WO2019179435A1 - 光学次模块及光模块 - Google Patents

光学次模块及光模块 Download PDF

Info

Publication number
WO2019179435A1
WO2019179435A1 PCT/CN2019/078714 CN2019078714W WO2019179435A1 WO 2019179435 A1 WO2019179435 A1 WO 2019179435A1 CN 2019078714 W CN2019078714 W CN 2019078714W WO 2019179435 A1 WO2019179435 A1 WO 2019179435A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
module
light
sub
optical sub
Prior art date
Application number
PCT/CN2019/078714
Other languages
English (en)
French (fr)
Inventor
姜韬
郑启飞
张海祥
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810227365.6A external-priority patent/CN108427161A/zh
Priority claimed from CN201810225787.XA external-priority patent/CN108646356A/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to US16/393,068 priority Critical patent/US10761278B2/en
Publication of WO2019179435A1 publication Critical patent/WO2019179435A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the present application relates to the field of optical fiber communication technologies, and in particular, to an optical sub-module and an optical module having an optical sub-module.
  • the first aspect of the present application discloses an optical sub-module including a light emitter, a light receiver, a beam splitter, and an optical fiber ferrule, and the light emitted by the light emitter is incident through the beam splitter.
  • the light exiting axis of the light emitter is at an acute angle to the optical axis of the fiber ferrule.
  • a second aspect of the present application discloses an optical module including a housing, a circuit board, and an optical sub-module according to the first aspect, wherein the optical sub-module is electrically connected to the circuit board;
  • the transmitter end pin faces the circuit board;
  • the optical receiver end pin of the optical submodule faces the bottom surface of the housing.
  • 1 is a schematic structural view of an optical module
  • FIG. 2 is a schematic diagram of an external structure of an optical module according to one or more embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of an explosion structure of an optical module according to one or more embodiments of the present disclosure
  • FIG. 4 is a schematic structural diagram of an optical sub-module in one or more embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram showing the positional relationship of components in an optical sub-module in one or more embodiments of the present disclosure
  • FIG. 6 is a schematic diagram showing the external structure of an optical sub-module in one or more embodiments of the present disclosure
  • FIG. 7 is a partial cross-sectional view of an optical sub-module provided by one or more embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram showing another angle structure of an optical module according to one or more embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram showing an assembly relationship of an optical module having an optical sub-module according to one or more embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram showing an exploded structure of another angle of an optical module according to one or more embodiments of the present disclosure.
  • FIG. 11 is a schematic structural diagram of an optical module housing according to one or more embodiments of the present disclosure.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present disclosure, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or connected in one piece. It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two elements or the interaction of two elements. The specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
  • the optical line terminal device can be connected to the front-end switch by using a network cable, and converts the electrical signal of the front-end switch into an optical signal, and interconnects the optical fiber with the splitter of the user end; and the optical line terminal device is equipped with a hot-swappable optical module.
  • the optical sub-module described in the present disclosure is an optical sub-module having a single data transmission channel and a single data receiving channel; and the optical sub-module is an optical communication system that converts an electrical signal into an optical signal or converts the optical signal into an electrical signal. Key device.
  • FIG. 1 is a schematic structural view of an optical module. As shown in FIG. 1, the light emitter pin 01 of the optical sub-module in the optical module faces the circuit board, the light receiver pin 02 faces the side wall of the housing, and the light receiver pin 02 and the bottom surface 03 of the housing are substantially Parallel positional relationship.
  • the outer casing of the optical module has a slightly irregular rectangular shape under the requirements of the industry standard/protocol, and its height is smaller than the width.
  • the optical sub-module is placed as shown in FIG. 1 .
  • the main reason is that the height direction of the optical module, that is, the distance between the top surface and the bottom surface of the optical module, cannot accommodate the optical sub-module. There is not enough space inside the optical module to place two optical submodules.
  • FIG. 2 is a schematic diagram of an external structure of an optical module according to an embodiment of the present disclosure.
  • the optical module provided by the embodiment of the present disclosure includes an optical port 30 , an electrical port 20 , and a housing 10 , and a sealing member 40 is attached to the outside of the housing 10 .
  • the optical port 30 is a channel for optical connection between the optical module and the external device, and is used for inserting the optical fiber.
  • the electrical port 20 is a channel for electrically connecting the optical module and the external device, and is electrically connected to the external device through the gold finger; the housing 10 is used for wrapping Optical sub-modules, circuit boards, etc. inside the optical module.
  • the bottom surface of the casing is provided with an opening to increase the space in the height direction of the casing, and the sealing of the opening is realized by the sealing member 40 outside the casing.
  • FIG. 3 is a schematic diagram of an explosion structure of an optical module according to an embodiment of the present disclosure.
  • the optical module includes a circuit board 50, a first optical sub-module 60, and a second optical sub-module 70.
