WO2019180354A1 - Groupe moto-ventilateur et installation de chauffage, ventilation et/ou climatisation pour véhicule automobile correspondante - Google Patents
Groupe moto-ventilateur et installation de chauffage, ventilation et/ou climatisation pour véhicule automobile correspondante Download PDFInfo
- Publication number
- WO2019180354A1 WO2019180354A1 PCT/FR2019/050594 FR2019050594W WO2019180354A1 WO 2019180354 A1 WO2019180354 A1 WO 2019180354A1 FR 2019050594 W FR2019050594 W FR 2019050594W WO 2019180354 A1 WO2019180354 A1 WO 2019180354A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- interface device
- dissipator
- housing
- decoupling
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/18—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
- H02K1/187—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to inner stators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/24—Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/22—Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
- H02K9/227—Heat sinks
Definitions
- the invention is in the field of ventilation, heating and / or air conditioning installations.
- the invention relates in particular to a motor-fan unit including such an installation, and an interface device.
- a heating, ventilation and / or air conditioning system of a vehicle is generally used to distribute air into the passenger compartment of the vehicle.
- the flow of circulating air is propelled by a motor-fan unit, including in particular a fan wheel and a motor adapted to rotate the fan wheel.
- a motor-fan unit conventionally comprises a fan wheel and a drive motor in rotation with said fan wheel. It is well known to support the motor on a motor support, secured to a housing of the heating, ventilation and / or air conditioning system.
- the motor support comprises, in known manner, a mechanical decoupling member.
- a brushless electric motor also called an electric switching motor.
- the polarity control is provided by a control module of the electronic card type. It is advantageous to integrate said control module motor support, for modularity issues.
- a well-known problem is that electrical components emit heat by Joule effect. This is the case, for example, with the windings of the stator.
- the integration of the control module, including electrical or electronic components emitting heat, to the engine support, can cause overheating of the motor-fan unit.
- the electrical components must therefore be cooled in order to avoid such overheating, and in particular overheating of the control module.
- a solution of the prior art proposes to integrate a heat sink into the engine support.
- the forced air flow from the fan motor unit is used in combination with the heat sink to simultaneously cool the control module and the motor.
- certain motor supports are configured to make circulating the forced air flow in the vicinity of the control module and the coils.
- the object of the invention is to simplify the current devices.
- the invention relates to an interface device between an electric motor, in particular for a motor-fan unit, and a housing arranged to receive the motor, this interface device comprising:
- a heat sink arranged to dissipate heat from the fan motor unit
- a mechanical decoupling element arranged to mechanically decouple the motor from the housing, in order to attenuate the transmission of vibrations from the motor to the housing,
- the decoupling member is overmoulded on the dissipator.
- the interface device according to the invention is in particular intended to fulfill the function of a motor support for a motor-fan unit.
- a device fulfills the dual function of mechanical decoupling and heat sink integrated in one and the same component.
- the assembly of the motor-fan unit is thus simplified.
- the amount of material is optimized and a weight gain can be obtained, while ensuring cooling and mechanical decoupling.
- the interface device may further comprise one or more of the following characteristics, taken separately or in combination: the decoupling member comprises a rigid portion, configured to be fixed on the housing, and an elastic portion, having a greater elasticity that the rigid portion, in particular made of elastomer,
- the elastic portion is overmolded both on the dissipator and on the rigid portion, the rigid portion has an annular shape;
- the rigid portion comprises at least one fixing element arranged to allow its attachment to the housing;
- G fixing member comprises a hole for the passage of a fastener such as a screw;
- the elastic portion extends over an entire inner periphery of the rigid portion; the elastic portion extends over an entire periphery of the dissipator;
- the elastic portion comprises at least one decoupling pad, which for example works in compression and / or shear;
- the dissipator is made of metal, in particular aluminum;
- the dissipator takes the form of a flattened volume
- the heatsink takes the form of a flattened disc
- the dissipator comprises a reception surface of a control module, able to collect the heat of said module by conduction;
- the heatsink is configured so that the control module can be fixed on the reception surface
- the receiving surface is configured to conform to the shape of the control module
- the dissipator comprises a convection surface, able to evacuate the heat towards the ambient air by convection;
- the heatsink is configured to receive the electric motor above said convection surface, so as to form a circulation space for air between the heatsink and the motor;
- the dissipator is configured so that the stator is fixed on said convection surface
- the dissipator comprises a stator fixing base which protrudes over the convection surface, preferably in the middle of said surface;
- the convection surface comprises reliefs projecting from said surface
- the arrangement of the reliefs corresponds substantially to the arrangement of the components on the control module
- the reliefs comprise spikes, in particular of substantially cylindrical shape
- the reliefs comprise fins;
- the subject of the invention is also a method of manufacturing the interface device as described above, comprising the following step:
- the invention also relates to a motor-fan unit comprising at least one interface device as defined above.
- the invention also relates to a heating, ventilation and / or air conditioning system for a motor vehicle comprising at least one motor-fan unit, said motor-fan unit comprising at least one interface device as defined above.
- FIG. 1 is an exploded view of a motor-fan unit integrating the interface device according to said embodiment
- FIG. 2 is a first view of the interface device
- FIG. 3 is a second view of the interface device, from below with respect to the first view,
- FIG. 4 is an enlarged view of a decoupling pad.
