WO2019178896A1 - 一种led光通信电源驱动系统 - Google Patents

一种led光通信电源驱动系统 Download PDF

Info

Publication number
WO2019178896A1
WO2019178896A1 PCT/CN2018/082144 CN2018082144W WO2019178896A1 WO 2019178896 A1 WO2019178896 A1 WO 2019178896A1 CN 2018082144 W CN2018082144 W CN 2018082144W WO 2019178896 A1 WO2019178896 A1 WO 2019178896A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
led
optical communication
power supply
current
Prior art date
Application number
PCT/CN2018/082144
Other languages
English (en)
French (fr)
Inventor
刘子昂
Original Assignee
深圳市博为光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市博为光电股份有限公司 filed Critical 深圳市博为光电股份有限公司
Publication of WO2019178896A1 publication Critical patent/WO2019178896A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/502LED transmitters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]

Definitions

  • LED lighting based on light emitting diodes has been widely used. Compared with traditional lighting, LED lighting has high controllability, such as dimming LED light sources or lamps through PWM modulation signals. Similar to PWM dimming, optical communication communicates by modulating the brightness and darkness of LEDs, and can be applied to communication occasions where radio waves are inconvenient.
  • the modulation frequency of optical communication for LED light and dark usually reaches 20KHz or above.
  • the switching frequency of LED switching power supply should be more than 10 times of the modulation frequency to ensure the control stability of LED switching power supply, which means LED power supply.
  • the switching frequency should be above 200KHz. Such a high frequency will increase the line and switching losses, high requirements on power devices and control loops, high cost and low reliability.
  • the technical problem to be solved by the present invention is that the LED optical communication power supply driving system can adopt the conventional LED switching power supply technology, so that the switching frequency of the LED power supply is within 100 KHz, and the communication modulation frequency can be above 20 KHz.
  • an aspect of an embodiment of the present invention provides an LED optical communication power supply driving system including a power conversion circuit, a first LED driving circuit, a second LED driving circuit, and an optical communication current controller, wherein:
  • the power conversion circuit is configured to receive an input voltage and convert it into a rated DC voltage V+, V-, which is an AC-DC or DC-DC circuit;
  • the first LED driving circuit is connected to the power conversion circuit, and outputs a first auxiliary power VCC1 and a first driving voltage LED1;
  • a second LED driving circuit connected to the power conversion circuit, outputting a second auxiliary power VCC2, a second driving voltage LED2;
  • the optical communication current controller further includes: a current modulation circuit, a voltage sampling circuit, a current sampling circuit, a control circuit, an output setting circuit, a first auxiliary power supply circuit, a second auxiliary power supply circuit, and an optical communication modulation signal circuit, wherein
  • a first auxiliary power supply circuit receives the first auxiliary power supply VCC1 outputted by the first LED driving circuit, and supplies power to the control circuit and the output setting circuit;
  • a second auxiliary power supply circuit receives the second auxiliary power supply VCC2 outputted by the second LED driving circuit, and supplies power to the optical communication modulation signal circuit;
  • the voltage sampling circuit is disposed between the two output ends of the current modulation circuit, the current sampling circuit is disposed on one of the output ends of the current modulation circuit, and the voltage sampling circuit and the current sampling circuit are both connected to the control circuit;
  • a control circuit receiving output setting circuit control, outputting a first control signal VC1 to the first LED driving circuit to control a size of the first driving voltage LED1 output by the first LED driving circuit; and outputting a second control to the second LED driving circuit a signal VC2 to control a size of the second driving voltage LED2 output by the second LED driving circuit;
  • the current modulation circuit controls the interval and frequency at which the first driving voltage LED1 and the second driving voltage LED2 are output to the load according to the optical communication modulation signal M received from the optical communication modulation signal circuit, and controls the optical communication power supply modulation.
  • the power conversion circuit is an AC-DC or DC-DC circuit, which is a bridge rectifier circuit or a power factor correction circuit.
  • the first auxiliary power supply circuit is connected to the first LED driving circuit to receive its first auxiliary power source VCC1; or is connected to the power conversion circuit to receive its rated DC voltage V+, V-;
  • the second auxiliary power supply circuit is connected to the second LED driving circuit to receive its second auxiliary power source VCC2; or is connected to the power conversion circuit to receive its rated DC voltages V+, V-.
  • the first LED driving circuit and the second LED driving circuit are one of a flyback circuit, a boosting circuit, a step-down circuit, a buck-boost circuit, and an LLC conversion circuit, and the first LED driving circuit and The output of the second LED driving circuit is a constant voltage source or a constant current source.
  • the first control signal VC1 and the second control signal VC2 output by the control circuit are both a duty cycle variable PWM signal or a variable DC voltage signal.
  • the output setting circuit is one of a resistor divider network, a dialing circuit, a wired programmable input circuit, a near field wireless transmission circuit, and a radio frequency wireless transmission circuit.
  • the current modulation circuit comprises:
  • the switch is connected to the first LED driving circuit to receive the first driving voltage LED1; the control end is connected to the optical communication modulation signal circuit, and receives the optical communication modulation signal M;
  • a diode having a negative terminal connected to the second end of the switch, and leading to the first output terminal LED+ of the current modulation circuit; a positive electrode connected to the second LED drive circuit, receiving a second drive voltage LED2;
  • the current sampling resistor has one end grounded and the other end leads to the second output terminal LED- of the current modulation circuit.
  • the switch adopts one of a MOS tube, a triode, a thyristor, and a relay.
  • the current modulation circuit comprises:
  • a second switch the first end of which is connected to the first LED driving circuit, receives the first driving voltage LED1; the control end is connected to the optical communication modulation signal circuit, and receives the optical communication modulation signal M;
  • a third switch the second end of which is connected to the second end of the switch, and leads to the first output terminal LED+ of the current modulation circuit; the first end of the switch is connected to the second LED drive circuit, and receives the second drive voltage LED2, whose control end is connected to the optical communication modulation signal circuit, receives the optical communication modulation signal M, and the second switching switch and the third switching switch are a pair of complementary switches;
  • the current sampling resistor has one end grounded and the other end leads to the second output terminal LED- of the current modulation circuit.
  • the current modulation circuit comprises:
  • a first diode having a positive electrode connected to the first LED driving circuit and receiving a first driving voltage LED1; a negative electrode thereof leading out a first output terminal LED+ of the current modulating circuit;
  • a second diode having a cathode connected to the cathode of the first diode; a cathode connected to the second LED driving circuit and receiving a cathode of the second driving voltage LED2;
  • the fourth switching switch has a first end connected to the ground, a second end connected to the second LED driving circuit, and a second driving voltage LED2 negative terminal; the control end is connected to the optical communication modulation signal circuit, and receives the optical communication modulation signal M;
