WO2019177038A1 - Plasma processing device, plasma processing method, and program for plasma processing device - Google Patents

Plasma processing device, plasma processing method, and program for plasma processing device Download PDF

Info

Publication number
WO2019177038A1
WO2019177038A1 PCT/JP2019/010315 JP2019010315W WO2019177038A1 WO 2019177038 A1 WO2019177038 A1 WO 2019177038A1 JP 2019010315 W JP2019010315 W JP 2019010315W WO 2019177038 A1 WO2019177038 A1 WO 2019177038A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
current
detection unit
current value
current detection
Prior art date
Application number
PCT/JP2019/010315
Other languages
French (fr)
Japanese (ja)
Inventor
敏彦 酒井
誓治 中田
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Publication of WO2019177038A1 publication Critical patent/WO2019177038A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a plasma processing apparatus provided with an antenna for generating an inductively coupled plasma through a high-frequency current, a plasma processing method using the plasma processing apparatus, and a program for the plasma processing apparatus.
  • Patent Document 1 a plurality of antennas are arranged on four sides of a substrate in a vacuum vessel, and a high-frequency current is passed through these antennas to cause inductively coupled plasma ( Some are configured to plasma process a substrate by generating an abbreviation ICP).
  • the plasma processing apparatus further includes a variable impedance element connected to each of the plurality of antennas, and a pickup coil or a capacitor provided on the power feeding side of each of the plurality of antennas. Then, by controlling the impedance value of the variable impedance element based on the output value from the pickup coil or capacitor, the density of the plasma generated around each antenna is controlled within a predetermined range and generated in the vacuum vessel.
  • the plasma density is spatially uniform.
  • the present invention has been made to solve the above-described problems, and it is possible to cope with an increase in the size of a substrate by using a long antenna, and a uniform plasma along the longitudinal direction of the antenna. It is the main issue to generate
  • a plasma processing apparatus includes an antenna for generating plasma in a vacuum vessel that accommodates a substrate, a high-frequency power source that supplies a high-frequency current to the antenna, and a current that flows through a feeding-side end of the antenna.
  • a control device that controls the reactance of the load using the first current value detected by the current detection unit and the second current value detected by the second current detection unit as parameters.
  • the load here is what consumes the high frequency current supplied from a high frequency power supply.
  • the reactance of the load is controlled by using the first current value flowing through the power feeding side end of the antenna and the second current value flowing through the ground side end of the antenna as parameters. Can be made as uniform as possible along the longitudinal direction. As a result, it is possible to generate uniform plasma along the longitudinal direction of the antenna while using a long antenna to cope with an increase in the size of the substrate.
  • the load is a variable capacitor, and the control device controls the first current value and the second current.
  • the value of the variable capacitor is used as a parameter.
  • the control device may be configured so that the first current value and the second current value are equal to each other.
  • the reactance of the feedback control is performed.
  • At least two antennas are connected in series, and the first current detector, the second current detector, and the load are provided for each antenna, and the high frequency of the two antennas
  • the second current detection unit that detects the current flowing through the ground side end of the power supply side antenna is also used as the first current detection unit that detects the current flowing through the power supply side end of the other antenna.
  • the number of current detection units can be reduced by one compared to a configuration in which the first current detection unit and the second current detection unit are provided for each antenna.
  • the equipment cost can be reduced and the parameter for controlling the load can be reduced by one, so that the control becomes easy and the current can be made more uniform.
  • the impedance of the antenna increases, thereby generating a large potential difference between both ends of the antenna.
  • plasma uniformity such as plasma density distribution, potential distribution, and electron temperature distribution is deteriorated due to the influence of the large potential difference, and the uniformity of substrate processing is also deteriorated.
  • the impedance of the antenna increases, there is a problem that it is difficult for a high-frequency current to flow through the antenna.
  • At least two of the antennas penetrate each of the opposing side walls of the vacuum vessel and are connected in series with each other by a connection conductor interposed between the end portions on the same side of each antenna, and the connection conductor is It is preferable to have a variable capacitor electrically connected to the pair of antennas.
  • the reactance with respect to the high-frequency current can be simply calculated by subtracting the capacitive reactance of the variable capacitor from the inductive reactance of the antenna. Impedance can be reduced. As a result, even when the antenna is lengthened, an increase in impedance can be suppressed, high-frequency current can easily flow through the antenna, and plasma can be generated efficiently.
  • the antenna has a flow path through which a coolant flows, and the connection conductor connects the variable capacitor and an end of one antenna and flows out from an opening formed in the end.
  • the first connecting portion that guides the coolant to the variable capacitor, the variable capacitor and the end of the other antenna are connected, and the variable capacitor is passed through the opening formed in the end.
  • the cooling liquid is a dielectric of the variable capacitor.
  • the plasma processing method includes an antenna for generating plasma in a vacuum container that accommodates a substrate, a high-frequency power source that supplies a high-frequency current to the antenna, and a current that flows through a power feeding side end of the antenna.
  • a first current detecting unit for detecting current a second current detecting unit for detecting a current flowing in the grounded end of the antenna, and a load having a variable reactance connected to the grounded end of the antenna.