- FIG. 1 shows an exploded view of a motor-fan unit 1, for example for a heating, ventilation and / or air conditioning installation 100 fitted to a motor vehicle.
- the motor-fan group 1 is particularly intended to be mounted on a housing 101 of a heating, ventilation and / or air conditioning system 100.
- the motor-fan unit 1 is arranged to circulate a flow of air in a duct 102 of the heating, ventilation and / or air-conditioning system 100. It may be a flow of outside air taken from outside the passenger compartment, or from a flow of air taken from inside the passenger compartment, called recirculated air flow, or still a mixture of an outside air flow and a recycled air flow.
- the air duct 102 of the heating, ventilation and / or air conditioning system distributes the air flow to outlet mouths (not shown) opening in the passenger compartment of the vehicle.
- the motor-fan unit 1 comprises an electric motor 2 and a fan wheel 3 intended to be driven by the motor 2, so as to ensure the movement of the air flow.
- This is in particular a brushless electric motor 2.
- the electric motor 2 comprises a fixed stator 4 and a rotor (not visible in the figures) movable with respect to the stator and able to drive the fan wheel 3.
- the motor 2 extends around a longitudinal axis A, corresponding to the axis of rotation of the motor 2, and comprises a transmission shaft 5 extending according to FIG. longitudinal axis A.
- the transmission shaft 5 is for example arranged substantially in the center of the engine 2. In this example, the transmission shaft 5 protrudes from the engine 2 thus having a free end.
- the motor 2 and the fan wheel 3 are coaxial.
- the fan wheel 3 is mounted on the transmission shaft 5 of the engine 2.
- the fan wheel 3 comprises a portion having a substantially bowl shape, this part is subsequently designated by bowl 6.
- the bowl 6 is substantially concave shape and has openings .
- the fan wheel 3 further comprises a central hub (not visible in the figures) for receiving the free end of the transmission shaft 5 of the motor 2.
- the fan wheel 3 may have a generally cylindrical general shape comprising blades 30 or fins which extend in this example from the periphery of the bowl 6, in a direction substantially parallel to the longitudinal axis A of the engine 2.
- the motor-fan unit 1 comprises an interface device 7 between the electric motor 2 and the housing 101 of the heating, ventilation and / or air-conditioning system 100, said housing 101 being arranged to receive the 2.
- the interface device 7 is particularly intended to be mounted on the housing 101 of the heating, ventilation and / or air conditioning system 100 at a volute (no shown) ensuring the channelization of the air flow generated by the motor-fan unit
- the interface device 7 comprises a dissipator 8 arranged to dissipate heat from the fan motor unit 1.
- the heatsink 8 functions as a cooling radiator which makes it possible to evacuate and / or dissipate the heat produced in particular by the electrical components. or electronic, among which the windings of the stator 4 or the rotor.
- the dissipator 8 has the shape of a flattened volume. This makes it possible to increase the surface of heat exchange with the ambient air and to obtain a better cooling.
- the dissipator 8 takes the form of a flattened disc, thus being easily integrated into the motor-fan unit 1.
- the dissipator 8 is made of a heat-conducting material, in particular a metal.
- the use of aluminum is advantageous because it makes it possible to obtain a gain in weight.
- the interface device 7 furthermore comprises a mechanical decoupling element 9 overmolded on the dissipator 8.
- the decoupling element 9 prevents the propagation of the vibrations generated by the operation of the motor 2 to the housing 101 receiving said motor 2, for example a housing a heating, ventilation and / or air-conditioning system 100.
- the decoupling member 9 and the heat sink 8 overmolded form one and the same mechanical part. In other words, no fastening means of the screw type or mounting stud is necessary to ensure the cohesion between the decoupling member 9 and the dissipator 8 and no assembly operation of the dissipator 8 with the member of decoupling 9 is necessary. In general, the quantity of material is optimized and a mass gain can be obtained without the cooling capacity being affected.
- the decoupling member 9 comprises a rigid portion 10 and an elastic portion 11 having a greater elasticity than the rigid portion 10. The rigid portion 10 is configured to be fixed on the housing 101 of the heating, ventilation and / or air conditioning system 100.
- the elastic portion 11 is overmolded both on the dissipator 8 and on the rigid portion 10.
- the rigid portion 10 has an annular shape.
- the rigid portion 10 comprises fastening elements arranged around the periphery of the rigid annular portion 10, to allow its attachment to the housing 101.
- the fastening elements consist, in the embodiment described, an orifice 10a for the passage of a fastener, for example a screw.
- the elastic portion 11 extends over the entire inner periphery of the rigid portion 10.
- the elastic portion 11 also extends around the entire periphery of the dissipator 8.
- the elastic portion 11 makes it possible to absorb the vibrations generated by the motor 2 and to eliminate or, at the very least, to limit as much as possible, their transmission, via the housing 101, to the heating, ventilation and / or air conditioning system. 100 and the structure of the vehicle.
- the elastic portion 11 is made of elastomer and has decoupling pads 12 which work in compression and shear.