  • the first optical sub-module 60 and the second optical sub-module 70 are electrically connected to the circuit board 50 through the flexible circuit board 80, respectively.
  • the optical sub-module includes a light emitter, a light receiver, a beam splitter, and a fiber ferrule.
  • An optical sub-module can realize the function of transmitting and receiving light.
  • the two optical sub-modules can realize double-shot and dual-receiving using a coaxial packaged laser/photodetector.
  • COB chips on board
  • micro-optics it is easier to implement multi-channel transmission and reception, and the coaxial package occupies a large space, so it is difficult to put in the optical module.
  • Two optical sub-modules are disposed inside the casing.
  • the optical sub-module includes a light emitter, a light receiver, a beam splitter, and a fiber ferrule.
  • An optical sub-module can realize the function of transmitting and receiving light.
  • the two optical sub-modules can realize double-shot and dual-receiving using a coaxial packaged laser/photodetector.
  • COB chips on board
  • the solution provided by the embodiment of the present disclosure implements a design in which two optical sub-modules are placed in an optical module.
  • an embodiment of the present disclosure provides an optical module, including a housing, a first optical sub-module, a second optical sub-module, and a circuit board.
  • the first optical sub-module and the second optical sub-module respectively are electrically connected to the circuit board. connection;
  • the light emitter pins of the first optical sub-module and the light emitter pins of the second optical sub-module are all facing the circuit board;
  • the light receiver pins of the first optical sub-module and the light receiver pins of the second optical sub-module are all facing the same bottom surface of the housing.
  • an optical module including a housing, a first optical sub-module, and a circuit board, where the first optical sub-module is electrically connected to the circuit board;
  • the light emitter pin of the first optical sub-module faces the circuit board
  • the light receiver pins of the first optical sub-module face the bottom surface of the housing.
  • the optical transmitter pin of the optical sub-module faces the circuit board; the optical receiver pin of the optical sub-module faces the bottom surface of the housing, effectively utilizing the internal space of the optical module housing.
  • optical sub-module built in the optical module in the embodiment of the present disclosure is optimized in structure, and the volume thereof is significantly reduced, so that the optical module can facilitate the placement of the optical sub-module according to the technical solution provided by the embodiment of the present disclosure.
  • an optical sub-module of the embodiment of the present disclosure adopts the following technical solution.
  • the optical transmitter 1, the optical receiver 2, the beam splitter 4, and the optical fiber ferrule 5 are disposed.
  • the light receiving face of the fiber ferrule 5 faces the beam splitter 4;
  • the fiber ferrule 5 is a single mode fiber ferrule for accessing the fiber; wherein, the light emitter 1, the beam splitter 4, and the fiber
  • the ferrules 5 are disposed on the same plane, which is the main plane of the optical sub-module.
  • the light emitter 1 and the light receiver 2 are a laser diode module (TO-CAN, Transistor Outline-can).
  • the light emitter 1 is a data transmission channel
  • the light receiver 2 is a data receiving channel
  • the beam splitter 4 effects transmission of light of a first wavelength emitted by the light emitter and reflection of light of a second wavelength from the fiber.
  • the light emitted by the light emitter 1 is emitted from the light exiting surface thereof, and the light is propagated along the light exiting axis of the light emitter, and after passing through the beam splitter 4, enters the optical fiber to which the optical fiber ferrule 5 is inserted;
  • the light in the core is reflected by the beam splitter 4, and then incident on the light receiving surface of the light receiver 2, and the light received by the light receiver propagates along the light incident axis of the light receiver.
  • the optical axis of the optical receiver 2 is at an acute angle to the optical axis of the optical fiber ferrule 5, and the optical axis of the optical transmitter 1 is at an acute angle to the optical axis of the optical fiber ferrule 5.
  • the optical sub-module is further provided with an optical isolator 3 disposed between the optical emitter 1 and the beam splitter 4, and the light emitted by the light emitter 1 is incident on the beam splitter through the optical isolator 3. 4 in.
  • the optical isolator 3 is a passive optical device that allows only unidirectional light to pass through, and its working principle is based on the non-reciprocity of Faraday rotation; it is used to prevent light emitted or reflected from the optical fiber ferrule 5 from entering the light. In the transmitter 1, it is ensured that the modulation performance of the light emitter 1 is good.
  • the optical path transmission process of the present disclosure mainly includes two parts:
  • the light emitter 1 emits light of a first wavelength, and the light of the first wavelength passes through the beam splitter 4, and is transmitted through the beam splitter 4, and then incident into the fiber ferrule 5, in the first part.
  • the entire path loss during transmission is less than 10%;
  • the transmission loss is low, which is advantageous for ensuring transmission efficiency.
  • the light emitter 1 is provided with an aspherical lens having a converging effect on the emitted light to facilitate obtaining a clear exit axis.
  • the optical receiver 2 is provided with a lens, the focal length of the lens is the focal length of the optical receiver, the distance from the optical receiver of the optical submodule to the beam splitter and the beam splitter to the optical fiber ferrule The sum of the distances is equal to the focal length of the optical receiver of the optical sub-module.
  • FIG. 5 is specifically:
  • the optical input shaft of the optical sub-module has an acute angle ⁇ with the optical axis of the optical fiber ferrule.
  • the light incident axial direction of the optical receiver is inclined in the direction of the optical axis of the optical fiber ferrule, which can reduce the protruding height of the optical receiver and reduce the volume of the optical sub-module.
