WO2019177055A1 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
WO2019177055A1
WO2019177055A1 PCT/JP2019/010365 JP2019010365W WO2019177055A1 WO 2019177055 A1 WO2019177055 A1 WO 2019177055A1 JP 2019010365 W JP2019010365 W JP 2019010365W WO 2019177055 A1 WO2019177055 A1 WO 2019177055A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
conductive material
solvent
secondary battery
Prior art date
Application number
PCT/JP2019/010365
Other languages
French (fr)
Japanese (ja)
Inventor
明秀 田中
奥村 壮文
純 川治
敦史 飯島
篤 宇根本
克 上田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020506623A priority Critical patent/JPWO2019177055A1/en
Publication of WO2019177055A1 publication Critical patent/WO2019177055A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • lithium ion secondary batteries have been actively developed.
  • development of a battery used for an electric vehicle is in progress, and a further increase in capacity is demanded for a lithium ion secondary battery.
  • a method for enhancing such safety for example, a method of replacing an electrolyte used in a lithium ion secondary battery with a liquid that is low in volatility and flame retardant from a conventional carbonate-based organic electrolyte. .
  • Patent Document 1 discloses an electrolyte for a lithium ion secondary battery including a glyme complex composed of a glyme mixture composed of methyltriglyme and methyltetraglyme and lithium ions.
  • the conventional lithium ion secondary battery has sufficient safety during overcharge.
  • the discharge rate characteristics may deteriorate.
  • the present invention has been made in view of such circumstances, and a main object of the present invention is to provide a lithium ion secondary battery that is excellent in safety during overcharge and excellent in discharge rate characteristics.
  • One aspect of the present invention is a positive electrode having a positive electrode current collector and a positive electrode mixture layer provided on the positive electrode current collector, an electrolyte layer, and a negative electrode current collector and a negative electrode mixture provided on the negative electrode current collector.
  • An electrode group including a negative electrode having a layer, and an outer package containing the electrode group, the electrode group containing an ion conductive material containing a solvent and a lithium salt, and an ion conductive material per unit volume of the outer package
  • the total mass is 0.12 to 0.35 g / cm 3
  • the solvent contains a solvent having a vapor pressure at 20 ° C. of 200 Pa or less, and the content of the solvent having a vapor pressure at 20 ° C. of 200 Pa or less is Provided is a lithium ion secondary battery that is 85 mol% or more based on the total amount of substances in the solvent.
  • the safety during overcharge is excellent, and the discharge rate characteristic is also excellent.
  • the present inventors have a range of the amount of the ion conductive material in the battery that is sufficient for charging / discharging, and the liquid during overcharging. This is considered to be within the range where withering can occur.
  • the liquid withering occurs, the internal resistance of the battery increases and the current can be cut off by itself. Due to the development of such a current interruption characteristic, the lithium ion secondary battery can be excellent in safety even during overcharge.
  • the mass of the ion conductive material per unit volume of the positive electrode mixture layer may be 0.05 to 0.50 g / cm 3 .
  • the mass of the ion conductive material per unit volume of the negative electrode mixture layer may be 0.05 to 0.50 g / cm 3 .
  • the solvent whose vapor pressure in 20 degreeC is 200 Pa or less may contain the glyme represented by following General formula (1). Further, it may contain triethylene glycol dimethyl ether or tetraethylene glycol dimethyl ether.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms, and m represents an integer of 3 to 6.
  • a lithium ion secondary battery that is excellent in safety during overcharge and excellent in discharge rate characteristics.
  • FIG. 2 is an exploded view of the lithium ion secondary battery shown in FIG. 1. It is a schematic cross section which shows other embodiment of a lithium ion secondary battery.
  • a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • a lithium ion secondary battery will be described as an example of a secondary battery.
  • the technical idea of the present invention is a lithium ion secondary battery, a sodium ion secondary battery, a magnesium ion secondary battery, The present invention can also be applied to an aluminum ion secondary battery.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a lithium ion secondary battery.
  • the lithium ion secondary battery 100 includes a positive electrode 70 having a positive electrode current collector 10 and a positive electrode mixture layer 40 provided on the positive electrode current collector 10, an electrolyte layer 50, and a negative electrode current collector 20 and a negative electrode current collector 20.
  • the electrode group 85 provided with the negative electrode 80 which has the negative mix layer 60 provided on the top, and the exterior body 30 which accommodates the electrode group 85 are provided.
  • FIG. 2 is an exploded view of the lithium ion secondary battery shown in FIG.
  • the exterior body 30 has a volume S.
  • the positive electrode mixture layer 40 has a volume V1
  • the negative electrode mixture layer 60 has a volume V2.
  • the electrode group 85 contains an ion conductive material containing a solvent and a lithium salt.
  • the total mass of the ion conductive material per unit volume of the outer package 30 (total mass of the ion conductive material / volume S of the outer package 30) is 0.12 to 0.35 g / cm 3 .
  • the solvent includes a solvent having a vapor pressure of 200 Pa or less at 20 ° C., and the content of the solvent having a vapor pressure of 20 Pa or less at 20 ° C. is 85 mol% or more based on the total amount of the solvent.
  • the positive electrode 70 includes a positive electrode current collector 10 and a positive electrode mixture layer 40 provided on the positive electrode current collector 10.
  • the positive electrode mixture layer 40 contains a positive electrode active material and an ionic conductive material.
  • the positive electrode mixture layer 40 may contain, as necessary, a positive electrode conductive material for imparting conductivity, a positive electrode binder for binding them, and the like.
  • the positive electrode current collector 10 is not particularly limited, and a positive electrode current collector generally used in a secondary battery can be used.
  • the positive electrode current collector 10 is preferably a low-resistance conductor having heat resistance that can withstand the heating during the secondary battery manufacturing process and the operating temperature of the secondary battery.
  • Examples of such positive electrode current collector 10 include metal foil (thickness 10 to 100 ⁇ m), perforated metal foil (thickness 10 to 100 ⁇ m, hole diameter 0.1 to 10 mm), expanded metal, foam metal plate, and glassy carbon plate. Etc.
  • species aluminum, stainless steel, titanium, a noble metal (for example, gold, silver, platinum) etc. are mentioned, for example.
  • the positive electrode mixture layer 40 is prepared by mixing a positive electrode mixture slurry obtained by mixing a positive electrode active material, a positive electrode conductive material, a positive electrode binder, a dispersion medium, etc. with a doctor blade method, a dipping method, a spray method, or the like. Apply to 10. Next, the dispersion medium of the positive electrode mixture slurry is dried, and the positive electrode active material layer is formed by pressure molding using a roll press. Next, the positive electrode mixture layer 40 can be produced by dropping an ion conductive material onto the obtained positive electrode active material layer with a micropipette or the like. In addition, the positive electrode mixture layer 40 can be stacked on the positive electrode current collector 10 by performing such a process a plurality of times.
  • the positive electrode active material may be, for example, a lithium composite oxide containing a transition metal.
  • the positive electrode conductive material is manufactured from conductive fibers (for example, vapor-grown carbon, carbon nanotubes, pitch (byproducts such as petroleum, coal, coal tar, etc.), carbonized at high temperature, and manufactured from acrylic fibers. Carbon fiber). Further, the positive electrode conductive material is preferably a material that has a lower electrical resistivity than the positive electrode active material and is difficult to oxidize and dissolve at the charge / discharge potential (usually 2.5 to 4.5 V) of the positive electrode. Examples of such materials include corrosion resistant metals (titanium, gold, etc.), carbides (SiC, WC, etc.), nitrides (Si 3 N 4 , BN, etc.), and the like. Further, the positive electrode conductive material may be a carbon material having a high specific surface area (for example, carbon black, activated carbon, etc.).
  • Positive electrode binder examples include styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF); and a mixture thereof.
  • Dispersion medium examples include water and 1-methyl-2-pyrrolidone.
  • the ion conductive material includes a solvent and a lithium salt.
  • the solvent includes a solvent having a vapor pressure of 200 Pa or less at 20 ° C., and the content of the solvent having a vapor pressure of 20 Pa or less at 20 ° C. is 85 mol% or more based on the total amount of the solvent.
  • Examples of the solvent having a vapor pressure at 20 ° C. of 200 Pa or less include glyme, ionic liquid, and cyclic carbonate represented by the following general formula (1).
  • R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms, and m represents an integer of 3 to 6.
  • the alkyl group as R 1 and R 2 may be a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group or the like.
  • the alkyl group is preferably a methyl group or an ethyl group.
  • Examples of the glyme include triethylene glycol dimethyl ether (triglyme, 20 ° C. vapor pressure: 120 Pa), tetraethylene glycol dimethyl ether (tetraglyme, 20 ° C. vapor pressure: 1 Pa), pentaethylene glycol dimethyl ether (pentag lime), hexaethylene glycol dimethyl ether. (Hexaglyme) and the like.
  • Pentag lime and hexaglyme are similar in structure to tetraglyme and have a molecular weight greater than that of tetraglyme. From this, the 20 ° C. vapor pressure of pentag lime and hexaglyme is expected to be about the same as or lower than that of tetraglyme. You may use these individually by 1 type or in combination of 2 or more types.
  • the glyme is preferably triglyme or tetraglyme.
  • ionic liquids have almost no vapor pressure unlike molecular liquids such as water and organic solvents due to strong electrostatic interaction between constituent cations and anions. Therefore, the ionic liquid is expected to have a vapor pressure of 200 Pa or less at 20 ° C.
  • the anion component of the ionic liquid is not particularly limited, but is an anion of a halogen such as Cl ⁇ , Br ⁇ and I ⁇ , an inorganic anion such as BF 4 ⁇ and N (SO 2 F) 2 — , B (C 6 H 5 ) 4 ⁇ , CH 3 SO 2 O ⁇ , CF 3 SO 2 O ⁇ , N (SO 2 C 4 F 9 ) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , N (SO 2 C 2 F 5 ) 2 ⁇ Or an organic anion.
  • the anionic component of the ionic liquid preferably contains at least one anionic component represented by the following formula (A).
  • the cation component of the ionic liquid is preferably at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation.
  • the chain quaternary onium cation may be, for example, a compound represented by the following formula (2).
  • R 1 to R 4 each independently represents a chain alkyl group having 1 to 20 carbon atoms, or a chain alkoxyalkyl group represented by R—O— (CH 2 ) n —.
  • R represents a methyl group or an ethyl group, and n represents an integer of 1 to 4
  • X represents a nitrogen atom or a phosphorus atom.
  • the number of carbon atoms of the alkyl group represented by R 1 to R 4 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the piperidinium cation may be, for example, a nitrogen-containing six-membered cyclic compound represented by the following formula (3).
  • R 5 and R 6 are each independently an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl A group or an ethyl group, and n represents an integer of 1 to 4.
  • the number of carbon atoms of the alkyl group represented by R 5 and R 6 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
  • the pyrrolidinium cation may be, for example, a five-membered cyclic compound represented by the following formula (4).
  • R 7 and R 8 are each independently an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl A group or an ethyl group, and n represents an integer of 1 to 4.
  • the carbon number of the alkyl group represented by R 7 and R 8 is preferably 1-20, more preferably 1-10, and still more preferably 1-5.
  • the pyridinium cation may be, for example, a compound represented by the following formula (5).
  • R 9 to R 13 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R represents a methyl group) Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom.
  • the number of carbon atoms of the alkyl group represented by R 9 to R 13 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the imidazolium cation may be, for example, a compound represented by the following formula (6).
  • R 14 to R 18 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is a methyl group) Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom.
  • the number of carbon atoms of the alkyl group represented by R 14 to R 18 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the ionic liquid examples include N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium-bis (trifluoromethanesulfonyl) imide (DEME-TFSI), N, N-diethyl-N-methyl- N- (2-methoxyethyl) ammonium-bis (fluorosulfonyl) imide (DEME-FSI), 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide (EMI-TFSI), 1-ethyl-3 -Methylimidazolidium-bis (fluorosulfonyl) imide (EMI-FSI), 1-butyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide (BMI-TFSI), 1-butyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide
  • cyclic carbonate examples include propylene carbonate (20 ° C. vapor pressure: 17 Pa), ethylene carbonate (20 ° C. vapor pressure: 21 Pa), and the like. You may use these individually by 1 type or in combination of 2 or more types. Among these, the cyclic carbonate is preferably propylene carbonate.
  • the content of the solvent having a vapor pressure of 200 Pa or less at 20 ° C. is 85 mol% or more based on the total amount of the solvent.
  • the content of the solvent may be 85 to 100 mol%, 90 to 100 mol%, or 95 to 100 mol%, or may be composed only of the solvent (that is, 100 mol%).
  • the discharge rate characteristics are excellent.
  • the solvent may include a solvent having a vapor pressure at 20 ° C. exceeding 200 Pa.
  • a solvent is not particularly limited, and a solvent usually used in a lithium ion secondary battery can be used.
  • the content of the solvent may be 0 to 15 mol%, 0 to 10 mol%, or 0 to 5 mol%, based on the total amount of the solvent.
  • lithium salt LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, lithium bis oxalate borate (LiBOB), lithium imide salt (e.g., lithium bis (Fluorosulfonyl) imide (LiFSI), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI)) and the like.
  • lithium imide salt e.g., lithium bis (Fluorosulfonyl) imide (LiFSI), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI)
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the lithium salt is preferably LiTFSI.
  • the mass of the ion conductive material per unit volume of the positive electrode mixture layer (the mass of the ion conductive material of the positive electrode mixture layer / the volume V1 of the positive electrode mixture layer) may be 0.05 to 0.50 g / cm 3. .
  • the mass of the ion conductive material per unit volume of the positive electrode mixture layer may be 0.06 g / cm 3 or more, or 0.40 g / cm 3 or less.
  • the mass of the ion conductive material per unit volume of the positive electrode mixture layer is 0.05 g / cm 3 or more, the discharge rate characteristics tend to be excellent, and when it is 0.50 g / cm 3 or less, It tends to be superior to safety.
  • the negative electrode 80 includes a negative electrode current collector 20 and a negative electrode mixture layer 60 provided on the negative electrode current collector 20.
  • the negative electrode mixture layer 60 contains a negative electrode active material and an ionic conductive material.
  • the negative electrode mixture layer 60 may contain a negative electrode conductive material for imparting conductivity, a negative electrode binder for binding them, and the like as necessary.