  • a program for a plasma processing apparatus includes an antenna for generating plasma in a vacuum container that accommodates a substrate, a high-frequency power source that supplies a high-frequency current to the antenna, and a feeding side end of the antenna.
  • a first current detection unit that detects a flowing current; a second current detection unit that detects a current flowing through a ground-side end of the antenna; and a load having a variable reactance connected to the ground-side end of the antenna.
  • a program for use in a plasma processing apparatus comprising the first current value detected by the first current detector and the second current value detected by the second current detector as parameters. This program causes a computer to exert a function of controlling the reactance of the computer.
  • uniform plasma can be generated along the longitudinal direction of the antenna while being able to cope with an increase in the size of the substrate using a long antenna.
  • the longitudinal cross-sectional view which shows typically the structure of the plasma processing apparatus of this embodiment.
  • the functional block diagram which shows the function of the control apparatus of the embodiment.
  • the plasma processing apparatus 100 of this embodiment performs processing on the substrate W using inductively coupled plasma P.
  • substrate W is a board
  • the processing applied to the substrate W is, for example, film formation by plasma CVD, etching, ashing, sputtering, or the like.
  • the plasma processing apparatus 100 is a plasma CVD apparatus when a film is formed by plasma CVD, a plasma etching apparatus when etching is performed, a plasma ashing apparatus when ashing is performed, and a plasma sputtering apparatus when sputtering is performed. be called.
  • the plasma processing apparatus 100 includes a vacuum vessel 2 that is evacuated and into which a gas G is introduced, a long antenna 3 disposed in the vacuum vessel 2, and a vacuum vessel 2.
  • a high frequency power source 4 for applying a high frequency for generating inductively coupled plasma P to the antenna 3 is provided.
  • a high frequency is applied to the antenna 3 from the high frequency power source 4
  • a high frequency current IR flows through the antenna 3
  • an induction electric field is generated in the vacuum chamber 2
  • inductively coupled plasma P is generated.
  • the vacuum vessel 2 is, for example, a metal vessel, and the inside thereof is evacuated by the evacuation device 5.
  • the vacuum vessel 2 is electrically grounded in this example.
  • a substrate holder 6 that holds the substrate W is provided in the vacuum container 2.
  • a bias voltage may be applied to the substrate holder 6 from the bias power source 7.
  • the bias voltage is, for example, a negative DC voltage, a negative pulse voltage, or the like, but is not limited thereto. With such a bias voltage, for example, the energy when positive ions in the plasma P are incident on the substrate W can be controlled to control the crystallinity of the film formed on the surface of the substrate W. .
  • a heater 61 for heating the substrate W may be provided in the substrate holder 6.
  • the antenna 3 is linear here, and is 1 above the substrate W in the vacuum chamber 2 and along the surface of the substrate W (for example, substantially parallel to the surface of the substrate W).
  • the book is arranged.
  • Insulating members 8 are respectively provided at portions where both end portions of the antenna 3 penetrate outside the vacuum vessel 2. Both end portions of the antenna 3 pass through the insulating members 8, and the through portions are vacuum-sealed by packing 91, for example. Each insulating member 8 and the vacuum vessel 2 are also vacuum sealed by, for example, packing 92.
  • the material of the insulating member 8 is, for example, ceramics such as alumina, quartz, or engineering plastic such as polyphenylene sulfide (PPS) or polyether ether ketone (PEEK).
  • one end is a power supply side end 3a connected to the high frequency power supply 4, and the other end is a ground side end that is grounded. 3b.
  • the power supply side end 3a is connected to the high frequency power source 4 via the matching circuit 41, and the ground side end 3b is grounded via the variable capacitor VC.
  • the variable capacitor VC consumes a high-frequency current supplied from the high-frequency power supply 4, and is an example of a reactance element having a variable reactance.
  • the high frequency current IR can flow from the high frequency power supply 4 to the antenna 3 via the matching circuit 41, and the reactance with respect to the high frequency current IR can be changed by changing the capacitance of the variable capacitor VC.
  • the high frequency is, for example, a general 13.56 MHz, but is not limited thereto.
  • a portion of the antenna 3 located in the vacuum vessel 2 is covered with a straight tubular insulating cover 10. Both ends of the insulating cover 10 are supported by insulating members 8.
  • the material of the insulating cover 10 is, for example, quartz, alumina, fluororesin, silicon nitride, silicon carbide, silicon or the like.
  • the antenna 3 of the present embodiment has a hollow structure having a flow path 3S through which the coolant CL flows.
  • the metal pipe 31 is a straight pipe.
  • the material of the metal pipe 31 is, for example, copper, aluminum, alloys thereof, stainless steel, or the like.
  • the plasma processing apparatus 100 detects the current flowing through the power supply side end 3a of the antenna 3 and the second current detecting the current flowing through the ground side end 3b of the antenna 3.
  • a current detection unit S2 and a control device X that controls the capacitance of the variable capacitor VC using the first current value detected by the first current detection unit S1 and the second current value detected by the second current detection unit S2 as parameters. It further comprises.
  • the first current detection unit S1 is a current monitor, such as a current transformer, which is attached to the power supply side end 3a or the vicinity thereof and is located outside the vacuum vessel 2, and has a magnitude of current flowing through the power supply side end 3a. A certain first current value I1 is detected, and a signal indicating the first current value I1 is output to the control device X.
