の高さやウェル内の培地の高さがウェル毎に異なり、そのために合焦位置がウェル毎に異なることがしばしばある。これに対し上記構成によれば、培養プレート全体の位相画像や強度画像を作成する前に、部分位相画像や部分強度画像を作成した段階で各ウェルの合焦位置をそれぞれ決めることができる。それにより、培養プレート全体の位相画像や強度画像を作成する段階で各ウェルの合焦位置における位相画像や強度画像のみを作成すればよく、不必要な焦点位置の画像を作成する時間や手間を軽減することができる。 When a plurality of wells are formed on the culture plate, the height of the bottom surface of the well and the height of the medium in the well are different from one well to another, and therefore the focusing position is often different from one well to another. On the other hand, according to the above configuration, the focal position of each well can be determined at the stage of creating the partial phase image and partial intensity image before creating the phase image and intensity image of the entire culture plate. As a result, only the phase image and intensity image at the focus position of each well need be created at the stage of creating the phase image and intensity image of the entire culture plate. Can be reduced.
 なお、本発明において、第1再構成画像作成部及び第2再構成画像作成部は測定制御部及び表示処理部と同じコンピュータや同一筐体に収容されたハードウェア回路でそれら機能を実現するように構成してもよいが、別々のコンピュータ又は全く別体であるハードウェア回路でそれぞれの機能を実現するように構成してもよい。 In the present invention, the first reconstructed image creating unit and the second reconstructed image creating unit realize their functions with the same computer as the measurement control unit and the display processing unit or with a hardware circuit housed in the same housing. However, each function may be realized by a separate computer or a completely separate hardware circuit.
 具体的には例えば、複雑な計算が必要である第1再構成画像作成部及び第2再構成画像作成部の機能は、測定を担うホログラフィック顕微鏡本体を制御する測定制御部の機能を有するパーソナルコンピュータと通信ネットワークを介して接続されるサーバ(高性能なコンピュータ)で実現するようにするとよい。一方、表示処理部の機能は測定制御部と同じパーソナルコンピュータに持たせ、サーバから受け取ったデータに基づいて表示を行うようにするとよい。また、第1再構成画像作成部と第2再構成画像作成部における処理の多くは基本的に共通するので、それらは実質的に同じ構成要素とすることができる。 Specifically, for example, the functions of the first reconstructed image creating unit and the second reconstructed image creating unit, which require complicated calculations, are personal computers having the function of a measurement control unit that controls the holographic microscope main body responsible for measurement. It may be realized by a server (high performance computer) connected to the computer via a communication network. On the other hand, the function of the display processing unit may be provided in the same personal computer as the measurement control unit, and display may be performed based on data received from the server. In addition, since many of the processes in the first reconstructed image creation unit and the second reconstructed image creation unit are basically the same, they can be substantially the same constituent elements.
 本発明に係る細胞観察装置によれば、測定によって取得されたホログラムデータに基づいた画像再構成処理により観察範囲全体の位相画像や強度画像が作成されるのに要する長い時間を待つことなく、作業者は測定の適否や試料の不具合など早期に且つ的確に確認することができる。それにより、そうした不具合等が確認されたときに画像再構成処理の実行を回避したり実行中であっても即座にそれを中止したりすることで、時間が手間が無駄に費やされることを回避することができる。その結果、細胞観察の作業を効率的に行うことができる。 According to the cell observation apparatus according to the present invention, without waiting for a long time required to create a phase image and an intensity image of the entire observation range by image reconstruction processing based on hologram data acquired by measurement, work is performed. The person can confirm the suitability of the measurement and the defect of the sample quickly and accurately. This avoids wasting time by avoiding the execution of image reconstruction processing when such troubles are confirmed, or by stopping it immediately even during execution. can do. As a result, cell observation work can be performed efficiently.
本発明の一実施例である細胞観察装置の全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram of the cell observation apparatus which is one Example of this invention. 本実施例の細胞観察装置における測定用端末の概略構成図。The schematic block diagram of the terminal for a measurement in the cell observation apparatus of a present Example. 本実施例の細胞観察装置における画像再構成処理を説明するための概念図。The conceptual diagram for demonstrating the image reconstruction process in the cell observation apparatus of a present Example. 本実施例の細胞観察装置における特徴的な処理動作の説明図。Explanatory drawing of the characteristic processing operation in the cell observation apparatus of a present Example. 本実施例の細胞観察装置における撮影終了後に測定用端末で表示される画面の一例を示す図。The figure which shows an example of the screen displayed with the terminal for a measurement after completion | finish of imaging | photography in the cell observation apparatus of a present Example. 本実施例の細胞観察装置における測定用端末で表示される指定測定位置の位相画像及び強度画像の一例を示す図。The figure which shows an example of the phase image and intensity | strength image of the designated measurement position which are displayed with the terminal for a measurement in the cell observation apparatus of a present Example. 本実施例の細胞観察装置における閲覧用端末でスライス画像を表示する場合の表示画面の一例を示す図。The figure which shows an example of the display screen in the case of displaying a slice image with the terminal for browsing in the cell observation apparatus of a present Example.
 以下、本発明に係る細胞観察装置の一実施例について、添付図面を参照して説明する。
 図1は本実施例の細胞観察装置の全体構成図、図2は本実施例の細胞観察装置における測定用端末の概略構成図である。
Hereinafter, an embodiment of a cell observation device according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an overall configuration diagram of the cell observation apparatus of this embodiment, and FIG. 2 is a schematic configuration diagram of a measurement terminal in the cell observation apparatus of this embodiment.
 本実施例の細胞観察装置は、インターネット、イントラネットなどの通信ネットワーク4を介して接続された測定用端末1と、閲覧用端末3と、サーバ5と、を含む。図1には、測定用端末1及び閲覧用端末3をそれぞれ1台ずつ記載しているが、これらはそれぞれ適宜の数だけ設けることができる。 The cell observation apparatus of this embodiment includes a measurement terminal 1, a browsing terminal 3, and a server 5 connected via a communication network 4 such as the Internet or an intranet. In FIG. 1, one measuring terminal 1 and one browsing terminal 3 are shown, but an appropriate number of each can be provided.
 サーバ5は高性能なコンピュータであり、該コンピュータにインストールされている専用のソフトウェアにより具現化される機能ブロックとして、データ送受信部51、ホログラムデータ記憶部52、第1位相回復演算部53、第2位相回復演算部54、第1画像再構成部55、第2画像再構成部56、画像データ記憶部57等を備える。なお、第1位相回復演算部53と第2位相回復演算部54を別々に、また第1画像再構成部55と第2画像再構成部56を別々に設けているが、後述するように、第1位相回復演算部53と第2位相回復演算部54とで実行されている演算は実質的に同じであり、第1画像再構成部55と第2画像再構成部56とで実行されている処理も一部を除き実質的に同じである。したがって、実質的にはそれらは同じ構成要素とすることができる。 The server 5 is a high-performance computer. As functional blocks embodied by dedicated software installed in the computer, a data transmission / reception unit 51, a hologram data storage unit 52, a first phase recovery calculation unit 53, a second A phase recovery calculation unit 54, a first image reconstruction unit 55, a second image reconstruction unit 56, an image data storage unit 57, and the like are provided. In addition, although the 1st phase recovery calculation part 53 and the 2nd phase recovery calculation part 54 are provided separately, and the 1st image reconstruction part 55 and the 2nd image reconstruction part 56 are provided separately, as mentioned later, The calculations executed by the first phase recovery calculation unit 53 and the second phase recovery calculation unit 54 are substantially the same, and are executed by the first image reconstruction unit 55 and the second image reconstruction unit 56. The processing is substantially the same with some exceptions. Thus, substantially they can be the same component.
 測定用端末1は顕微観察部10と制御・処理部20とから成る。本実施例の細胞観察装置では、顕微観察部10はインライン型デジタルホログラフィック顕微鏡であり、図2に示すように、レーザダイオード等を含む光源部11とイメージセンサ12とを備え、光源部11とイメージセンサ12との間に、観察対象物である細胞14を含む培養プレート13が配置される。光源部11及びイメージセンサ12は例えばモータ等の駆動源を含む移動部15により、互いに直交するX軸、Y軸の二軸方向に一体に移動自在である。 The measurement terminal 1 includes a microscope observation unit 10 and a control / processing unit 20. In the cell observation apparatus of this embodiment, the microscopic observation unit 10 is an inline digital holographic microscope, and includes a light source unit 11 including a laser diode and the image sensor 12 as shown in FIG. Between the image sensor 12, a culture plate 13 including cells 14 that are observation objects is arranged. The light source unit 11 and the image sensor 12 are integrally movable in two axial directions of the X axis and the Y axis that are orthogonal to each other by a moving unit 15 including a driving source such as a motor.
 なお、図2では図面が煩雑になるのを避けるために、光源部11とイメージセンサ12とを一つずつ、つまり一組しか記載していないが、実際には、光源部11とイメージセンサ12とは一枚の培養プレート13を挟んで四組設けられており、後述するように、その四組の光源部11とイメージセンサ12とにより一枚の培養プレート13の異なる測定位置についてのホログラムを並行して取得することが可能である。 In FIG. 2, only one light source unit 11 and one image sensor 12, i.e., one set, are shown in order to avoid complication of the drawing. Is provided with four sets sandwiching one culture plate 13 and, as will be described later, holograms for different measurement positions of one culture plate 13 by the four sets of light source units 11 and the image sensor 12. It is possible to obtain in parallel.