  • the negative electrode current collector 20 is not particularly limited, and a negative electrode current collector generally used in a secondary battery can be used. Similarly to the positive electrode current collector 10, the negative electrode current collector 20 is preferably a low-resistance conductor having heat resistance that can withstand the heating during the secondary battery manufacturing process and the operating temperature of the secondary battery. Examples of the negative electrode current collector 20 include metal foil (thickness 10 to 100 ⁇ m), perforated metal foil (thickness 10 to 100 ⁇ m, hole diameter 0.1 to 10 mm), expanded metal, foam metal plate, and glassy carbon plate. Etc. Moreover, as a metal seed
  • the negative electrode mixture layer 60 is obtained by mixing a negative electrode mixture slurry obtained by mixing a negative electrode active material, a negative electrode conductive material, a negative electrode binder, a dispersion medium, and the like by a doctor blade method, a dipping method, a spray method, and the like. Apply to 20. Next, the dispersion medium of the negative electrode mixture slurry is dried, and the negative electrode active material layer is formed by pressure molding using a roll press. Next, the negative electrode mixture layer 60 can be produced by dropping an ion conductive material into the obtained negative electrode active material layer with a micropipette or the like. In addition, the negative electrode mixture layer 60 can be laminated on the negative electrode current collector 20 by performing such a process a plurality of times.
  • Negative electrode active material examples include carbon-based materials (eg, graphite, graphitizable carbon materials, amorphous carbon materials), conductive polymer materials (eg, polyacene, polyparaphenylene, polyaniline, polyacetylene, etc.), Examples thereof include lithium composite oxides (for example, lithium titanate: Li 4 Ti 5 O 12 ), metallic lithium, metals that form an alloy with lithium (for example, aluminum, silicon, tin, and the like).
  • carbon-based materials eg, graphite, graphitizable carbon materials, amorphous carbon materials
  • conductive polymer materials eg, polyacene, polyparaphenylene, polyaniline, polyacetylene, etc.
  • lithium composite oxides for example, lithium titanate: Li 4 Ti 5 O 12
  • metallic lithium metals that form an alloy with lithium (for example, aluminum, silicon, tin, and the like).
  • Electrode conductive material (Negative electrode conductive material) The thing similar to what was illustrated with the positive electrode electrically conductive material can be used for a negative electrode electrically conductive material.
  • Negative electrode binder The thing similar to what was illustrated with the positive electrode binder can be used for a negative electrode binder.
  • Dispersion medium examples include water and 1-methyl-2-pyrrolidone.
  • the ion conductive material may be the same as the above-described ion conductive material.
  • the mass of the ion conductive material per unit volume of the negative electrode mixture layer (the mass of the ion conductive material of the negative electrode mixture layer / the volume V2 of the negative electrode mixture layer) may be 0.05 to 0.50 g / cm 3. .
  • the mass of the ion conductive material per unit volume of the negative electrode mixture layer may be 0.06 g / cm 3 or more, or 0.40 g / cm 3 or less.
  • the mass of the ion conductive material per unit volume of the negative electrode mixture layer is 0.05 g / cm 3 or more, the discharge rate characteristics tend to be superior, and when it is 0.50 g / cm 3 or less, Excellent safety.
  • the electrolyte layer 50 contains an electrolyte component and an electrolyte binder.
  • the electrolyte layer 50 can be produced, for example, by adding and mixing an electrolyte binder to the electrolyte component.
  • the electrolyte layer 50 can also be produced by preparing a solution obtained by mixing an electrolyte component and an electrolyte binder with a dispersion medium and distilling off the dispersion medium.
  • the electrolyte component is composed of inorganic particles and an ion conductive material. That is, the electrolyte layer 50 contains an ionic conductive material.
  • the ionic conductive material may be supported on inorganic particles.
  • As the electrolyte component for example, inorganic particles and an ionic conductive material are mixed at a specific volume ratio, and a dispersion medium such as methanol is added and mixed to prepare an electrolyte component slurry. Then, the electrolyte component can be obtained by dropping the slurry into a petri dish and distilling off the dispersion medium.
  • the inorganic particles are preferably insulating particles and insoluble in the above-mentioned solvent.
  • Such inorganic particles may be, for example, silica (SiO 2 ) particles, ⁇ -alumina (Al 2 O 3 ) particles, ceria (CeO 2 ) particles, or zirconia (ZrO 2 ) particles.
  • the inorganic particles may be other known metal oxide particles.
  • the amount of ion conductive material retained is considered to be proportional to the specific surface area of the inorganic particles.
  • the average primary particle diameter of the inorganic particles may be 1 nm to 10 ⁇ m. When the average particle size is 10 ⁇ m or less, the inorganic particles can hold a sufficient amount of the ionic conductive material and tend to form an electrolyte layer. When the average particle size is 1 nm or more, the inter-surface force between the particles becomes too large, and the particles can be prevented from aggregating, and the electrolyte layer tends to be easily formed.
  • the average particle size of the primary particles of the metal oxide particles may be 1 to 50 nm or 1 to 10 nm. In addition, the average particle diameter of primary particles can be calculated
  • SiO 2 particles average particle size: 7 nm, zeta potential: about ⁇ 20 mV
  • a high heat-resistant electrolyte layer tends to be obtained.
  • the inorganic particles tend to provide an electrolyte layer having better ion conductivity by using a lithium ion conductive inorganic substance.
  • a lithium ion conductive inorganic substance for example, Li 5 + X La 3 (Zr X , A 2 ⁇ X ) O 12 (where A is Sc, Ti, C, Y, Nb, Hf, Ta, Al, Si, Ga) , Ge, Sn, one or more elements selected from the group consisting of 1.4 ⁇ X ⁇ 2), Li 1 + Y Al Y Ti 2 -Y (PO 4 ) 3 (0 ⁇ Y ⁇ 1), Li 3Z La 2 / 3-Z TiO 3 (0 ⁇ Z ⁇ 2/3) and the like. These tend to have high ionic conductivity at room temperature and high electrochemical stability.
  • the ion conductive material may be the same as the above-described ion conductive material.
  • a fluorine-based resin is preferably used as the electrolyte binder.
  • the fluorine-based resin include polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the exterior body 30 is a battery case that can accommodate an electrode group 85 including the positive electrode 70, the electrolyte layer 50, and the negative electrode 80.
  • the material of the exterior body is preferably one having corrosion resistance such as aluminum, stainless steel, nickel plated steel or the like.
  • the volume S of the exterior body can be appropriately set according to the size of the battery.
  • the total mass of the ion conductive material per unit volume of the exterior body (total mass of the ion conductive material / volume S of the exterior body) is 0.12 to 0.35 g / cm 3 .
  • the total mass of the ion conductive material per unit volume of the outer package is 0.15 g / cm 3 or more, 0.18 g / cm 3 or more, 0.21 g / cm 3 or more, 0.24 g / cm 3 or more, 0.27 g. / cm 3 or more at a even better, 0.34 g / cm 3 or less, 0.33 g / cm 3 or less, 0.32 g / cm 3 or less, 0.31 g / cm 3 or less, 0.30 g / cm 3 or less There may be.
  • the discharge rate characteristics are excellent, and the total mass of the ion conductive material per unit volume of the outer package is 0.35 g / cm. When it is 3 or less, the safety during overcharge is excellent.
  • the lithium ion secondary battery 100 described above includes a positive electrode 70 having a positive electrode current collector 10 and a positive electrode mixture layer 40 provided on the positive electrode current collector 10, an electrolyte layer 50, and a negative electrode current collector 20 and a negative electrode current collector.
  • the electrode group 85 including the negative electrode 80 having the negative electrode mixture layer 60 provided on the body 20 and the process of accommodating the electrode group 85 in the exterior body 30 can be manufactured by a manufacturing method. .
  • the positive electrode 70 includes, for example, a step of preparing a positive electrode precursor in which a positive electrode active material layer containing a positive electrode active material is provided on the positive electrode current collector 10, and a positive electrode mixture layer by adding an ionic conductive material to the positive electrode active material layer. And the step of forming 40.
  • the mass of the ion conductive material per unit volume of the positive electrode mixture layer 40 (the mass of the ion conductive material of the positive electrode mixture layer / the volume V1 of the positive electrode mixture layer) is 0.05 to 0.50 g / cm 3. Good.
  • the mass of the ion conductive material per unit volume of the positive electrode mixture layer may be 0.06 g / cm 3 or more, or 0.40 g / cm 3 or less.
  • the mass of the ion conductive material per unit volume of the positive electrode mixture layer is 0.05 g / cm 3 or more, the discharge rate characteristics tend to be excellent, and when it is 0.50 g / cm 3 or less, It tends to be superior to safety.
  • the electrolyte layer 50 can be manufactured by, for example, a manufacturing method including a step of adding and mixing an electrolyte binder to an electrolyte component and a step of forming the obtained mixture into a sheet shape.
  • the negative electrode 80 includes, for example, a step of preparing a negative electrode precursor in which a negative electrode active material layer including a negative electrode active material is provided on the negative electrode current collector 20, and an ionic conductive material added to the negative electrode active material layer to form a negative electrode mixture layer And a step of forming 60.
  • the mass of the ion conductive material per unit volume of the negative electrode mixture layer 60 (the mass of the ion conductive material of the negative electrode mixture layer / the volume V2 of the negative electrode mixture layer) is 0.05 to 0.50 g / cm 3. Good.
  • the mass of the ion conductive material per unit volume of the negative electrode mixture layer may be 0.06 g / cm 3 or more, or 0.40 g / cm 3 or less.
  • the mass of the ion conductive material per unit volume of the negative electrode mixture layer is 0.05 g / cm 3 or more, the discharge rate characteristics tend to be superior, and when it is 0.50 g / cm 3 or less, Excellent safety.
  • the lithium ion secondary battery 100 can be obtained by housing the obtained electrode group 85 including the positive electrode 70, the electrolyte layer 50, and the negative electrode 80 in the outer package 30. Even when the electrode group 85 is accommodated in the outer package 30, an ion conductive material is injected into the electrode group 85, and the total mass of the ion conductive material per unit volume of the outer package is adjusted to be within a predetermined range. Good. In addition, since the injected ionic conductive material is present in the gap between the outer package 30 and the electrode group 85, the ions per unit volume of the positive electrode mixture layer 40 and the negative electrode mixture layer 60 before and after the injection. It is presumed that the mass of the conductive material does not change.
  • FIG. 3 is a schematic cross-sectional view showing another embodiment of the lithium ion secondary battery.
  • the lithium ion secondary battery 200 includes a positive electrode current collector 10, a positive electrode mixture layer 40, an electrolyte layer 50, a negative electrode mixture layer 60, an interconnector 90, a positive electrode mixture layer 40, an electrolyte layer 50, a negative electrode mixture layer 60, An electrode group 85 including the interconnector 90, the positive electrode mixture layer 40, the electrolyte layer 50, the negative electrode mixture layer 60, and the negative electrode current collector 20 in this order, and the exterior body 30 are provided. As shown in FIG.
  • the lithium ion secondary battery 200 is considered to include a plurality of combinations having the positive electrode mixture layer 40, the electrolyte layer 50, and the negative electrode mixture layer 60 in this order via the interconnector 90. be able to.
  • the outermost positive electrode mixture layer 40 is connected to the positive electrode current collector 10
  • the outermost negative electrode mixture layer 60 is connected to the negative electrode current collector 20.
  • the interconnector 90 is required to have high electron conductivity, no ionic conductivity, and the surface in contact with the negative electrode mixture layer 60 and the positive electrode mixture layer 40 do not exhibit a redox reaction depending on the respective potentials.
  • the interconnector 90 may be used as the positive electrode current collector 10 and the negative electrode current collector 20, and may be an aluminum foil or a SUS foil.
  • Example 1 Preparation of ion conductive material> LiTFSI (lithium salt) and tetraglyme (solvent (glyme represented by the general formula (1)), 20 ° C. vapor pressure: 1 Pa) are mixed at a molar ratio of 1: 1 using a magnetic stirrer in a glass bottle. Stir to prepare an ionic conductive material. Content of the solvent whose vapor pressure in 20 degreeC is 200 Pa or less was 100 mol%.
  • LiNi 1/3 Mn 1/3 Co 1/3 O 2 (positive electrode active material) 81.0 parts by mass, powdered carbon (positive electrode conductive material) 3.0 parts by mass and acetylene black (positive electrode conductive material) 6.0 Part by mass was added to obtain a mixture.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture slurry was uniformly and evenly applied to one side of a current collector (positive electrode current collector) made of SUS steel foil having a thickness of 12 ⁇ m with a coating machine. After the application, compression molding was performed with a roll press, pressurizing at 5 MPa, and punching out to ⁇ 10 mm to obtain a positive electrode precursor having a positive electrode active material layer.
  • the mass per unit area of the positive electrode precursor was 15 mg / cm 2 .
  • the said ion conductive material was dripped using the micropipette, and the positive electrode which has a positive mix layer was produced.
  • the mass of the ion conductive material per unit volume of the positive electrode mixture layer was adjusted to be 0.3 g / cm 3 .
  • the mass of the ion conductive material dropped on the positive electrode active material layer was 0.0306 g, and the volume of the positive electrode mixture layer was 0.102 cm 3 .
  • the volume of the positive mix layer was calculated
  • a negative electrode mixture slurry was prepared. The negative electrode mixture slurry was uniformly and evenly applied to one side of a current collector (negative electrode current collector) made of SUS steel foil having a thickness of 12 ⁇ m with a coating machine. After the application, compression molding was performed with a roll press, pressurizing at 5 MPa, and punching out to ⁇ 10 mm to obtain a negative electrode precursor having a negative electrode active material layer. The mass per unit area of the negative electrode precursor was 6.8 mg / cm 2 .
  • the said ion conductive material was dripped using the micropipette, and the negative electrode which has a negative mix layer was produced. At this time, the mass of the ion conductive material per unit volume of the negative electrode mixture layer was adjusted to 0.3 g / cm 3 .
  • the mass of the ion conductive material dropped onto the negative electrode active material layer was 0.0225 g, and the volume of the negative electrode mixture layer was 0.075 cm 3 .
  • the volume of the negative electrode mixture layer was determined by measuring the thickness of the negative electrode mixture layer using a micrometer.
  • ⁇ Preparation of electrolyte layer sheet> The ionic conductive material and SiO 2 nanoparticles (inorganic particles) were mixed at a volume ratio of 62:38, and methanol was added thereto and stirred for 30 minutes. Thereafter, the obtained electrolyte component slurry was spread on a petri dish, and methanol was distilled off to obtain a powdery electrolyte component. To this, polytetrafluoroethylene (PTFE, electrolyte binder) is added so as to be 5% by mass, thoroughly mixed, then stretched by pressurization, and punched to ⁇ 16 mm, so that the electrolyte layer sheet has a thickness of about 30 ⁇ m. Obtained. The mass of the ion conductive material in the electrolyte layer sheet was 0.0506 g.
  • the prepared positive electrode, negative electrode, and electrolyte layer sheet are placed in a glove box filled with argon, and the negative electrode current collector, the negative electrode mixture layer, the electrolyte layer sheet, the positive electrode mixture layer, and the positive electrode current collector are placed in this glove box. They were stacked in order and accommodated in a 2032 size coin-type battery cell holder (exterior body, volume: 0.542 cm 3 ). Next, using a micropipette, the ion conductive material was injected into a coin-type battery cell holder, and the total mass of the ion conductive material per unit volume of the outer package was adjusted to 0.29 g / cm 3 . The dropped ion conductive material had a mass of 0.0535 g, and the total mass of the ion conductive material was 0.1572 g. Then, the lithium ion secondary battery of Example 1 was produced by sealing with a caulking machine.