  • the second current detection unit S2 is a current monitor, such as a current transformer, which is attached to the ground side end 3b or the vicinity thereof and is located outside the vacuum vessel 2, and has a magnitude of current flowing through the ground side end 3b. A certain second current value I2 is detected, and a signal indicating the second current value I2 is output to the control device X.
  • the control device X is physically a computer including a CPU, a memory, an A / D converter, an input / output interface, and the like. A program stored in the memory is executed, and each device cooperates, so that FIG. As shown in FIG. 4, the first current value acquisition unit X1, the second current value acquisition unit X2, and the reactance control unit X3 are configured to exhibit functions. Hereinafter, each part will be described.
  • the first current value acquisition unit X1 acquires a signal indicating the first current value I1 from the first current detection unit S1 by wire or wireless, and transmits the first current value I1 to the reactance control unit X3. .
  • the second current value acquisition unit X2 acquires a signal indicating the second current value I2 from the second current detection unit S2 by wire or wireless, and transmits the second current value I2 to the reactance control unit X3. .
  • the reactance control unit X3 controls the capacitance of the variable capacitor VC using the first current value I1 acquired by the first current value acquisition unit X1 and the second current value I2 acquired by the second current value acquisition unit X2 as parameters. is there.
  • a plurality of loads as reactance elements whose reactances are measured by a network analyzer or the like are prepared, and loads having different reactances are sequentially connected to the ground side of the antenna 3 as shown in FIG.
  • the current difference obtained by subtracting the second current value I2 detected by the second current detection unit S2 from the first current value I1 detected by the first current detection unit S1 is an average value of these current values I1 and I2.
  • the measured data shown in FIG. 4 is a plot of the value divided by and the reactance of the load connected to the ground side of the antenna 3 at that time.
  • the reactance control unit X3 is configured to feedback control the capacitance of the variable capacitor VC so that the first current value I1 and the second current value I2 are equal.
  • I1-second current value I2 ⁇ 0 the capacitance of the variable capacitor VC is reduced to reduce reactance, and when first current value I1-second current value I2> 0, the capacitance of the variable capacitor VC is increased. To increase the reactance.
  • variable capacitor VC is controlled using the plasma processing apparatus 100 of the present embodiment so that the first current value I1 and the second current value I2 are equal to each other corresponds to the variable capacitor VC of the present embodiment.
  • FIG. 5 shows a result of comparison of variations in film forming speed along the longitudinal direction of the antenna when the configuration is not provided and the above-described control is not performed (comparative example).
  • the “variation” is a value obtained by the following equation.
  • the first current value flowing through the power feeding side end 3a of the antenna 3 is equal to the second current value flowing through the ground side end 3b of the antenna 3.
  • the capacitance of the variable capacitor VC is feedback-controlled, the current flowing through the antenna 3 can be made as uniform as possible along the longitudinal direction.
  • variable capacitor VC is used as a load with variable reactance, for example, the configuration of the entire apparatus can be simplified as compared with a configuration in which a plurality of fixed capacitors having different capacities are connected to the antenna in a switchable manner. .
  • the antenna 3 can be cooled by the coolant CL, the plasma P can be generated stably.
  • the plasma processing apparatus 100 includes one antenna 3, but may include a plurality of antennas 3 connected in series or in parallel.
  • the antenna 3 on the high frequency power supply side (hereinafter referred to as the first antenna 3 ⁇ / b> A) has its power supply side end 3 a connected to the high frequency power supply 4 via the matching circuit 41,
  • the antenna 3 (hereinafter referred to as the second antenna 3B) has a ground side end 3b grounded.
  • a first variable capacitor VC1 is provided between each first antenna 3A and the matching circuit 41, and each first antenna 3A is connected to a common high-frequency power source 4 or matching circuit 41. Yes. On the other hand, each second antenna 3B is grounded via a second variable capacitor VC2.
  • connection conductor 12 interposed between the end portions on the same side of the antennas 3A and 3B, as shown in FIG.
  • connection conductor 12 is omitted for convenience of explanation.
  • connection conductor 12 connects the ground side end 3b of the first antenna 3A and the power supply side end 3a of the second antenna 3B, and has a flow path inside, and each antenna is connected to the flow path.
  • a cooling liquid CL for cooling 3A and 3B flows. Thereby, the coolant CL that has flowed through the first antenna 3 ⁇ / b> A flows into the second antenna 3 ⁇ / b> B through the flow path of the connection conductor 12.
  • connection conductor 12 connects the third variable capacitor VC3 that is electrically connected to the antenna 3, and the first variable capacitor VC3 and the ground-side end 3b of the first antenna 3A. And a second connection portion 15 for connecting the third variable capacitor VC3 and the power feeding side end portion 3a of the second antenna 3B.
  • the first connection portion 14 surrounds the ground-side end portion 3b of the first antenna 3A, thereby making electrical contact with the antenna 3A and cooling from the opening 3H formed at the end portion of the antenna 3A.
  • the liquid CL is guided to the third variable capacitor VC3.