 制御・処理部20の実体は、顕微観察部10の動作を制御するとともに顕微観察部10で取得されたデータをサーバ5に送出する、さらにはサーバ5において処理されたデータを受け取って表示を行うパーソナルコンピュータ(PC)である。このPCにインストールされた専用のソフトウェアにより具現化される機能ブロックとして、撮影制御部21、ホログラムデータ記憶部22、データ送受信部23、ホログラム画像作成部24、確認位置指定受付部25、画像データ記憶部26、表示処理部27、焦点指定受付部28等を備える。また、制御・処理部20には、キーボードやマウス等のポインティングデバイスである入力部201と、表示部202と、が接続されている。 The entity of the control / processing unit 20 controls the operation of the microscopic observation unit 10 and sends the data acquired by the microscopic observation unit 10 to the server 5. Further, the control / processing unit 20 receives the data processed by the server 5 and displays it. A personal computer (PC). As functional blocks embodied by dedicated software installed in this PC, the imaging control unit 21, hologram data storage unit 22, data transmission / reception unit 23, hologram image creation unit 24, confirmation position designation reception unit 25, image data storage A unit 26, a display processing unit 27, a focus designation receiving unit 28, and the like. The control / processing unit 20 is connected to an input unit 201 that is a pointing device such as a keyboard and a mouse, and a display unit 202.
 閲覧用端末3は測定用端末1における制御・処理部20と同様に、その実体は一般的なPCである。そして、該PCにインストールされた専用のソフトウェアにより、サーバ5からデータを受領し、該データに基づいて形成される適宜の画像を表示することが可能である。 As with the control / processing unit 20 in the measurement terminal 1, the browsing terminal 3 is a general PC. Then, the dedicated software installed in the PC can receive data from the server 5 and display an appropriate image formed based on the data.
 次に、本実施例の細胞解析装置におけるホログラムデータ取得の際の動作について図3を参照して説明する。図3は本実施例の細胞観察装置における画像再構成処理を説明するための概念図である。 Next, the operation when acquiring hologram data in the cell analyzer of this embodiment will be described with reference to FIG. FIG. 3 is a conceptual diagram for explaining image reconstruction processing in the cell observation apparatus of the present embodiment.
 図3(a)は本実施例の細胞観察装置において使用される培養プレート13の略上面図である。この培養プレート13には上面視円形状である6個のウェル13aが形成されており、その各ウェル13a内で細胞が培養される。ここでは、1枚の培養プレート13全体、つまりは6個のウェル13aを含む矩形状の範囲全体が観察対象領域である。顕微観察部10は光源部11及びイメージセンサ12の組を4組備えており、各組の光源部11及びイメージセンサ12はそれぞれ、図3(a)に示すように培養プレート13全体を4等分した四つの4分割範囲81のホログラムデータの収集を担う。つまり、4組の光源部11及びイメージセンサ12が培養プレート13全体に亘るホログラムデータの収集を分担する。 FIG. 3 (a) is a schematic top view of the culture plate 13 used in the cell observation apparatus of this example. The culture plate 13 is formed with six wells 13a having a circular shape when viewed from above, and cells are cultured in the wells 13a. Here, the entire culture plate 13, that is, the entire rectangular range including the six wells 13 a is the observation target region. The microscopic observation unit 10 includes four sets of a light source unit 11 and an image sensor 12, and each set of the light source unit 11 and the image sensor 12 has a total of 4 etc. as shown in FIG. It is responsible for collecting the hologram data of the four divided areas 81 divided. That is, the four sets of the light source unit 11 and the image sensor 12 share the collection of hologram data over the entire culture plate 13.
 一組の光源部11及びイメージセンサ12が1回に撮影可能である範囲は、図3(b)及び(c)に示すように、4分割範囲81の中の1個のウェル13aを含む略正方形状の範囲82をX軸方向に10等分、Y軸方向に12等分して得られる一つの撮像単位83に相当する範囲である。一つの4分割範囲81は予め作業者により指定された所定数の、例えば15×12=180個の撮像単位83を含む。四つの光源部11と四つのイメージセンサ12はそれぞれ光源部11及びイメージセンサ12を含むX-Y面内で、4分割範囲81と同じ大きさである矩形の四つの頂点付近にそれぞれ配置されおり、培養プレート13上の異なる四つの撮像単位83についてのホログラムの取得を同時に行う。 The range in which one set of the light source unit 11 and the image sensor 12 can be photographed at a time includes the one well 13a in the four-divided range 81 as shown in FIGS. 3B and 3C. This is a range corresponding to one imaging unit 83 obtained by dividing the square range 82 into 10 equal parts in the X-axis direction and 12 equal parts in the Y-axis direction. One quadrant 81 includes a predetermined number of, for example, 15 × 12 = 180 imaging units 83 designated in advance by the operator. The four light source units 11 and the four image sensors 12 are respectively arranged in the vicinity of four vertices of a rectangle having the same size as the four-divided range 81 in the XY plane including the light source unit 11 and the image sensor 12. The holograms for four different imaging units 83 on the culture plate 13 are simultaneously acquired.
 培養プレート13についてのホログラムデータの収集に際し、作業者はまず、観察対象である細胞14が培養されている培養プレート13を顕微観察部10の所定位置にセットし、該培養プレート13を特定する識別番号や測定日時などの情報を入力部201から入力したうえで測定実行を指示する。この測定指示を受けて撮影制御部21は、顕微観察部10の各部を制御して撮影を実行する。 When collecting hologram data for the culture plate 13, the operator first sets the culture plate 13 on which the cells 14 to be observed are cultured at a predetermined position of the microscopic observation unit 10, and identifies the culture plate 13. Information such as a number and measurement date / time is input from the input unit 201 to instruct measurement execution. Upon receiving this measurement instruction, the imaging control unit 21 controls each part of the microscopic observation unit 10 to perform imaging.
 即ち、一つの光源部11は、10°程度の微小角度の広がりを持つコヒーレント光を培養プレート13の所定の領域(一つの撮像単位83)に照射する。培養プレート13及び細胞14を透過したコヒーレント光(物体光17)は、培養プレート13上で細胞14に近接する領域を透過した光(参照光16)と干渉しつつイメージセンサ12に到達する。物体光17は細胞14を透過する際に位相が変化した光であり、他方、参照光16は細胞14を透過しないので該細胞14に起因する位相変化を受けない光である。したがって、イメージセンサ12の検出面(像面)上には、細胞14により位相が変化した物体光17と位相が変化していない参照光16との干渉像、つまりホログラムがそれぞれ形成され、このホログラムに対応する2次元的な光強度分布データ(ホログラムデータ)がイメージセンサ12から出力される。 That is, one light source unit 11 irradiates a predetermined area (one imaging unit 83) of the culture plate 13 with coherent light having a small angle spread of about 10 °. The coherent light (object light 17) that has passed through the culture plate 13 and the cells 14 reaches the image sensor 12 while interfering with the light (reference light 16) that has passed through the region adjacent to the cells 14 on the culture plate 13. The object light 17 is light whose phase has changed when passing through the cell 14. On the other hand, the reference light 16 is light which does not pass through the cell 14 and thus does not undergo phase change caused by the cell 14. Therefore, on the detection surface (image surface) of the image sensor 12, an interference image, that is, a hologram, is formed between the object light 17 whose phase is changed by the cell 14 and the reference light 16 whose phase is not changed. 2D light intensity distribution data (hologram data) corresponding to is output from the image sensor 12.
 上述したように、四つの光源部11からは略同時に培養プレート13に向けてコヒーレント光が出射され、四つのイメージセンサ12では培養プレート13上の異なる撮像単位83に対応する領域のホログラムデータが取得される。一つの測定位置での測定が終了する毎に、光源部11及びイメージセンサ12は移動部15により、X-Y面内で一つの撮像単位83に相当する距離だけX軸方向及びY軸方向にステップ状に順次移動される。これによって、4分割範囲81に含まれる180個の撮像単位83での測定が実施され、四組の光源部11及びイメージセンサ12全体で培養プレート13全体の測定が実行されることになる。このようにして顕微観察部10の四つのイメージセンサ12で得られたホログラムデータは、測定日時等の属性情報とともに、ホログラムデータ記憶部22に格納される。 As described above, coherent light is emitted from the four light source units 11 toward the culture plate 13 almost simultaneously, and the four image sensors 12 acquire hologram data of regions corresponding to different imaging units 83 on the culture plate 13. Is done. Each time measurement at one measurement position is completed, the light source unit 11 and the image sensor 12 are moved by the moving unit 15 in the X-axis direction and the Y-axis direction by a distance corresponding to one imaging unit 83 in the XY plane. It is sequentially moved in steps. As a result, measurement is performed with 180 imaging units 83 included in the four-divided range 81, and measurement of the entire culture plate 13 is performed with the four sets of light source units 11 and the entire image sensor 12. The hologram data obtained by the four image sensors 12 of the microscopic observation unit 10 in this way is stored in the hologram data storage unit 22 together with attribute information such as measurement date and time.
 全ての撮像単位83についての測定(撮影)が終了したあと、作業者により後述する所定の操作が行われると、データ送受信部23は、ホログラムデータ記憶部22に格納されたホログラムデータを測定日時等の属性情報とともに、逐次、通信ネットワーク4を介してサーバ5に転送する。なお、各測定用端末1からサーバ5へは生の、つまりは加工されていないホログラムデータを送ればよいが、必要に応じて、各測定用端末1に固有の誤差要因を補正するような加工処理を施したホログラムデータをサーバ5へ送るようにしてもよい。 After the measurement (shooting) for all the imaging units 83 is completed, when a predetermined operation described later is performed by the operator, the data transmission / reception unit 23 uses the hologram data stored in the hologram data storage unit 22 as the measurement date and time, etc. The attribute information is sequentially transferred to the server 5 via the communication network 4. It should be noted that raw, that is, unprocessed hologram data may be sent from each measurement terminal 1 to the server 5, but processing that corrects an error factor specific to each measurement terminal 1 as necessary. The processed hologram data may be sent to the server 5.