  • Example 2 As shown in Table 1, the lithium ion secondary battery of Example 2 was prepared in the same manner as in Example 1 except that tetraglyme was changed to DEME-TFSI (solvent (ionic liquid)) in the preparation of the ion conductive material. Produced.
  • DEME-TFSI solvent (ionic liquid)
  • Example 3 As shown in Table 1, in the preparation of the ion conductive material, lithium ion of Example 3 was obtained in the same manner as in Example 1 except that tetraglyme was changed to propylene carbonate (cyclic carbonate, 20 ° C. vapor pressure: 17 Pa). A secondary battery was produced.
  • Example 4 As shown in Table 1, in the same manner as in Example 1, except that the total mass of the ionic conductive material per unit volume of the outer package was adjusted to 0.35 g / cm 3 , the lithium ion 2 of Example 4 was adjusted. A secondary battery was produced.
  • Example 5 As shown in Table 1, in the same manner as in Example 1 except that the total mass of the ionic conductive material per unit volume of the outer package was adjusted to 0.23 g / cm 3 , the lithium ion 2 of Example 5 was adjusted. A secondary battery was produced.
  • Example 6 As shown in Table 1, the mass of the ion conductive material per unit volume of the positive electrode mixture layer and the negative electrode mixture layer is 0.27 g / cm 3 , and the total mass of the ion conductive material per unit volume of the outer package is 0.18 g.
  • a lithium ion secondary battery of Example 6 was produced in the same manner as in Example 1 except that the adjustment was made to be / cm 3 .
  • Example 7 As shown in Table 1, the mass of the ion conductive material per unit volume of the positive electrode mixture layer and the negative electrode mixture layer is 0.12 g / cm 3 , and the total mass of the ion conductive material per unit volume of the outer package is 0.12 g.
  • a lithium ion secondary battery of Example 7 was produced in the same manner as in Example 1 except that the adjustment was made to be / cm 3 .
  • Comparative Example 1 As shown in Table 1, in the same manner as in Example 1 except that the total mass of the ion conductive material per unit volume of the outer package was adjusted to 0.59 g / cm 3 , the lithium ion 2 of Comparative Example 1 was used. A secondary battery was produced.
  • Comparative Example 2 As shown in Table 1, in the same manner as in Example 1, except that the total mass of the ion conductive material per unit volume of the outer package was adjusted to 0.41 g / cm 3 , the lithium ion 2 of Comparative Example 2 was used. A secondary battery was produced.
  • Comparative Example 3 As shown in Table 1, the mass of the ion conductive material per unit volume of the positive electrode mixture layer and the negative electrode mixture layer is 0.05 g / cm 3 , and the total mass of the ion conductive material per unit volume of the outer package is 0.09 g.
  • a lithium ion secondary battery of Comparative Example 3 was produced in the same manner as in Example 1, except that the adjustment was made to be / cm 3 .
  • Comparative Example 4 As shown in Table 1, in the preparation of the ion conductive material, except that tetraglyme was changed to a mixed solution of tetraglyme (80 mol%) and dimethyl carbonate (20 ° C vapor pressure: 5300 Pa, 20 mol%), Examples In the same manner as in Example 1, a lithium ion secondary battery of Comparative Example 4 was produced.
  • the lithium ion secondary batteries of Examples 1 to 7 were excellent in safety during overcharging and also in discharge rate characteristics.
  • the lithium ion secondary batteries of Comparative Examples 1 and 2 in which the total mass of the ion conductive material per unit volume of the outer package exceeds 0.35 g / cm 3 are excellent in discharge rate characteristics, but are safe during overcharge. Was not enough.
  • the total amount of substance content solvent of the solvent vapor pressure is less than 200Pa total weight of the ion conductive material of Comparative Example 3 and 20 ° C.
  • the lithium ion secondary battery of Comparative Example 4 which is less than 85 mol% as a reference, is excellent in safety during overcharge, but has insufficient discharge rate characteristics. From these results, it was confirmed that the lithium secondary battery of the present invention was excellent in safety during overcharge and also in discharge rate characteristics.
  • the lithium ion secondary battery obtained in the present invention can be used as an electricity storage device by connecting to a cell controller or control panel and protecting it with a casing.
  • the lithium ion secondary battery according to the present invention can be charged / discharged at a higher current, and further can suppress a decrease in power storage performance associated with the cycle.
  • an electricity storage device using a lithium ion secondary battery can be disposed on the front surface or the bottom surface of a vehicle body as a power source for an automobile.
  • the power storage device can be used as an industrial power source for balancing power supply and demand.
  • SYMBOLS 10 Positive electrode collector, 20 ... Negative electrode collector, 30 ... Exterior body, 40 ... Positive electrode mixture layer, 50 ... Electrolyte layer, 60 ... Negative electrode mixture layer, 70 ... Positive electrode, 80 ... Negative electrode, 85 ... Electrode group , 90 ... interconnector, 100, 200 ... lithium ion secondary battery, S ... volume (exterior body), V1 ... volume (positive electrode mixture layer), V2 ... volume (negative electrode mixture layer).

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a lithium ion secondary battery comprising: an electrode group including a positive electrode having a positive electrode current collector and a positive electrode mixture layer provided on the positive electrode current collector, an electrolyte layer, and a negative electrode having a negative electrode current collector and a negative electrode mixture layer provided on the negative electrode current collector; and an outer case accommodating the electrode group, wherein the electrode group includes an ion conductive material including a solvent and a lithium salt, a total mass of the ion conductive material per unit volume of the outer case is 0.12-0.35 g/cm3, the solvent includes a solvent having a vapor pressure of 200 Pa or less at 20°C, and the amount of the solvent having a vapor pressure of 200 Pa or less at 20°C is 85 mol% or more based on the total mass of the solvent.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、リチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.
 近年、リチウムイオン二次電池の開発が盛んに進められている。特に電気自動車に用いられる電池の開発が進められており、リチウムイオン二次電池にはさらなる高容量化が求められている。 In recent years, lithium ion secondary batteries have been actively developed. In particular, development of a battery used for an electric vehicle is in progress, and a further increase in capacity is demanded for a lithium ion secondary battery.
 一方、リチウムイオン二次電池の高容量化を実現するには、電池内の安全性も高める必要がある。特に、コントローラー等が異常を起こし、電池電圧が通常使用される電圧より高くなった場合の安全性(過充電時の安全性)を確保することが求められる。 On the other hand, in order to increase the capacity of the lithium ion secondary battery, it is necessary to increase the safety in the battery. In particular, it is required to ensure safety (safety at the time of overcharge) when the controller or the like malfunctions and the battery voltage becomes higher than the normally used voltage.
 このような安全性を高める方法としては、例えば、リチウムイオン二次電池に用いられる電解液を、従来のカーボネート系有機電解液から低揮発性でかつ難燃性である液体に置き換える方法が挙げられる。 As a method for enhancing such safety, for example, a method of replacing an electrolyte used in a lithium ion secondary battery with a liquid that is low in volatility and flame retardant from a conventional carbonate-based organic electrolyte. .
 例えば、特許文献1には、メチルトリグライムおよびメチルテトラグライムからなるグライム混合物と、リチウムイオンと、からなるグライム錯体を含む、リチウムイオン二次電池用電解質が開示されている。 For example, Patent Document 1 discloses an electrolyte for a lithium ion secondary battery including a glyme complex composed of a glyme mixture composed of methyltriglyme and methyltetraglyme and lithium ions.
特開2010-287481号公報JP 2010-287481 A
 しかしながら、本発明者らの検討によると、低揮発性でかつ難燃性である液体を電解液として用いた場合においても、従来のリチウムイオン二次電池においては、過充電時の安全性が充分でなく、さらには放電レート特性が低下してしまうことがあることが判明した。 However, according to the study by the present inventors, even when a low-volatile and flame-retardant liquid is used as the electrolyte, the conventional lithium ion secondary battery has sufficient safety during overcharge. In addition, it has been found that the discharge rate characteristics may deteriorate.
 本発明は、このような実情に鑑みてなされたものであり、過充電時の安全性に優れるとともに、放電レート特性にも優れるリチウムイオン二次電池を提供することを主な目的とする。 The present invention has been made in view of such circumstances, and a main object of the present invention is to provide a lithium ion secondary battery that is excellent in safety during overcharge and excellent in discharge rate characteristics.
 本発明者らが鋭意検討したところ、特定の構成を有するリチウムイオン二次電池において、イオン伝導材に用いられる溶媒として揮発し難いものを採用し、電池内におけるイオン伝導材の量を調整することによって、上記課題を解決できることを見出し、本発明を完成するに至った。 When the present inventors diligently studied, in a lithium ion secondary battery having a specific configuration, a solvent that is difficult to volatilize is adopted as the solvent used in the ion conductive material, and the amount of the ion conductive material in the battery is adjusted. Thus, the inventors have found that the above-mentioned problems can be solved, and have completed the present invention.
 本発明の一側面は、正極集電体及び正極集電体上に設けられた正極合剤層を有する正極、電解質層、並びに負極集電体及び負極集電体上に設けられた負極合剤層を有する負極を備える電極群と、電極群を収容する外装体と、を備え、電極群が、溶媒及びリチウム塩を含むイオン伝導材を含有し、外装体の単位容積当たりのイオン伝導材の総質量が、0.12~0.35g/cmであり、溶媒が、20℃における蒸気圧が200Pa以下である溶媒を含み、20℃における蒸気圧が200Pa以下である溶媒の含有量が、溶媒の総物質量を基準として、85モル%以上である、リチウムイオン二次電池を提供する。 One aspect of the present invention is a positive electrode having a positive electrode current collector and a positive electrode mixture layer provided on the positive electrode current collector, an electrolyte layer, and a negative electrode current collector and a negative electrode mixture provided on the negative electrode current collector. An electrode group including a negative electrode having a layer, and an outer package containing the electrode group, the electrode group containing an ion conductive material containing a solvent and a lithium salt, and an ion conductive material per unit volume of the outer package The total mass is 0.12 to 0.35 g / cm 3 , the solvent contains a solvent having a vapor pressure at 20 ° C. of 200 Pa or less, and the content of the solvent having a vapor pressure at 20 ° C. of 200 Pa or less is Provided is a lithium ion secondary battery that is 85 mol% or more based on the total amount of substances in the solvent.
 上記リチウムイオン二次電池によれば、過充電時の安全性に優れるとともに、放電レート特性にも優れるものとなる。このような効果が奏される理由は必ずしも定かではないが、本発明者らは、電池内のイオン伝導材の量の範囲が、充放電に対して充分な範囲であるとともに、過充電時には液枯れが発生し得る範囲であるためと考えている。液枯れが発生することによって、電池の内部抵抗が上昇して自ら電流を遮断することが可能となる。このような電流遮断特性の発現によって、リチウムイオン二次電池は過充電時においても、安全性に優れるものとなり得る。 According to the lithium ion secondary battery, the safety during overcharge is excellent, and the discharge rate characteristic is also excellent. The reason why such an effect is achieved is not necessarily clear, but the present inventors have a range of the amount of the ion conductive material in the battery that is sufficient for charging / discharging, and the liquid during overcharging. This is considered to be within the range where withering can occur. When the liquid withering occurs, the internal resistance of the battery increases and the current can be cut off by itself. Due to the development of such a current interruption characteristic, the lithium ion secondary battery can be excellent in safety even during overcharge.
 正極合剤層の単位体積当たりのイオン伝導材の質量は、0.05~0.50g/cmであってよい。負極合剤層の単位体積当たりのイオン伝導材の質量は、0.05~0.50g/cmであってよい。 The mass of the ion conductive material per unit volume of the positive electrode mixture layer may be 0.05 to 0.50 g / cm 3 . The mass of the ion conductive material per unit volume of the negative electrode mixture layer may be 0.05 to 0.50 g / cm 3 .
 20℃における蒸気圧が200Pa以下である溶媒は、下記一般式(1)で表されるグライムを含んでいてもよい。また、トリエチレングリコールジメチルエーテル又はテトラエチレングリコールジメチルエーテルを含んでいてもよい。
 RO-(CHCHO)-R (1)
[式(1)中、R及びRはそれぞれ独立に炭素数1~4のアルキル基を示し、mは3~6の整数を示す。]
The solvent whose vapor pressure in 20 degreeC is 200 Pa or less may contain the glyme represented by following General formula (1). Further, it may contain triethylene glycol dimethyl ether or tetraethylene glycol dimethyl ether.
R 1 O— (CH 2 CH 2 O) m —R 2 (1)
[In Formula (1), R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms, and m represents an integer of 3 to 6. ]
 本発明によれば、過充電時の安全性に優れるとともに、放電レート特性にも優れるリチウムイオン二次電池が提供される。 According to the present invention, there is provided a lithium ion secondary battery that is excellent in safety during overcharge and excellent in discharge rate characteristics.
リチウムイオン二次電池の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of a lithium ion secondary battery. 図1に示すリチウムイオン二次電池の分解図である。FIG. 2 is an exploded view of the lithium ion secondary battery shown in FIG. 1. リチウムイオン二次電池の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of a lithium ion secondary battery.
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。 Hereinafter, embodiments of the present invention will be described with appropriate reference to the drawings. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including steps and the like) are not essential unless otherwise specified. The size of the component in each figure is conceptual, and the relative relationship of the size between the components is not limited to that shown in each figure.
 本明細書における数値及びその範囲についても同様であり、本発明を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 The same applies to the numerical values and ranges thereof in this specification, and do not limit the present invention. In the present specification, a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
 本明細書では、二次電池としてリチウムイオン二次電池を例にして説明するが、本発明の技術的思想は、リチウムイオン二次電池の他、ナトリウムイオン二次電池、マグネシウムイオン二次電池、アルミニウムイオン二次電池などに対しても適用することができる。 In the present specification, a lithium ion secondary battery will be described as an example of a secondary battery. However, the technical idea of the present invention is a lithium ion secondary battery, a sodium ion secondary battery, a magnesium ion secondary battery, The present invention can also be applied to an aluminum ion secondary battery.
[リチウムイオン二次電池]
 図1は、リチウムイオン二次電池の一実施形態を示す模式断面図である。リチウムイオン二次電池100は、正極集電体10及び正極集電体10上に設けられた正極合剤層40を有する正極70、電解質層50、並びに負極集電体20及び負極集電体20上に設けられた負極合剤層60を有する負極80を備える電極群85と、電極群85を収容する外装体30と、を備える。図2は、図1に示すリチウムイオン二次電池の分解図である。外装体30は容積Sを有する。正極合剤層40は体積V1を有し、負極合剤層60は体積V2を有する。
[Lithium ion secondary battery]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a lithium ion secondary battery. The lithium ion secondary battery 100 includes a positive electrode 70 having a positive electrode current collector 10 and a positive electrode mixture layer 40 provided on the positive electrode current collector 10, an electrolyte layer 50, and a negative electrode current collector 20 and a negative electrode current collector 20. The electrode group 85 provided with the negative electrode 80 which has the negative mix layer 60 provided on the top, and the exterior body 30 which accommodates the electrode group 85 are provided. FIG. 2 is an exploded view of the lithium ion secondary battery shown in FIG. The exterior body 30 has a volume S. The positive electrode mixture layer 40 has a volume V1, and the negative electrode mixture layer 60 has a volume V2.