  • the angle between the beam splitter and the light exiting axis of the light emitter is 45°, the best light splitting effect can be achieved.
  • the angle between the light emitting axis of the light emitter and the beam splitter is fixed at 45°.
  • the beam splitter 4 is a beam splitter.
  • the optical axis of the optical receiver 2 is 90° to the optical fiber ferrule 5
  • the optical submodule height is H, which is equal to ⁇ plus the optical receiver 2 the height of.
  • the height of the optical receiver can be reduced, which is beneficial to the reduction of the volume of the optical sub-module.
  • the optical axis of the optical receiver and the optical axis of the optical ferrule The angle between them has also changed, showing an acute angle ⁇ .
  • the angle ⁇ between the optical axis of the optical receiver and the optical fiber ferrule into the optical axis is greater than 78° and less than 90°, and the angle between the optical axis of the optical transmitter and the optical fiber insertion axis is ⁇ . More than 0° and less than 6°.
  • the dotted line in Fig. 5 indicates that before the change, the solid line indicates the change, and before the change, the light exiting axis of the light emitter and the optical axis of the optical fiber ferrule are set at 0 degrees.
  • the angle between the beam splitter and the optical axis of the fiber ferrule 5 is changed by ⁇ /2.
  • the angle ⁇ between the light exiting axis of the light emitter 1 and the optical fiber insert into the optical axis changes ⁇ / 2, but this angle change affects the efficiency of light coupling into the fiber ferrule.
  • the angle ⁇ /2 between the light exit axis of the light emitter 1 and the optical axis of the fiber ferrule 5 is 3.5°. Between 4°. Therefore, in the present embodiment, the angle ⁇ between the light exiting axis of the light emitter 1 and the optical axis of the optical fiber ferrule 5 is between 3.5° and 4°.
  • the light emitter 1 is inclined toward the side of the light receiver 2; since the light emitter 1 and the light receiver 2 are disposed or inclined on the same side, it will further reduce the overall volume of the optical sub-module.
  • the acute angle is a deliberate change for the purpose of improving the scheme, and is not an acute angle caused by non-subjective factors such as process errors.
  • the acute angle caused by non-subjective factors such as process error is not the protection scope of the embodiments of the present disclosure, and is also significantly different from the embodiment of the present disclosure.
  • the optical sub-module further includes: a rectangular tube body 6 , and the light emitter 1 , the beam splitter 4 , the optical isolator 3 , and the light receiver 2 are all mounted on the square tube body.
  • a sleeve adjusting member 7 is welded to one end of the square tubular body 6 , and the sleeve adjusting member 7 is provided with a mounting hole; the optical fiber ferrule 5 is fixed in the connecting sleeve 8 , and the outer side of one end of the connecting sleeve 8 is connected The sleeve is fixed in the mounting hole.
  • the sleeve adjusting member 7 Since the sleeve adjusting member 7 is fixed to one end of the circular tubular body 6 by welding, the metal is welded after the welding, and the direction of the main plane of the optical fiber ferrule 5 and the optical sub-module is inclined, so that the light is emitted. The power is reduced; in order to solve the problem that the light power is reduced due to the fixed welding, after the sleeve adjusting member 7 is fixedly welded to the round square body 6, the sleeve is placed at the socket position of the mounting hole and the connecting sleeve 8.
  • Adjusting the welding if the fiber ferrule 5 is biased to the left side due to the welding phenomenon, spot welding is performed on the right side of the socket position; the principle is that the fixed welding is used as a fulcrum, and the fiber ferrule 5 is made under the action of adjusting the welding thrust The direction of the main plane of the optical sub-module is adjusted, so that the optical path is restored to the state before the welding is not welded, so that the output power is maximized.
  • FIG. 8 and FIG. 9 are schematic structural diagrams of other angles of an optical module according to an embodiment of the present disclosure.
  • the first optical sub-module 60 and the second optical sub-module 70 are juxtaposed, and the optical transmitter pins 601 and 601 of the first optical sub-module 60 are disposed.
  • the light emitter pins 701 of the two optical sub-modules 70 extend in the same direction and extend in the direction of the circuit board.
  • the pins are connected to the circuit board 50 through the flexible circuit board 80.
  • the height of the optical sub-module is reduced, so that the height of each optical sub-module can meet the height requirement of the optical module housing, so both optical sub-modules can be placed vertically in the optical module housing.
  • FIG. 10 is a schematic diagram of an exploded structure of another angle of an optical module according to an embodiment of the present disclosure. As shown in FIG. 10, the top surface 102 of the optical module housing is disposed opposite to the bottom surface 101, and the side surface 103 of the housing is in contact with the bottom surface 101 and disposed substantially perpendicular to each other.
  • the light receiver pins 602 of the first optical sub-module 60 extend in the same direction as the light receiver pins 702 of the second optical sub-module 70, and both extend toward the bottom surface 101 of the optical module housing.
  • the fiber ferrule 603 of the first optical sub-module 60 extends in the same direction as the fiber ferrule 703 of the second optical sub-module 70, and both extend toward the optical module optical port 30.
  • FIG. 11 is a schematic structural diagram of an optical module housing according to an embodiment of the present disclosure. As shown in Figure 11, the bottom surface 101 of the housing has an opening 90 from which the seal 40 seals the opening 90.
  • the present disclosure increases the assembly of an optical sub-module without changing the volume and external structure of the optical module, thereby improving the port density of the system, achieving high integration and good versatility, and good manufacturability. And it can flexibly control the power consumption of the system and reduce the network operation cost.