- the decoupling pads 12 facilitate the dimensioning of the decoupling member 9. It is thus easy to play on the height or the width of a pad to adapt for example the elasticity of the decoupling member 9, in particular the elasticity of the elastic portion 11 relative to the rigid portion 10, or to obtain greater rigidity of this member 9, in particular of the elastic portion 11 relative to the rigid portion 10.
- a decoupling pad according to this embodiment of realization is best seen in Figure 4.
- the studs 12 work only in shear.
- the pads 12 work only in compression.
- the fan motor unit 1 further comprises a control module (not shown) of the engine 2.
- the control module comprises a control circuit such as a printed circuit board known as PCB for "Printed Circuit Board", supporting a set of electrical components for controlling the motor 2.
- the dissipator 8 comprises a reception surface 13 of the control module.
- the heatsink 8 is configured so that the control module can be fixed on the receiving surface 13.
- the control module can be fixed by any appropriate means to the heatsink 8, for example by screwing.
- the receiving surface 13 is configured to match the shape of the control module.
- the control module is thus intimately linked to the reception surface 13 which makes it possible to collect the heat from the control module by conduction optimally.
- the dissipator 8 comprises a convection surface 14.
- the heat for example collected by the reception surface 13, is transmitted through the volume of the dissipator 8 by conduction.
- the convection surface 14 makes it possible to evacuate the heat of the dissipator 8, for example by forced convection, towards the circulating air flow.
- the dissipator 8 is configured to receive the motor 2 above said convection surface 14. A circulation space of the circulating air flow is thus formed between the dissipator 8 and the motor 2 Thus, no additional wall is necessary to channel the air flow, which has the advantage of limiting the pressure drop.
- the air flow licks both the stator 4 and the heatsink 8, simultaneously cooling the electric motor 2, in particular the coils, and the control module.
- the dissipator 8 is configured so that the stator 4 is fixed on said convection surface 14. Thus, the dissipator 8 is rigidly connected to the stator 4.
- an attachment base 15 of the stator 4 protrudes over the convection surface 14.
- the fixing base 15 extends substantially in the center of said surface, in the form of a hollow cylinder .
- the free end of the fixing base 15 is, in this embodiment, shaped to be nested in a housing (not shown) on the stator 4 adapted to receive said end by complementary shape.
- the heatsink 8 and the motor 2 are thus stable relative to each other.
- the convection surface 14 comprises reliefs projecting from said surface. This makes it possible to increase the heat exchange surface by convection and thus the thermal power exchanged.
- the arrangement of the reliefs corresponds substantially to the arrangement of the components on the control module.
- a relief thus makes it possible to locally increase the heat power exchanged, where the electrical components emit the most heat.
- the reliefs comprise pins 16, in particular of substantially cylindrical shape.
- the reliefs comprise fins.
- a first step the dissipator 8 and the rigid portion 10 are arranged in a mold, in particular a press device.
- a material intended to form the flexible portion of the decoupling member 9 is injected into said mold, said material allowing, especially after curing of said material, a cohesion between the dissipator 8 and the rigid portion 10.
- This second step is thus in the example describes the overmolding of the dissipator 8 on the decoupling member 9.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Frames (AREA)
- Motor Or Generator Cooling System (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
L'invention concerne un dispositif d'interface (7) entre un moteur électrique (2), notamment pour un groupe moto-ventilateur (1), et un boîtier (101) agencé pour recevoir 5 le moteur (2), ce dispositif d'interface (7) comportant : - un dissipateur (8) de chaleur agencé pour dissiper de la chaleur du moteur (2), - un organe de découplage mécanique (9) agencé pour découpler mécaniquement le moteur (2) du boîtier (101), afin d'atténuer la transmission de vibrations du moteur (2) vers le boîtier (101), 10 caractérisé en ce que l'organe de découplage (9) est surmoulé sur le dissipateur (8).
Description
GROUPE MOTO-VENTILATEUR ET INSTALLATION DE CHAUFFAGE, VENTILATION ET/OU
CLIMATISATION POUR VEHICULE AUTOMOBILE CORRESPONDANTE
L’invention est du domaine des installations de ventilation, chauffage et/ou climatisation. L’invention concerne en particulier un groupe moto-ventilateur notamment d’une telle installation, ainsi qu’un dispositif d’interface.
Une installation de chauffage, ventilation et/ou climatisation de véhicule, notamment automobile est généralement utilisée pour distribuer de l’air dans l’habitacle du véhicule. Dans une telle installation, le flux d’air circulant est propulsé par un groupe moto-ventilateur, comportant notamment une roue de ventilateur et un moteur apte à mettre en rotation la roue de ventilateur.
Un groupe moto-ventilateur comprend de manière classique une roue de ventilateur et un moteur d’entrainement en rotation de ladite roue de ventilateur. Il est bien connu de faire supporter le moteur sur un support moteur, solidarisé sur un boîtier de l’installation de chauffage, ventilation et/ou climatisation. Le support moteur comporte, de façon connue, un organe de découplage mécanique.
De façon à obtenir une meilleure durabilité à l’usage, il est avantageux d’utiliser un moteur électrique sans balai, appelé aussi moteur à commutation électrique. Dans de tels moteurs, le contrôle de la polarité est assuré par un module de commande du type carte électronique. Il est avantageux d’intégrer ledit module de commande au support moteur, pour des questions de modularité.