  • the current sampling resistor has one end connected to the second end of the fourth switching switch, and the other end leads to the second output terminal LED- of the current modulation circuit.
  • the embodiment of the invention provides an LED optical communication power supply driving system, wherein the current modulation circuit is independent of the first LED driving circuit and the second LED driving circuit, so that the optical communication modulation signal M is added to the current modulation circuit without affecting the first
  • the power switching frequency of the LED optical communication power source can be controlled within 100 KHz, and the optical communication modulation frequency can reach above 20 KHz, and the switching power supply adopts a conventional LED drive power technology reduces the cost of the power supply and improves reliability.
  • FIG. 1 is a schematic structural diagram of an embodiment of an LED optical communication power supply driving system provided by the present invention
  • FIG. 2 is a schematic structural view of an embodiment of the current modulation circuit of FIG. 1;
  • Figure 3 is a waveform diagram of the modulated LED current of Figure 1;
  • FIG. 4 is a schematic structural view of an embodiment of the power conversion circuit of FIG. 1;
  • FIG. 5 is a schematic structural view of an embodiment of the first LED driving circuit of FIG. 1;
  • FIG. 6 is a schematic structural view of an embodiment of a second LED driving circuit of FIG. 1;
  • Figure 7 is a schematic structural view of an embodiment of the current modulating circuit of Figure 1, which is a refinement of Figure 2;
  • FIG. 8 is a schematic structural diagram of an embodiment of a first auxiliary power supply circuit, a current sampling circuit, a voltage sampling circuit, a control circuit, and an output setting circuit of FIG. 1;
  • FIG. 9 is a schematic structural view of an embodiment of a second auxiliary power supply circuit of FIG. 1;
  • FIG. 10 is a schematic structural diagram of an embodiment of an optical communication modulation signal circuit of FIG. 1;
  • FIG. 11 is a schematic structural view of another embodiment of the current modulation circuit of FIG. 1;
  • Figure 12 is a block diagram showing still another embodiment of the current modulating circuit of Figure 1.
  • FIG. 1 a schematic structural diagram of an embodiment of an LED optical communication power supply driving system provided by the present invention is shown. As shown in Fig. 2 and Fig. 3 together, in this embodiment.
  • the LED optical communication power supply driving system includes a power conversion circuit 1, a first LED driving circuit 2, a second LED driving circuit 4, and an optical communication current controller 3, wherein:
  • the power conversion circuit 1 is configured to receive an input voltage and convert it into a rated DC voltage V+, V-, which is an AC-DC or DC-DC circuit;
  • the first LED driving circuit 2 is connected to the power conversion circuit, and outputs a first auxiliary power VCC1 and a first driving voltage LED1;
  • the second LED driving circuit 4 is connected to the power conversion circuit, and outputs a second auxiliary power VCC2 and a second driving voltage LED2;
  • the optical communication current controller 3 further includes: a current modulation circuit 301, a voltage sampling circuit 302, a current sampling circuit 303, a control circuit 304, an output setting circuit 305, a first auxiliary power supply circuit 306, a second auxiliary power supply circuit 307, and optical communication.
  • Modulation signal circuit 308 wherein
  • the first auxiliary power supply circuit 306 receives the first auxiliary power VCC1 outputted by the first LED driving circuit 2, and supplies power to the control circuit 304 and the output setting circuit 305;
  • the second auxiliary power supply circuit 307 receives the second auxiliary power VCC2 outputted by the second LED driving circuit 4, and supplies power to the optical communication modulation signal circuit 308;
  • the voltage sampling circuit 302 is disposed between two output ends of the current modulation circuit 301.
  • the current sampling circuit 303 is disposed on one of the output terminals of the current modulation circuit 301, and the voltage sampling circuit 302 and the current sampling circuit 303 are both controlled. Circuit 304 is connected;
  • the control circuit 304 controls the receiving output setting circuit 305 to output a first control signal VC1 to the first LED driving circuit 2 to control the size of the first driving voltage LED1 output by the first LED driving circuit 2; and to the second LED driving circuit 4 outputting a second control signal VC2 to control the size of the second driving voltage LED2 output by the second LED driving circuit 4;
  • the current modulation circuit 301 controls the interval and frequency at which the first driving voltage LED1 and the second driving voltage LED2 are output to the load based on the optical communication modulation signal M received from the optical communication modulation signal circuit 308, and controls the optical communication power supply modulation.
  • the power conversion circuit 1 is an AC-DC or DC-DC circuit, which is a bridge rectifier circuit or a power factor correction circuit.
  • the first auxiliary power supply circuit 306 is connected to the first LED driving circuit 2, receives its first auxiliary power supply VCC1; or is connected to the power conversion circuit 1, receiving its rated DC voltage V+, V-;
  • the second auxiliary power supply circuit 307 is connected to the second LED driving circuit 4 to receive its second auxiliary power source VCC2; or is connected to the power conversion circuit 1 to receive its rated DC voltages V+, V-.
  • the first LED driving circuit 2 and the second LED driving circuit 4 are one of a flyback circuit, a boosting circuit, a step-down circuit, a buck-boost circuit, and an LLC conversion circuit, and the first LED driving circuit
  • the output of the 2 and second LED driving circuits 4 is a constant voltage source or a constant current source.
  • the first control signal VC1 and the second control signal VC2 output by the control circuit 304 are both PWM signals with variable duty ratio or variable DC voltage signals.
  • the output setting circuit 305 is one of a resistor divider network, a dialing circuit, a wired programmable input circuit, a near field wireless transmission circuit, and a radio frequency wireless transmission circuit.
  • the current modulation circuit 301 includes:
  • the switch 3011 receives the first driving voltage LED1; the control end is connected to the optical communication modulation signal circuit 308, receiving the optical communication modulation signal M;
  • a diode 3012 the negative end of which is connected to the second end of the switch 3011, and leads to the first output terminal LED+ of the current modulation circuit 301; the positive terminal of the second LED drive circuit 4 is connected to receive the second drive voltage LED2;
  • the current sampling resistor 3013 has one end grounded and the other end leads out the second output terminal LED- of the current modulation circuit 301.
  • the switch 3011 adopts one of a MOS transistor, a triode, a thyristor, and a relay.
  • the control circuit 304 outputs a first control signal VC1 to control the output current Ip of the first LED driving circuit 2, and the control circuit 304 outputs a second control signal VC2 to control the output current Iv of the second LED driving circuit 4, and Ip is always better than Iv. Big.
  • the optical communication modulation signal circuit 308 outputs M to the switching switch 3011 to control the output LED1 of the first LED driving circuit 2 to turn on or off the LED load. When the switching switch 3011 is turned on, the first LED driving circuit 2 outputs the current Ip due to Ip is always larger than Iv, so the potential of LED1 is higher than that of LED2, and diode 3012 is turned off.
  • the output LED1 of the first LED driving circuit 2 supplies power to the LED load through the switching switch 3011, and the current value is Ip.
  • the output LED 2 of the second LED drive circuit 4 supplies power to the LED load through the diode 3012, and the current value is Iv.
  • the modulated output current waveform is similar to that shown in Figure 3.