  • the second connection portion 15 surrounds the power supply side end portion 3a of the second antenna 3B, thereby making electrical contact with the antenna 3B and supplying the coolant CL that has passed through the third variable capacitor VC3 to the antenna 3B. It leads to the opening 3H formed at the end of 3B.
  • the third variable capacitor VC3 includes a first fixed electrode 16 electrically connected to the first antenna 3A, a second fixed electrode 17 electrically connected to the second antenna 3B, and a first A first capacitor is formed with the fixed electrode 16 and a movable electrode 18 is formed between the second fixed electrode 17 and a second capacitor.
  • the movable electrode 18 has a predetermined rotation axis. By rotating around C, the capacitance can be changed.
  • the variable capacitor 13 includes an insulating storage container 19 that stores the first fixed electrode 16, the second fixed electrode 17, and the movable electrode 18, and the cooling liquid CL that fills the inside of the storage container 19 is It becomes a dielectric of the variable capacitor 13.
  • the second current detection unit S2 provided for the first antenna 3A is also used as the first current detection unit S1 for the second antenna 3B, and the second variable capacitor VC3 and the second current detection unit S2 are used. It arrange
  • this current detection unit is also referred to as a combined current detection unit S1 (S2).
  • the shared current detection unit S1 (S2) may be disposed between the third variable capacitor VC3 and the ground side end 3b of the first antenna 3A.
  • the first current detection unit S1 provided for the first antenna 3A detects the first current value I1 flowing through the power feeding side end 3a of the first antenna 3A. Further, the shared current detector S1 (S2) detects the second current value I2 that flows through the ground-side end 3b of the first antenna 3A and flows through the power-feed end 3a of the second antenna 3B. Further, the second current detection unit S2 provided for the second antenna 3B detects the third current value I3 flowing through the ground-side end 3b of the second antenna 3B.
  • control device uses the first current value I1, the second current value I2, and the third current value I3 as parameters, and the second variable capacitor VC2 and the third variable capacitor VC3. Control the capacity.
  • the measurement data shown in FIG. The description will be given with reference.
  • This measurement data is obtained by taking the reactance X20 between the ground side end 3b of the first antenna 3A and the power supply side end 3a of the second antenna 3B on the horizontal axis, and the ground side end 3b of the second antenna 3B.
  • the reactance X30 of the first current value I1, the second current value I2, and the third current value I3 is represented by the standard deviation ⁇ of the current values I1, I2, and I3 according to the size of the plotted circle. The value divided by the average value is shown.
  • the “variation” is a value obtained by the following equation. (Standard deviation ⁇ of I1, I2, and I3) / (average value of I1, I2, and I3)
  • the control device sets the capacitance of the second variable capacitor VC2 and the capacitance of the third variable capacitor VC3 so that the first current value I1, the second current value I2, and the third current value I3 are equal. It is configured to perform feedback control. More specifically, when the first current value I1 ⁇ the second current value I2 ⁇ 0, the capacitance of the second variable capacitor VC2 is reduced to reduce the reactance, and the first current value I1 ⁇ the second current value I2 If> 0, the reactance is increased by increasing the capacitance of the second variable capacitor VC2.
  • the reactance is reduced by reducing the capacitance of the third variable capacitor VC3, and when the second current value I2 ⁇ the third current value I3> 0.
  • the reactance is increased by increasing the capacity of the third variable capacitor VC3.
  • the capacitance of the second variable capacitor VC2 and the capacitance of the third variable capacitor VC3 are set so that the first current value I1, the second current value I2, and the third current value I3 are equal. Since it is controlled, uniform plasma P can be generated along the longitudinal direction from the first antenna 3A to the second antenna 3B.
  • the distribution ratio of the high-frequency current IR to each first antenna 3A is grasped based on the first current value I1 of the first current detection unit S1 provided for each of the power supply side end portions 3a of the first antenna 3A. can do. Therefore, the distribution ratio of the high-frequency current IR supplied to each first antenna 3A can be adjusted by changing the capacitance of each first variable capacitor VC1 based on each first current value I1.
  • the high-frequency current IR flowing from the first antenna 3A and the second antenna 3B is made uniform along the longitudinal direction, and the high-frequency current IR from the high-frequency power source 4 is evenly distributed to the first antennas 3A provided in parallel. It is possible to generate plasma P that is spatially uniform.
  • the variation in film formation speed along the arrangement direction of the antennas 3 was compared between the case where each of the variable capacitors VC1 to VC3 was controlled as described above and the case where the above-described control was not performed (comparative example).
  • the results are shown in FIG.
  • the “variation” is a value obtained by the following equation.
  • a plurality of antennas 3 may be connected in parallel to a common high-frequency power supply 4 via a matching circuit 41.
  • three antennas 3 are connected to the high-frequency power source 4 via the first variable capacitor VC1 and grounded via the second variable capacitor VC2. Note that the number of antennas 3 may be changed as appropriate.
  • each of the first current value detected by the first current detector S1 and the second current value detected by the second current detector S2 are equal to each other as in the above embodiment.