 サーバ5においてデータ送受信部51は測定用端末1から送られて来たホログラムデータを受け取り、測定用端末1を特定するための識別情報、撮影時に入力された培養プレートの識別情報や測定日時などの属性情報とともにホログラムデータをホログラムデータ記憶部52に蓄積する。ホログラムデータを収集したあと、第1位相回復演算部53はホログラムデータ記憶部52から撮像単位毎のホログラムデータを読み出し、光波の伝播計算処理を行うことで位相情報を復元するとともに強度(振幅)情報を求める。位相情報や強度情報の空間分布は撮像単位83毎に求まるから、全ての撮像単位83の位相情報や強度情報が得られたならば、第1画像再構成部55は、その位相情報や強度情報に基づいて、観察対象領域全体の位相画像や強度画像を形成する。 In the server 5, the data transmitter / receiver 51 receives the hologram data sent from the measurement terminal 1, and identifies identification information for specifying the measurement terminal 1, identification information of the culture plate input at the time of imaging, measurement date and time, and the like. Hologram data is stored in the hologram data storage unit 52 together with the attribute information. After collecting the hologram data, the first phase recovery calculation unit 53 reads out the hologram data for each imaging unit from the hologram data storage unit 52 and restores the phase information by performing propagation calculation processing of the light wave, and intensity (amplitude) information. Ask for. Since the spatial distribution of the phase information and the intensity information is obtained for each imaging unit 83, when the phase information and the intensity information of all the imaging units 83 are obtained, the first image reconstruction unit 55 performs the phase information and the intensity information. Based on the above, a phase image and an intensity image of the entire observation target region are formed.
 より詳しく述べると、第1画像再構成部55は、撮像単位83毎に算出された位相情報の空間分布に基づき各撮像単位83の位相画像を再構成し、その狭い範囲の位相画像を繋ぎ合わせるタイリング処理(図3(d)参照)を行うことで、観察対象領域つまりは培養プレート13全体についての位相画像を形成する。もちろん、タイリング処理の際には撮像単位83の境界での位相画像が滑らか繋がるように適宜の補正処理を行うとよい。なお、こうした位相情報の算出や画像の再構成の際には、特許文献1、2等の既知の文献に開示されているアルゴリズムを利用すればよい。 More specifically, the first image reconstruction unit 55 reconstructs the phase image of each imaging unit 83 based on the spatial distribution of the phase information calculated for each imaging unit 83, and connects the phase images in the narrow range. By performing a tiling process (see FIG. 3D), a phase image of the observation target region, that is, the entire culture plate 13 is formed. Of course, in the tiling process, an appropriate correction process may be performed so that the phase images at the boundaries of the imaging units 83 are smoothly connected. In calculating the phase information and reconstructing the image, an algorithm disclosed in known documents such as Patent Documents 1 and 2 may be used.
 また、通常の処理で得られる再構成画像は取得されたホログラムデータにより原理的に求まる最高解像度の画像であるが、それだけでなく、その最高解像度の位相画像を元に、ビニング処理等により解像度を落とした複数段階の解像度(倍率)の位相画像を作成するようにしてもよい。そして、こうして作成した位相画像や強度画像を構成する画像データを画像データ記憶部57に格納する。 In addition, the reconstructed image obtained by normal processing is the highest resolution image obtained in principle from the acquired hologram data. Not only that, the resolution can be improved by binning processing based on the highest resolution phase image. You may make it produce the phase image of the resolution | decomposability (magnification) of the multiple steps | steps which dropped. Then, the image data constituting the phase image and the intensity image created in this way are stored in the image data storage unit 57.
 サーバ5の性能にも依るが、1枚の培養プレート13から得られるホログラムデータは膨大な量であるため、第1位相回復演算部53や第1画像再構成部55における処理にはかなりの時間を要する。そのため、たとえ測定用端末1側で全ての測定が終了しても、直ちに観察対象領域全体の位相画像や強度画像を閲覧することはできない。そこで本実施例の細胞観察装置では、測定終了後に作業者が測定の不具合や異物の混入などを迅速に把握することができるように、以下に説明する特徴的な処理を実行している。 Although depending on the performance of the server 5, the amount of hologram data obtained from one culture plate 13 is enormous, so that the processing in the first phase recovery calculation unit 53 and the first image reconstruction unit 55 takes a considerable amount of time. Cost. Therefore, even if all the measurements are completed on the measurement terminal 1 side, the phase image and the intensity image of the entire observation target region cannot be browsed immediately. Therefore, in the cell observation apparatus of the present embodiment, the characteristic processing described below is executed so that the operator can quickly grasp the measurement failure or the contamination of the foreign matter after the measurement is completed.
 図4はこの特徴的な処理動作の説明図、図5は撮影終了後に測定用端末で表示される画面の一例を示す図、図6は測定用端末で表示される指定測定位置の位相画像及び強度画像の一例を示す図である。 FIG. 4 is an explanatory diagram of this characteristic processing operation, FIG. 5 is a diagram showing an example of a screen displayed on the measurement terminal after the end of photographing, and FIG. 6 is a phase image of the designated measurement position displayed on the measurement terminal and It is a figure which shows an example of an intensity | strength image.
 測定実行前に作業者が入力部201で所定の操作を行うと、表示処理部27は、図5に示すような撮影画像表示画面60を表示部202に表示する。この撮影画像表示画面60には、画像表示領域61とプレート情報表示領域62とが配置されており、さらに右下には、「停止」ボタン63が配置されている。プレート情報表示領域62には、測定中又は測定が終了した培養プレート13の名称(プレート名)や識別番号(プレートID)などの属性情報が表示される。但し、図5に示した画面は測定終了後のものであり、測定開始前には画像表示領域61には実質的な画像は何も表示されていない。 When the operator performs a predetermined operation with the input unit 201 before the measurement is executed, the display processing unit 27 displays a captured image display screen 60 as shown in FIG. On the photographed image display screen 60, an image display area 61 and a plate information display area 62 are arranged, and a “stop” button 63 is arranged at the lower right. In the plate information display area 62, attribute information such as the name (plate name) and identification number (plate ID) of the culture plate 13 during or after measurement is displayed. However, the screen shown in FIG. 5 is the one after the measurement is completed, and no substantial image is displayed in the image display area 61 before the measurement is started.
 測定が開始されて上述したように培養プレート13上での各撮像単位83に対応する領域についてのホログラムデータが得られると、ホログラム画像作成部24は撮像単位83毎に、得られたデータに基づいて光強度の2次元分布を示すホログラム画像を作成する。このときに作成されるホログラム画像は解像度が最低であるサムネイル画像である。表示処理部27は作成されたホログラムのサムネイル画像を、画像表示領域61内のそれぞれの撮像単位に対応する位置に貼り付けて表示する。即ち、一つの撮像単位のホログラムデータが新たに得られる毎にほぼリアルタイムで、そのデータに基づくホログラムのサムネイル画像が画像表示領域61内の画像に追加して表示される。そして、全ての撮像単位についての測定が終了すると、図5に示すような、観察対象領域全体のホログラム画像が表示される。測定終了後に作業者が撮影画像表示画面60内の「画像作成を実行」ボタン65をクリック操作すると、収集されたホログラムデータがサーバ5が転送され、前述したように全画面の画像再構成処理が実行される。 When measurement is started and hologram data is obtained for the region corresponding to each imaging unit 83 on the culture plate 13 as described above, the hologram image creation unit 24 is based on the obtained data for each imaging unit 83. A hologram image showing a two-dimensional distribution of light intensity is created. The hologram image created at this time is a thumbnail image with the lowest resolution. The display processing unit 27 pastes and displays the created hologram thumbnail image at a position corresponding to each imaging unit in the image display area 61. That is, every time hologram data of one image pickup unit is newly obtained, a thumbnail image of the hologram based on the data is added to the image in the image display area 61 and displayed. Then, when the measurement for all the imaging units is completed, a hologram image of the entire observation target region as shown in FIG. 5 is displayed. When the operator clicks the “execute image creation” button 65 in the captured image display screen 60 after the measurement is completed, the collected hologram data is transferred to the server 5 and the image reconstruction process for the full screen is performed as described above. Executed.
 なお、ホログラム画像では細胞の状態を観察するのは困難であるが、光源部11やイメージセンサ12の損傷等の装置の不具合や測定上の不手際等に起因する現象の多くは画像上で把握可能である。そこで、作業者は測定実行中に画像表示領域61に表示されるホログラム画像を監視し、何らかの問題があると判断できる場合には「停止」ボタン63をクリック操作する。すると、撮影制御部21はこの操作を受けて測定を停止する。このように、測定に何らかの問題がある場合に測定を速やかに停止させることで、残りの無駄な測定に時間を費やすことを回避することができる。 In addition, although it is difficult to observe the state of cells in a hologram image, many of the phenomena caused by malfunctions of the apparatus such as damage to the light source unit 11 and the image sensor 12 and measurement troubles can be grasped on the image. It is. Therefore, the operator monitors the hologram image displayed in the image display area 61 during the measurement, and clicks the “stop” button 63 when it can be determined that there is some problem. Then, the imaging control unit 21 receives this operation and stops measurement. As described above, when there is some problem in the measurement, it is possible to avoid spending time for the remaining useless measurement by quickly stopping the measurement.