Un problème bien connu est que les composants électriques émettent de la chaleur par effet joule. C’est le cas par exemple des bobinages du stator. L’intégration du module de commande, comprenant des composants électriques ou électroniques émetteurs de chaleur, au support moteur, peut provoquer la surchauffe du groupe moto-ventilateur. Les composants électriques doivent donc être refroidis afin d’éviter une telle surchauffe, et notamment une surchauffe du module de commande.
Une solution de l’art antérieur propose d’intégrer un dissipateur de chaleur dans le support moteur. Le flux d’air forcé par le groupe moto-ventilateur est utilisé en combinaison avec le dissipateur de chaleur pour refroidir simultanément le module de commande et le moteur. Ainsi, certains supports moteurs sont configurés pour faire
circuler le flux d’air forcé au voisinage du module de commande et des bobinages.
Le but de l’invention est de simplifier les dispositifs actuels.
À cet effet, l’invention a pour objet un dispositif d’interface entre un moteur électrique, notamment pour un groupe moto-ventilateur, et un boîtier agencé pour recevoir le moteur, ce dispositif d’interface comportant :
un dissipateur de chaleur agencé pour dissiper de la chaleur du groupe moto- ventilateur,
un organe de découplage mécanique agencé pour découpler mécaniquement le moteur du boîtier, afin d’atténuer la transmission de vibrations du moteur vers le boîtier,
caractérisé en ce que l’organe de découplage est surmoulé sur le dissipateur.
Le dispositif d’interface selon l’invention est notamment destiné à remplir la fonction d’un support moteur pour un groupe moto-ventilateur. Un tel dispositif remplit la double fonction de découplage mécanique et dissipateur de chaleur de façon intégrée dans un seul et même composant. Le montage du groupe moto-ventilateur en est ainsi simplifié. De plus, la quantité de matière est optimisée et un gain en masse peut être obtenu, tout en assurant le refroidissement et le découplage mécanique.
Le dispositif d’interface peut en outre comporter une ou plusieurs des caractéristiques suivantes, prises séparément ou en combinaison : l’organe de découplage comprend une portion rigide, configurée pour être fixée sur le boîtier, et une portion élastique, présentant une élasticité plus grande que la portion rigide, notamment réalisée en élastomère,
la portion élastique est surmoulée à la fois sur le dissipateur et sur la portion rigide, la portion rigide présente une forme annulaire ;
la portion rigide comporte au moins un élément de fixation agencé pour permettre sa fixation sur le boîtier ;
G élément de fixation comporte un orifice pour le passage d’un organe de fixation tel qu’une vis ;
la portion élastique s’étend sur tout un pourtour intérieur de la portion rigide ; la portion élastique s’étend sur tout un pourtour du dissipateur ;
la portion élastique comporte au moins un plot de découplage, qui par exemple travaille en compression et/ou en cisaillement ;
le dissipateur est en métal, notamment en aluminium ;
le dissipateur prend la forme d’un volume aplati ;
le dissipateur prend la forme d’un disque aplati ;
le dissipateur comprend une surface d’accueil d’un module de commande, apte à recueillir la chaleur dudit module par conduction ;
le dissipateur est configuré pour que le module de commande puisse être fixé sur la surface d’accueil ;
la surface d’accueil est configurée pour épouser la forme du module de commande ;
le dissipateur comprend une surface de convection, apte à évacuer la chaleur vers l’air ambiant par convection ;
le dissipateur est configuré pour recevoir le moteur électrique au dessus de ladite surface de convection, de manière à former un espace de circulation pour l’air entre le dissipateur et le moteur ;
le dissipateur est configuré pour que le stator soit fixé sur ladite surface de convection ;
le dissipateur comprend une base de fixation du stator qui s’étend en saillie sur la surface de convection, de préférence au milieu de ladite surface ;
la surface de convection comprend des reliefs qui s’étendent en saillie depuis ladite surface;
l’agencement des reliefs correspond sensiblement à l’agencement des composants sur le module de commande ;
les reliefs comportent des picots, en particulier de forme sensiblement cylindrique ;
les reliefs comportent des ailettes ;
L’invention a également pour objet un procédé de fabrication du dispositif d’interface tel que décrit plus haut, comprenant l’étape suivante :
surmouler l’organe de découplage sur le dissipateur. L’invention concerne également un groupe moto-ventilateur comprenant au moins un dispositif d’interface tel que défini précédemment.
L’invention concerne également une installation de chauffage, ventilation et/ou climatisation pour véhicule automobile comprenant au moins un groupe moto-ventilateur, ledit groupe moto-ventilateur comprenant au moins un dispositif d’interface tel que défini précédemment.
D’autres caractéristiques et avantages de l’invention apparaîtront plus clairement à la lecture de la description d’un mode de réalisation particulier, donnée à titre d’exemple illustratif et non limitatif, et des dessins annexés parmi lesquels :
- la figure 1 est une vue éclatée d’un groupe moto-ventilateur intégrant le dispositif d’interface selon ledit mode de réalisation,
- la figure 2 est une première vue du dispositif d’interface,
- la figure 3 est une deuxième vue du dispositif d’interface, de dessous par rapport à la première vue,
- La figure 4 est une vue agrandie d’un plot de découplage.