  • the current modulation circuit 301 is independent of the first LED driving circuit 2 and the second LED driving circuit 4, the addition of the optical communication modulation signal M to the current modulation circuit 301 does not affect the first LED driving circuit 2 and the second LED driving circuit 4.
  • the working state can thus adopt the conventional LED switching power supply technology within 100KHZ.
  • FIG. 4 a schematic structural view of an embodiment of the power conversion circuit 1 of FIG. 1 is shown. It can be seen that in the case where the input voltage is AC-100-277 VAC, the power conversion circuit 1 adopts a power factor correction circuit, which is designed by using L6562 or a similar chip, and can convert the input AC 100-277 VAC to 400 VDC V+. /V-.
  • a power factor correction circuit which is designed by using L6562 or a similar chip, and can convert the input AC 100-277 VAC to 400 VDC V+. /V-.
  • FIG. 5 a schematic structural view of one embodiment of the first LED driving circuit 2 of FIG. 1 is shown.
  • the first LED driving circuit 2 adopts a flyback circuit controlled by a primary side, and the circuit is designed by using a SY5882 or the like, and converts V+/V- of 400VDC into LED1/GND.
  • the first LED driving circuit 2 outputs VCC1/GND to the first auxiliary power supply circuit 306, and receives the first control signal VC1 output from the control circuit 304 to adjust the output LED1/GND.
  • FIG. 6 a schematic structural view of one embodiment of the second LED driving circuit 4 of FIG. 1 is shown.
  • the second LED driving circuit 4 uses a primary side controlled flyback circuit designed using SY5882 or a similar chip to convert 400 VDC V+/V- into LED 2/GND.
  • the second LED driving circuit 4 outputs VCC2/LED+ to the second auxiliary power supply circuit 307, and receives the second control signal VC2 outputted by the control circuit 304 to adjust the output LED2/GND.
  • FIG. 7 a schematic structural view of one embodiment of the current modulating circuit 301 of FIG. 1 is shown, which is a further refinement of FIG.
  • the switch 3011 is a MOS transistor 301-Q1
  • the diode 3012 is a Schottky diode 301-D1
  • the current sampling resistor 3013 is a high-power plug-in resistor 301-R2.
  • the control circuit 304 outputs a first control signal VC1 to control the output current Ip of the first LED driving circuit 2, and the control circuit 304 outputs a second control signal VC2 to control the output current Iv of the second LED driving circuit 4, and design Ip to always Bigger than Iv.
  • the optical communication modulation signal circuit 308 outputs M to the MOS transistor 301-Q1 to control the output LED1 of the first LED driving circuit 2 to turn on or off the LED load.
  • the MOS transistor 301-Q1 When the MOS transistor 301-Q1 is turned on, the first LED driving circuit 2 outputs Current Ip, since Ip is always larger than Iv, the potential of LED1 is higher than that of LED2, Schottky diode 301-D1 is turned off, and the output LED1 of the first LED driving circuit 2 supplies power to the load LED+/LED- through MOS tube 301-Q1.
  • the current value is Ip.
  • the output LED 2 of the second LED driving circuit 4 supplies power to the load LED+/LED- through a 301-D1 Schottky diode, and the current value is Iv.
  • the modulated output current waveform is similar to that shown in Figure 3.
  • FIG. 8 a schematic structural diagram of one embodiment of the first auxiliary power supply circuit 306, the current sampling circuit 303, the voltage sampling circuit 302, the control circuit 304, and the output setting circuit 306 of FIG. 1 is shown.
  • the first auxiliary power supply circuit 306 is composed of a three-terminal voltage regulator chip 306-U1, and converts VCC1 into VCC power supply to the current sampling circuit 303, the control circuit 304, and the output setting circuit 306.
  • the voltage sampling circuit 302 uses a voltage dividing network composed of resistors 302-R1 and 302-R2 to sample the output voltage LED+ voltage to GND and control it to the ADC0 port of the microcontroller 304-U1.
  • the voltage drop of the current sampling resistors 301-R2 is amplified by the operational amplifier 303-U1A in the current sampling circuit 303 and then supplied to the ADC1 port of the single chip microcomputer 304-U1 for control.
  • the single chip microcomputer 304-U1 of the control circuit 304 performs a control operation according to the output voltage and the current signal, and outputs the duty cycle variable PWM signals VC1 and VC2 to respectively control the output current Ip of the first LED driving circuit 2 and the second LED driving circuit. 4 output current Iv.
  • FIG. 9 a schematic structural view of one embodiment of the second auxiliary power supply circuit 307 of FIG. 1 is shown.
  • the second auxiliary power supply circuit 307 is composed of a three-terminal regulator chip 307-U1, and converts VCC2 into 5V VDD to the optical communication modulation signal circuit 308.
  • FIG. 10 a block diagram of one embodiment of the optical communication modulation signal circuit 308 of FIG. 1 is shown.
  • the power source of the second auxiliary power supply circuit 307 and the optical communication modulation signal circuit 308 is LED+, so that the MOS transistor 301-Q1 in the current modulation circuit 301 of Fig. 7 can be driven.
  • the single chip microcomputer 308-U1 in the optical communication modulation signal circuit 308 generates an optical communication modulation signal to the MOS transistor driving chip 308-U2 to amplify and output a driving signal M to drive the MOS transistor 301-Q1 in the current modulation circuit 301 of FIG.
  • the modulation circuit 301 includes:
  • the second switch 3014 receives the first driving voltage LED1; the control end is connected to the optical communication modulation signal circuit 308, receiving the optical communication modulation signal M;
  • a third switch 3015 the second end of which is connected to the second end of the switch 3014, and leads to the first output terminal LED+ of the current modulation circuit 301; the first end of the switch is connected to the second LED drive circuit 4, and receives The second driving voltage LED2 is connected to the optical communication modulation signal circuit 308, and receives the optical communication modulation signal M.
  • the second switching switch 3014 and the third switching switch 3015 are a pair of complementary switches, for example, when M is high. Normally, the second switch is turned on and the third switch is turned off. When M is low, the second switch is turned off and the third switch is turned on;
  • the current sampling resistor 3013 has one end grounded and the other end leads out the second output terminal LED- of the current modulation circuit 301.
  • the modulation circuit 301 includes:
  • a first diode 3016 the anode of which is connected to the first LED driving circuit 2, receives the first driving voltage LED1; the anode thereof leads out the first output terminal LED+ of the current modulation circuit 301;
  • a second diode 3017 having a negative electrode connected to the negative electrode of the first diode 3016; a positive electrode connected to the second LED driving circuit 4, receiving a positive electrode of the second driving voltage LED2;
  • the fourth switch 3018 has a first end connected to the ground, the second end of which is connected to the second LED driving circuit 4, and receives the second driving voltage LED2 negative electrode; the control end is connected to the optical communication modulation signal circuit 308, and receives the optical communication modulation signal M;
  • the current sampling resistor 3013 has one end connected to the second end of the fourth switching switch 3018, and the other end leads to the second output terminal LED- of the current modulation circuit 301.
  • the embodiment of the invention provides an LED optical communication power supply driving system, wherein the current modulation circuit is independent of the first LED driving circuit and the second LED driving circuit, so that the optical communication modulation signal M is added to the current modulation circuit without affecting the first
  • the power switching frequency of the LED optical communication power source can be controlled within 100 KHz, and the optical communication modulation frequency can reach above 20 KHz, and the switching power supply adopts a conventional LED drive power technology reduces the cost of the power supply and improves reliability.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Led Devices (AREA)

