WO2019180746A1 - Procédé d'obtention de correction de malformation tridimensionnelle pour os - Google Patents

Procédé d'obtention de correction de malformation tridimensionnelle pour os Download PDF

Info

Publication number
WO2019180746A1
WO2019180746A1 PCT/IN2019/050232 IN2019050232W WO2019180746A1 WO 2019180746 A1 WO2019180746 A1 WO 2019180746A1 IN 2019050232 W IN2019050232 W IN 2019050232W WO 2019180746 A1 WO2019180746 A1 WO 2019180746A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
bone
anatomical
template
axis
Prior art date
Application number
PCT/IN2019/050232
Other languages
English (en)
Inventor
Vikas KARADE
Amit Maurya
Original Assignee
Karade Vikas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karade Vikas filed Critical Karade Vikas
Priority to US16/981,400 priority Critical patent/US20210007806A1/en
Publication of WO2019180746A1 publication Critical patent/WO2019180746A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones

Definitions

  • this invention to systems and methods for obtaining 3d deformity correction.
  • the template can then be aligned with the x-ray image and projected on an image plane for the appropriate camera model to obtain a 2D projection model.
  • the template is then modified to match the 2D anatomical values by comparing the 2D projection with the corresponding identified anatomical values.
  • a best matching point on the contour, for each extracted silhouette vertex projection, is identified between the 2D projection and contour.
  • the resulting matching points are then back projected based on camera model to form a back projected ray with target positions that are closest to a corresponding silhouette vertex.
  • the 3D template can then be deformed so that its silhouette vertices match the target positions, resulting in a 3D image that corresponds to the 2D X-ray image.
  • an object of the invention is to provide systems and methods for obtaining 3d deformity correction. Accordingly, another object of the invention is to provide a simulator which receives input of 2D images, uses it to obtain a 3D model with anatomical regions, anatomical axes, anatomical landmarks, and anatomical parameters and further using all the information to obtain a corrected 3D model having new / corrected anatomical regions, new / corrected anatomical axes, new / corrected anatomical landmarks, and new / corrected anatomical parameters.
  • pSRL proximal anatomical axis
  • dSRL distal anatomical axis
  • FIG. 1 is an illustration of a schematic block diagram of an example embodiment system.
  • FIG. 13 is a flowchart of an example method of determining alignment of the template with respect to the input x-ray image.
  • FIG. 16 depicts landmarks and axes on the X-ray of a bone.
  • the present invention is devices, software as stored or executed on tangible computer-readable media, and methods for converting 2D X-rays into full 3D pre- operation planning models.
  • the few example embodiments and example methods discussed below illustrate just a subset of the variety of different configurations that can be used as and/or in connection with the present invention.
  • a camera calibration perspective ratio K may be defined as a ratio of SOD 103 to SFD 105.
  • SOD 103 may either be a known parameter or may be approximated. An example method to determine SOD 103 approximately is disclosed as below.
  • Anatomical regions may give anatomical landmarks to define anatomical parameters.
  • Anatomical landmarks may be used for alignment of templates, and anatomical parameters may be used for selective anatomical modification of pre- created 3D templates.
  • a 2D Anatomical Value may include: anatomical
  • FIG. 18 illustrates computation of landmark based on the standard directions of a bone’s anatomical co-ordinate system.
  • the Y-axis (AP direction) of the ACS is along the cross-product of the mechanical axis and the posterior-condylar axis.
  • the X-axis (ML direction) of the ACS is the cross-product of the Y-axis and the Z-axis of the ACS.
  • the landmarks can be re-calculated based the new ACS and vice-versa iteratively.
  • contour and landmark points in 2D coordinate system are transformed into 3D coordinate system (Cn (x, y, z) and Lk (x, y, z)) of the imaging space. This is done using the calibration parameters for both AP and ML X-ray images. This is followed by the alignment of the template in the 3D imaging space. The template is then deformed at various regions to reconstruct the deformity in input bone. This includes shaft bending deformity, condyle region deformity and torsional deformity. Finally, the bone template is deformed in such a way that its projection on the X-ray image plane in the imaging space will match exactly with the input contour.
  • 3D coordinate system Cn (x, y, z) and Lk (x, y, z)
  • FIG. 22 illustrates a flowchart for local deformation.
  • a perspective projection of the vertices of the template mesh may be computed on its image plane.
  • the outer contour of the template projection, or template projection contour can be computed using the following example method. All vertices of the template may be projected on image plane 101
  • the template deformation may be performed using a Laplacian Surface
  • a matching point analysis may compute and provide at least a best matching point, for each of the template projection contour point(s) that correspond to the silhouette vertex position(s), on the input contour of the bone, such as 2D-2D correspondence using the SOM method.
  • Deformation may further include constructing a correspondence map for converting points from the 2D projection of the template to a 3D format. The correspondence depends on the back projection mechanism and method. After the initial alignment of the template model, a 2D-3D correspondence is determined between the defined points of the 2D input contour and the silhouette vertices of the aligned 3D template model for both ML and AP planes, potentially simultaneously.
  • the first pre-determined position for the first X-ray is such that an anterior-posterior X-ray is taken.
  • a second X-ray is taken keeping the bone in its second pre-determined position with the X-ray source to image distance being known.
  • the second pre-determined position for the second X-ray is such that a medial-lateral X-ray is taken.
  • the second X-ray is orthogonally angularly displaced with respect to the first X-ray, about the axis of the bone.
  • FIG. 12A illustrates an example method of 3D image reconstruction and template deformation separately with respect to ML and then AP X-ray image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