  • the distribution ratio of the high-frequency current IR to each antenna 3 is determined based on the first current value detected by the first current detection unit S1 provided at each power supply side end 3a. I can grasp it. Therefore, the distribution ratio of the high-frequency current IR supplied to each antenna 3 can be adjusted by changing the capacitance of the first variable capacitor VC1 based on the first current value.
  • the high-frequency current IR flowing through each antenna 3 can be made uniform along the longitudinal direction, and the high-frequency current IR can be evenly distributed to each antenna 3, and a spatially uniform plasma P can be generated. It becomes.
  • the reactance control unit X3 of the embodiment is configured to feedback control the capacitance of the variable capacitor VC so that the first current value I1 and the second current value I2 are equal.
  • the capacitance of the variable capacitor VC may be feedback-controlled so that the difference from the second current value I2 becomes a predetermined value (a value greater than zero).
  • the reactance control unit X3 sets an initial value of the capacity of the variable capacitor VC based on the reactance. It may be configured as follows.
  • the arrangement of the first current detection unit S1 and the second current detection unit S2 is provided at the power supply side end 3a and the ground side end 3b of the antenna 3 in the above embodiment. You may provide in the conducting wire connected to the part 3a, and the conducting wire connected to the ground side edge part 3b.
  • control device changes the capacity of the variable capacitor based on the first current value and the second current value.
  • the operator manually changes the capacity of the variable capacitor based on the first current value and the second current value.
  • the capacitance of the variable capacitor may be changed as the reactance of the reactance element.
  • variable capacitor is used as a load with variable reactance.
  • a load in which a plurality of reactance elements having different capacities and reactances are connected in parallel so as to be switchable with respect to an antenna may be used.
  • the antenna is linear, but it may be curved or bent.
  • the metal pipe may be curved or bent, or the insulating pipe may be curved or bent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

The present invention makes it possible to handle an increase in the size of a substrate by using an elongated antenna while generating a uniform plasma along the lengthwise direction of the antenna. A plasma processing device comprises: an antenna 3 for generating a plasma P in a vacuum container 2 that stores a substrate W; a high-frequency power source 4 for supplying a high-frequency current IR to the antenna 3; a first current detection unit S1 for detecting a current flowing in a power–feeding-side terminal 3a of the antenna 3; a second current detection unit S2 for detecting a current flowing in a ground-side terminal 3b of the antenna 3; a variable reactance load connected to the ground-side terminal 3b of the antenna 3; and a control device X that controls the reactance of the load using a first current value I1 detected by the first current detection unit S1 and a second current value I2 detected by the second current detection unit S2 as parameters.

Description

プラズマ処理装置、プラズマ処理方法、及びプラズマ処理装置用プログラムPlasma processing apparatus, plasma processing method, and program for plasma processing apparatus
本発明は、高周波電流が流されて誘導結合型のプラズマを発生させるためのアンテナを備えたプラズマ処理装置、このプラズマ処理装置を用いたプラズマ処理方法、及びプラズマ処理装置用プログラムに関するものである。 The present invention relates to a plasma processing apparatus provided with an antenna for generating an inductively coupled plasma through a high-frequency current, a plasma processing method using the plasma processing apparatus, and a program for the plasma processing apparatus.
この種のプラズマ処理装置としては、特許文献1に示すように、複数本のアンテナを真空容器内の基板の四方に配置して、これらのアンテナに高周波電流を流すことで誘導結合型のプラズマ(略称ICP)を発生させて基板をプラズマ処理するように構成されたものがある。 As this type of plasma processing apparatus, as shown in Patent Document 1, a plurality of antennas are arranged on four sides of a substrate in a vacuum vessel, and a high-frequency current is passed through these antennas to cause inductively coupled plasma ( Some are configured to plasma process a substrate by generating an abbreviation ICP).
より詳細に説明すると、このプラズマ処理装置は、複数のアンテナそれぞれに接続された可変インピーダンス素子と、複数のアンテナそれぞれの給電側に設けられたピックアップコイル又はキャパシタとをさらに備えている。そして、ピックアップコイル又はキャパシタからの出力値に基づいて可変インピーダンス素子のインピーダンス値をフィードバック制御することで、それぞれのアンテナの周囲に発生するプラズマの密度を所定範囲内に制御して、真空容器に発生させるプラズマ密度の空間的な均一化を図っている。 More specifically, the plasma processing apparatus further includes a variable impedance element connected to each of the plurality of antennas, and a pickup coil or a capacitor provided on the power feeding side of each of the plurality of antennas. Then, by controlling the impedance value of the variable impedance element based on the output value from the pickup coil or capacitor, the density of the plasma generated around each antenna is controlled within a predetermined range and generated in the vacuum vessel. The plasma density is spatially uniform.
ところが、基板が大型なものになると、特許文献1のプラズマ処理装置に用いられているような比較的短尺なアンテナを基板の四方に配置したのでは対応することができず、この場合には特許文献2に示すような長尺状のアンテナが用いられる。 However, when the substrate becomes large, it is not possible to cope with the case where relatively short antennas used in the plasma processing apparatus of Patent Document 1 are arranged on all four sides of the substrate. A long antenna as shown in Document 2 is used.