Abstract

一种光学次模块及光模块,光学次模块包括:光发射器(1)、光接收器(2)、分光片(4)及光纤插芯(5),光发射器(1)发出的光透过分光片(4)射入光纤插芯(5);来自光纤插芯(5)的光经分光片(4)反射后进入光接收器(2),光接收器(2)的入光轴与光纤插芯(5)的入光轴成锐角,光发射器(1)的出光轴与光纤插芯(5)的入光轴成锐角。

Description

光学次模块及光模块
相关申请的交叉引用
本专利申请要求于2018年3月19日提交的、申请号为201810227365.6、发明名称为“一种收发一体光学次模块及其光模块”的中国专利申请以及于2018年3月19日提交的、申请号为201810225787.X、发明名称为“一种光模块”的中国专利申请的优先权,该申请的全文以引用的方式并入本文中。
技术领域
本申请涉及光纤通信技术领域,具体涉及一种光学次模块及具有光学次模块的光模块。
背景技术
基于千兆无源光网络(Gigabit-Capable Passive Optical Network,GPON)的无源光接入系统已经在市面上广泛部署,光线路终端(Optical Line Terminal,OLT)设备是无源光接入系统中重要的局端设备。
发明内容
有鉴于此,本申请的第一方面公开了一种光学次模块,包括光发射器、光接收器、分光片及光纤插芯,所述光发射器发出的光透过所述分光片射入所述光纤插芯;来自所述光纤插芯的光经所述分光器反射后进入所述光接收器,所述光接收器的入光轴与所述光纤插芯的入光轴成锐角,所述光发射器的出光轴与所述光纤插芯的入光轴成锐角。
本申请的第二方面公开了一种光模块,包括壳体、电路板、第一方面所述的光学次模块,所述光学次模块与所述电路板电连接;所述光学次模块的光发射器端管脚朝向所述电路板;所述光学次模块的光接收器端管脚朝向所述壳体的底面。
附图说明
为了易于说明,本公开实施方式将参考下述的实施例及附图作详细描述。
图1为一种光模块结构示意图;
图2为本公开一个或多个实施例提供的光模块外部结构示意图;
图3为本公开一个或多个实施例提供的光模块爆炸结构示意图;
图4为本公开一个或多个实施例中光学次模块的结构原理示意图;
图5为本公开一个或多个实施例中光学次模块内的部件位置关系示意图;
图6为本公开一个或多个实施例中光学次模块的外部结构示意图;
图7为本公开一个或多个实施例提供的光学次模块的局部结构剖视图;
图8为本公开一个或多个实施例提供的光模块另一角度结构示意图;
图9为本公开一个或多个实施例提供的具有光学次模块的光模块的装配关系示意图;
图10为本公开一个或多个实施例提供的光模块另一角度的爆炸结构示意图;
图11为本公开一个或多个实施例提供的光模块壳体结构示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒 介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
光线路终端设备可以与前端交换机用网线相连,将前端交换机的电信号转化成光信号,用单根光纤与用户端的分光器互联;且光线路终端设备上搭载有可热插拔的光模块。
本公开中所述的光学次模块为具有单个数据发射通道和单个数据接收通道的光学次模块;且该光学次模块是光通信系统中将电信号转换成光信号或将光信号转换成电信号的关键器件。
图1为一种光模块结构示意图。如图1所示,光模块中光学次模块的光发射器管脚01朝向电路板,光接收器管脚02朝向壳体的侧壁,光接收器管脚02与壳体的底面03呈基本平行的位置关系。
光模块的外壳在行业标准/协议的要求下,呈略不规则的长方体形,其高度较宽度小。在光模块壳体中内置光学次模块时,将光学次模块如图1方式放置,主要原因在于光模块的高度方向,即光模块顶面与底面之间的距离,无法容纳光学次模块,这样设置光模块内部没有足够的空间放置两个光学次模块。
图2为本公开实施例提供的光模块外部结构示意图。如图2所示,本公开实施例提供的光模块包括光口30、电口20及壳体10,在壳体10的外部贴附有密封件40。光口30是光模块与外部实现光连接的通道,多用于插入光纤;电口20是光模块与外部实现电连接的通道,多通过金手指与外部设备进行电连接;壳体10用于包裹光模块内部的光学次模块、电路板等器件。本公开实施例中,为了满足光学次模块的空间要求,壳体的底面设置开口,以增加壳体高度方向上的空间,通过壳体外部的密封件40实现对开口的封堵。