L'invention concerne un procédé de fourniture de corrections de malformations tridimensionnelles pour os, ledit procédé comprenant les étapes consistant à : acquérir une image d'un os d'intérêt ; acquérir des points de contours et des points de repères, dans un système de coordonnées bidimensionnelles ; obtenir un os déformé tridimensionnel compris sous la forme d'un maillage avec des paramètres de maillage ; et obtenir des régions anatomiques, des axes, des repères et des paramètres initiaux à partir desdits points de contours et points de repères acquis ; calculer des valeurs de correction et des angles de correction sur la base d'un axe anatomique proximal (pSRL), d'un axe anatomique distal (dSRL), d'un axe mécanique proximal (pJRL) et/ou d'un axe mécanique distal (dJRL) ; appliquer une correction de torsion et/ou une correction angulaire sur la base desdites valeurs de correction calculées, desdits angles de correction calculés, et des critères prédéfinis ; pour obtenir un modèle d'os corrigé simulé avec au moins l'un parmi les régions anatomiques, les repères, les axes et les paramètres corrigés, ladite correction étant fournie en termes de correction de malformation par torsion et/ou flexion.
PCT/IN2019/050232 2018-03-21 2019-03-21 Procédé d'obtention de correction de malformation tridimensionnelle pour os WO2019180746A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/981,400 US20210007806A1 (en) 2018-03-21 2019-03-21 A method for obtaining 3-d deformity correction for bones

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201821010315 2018-03-21
IN201821010315 2018-03-21

Publications (1)

Publication Number Publication Date
WO2019180746A1 true WO2019180746A1 (fr) 2019-09-26

Family

ID=67986035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IN2019/050232 WO2019180746A1 (fr) 2018-03-21 2019-03-21 Procédé d'obtention de correction de malformation tridimensionnelle pour os

Country Status (1)

Country Link
WO (1) WO2019180746A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021142213A1 (fr) * 2020-01-09 2021-07-15 Smith & Nephew, Inc. Procédés et agencements de description de déformation d'os
US11259874B1 (en) 2018-04-17 2022-03-01 Smith & Nephew, Inc. Three-dimensional selective bone matching
CN114677481A (zh) * 2022-05-31 2022-06-28 中国飞机强度研究所 空天飞机地面测试的理想加热曲面等效逼近模型构建方法
US11386990B1 (en) 2018-04-17 2022-07-12 Smith & Nephew, Inc. Three-dimensional selective bone matching

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040068187A1 (en) * 2000-04-07 2004-04-08 Krause Norman M. Computer-aided orthopedic surgery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040068187A1 (en) * 2000-04-07 2004-04-08 Krause Norman M. Computer-aided orthopedic surgery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KARADE, VIKAS ET AL.: "3D femur model reconstruction from biplane X-ray images: a novel method based on Laplacian surface deformation", INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, vol. 10, no. 4, pages 473 - 485, XP035477555, doi:10.1007/s11548-014-1097-6 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11259874B1 (en) 2018-04-17 2022-03-01 Smith & Nephew, Inc. Three-dimensional selective bone matching
US11386990B1 (en) 2018-04-17 2022-07-12 Smith & Nephew, Inc. Three-dimensional selective bone matching
WO2021142213A1 (fr) * 2020-01-09 2021-07-15 Smith & Nephew, Inc. Procédés et agencements de description de déformation d'os
CN114677481A (zh) * 2022-05-31 2022-06-28 中国飞机强度研究所 空天飞机地面测试的理想加热曲面等效逼近模型构建方法

Similar Documents

Publication Publication Date Title
US10217217B2 (en) Systems and methods for obtaining 3-D images from X-ray information
US20210012492A1 (en) Systems and methods for obtaining 3-d images from x-ray information for deformed elongate bones
US20210007806A1 (en) A method for obtaining 3-d deformity correction for bones
US11826111B2 (en) Surgical navigation of the hip using fluoroscopy and tracking sensors
US11957419B2 (en) External fixator deformity correction systems and methods
US7394946B2 (en) Method for automatically mapping of geometric objects in digital medical images
JP4624173B2 (ja) 幾何学的オブジェクトをデジタルの医学的画像内に自動写像する方法
JP2020175184A (ja) 2d解剖学的画像から3d解剖学的画像を再構成するシステムおよび方法
CN110189352B (zh) 一种基于口腔cbct图像的牙根提取方法
Karade et al. 3D femur model reconstruction from biplane X-ray images: a novel method based on Laplacian surface deformation
WO2019180746A1 (fr) Procédé d'obtention de correction de malformation tridimensionnelle pour os
US9514533B2 (en) Method for determining bone resection on a deformed bone surface from few parameters
Maken et al. 2D-to-3D: a review for computational 3D image reconstruction from X-ray images
US11257241B2 (en) System and method for component positioning by registering a 3D patient model to an intra-operative image
WO2023078309A1 (fr) Procédé et appareil d'extraction de point caractéristique cible, dispositif informatique et support de stockage
WO2019180747A1 (fr) Systèmes et procédés pour l'obtention de modèles d'instruments propres à un patient
Guéziec et al. Providing visual information to validate 2-D to 3-D registration
Goswami et al. 3D modeling of X-ray images: a review
CN107077718B (zh) 在考虑待检查对象的解剖结构时重新格式化
Ün et al. An analytical method to create patient-specific deformed bone models using X-ray images and a healthy bone model
WO2022229816A1 (fr) Reconstruction 3d d'images anatomiques
US20230263498A1 (en) System and methods for calibration of x-ray images
CN115409835B (zh) 三维成像方法、装置、电子设备、系统和可读存储介质
El Dakhakhni Reconstruction of Patient-Specific Bone Models from X-Ray Radiography
Coelho A 3D computer assisted Orthopedic Surgery Planning approach based on planar radiography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771539

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19771539

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19771539

Country of ref document: EP

Kind code of ref document: A1