 電極群85は、溶媒及びリチウム塩を含むイオン伝導材を含有する。外装体30の単位容積当たりのイオン伝導材の総質量(イオン伝導材の総質量/外装体30の容積S)は、0.12~0.35g/cmである。溶媒は、20℃における蒸気圧が200Pa以下である溶媒を含み、20℃における蒸気圧が200Pa以下である溶媒の含有量は、溶媒の総物質量を基準として、85モル%以上である。 The electrode group 85 contains an ion conductive material containing a solvent and a lithium salt. The total mass of the ion conductive material per unit volume of the outer package 30 (total mass of the ion conductive material / volume S of the outer package 30) is 0.12 to 0.35 g / cm 3 . The solvent includes a solvent having a vapor pressure of 200 Pa or less at 20 ° C., and the content of the solvent having a vapor pressure of 20 Pa or less at 20 ° C. is 85 mol% or more based on the total amount of the solvent.
電極群
[正極]
 正極70は、正極集電体10及び正極集電体10上に設けられた正極合剤層40を有する。正極合剤層40は、正極活物質及びイオン導電材を含有する。正極合剤層40は、必要に応じて、導電性付与のための正極導電材、これらを結着するための正極バインダ等を含有していてもよい。
Electrode group [positive electrode]
The positive electrode 70 includes a positive electrode current collector 10 and a positive electrode mixture layer 40 provided on the positive electrode current collector 10. The positive electrode mixture layer 40 contains a positive electrode active material and an ionic conductive material. The positive electrode mixture layer 40 may contain, as necessary, a positive electrode conductive material for imparting conductivity, a positive electrode binder for binding them, and the like.
<正極集電体>
 正極集電体10は、特に制限されず、一般に二次電池で用いられる正極集電体を使用することができる。正極集電体10は、二次電池製造プロセス中の加熱、二次電池の運転温度に耐えられる耐熱性を有する低抵抗導電体であることが好ましい。このような正極集電体10としては、例えば、金属箔(厚み10~100μm)、穿孔金属箔(厚み10~100μm、孔径0.1~10mm)、エキスパンドメタル、発泡金属板、ガラス状炭素板等が挙げられる。また、金属種としては、例えば、アルミニウム、ステンレス鋼、チタン、貴金属(例えば、金、銀、白金)等が挙げられる。
<Positive electrode current collector>
The positive electrode current collector 10 is not particularly limited, and a positive electrode current collector generally used in a secondary battery can be used. The positive electrode current collector 10 is preferably a low-resistance conductor having heat resistance that can withstand the heating during the secondary battery manufacturing process and the operating temperature of the secondary battery. Examples of such positive electrode current collector 10 include metal foil (thickness 10 to 100 μm), perforated metal foil (thickness 10 to 100 μm, hole diameter 0.1 to 10 mm), expanded metal, foam metal plate, and glassy carbon plate. Etc. Moreover, as a metal seed | species, aluminum, stainless steel, titanium, a noble metal (for example, gold, silver, platinum) etc. are mentioned, for example.
<正極合剤層>
 正極合剤層40は、まず、正極活物質、正極導電材、正極バインダ、分散媒等を混合して得られる正極合剤スラリーを、ドクターブレード法、ディッピング法、スプレー法等によって正極集電体10へ塗布する。次に、正極合剤スラリーの分散媒を乾燥させ、ロールプレスによる加圧成形によって、正極活物質層を形成する。次いで、得られた正極活物質層にイオン導電材をマイクロピペット等で滴下することによって、正極合剤層40を作製することができる。また、このような工程を複数回行うことによって、正極集電体10上に正極合剤層40を積層させることも可能である。
<Positive electrode mixture layer>
First, the positive electrode mixture layer 40 is prepared by mixing a positive electrode mixture slurry obtained by mixing a positive electrode active material, a positive electrode conductive material, a positive electrode binder, a dispersion medium, etc. with a doctor blade method, a dipping method, a spray method, or the like. Apply to 10. Next, the dispersion medium of the positive electrode mixture slurry is dried, and the positive electrode active material layer is formed by pressure molding using a roll press. Next, the positive electrode mixture layer 40 can be produced by dropping an ion conductive material onto the obtained positive electrode active material layer with a micropipette or the like. In addition, the positive electrode mixture layer 40 can be stacked on the positive electrode current collector 10 by performing such a process a plurality of times.
(正極活物質)
 正極活物質は、例えば、遷移金属を含むリチウム複合酸化物であってよい。リチウム複合酸化物としては、例えば、LiCoO、LiNiO、LiMn、LiMnO、LiMn、LiMnO、LiMn12、LiMnMO(M=Fe,Co,Ni,Cu,Zn)、Li1-xMn(M=Mg,B,Al,Fe,Co,Ni,Cr,Zn,Ca、x=0.01~0.1)、LiMn2-x(M=Co,Ni,Fe,Cr,Zn,Ta、x=0.01~0.2)、LiCo1-x(M=Ni,Fe,Mn、x=0.01~0.2)、LiNi1-x(M=Mn,Fe,Co,Al,Ga,Ca,Mg、x=0.01~0.2)、LiNi1-x-yMnCo(x=0.1~0.8、y=0.1~0.8、x+y=0.1~0.9)、LiFeO、LiFePO、LiMnPO等が挙げられる。
(Positive electrode active material)
The positive electrode active material may be, for example, a lithium composite oxide containing a transition metal. Examples of the lithium composite oxide include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , Li 2 Mn 3 MO 8 (M = Fe, Co , Ni, Cu, Zn), Li 1-x M x Mn 2 O 4 (M = Mg, B, Al, Fe, Co, Ni, Cr, Zn, Ca, x = 0.01 to 0.1), LiMn 2-x M x O 2 (M = Co, Ni, Fe, Cr, Zn, Ta, x = 0.01 ~ 0.2), LiCo 1-x M x O 2 (M = Ni, Fe, Mn , X = 0.01 to 0.2), LiNi 1-x M x O 2 (M = Mn, Fe, Co, Al, Ga, Ca, Mg, x = 0.01 to 0.2), LiNi 1 -x-y Mn x Co y O 2 (x = 0.1 ~ 0.8, y = 0.1 0.8, x + y = 0.1 ~ 0.9), LiFeO 2, LiFePO 4, LiMnPO 4 , and the like.
(正極導電材)
 正極導電材は、導電性繊維(例えば、気相成長炭素、カーボンナノチューブ、ピッチ(石油、石炭、コールタール等の副生成物)を原料として、高温で炭化して製造した繊維、アクリル繊維から製造した炭素繊維など)であってよい。また、正極導電材は、正極活物質よりも電気抵抗率が低く、正極の充放電電位(通常、2.5~4.5V)において、酸化溶解し難い材料であることが好ましい。このような材料としては、例えば、耐食性金属(チタン、金等)、炭化物(SiC、WC等)、窒化物(Si、BN等)などが挙げられる。さらに、正極導電材は、高比表面積の炭素材料(例えば、カーボンブラック、活性炭等)であってもよい。
(Positive electrode conductive material)
The positive electrode conductive material is manufactured from conductive fibers (for example, vapor-grown carbon, carbon nanotubes, pitch (byproducts such as petroleum, coal, coal tar, etc.), carbonized at high temperature, and manufactured from acrylic fibers. Carbon fiber). Further, the positive electrode conductive material is preferably a material that has a lower electrical resistivity than the positive electrode active material and is difficult to oxidize and dissolve at the charge / discharge potential (usually 2.5 to 4.5 V) of the positive electrode. Examples of such materials include corrosion resistant metals (titanium, gold, etc.), carbides (SiC, WC, etc.), nitrides (Si 3 N 4 , BN, etc.), and the like. Further, the positive electrode conductive material may be a carbon material having a high specific surface area (for example, carbon black, activated carbon, etc.).
(正極バインダ)
 正極バインダとしては、例えば、スチレン-ブタジエンゴム、カルボキシメチルセルロ-ス、ポリフッ化ビニリデン(PVDF);これらの混合物等が挙げられる。
(Positive electrode binder)
Examples of the positive electrode binder include styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF); and a mixture thereof.
(分散媒)
 分散媒としては、例えば、水、1-メチル-2-ピロリドン等が挙げられる。
(Dispersion medium)
Examples of the dispersion medium include water and 1-methyl-2-pyrrolidone.
(イオン導電材)
 イオン伝導材は、溶媒及びリチウム塩を含む。溶媒は、20℃における蒸気圧が200Pa以下である溶媒を含み、20℃における蒸気圧が200Pa以下である溶媒の含有量は、溶媒の総物質量を基準として、85モル%以上である。
(Ion conductive material)
The ion conductive material includes a solvent and a lithium salt. The solvent includes a solvent having a vapor pressure of 200 Pa or less at 20 ° C., and the content of the solvent having a vapor pressure of 20 Pa or less at 20 ° C. is 85 mol% or more based on the total amount of the solvent.
 20℃における蒸気圧が200Pa以下である溶媒としては、例えば、下記一般式(1)で表されるグライム、イオン液体、環状カーボネート等が挙げられる。
 RO-(CHCHO)-R (1)
Examples of the solvent having a vapor pressure at 20 ° C. of 200 Pa or less include glyme, ionic liquid, and cyclic carbonate represented by the following general formula (1).
R 1 O— (CH 2 CH 2 O) m —R 2 (1)
 式(1)中、R及びRはそれぞれ独立に炭素数1~4のアルキル基を示し、mは3~6の整数を示す。R及びRとしてのアルキル基は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等であってよい。これらの中でも、アルキル基は、メチル基又はエチル基であることが好ましい。 In formula (1), R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms, and m represents an integer of 3 to 6. The alkyl group as R 1 and R 2 may be a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group or the like. Among these, the alkyl group is preferably a methyl group or an ethyl group.
 グライムとしては、例えば、トリエチレングリコールジメチルエーテル(トリグライム、20℃蒸気圧:120Pa)、テトラエチレングリコールジメチルエーテル(テトラグライム、20℃蒸気圧:1Pa)、ペンタエチレングリコールジメチルエーテル(ペンタグライム)、ヘキサエチレングリコールジメチルエーテル(ヘキサグライム)等が挙げられる。なお、ペンタグライム及びヘキサグライムは、テトラグライムと構造が類似し、分子量がテトラグライムより大きい。このことから、ペンタグライム及びヘキサグライムの20℃蒸気圧は、テトラグライムと同程度又はそれ以下であると予想される。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、グライムは、好ましくはトリグライム又はテトラグライムである。 Examples of the glyme include triethylene glycol dimethyl ether (triglyme, 20 ° C. vapor pressure: 120 Pa), tetraethylene glycol dimethyl ether (tetraglyme, 20 ° C. vapor pressure: 1 Pa), pentaethylene glycol dimethyl ether (pentag lime), hexaethylene glycol dimethyl ether. (Hexaglyme) and the like. Pentag lime and hexaglyme are similar in structure to tetraglyme and have a molecular weight greater than that of tetraglyme. From this, the 20 ° C. vapor pressure of pentag lime and hexaglyme is expected to be about the same as or lower than that of tetraglyme. You may use these individually by 1 type or in combination of 2 or more types. Among these, the glyme is preferably triglyme or tetraglyme.
 イオン液体は、構成するカチオンとアニオンの間に働く強い静電的な相互作用により水、有機溶媒等の分子性液体とは異なり、蒸気圧がほとんどないことが知られている。そのため、イオン液体は、20℃における蒸気圧が200Pa以下であることが予想される。 It is known that ionic liquids have almost no vapor pressure unlike molecular liquids such as water and organic solvents due to strong electrostatic interaction between constituent cations and anions. Therefore, the ionic liquid is expected to have a vapor pressure of 200 Pa or less at 20 ° C.
 イオン液体のアニオン成分は、特に限定されないが、Cl、Br、I等のハロゲンのアニオン、BF 、N(SOF) 等の無機アニオン、B(C 、CHSO、CFSO、N(SO 、N(SOCF 、N(SO 等の有機アニオンなどであってよい。イオン液体のアニオン成分は、好ましくは、下記式(A)で表されるアニオン成分の少なくとも1種を含有する。
 N(SO2m+1)(SO2n+1 (A)
[式(A)中、m及びnは、それぞれ独立に0~5の整数を表す。m及びnは、互いに同一でも異なっていてもよく、好ましくは互いに同一である。]
The anion component of the ionic liquid is not particularly limited, but is an anion of a halogen such as Cl , Br and I , an inorganic anion such as BF 4 and N (SO 2 F) 2 , B (C 6 H 5 ) 4 , CH 3 SO 2 O , CF 3 SO 2 O , N (SO 2 C 4 F 9 ) 2 , N (SO 2 CF 3 ) 2 , N (SO 2 C 2 F 5 ) 2 Or an organic anion. The anionic component of the ionic liquid preferably contains at least one anionic component represented by the following formula (A).
N (SO 2 C m F 2m + 1 ) (SO 2 C n F 2n + 1 ) (A)
[In the formula (A), m and n each independently represents an integer of 0 to 5. m and n may be the same as or different from each other, and are preferably the same as each other. ]
 イオン液体のカチオン成分は、好ましくは鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種である。 The cation component of the ionic liquid is preferably at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation.