On a représenté sur la figure 1 une vue éclatée d’un groupe moto-ventilateur 1, par exemple pour une installation de chauffage, ventilation et/ou de climatisation 100 équipant un véhicule automobile. Le groupe moto -ventilateur 1 est notamment destiné à être monté sur un boîtier 101 d’une installation de chauffage, ventilation et/ou climatisation 100.
Dans ce cas, le groupe moto-ventilateur 1 est agencé de manière à faire circuler un flux d’air dans un conduit 102 de l’installation de chauffage, ventilation et/ou climatisation 100. Il peut s’agir d’un flux d’air extérieur prélevé à l’extérieur de l’habitacle, ou d’un flux d’air prélevé à l’intérieur de l’habitacle dit flux d’air recyclé, ou
encore un mélange d’un flux d’air extérieur et d’un flux d’air recyclé. Le conduit 102 d’air de l’installation de chauffage, ventilation et/ou climatisation distribue le flux d’air vers des bouches de sortie (non représentées) s’ouvrant dans l’habitacle du véhicule.
À cet effet, le groupe moto-ventilateur 1 comporte un moteur électrique 2 et une roue de ventilateur 3 destinée à être entraînée par le moteur 2, de façon à assurer la mise en mouvement du flux d’air. Il s’agit en particulier d’un moteur électrique 2 sans balai.
Plus précisément, le moteur électrique 2 comporte un stator fixe 4 et un rotor (non visible sur les figures) mobile par rapport au stator et apte à entraîner la roue de ventilateur 3.
En référence au mode de réalisation illustré sur les figures 1 à 4 le moteur 2 s’étend autour d’un axe longitudinal A, correspondant à l’axe de rotation du moteur 2, et comprend un arbre de transmission 5 s’étendant selon l’axe longitudinal A. L’arbre de transmission 5 est par exemple agencé sensiblement au centre du moteur 2. Dans cet exemple, l’arbre de transmission 5 fait saillie du moteur 2 présentant ainsi une extrémité libre.
Le moteur 2 et la roue de ventilateur 3 sont coaxiaux. La roue de ventilateur 3 est montée sur l’arbre de transmission 5 du moteur 2.
Selon un exemple particulier de réalisation visible sur la figure 1, la roue de ventilateur 3 comporte une partie ayant une forme sensiblement en bol, cette partie est par la suite désignée par bol 6. Le bol 6 est de forme sensiblement concave et présente des ajours.
La roue de ventilateur 3 comporte de plus un moyeu central (non visible sur les figures), pour recevoir l’extrémité libre de l’arbre de transmission 5 du moteur 2. La roue de ventilateur 3 peut présenter une forme générale sensiblement cylindrique comprenant des pales 30 ou ailettes qui s’étendent dans cet exemple depuis la périphérie du bol 6, selon une direction sensiblement parallèle à l’axe longitudinal A du moteur 2.
Conformément à l’invention, le groupe moto-ventilateur 1 comporte un dispositif d’interface 7 entre le moteur électrique 2 et le boîtier 101 de l’installation de chauffage, ventilation et/ou climatisation 100, ledit boîtier 101 étant agencé pour recevoir le moteur 2. Le dispositif d’interface 7 est notamment destiné à être monté sur le boîtier 101 de l’installation de chauffage, ventilation et/ou climatisation 100 au niveau d’une volute (non
représentée) assurant la canalisation du flux d’air généré par le groupe moto-ventilateur
1.
Le dispositif d’interface 7 comporte un dissipateur 8 agencé pour dissiper de la chaleur du groupe moto-ventilateur 1. Le dissipateur 8 fonctionne comme un radiateur de refroidissement qui permet d’évacuer et/ou dissiper la chaleur produite en particulier par les composants électriques ou électroniques, parmi lesquels les bobinages du stator 4 ou du rotor.
Selon une caractéristique préférentielle de l’invention, le dissipateur 8 présente la forme d’un volume aplati. Cela permet d’augmenter la surface d’échange de chaleur avec l’air ambiant et d’obtenir un meilleur refroidissement.
Dans le mode de réalisation décrit, le dissipateur 8 prend la forme d’un disque aplati, pouvant ainsi être facilement intégré dans le groupe moto-ventilateur 1. De préférence, le dissipateur 8 est constitué d’un matériau conducteur de chaleur, en particulier un métal. Dans ce cadre, G utilisation d’aluminium est avantageuse car elle permet d’obtenir un gain en poids.
Le dispositif d’interface 7 comporte en outre un organe de découplage mécanique 9 surmoulé sur le dissipateur 8. L’organe de découplage 9 empêche la propagation des vibrations générées par le fonctionnement du moteur 2 au boîtier 101 recevant ledit moteur 2, boîtier par exemple d’une installation de chauffage, ventilation et/ou climatisation 100.
Sur la figure 1, le dissipateur 8 et l’organe de découplage 9 sont représentés séparés pour plus de clarté, mais ces éléments sont, dans l’invention, surmoulés ensemble.