Abstract

本发明提供一种LED光通信电源驱动系统,其包括电源转换电路(1)、第一LED驱动电路(2)、第二LED驱动电路(4)以及光通信电流控制器(3),所述光通信电流控制器(3)进一步包括:电流调制电路(301)、电压采样电路(302)、电流采样电路(303)、控制电路(304)、输出设置电路(305)、第一辅助电源电路(306)、第二辅助电源电路(307)和光通信调制信号电路(308),其中,电流调制电路(301)根据接收自光通信调制信号电路(308)的光通信调制信号M,控制向负载输出第一驱动电压LED1以及第二驱动电压LED2的间隔及频率,控制光通信电源调制。本发明具有成本低,性能好的特点。

Description

一种LED光通信电源驱动系统
本申请要求于2018年3月22日提交中国专利局、申请号为201810241489.X、发明名称为“一种LED光通信电源驱动系统”的中国专利申请的优先权,上述专利的全部内容通过引用结合在本申请中。
背景技术
近年来,基于放光二极管的LED照明得到广泛的应用。和传统照明相比,LED照明可控性高,比如可以通过PWM调制信号对LED光源或灯具进行调光。和PWM调光类似,光通信正是通过调制LED的亮暗来进行通信,可以应用在无线电波不便采用的通信场合。
光通信对LED亮暗的调制频率通常达到20KHz以上,根据控制理论的分析结果,LED开关电源的开关频率要在调制频率10倍以上才能保证LED开关电源的控制稳定性,这就意味着LED电源的开关频率要在200KHz以上,这么高的频率会增加线路和开关损耗,对功率器件和控制回路的要求高,成本高昂且可靠性低。
发明内容
本发明所要解决的技术问题在于,本发明提供一种LED光通信电源驱动系统,可以采用常规的LED开关电源技术,使LED电源的开关频率在100KHz以内,通信调制频率可以做到20KHz以上。
为了解决上述技术问题,本发明的实施例的一方面提供一种LED光通信电源驱动系统,其包括电源转换电路、第一LED驱动电路、第二LED驱动电路以及光通信电流控制器,其中:
所述电源转换电路,用于接收输入电压并转换成额定直流电压V+、V-,其为AC-DC或DC-DC电路;
第一LED驱动电路,与所述电源转换电路相连接,输出第一辅助电源VCC1、第一驱动电压LED1;
第二LED驱动电路,与所述电源转换电路相连接,输出第二辅助电源VCC2、第二驱动电压LED2;
所述光通信电流控制器进一步包括:电流调制电路、电压采样电路、电流采样电路、控制电路、输出设置电路、第一辅助电源电路、第二辅助电源电路和光通信调制信号电路,其中,
第一辅助电源电路,接收第一LED驱动电路输出的第一辅助电源VCC1,向控制电路和输出设置电路进行供电;
第二辅助电源电路,接收第二LED驱动电路输出的第二辅助电源VCC2,向光通信调制信号电路进行供电;
电压采样电路设置在电流调制电路的两个输出端之间,所述电流采样电路设置在电流调制电路的其中一个输出端之上,电压采样电路和电流采样电路均与控制电路相连;
控制电路,接收输出设置电路控制,向第一LED驱动电路输出第一控制信号VC1,以控制第一LED驱动电路输出的第一驱动电压LED1的大小;并向第二LED驱动电路输出第二控制信号VC2,以控制第二LED驱动电路输出的第二驱动电压LED2的大小;
电流调制电路根据接收自光通信调制信号电路的光通信调制信号M,控制向负载输出第一驱动电压LED1以及第二驱动电压LED2的间隔及频率,控制光通信电源调制。
优选地,所述电源转换电路为AC-DC或DC-DC电路,其为桥式整流电路或者功率因素校正电路。
优选地,所述第一辅助电源电路与所述第一LED驱动电路连接,接收其第一辅助电源VCC1;或与所述电源转换电路连接,接收其额定直流电压V+、V-;
所述第二辅助电源电路与所述第二LED驱动电路连接,接收其第二辅助电源VCC2;或与所述电源转换电路连接,接收其额定直流电压V+、V-。
优选地,所述第一LED驱动电路和第二LED驱动电路为反激电路、升 压电路、降压电路、升降压电路、LLC变换电路中之一种,所述第一LED驱动电路和第二LED驱动电路的输出为恒压源或恒流源。
优选地,所述控制电路输出的第一控制信号VC1和第二控制信号VC2均为占空比可变的PWM信号或可变的直流电压信号。
优选地,所述输出设置电路为电阻分压网络、拨码电路、有线可编程输入电路、近场无线传输电路、射频无线传输电路中之一种。
优选地,所述电流调制电路包括:
切换开关,其第一端连接第一LED驱动电路,接收第一驱动电压LED1;其控制端连接光通信调制信号电路,接收光通信调制信号M;
二极管,其负极连接所述切换开关的第二端,并引出所述电流调制电路的第一输出端LED+;其正极连接所述第二LED驱动电路,接收第二驱动电压LED2;
电流采样电阻,其一端接地,另一端引出所述电流调制电路的第二输出端LED-。
优选地,所述切换开关采用MOS管、三极管、可控硅、继电器中之一种。
优选地,所述电流调制电路包括:
第二切换开关,其第一端连接第一LED驱动电路,接收第一驱动电压LED1;其控制端连接光通信调制信号电路,接收光通信调制信号M;
第三切换开关,其第二连接所述切换开关的第二端,并引出所述电流调制电路的第一输出端LED+;其第一端连接所述第二LED驱动电路,接收第二驱动电压LED2,其控制端连接光通信调制信号电路,接收光通信调制信号M,所述第二切换开关和第三切换开关为一对互补开关;
电流采样电阻,其一端接地,另一端引出所述电流调制电路的第二输出端LED-。
优选地,所述电流调制电路包括:
第一二极管,其正极连接第一LED驱动电路,接收第一驱动电压LED1;其负极引出所述电流调制电路的第一输出端LED+;
第二二极管,其负极连接所述第一二极管的负极;其正极连接所述第二 LED驱动电路,接收第二驱动电压LED2正极;
第四切换开关,其第一端接地,其第二端连接第二LED驱动电路,接收第二驱动电压LED2负极;其控制端连接光通信调制信号电路,接收光通信调制信号M;
电流采样电阻,其一端接所述第四切换开关第二端,另一端引出所述电流调制电路的第二输出端LED-。
实施本发明实施例,具有如下有益效果:
本发明实施例提供一种LED光通信电源驱动系统,其电流调制电路独立于第一LED驱动电路和第二LED驱动电路之外,因此光通信调制信号M加在电流调制电路上不会影响第一LED驱动电路和第二LED驱动电路的工作状态,故在本发明中,其LED光通信电源的电源开关频率可以控制在100KHz以内,而光通信调制频率可以达到20KHz以上,开关电源采用常规的LED驱动电源技术,降低了电源的成本并提高了可靠性低。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明提供的一种LED光通信电源驱动系统的一个实施例的结构示意图;
图2是图1中电流调制电路的一个实施例的结构示意图;
图3是图1中经调制后的LED电流波形图;
图4是图1中电源转换电路一个实施例的结构示意图;
图5是图1中第一LED驱动电路的一个实施例的结构示意图;
图6是图1中第二LED驱动电路的一个实施例的结构示意图;
图7是图1中电流调制电路的一个实施例的结构示意图,其为图2的细化;
图8是图1中第一辅助电源电路、电流采样电路、电压采样电路、控制 电路以及输出设置电路的一个实施例的结构示意图;
图9是图1中第二辅助电源电路的一个实施例的结构示意图;
图10是图1中光通信调制信号电路的一个实施例的结构示意图;
图11是图1中电流调制电路的另一个实施例的结构示意图;
图12是图1中电流调制电路的又一个实施例的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
如图1所示,示出了本发明提供的一种LED光通信电源驱动系统的一个实施例的结构示意图。一并结合图2和图3所示,在本实施例中。所述一种LED光通信电源驱动系统,其包括电源转换电路1、第一LED驱动电路2、第二LED驱动电路4以及光通信电流控制器3,其中:
所述电源转换电路1,用于接收输入电压并转换成额定直流电压V+、V-,其为AC-DC或DC-DC电路;
第一LED驱动电路2,与所述电源转换电路相连接,输出第一辅助电源VCC1、第一驱动电压LED1;
第二LED驱动电路4,与所述电源转换电路相连接,输出第二辅助电源VCC2、第二驱动电压LED2;
所述光通信电流控制器3进一步包括:电流调制电路301、电压采样电路302、电流采样电路303、控制电路304、输出设置电路305、第一辅助电源电路306、第二辅助电源电路307和光通信调制信号电路308,其中,
第一辅助电源电路306,接收第一LED驱动电路2输出的第一辅助电源 VCC1,向控制电路304和输出设置电路305进行供电;
第二辅助电源电路307,接收第二LED驱动电路4输出的第二辅助电源VCC2,向光通信调制信号电路308进行供电;
电压采样电路302设置在电流调制电路301的两个输出端之间,所述电流采样电路303设置在电流调制电路301的其中一个输出端之上,电压采样电路302和电流采样电路303均与控制电路304相连;
控制电路304,接收输出设置电路305控制,向第一LED驱动电路2输出第一控制信号VC1,以控制第一LED驱动电路2输出的第一驱动电压LED1的大小;并向第二LED驱动电路4输出第二控制信号VC2,以控制第二LED驱动电路4输出的第二驱动电压LED2的大小;
电流调制电路301根据接收自光通信调制信号电路308的光通信调制信号M,控制向负载输出第一驱动电压LED1以及第二驱动电压LED2的间隔及频率,控制光通信电源调制。
其中,所述电源转换电路1为AC-DC或DC-DC电路,其为桥式整流电路或者功率因数校正电路。
其中,所述第一辅助电源电路306与所述第一LED驱动电路2连接,接收其第一辅助电源VCC1;或与所述电源转换电路1连接,接收其额定直流电压V+、V-;
所述第二辅助电源电路307与所述第二LED驱动电路4连接,接收其第二辅助电源VCC2;或与所述电源转换电路1连接,接收其额定直流电压V+、V-。
其中,所述第一LED驱动电路2和第二LED驱动电路4为反激电路、升压电路、降压电路、升降压电路、LLC变换电路中之一种,所述第一LED驱动电路2和第二LED驱动电路4的输出为恒压源或恒流源。
其中,所述控制电路304输出的第一控制信号VC1和第二控制信号VC2均为占空比可变的PWM信号或可变的直流电压信号。
其中,所述输出设置电路305为电阻分压网络、拨码电路、有线可编程输入电路、近场无线传输电路、射频无线传输电路中之一种。
其中,所述电流调制电路301包括:
切换开关3011,其第一端连接第一LED驱动电路2,接收第一驱动电压LED1;其控制端连接光通信调制信号电路308,接收光通信调制信号M;
二极管3012,其负极连接所述切换开关3011的第二端,并引出所述电流调制电路301的第一输出端LED+;其正极连接所述第二LED驱动电路4,接收第二驱动电压LED2;
电流采样电阻3013,其一端接地,另一端引出所述电流调制电路301的第二输出端LED-。
其中,所述切换开关3011采用MOS管、三极管、可控硅、继电器中之一种。
具体地,控制电路304输出第一控制信号VC1控制第一LED驱动电路2的输出电流Ip,控制电路304输出第二控制信号VC2控制第二LED驱动电路4的输出电流Iv,Ip总是比Iv大。光通信调制信号电路308输出M给切换开关3011来控制第一LED驱动电路2的输出LED1接通或断开LED负载,当切换开关3011导通时,第一LED驱动电路2输出电流Ip,由于Ip总是比Iv大,所以LED1的电势高于LED2,二极管3012截止,第一LED驱动电路2的输出LED1通过切换开关3011给LED负载供电,电流值是Ip。当切换开关3011关闭时,第二LED驱动电路4的输出LED2通过二极管3012给LED负载供电,电流值是Iv。调制后的输出电流波形类似于图3所示。
由于电流调制电路301独立于第一LED驱动电路2和第二LED驱动电路4,因此光通信调制信号M加在电流调制电路301上不会影响第一LED驱动电路2和第二LED驱动电路4的工作状态,从而可以采用常规的100KHZ以内的LED开关电源技术。
为了更加清楚本发明的原理及工作过程,下述将以一个具体的实施例来对本发明进行说明。
实施例一
如图4所示,示出图1中电源转换电路1一个实施例的结构示意图。从中可以看出,在输入电压为交流100-277VAC的情况下,电源转换电路1采用功率因数校正电路,该电路采用L6562或类似的芯片来设计,可以把输入交流100-277VAC变换为400VDC的V+/V-。