このような長尺状のアンテナを真空容器内に配置して誘導結合型プラズマを生成する場合、アンテナとプラズマとの間で生じる静電結合により、プラズマを介してアンテナと真空容器の壁との間で電流が流れたり、プラズマを介して互いに隣り合うアンテナ間で電流が流れたりする。
その結果、アンテナの長手方向に沿った電流量の分布が均一にならず、アンテナの長手方向に沿ったプラズマ密度が不均一になるという問題が生じる。
When such an elongate antenna is arranged in a vacuum vessel to generate inductively coupled plasma, electrostatic coupling between the antenna and the plasma causes the antenna and the vacuum vessel wall to pass through the plasma. Current flows between them, or current flows between adjacent antennas via plasma.
As a result, the distribution of the current amount along the longitudinal direction of the antenna is not uniform, and the plasma density along the longitudinal direction of the antenna becomes non-uniform.
特開2004-228354号公報JP 2004-228354 A 特開2016-138598号公報JP 2016-138598 A
そこで本発明は、上記問題点を解決すべくなされたものであり、長尺状のアンテナを用いて基板の大型化に対応することができるようにしつつ、アンテナの長手方向に沿って均一なプラズマを発生させることをその主たる課題とするものである。 Accordingly, the present invention has been made to solve the above-described problems, and it is possible to cope with an increase in the size of a substrate by using a long antenna, and a uniform plasma along the longitudinal direction of the antenna. It is the main issue to generate
すなわち本発明に係るプラズマ処理装置は、基板を収容する真空容器内にプラズマを発生させるためのアンテナと、前記アンテナに高周波電流を供給する高周波電源と、前記アンテナの給電側端部に流れる電流を検出する第1電流検出部と、前記アンテナの接地側端部に流れる電流を検出する第2電流検出部と、前記アンテナの接地側端部に接続されたリアクタンスが可変な負荷と、前記第1電流検出部により検出された第1電流値、及び、前記第2電流検出部により検出された第2電流値をパラメータとして、前記負荷のリアクタンスを制御する制御装置とを具備することを特徴とするものである。なお、ここでいう負荷とは、高周波電源から供給される高周波電流を消費するもののことである。 That is, a plasma processing apparatus according to the present invention includes an antenna for generating plasma in a vacuum vessel that accommodates a substrate, a high-frequency power source that supplies a high-frequency current to the antenna, and a current that flows through a feeding-side end of the antenna. A first current detecting unit for detecting; a second current detecting unit for detecting a current flowing through a ground side end of the antenna; a load having a variable reactance connected to the ground side end of the antenna; And a control device that controls the reactance of the load using the first current value detected by the current detection unit and the second current value detected by the second current detection unit as parameters. Is. In addition, the load here is what consumes the high frequency current supplied from a high frequency power supply.
このようなプラズマ処理装置であれば、アンテナの給電側端部に流れる第1電流値及びアンテナの接地側端部に流れる第2電流値をパラメータとして負荷のリアクタンスを制御するので、アンテナに流れる電流を長手方向に沿って可及的に均一にすることができる。
その結果、長尺状のアンテナを用いて基板の大型化に対応できるようにしつつ、アンテナの長手方向に沿って均一なプラズマを発生させることが可能となる。
In such a plasma processing apparatus, the reactance of the load is controlled by using the first current value flowing through the power feeding side end of the antenna and the second current value flowing through the ground side end of the antenna as parameters. Can be made as uniform as possible along the longitudinal direction.
As a result, it is possible to generate uniform plasma along the longitudinal direction of the antenna while using a long antenna to cope with an increase in the size of the substrate.
リアクタンスが可変な負荷としては、例えば容量が異なる複数のコンデンサをアンテナに対して切り替え可能に並列接続した構成を挙げることができるが、かかる構成では複数のコンデンサが必要であり、装置が大掛かりなる等の問題が生じる。
そこで、装置を大掛かりにすることなく、アンテナの長手方向に沿って均一なプラズマを発生させるためには、前記負荷が可変コンデンサであり、前記制御装置が、前記第1電流値及び前記第2電流値をパラメータとして、前記可変コンデンサの容量を制御する構成が挙げられる。
As a load with variable reactance, for example, a configuration in which a plurality of capacitors having different capacities are connected in parallel so as to be switchable with respect to the antenna can be cited. However, in such a configuration, a plurality of capacitors are required, and the apparatus becomes large. Problem arises.
Therefore, in order to generate uniform plasma along the longitudinal direction of the antenna without increasing the size of the device, the load is a variable capacitor, and the control device controls the first current value and the second current. There is a configuration in which the value of the variable capacitor is used as a parameter.
アンテナに流れる電流を長手方向に沿って可及的に均一にするための具体的な構成としては、前記制御装置が、前記第1電流値及び前記第2電流値が等しくなるように、前記負荷のリアクタンスをフィードバック制御する構成が挙げられる。 As a specific configuration for making the current flowing through the antenna as uniform as possible along the longitudinal direction, the control device may be configured so that the first current value and the second current value are equal to each other. There is a configuration in which the reactance of the feedback control is performed.