 鎖状四級オニウムカチオンは、例えば、下記式(2)で表される化合物であってよい。
Figure JPOXMLDOC01-appb-C000001
[式(2)中、R~Rは、それぞれ独立に、炭素数が1~20の鎖状アルキル基、又はR-O-(CH-で表される鎖状アルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す。)を表し、Xは、窒素原子又はリン原子を表す。R~Rで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The chain quaternary onium cation may be, for example, a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000001
[In Formula (2), R 1 to R 4 each independently represents a chain alkyl group having 1 to 20 carbon atoms, or a chain alkoxyalkyl group represented by R—O— (CH 2 ) n —. (R represents a methyl group or an ethyl group, and n represents an integer of 1 to 4), and X represents a nitrogen atom or a phosphorus atom. The number of carbon atoms of the alkyl group represented by R 1 to R 4 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 ピペリジニウムカチオンは、例えば、下記式(3)で表される、窒素を含有する六員環環状化合物であってよい。
Figure JPOXMLDOC01-appb-C000002
[式(3)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す。)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The piperidinium cation may be, for example, a nitrogen-containing six-membered cyclic compound represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000002
[In Formula (3), R 5 and R 6 are each independently an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl A group or an ethyl group, and n represents an integer of 1 to 4. The number of carbon atoms of the alkyl group represented by R 5 and R 6 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 ピロリジニウムカチオンは、例えば、下記式(4)で表される五員環環状化合物であってよい。
Figure JPOXMLDOC01-appb-C000003
[式(4)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す。)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The pyrrolidinium cation may be, for example, a five-membered cyclic compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000003
[In Formula (4), R 7 and R 8 are each independently an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl A group or an ethyl group, and n represents an integer of 1 to 4. The carbon number of the alkyl group represented by R 7 and R 8 is preferably 1-20, more preferably 1-10, and still more preferably 1-5. ]
 ピリジニウムカチオンは、例えば、下記式(5)で示される化合物であってよい。
Figure JPOXMLDOC01-appb-C000004
[式(5)中、R~R13は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す。)、又は水素原子を表す。R~R13で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The pyridinium cation may be, for example, a compound represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000004
[In Formula (5), R 9 to R 13 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R represents a methyl group) Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom. The number of carbon atoms of the alkyl group represented by R 9 to R 13 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 イミダゾリウムカチオンは、例えば、下記式(6)で示される化合物であってよい。
Figure JPOXMLDOC01-appb-C000005
[式(6)中、R14~R18は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す。)、又は水素原子を表す。R14~R18で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The imidazolium cation may be, for example, a compound represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000005
[In the formula (6), R 14 to R 18 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is a methyl group) Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom. The number of carbon atoms of the alkyl group represented by R 14 to R 18 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 イオン液体としては、例えば、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム-ビス(トリフルオロメタンスルホニル)イミド(DEME-TFSI)、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム-ビス(フルオロスルホニル)イミド(DEME-FSI)、1-エチル-3-メチルイミダゾリウム-ビス(トリフルオロメタンスルホニル)イミド(EMI-TFSI)、1-エチル-3-メチルイミダゾリジウム-ビス(フルオロスルホニル)イミド(EMI-FSI)、1-ブチル-3-メチルイミダゾリウム-ビス(トリフルオロメタンスルホニル)イミド(BMI-TFSI)、1-ブチル-3-メチルイミダゾリウム-ビス(フルオロスルホニル)イミド(BMI-FSI)、N-メチル-N-プロピルピペリジニウム-ビス(トリフルオロメタンスルホニル)イミド(PP13-TFSI)、N-メチル-N-プロピルピペリジニウム-ビス(フルオロスルホニル)イミド(PP13-FSI)、1-メチル-1-プロピルピロリジウム-ビス(トリフルオロメタンスルホニル)イミド(PY13-TFSI)、1-メチル-1-プロピルピロリジウム-ビス(フルオロスルホニル)イミド(PY13-FSI)等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、イオン液体は、好ましくはDEME-TFSI又はEMI-FSIである。 Examples of the ionic liquid include N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium-bis (trifluoromethanesulfonyl) imide (DEME-TFSI), N, N-diethyl-N-methyl- N- (2-methoxyethyl) ammonium-bis (fluorosulfonyl) imide (DEME-FSI), 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide (EMI-TFSI), 1-ethyl-3 -Methylimidazolidium-bis (fluorosulfonyl) imide (EMI-FSI), 1-butyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide (BMI-TFSI), 1-butyl-3-methylimidazolium- Bis (fluorosulfonyl) imide (BMI- SI), N-methyl-N-propylpiperidinium-bis (trifluoromethanesulfonyl) imide (PP13-TFSI), N-methyl-N-propylpiperidinium-bis (fluorosulfonyl) imide (PP13-FSI), Examples thereof include 1-methyl-1-propylpyrrolidinium-bis (trifluoromethanesulfonyl) imide (PY13-TFSI), 1-methyl-1-propylpyrrolidinium-bis (fluorosulfonyl) imide (PY13-FSI), and the like. You may use these individually by 1 type or in combination of 2 or more types. Among these, the ionic liquid is preferably DEME-TFSI or EMI-FSI.
 環状カーボネートとしては、例えば、プロピレンカーボネート(20℃蒸気圧:17Pa)、エチレンカーボネート(20℃蒸気圧:21Pa)等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、環状カーボネートは、好ましくはプロピレンカーボネートである。 Examples of the cyclic carbonate include propylene carbonate (20 ° C. vapor pressure: 17 Pa), ethylene carbonate (20 ° C. vapor pressure: 21 Pa), and the like. You may use these individually by 1 type or in combination of 2 or more types. Among these, the cyclic carbonate is preferably propylene carbonate.
 20℃における蒸気圧が200Pa以下である溶媒の含有量は、溶媒の総物質量を基準として、85モル%以上である。当該溶媒の含有量は、85~100モル%、90~100モル%又は95~100モル%であってよく、当該溶媒のみから構成されるもの(すなわち、100モル%)であってもよい。20℃における蒸気圧が200Pa以下である溶媒の含有量が、溶媒の総物質量を基準として、85モル%以上であると、放電レート特性に優れる。 The content of the solvent having a vapor pressure of 200 Pa or less at 20 ° C. is 85 mol% or more based on the total amount of the solvent. The content of the solvent may be 85 to 100 mol%, 90 to 100 mol%, or 95 to 100 mol%, or may be composed only of the solvent (that is, 100 mol%). When the content of the solvent having a vapor pressure at 20 ° C. of 200 Pa or less is 85 mol% or more based on the total amount of the solvent, the discharge rate characteristics are excellent.
 溶媒は、20℃における蒸気圧が200Paを超える溶媒を含み得る。このような溶媒は、特に制限されず、リチウムイオン二次電池で通常用いられる溶媒を用いることができる。当該溶媒の含有量は、溶媒の総物質量を基準として、0~15モル%、0~10モル%、又は0~5モル%であってよい。 The solvent may include a solvent having a vapor pressure at 20 ° C. exceeding 200 Pa. Such a solvent is not particularly limited, and a solvent usually used in a lithium ion secondary battery can be used. The content of the solvent may be 0 to 15 mol%, 0 to 10 mol%, or 0 to 5 mol%, based on the total amount of the solvent.
 リチウム塩としては、例えば、LiPF、LiBF、LiClO、LiCFSO、LiCFCO、LiAsF、LiSbF、リチウムビスオキサレートボラート(LiBOB)、リチウムイミド塩(例えば、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI))等が挙げられる。これらのリチウム塩は、1種を単独で、又は2種以上を組わせて用いてもよい。これらの中でも、リチウム塩は、好ましくはLiTFSIである。 Examples of the lithium salt, LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, lithium bis oxalate borate (LiBOB), lithium imide salt (e.g., lithium bis (Fluorosulfonyl) imide (LiFSI), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI)) and the like. These lithium salts may be used alone or in combination of two or more. Among these, the lithium salt is preferably LiTFSI.
 正極合剤層の単位体積当たりのイオン伝導材の質量(正極合剤層のイオン伝導材の質量/正極合剤層の体積V1)は、0.05~0.50g/cmであってよい。正極合剤層の単位体積当たりのイオン伝導材の質量は、0.06g/cm以上であってもよく、0.40g/cm以下であってもよい。正極合剤層の単位体積当たりのイオン伝導材の質量が0.05g/cm以上であると、放電レート特性により優れる傾向にあり、0.50g/cm以下であると、過充電時の安全性により優れる傾向にある。 The mass of the ion conductive material per unit volume of the positive electrode mixture layer (the mass of the ion conductive material of the positive electrode mixture layer / the volume V1 of the positive electrode mixture layer) may be 0.05 to 0.50 g / cm 3. . The mass of the ion conductive material per unit volume of the positive electrode mixture layer may be 0.06 g / cm 3 or more, or 0.40 g / cm 3 or less. When the mass of the ion conductive material per unit volume of the positive electrode mixture layer is 0.05 g / cm 3 or more, the discharge rate characteristics tend to be excellent, and when it is 0.50 g / cm 3 or less, It tends to be superior to safety.
[負極]
 負極80は、負極集電体20及び負極集電体20上に設けられた負極合剤層60を有する。負極合剤層60は、負極活物質及びイオン導電材を含有する。負極合剤層60は、必要に応じて、導電性付与のための負極導電材、これらを結着するための負極バインダ等を含有していてもよい。
[Negative electrode]
The negative electrode 80 includes a negative electrode current collector 20 and a negative electrode mixture layer 60 provided on the negative electrode current collector 20. The negative electrode mixture layer 60 contains a negative electrode active material and an ionic conductive material. The negative electrode mixture layer 60 may contain a negative electrode conductive material for imparting conductivity, a negative electrode binder for binding them, and the like as necessary.
<負極集電体>
 負極集電体20は、特に制限されず、一般に二次電池で用いられる負極集電体を使用することができる。負極集電体20は、正極集電体10と同様に、二次電池製造プロセス中の加熱、二次電池の運転温度に耐えられる耐熱性を有する低抵抗導電体であることが好ましい。このような負極集電体20としては、例えば、金属箔(厚み10~100μm)、穿孔金属箔(厚み10~100μm、孔径0.1~10mm)、エキスパンドメタル、発泡金属板、ガラス状炭素板等が挙げられる。また、金属種としては、例えば、アルミニウム、ステンレス鋼、チタン、貴金属(例えば、金、銀、白金)等が挙げられる。
<Negative electrode current collector>
The negative electrode current collector 20 is not particularly limited, and a negative electrode current collector generally used in a secondary battery can be used. Similarly to the positive electrode current collector 10, the negative electrode current collector 20 is preferably a low-resistance conductor having heat resistance that can withstand the heating during the secondary battery manufacturing process and the operating temperature of the secondary battery. Examples of the negative electrode current collector 20 include metal foil (thickness 10 to 100 μm), perforated metal foil (thickness 10 to 100 μm, hole diameter 0.1 to 10 mm), expanded metal, foam metal plate, and glassy carbon plate. Etc. Moreover, as a metal seed | species, aluminum, stainless steel, titanium, a noble metal (for example, gold, silver, platinum) etc. are mentioned, for example.
<負極合剤層>
 負極合剤層60は、まず、負極活物質、負極導電材、負極バインダ、分散媒等を混合して得られる負極合剤スラリーを、ドクターブレード法、ディッピング法、スプレー法等によって負極集電体20へ塗布する。次に、負極合剤スラリーの分散媒を乾燥させ、ロールプレスによる加圧成形によって、負極活物質層を形成する。次いで、得られた負極活物質層にイオン導電材をマイクロピペット等で滴下することによって、負極合剤層60を作製することができる。また、このような工程を複数回行うことによって、負極集電体20上に負極合剤層60を積層させることも可能である。
<Negative electrode mixture layer>
First, the negative electrode mixture layer 60 is obtained by mixing a negative electrode mixture slurry obtained by mixing a negative electrode active material, a negative electrode conductive material, a negative electrode binder, a dispersion medium, and the like by a doctor blade method, a dipping method, a spray method, and the like. Apply to 20. Next, the dispersion medium of the negative electrode mixture slurry is dried, and the negative electrode active material layer is formed by pressure molding using a roll press. Next, the negative electrode mixture layer 60 can be produced by dropping an ion conductive material into the obtained negative electrode active material layer with a micropipette or the like. In addition, the negative electrode mixture layer 60 can be laminated on the negative electrode current collector 20 by performing such a process a plurality of times.
(負極活物質)
 負極活物質としては、例えば、炭素系材料(例えば、黒鉛、易黒鉛化炭素材料、非晶質炭素材料等)、導電性高分子材料(例えば、ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレン等)、リチウム複合酸化物(例えば、チタン酸リチウム:LiTi12)、金属リチウム、リチウムと合金化する金属(例えば、アルミニウム、シリコン、スズ等)などが挙げられる。
(Negative electrode active material)
Examples of the negative electrode active material include carbon-based materials (eg, graphite, graphitizable carbon materials, amorphous carbon materials), conductive polymer materials (eg, polyacene, polyparaphenylene, polyaniline, polyacetylene, etc.), Examples thereof include lithium composite oxides (for example, lithium titanate: Li 4 Ti 5 O 12 ), metallic lithium, metals that form an alloy with lithium (for example, aluminum, silicon, tin, and the like).
(負極導電材)
 負極導電材は、正極導電材で例示したものと同様のものを使用できる。
(Negative electrode conductive material)
The thing similar to what was illustrated with the positive electrode electrically conductive material can be used for a negative electrode electrically conductive material.
(負極バインダ)
 負極バインダは、正極バインダで例示したものと同様のものを使用できる。
(Negative electrode binder)
The thing similar to what was illustrated with the positive electrode binder can be used for a negative electrode binder.
(分散媒)
 分散媒としては、例えば、水、1-メチル-2-ピロリドン等が挙げられる。
(Dispersion medium)
Examples of the dispersion medium include water and 1-methyl-2-pyrrolidone.
(イオン導電材)
 イオン導電材は、上述のイオン導電材と同様のものであってよい。
(Ion conductive material)
The ion conductive material may be the same as the above-described ion conductive material.
 負極合剤層の単位体積当たりのイオン伝導材の質量(負極合剤層のイオン伝導材の質量/負極合剤層の体積V2)は、0.05~0.50g/cmであってよい。負極合剤層の単位体積当たりのイオン伝導材の質量は、0.06g/cm以上であってもよく、0.40g/cm以下であってもよい。負極合剤層の単位体積当たりのイオン伝導材の質量が0.05g/cm以上であると、放電レート特性により優れる傾向にあり、0.50g/cm以下であると、過充電時の安全性により優れる。 The mass of the ion conductive material per unit volume of the negative electrode mixture layer (the mass of the ion conductive material of the negative electrode mixture layer / the volume V2 of the negative electrode mixture layer) may be 0.05 to 0.50 g / cm 3. . The mass of the ion conductive material per unit volume of the negative electrode mixture layer may be 0.06 g / cm 3 or more, or 0.40 g / cm 3 or less. When the mass of the ion conductive material per unit volume of the negative electrode mixture layer is 0.05 g / cm 3 or more, the discharge rate characteristics tend to be superior, and when it is 0.50 g / cm 3 or less, Excellent safety.
[電解質層]
 電解質層50は、電解質成分及び電解質バインダを含有する。電解質層50は、例えば、電解質成分に電解質バインダを添加・混合することによって作製することができる。また、電解質層50は、電解質成分及び電解質バインダを分散媒に混合して得られる溶液を調製し、分散媒を留去することによっても作製することができる。
[Electrolyte layer]
The electrolyte layer 50 contains an electrolyte component and an electrolyte binder. The electrolyte layer 50 can be produced, for example, by adding and mixing an electrolyte binder to the electrolyte component. The electrolyte layer 50 can also be produced by preparing a solution obtained by mixing an electrolyte component and an electrolyte binder with a dispersion medium and distilling off the dispersion medium.