图3为本公开实施例提供的光模块爆炸结构示意图。如图3所示,光模块内部包括电路板50、第一光学次模块60及第二光学次模块70。第一光学次模块60与第二光学次模块70分别通过柔性电路板80与电路板50实现电连接。
本公开实施例中,壳体内部设置了两个光学次模块。光学次模块包括光发射器、光接收器、分光片以及光纤插芯。一个光学次模块即可实现光的发射及接收功能,两个光学次模块可以使用同轴封装的激光器/光探测器实现双发双收。在COB(chips on board,板上芯片封装)或微光学等非同轴封装场景下,较容易实现多路发射及接收,而同轴封装占用的空间较大,所以难以在光模块中放入两个光学次模块。
本公开实施例提供的方案,实现了在光模块中放入两个光学次模块的设计。
具体地,本公开实施例一方面提供一种光模块,包括壳体、第一光学次模块、第二光学次模块及电路板,第一光学次模块与第二光学次模块分别与电路板电连接;
第一光学次模块的光发射器管脚及第二光学次模块的光发射器管脚均朝向电路板;
第一光学次模块的光接收器管脚及第二光学次模块的光接收器管脚均朝向壳体的同一底面。
本公开实施例另一方面提供一种光模块,包括壳体、第一光学次模块及电路板,第一光学次模块与电路板电连接;
第一光学次模块的光发射器管脚朝向电路板;
第一光学次模块的光接收器管脚朝向壳体的底面。
本公开实施例提供的光模块,光学次模块的光发射器管脚朝向电路板;光学次模块的光接收器管脚朝向壳体的底面,有效利用了光模块壳体内部空间。
进一步地,本公开实施例中光模块内置的光学次模块经过了结构优化,其体积明显缩小,进而使得光模块便于按照本公开实施例提供的技术方案放置光学次模块。
具体地,本公开实施例的一种光学次模块采用如下技术方案,请参阅图4,其包括:光发射器1、光接收器2、分光片4和光纤插芯5,光接收器2设置在分光片4的侧方,光纤插芯5的光接收面朝向分光片4;光纤插芯5为单模光纤插芯,用于接入光纤;其中,光发射器1、分光片4和光纤插芯5设置于同一平面上,该平面为光学次模块的主平面。具体地,该光发射器1和光接收器2为镭射二极体模组(TO-CAN,Transistor Outline-can),在本实施例中,光发射器1为数据发射通道,光接收器2为数据接收通道;该分光片4实现对光发射器发出的第一波长光的透射和对来自光纤的第二波长光的反射。
光发射器1所发出的光从其出光面射出,光的传播方向沿着光发射器的出光轴,并在穿过分光片4后进入光纤插芯5所接入的光纤里;来自光纤插芯中的光经过分光片4的反射后,入射到光接收器2的受光面中,光接收器接收的光沿着光接收器的入光轴传播。光接收器2的入光轴与光纤插芯5的入光轴成锐角,光发射器1的出光轴与光纤插芯5的入光轴成锐角。
在本实施中,光学次模块还设有光隔离器3,光隔离器3设置于光发射器1与分光 片4之间,光发射器1发出的光透过光隔离器3入射至分光片4中。该光隔离器3是一种只允许单向光通过的无源光器件,其工作原理是基于法拉第旋转的非互易性;其用于阻止从光纤插芯5射出或反射的光进入到光发射器1中,以保证光发射器1的调制性能良好。
本公开的光路传输过程主要包括两部分:
在第一部分中,光发射器1发出第一波长的光,该第一波长的光通过分光片4,并在分光片4中进行透射后,射入至该光纤插芯5中,在第一部分的传输过程中整个通路损耗在10%以内;
在第二部分中,来自光纤插芯5中的第二波长的光,从该光纤插芯5射出,第二波长的光在分光片4中发生反射后,入射至光接收器2中,在第二部分的传输过程中整个通路损耗在3%以内。
故在本公开的传输过程中,传输损耗较低,有利于保证传输效率。
在本实施中,光发射器1设有对射出的光线具有汇聚作用的非球面透镜,以利于得到明确的出光轴。
在本实施中,光接收器2设有透镜,透镜的焦距即光接收器的焦距,所述光学次模块的光接收器至所述分光片的距离与所述分光片至所述光纤插芯的距离之和等于所述光学次模块的光接收器的焦距。
为了能更好地理解本公开,下面对其结构原理进行描述,请参看图5,其具体为:
光学次模块的光接收器的入光轴与光纤插芯的入光轴成锐角α。
光接收器的入光轴向光纤插芯的入光轴方向倾斜,可以减小光接收器的突出高度,降低光学次模块的体积。在本实施例中,当分光片与光发射器的出光轴之间的夹角成45°时,能达到最好的分光效果。为了维持分光效果,光发射器的出光轴与分光片间的角度固定为45°。在一些实施例中,分光片4为分光镜。