On comprend que le montage du groupe moto-ventilateur 1 est ainsi simplifié. Le nombre d’éléments distincts à assembler est en effet réduit. L’organe de découplage 9 et le dissipateur 8 surmoulés ne forment qu’une seule et même pièce mécanique. En d’autres termes, aucun moyen de fixation du type vis ou plot de fixation n’est nécessaire pour assurer la cohésion entre l’organe de découplage 9 et le dissipateur 8 et aucune opération d’assemblage du dissipateur 8 avec l’organe de découplage 9 n’est nécessaire. De manière générale, la quantité de matière est optimisée et un gain en masse peut être obtenu, sans que les capacités de refroidissement en soient affectées.
Selon une caractéristique préférentielle de l’invention, l’organe de découplage 9 comprend une portion rigide 10 et une portion élastique 11 présentant une élasticité plus grande que la portion rigide 10. La portion rigide 10 est configurée pour être fixée sur le boîtier 101 de l’installation de chauffage, ventilation et/ou climatisation 100.
Selon le mode de réalisation décrit, la portion élastique 11 est surmoulée à la fois sur le dissipateur 8 et sur la portion rigide 10.
Dans le mode de réalisation décrit, la portion rigide 10 présente une forme annulaire.
Selon un mode de réalisation particulier, la portion rigide 10 comporte des éléments de fixation agencés sur le pourtour de la portion rigide 10 annulaire, pour permettre sa fixation sur le boîtier 101. Les éléments de fixation sont constitués, dans le mode de réalisation décrit, d’un orifice lOa pour le passage d’un organe de fixation, par exemple une vis.
Dans le mode de réalisation décrit, la portion élastique 11 s’étend sur tout le pourtour intérieur de la portion rigide 10. La portion élastique 11 s’étend également sur tout le pourtour du dissipateur 8.
La portion élastique 11 permet d’absorber les vibrations générées par le moteur 2 et de supprimer ou, à tout le moins, de limiter au maximum, leur transmission, via le boîtier 101, à l’installation de chauffage, ventilation et/ou climatisation 100 et à la structure du véhicule.
Dans le mode de réalisation illustré aux figures 2 et 3, la portion élastique 11 est réalisée en élastomère et comporte des plots de découplage 12 qui travaillent en compression et en cisaillement. Les plots de découplage 12 facilitent le dimensionnement de l’organe de découplage 9. Il est ainsi facile de jouer sur la hauteur ou la largeur d’un plot pour adapter par exemple l’élasticité de l’organe de découplage 9, en particulier l’élasticité de la portion élastique 11 par rapport à la portion rigide 10, ou pour obtenir une plus grande rigidité de cet organe 9, en particulier de la portion élastique 11 par rapport à la portion rigide 10. Un plot de découplage selon ce mode de réalisation est mieux visible à la figure 4.
Selon un autre mode de réalisation, les plots 12 travaillent uniquement en cisaillement. Selon un mode de réalisation distinct, les plots 12 travaillent uniquement en compression.
Selon un mode de réalisation particulier, le groupe moto-ventilateur 1 comporte en outre un module de commande (non représenté) du moteur 2. Le module de commande comprend un circuit de commande tel qu’une carte de circuit imprimé connue sous le sigle anglais PCB pour « Printed Circuit Board », supportant un ensemble de composants électriques permettant de piloter le moteur 2.
Selon une caractéristique préférentielle de l’invention, le dissipateur 8 comprend une surface d’accueil 13 du module de commande. Le dissipateur 8 est configuré pour que le module de commande puisse être fixé sur la surface d’accueil 13. Le module de commande peut être fixé par tout moyen approprié au dissipateur 8, par exemple par vissage.
Dans le mode de réalisation décrit, la surface d’accueil 13 est configurée pour épouser la forme du module de commande. Le module de commande est ainsi intimement lié à la surface d’accueil 13 qui permet de recueillir la chaleur du module de commande par conduction de façon optimale.
Selon une caractéristique préférentielle de l’invention, le dissipateur 8 comprend une surface de convection 14. La chaleur, par exemple recueillie par la surface d’accueil 13, est transmise à travers le volume du dissipateur 8 par conduction. La surface de convection 14 permet d’évacuer la chaleur du dissipateur 8, par exemple par convection forcée, vers le flux d’air circulant.
Selon une autre caractéristique préférentielle de l’invention, le dissipateur 8 est configuré pour recevoir le moteur 2 au dessus de ladite surface de convection 14. Un espace de circulation du flux d’air circulant est ainsi formé entre le dissipateur 8 et le moteur 2. Ainsi, aucune paroi supplémentaire n’est nécessaire pour canaliser le flux d’air, ce qui a l’avantage de limiter la perte de charge. Le flux d’air lèche à la fois le stator 4 et
le dissipateur 8, refroidissant simultanément le moteur électrique 2, notamment les bobinages, et le module de commande.
Selon un mode de réalisation particulier, le dissipateur 8 est configuré pour que le stator 4 soit fixé sur ladite surface de convection 14. Ainsi, le dissipateur 8 est rigidement lié au stator 4.
Dans le mode de réalisation décrit, une base de fixation 15 du stator 4 s’étend en saillie sur la surface de convection 14. La base de fixation 15 s’étend sensiblement au centre de ladite surface, sous la forme d’un cylindre creux. L’extrémité libre de la base de fixation 15 est, dans ce mode de réalisation, conformée pour être emboîtée dans un logement (non représenté) sur le stator 4 apte à recevoir ladite extrémité par complémentarité de forme. Le dissipateur 8 et le moteur 2 sont ainsi stables l’un par rapport à l’autre.