如图5所示,示出了图1中第一LED驱动电路2的一个实施例的结构示意图。在图5中,所述第一LED驱动电路2采用原边控制的反激电路,该电路采用SY5882或类似的芯片来设计,把400VDC的V+/V-变换为LED1/GND。第一LED驱动电路2输出VCC1/GND给第一辅助电源电路306,并接收控制电路304输出的第一控制信号VC1来调整输出LED1/GND。
如图6所示,示出了图1中第二LED驱动电路4的一个实施例的结构示意图。在图6中,所述第二LED驱动电路4采用原边控制的反激电路,该电路采用SY5882或类似的芯片来设计,把400VDC的V+/V-变换为LED2/GND。第二LED驱动电路4输出VCC2/LED+给第二辅助电源电路307,并接收控制电路304输出的第二控制信号VC2来调整输出LED2/GND。
如图7所示,示出了图1中电流调制电路301的一个实施例的结构示意图,其为图2的进一步细化。在图7中,所述切换开关3011采用MOS管301-Q1,二极管3012采用肖特基二极管301-D1,电流采样电阻3013采用大功率插件电阻301-R2。控制电路304输出第一控制信号VC1来控制第一LED驱动电路2的输出电流Ip,控制电路304输出第二控制信号VC2来控制第二LED驱动电路4的输出电流Iv,把Ip设计为总是比Iv大。光通信调制信号电路308输出M给MOS管301-Q1来控制第一LED驱动电路2的输出LED1接通或断开LED负载,当MOS管301-Q1导通时,第一LED驱动电路2输出电流Ip,由于Ip总是比Iv大,所以LED1的电势高于LED2,肖特基二极管301-D1截止,第一LED驱动电路2的输出LED1通过MOS管301-Q1给负载LED+/LED-供电,电流值是Ip。当MOS管301-Q1关闭时,第二LED驱动电路4的输出LED2通过301-D1肖特基二极管给负载LED+/LED-供电,电流值是Iv。调制后的输出电流波形类似于图3所示。
如图8所示,示出了图1中第一辅助电源电路306、电流采样电路303、电压采样电路302、控制电路304以及输出设置电路306的一个实施例的结构示意图。在图8中,第一辅助电源电路306由三端稳压芯片306-U1组成,把VCC1转换为VCC供电给电流采样电路303、控制电路304、输出设置电路306。
电压采样电路302采用电阻302-R1和302-R2组成的分压网络来采样输 出电压LED+对GND的电压,并给到单片机304-U1的ADC0端口做控制用。电流采样电阻301-R2的压降通过电流采样电路303中的运放303-U1A放大后给到单片机304-U1的ADC1端口做控制用。
控制电路304的单片机304-U1根据输出电压和电流信号做控制运算,并输出占空比可变的PWM信号VC1和VC2来分别控制第一LED驱动电路2的输出电流Ip和第二LED驱动电路4的输出电流Iv。输出设置电路306由电阻305-R1和可变电阻305-R2组成,通过改变可变电阻305-R2来给出一个可变的电压LOAD给到单片机304-U1来设置输出是恒压还是恒流模式,以及恒压的电压值或恒流的电流值,比如LOAD=0.5V为12V恒压输出,LOAD=1V为24V恒压输出,LOAD=2.3V为1.3A恒流输出。
如图9所示,示出了图1中第二辅助电源电路307的一个实施例的结构示意图。在图8中,第二辅助电源电路307由三端稳压芯片307-U1组成,把VCC2转换为5V VDD供电给光通信调制信号电路308。
如图10所示,示出了图1中光通信调制信号电路308的一个实施例的结构示意图。在图9中,第二辅助电源电路307和光通信调制信号电路308的电源地是LED+,这样即可驱动图7电流调制电路301中的MOS管301-Q1。光通信调制信号电路308中的单片机308-U1产生光通信调制信号给MOS管驱动芯片308-U2放大并输出驱动信号M去驱动图7电流调制电路301中的MOS管301-Q1。
如图11所示,示出了图1中电流调制电路301的另一个实施例的结构示意图。在该实施例中,所述调制电路301包括:
第二切换开关3014,其第一端连接第一LED驱动电路2,接收第一驱动电压LED1;其控制端连接光通信调制信号电路308,接收光通信调制信号M;
第三切换开关3015,其第二连接所述切换开关3014的第二端,并引出所述电流调制电路301的第一输出端LED+;其第一端连接所述第二LED驱动电路4,接收第二驱动电压LED2,其控制端连接光通信调制信号电路308,接收光通信调制信号M;其中,第二切换开关3014与第三切换开关3015为一对互补开关,例如,当M为高电平时第二切换开关导通同时第三切换开 关关闭,当M为低电平时第二切换开关关闭同时第三切换开关开通;
电流采样电阻3013,其一端接地,另一端引出所述电流调制电路301的第二输出端LED-。
如图12所示,示出了图1中电流调制电路301的又一个实施例的结构示意图。在该实施例中,所述调制电路301包括:
第一二极管3016,其正极连接第一LED驱动电路2,接收第一驱动电压LED1;其负极引出所述电流调制电路301的第一输出端LED+;
第二二极管3017,其负极连接所述第一二极管3016的负极;其正极连接所述第二LED驱动电路4,接收第二驱动电压LED2正极;
第四切换开关3018,其第一端接地,其第二端连接第二LED驱动电路4,接收第二驱动电压LED2负极;其控制端连接光通信调制信号电路308,接收光通信调制信号M;
电流采样电阻3013,其一端接所述第四切换开关3018第二端,另一端引出所述电流调制电路301的第二输出端LED-。
实施本发明实施例,具有如下有益效果:
本发明实施例提供一种LED光通信电源驱动系统,其电流调制电路独立于第一LED驱动电路和第二LED驱动电路之外,因此光通信调制信号M加在电流调制电路上不会影响第一LED驱动电路和第二LED驱动电路的工作状态,故在本发明中,其LED光通信电源的电源开关频率可以控制在100KHz以内,而光通信调制频率可以达到20KHz以上,开关电源采用常规的LED驱动电源技术,降低了电源的成本并提高了可靠性低。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (10)