如图5中虚线部分所示,若光接收器2到分光片4的距离为Β,其与分光片4到光纤插芯5的距离A之和等于光接收器2上的透镜焦距F。分光片4与光纤插芯5的入光轴成45°时,光接收器2的入光轴与光纤插芯5成90°,光学次模块高度为H,其等于Β加上光接收器2的高度。
如图5中实线部分所示,当分光片4与光纤插芯5的入光轴角度减小θ/2时,光接 收器2的入光轴与光纤插芯的入光轴角度减小θ,由于透镜焦距F不变,故光学次模块高度H中与Β相关的尺寸减小为Β×cosθ,即焦距不变的情况下光学次模块封装高度减小了Β×(1-cosθ)。
保持焦距不变,可以保持光进入光纤插芯中的耦合效率。
通过改变分光片与光纤插芯入光轴之间的夹角,可以降低光接收器的高度,利于光学次模块体积的减小,此时光接收器的入光轴与光纤插芯的入光轴之间的角度也发生了改变,呈锐角α。
在本公开中,光接收器的入光轴与光纤插芯入光轴之间的角度α大于78°且小于90°,光发射器的出光轴与光纤插芯入光轴之间夹角β大于0°且小于6°。
图5中虚线表示改变前,实线表示改变后,改变前,光发射器的出光轴与光纤插芯的入光轴呈0度设置。
分光片与光纤插芯5的入光轴之间的角度改变了θ/2,为了维持分光效果,光发射器1的出光轴与光纤插芯入光轴之间的角度β随之改变θ/2,但是这种角度变化会影响光耦合进光纤插芯的效率,为了维持耦合效率,光发射器1的出光轴与光纤插芯5的入光轴之间的夹角θ/2在3.5°至4°之间。故而,在本实施中光发射器1的出光轴与光纤插芯5的入光轴之间的夹角β在3.5°至4°之间。
上述结构中,光发射器1向光接收器2一侧倾斜;由于光发射器1和光接收器2设置或倾向于同一侧上,其将进一步地减少了光学次模块的整体体积。
本公开实施例中,锐角是为了改进方案而刻意进行的改变,并非工艺误差等非主观因素导致的锐角。工艺误差等非主观因素导致的锐角并非本公开实施例的保护范围,亦与本公开实施例具有明显区别。
请参看图6与图7,在本实施中,光学次模块还包括:圆方管体6,该光发射器1、分光片4、光隔离器3和光接收器2均安装于圆方管体6中,圆方管体6的一端上焊接有套筒调整件7,套筒调整件7上设有安装孔;光纤插芯5固定于连接套筒8中,连接套筒8一端的外侧面固定套接于安装孔中。由于套筒调整件7通过焊接的方式固定于圆方管体6的一端上,而在经过焊接后金属存在焊变现象,导致光纤插芯5与光学次模块主平面的方向出现倾斜,使得出光功率变小;为了解决固定焊焊变导致出光功率变小的问题,在将套筒调整件7固定焊接到圆方管体6后,再在安装孔与连接套筒8的套接位置上进行调整焊,若因为焊变现象使光纤插芯5偏向左侧,则在该套接位置的右侧进行 点焊;其原理为将固定焊作为支点,在调整焊推力作用下使得光纤插芯5与光学次模块主平面的方向发生调整,使得光路恢复固定焊无焊变前的状态,使出光功率达到最大。
图8和图9为本公开实施例提供的光模块其他角度的结构示意图。如图8和图9所示,本公开实施例提供的光模块中,第一光学次模块60及第二光学次模块70并列设置,第一光学次模块60的光发射器管脚601与第二光学次模块70的光发射器管脚701同方向延伸,均向电路板方向延伸。管脚通过柔性电路板80与电路板50连接。光学次模块的高度得到了降低,使得每个光学次模块的高度均能满足光模块壳体的高度要求,故两个光学次模块均可以竖直放置于光模块壳体中。
图10为本公开实施例提供的光模块另一角度的爆炸结构示意图。如图10所示,光模块壳体的顶面102与底面101相对设置,壳体的侧面103与底面101相接且基本相互垂直设置。
第一光学次模块60的光接收器管脚602与第二光学次模块70的光接收器管脚702同方向延伸,均向光模块壳体底面101方向延伸。
第一光学次模块60的光纤插芯603与第二光学次模块70的光纤插芯703同方向延伸,均向光模块光口30方向延伸。
图11为本公开实施例提供的光模块壳体结构示意图。如图11所示,壳体的底面101具有开口90,密封件40从壳体的外侧封堵开口90。
本公开在不改变光模块的体积及外部结构的情况下,增加装配一个光学次模块,提高了系统的端口密度,其实现了较高的集成度和较好的通用性,可制造性良好,并且可以灵活控制系统的功耗,降低了网络运营成本。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
以上仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。