前記アンテナが少なくとも2つ直列接続されるとともに、前記第1電流検出部、前記第2電流検出部、及び前記負荷が、前記各アンテナに対して設けられており、前記2つのアンテナのうち前記高周波電源側のアンテナの接地側端部に流れる電流を検出する前記第2電流検出部が、他方のアンテナの給電側端部に流れる電流を検出する前記第1電流検出部として兼用されていることが好ましい。
このような構成であれば、各アンテナに対して第1電流検出部及び第2電流検出部をそれぞれ設ける構成に比べて電流検出部を1つ減らすことができる。これにより、設備コスト削減を図れるうえ、負荷を制御するためのパラメータを1つ減らすことができるので、制御が容易となり、電流のさらなる均一性を図れる。
At least two antennas are connected in series, and the first current detector, the second current detector, and the load are provided for each antenna, and the high frequency of the two antennas The second current detection unit that detects the current flowing through the ground side end of the power supply side antenna is also used as the first current detection unit that detects the current flowing through the power supply side end of the other antenna. preferable.
With such a configuration, the number of current detection units can be reduced by one compared to a configuration in which the first current detection unit and the second current detection unit are provided for each antenna. As a result, the equipment cost can be reduced and the parameter for controlling the load can be reduced by one, so that the control becomes easy and the current can be made more uniform.
ところで、上述したようにアンテナを直列接続してアンテナの長さを長くすると、当該アンテナのインピーダンスが大きくなり、それによってアンテナの両端間に大きな電位差が発生する。その結果、この大きな電位差の影響を受けてプラズマの密度分布、電位分布、電子温度分布等のプラズマの均一性が悪くなり、ひいては基板処理の均一性が悪くなるという問題がある。また、アンテナのインピーダンスが大きくなると、アンテナに高周波電流を流しにくくなるという問題もある。 By the way, as described above, when the antennas are connected in series and the length of the antenna is increased, the impedance of the antenna increases, thereby generating a large potential difference between both ends of the antenna. As a result, there is a problem that plasma uniformity such as plasma density distribution, potential distribution, and electron temperature distribution is deteriorated due to the influence of the large potential difference, and the uniformity of substrate processing is also deteriorated. In addition, when the impedance of the antenna increases, there is a problem that it is difficult for a high-frequency current to flow through the antenna.
そこで、少なくとも2つの前記アンテナが、前記真空容器の対向する側壁それぞれを貫通するとともに、前記各アンテナの同じ側の端部の間に介在する接続導体によって互いに直列接続されており、前記接続導体が、前記一対のアンテナに電気的に接続される可変コンデンサを有していることが好ましい。
このような構成であれば、高周波電流に対するリアクタンスは、簡単に言えば、アンテナの誘導性リアクタンスから可変コンデンサの容量性リアクタンスを差し引いたものとなるので、一対のアンテナを直列接続しつつも、アンテナのインピーダンスを低減させることができる。その結果、アンテナを長くする場合でもそのインピーダンスの増大を抑えることができ、アンテナに高周波電流が流れやすくなり、プラズマを効率良く発生させることができる。
Therefore, at least two of the antennas penetrate each of the opposing side walls of the vacuum vessel and are connected in series with each other by a connection conductor interposed between the end portions on the same side of each antenna, and the connection conductor is It is preferable to have a variable capacitor electrically connected to the pair of antennas.
With such a configuration, the reactance with respect to the high-frequency current can be simply calculated by subtracting the capacitive reactance of the variable capacitor from the inductive reactance of the antenna. Impedance can be reduced. As a result, even when the antenna is lengthened, an increase in impedance can be suppressed, high-frequency current can easily flow through the antenna, and plasma can be generated efficiently.
前記アンテナは、内部に冷却液が流れる流路を有しており、前記接続導体が、前記可変コンデンサと一方のアンテナの端部とを接続するとともに、その端部に形成された開口部から流出する前記冷却液を前記可変コンデンサに導く第1の接続部と、前記可変コンデンサと他方のアンテナの端部とを接続するとともに、その端部に形成された開口部に前記可変コンデンサを通過した前記冷却液を導く第2の接続部とを有し、前記冷却液が前記可変コンデンサの誘電体であることが好ましい。
このような構成であれば、可変コンデンサを冷却しつつその静電容量の不意の変動を抑えることができる。
The antenna has a flow path through which a coolant flows, and the connection conductor connects the variable capacitor and an end of one antenna and flows out from an opening formed in the end. The first connecting portion that guides the coolant to the variable capacitor, the variable capacitor and the end of the other antenna are connected, and the variable capacitor is passed through the opening formed in the end. It is preferable that the cooling liquid is a dielectric of the variable capacitor.
With such a configuration, it is possible to suppress unexpected fluctuations in the electrostatic capacity while cooling the variable capacitor.