Selon une caractéristique préférentielle de l’invention, la surface de convection 14 comprend des reliefs qui s’étendent en saillie depuis ladite surface. Cela permet d’augmenter la surface d’échange thermique par convection et ainsi la puissance thermique échangée.
Avantageusement, l’agencement des reliefs correspond sensiblement à l’agencement des composants sur le module de commande. Un relief permet ainsi d’augmenter localement la puissance thermique échangée, là où les composants électriques émettent le plus de chaleur.
Dans le mode de réalisation décrit, les reliefs comportent des picots 16, en particulier de forme sensiblement cylindrique.
Selon un mode de réalisation alternatif, les reliefs comportent des ailettes.
Nous allons maintenant décrire un exemple de procédé de fabrication du dispositif d’interface 7, comprenant l’étape de surmoulage de l’organe de découplage 9 mécanique sur le dissipateur 8.
L’exemple de mise en œuvre du procédé décrit comprend les étapes telles que détaillées ci-après.
Dans une première étape le dissipateur 8 et la portion rigide 10 sont disposés dans un moule, en particulier d’un dispositif de presse. Dans une deuxième étape, une matière
destinée à former la portion souple de l’organe de découplage 9 est injectée dans ledit moule, ladite matière permettant, notamment après durcissement de ladite matière, une cohésion entre le dissipateur 8 et la portion rigide 10. Cette deuxième étape constitue ainsi dans l’exemple décrit le surmoulage du dissipateur 8 sur l’organe de découplage 9.
Un tel procédé de surmoulage sur un seul et même dispositif de presse est rapide et économique.
Claims
REVENDICATIONS
1. Dispositif d’interface (7) entre un moteur électrique (2), notamment pour un groupe moto-ventilateur (1), et un boîtier (101) agencé pour recevoir le moteur (2), ce dispositif d’interface (7) comportant : un dissipateur (8) de chaleur agencé pour dissiper de la chaleur du moteur (2), un organe de découplage mécanique (9) agencé pour découpler mécaniquement le moteur (2) du boîtier (101), afin d’atténuer la transmission de vibrations du moteur (2) vers le boîtier (101), caractérisé en ce que l’organe de découplage (9) est surmoulé sur le dissipateur
(8).
2. Dispositif d’interface (7) selon la revendication 1, caractérisé en ce que l’organe de découplage (9) comprend une portion rigide (10) configurée pour être fixée sur le boîtier (101), et une portion élastique (11), présentant une élasticité plus grande que la portion rigide (10), notamment réalisée en élastomère. 3. Dispositif d’interface (7) selon la revendication 2, caractérisé en ce que la portion élastique (11) est surmoulée à la fois sur le dissipateur (8) et sur la portion rigide
(10).
4. Dispositif d’interface (7) selon l’une des revendications 2 ou 3, caractérisé en ce que la portion élastique (11) comporte au moins un plot de découplage 12, qui par exemple travaille en compression et/ou en cisaillement.
5. Dispositif d’interface (7) selon l’une des revendications précédentes, caractérisé en ce que le dissipateur (8) comprend une surface d’accueil (13) d’un module de commande, apte à recueillir la chaleur dudit module par conduction.
6. Dispositif d’interface (7) selon l’une des revendications précédentes, caractérisé en ce que le dissipateur (8) comprend une surface de convection (14), apte à évacuer la chaleur vers l’air ambiant par convection. 7. Dispositif d’interface (7) selon la revendication 6, caractérisé en ce que le dissipateur (8) est configuré pour recevoir le moteur électrique (2) au dessus de ladite surface de convection (14), de manière à former un espace de circulation pour l’air entre le dissipateur (8) et le moteur (2). 8. Procédé de fabrication d’un dispositif d’interface (7) selon l’une des revendications précédentes, comprenant l’étape suivante :
surmouler l’organe de découplage (9) sur le dissipateur (8).