 測定終了後速やかに位相画像や強度画像を確認したい場合、作業者は、入力部201の一部であるマウス等のポインティングデバイスにより、図5に示した撮影画像表示画面60内の画像表示領域61に表示されているホログラム画像を構成する多数のサムネイル画像のうちの所望の一つの上にカーソルを移動させる。確認位置指定受付部25はこの操作を受け付け、選択されている撮像単位を示す矩形状のマーク66を画像に重畳して表示する。そして、作業者がポインティングデバイスによるダブルクリック操作を行うと、確認位置指定受付部25はそのときに選択されている一つの撮像単位を、部分位相画像の作成対象であると認識し、これに応じて表示処理部27は図6に示すような指定位置画像表示画面70を表示部202の画面上に表示する。この指定位置画像表示画面70には画像表示領域71が設けられている。 When it is desired to confirm the phase image and the intensity image immediately after the measurement is completed, the operator uses an pointing device such as a mouse that is a part of the input unit 201 to display the image display area 61 in the captured image display screen 60 shown in FIG. The cursor is moved onto a desired one of a number of thumbnail images constituting the hologram image displayed on the screen. The confirmation position designation accepting unit 25 accepts this operation, and displays a rectangular mark 66 indicating the selected imaging unit superimposed on the image. When the operator performs a double-click operation with the pointing device, the confirmation position designation receiving unit 25 recognizes one imaging unit selected at that time as a partial phase image creation target, and accordingly Then, the display processing unit 27 displays the designated position image display screen 70 as shown in FIG. 6 on the screen of the display unit 202. An image display area 71 is provided on the designated position image display screen 70.
 並行して確認位置指定受付部25は、指示された一つの撮像単位について得られたホログラムデータをホログラムデータ記憶部22から読み出し、データ送受信部23は読み出されたデータを通信ネットワーク4を通してサーバ5に転送する。なお、この一つの撮像単位についてのホログラムデータの転送動作は、上述したような撮影対象領域全体のホログラムデータのサーバ5への転送動作と並行して行ってもよいし、それよりも優先的に行ってもよい。後者の場合、撮影対象領域全体のホログラムデータの転送動作がすでに開始されていれば、それを一旦中断して、選択指示された一つの撮像単位についてのホログラムデータの転送を行えばよい。 In parallel, the confirmation position designation receiving unit 25 reads out the hologram data obtained for one designated imaging unit from the hologram data storage unit 22, and the data transmission / reception unit 23 sends the read data through the communication network 4 to the server 5. Forward to. Note that the hologram data transfer operation for one image pickup unit may be performed in parallel with the transfer operation of the hologram data of the entire imaging target region to the server 5 as described above, or preferentially. You may go. In the latter case, if the hologram data transfer operation for the entire imaging target area has already been started, the hologram data may be transferred for one imaging unit instructed to be temporarily interrupted.
 サーバ5においてデータ送受信部51は、上述したように測定用端末1から送られて来た一つの撮像単位についてのホログラムデータを受け取り、該データをホログラムデータ記憶部52に一旦格納する。このときに転送されて来るデータの量は観察対象領域全体のホログラムデータのデータ量に比べて格段に少ないため、転送時間も格段に短い(図4参照)。 In the server 5, the data transmission / reception unit 51 receives the hologram data for one imaging unit sent from the measurement terminal 1 as described above, and temporarily stores the data in the hologram data storage unit 52. Since the amount of data transferred at this time is much smaller than the amount of hologram data in the entire observation target area, the transfer time is also significantly shorter (see FIG. 4).
 第2位相回復演算部54はホログラムデータ記憶部22に格納された一つの撮像単位のホログラムデータを読み出し、光波の伝播計算処理を行うことで位相情報を復元するとともに強度情報を求める。引き続き、第2画像再構成部56は、算出された位相情報や強度情報に基づいて、一つの撮像単位についての部分位相画像及び部分強度画像を形成する。なお、ホログラムデータから位相情報や強度情報を算出する際には任意の焦点位置の情報を算出することができるが、この時点で設定される焦点位置は、測定用端末1から指定されたデフォルト値(例えば同じ識別番号の培養プレート及びウェルについて最も直近の過去の時点で設定されていた焦点位置など)である。この部分位相画像及び部分強度画像を構成する画像データは画像データ記憶部57に格納されるとともに、データ送受信部51から測定用端末1に送られる。演算処理や画像再構成の処理も一つの撮像単位分のみでよくタイリング処理等の不要であるので、部分位相画像及び部分強度画像が形成されるまでの処理時間も、観察対象領域全体の位相画像及び強度画像を形成するのに要する時間に比べて格段に短い(図4参照)。 The second phase recovery calculation unit 54 reads out hologram data of one imaging unit stored in the hologram data storage unit 22 and performs light wave propagation calculation processing to restore phase information and obtain intensity information. Subsequently, the second image reconstruction unit 56 forms a partial phase image and a partial intensity image for one imaging unit based on the calculated phase information and intensity information. In addition, when calculating phase information and intensity information from hologram data, information on an arbitrary focal position can be calculated. The focal position set at this time is a default value designated from the measurement terminal 1. (For example, the focus position set at the most recent past time point for the culture plate and well having the same identification number). The image data constituting the partial phase image and the partial intensity image is stored in the image data storage unit 57 and sent from the data transmission / reception unit 51 to the measurement terminal 1. Since computation processing and image reconstruction processing need only be performed for one imaging unit, tiling processing etc. are unnecessary, so the processing time until the partial phase image and partial intensity image are formed is also the phase of the entire observation target region. This is much shorter than the time required to form the image and the intensity image (see FIG. 4).
 上述したように、作業者により選択指示された一つの撮像単位についてのホログラムデータの転送及び該データに基づく部分位相画像、部分強度画像の形成に要する時間は短い。したがって、測定用端末1において上述したように作業者が一つの撮像単位に対応するサムネイル画像についてのダブルクリック操作を行った時点から比較的短い時間内に、サーバ5からその測定用端末1に部分位相画像及び部分強度画像を構成する画像データが送られて来る。送られて来た画像データは一旦、画像データ記憶部26に格納される。 As described above, the time required for transferring hologram data for one imaging unit selected and instructed by the operator and forming a partial phase image and a partial intensity image based on the data is short. Therefore, as described above in the measurement terminal 1, a part of the measurement terminal 1 is transferred from the server 5 to the measurement terminal 1 within a relatively short time from the time when the operator double-clicks the thumbnail image corresponding to one imaging unit. Image data constituting the phase image and the partial intensity image is sent. The sent image data is temporarily stored in the image data storage unit 26.
 表示処理部27はこの画像データに基づき部分位相画像及び部分強度画像を作成し、それら二つの画像を指定位置画像表示画面70内の画像表示領域71に並べて表示する。なお、画像表示領域71に表示する画像の種類は表示画像選択チェックボックス72にチェックマークを入れることで選択することができ、部分位相画像と部分強度画像とのいずれか一方のみを画像表示領域71に表示させることもできる。なお、図6の例において、表示されている部分位相画像及び部分強度画像の焦点位置は5450μmである。 The display processing unit 27 creates a partial phase image and a partial intensity image based on the image data, and displays the two images side by side in the image display area 71 in the designated position image display screen 70. Note that the type of image displayed in the image display area 71 can be selected by putting a check mark in the display image selection check box 72, and only one of the partial phase image and the partial intensity image is displayed in the image display area 71. Can also be displayed. In the example of FIG. 6, the focal position of the displayed partial phase image and partial intensity image is 5450 μm.
 初めに設定されている焦点位置が必ずしも細胞観察における合焦位置であるとは限らないし、また細胞とは高さが相違する異物を観察したい場合には焦点位置を変更する必要がある。そこで、異なる焦点位置における部分位相画像や部分強度画像を観察したい場合、作業者は、指定位置画像表示画面70内のスライス条件設定領域73で複数段階の焦点位置を決める条件を設定する。即ち、焦点位置の範囲とスライス幅(焦点位置のステップ幅)とをそれぞれ数値で入力すると、スライス数(焦点位置の段数)が自動的に計算されて表示される。なお、これら数値もデフォルトのままとすることができる。そして、スライス条件を設定したあと作業者が「スライス画像作成」ボタン74をクリック操作すると、焦点指定受付部28はこの操作を受け付け、設定されたスライス条件をサーバ5に指示する。 The focus position set initially is not necessarily the focus position in cell observation, and it is necessary to change the focus position when observing a foreign object having a height different from that of the cell. Therefore, when observing partial phase images and partial intensity images at different focal positions, the operator sets conditions for determining a plurality of stages of focal positions in the slice condition setting area 73 in the designated position image display screen 70. That is, when the range of the focus position and the slice width (the step width of the focus position) are respectively input as numerical values, the number of slices (the number of steps of the focus position) is automatically calculated and displayed. These numerical values can also be left as default. When the operator clicks the “create slice image” button 74 after setting the slice conditions, the focus designation receiving unit 28 receives this operation and instructs the server 5 on the set slice conditions.