<電解質成分>
 電解質成分は、無機粒子及びイオン導電材から構成される。すなわち、電解質層50は、イオン導電材を含有する。イオン導電材は無機粒子に担持されていてもよい。電解質成分は、例えば、無機粒子とイオン導電材とを特定の体積比率で混合し、メタノール等の分散媒を添加・混合して、電解質成分スラリーを調製する。その後、当該スラリーをシャーレに滴下し、分散媒を留去することによって、電解質成分を得ることができる。
<Electrolyte component>
The electrolyte component is composed of inorganic particles and an ion conductive material. That is, the electrolyte layer 50 contains an ionic conductive material. The ionic conductive material may be supported on inorganic particles. As the electrolyte component, for example, inorganic particles and an ionic conductive material are mixed at a specific volume ratio, and a dispersion medium such as methanol is added and mixed to prepare an electrolyte component slurry. Then, the electrolyte component can be obtained by dropping the slurry into a petri dish and distilling off the dispersion medium.
(無機粒子)
 無機粒子は、電気化学的安定性の観点から、絶縁性粒子であり、かつ上述の溶媒に不溶であることが好ましい。このような無機粒子としては、例えば、シリカ(SiO)粒子、γ-アルミナ(Al)粒子、セリア(CeO)粒子、又はジルコニア(ZrO)粒子であってもよい。また、無機粒子は、他の公知の金属酸化物粒子であってもよい。
(Inorganic particles)
From the viewpoint of electrochemical stability, the inorganic particles are preferably insulating particles and insoluble in the above-mentioned solvent. Such inorganic particles may be, for example, silica (SiO 2 ) particles, γ-alumina (Al 2 O 3 ) particles, ceria (CeO 2 ) particles, or zirconia (ZrO 2 ) particles. The inorganic particles may be other known metal oxide particles.
 イオン導電材の保持量は、無機粒子の比表面積に比例すると考えられる。無機粒子の一次粒子の平均粒径は、1nm~10μmであってもよい。平均粒径が10μm以下であると、無機粒子がイオン導電材を充分な量保持することができ、電解質層を形成し易くなる傾向にある。平均粒径が1nm以上であると、粒子間の表面間力が大きくなり過ぎて粒子同士が凝集することを抑制することができ、電解質層を形成し易くなる傾向にある。また、金属酸化物粒子の一次粒子の平均粒径は、1~50nm又は1~10nmであってもよい。なお、一次粒子の平均粒径は、レーザー散乱法を利用した公知の粒径分布測定装置を用いて求めることができる。 The amount of ion conductive material retained is considered to be proportional to the specific surface area of the inorganic particles. The average primary particle diameter of the inorganic particles may be 1 nm to 10 μm. When the average particle size is 10 μm or less, the inorganic particles can hold a sufficient amount of the ionic conductive material and tend to form an electrolyte layer. When the average particle size is 1 nm or more, the inter-surface force between the particles becomes too large, and the particles can be prevented from aggregating, and the electrolyte layer tends to be easily formed. The average particle size of the primary particles of the metal oxide particles may be 1 to 50 nm or 1 to 10 nm. In addition, the average particle diameter of primary particles can be calculated | required using the well-known particle size distribution measuring apparatus using a laser scattering method.
 無機粒子としてSiO粒子(平均粒径:7nm、ゼータ電位:約-20mV)を用いると、高耐熱性の電解質層が得られる傾向にある。 When SiO 2 particles (average particle size: 7 nm, zeta potential: about −20 mV) are used as inorganic particles, a high heat-resistant electrolyte layer tends to be obtained.
 無機粒子としてγ-Al粒子(平均粒径:5nm、ゼータ電位:約-5mV)を用いると、二次電池の充放電回数を延ばすことが可能となる傾向にある。このような効果が奏する理由は定かではないが、耐還元性の高いアルミナ粒子を用いることで充放電サイクル中の負極側でのリチウムデンドライト析出を抑制できるためと考えられる。 When γ-Al 2 O 3 particles (average particle size: 5 nm, zeta potential: about −5 mV) are used as the inorganic particles, the number of charge / discharge cycles of the secondary battery tends to be increased. The reason for such an effect is not clear, but it is considered that lithium dendrite precipitation on the negative electrode side during the charge / discharge cycle can be suppressed by using alumina particles having high reduction resistance.
 無機粒子としてCeO粒子(ゼータ電位:約30mV)又はZrO粒子(ゼータ電位:約40mV)を用いると、高イオン伝導性の電解質層が得られる傾向にある。無機粒子としてゼータ電位が高い粒子を用いると、粒子表面へのイオン導電材の吸着が弱まり、イオン導電材が比較的自由に熱運動できるようになると考えられる。その結果、イオン導電材からリチウムイオンが移動し易くなり、リチウムイオン伝導が促進されると予測される。 When CeO 2 particles (zeta potential: about 30 mV) or ZrO 2 particles (zeta potential: about 40 mV) are used as inorganic particles, a high ion conductive electrolyte layer tends to be obtained. When particles having a high zeta potential are used as the inorganic particles, it is considered that the adsorption of the ion conductive material to the particle surface is weakened, and the ion conductive material can be thermally moved relatively freely. As a result, lithium ions are likely to move from the ion conductive material, and lithium ion conduction is expected to be promoted.
 無機粒子は、リチウムイオン伝導性の無機物質を用いることによって、イオン伝導性により優れる電解質層が得られる傾向にある。そのような無機物質としては、例えば、Li5+XLa(Zr、A2-X)O12(式中、AはSc、Ti、C、Y、Nb、Hf、Ta、Al、Si、Ga、Ge、Snからなる群より選ばれる1種類以上の元素、1.4≦X≦2)、Li1+YAlTi2-Y(PO(0≦Y≦1)、Li3ZLa2/3-ZTiO(0≦Z≦2/3)等が挙げられる。これらは、室温におけるイオン伝導度が高く、電気化学的安定性が高い傾向にある。 The inorganic particles tend to provide an electrolyte layer having better ion conductivity by using a lithium ion conductive inorganic substance. As such an inorganic substance, for example, Li 5 + X La 3 (Zr X , A 2−X ) O 12 (where A is Sc, Ti, C, Y, Nb, Hf, Ta, Al, Si, Ga) , Ge, Sn, one or more elements selected from the group consisting of 1.4 ≦ X ≦ 2), Li 1 + Y Al Y Ti 2 -Y (PO 4 ) 3 (0 ≦ Y ≦ 1), Li 3Z La 2 / 3-Z TiO 3 (0 ≦ Z ≦ 2/3) and the like. These tend to have high ionic conductivity at room temperature and high electrochemical stability.
(イオン導電材)
 イオン導電材は、上述のイオン導電材と同様のものであってよい。
(Ion conductive material)
The ion conductive material may be the same as the above-described ion conductive material.
<電解質バインダ>
 電解質バインダは、フッ素系の樹脂が好適に用いられる。フッ素系の樹脂としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等が挙げられる。PVDF又はPTFEを用いることで、電解質層及び電極集電体の密着性が向上するため、電池性能が向上する傾向にある。
<Electrolyte binder>
As the electrolyte binder, a fluorine-based resin is preferably used. Examples of the fluorine-based resin include polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE). By using PVDF or PTFE, the adhesion between the electrolyte layer and the electrode current collector is improved, so that the battery performance tends to be improved.
外装体
 外装体30は、正極70、電解質層50及び負極80を備える電極群85を収容できる電池ケースである。外装体の材料は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等の耐食性を有するものであることが好ましい。外装体の容積Sは、電池のサイズに合わせて適宜設定することができる。
Exterior Body The exterior body 30 is a battery case that can accommodate an electrode group 85 including the positive electrode 70, the electrolyte layer 50, and the negative electrode 80. The material of the exterior body is preferably one having corrosion resistance such as aluminum, stainless steel, nickel plated steel or the like. The volume S of the exterior body can be appropriately set according to the size of the battery.
 外装体の単位容積当たりのイオン伝導材の総質量(イオン伝導材の総質量/外装体の容積S)は、0.12~0.35g/cmである。外装体の単位容積当たりのイオン伝導材の総質量は、0.15g/cm以上、0.18g/cm以上、0.21g/cm以上、0.24g/cm以上、0.27g/cm以上であってもよく、0.34g/cm以下、0.33g/cm以下、0.32g/cm以下、0.31g/cm以下、0.30g/cm以下であってもよい。外装体の単位容積当たりのイオン伝導材の総質量が0.12g/cm以上であると、放電レート特性に優れ、外装体の単位容積当たりのイオン伝導材の総質量が0.35g/cm以下であると、過充電時の安全性に優れる。 The total mass of the ion conductive material per unit volume of the exterior body (total mass of the ion conductive material / volume S of the exterior body) is 0.12 to 0.35 g / cm 3 . The total mass of the ion conductive material per unit volume of the outer package is 0.15 g / cm 3 or more, 0.18 g / cm 3 or more, 0.21 g / cm 3 or more, 0.24 g / cm 3 or more, 0.27 g. / cm 3 or more at a even better, 0.34 g / cm 3 or less, 0.33 g / cm 3 or less, 0.32 g / cm 3 or less, 0.31 g / cm 3 or less, 0.30 g / cm 3 or less There may be. When the total mass of the ion conductive material per unit volume of the outer package is 0.12 g / cm 3 or more, the discharge rate characteristics are excellent, and the total mass of the ion conductive material per unit volume of the outer package is 0.35 g / cm. When it is 3 or less, the safety during overcharge is excellent.
[リチウムイオン二次電池の製造方法]
 上述のリチウムイオン二次電池100は、正極集電体10及び正極集電体10上に設けられた正極合剤層40を有する正極70、電解質層50、並びに負極集電体20及び負極集電体20上に設けられた負極合剤層60を有する負極80を備える電極群85を作製する工程と、電極群85を外装体30に収容する工程と、を備える製造方法によって製造することができる。
[Method for producing lithium ion secondary battery]
The lithium ion secondary battery 100 described above includes a positive electrode 70 having a positive electrode current collector 10 and a positive electrode mixture layer 40 provided on the positive electrode current collector 10, an electrolyte layer 50, and a negative electrode current collector 20 and a negative electrode current collector. The electrode group 85 including the negative electrode 80 having the negative electrode mixture layer 60 provided on the body 20 and the process of accommodating the electrode group 85 in the exterior body 30 can be manufactured by a manufacturing method. .
 正極70は、例えば、正極集電体10上に正極活物質を含む正極活物質層が設けられた正極前駆体を用意する工程と、イオン導電材を正極活物質層に加えて正極合剤層40を形成する工程と、を備える製造方法によって製造することができる。 The positive electrode 70 includes, for example, a step of preparing a positive electrode precursor in which a positive electrode active material layer containing a positive electrode active material is provided on the positive electrode current collector 10, and a positive electrode mixture layer by adding an ionic conductive material to the positive electrode active material layer. And the step of forming 40.
 正極合剤層40の単位体積当たりのイオン伝導材の質量(正極合剤層のイオン伝導材の質量/正極合剤層の体積V1)は、0.05~0.50g/cmであってよい。正極合剤層の単位体積当たりのイオン伝導材の質量は、0.06g/cm以上であってもよく、0.40g/cm以下であってもよい。正極合剤層の単位体積当たりのイオン伝導材の質量が0.05g/cm以上であると、放電レート特性により優れる傾向にあり、0.50g/cm以下であると、過充電時の安全性により優れる傾向にある。 The mass of the ion conductive material per unit volume of the positive electrode mixture layer 40 (the mass of the ion conductive material of the positive electrode mixture layer / the volume V1 of the positive electrode mixture layer) is 0.05 to 0.50 g / cm 3. Good. The mass of the ion conductive material per unit volume of the positive electrode mixture layer may be 0.06 g / cm 3 or more, or 0.40 g / cm 3 or less. When the mass of the ion conductive material per unit volume of the positive electrode mixture layer is 0.05 g / cm 3 or more, the discharge rate characteristics tend to be excellent, and when it is 0.50 g / cm 3 or less, It tends to be superior to safety.
 電解質層50は、例えば、電解質成分に電解質バインダを添加・混合する工程と、得られた混合物をシート状に形成する工程と、を備える製造方法によって製造することができる。 The electrolyte layer 50 can be manufactured by, for example, a manufacturing method including a step of adding and mixing an electrolyte binder to an electrolyte component and a step of forming the obtained mixture into a sheet shape.
 負極80は、例えば、負極集電体20上に負極活物質を含む負極活物質層が設けられた負極前駆体を用意する工程と、イオン導電材を負極活物質層に加えて負極合剤層60を形成する工程と、を備える製造方法によって製造することができる。 The negative electrode 80 includes, for example, a step of preparing a negative electrode precursor in which a negative electrode active material layer including a negative electrode active material is provided on the negative electrode current collector 20, and an ionic conductive material added to the negative electrode active material layer to form a negative electrode mixture layer And a step of forming 60.
 負極合剤層60の単位体積当たりのイオン伝導材の質量(負極合剤層のイオン伝導材の質量/負極合剤層の体積V2)は、0.05~0.50g/cmであってよい。負極合剤層の単位体積当たりのイオン伝導材の質量は、0.06g/cm以上であってもよく、0.40g/cm以下であってもよい。負極合剤層の単位体積当たりのイオン伝導材の質量が0.05g/cm以上であると、放電レート特性により優れる傾向にあり、0.50g/cm以下であると、過充電時の安全性により優れる。 The mass of the ion conductive material per unit volume of the negative electrode mixture layer 60 (the mass of the ion conductive material of the negative electrode mixture layer / the volume V2 of the negative electrode mixture layer) is 0.05 to 0.50 g / cm 3. Good. The mass of the ion conductive material per unit volume of the negative electrode mixture layer may be 0.06 g / cm 3 or more, or 0.40 g / cm 3 or less. When the mass of the ion conductive material per unit volume of the negative electrode mixture layer is 0.05 g / cm 3 or more, the discharge rate characteristics tend to be superior, and when it is 0.50 g / cm 3 or less, Excellent safety.
 次いで、得られた正極70、電解質層50、及び負極80を備える電極群85を外装体30に収容することによって、リチウムイオン二次電池100を得ることができる。電極群85を外装体30に収容する際に、電極群85にイオン導電材を注液し、外装体の単位容積当たりのイオン伝導材の総質量が所定の範囲になるように調整してもよい。なお、注液されたイオン導電材は外装体30と電極群85との隙間に存在することになるため、注液前後において、正極合剤層40及び負極合剤層60の単位体積当たりのイオン伝導材の質量は変動しないと推察される。 Subsequently, the lithium ion secondary battery 100 can be obtained by housing the obtained electrode group 85 including the positive electrode 70, the electrolyte layer 50, and the negative electrode 80 in the outer package 30. Even when the electrode group 85 is accommodated in the outer package 30, an ion conductive material is injected into the electrode group 85, and the total mass of the ion conductive material per unit volume of the outer package is adjusted to be within a predetermined range. Good. In addition, since the injected ionic conductive material is present in the gap between the outer package 30 and the electrode group 85, the ions per unit volume of the positive electrode mixture layer 40 and the negative electrode mixture layer 60 before and after the injection. It is presumed that the mass of the conductive material does not change.