9. Groupe moto-ventilateur comprenant un dispositif d’interface (7) selon l’une des revendications 1 à 7.
10. Installation de chauffage, ventilation et/ou climatisation (100) pour véhicule automobile caractérisée en ce qu’elle comprend au moins un groupe moto- ventilateur (1) selon la revendication 9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1852454A FR3079369B1 (fr) | 2018-03-21 | 2018-03-21 | Groupe moto-ventilateur et installation de chauffage, ventilation et/ou climatisation pour vehicule automobile correspondante |
FR1852454 | 2018-03-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019180354A1 true WO2019180354A1 (fr) | 2019-09-26 |
Family
ID=62684875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2019/050594 WO2019180354A1 (fr) | 2018-03-21 | 2019-03-15 | Groupe moto-ventilateur et installation de chauffage, ventilation et/ou climatisation pour véhicule automobile correspondante |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3079369B1 (fr) |
WO (1) | WO2019180354A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021123547A1 (fr) * | 2019-12-19 | 2021-06-24 | Valeo Systemes Thermiques | Moteur pour dispositif de ventilation d'une installation de chauffage, ventilation et/ou climatisation de vehicule automobile a rotor et stator decouples d'une embase de montage |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240333084A1 (en) * | 2023-03-29 | 2024-10-03 | Hyoseong Electric, Co., Ltd. | Brushless direct current blower motor with novel stator block |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010060132A (ja) * | 2008-08-08 | 2010-03-18 | Tokai Rubber Ind Ltd | モータ用防振マウント |
EP3163088A1 (fr) * | 2015-10-29 | 2017-05-03 | Valeo Systemes Thermiques | Groupe moto-ventilateur et installation de chauffage, ventilation et/ou climatisation pour véhicule automobile correspondante |
-
2018
- 2018-03-21 FR FR1852454A patent/FR3079369B1/fr active Active
-
2019
- 2019-03-15 WO PCT/FR2019/050594 patent/WO2019180354A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010060132A (ja) * | 2008-08-08 | 2010-03-18 | Tokai Rubber Ind Ltd | モータ用防振マウント |
EP3163088A1 (fr) * | 2015-10-29 | 2017-05-03 | Valeo Systemes Thermiques | Groupe moto-ventilateur et installation de chauffage, ventilation et/ou climatisation pour véhicule automobile correspondante |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021123547A1 (fr) * | 2019-12-19 | 2021-06-24 | Valeo Systemes Thermiques | Moteur pour dispositif de ventilation d'une installation de chauffage, ventilation et/ou climatisation de vehicule automobile a rotor et stator decouples d'une embase de montage |
FR3105646A1 (fr) * | 2019-12-19 | 2021-06-25 | Valeo Systemes Thermiques | Moteur pour dispositif de ventilation d’une installation de chauffage, ventilation et/ou climatisation de véhicule automobile à rotor et stator découplés d’une embase de montage |
Also Published As
Publication number | Publication date |
---|---|
FR3079369A1 (fr) | 2019-09-27 |
FR3079369B1 (fr) | 2022-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1249064B1 (fr) | Machine electrique tournante, et notamment alternateur de vehicule automobile, comportant un stator monte elastiquement dans une resine thermoconductrice | |
FR3038160B1 (fr) | Dispositif de pulsion d'air comportant un moteur electrique | |
FR2925239A1 (fr) | Moteur sans balai et son procede de fabrication | |
FR3043150B1 (fr) | Groupe moto-ventilateur et installation de chauffage , ventilation et / ou climatisation pour vehicule automobile correspondante | |
FR3104312A1 (fr) | Système de refroidissement et unité d’entraȋnement et véhicule électriques le comportant | |
WO2019180354A1 (fr) | Groupe moto-ventilateur et installation de chauffage, ventilation et/ou climatisation pour véhicule automobile correspondante | |
EP3749537B1 (fr) | Module de commande de pulseur et installation de chauffage et/ou ventilation et/ou climatisation correspondante | |
WO1999004480A1 (fr) | Moteur electrique, notamment pour vehicule automobile, a radiateur de refroidissement perfectionne | |
FR3053420B1 (fr) | Mecanisme limiteur de couple | |
EP1439971B1 (fr) | Groupe moto-ventilateur, notamment pour installation de chauffage et/ou de climatisation de vehicule automobile | |
FR2883944A1 (fr) | Embrayage electromagnetique. | |
EP2250377A2 (fr) | Motoventilateur | |
WO2006111657A1 (fr) | Alternateur comprenant un roulement à bride de fixation | |
WO2000076053A1 (fr) | Moteur electrique | |
FR2486324A1 (fr) | Ventilateur pour machine electrique, notamment pour alternateur ou dynamo de vehicule automobile | |
FR3111487A1 (fr) | Moteur électrique à moyens de découplage du rotor, pour dispositif de ventilation d’une installation de ventilation, climatisation et/ou chauffage d’un véhicule automobile | |
WO2008135689A2 (fr) | Agencement de redressement de courant pour machine electrique tournante et machine electrique tournante comportant un tel agencement | |
WO2021123547A1 (fr) | Moteur pour dispositif de ventilation d'une installation de chauffage, ventilation et/ou climatisation de vehicule automobile a rotor et stator decouples d'une embase de montage | |
FR2815191A1 (fr) | Machine electrique tournante, et notamment alternateur de vehicule automobile, comportant un stator monte elastiquement dans une resine thermoconductrice | |
FR3111488A1 (fr) | Moteur électrique à bague de découplage du rotor, pour dispositif de ventilation d’une installation de ventilation, climatisation et/ou chauffage d’un véhicule automobile | |
FR3077774A1 (fr) | Module de commande de pulseur et installation de chauffage et/ou ventilation et/ou climatisation correspondante | |
WO2023110940A1 (fr) | Groupe moto-ventilateur pour installation de chauffage, ventilation et/ou climatisation d'un véhicule automobile équipé d'un moyen de contact posé entre une coupelle et un moyeu | |
WO2019202229A1 (fr) | Ensemble pour moteur électrique de véhicule automobile | |
FR3077775A1 (fr) | Module de commande de pulseur et installation de chauffage et/ou ventilation et/ou climatisation correspondante | |
FR3077772A1 (fr) | Ensemble de commande et de refroidissement pour une installation de chauffage et/ou ventilation et/ou climatisation et module de commande et evaporateur correspondants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19718778 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19718778 Country of ref document: EP Kind code of ref document: A1 |