 サーバ5において第2位相回復演算部54及び第2画像再構成部56は、上記の選択された一つの撮像単位についてのホログラムデータに基づいて、指示されたスライス条件に従って複数の焦点位置における位相情報及び強度情報を算出し、互いに焦点位置の相違する複数の部分位相画像及び部分強度画像を形成する。この複数の焦点位置における部分位相画像及び部分強度画像を構成する画像データは画像データ記憶部57に格納されるとともに、データ送受信部51から測定用端末1に送られる。送られて来た画像データは一旦、画像データ記憶部26に格納される。このように、異なる焦点位置における部分位相画像及び部分強度画像を構成する画像データが用意されると、指定位置画像表示画面70内の焦点位置選択操作領域75中の操作子が有効になる。即ち、焦点位置選択操作領域75中のスライダーのノブをポインティングデバイスで移動させることが可能になるとともに、テキストボックス中に焦点位置の数値を直接入力することも可能になる。 In the server 5, the second phase recovery calculation unit 54 and the second image reconstruction unit 56 perform phase information at a plurality of focal positions according to the designated slice condition based on the hologram data for the selected one imaging unit. And intensity information are calculated, and a plurality of partial phase images and partial intensity images having different focal positions are formed. The image data constituting the partial phase image and the partial intensity image at the plurality of focal positions are stored in the image data storage unit 57 and sent from the data transmission / reception unit 51 to the measurement terminal 1. The sent image data is temporarily stored in the image data storage unit 26. As described above, when the image data constituting the partial phase image and the partial intensity image at different focal positions are prepared, the operator in the focal position selection operation area 75 in the designated position image display screen 70 becomes effective. That is, the slider knob in the focal position selection operation area 75 can be moved by the pointing device, and the numerical value of the focal position can be directly input into the text box.
 作業者がポインティングデバイスにより焦点位置選択操作領域75中のスライダーのノブを左右に移動させると、焦点指定受付部28はスライダー上のノブの位置に対応した焦点位置を求め、表示処理部27は画像表示領域71に表示している部分位相画像及び部分強度画像をその焦点位置における画像に更新する。図6の例では、スライス数が11であるので、スライダーを操作することで、11段階の異なる焦点位置における部分位相画像及び部分強度画像をそれぞれ確認することができる。作業者は、異なる焦点位置における部分位相画像同士又は部分強度画像同士をそれぞれ比較することで、観察対象である細胞などが最も明瞭に観察できる焦点位置を見つけることができる。 When the operator moves the knob of the slider in the focal position selection operation area 75 to the left or right using the pointing device, the focus designation receiving unit 28 obtains the focal position corresponding to the position of the knob on the slider, and the display processing unit 27 displays the image. The partial phase image and the partial intensity image displayed in the display area 71 are updated to the image at the focal position. In the example of FIG. 6, since the number of slices is 11, the partial phase image and the partial intensity image at 11 different focal positions can be confirmed by operating the slider. The operator can find a focal position at which the cell to be observed can be most clearly observed by comparing partial phase images or partial intensity images at different focal positions.
 こうして適切な焦点位置における部分位相画像及び部分強度画像が得られたならば、作業者はそれら画像を確認して細胞に異常が発生している、又は細かい異物が多く混入している等、培養に不具合がないかどうか、さらには、撮影に不具合がないかどうかなどを判断する。そして、観察対象領域全体の位相画像や強度画像を作成する必要がないと判断した場合には、ホログラムデータに基づく全画面の位相画像や強度画像の再構成処理の実行を回避する。或いは、図5中の「画像作成を実行」ボタン65の操作により測定用端末1からサーバ5への全ホログラムデータの転送が開始されている場合であっても、所定の操作を行うことでデータ転送を中止させることもできる(図4参照)。こうした判断は撮影終了時点から比較的短い時間内で行うことができるので、全画面の画像再構成処理により位相画像が作成されるまで長い時間待つ必要がない。 If partial phase images and partial intensity images at appropriate focal positions are obtained in this way, the operator confirms these images and the cells are abnormal, or a lot of fine foreign matters are mixed, etc. It is determined whether or not there is a problem with the camera, and further whether or not there is a problem with shooting. If it is determined that there is no need to create a phase image or intensity image of the entire observation target region, execution of a reconstruction process for the full-screen phase image and intensity image based on the hologram data is avoided. Alternatively, even when the transfer of all hologram data from the measurement terminal 1 to the server 5 is started by the operation of the “execute image creation” button 65 in FIG. 5, the data is obtained by performing a predetermined operation. The transfer can be stopped (see FIG. 4). Since such a determination can be made within a relatively short time from the end of photographing, it is not necessary to wait for a long time until a phase image is created by image reconstruction processing of the full screen.
 また、上述したように異なる焦点位置における部分位相画像及び部分強度画像をそれぞれ比較することで適切な焦点位置が決まったあと、作業者が「この値をウェルの焦点位置に設定」ボタン76をクリック操作すると、焦点指定受付部28はこの操作を受け付け、指示された焦点位置の情報をそのときに表示している部分位相画像等の撮像単位が存在するウェルの識別番号とともにサーバ5に伝える。サーバ5において、指示された焦点位置はウェルの識別番号に対応付けてホログラムデータ記憶部52に保存され、第1位相回復演算部53はその識別番号のウェルに対応する撮像単位の位相情報や強度情報を算出する際に、その識別番号に対応付けられている焦点位置における位相情報及び強度情報を算出する。即ち、撮影対象領域全体の位相画像や強度画像を作成する際のウェル毎の焦点位置を、測定用端末1で部分位相画像及び部分強度画像を確認しながら決めることができる。 Also, as described above, after the appropriate focus position is determined by comparing the partial phase image and partial intensity image at different focus positions, the operator clicks the “Set this value as the focus position of well” button 76. When operated, the focus designation accepting unit 28 accepts this operation and informs the server 5 of the information on the designated focus position together with the identification number of the well in which the imaging unit such as the partial phase image currently displayed exists. In the server 5, the instructed focal position is stored in the hologram data storage unit 52 in association with the well identification number, and the first phase recovery calculation unit 53 performs phase information and intensity of the imaging unit corresponding to the well with the identification number. When calculating the information, phase information and intensity information at the focal position associated with the identification number are calculated. That is, it is possible to determine the focal position for each well when creating the phase image and the intensity image of the entire imaging target region while checking the partial phase image and the partial intensity image on the measurement terminal 1.
 もちろん、一つの撮像単位についての部分位相画像及び部分強度画像に基づいて決めることができる焦点位置は、その撮像単位が存在する一つのウェルについてのみである。したがって、6個のウェルの全てについてそれぞれ個別に焦点位置を設定したい場合には、撮影画像表示画面60の画像表示領域61に表示されているホログラム画像上でウェル毎に一つの撮像単位を選択し、その撮像単位についての部分位相画像及び部分強度画像を指定位置画像表示画面70に表示させ、さらにスライス条件を設定してスライス画像を作成する、という手順を繰り返す必要がある。もちろん、一つのウェルについて設定した焦点位置を他のウェルにも利用することは可能である。 Of course, the focal position that can be determined based on the partial phase image and the partial intensity image for one imaging unit is only for one well in which the imaging unit exists. Therefore, when it is desired to individually set the focal positions for all of the six wells, one imaging unit is selected for each well on the hologram image displayed in the image display area 61 of the captured image display screen 60. It is necessary to repeat the procedure of displaying the partial phase image and the partial intensity image for the imaging unit on the designated position image display screen 70, and further setting the slice conditions to create the slice image. Of course, the focal position set for one well can be used for other wells.
 このようにして本実施例の細胞観察装置では、観察対象領域全体の位相画像や強度画像を作成して表示する前に、ウェル毎に適切な焦点位置を設定し、その焦点位置のみの位相画像や強度画像を作成して表示させることができる。それにより、不必要な焦点位置における画像の作成に要する時間を節約することができる。 Thus, in the cell observation apparatus of the present embodiment, before creating and displaying the phase image and the intensity image of the entire observation target region, an appropriate focal position is set for each well, and the phase image of only the focal position is set. And intensity images can be created and displayed. Thereby, it is possible to save the time required to create an image at an unnecessary focal position.
 上記説明では、測定用端末1で測定を実施した直後に該測定用端末1で部分位相画像等を確認する場合について述べたが、顕微観察部10を含まない閲覧用端末3でも、適宜のホログラム画像の表示と、該ホログラム画像上で選択された一つの撮像単位についての部分位相画像の確認と、を行うことができる。図7は、閲覧用端末3でホログラム画像及び部分位相画像を表示する場合の表示画面の一例を示す図である。 In the above description, the case where a partial phase image or the like is confirmed on the measurement terminal 1 immediately after measurement is performed on the measurement terminal 1 is described. However, an appropriate hologram can be used on the browsing terminal 3 that does not include the microscopic observation unit 10. The display of the image and the confirmation of the partial phase image for one imaging unit selected on the hologram image can be performed. FIG. 7 is a diagram illustrating an example of a display screen when a hologram image and a partial phase image are displayed on the browsing terminal 3.