 図3は、リチウムイオン二次電池の他の実施形態を示す模式断面図である。リチウムイオン二次電池200は、正極集電体10、正極合剤層40、電解質層50、負極合剤層60、インターコネクタ90、正極合剤層40、電解質層50、負極合剤層60、インターコネクタ90、正極合剤層40、電解質層50、負極合剤層60、及び負極集電体20をこの順に備える電極群85と、外装体30と、を備える。図3に示すとおり、リチウムイオン二次電池200は、正極合剤層40、電解質層50、及び負極合剤層60をこの順で有する組み合わせを、インターコネクタ90を介して複数備えているとみなすことができる。複数の組み合わせの中でも、最外に存在する正極合剤層40は、正極集電体10に接続され、最外に存在する負極合剤層60は、負極集電体20に接続される。 FIG. 3 is a schematic cross-sectional view showing another embodiment of the lithium ion secondary battery. The lithium ion secondary battery 200 includes a positive electrode current collector 10, a positive electrode mixture layer 40, an electrolyte layer 50, a negative electrode mixture layer 60, an interconnector 90, a positive electrode mixture layer 40, an electrolyte layer 50, a negative electrode mixture layer 60, An electrode group 85 including the interconnector 90, the positive electrode mixture layer 40, the electrolyte layer 50, the negative electrode mixture layer 60, and the negative electrode current collector 20 in this order, and the exterior body 30 are provided. As shown in FIG. 3, the lithium ion secondary battery 200 is considered to include a plurality of combinations having the positive electrode mixture layer 40, the electrolyte layer 50, and the negative electrode mixture layer 60 in this order via the interconnector 90. be able to. Among the plurality of combinations, the outermost positive electrode mixture layer 40 is connected to the positive electrode current collector 10, and the outermost negative electrode mixture layer 60 is connected to the negative electrode current collector 20.
[インターコネクタ]
 インターコネクタ90には、電子伝導性が高いこと、イオン伝導性がないこと、負極合剤層60と正極合剤層40に接触する面がそれぞれの電位によって酸化還元反応を示さないことが求められる。インターコネクタ90は、正極集電体10及び負極集電体20として用いられるものであってもよく、アルミニウム箔又はSUS箔であってもよい。
[Interconnector]
The interconnector 90 is required to have high electron conductivity, no ionic conductivity, and the surface in contact with the negative electrode mixture layer 60 and the positive electrode mixture layer 40 do not exhibit a redox reaction depending on the respective potentials. . The interconnector 90 may be used as the positive electrode current collector 10 and the negative electrode current collector 20, and may be an aluminum foil or a SUS foil.
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
(実施例1)
<イオン導電材の調製>
 LiTFSI(リチウム塩)とテトラグライム(溶媒(一般式(1)で表されるグライム)、20℃蒸気圧:1Pa)とを1:1のモル比で混合し、ガラス瓶内でマグネティックスターラを用いて撹拌し、イオン導電材を調製した。20℃における蒸気圧が200Pa以下である溶媒の含有量は100モル%であった。
Example 1
<Preparation of ion conductive material>
LiTFSI (lithium salt) and tetraglyme (solvent (glyme represented by the general formula (1)), 20 ° C. vapor pressure: 1 Pa) are mixed at a molar ratio of 1: 1 using a magnetic stirrer in a glass bottle. Stir to prepare an ionic conductive material. Content of the solvent whose vapor pressure in 20 degreeC is 200 Pa or less was 100 mol%.
<正極の作製>
 LiNi1/3Mn1/3Co1/3(正極活物質)81.0質量部に、粉末状炭素(正極導電材)3.0質量部及びアセチレンブラック(正極導電材)6.0質量部を加え、混合物を得た。別途、ポリフッ化ビニリデン(PVDF、正極バインダ)10.0質量部をN-メチル-2-ピロリドン(NMP、分散媒)に溶解した溶液を用意し、これに上記混合物を加え、NMPで粘度を調整しながらプラネタリーミキサーで混合し、正極合剤スラリーを調製した。正極合剤スラリーを、厚み12μmのSUS鋼箔からなる集電体(正極集電体)の片面に、塗布機で均一かつ均等に塗布した。塗布後、ロールプレス機により圧縮成形し、5MPaで加圧し、Φ10mmに打ち抜くことで正極活物質層を有する正極前駆体を得た。正極前駆体の単位面積当たりの質量は、15mg/cmであった。
<Preparation of positive electrode>
LiNi 1/3 Mn 1/3 Co 1/3 O 2 (positive electrode active material) 81.0 parts by mass, powdered carbon (positive electrode conductive material) 3.0 parts by mass and acetylene black (positive electrode conductive material) 6.0 Part by mass was added to obtain a mixture. Separately, prepare a solution in which 10.0 parts by weight of polyvinylidene fluoride (PVDF, positive electrode binder) is dissolved in N-methyl-2-pyrrolidone (NMP, dispersion medium), add the above mixture to this, and adjust the viscosity with NMP. While mixing with a planetary mixer, a positive electrode mixture slurry was prepared. The positive electrode mixture slurry was uniformly and evenly applied to one side of a current collector (positive electrode current collector) made of SUS steel foil having a thickness of 12 μm with a coating machine. After the application, compression molding was performed with a roll press, pressurizing at 5 MPa, and punching out to Φ10 mm to obtain a positive electrode precursor having a positive electrode active material layer. The mass per unit area of the positive electrode precursor was 15 mg / cm 2 .
 得られた正極前駆体の正極活物質層に対して、マイクロピペットを用いて、上記イオン導電材を滴下することによって正極合剤層を有する正極を作製した。このとき、正極合剤層の単位体積当たりのイオン伝導材の質量が0.3g/cmとなるように調整した。なお、正極活物質層に滴下したイオン伝導材の質量は0.0306gであり、正極合剤層の体積は0.102cmであった。また、正極合剤層の体積はマイクロメータを用いて正極合剤層の厚み等を測定することによって求めた。 With respect to the positive electrode active material layer of the obtained positive electrode precursor, the said ion conductive material was dripped using the micropipette, and the positive electrode which has a positive mix layer was produced. At this time, the mass of the ion conductive material per unit volume of the positive electrode mixture layer was adjusted to be 0.3 g / cm 3 . The mass of the ion conductive material dropped on the positive electrode active material layer was 0.0306 g, and the volume of the positive electrode mixture layer was 0.102 cm 3 . Moreover, the volume of the positive mix layer was calculated | required by measuring the thickness etc. of a positive mix layer using a micrometer.
<負極の作製>
 黒鉛(負極活物質)90.0質量部に、PVDF(負極バインダ)10.0質量部をNMP(分散媒)に溶解した溶液を加え、NMPで粘度を調整しながらプラネタリーミキサーで混合し、負極合剤スラリーを調製した。負極合剤スラリーを、厚み12μmのSUS鋼箔からなる集電体(負極集電体)の片面に、塗布機で均一かつ均等に塗布した。塗布後、ロールプレス機により圧縮成形し、5MPaで加圧し、Φ10mmに打ち抜くことで負極活物質層を有する負極前駆体を得た。負極前駆体の単位面積当たりの質量は、6.8mg/cmであった。
<Production of negative electrode>
A solution obtained by dissolving 10.0 parts by mass of PVDF (negative electrode binder) in NMP (dispersion medium) is added to 90.0 parts by mass of graphite (negative electrode active material), and mixed with a planetary mixer while adjusting the viscosity with NMP. A negative electrode mixture slurry was prepared. The negative electrode mixture slurry was uniformly and evenly applied to one side of a current collector (negative electrode current collector) made of SUS steel foil having a thickness of 12 μm with a coating machine. After the application, compression molding was performed with a roll press, pressurizing at 5 MPa, and punching out to Φ10 mm to obtain a negative electrode precursor having a negative electrode active material layer. The mass per unit area of the negative electrode precursor was 6.8 mg / cm 2 .
 得られた負極前駆体の負極活物質層に対して、マイクロピペットを用いて、上記イオン導電材を滴下することによって負極合剤層を有する負極を作製した。このとき、負極合剤層の単位体積当たりのイオン伝導材の質量が0.3g/cmとなるように調整した。なお、負極活物質層に滴下したイオン伝導材の質量は0.0225gであり、負極合剤層の体積は0.075cmであった。また、負極合剤層の体積はマイクロメータを用いて負極合剤層の厚み等を測定することによって求めた。 With respect to the negative electrode active material layer of the obtained negative electrode precursor, the said ion conductive material was dripped using the micropipette, and the negative electrode which has a negative mix layer was produced. At this time, the mass of the ion conductive material per unit volume of the negative electrode mixture layer was adjusted to 0.3 g / cm 3 . The mass of the ion conductive material dropped onto the negative electrode active material layer was 0.0225 g, and the volume of the negative electrode mixture layer was 0.075 cm 3 . The volume of the negative electrode mixture layer was determined by measuring the thickness of the negative electrode mixture layer using a micrometer.
<電解質層用シートの作製>
 上記イオン導電材及びSiOナノ粒子(無機粒子)を体積基準で62:38の比率で混合し、これにメタノールを添加して30分間撹拌した。その後、得られた電解質成分スラリーをシャーレに広げ、メタノールを留去して、粉末状の電解質成分を得た。これに、5質量%となるようにポリテトラフルオロエチレン(PTFE、電解質バインダ)を添加し、充分に混合した後、加圧して伸張し、Φ16mmに打ち抜くことで、厚み約30μmの電解質層用シート得た。電解質層用シートにおけるイオン伝導材の質量は0.0506gであった。
<Preparation of electrolyte layer sheet>
The ionic conductive material and SiO 2 nanoparticles (inorganic particles) were mixed at a volume ratio of 62:38, and methanol was added thereto and stirred for 30 minutes. Thereafter, the obtained electrolyte component slurry was spread on a petri dish, and methanol was distilled off to obtain a powdery electrolyte component. To this, polytetrafluoroethylene (PTFE, electrolyte binder) is added so as to be 5% by mass, thoroughly mixed, then stretched by pressurization, and punched to Φ16 mm, so that the electrolyte layer sheet has a thickness of about 30 μm. Obtained. The mass of the ion conductive material in the electrolyte layer sheet was 0.0506 g.
<電池の作製>
 アルゴンで充填したグローブボックス内に、作製した正極、負極、及び電解質層用シートを入れ、負極集電体、負極合剤層、電解質層用シート、正極合剤層、及び正極集電体をこの順に重ね、2032サイズのコイン型電池セルホルダ(外装体、容積:0.542cm)に収容した。次いで、マイクロピペットを用いて、コイン型電池セルホルダに上記イオン導電材を注液し、外装体の単位容積当たりのイオン伝導材の総質量が、0.29g/cmとなるように調整した。なお、滴下したイオン伝導材の質量は0.0535gであり、イオン伝導材の総質量は0.1572gであった。その後、かしめ機によって密閉することで、実施例1のリチウムイオン二次電池を作製した。
<Production of battery>
The prepared positive electrode, negative electrode, and electrolyte layer sheet are placed in a glove box filled with argon, and the negative electrode current collector, the negative electrode mixture layer, the electrolyte layer sheet, the positive electrode mixture layer, and the positive electrode current collector are placed in this glove box. They were stacked in order and accommodated in a 2032 size coin-type battery cell holder (exterior body, volume: 0.542 cm 3 ). Next, using a micropipette, the ion conductive material was injected into a coin-type battery cell holder, and the total mass of the ion conductive material per unit volume of the outer package was adjusted to 0.29 g / cm 3 . The dropped ion conductive material had a mass of 0.0535 g, and the total mass of the ion conductive material was 0.1572 g. Then, the lithium ion secondary battery of Example 1 was produced by sealing with a caulking machine.
(実施例2)
 表1に示すとおり、イオン導電材の調製において、テトラグライムをDEME-TFSI(溶媒(イオン液体))に変更した以外は、実施例1と同様にして、実施例2のリチウムイオン二次電池を作製した。
(Example 2)
As shown in Table 1, the lithium ion secondary battery of Example 2 was prepared in the same manner as in Example 1 except that tetraglyme was changed to DEME-TFSI (solvent (ionic liquid)) in the preparation of the ion conductive material. Produced.
(実施例3)
 表1に示すとおり、イオン導電材の調製において、テトラグライムをプロピレンカーボネート(環状カーボネート、20℃蒸気圧:17Pa)に変更した以外は、実施例1と同様にして、実施例3のリチウムイオン二次電池を作製した。
(Example 3)
As shown in Table 1, in the preparation of the ion conductive material, lithium ion of Example 3 was obtained in the same manner as in Example 1 except that tetraglyme was changed to propylene carbonate (cyclic carbonate, 20 ° C. vapor pressure: 17 Pa). A secondary battery was produced.
(実施例4)
 表1に示すとおり、外装体の単位容積当たりのイオン伝導材の総質量を0.35g/cmとなるように調整した以外は、実施例1と同様にして、実施例4のリチウムイオン二次電池を作製した。
Example 4
As shown in Table 1, in the same manner as in Example 1, except that the total mass of the ionic conductive material per unit volume of the outer package was adjusted to 0.35 g / cm 3 , the lithium ion 2 of Example 4 was adjusted. A secondary battery was produced.
(実施例5)
 表1に示すとおり、外装体の単位容積当たりのイオン伝導材の総質量を0.23g/cmとなるように調整した以外は、実施例1と同様にして、実施例5のリチウムイオン二次電池を作製した。
(Example 5)
As shown in Table 1, in the same manner as in Example 1 except that the total mass of the ionic conductive material per unit volume of the outer package was adjusted to 0.23 g / cm 3 , the lithium ion 2 of Example 5 was adjusted. A secondary battery was produced.
(実施例6)
 表1に示すとおり、正極合剤層及び負極合剤層の単位体積当たりのイオン伝導材の質量を0.27g/cm、外装体の単位容積当たりのイオン伝導材の総質量を0.18g/cmとなるように調整した以外は、実施例1と同様にして、実施例6のリチウムイオン二次電池を作製した。
(Example 6)
As shown in Table 1, the mass of the ion conductive material per unit volume of the positive electrode mixture layer and the negative electrode mixture layer is 0.27 g / cm 3 , and the total mass of the ion conductive material per unit volume of the outer package is 0.18 g. A lithium ion secondary battery of Example 6 was produced in the same manner as in Example 1 except that the adjustment was made to be / cm 3 .
(実施例7)
 表1に示すとおり、正極合剤層及び負極合剤層の単位体積当たりのイオン伝導材の質量を0.12g/cm、外装体の単位容積当たりのイオン伝導材の総質量を0.12g/cmとなるように調整した以外は、実施例1と同様にして、実施例7のリチウムイオン二次電池を作製した。
(Example 7)
As shown in Table 1, the mass of the ion conductive material per unit volume of the positive electrode mixture layer and the negative electrode mixture layer is 0.12 g / cm 3 , and the total mass of the ion conductive material per unit volume of the outer package is 0.12 g. A lithium ion secondary battery of Example 7 was produced in the same manner as in Example 1 except that the adjustment was made to be / cm 3 .