Claims (14)

  1. 一种光学次模块,包括:
    光发射器、光接收器、分光片及光纤插芯,
    所述光发射器发出的光透过所述分光片射入所述光纤插芯;来自所述光纤插芯的光经所述分光器反射后进入所述光接收器,所述光接收器的入光轴与所述光纤插芯的入光轴成锐角,所述光发射器的出光轴与所述光纤插芯的入光轴成锐角。
  2. 根据权利要求1所述的光学次模块,所述光接收器至所述分光片的距离与所述分光片至所述光纤插芯的距离之和等于所述光接收器的焦距。
  3. 根据权利要求1所述的光学次模块,所述光发射器与分光片之间设有光隔离器,所述光发射器发出的光透过所述光隔离器入射至所述分光片中。
  4. 根据权利要求1所述的光学次模块,所述光发射器向所述光接收器一侧倾斜。
  5. 根据权利要求1所述的光学次模块,所述分光片为分光镜,所述分光镜的镜面与所述光发射器的出光轴形成45°的夹角。
  6. 根据权利要求1所述的光学次模块,所述光发射器的出光轴与所述光纤插芯的入光轴之间夹角大于0°且小于6°,所述光接收器的入光轴与所述光纤插芯的入光轴之间的夹角大于78°且小于90°。
  7. 根据权利要求6所述的光学次模块,所述光发射器的出光轴与所述光纤插芯的入光轴之间的夹角在3.5°至4°之间。
  8. 根据权利要求1所述的光学次模块,所述光发射器的出光面上设有非球面透镜。
  9. 根据权利要求3所述的光学次模块,还包括:管体,
    所述光发射器、分光片、光隔离器和光接收器均安装于所述管体中,所述管体的一端上焊接有套筒调整件,所述套筒调整件上设有安装孔;所述光纤插芯固定于连接套筒中,所述连接套筒一端的外侧面固定套接于所述安装孔中。
  10. 根据权利要求9所述的光学次模块,所述安装孔与所述连接套筒的套接位置设置有调整焊。
  11. 一种光模块,包括壳体、电路板、如权利要求1至10中任一项所述的光学次模块,所述光学次模块与所述电路板电连接;
    所述光学次模块的光发射器管脚朝向所述电路板;
    所述光学次模块的光接收器管脚朝向所述壳体的底面。
  12. 如权利要求11所述的光模块,还包括密封件,所述底面具有开口,所述密封件从所述壳体外部封堵所述开口。
  13. 如权利要求11所述的光模块,还包括与所述光学次模块排布方式相同的第二光学次模块,
    所述第二光学次模块与所述电路板电连接,所述第二光学次模块的光发射器管脚朝向所述电路板;所述第二光学次模块的光接收器管脚朝向所述壳体的底面。
  14. 如权利要求13所述的光模块,还包括密封件,所述底面具有开口,所述密封件从所述壳体外部封堵所述开口。
PCT/CN2019/078714 2018-03-19 2019-03-19 光学次模块及光模块 WO2019179435A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/393,068 US10761278B2 (en) 2018-03-19 2019-04-24 Optical subassembly and optical module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810227365.6A CN108427161A (zh) 2018-03-19 2018-03-19 一种收发一体光器件及其光模块
CN201810225787.XA CN108646356A (zh) 2018-03-19 2018-03-19 一种光模块
CN201810227365.6 2018-03-19
CN201810225787.X 2018-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/393,068 Continuation US10761278B2 (en) 2018-03-19 2019-04-24 Optical subassembly and optical module