 図7に示すように、スライス画像確認表示画面90には、ホログラム画像表示領域91及び部分位相画像表示領域92が設けられている。ホログラム画像表示領域91には、撮影が終了してサーバ5のホログラムデータ記憶部52に保存されているホログラムデータに基づくホログラム画像が表示される。このときに表示するホログラム画像は、例えば培養プレートの識別番号や測定日時などを指定することで、適宜に選択することができる。そして、焦点位置が相違する複数の部分位相画像を見たい場合、作業者は、ホログラム画像上で一つの撮像単位を指定し、スライス条件設定領域93で複数段階の焦点位置を決める条件を設定したうえで「スライス画像プレビュー」ボタン94をクリック操作する。 As shown in FIG. 7, the slice image confirmation display screen 90 is provided with a hologram image display area 91 and a partial phase image display area 92. In the hologram image display area 91, a hologram image based on the hologram data stored in the hologram data storage unit 52 of the server 5 after shooting is displayed. The hologram image to be displayed at this time can be appropriately selected by designating, for example, the identification number of the culture plate or the measurement date / time. When the operator wants to see a plurality of partial phase images having different focal positions, the operator designates one imaging unit on the hologram image, and sets conditions for determining a plurality of stages of focal positions in the slice condition setting area 93. Then, a “slice image preview” button 94 is clicked.
 この指示及び設定内容は、閲覧用端末3からサーバ5へと送られ、サーバ5の第2位相回復演算部54及び第2画像再構成部56は上述したように指定された撮像単位のホログラムデータに基づいて指定された複数の焦点位置における位相情報を計算し、焦点位置毎に部分位相画像を再構成する。そして、焦点位置が異なる複数の部分位相画像を構成する画像データを閲覧用端末3に送信する。閲覧用端末3では受け取った画像データに基づいて部分位相画像を部分位相画像表示領域92に表示する。また、焦点位置選択操作領域95中のスライダーの操作に応じて、表示されている部分位相画像を異なる焦点位置の画像に変更する。これにより、作業者は、過去に撮影された培養プレートの部分位相画像も確認することができる。 This instruction and setting contents are sent from the browsing terminal 3 to the server 5, and the second phase recovery calculation unit 54 and the second image reconstruction unit 56 of the server 5 store the hologram data of the designated imaging unit as described above. The phase information at a plurality of focal positions designated based on is calculated, and a partial phase image is reconstructed for each focal position. And the image data which comprises the some partial phase image from which a focus position differs are transmitted to the terminal 3 for browsing. The browsing terminal 3 displays the partial phase image in the partial phase image display area 92 based on the received image data. Further, the displayed partial phase image is changed to an image at a different focal position in accordance with the operation of the slider in the focal position selection operation area 95. Thereby, the operator can also confirm the partial phase image of the culture plate image | photographed in the past.
 また上記実施例では、作業者により指定された一つの撮像単位のホログラムデータから該撮像単位における部分位相画像を再構成していたが、一つの撮像単位の中の一部の範囲を作業者が適宜に指定し、その指定された範囲に含まれるホログラムデータから該範囲における部分位相画像を再構成してもよい。これにより、サーバ5に転送されるデータ量もさらに減るため、データ転送時間や処理時間をさらに一層短くすることができる。 In the above embodiment, the partial phase image in the imaging unit is reconstructed from the hologram data of one imaging unit designated by the operator. The partial phase image in the range may be reconstructed from the hologram data included in the specified range. Thereby, since the amount of data transferred to the server 5 is further reduced, the data transfer time and processing time can be further shortened.
 また、一つの撮像単位についての部分位相画像や強度位相画像を表示したあと、その画像において作業者により指定された範囲を拡大して表示できるようにしてもよい。また、ホログラム画像上で一つの撮像単位の中の一部の範囲を作業者が適宜に指定したときに、その撮像単位についての部分位相画像や部分強度画像を再構成したあと、指定された範囲の画像のみを切り出して表示するようにしてもよい。 Further, after displaying the partial phase image and the intensity phase image for one imaging unit, the range designated by the operator in the image may be enlarged and displayed. In addition, when the operator appropriately specifies a part of one imaging unit on the hologram image, the specified range is obtained after reconstructing the partial phase image and partial intensity image for that imaging unit. Only these images may be cut out and displayed.
 また、ホログラム画像上で一つのみではなく複数の撮像単位を指定したり、一つの撮像単位よりも大きなサイズの範囲を任意に指定したりできるようにし、その指定された複数の撮像単位又は範囲に対応する部分位相画像や部分強度画像を再構成して表示できるようにしてもよい。但し、指定される撮像単位数が多くなるほど又は指定される範囲が広くなるほど処理対象のデータ量が増加するから、部分位相画像等を表示できるまでも時間が長くなる。そのため、この時間の制約から、指定できる撮像単位数や範囲の広さの上限を予め決めておくとよい。 In addition, it is possible to specify not only one but also a plurality of imaging units on the hologram image, or to arbitrarily specify a range having a size larger than one imaging unit, and the specified plurality of imaging units or ranges. The partial phase image and the partial intensity image corresponding to may be reconstructed and displayed. However, since the amount of data to be processed increases as the number of specified imaging units increases or the specified range increases, the time is increased until a partial phase image or the like can be displayed. For this reason, it is preferable to predetermine the upper limit of the number of imaging units that can be specified and the width of the range based on the time constraint.
 また、上記実施例において顕微観察部10はインライン型デジタルホログラフィック顕微鏡であるが、顕微観察部10は観察対象領域中の測定位置毎にホログラムを取得するものであればよいので、インライン型に限らず、オフアクシス型や位相シフト型のデジタルホログラフィック顕微鏡であってもよい。 In the above embodiment, the microscopic observation unit 10 is an in-line type digital holographic microscope. However, the microscopic observation unit 10 is not limited to the inline type as long as it acquires a hologram for each measurement position in the observation target region. Alternatively, an off-axis type or phase shift type digital holographic microscope may be used.
 また、上記実施例では、測定用端末1と通信ネットワーク4を介して接続されたサーバ5において位相回復等の演算処理を実施していたが、スタンドアロン型の装置で全ての処理を実施する構成としてもよいことは当然である。 Moreover, in the said Example, although arithmetic processing, such as phase recovery, was implemented in the server 5 connected with the measuring terminal 1 via the communication network 4, as a structure which implements all the processes with a stand-alone type apparatus, Of course it is good.
 さらにまた、上記実施例及び上記記載の変形例はいずれも本発明の一例であり、本発明の趣旨の範囲でさらに適宜の変更、修正、追加を行っても本願特許請求の範囲に包含されることは当然である。 Furthermore, each of the above-described embodiments and the above-described modified examples is an example of the present invention, and further appropriate changes, modifications, and additions within the scope of the present invention are included in the scope of the claims of the present application. It is natural.
1…測定用端末
10…顕微観察部
11…光源部
12…イメージセンサ
13…培養プレート
13a…ウェル
14…細胞
15…移動部
16…参照光
17…物体光
20…制御・処理部
21…撮影制御部
22…ホログラムデータ記憶部
23…データ送受信部
24…ホログラム画像作成部
25…確認位置指定受付部
26…画像データ記憶部
27…表示処理部
28…焦点指定受付部
201…入力部
202…表示部
3…閲覧用端末
5…サーバ
4…通信ネットワーク
51…データ送受信部
52…ホログラムデータ記憶部
53…第1位相回復演算部
54…第2位相回復演算部
55…第1画像再構成部
56…第2画像再構成部
57…画像データ記憶部
60…撮影画像表示画面
61…画像表示領域
62…プレート情報表示領域
63…「停止」ボタン
65…「画像作成を実行」ボタン
66…マーク
70…指定位置画像表示画面
71…画像表示領域
72…表示画像選択チェックボックス
73…スライス条件設定領域
74…「スライス画像作成」ボタン
75…焦点位置選択操作領域
76…「この値をウェルの焦点位置に設定」ボタン
90…スライス画像確認表示画面
91…ホログラム画像表示領域
92…部分位相画像表示領域
93…スライス条件設定領域
94…「スライス画像プレビュー」ボタン
95…焦点位置選択操作領域
DESCRIPTION OF SYMBOLS 1 ... Measuring terminal 10 ... Microscopic observation part 11 ... Light source part 12 ... Image sensor 13 ... Culture plate 13a ... Well 14 ... Cell 15 ... Moving part 16 ... Reference light 17 ... Object light 20 ... Control and processing part 21 ... Imaging control Unit 22 ... Hologram data storage unit 23 ... Data transmission / reception unit 24 ... Hologram image creation unit 25 ... Confirmation position designation reception unit 26 ... Image data storage unit 27 ... Display processing unit 28 ... Focus designation reception unit 201 ... Input unit 202 ... Display unit 3 ... Browsing terminal 5 ... Server 4 ... Communication network 51 ... Data transmission / reception unit 52 ... Hologram data storage unit 53 ... First phase recovery calculation unit 54 ... Second phase recovery calculation unit 55 ... First image reconstruction unit 56 ... First Two-image reconstruction unit 57 ... Image data storage unit 60 ... Captured image display screen 61 ... Image display area 62 ... Plate information display area 63 ... "Stop" button 65 ... "Create image "Execute" button 66 ... Mark 70 ... Designated position image display screen 71 ... Image display area 72 ... Display image selection check box 73 ... Slice condition setting area 74 ... "Create slice image" button 75 ... Focus position selection operation area 76 ... "This "Set value to well focal position" button 90 ... Slice image confirmation display screen 91 ... Hologram image display area 92 ... Partial phase image display area 93 ... Slice condition setting area 94 ... "Slice image preview" button 95 ... Focus position selection operation region