(比較例1)
 表1に示すとおり、外装体の単位容積当たりのイオン伝導材の総質量を0.59g/cmとなるように調整した以外は、実施例1と同様にして、比較例1のリチウムイオン二次電池を作製した。
(Comparative Example 1)
As shown in Table 1, in the same manner as in Example 1 except that the total mass of the ion conductive material per unit volume of the outer package was adjusted to 0.59 g / cm 3 , the lithium ion 2 of Comparative Example 1 was used. A secondary battery was produced.
(比較例2)
 表1に示すとおり、外装体の単位容積当たりのイオン伝導材の総質量を0.41g/cmとなるように調整した以外は、実施例1と同様にして、比較例2のリチウムイオン二次電池を作製した。
(Comparative Example 2)
As shown in Table 1, in the same manner as in Example 1, except that the total mass of the ion conductive material per unit volume of the outer package was adjusted to 0.41 g / cm 3 , the lithium ion 2 of Comparative Example 2 was used. A secondary battery was produced.
(比較例3)
 表1に示すとおり、正極合剤層及び負極合剤層の単位体積当たりのイオン伝導材の質量を0.05g/cm、外装体の単位容積当たりのイオン伝導材の総質量を0.09g/cmとなるように調整した以外は、実施例1と同様にして、比較例3のリチウムイオン二次電池を作製した。
(Comparative Example 3)
As shown in Table 1, the mass of the ion conductive material per unit volume of the positive electrode mixture layer and the negative electrode mixture layer is 0.05 g / cm 3 , and the total mass of the ion conductive material per unit volume of the outer package is 0.09 g. A lithium ion secondary battery of Comparative Example 3 was produced in the same manner as in Example 1, except that the adjustment was made to be / cm 3 .
(比較例4)
 表1に示すとおり、イオン導電材の調製において、テトラグライムをテトラグライム(80モル%)とジメチルカーボネート(20℃蒸気圧:5300Pa、20モル%)との混合液に変更した以外は、実施例1と同様にして、比較例4のリチウムイオン二次電池を作製した。
(Comparative Example 4)
As shown in Table 1, in the preparation of the ion conductive material, except that tetraglyme was changed to a mixed solution of tetraglyme (80 mol%) and dimethyl carbonate (20 ° C vapor pressure: 5300 Pa, 20 mol%), Examples In the same manner as in Example 1, a lithium ion secondary battery of Comparative Example 4 was produced.
<コインセル電池の評価>
(放電レート特性の評価)
 実施例1~7及び比較例1~4のリチウムイオン二次電池について、1480ポテンシオスタット(ソーラトロン社製)を用いて、0.1Cで充電を行い、SOC(Stage of Charge)100%で1時間保持した後、0.1Cで放電を行った。上限電位を4.2V、下限電位を2.7Vとし、0.1Cでの放電容量を測定した。その後、0.1Cで充電した後、SOC100%で1時間保持し、0.5Cで放電することで、0.5Cでの放電容量を測定した。このとき、以下の式で表される値を放電レート特性とした。結果を表2に示す。
 放電レート特性(%)=[(0.5Cでの放電容量)/(0.1Cでの放電容量)]×100
<Evaluation of coin cell battery>
(Evaluation of discharge rate characteristics)
The lithium ion secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 4 were charged at 0.1 C using a 1480 potentiostat (manufactured by Solartron), and 1% at SOC (Stage of Charge) 100%. After holding for a period of time, discharge was performed at 0.1 C. The upper limit potential was 4.2 V, the lower limit potential was 2.7 V, and the discharge capacity at 0.1 C was measured. Then, after charging at 0.1 C, the discharge capacity at 0.5 C was measured by holding at 100% SOC for 1 hour and discharging at 0.5 C. At this time, the value represented by the following formula was used as the discharge rate characteristic. The results are shown in Table 2.
Discharge rate characteristic (%) = [(discharge capacity at 0.5 C) / (discharge capacity at 0.1 C)] × 100
(過充電特性の評価)
 0.5Cレート特性の評価を行った後、0.1Cでさらに放電し、1時間放置した。その後、0.1Cで充電し、5V到達時から1時間経過後の電圧変化量を測定した。結果を表2に示す。本試験においては、数値が高いほど、電池の内部抵抗が上昇していること(すなわち、良好な電流遮断特性を備えていること)を意味し、安全性に優れるといえる。
(Evaluation of overcharge characteristics)
After evaluating the 0.5C rate characteristics, the battery was further discharged at 0.1C and left for 1 hour. Thereafter, the battery was charged at 0.1 C, and the amount of voltage change after 1 hour from the time of reaching 5 V was measured. The results are shown in Table 2. In this test, the higher the value, the higher the internal resistance of the battery (that is, the better current interruption characteristics), and the better the safety.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例1~7のリチウムイオン二次電池は、過充電時の安全性に優れるとともに、放電レート特性にも優れていた。一方、外装体の単位容積当たりのイオン伝導材の総質量が0.35g/cmを超える比較例1、2のリチウムイオン二次電池は、放電レート特性に優れるものの、過充電時の安全性が充分ではなかった。また、外装体の単位容積当たりのイオン伝導材の総質量が0.12g/cm未満である比較例3及び20℃における蒸気圧が200Pa以下である溶媒の含有量が溶媒の総物質量を基準として85モル%未満である比較例4のリチウムイオン二次電池は、過充電時の安全性に優れるものの、放電レート特性が充分ではなかった。これらの結果から、本発明のリチウム二次電池が、過充電時の安全性に優れるとともに、放電レート特性にも優れることが確認された。 The lithium ion secondary batteries of Examples 1 to 7 were excellent in safety during overcharging and also in discharge rate characteristics. On the other hand, the lithium ion secondary batteries of Comparative Examples 1 and 2 in which the total mass of the ion conductive material per unit volume of the outer package exceeds 0.35 g / cm 3 are excellent in discharge rate characteristics, but are safe during overcharge. Was not enough. Further, the total amount of substance content solvent of the solvent vapor pressure is less than 200Pa total weight of the ion conductive material of Comparative Example 3 and 20 ° C. less than 0.12 g / cm 3 per unit volume of the outer body The lithium ion secondary battery of Comparative Example 4, which is less than 85 mol% as a reference, is excellent in safety during overcharge, but has insufficient discharge rate characteristics. From these results, it was confirmed that the lithium secondary battery of the present invention was excellent in safety during overcharge and also in discharge rate characteristics.
 本発明で得られるリチウムイオン二次電池は、セルコントローラー又は制御盤と接続し、筐体で保護することによって、蓄電デバイスとして使用することができる。本発明に係るリチウムイオン二次電池は、より高い電流での充放電が可能となり、さらに、サイクルに伴う蓄電性能の低下を抑制することが可能となる。また、リチウムイオン二次電池を用いた蓄電デバイスは、自動車用電源として車体前面又は底面に配置することも可能である。さらに、蓄電デバイスは、産業用電源として電力需給バランス化のためにも使用することが可能となる。 The lithium ion secondary battery obtained in the present invention can be used as an electricity storage device by connecting to a cell controller or control panel and protecting it with a casing. The lithium ion secondary battery according to the present invention can be charged / discharged at a higher current, and further can suppress a decrease in power storage performance associated with the cycle. In addition, an electricity storage device using a lithium ion secondary battery can be disposed on the front surface or the bottom surface of a vehicle body as a power source for an automobile. Furthermore, the power storage device can be used as an industrial power source for balancing power supply and demand.
 10…正極集電体、20…負極集電体、30…外装体、40…正極合剤層、50…電解質層、60…負極合剤層、70…正極、80…負極、85…電極群、90…インターコネクタ、100、200…リチウムイオン二次電池、S…容積(外装体)、V1…体積(正極合剤層)、V2…体積(負極合剤層)。 DESCRIPTION OF SYMBOLS 10 ... Positive electrode collector, 20 ... Negative electrode collector, 30 ... Exterior body, 40 ... Positive electrode mixture layer, 50 ... Electrolyte layer, 60 ... Negative electrode mixture layer, 70 ... Positive electrode, 80 ... Negative electrode, 85 ... Electrode group , 90 ... interconnector, 100, 200 ... lithium ion secondary battery, S ... volume (exterior body), V1 ... volume (positive electrode mixture layer), V2 ... volume (negative electrode mixture layer).

Claims (5)

  1.  正極集電体及び前記正極集電体上に設けられた正極合剤層を有する正極、電解質層、並びに負極集電体及び前記負極集電体上に設けられた負極合剤層を有する負極を備える電極群と、
     前記電極群を収容する外装体と、
    を備え、
     前記電極群が、溶媒及びリチウム塩を含むイオン伝導材を含有し、
     前記外装体の単位容積当たりの前記イオン伝導材の総質量が、0.12~0.35g/cmであり、
     前記溶媒が、20℃における蒸気圧が200Pa以下である溶媒を含み、
     前記20℃における蒸気圧が200Pa以下である溶媒の含有量が、溶媒の総物質量を基準として、85モル%以上である、リチウムイオン二次電池。
    A positive electrode having a positive electrode current collector and a positive electrode mixture layer provided on the positive electrode current collector, an electrolyte layer, and a negative electrode having a negative electrode current collector and a negative electrode mixture layer provided on the negative electrode current collector An electrode group comprising:
    An exterior body that houses the electrode group;
    With
    The electrode group contains an ion conductive material containing a solvent and a lithium salt,
    The total mass of the ion conductive material per unit volume of the outer package is 0.12 to 0.35 g / cm 3 ;
    The solvent includes a solvent having a vapor pressure at 20 ° C. of 200 Pa or less,
    The lithium ion secondary battery, wherein the content of the solvent having a vapor pressure at 20 ° C of 200 Pa or less is 85 mol% or more based on the total amount of the solvent.
  2.  前記正極合剤層の単位体積当たりの前記イオン伝導材の質量が、0.05~0.50g/cmである、請求項1に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein a mass of the ion conductive material per unit volume of the positive electrode mixture layer is 0.05 to 0.50 g / cm 3 .
  3.  前記負極合剤層の単位体積当たりの前記イオン伝導材の質量が、0.05~0.50g/cmである、請求項1又は2に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1 or 2, wherein a mass of the ion conductive material per unit volume of the negative electrode mixture layer is 0.05 to 0.50 g / cm 3 .
  4.  前記20℃における蒸気圧が200Pa以下である溶媒が、下記一般式(1)で表されるグライムを含む、請求項1~3のいずれか一項に記載のリチウムイオン二次電池。
     RO-(CHCHO)-R (1)
    [式(1)中、R及びRはそれぞれ独立に炭素数1~4のアルキル基を示し、mは3~6の整数を示す。]
    The lithium ion secondary battery according to any one of claims 1 to 3, wherein the solvent having a vapor pressure at 20 ° C of 200 Pa or less contains glyme represented by the following general formula (1).
    R 1 O— (CH 2 CH 2 O) m —R 2 (1)
    [In Formula (1), R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms, and m represents an integer of 3 to 6. ]
  5.  前記20℃における蒸気圧が200Pa以下である溶媒が、トリエチレングリコールジメチルエーテル又はテトラエチレングリコールジメチルエーテルを含む、請求項1~3のいずれか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 3, wherein the solvent having a vapor pressure of 200 Pa or less at 20 ° C contains triethylene glycol dimethyl ether or tetraethylene glycol dimethyl ether.
PCT/JP2019/010365 2018-03-14 2019-03-13 Lithium ion secondary battery WO2019177055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020506623A JPWO2019177055A1 (en) 2018-03-14 2019-03-13 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-046980 2018-03-14
JP2018046980 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019177055A1 true WO2019177055A1 (en) 2019-09-19

Family

ID=67907929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010365 WO2019177055A1 (en) 2018-03-14 2019-03-13 Lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JPWO2019177055A1 (en)
WO (1) WO2019177055A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282818A (en) * 1994-02-16 1995-10-27 Hitachi Maxell Ltd Layered battery
JP2009212001A (en) * 2008-03-05 2009-09-17 Honbo:Kk Candleholder
JP2016076348A (en) * 2014-10-03 2016-05-12 日産自動車株式会社 Secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282818A (en) * 1994-02-16 1995-10-27 Hitachi Maxell Ltd Layered battery
JP2009212001A (en) * 2008-03-05 2009-09-17 Honbo:Kk Candleholder
JP2016076348A (en) * 2014-10-03 2016-05-12 日産自動車株式会社 Secondary battery

Also Published As

Publication number Publication date
JPWO2019177055A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP7232353B2 (en) rechargeable battery cell
CN108376799B (en) Nonaqueous electrolyte solution and method for producing nonaqueous electrolyte secondary battery
JP6861417B2 (en) Electrolyte and lithium ion secondary battery
JP2018195372A (en) Electrode composition for lithium ion battery, lithium ion battery electrode and lithium ion battery using the composition, and method of manufacturing lithium ion battery electrode
CN104078706A (en) Electrolyte solution for lithium metal battery, and lithium metal battery
KR20230137982A (en) SO2 based electrolyte for rechargeable battery cells and rechargeable battery cells
JP2014022328A (en) Method for manufacturing nonaqueous electrolyte secondary battery
WO2019077919A1 (en) Nonaqueous electrolyte storage element and method for producing nonaqueous electrolyte storage element
WO2014162529A1 (en) Negative electrode for lithium-ion secondary battery, lithium-ion secondary battery, and method for manufacturing said negative electrode and lithium-ion secondary battery
EP3150555A1 (en) Silicon material and secondary cell negative electrode
JP6270036B2 (en) Non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte
KR102294200B1 (en) Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer and secondary battery
CN109155435B (en) Solid electrolyte, all-solid-state battery
JP2014089855A (en) Negative electrode active material for nonaqueous secondary battery use, and nonaqueous secondary battery
JP6668642B2 (en) Stabilized lithium powder, negative electrode and lithium ion secondary battery using the same
JP2018049821A (en) Nonaqueous electrolyte for power storage element, nonaqueous electrolyte power storage element, and method for manufacturing nonaqueous electrolyte power storage element
CN110235296A (en) Semisolid electrolyte, semisolid electrolyte, semisolid electrolyte layer, electrode, secondary cell
WO2019177055A1 (en) Lithium ion secondary battery
JP6894973B2 (en) Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer, electrodes and secondary battery
Girard Investigation of phosphonium bis (fluorosulfonyl) imide-based ionic liquid electrolytes for lithium batteries
JP6960760B2 (en) Additives for lithium secondary batteries, electrolytes for lithium secondary batteries using them, methods for manufacturing lithium secondary batteries and additives for lithium secondary batteries using them.
JP2021077608A (en) Nonaqueous electrolyte, nonaqueous electrolyte power storage element and method for manufacturing nonaqueous electrolyte power storage element
US20230378541A1 (en) Rechargeable battery cell
WO2021181529A1 (en) Electrode for lithium-ion secondary battery, and lithium-ion secondary battery
EP3150554A1 (en) Silicon material and secondary cell negative electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506623

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766909

Country of ref document: EP

Kind code of ref document: A1