Publications (1)

Publication Number Publication Date
WO2019179435A1 true WO2019179435A1 (zh) 2019-09-26

Family

ID=67988151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078714 WO2019179435A1 (zh) 2018-03-19 2019-03-19 光学次模块及光模块

Country Status (1)

Country Link
WO (1) WO2019179435A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0542011A1 (de) * 1991-11-09 1993-05-19 ANT Nachrichtentechnik GmbH Optische Sende- und Empfangsanordnung
CN202019358U (zh) * 2011-03-01 2011-10-26 成都新易盛通信技术有限公司 一种双通道紧凑小型可插拔光模块
CN102279445A (zh) * 2010-06-13 2011-12-14 深圳新飞通光电子技术有限公司 一种单纤双向双端口光收发一体组件
CN202330786U (zh) * 2011-11-02 2012-07-11 华为技术有限公司 光收发组件
JP2012189948A (ja) * 2011-03-14 2012-10-04 Mitsubishi Electric Corp 光送受信モジュール
CN205176333U (zh) * 2015-11-11 2016-04-20 承茂科技有限公司 六信道光信号传输模块
CN106054329A (zh) * 2016-07-19 2016-10-26 深圳市新波光子技术有限公司 一种光收发器
CN108427161A (zh) * 2018-03-19 2018-08-21 青岛海信宽带多媒体技术有限公司 一种收发一体光器件及其光模块
CN108646356A (zh) * 2018-03-19 2018-10-12 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0542011A1 (de) * 1991-11-09 1993-05-19 ANT Nachrichtentechnik GmbH Optische Sende- und Empfangsanordnung
CN102279445A (zh) * 2010-06-13 2011-12-14 深圳新飞通光电子技术有限公司 一种单纤双向双端口光收发一体组件
CN202019358U (zh) * 2011-03-01 2011-10-26 成都新易盛通信技术有限公司 一种双通道紧凑小型可插拔光模块
JP2012189948A (ja) * 2011-03-14 2012-10-04 Mitsubishi Electric Corp 光送受信モジュール
CN202330786U (zh) * 2011-11-02 2012-07-11 华为技术有限公司 光收发组件
CN205176333U (zh) * 2015-11-11 2016-04-20 承茂科技有限公司 六信道光信号传输模块
CN106054329A (zh) * 2016-07-19 2016-10-26 深圳市新波光子技术有限公司 一种光收发器
CN108427161A (zh) * 2018-03-19 2018-08-21 青岛海信宽带多媒体技术有限公司 一种收发一体光器件及其光模块
CN108646356A (zh) * 2018-03-19 2018-10-12 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
US8622632B2 (en) Small-form-factor fiber optic interface assemblies for electronic devices having a circuit board
US5146516A (en) Optoelectrical sending and receiving apparatus
US9891385B2 (en) Integrated lens with multiple optical structures and vent hole
CN111239923A (zh) 一种光模块
WO2020187149A1 (zh) 光模块
CN108646356A (zh) 一种光模块
US10761278B2 (en) Optical subassembly and optical module
CN111458815A (zh) 一种光模块
JP2010122311A (ja) レンズブロック及びそれを用いた光モジュール
US20180341073A1 (en) Single-Fiber Bidirectional Sub Assembly
US11841539B2 (en) Optical module
CN111458817A (zh) 一种光模块
CN115097579A (zh) 光模块
WO2022057621A1 (zh) 一种光模块
CN114594555A (zh) 一种光模块
WO2019179435A1 (zh) 光学次模块及光模块
CN216772050U (zh) 一种光模块
CN110244414A (zh) 一种光模块
CN217606135U (zh) 光模块
CN214795316U (zh) 一种光模块
WO2021109776A1 (zh) 一种光模块
US8899846B2 (en) Receptacle diplexer
CN113484960A (zh) 一种光模块
CN112904493A (zh) 一种光模块
CN111948767A (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771003

Country of ref document: EP

Kind code of ref document: A1