  1. 一种LED光通信电源驱动系统,其特征在于,包括电源转换电路(1)、第一LED驱动电路(2)、第二LED驱动电路(4)以及光通信电流控制器(3),其中:
    所述电源转换电路(1),用于接收输入电压并转换成额定直流电压V+、V-,其为AC-DC或DC-DC电路;
    第一LED驱动电路(2),与所述电源转换电路相连接,输出第一辅助电源VCC1、第一驱动电压LED1;
    第二LED驱动电路(4),与所述电源转换电路相连接,输出第二辅助电源VCC2、第二驱动电压LED2;
    所述光通信电流控制器(3)进一步包括:电流调制电路(301)、电压采样电路(302)、电流采样电路(303)、控制电路(304)、输出设置电路(305)、第一辅助电源电路(306)、第二辅助电源电路(307)和光通信调制信号电路(308),其中,
    第一辅助电源电路(306),接收第一LED驱动电路(2)输出的第一辅助电源VCC1,向控制电路(304)和输出设置电路(305)进行供电;
    第二辅助电源电路(307),接收第二LED驱动电路(4)输出的第二辅助电源VCC2,向光通信调制信号电路(308)进行供电;
    电压采样电路(302)设置在电流调制电路(301)的两个输出端之间,所述电流采样电路(303)设置在电流调制电路(301)的其中一个输出端之上,电压采样电路(302)和电流采样电路(303)均与控制电路(304)相连;
    控制电路(304),接收输出设置电路(305)控制,向第一LED驱动电路(2)输出第一控制信号VC1,以控制第一LED驱动电路(2)输出的第一驱动电压LED1的大小;并向第二LED驱动电路(4)输出第二控制信号VC2,以控制第二LED驱动电路(4)输出的第二驱动电压LED2的大小;
    电流调制电路(301)根据接收自光通信调制信号电路(308)的光通信调制信号M,控制向负载输出第一驱动电压LED1以及第二驱动电压LED2的间隔及频率,控制光通信电源调制。
  2. 如权利要求1所述的LED光通信电源驱动系统,其特征在于,所述电源转换电路(1)为AC-DC或DC-DC电路,其为桥式整流电路或者功率因素校正电路。
  3. 如权利要求2所述的LED光通信电源驱动系统,其特征在于,所述第一辅助电源电路(306)与所述第一LED驱动电路(2)连接,接收其第一辅助电源VCC1;或与所述电源转换电路(1)连接,接收其额定直流电压V+、V-;
    所述第二辅助电源电路(307)与所述第二LED驱动电路(4)连接,接收其第二辅助电源VCC2;或与所述电源转换电路(1)连接,接收其额定直流电压V+、V-。
  4. 如权利要求3所述的LED光通信电源驱动系统,其特征在于,所述第一LED驱动电路(2)和第二LED驱动电路(4)为反激电路、升压电路、降压电路、升降压电路、LLC变换电路中之一种,所述第一LED驱动电路(2)和第二LED驱动电路(4)的输出为恒压源或恒流源。
  5. 如权利要求4所述的LED光通信电源驱动系统,其特征在于,所述控制电路(304)输出的第一控制信号VC1和第二控制信号VC2均为占空比可变的PWM信号或可变的直流电压信号。
  6. 如权利要求5所述的LED光通信电源驱动系统,其特征在于,所述输出设置电路(305)为电阻分压网络、拨码电路、有线可编程输入电路、近场无线传输电路、射频无线传输电路中之一种。
  7. 如权利要求1至6任一项所述的LED光通信电源驱动系统,其特征在于,所述电流调制电路(301)包括:
    切换开关(3011),其第一端连接第一LED驱动电路(2),接收第一驱 动电压LED1;其控制端连接光通信调制信号电路(308),接收光通信调制信号M;
    二极管(3012),其负极连接所述切换开关(3011)的第二端,并引出所述电流调制电路(301)的第一输出端LED+;其正极连接所述第二LED驱动电路(4),接收第二驱动电压LED2;
    电流采样电阻(3013),其一端接地,另一端引出所述电流调制电路(301)的第二输出端LED-。
  8. 如权利要求7所述的LED光通信电源驱动系统,其特征在于,所述切换开关(3011)采用MOS管、三极管、可控硅、继电器中之一种。
  9. 如权利要求1至6任一项所述的LED光通信电源驱动系统,其特征在于,所述电流调制电路(301)包括:
    第二切换开关(3014),其第一端连接第一LED驱动电路(2),接收第一驱动电压LED1;其控制端连接光通信调制信号电路(308),接收光通信调制信号M;
    第三切换开关(3015),其第二连接所述第二切换开关(3014)的第二端,并引出所述电流调制电路(301)的第一输出端LED+;其第一端连接所述第二LED驱动电路(4),接收第二驱动电压LED2,其控制端连接光通信调制信号电路(308),接收光通信调制信号M,所述第二切换开关(3014)和第三切换开关(3015)为一对互补开关;
    电流采样电阻(3013),其一端接地,另一端引出所述电流调制电路(301)的第二输出端LED-。
  10. 如权利要求1至6任一项所述的LED光通信电源驱动系统,其特征在于,所述电流调制电路(301)包括:
    第一二极管(3016),其正极连接第一LED驱动电路(2),接收第一驱动电压LED1;其负极引出所述电流调制电路(301)的第一输出端LED+;
    第二二极管(3017),其负极连接所述第一二极管(3016)的负极;其正极连接所述第二LED驱动电路(4),接收第二驱动电压LED2正极;
    第四切换开关(3018),其第一端接地,其第二端连接第二LED驱动电路(4),接收第二驱动电压LED2负极;其控制端连接光通信调制信号电路(308),接收光通信调制信号M;
    电流采样电阻(3013),其一端接所述第四切换开关(3018)第二端,另一端引出所述电流调制电路(301)的第二输出端LED-。
PCT/CN2018/082144 2018-03-22 2018-04-08 一种led光通信电源驱动系统 WO2019178896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810241489.X 2018-03-22
CN201810241489.XA CN108307566B (zh) 2018-03-22 2018-03-22 一种led光通信电源驱动系统