Claims (6)

  1.  ホログラフィック顕微鏡を利用した細胞観察装置であって、
     a)光源部と、
     b)前記光源部からの出射光を細胞を含む試料に照射したときの物体波と参照波との干渉縞であるホログラムを取得する検出部と、
     c)前記試料上の測定位置が移動するように前記光源部及び前記検出部と前記試料との一方又は両方を移動させる移動部と、
     d)前記移動部により前記試料上の測定位置を移動させつつ所定の観察対象領域内の各測定位置におけるホログラムの取得を繰り返すように前記光源部、前記検出部、及び前記移動部を制御する測定制御部と、
     e)前記測定制御部による制御の下で、所定の観察対象領域内の各測定位置において得られたホログラムデータに基づいて位相情報及び/又は強度情報を算出するとともに、前記観察対象領域に対応する位相情報の2次元分布を示す位相画像及び/又は強度情報の2次元分布を示す強度画像を作成する第1再構成画像作成部と、
     f)前記第1再構成画像作成部による処理に先立って又は該処理と並行して、ユーザにより指定された特定の一又は複数の測定位置又は範囲において得られたホログラムデータに基づいて位相情報及び/又は強度情報を算出するとともに、当該測定位置又は範囲に対応する位相情報の2次元分布を示す部分位相画像及び/又は強度情報の2次元分布を示す部分強度画像を作成する第2再構成画像作成部と、
     g)前記第2再構成画像作成部で作成された部分位相画像及び/又は部分強度画像を表示部に表示する表示処理部と、
     を備えることを特徴とする細胞観察装置。
    A cell observation device using a holographic microscope,
    a) a light source,
    b) a detection unit that acquires a hologram that is an interference fringe between the object wave and the reference wave when the sample including cells is irradiated with light emitted from the light source unit;
    c) a moving unit that moves one or both of the light source unit and the detection unit and the sample so that the measurement position on the sample moves;
    d) Measurement for controlling the light source unit, the detection unit, and the moving unit so as to repeat acquisition of the hologram at each measurement position in a predetermined observation target region while moving the measurement position on the sample by the moving unit. A control unit;
    e) calculating phase information and / or intensity information based on hologram data obtained at each measurement position in a predetermined observation target region under the control of the measurement control unit, and corresponding to the observation target region A first reconstructed image creating unit for creating a phase image showing a two-dimensional distribution of phase information and / or an intensity image showing a two-dimensional distribution of intensity information;
    f) Phase information based on hologram data obtained at one or more specific measurement positions or ranges designated by the user prior to or in parallel with the processing by the first reconstructed image creation unit And / or a second reconstructed image for calculating intensity information and creating a partial phase image showing a two-dimensional distribution of phase information corresponding to the measurement position or range and / or a partial intensity image showing a two-dimensional distribution of intensity information The creation department;
    g) a display processing unit for displaying the partial phase image and / or the partial intensity image created by the second reconstructed image creating unit on the display unit;
    A cell observation apparatus comprising:
  2.  請求項1に記載の細胞観察装置であって、
     前記所定の観察対象領域内の各測定位置において得られたホログラムデータに基づくホログラム画像を作成して表示部の画面上に表示するホログラム画像作成部と、
     前記第2再構成画像作成部により作成される部分位相画像及び/又は部分強度画像に対応する測定位置又は範囲を、前記ホログラム画像作成部により表示されたホログラム画像上でユーザが指示するための指示入力部と、
     をさらに備えることを特徴とする細胞観察装置。
    The cell observation apparatus according to claim 1,
    A hologram image creating unit that creates a hologram image based on the hologram data obtained at each measurement position in the predetermined observation target region and displays the hologram image on the screen of the display unit;
    Instruction for the user to instruct the measurement position or range corresponding to the partial phase image and / or partial intensity image created by the second reconstructed image creation unit on the hologram image displayed by the hologram image creation unit An input section;
    A cell observation device further comprising:
  3.  請求項1に記載の細胞観察装置であって、
     前記第2再構成画像作成部は、特定の測定位置又は範囲に対応する部分位相画像及び部分強度画像を作成し、
     前記表示処理部は、前記部分位相画像及び前記部分強度画像を同一画面上に表示することを特徴とする細胞観察装置。
    The cell observation apparatus according to claim 1,
    The second reconstructed image creation unit creates a partial phase image and a partial intensity image corresponding to a specific measurement position or range,
    The cell observation apparatus, wherein the display processing unit displays the partial phase image and the partial intensity image on the same screen.
  4.  請求項1に記載の細胞観察装置であって、
     前記第2再構成画像作成部は、複数の焦点位置における部分位相画像及び/又は部分強度画像を作成し、
     前記表示処理部は、ユーザが焦点位置を指示する焦点指示入力部を含み、該指示入力部により指示された焦点位置における部分位相画像及び/又は部分強度画像を表示することを特徴とする細胞観察装置。
    The cell observation apparatus according to claim 1,
    The second reconstructed image creating unit creates a partial phase image and / or a partial intensity image at a plurality of focal positions,
    The display processing unit includes a focus instruction input unit for a user to indicate a focal position, and displays a partial phase image and / or a partial intensity image at the focal position instructed by the instruction input unit. apparatus.
  5.  請求項4に記載の細胞観察装置であって、
     前記焦点指示入力部は、画面上に表示されたスライダーと、該スライダーのノブを移動させる操作部と、を含み、該ノブの位置に応じて焦点位置が変化することを特徴とする細胞観察装置。
    The cell observation device according to claim 4,
    The focus instruction input unit includes a slider displayed on a screen and an operation unit that moves a knob of the slider, and the focus position changes according to the position of the knob. .
  6.  請求項4に記載の細胞観察装置であって、
     前記試料は複数のウェルが形成された培養プレートであり、
     前記表示処理部より前記位相画像及び/又は強度画像が表示部に表示されるときに、ウェル毎にユーザが焦点位置を指示する焦点指示入力部をさらに備え、
     前記第1再構成画像作成部は、前記焦点指示入力部により指示されたウェル毎の焦点位置における位相画像及び/又は強度画像を作成することを特徴とする細胞観察装置。
    The cell observation device according to claim 4,
    The sample is a culture plate in which a plurality of wells are formed,
    When the phase image and / or the intensity image is displayed on the display unit from the display processing unit, the display processing unit further includes a focus instruction input unit for a user to specify a focus position for each well,
    The cell observation device, wherein the first reconstructed image creating unit creates a phase image and / or an intensity image at a focal position for each well instructed by the focus instruction input unit.
PCT/JP2018/011002 2018-03-20 2018-03-20 Cell observation device WO2019180808A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020507159A JP7036192B2 (en) 2018-03-20 2018-03-20 Cell observation device
PCT/JP2018/011002 WO2019180808A1 (en) 2018-03-20 2018-03-20 Cell observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011002 WO2019180808A1 (en) 2018-03-20 2018-03-20 Cell observation device