Publications (1)

Publication Number Publication Date
WO2019178896A1 true WO2019178896A1 (zh) 2019-09-26

Family

ID=62850428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082144 WO2019178896A1 (zh) 2018-03-22 2018-04-08 一种led光通信电源驱动系统

Country Status (2)

Country Link
CN (1) CN108307566B (zh)
WO (1) WO2019178896A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4228377A1 (en) * 2022-02-14 2023-08-16 FUJIFILM Business Innovation Corp. Light source device, light-emitting unit, and measurement apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080113947A (ko) * 2007-06-26 2008-12-31 주식회사 우영 전원장치와 이를 구비하는 led 조명장치
CN103620934A (zh) * 2011-06-10 2014-03-05 皇家飞利浦有限公司 用于驱动负载特别是led单元的、具有输入和输出滤波器的dc-dc驱动器设备
CN204362370U (zh) * 2014-12-25 2015-05-27 东莞市擎洲光电科技有限公司 一种led驱动电路
CN204741586U (zh) * 2015-04-21 2015-11-04 阳亮 单级电源led恒流驱动调光电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103139990A (zh) * 2013-01-31 2013-06-05 广东卓耐普智能技术股份有限公司 一种可调光led驱动电源
CN103442501B (zh) * 2013-09-12 2014-11-19 江华 强制恒流源调光的led灯
JP6277548B2 (ja) * 2014-03-07 2018-02-14 パナソニックIpマネジメント株式会社 照明光通信装置
CN107155238B (zh) * 2017-06-13 2019-02-05 深圳民爆光电技术有限公司 一种多路输出led恒流驱动电路及驱动方法
CN208029149U (zh) * 2018-03-22 2018-10-30 深圳市博为光电股份有限公司 一种led光通信电源驱动系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080113947A (ko) * 2007-06-26 2008-12-31 주식회사 우영 전원장치와 이를 구비하는 led 조명장치
CN103620934A (zh) * 2011-06-10 2014-03-05 皇家飞利浦有限公司 用于驱动负载特别是led单元的、具有输入和输出滤波器的dc-dc驱动器设备
CN204362370U (zh) * 2014-12-25 2015-05-27 东莞市擎洲光电科技有限公司 一种led驱动电路
CN204741586U (zh) * 2015-04-21 2015-11-04 阳亮 单级电源led恒流驱动调光电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4228377A1 (en) * 2022-02-14 2023-08-16 FUJIFILM Business Innovation Corp. Light source device, light-emitting unit, and measurement apparatus

Also Published As

Publication number Publication date
CN108307566B (zh) 2023-11-24
CN108307566A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
CN202353859U (zh) 一种可控硅调光装置及发光系统
CN102300355B (zh) 一种led调光系统
TWI436687B (zh) 發光二極體串的驅動電路和用於驅動發光二極體串的系統
TW201004471A (en) Current supply circuit and current control circuit for LED
US8963439B2 (en) Power supply for lighting and luminaire
US20190008008A1 (en) Light-Actuated Wide Voltage Range LED Lamp Driver Circuit
CN102781134B (zh) 一种可调光led驱动电路及灯具
CN108667289B (zh) 一种供电装置及供电方法
CN101600277B (zh) 一种led电路
WO2019178896A1 (zh) 一种led光通信电源驱动系统
EP2914064A1 (en) Drive circuit and illumination device comprising the drive circuit
JP7066060B2 (ja) 駆動回路及び関連ランプ
TWI683595B (zh) Led背光驅動雙控制器級聯的系統和方法
US8525499B2 (en) Constant current switching power supply
US11653430B2 (en) Lamp control system
CN211959621U (zh) 具有调光功能的led灯
CN211352536U (zh) 恒流负载电路、背光调节电路、驱动板卡及电子设备
CN110913530B (zh) 一种调光led驱动器
TW201406204A (zh) Led驅動器之泛用型調光控制裝置
CN208029149U (zh) 一种led光通信电源驱动系统
CN217240990U (zh) Led驱动电路及led照明装置
Yan et al. Integrated analog dimming controller for 0–10V dimming system
CN111654949B (zh) Led灯具驱动电源电路及led灯具驱动系统
CN104066228A (zh) 照明用电源及照明装置
CN217693767U (zh) Led驱动电路及led照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910519

Country of ref document: EP

Kind code of ref document: A1