Publications (1)

Publication Number Publication Date
WO2019180808A1 true WO2019180808A1 (en) 2019-09-26

Family

ID=67988418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011002 WO2019180808A1 (en) 2018-03-20 2018-03-20 Cell observation device

Country Status (2)

Country Link
JP (1) JP7036192B2 (en)
WO (1) WO2019180808A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521216A (en) * 2005-12-22 2009-06-04 フェイズ ホログラフィック イメージング ペーハーイー アーベー Methods and apparatus for cell sample analysis
WO2011089908A1 (en) * 2010-01-20 2011-07-28 株式会社ニコン Cell observation device and cell culture method
JP2011170212A (en) * 2010-02-22 2011-09-01 Nikon Corp Nonlinear type microscope
WO2012005315A1 (en) * 2010-07-07 2012-01-12 兵庫県 Holographic microscope, microscopic subject hologram image recording method, method of creation of hologram for reproduction of high-resolution image, and method for reproduction of image
WO2013070287A1 (en) * 2011-11-07 2013-05-16 The Regents Of The University Of California Maskless imaging of dense samples using multi-height lensfree microscope
JP2015082095A (en) * 2013-10-24 2015-04-27 株式会社キーエンス Image processing device, microscope system, image processing method and program
WO2016163560A1 (en) * 2015-04-09 2016-10-13 国立大学法人神戸大学 Digital holographic microscope
WO2017203718A1 (en) * 2016-05-27 2017-11-30 株式会社島津製作所 Holographic observation method and device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521216A (en) * 2005-12-22 2009-06-04 フェイズ ホログラフィック イメージング ペーハーイー アーベー Methods and apparatus for cell sample analysis
WO2011089908A1 (en) * 2010-01-20 2011-07-28 株式会社ニコン Cell observation device and cell culture method
JP2011170212A (en) * 2010-02-22 2011-09-01 Nikon Corp Nonlinear type microscope
WO2012005315A1 (en) * 2010-07-07 2012-01-12 兵庫県 Holographic microscope, microscopic subject hologram image recording method, method of creation of hologram for reproduction of high-resolution image, and method for reproduction of image
WO2013070287A1 (en) * 2011-11-07 2013-05-16 The Regents Of The University Of California Maskless imaging of dense samples using multi-height lensfree microscope
JP2015082095A (en) * 2013-10-24 2015-04-27 株式会社キーエンス Image processing device, microscope system, image processing method and program
WO2016163560A1 (en) * 2015-04-09 2016-10-13 国立大学法人神戸大学 Digital holographic microscope
WO2017203718A1 (en) * 2016-05-27 2017-11-30 株式会社島津製作所 Holographic observation method and device

Also Published As

Publication number Publication date
JP7036192B2 (en) 2022-03-15
JPWO2019180808A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
US20220254538A1 (en) Fourier ptychographic imaging systems, devices, and methods
JP6860064B2 (en) Cell observation device
Fan et al. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab)
Edelstein et al. Advanced methods of microscope control using μManager software
CA2687763C (en) Three dimensional imaging
WO2013018024A1 (en) Apparatus and method for quantitative phase tomography through linear scanning with coherent and non-coherent detection
EP3712596A1 (en) Quantitative phase image generating method, quantitative phase image generating device, and program
JP6950813B2 (en) Cell observation device
US10798333B2 (en) Cell observation system
Sioma 3D imaging methods in quality inspection systems
JP6760477B2 (en) Cell observation device
JP7006832B2 (en) Cell analyzer
JP2022506227A (en) Digital imaging system and method
JP2015156011A (en) Image acquisition device and method for controlling the same
WO2019180808A1 (en) Cell observation device
WO2019043953A1 (en) Cell observation device
JPWO2018158946A1 (en) Cell observation device
JP7006833B2 (en) Cell analyzer
Zhou et al. Introduction to fourier ptychography: Part i
JP6969655B2 (en) Quantitative phase image generator
WO2020261607A1 (en) Three-dimensional cell shape evaluation method
Wang et al. Ultra-precision detection of surface defects of large aperture diffraction grating based on machine vision
WO2018158957A1 (en) Cell observation system
JP2021048825A (en) Cell observation device
Imaging 2018 Microscopy Today Innovation Awards

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911149

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020507159

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911149

Country of ref document: EP

Kind code of ref document: A1