また、本発明に係るプラズマ処理方法は、基板を収容する真空容器内にプラズマを発生させるためのアンテナと、前記アンテナに高周波電流を供給する高周波電源と、前記アンテナの給電側端部に流れる電流を検出する第1電流検出部と、前記アンテナの接地側端部に流れる電流を検出する第2電流検出部と、前記アンテナの接地側端部に接続されたリアクタンスが可変な負荷とを具備するプラズマ処理装置を用いたプラズマ処理方法であって、前記第1電流検出部により検出された第1電流値、及び、前記第2電流検出部により検出された第2電流値をパラメータとして、前記負荷のリアクタンスを変更することを特徴とする方法である。 In addition, the plasma processing method according to the present invention includes an antenna for generating plasma in a vacuum container that accommodates a substrate, a high-frequency power source that supplies a high-frequency current to the antenna, and a current that flows through a power feeding side end of the antenna. A first current detecting unit for detecting current, a second current detecting unit for detecting a current flowing in the grounded end of the antenna, and a load having a variable reactance connected to the grounded end of the antenna. A plasma processing method using a plasma processing apparatus, wherein the load is set with the first current value detected by the first current detection unit and the second current value detected by the second current detection unit as parameters. This is a method characterized by changing the reactance.
さらに、本発明に係るプラズマ処理装置用プログラムは、基板を収容する真空容器内にプラズマを発生させるためのアンテナと、前記アンテナに高周波電流を供給する高周波電源と、前記アンテナの給電側端部に流れる電流を検出する第1電流検出部と、前記アンテナの接地側端部に流れる電流を検出する第2電流検出部と、前記アンテナの接地側端部に接続されたリアクタンスが可変な負荷とを具備するプラズマ処理装置に用いられるプログラムであって、前記第1電流検出部により検出された第1電流値、及び、前記第2電流検出部により検出された第2電流値をパラメータとして、前記負荷のリアクタンスを制御する機能をコンピュータに発揮させることを特徴とするプログラムである。 Furthermore, a program for a plasma processing apparatus according to the present invention includes an antenna for generating plasma in a vacuum container that accommodates a substrate, a high-frequency power source that supplies a high-frequency current to the antenna, and a feeding side end of the antenna. A first current detection unit that detects a flowing current; a second current detection unit that detects a current flowing through a ground-side end of the antenna; and a load having a variable reactance connected to the ground-side end of the antenna. A program for use in a plasma processing apparatus comprising the first current value detected by the first current detector and the second current value detected by the second current detector as parameters. This program causes a computer to exert a function of controlling the reactance of the computer.
このようなプラズマ処理方法やプラズマ処理装置用プログラムによれば、上述したプラズマ処理装置による作用効果を奏し得る。 According to such a plasma processing method and a program for a plasma processing apparatus, it is possible to achieve the effects of the above-described plasma processing apparatus.
このように構成した本発明によれば、長尺状のアンテナを用いて基板の大型化に対応することができるようにしつつ、アンテナの長手方向に沿って均一なプラズマを発生させることができる。 According to the present invention configured as described above, uniform plasma can be generated along the longitudinal direction of the antenna while being able to cope with an increase in the size of the substrate using a long antenna.
本実施形態のプラズマ処理装置の構成を模式的に示す縦断面図。The longitudinal cross-sectional view which shows typically the structure of the plasma processing apparatus of this embodiment. 同実施形態の制御装置の機能を示す機能ブロック図。The functional block diagram which shows the function of the control apparatus of the embodiment. 第1電流値及び第2電流値と可変コンデンサの容量との相関を説明するための図。The figure for demonstrating the correlation with a 1st electric current value and a 2nd electric current value, and the capacity | capacitance of a variable capacitor. 第1電流値及び第2電流値とリアクタンスとの相関を示す測定データ。Measurement data indicating the correlation between the first and second current values and the reactance. アンテナの長手方向における成膜速度の比較結果を示す図。The figure which shows the comparison result of the film-forming speed | rate in the longitudinal direction of an antenna. アンテナに流れる電流と成膜速度との相関を説明するための図。The figure for demonstrating the correlation with the electric current which flows into an antenna, and the film-forming speed | rate. 変形実施形態のアンテナの周辺構成を模式的に示す図。The figure which shows typically the periphery structure of the antenna of deformation | transformation embodiment. 変形実施形態の接続導体や第3の可変コンデンサの構成を模式的に示す図。The figure which shows typically the structure of the connection conductor of a deformation | transformation embodiment, and a 3rd variable capacitor. 各電流値と各リアクタンスとの相関を示す測定データ。Measurement data showing the correlation between each current value and each reactance. アンテナの配列方向における成膜速度の比較結果を示す図。The figure which shows the comparison result of the film-forming speed | rate in the arrangement direction of an antenna. 変形実施形態のアンテナの周辺構成を模式的に示す図。The figure which shows typically the periphery structure of the antenna of deformation | transformation embodiment.
以下に、本発明に係るプラズマ処理装置の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of a plasma processing apparatus according to the present invention will be described with reference to the drawings.
<装置構成>
本実施形態のプラズマ処理装置100は、誘導結合型のプラズマPを用いて基板Wに処理を施すものである。ここで、基板Wは、例えば、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、フレキシブルディスプレイ用のフレキシブル基板等である。また、基板Wに施す処理は、例えば、プラズマCVD法による膜形成、エッチング、アッシング、スパッタリング等である。
<Device configuration>
The plasma processing apparatus 100 of this embodiment performs processing on the substrate W using inductively coupled plasma P. Here, the board | substrate W is a board | substrate for flat panel displays (FPD), such as a liquid crystal display and an organic electroluminescent display, a flexible board | substrate for flexible displays, etc., for example. The processing applied to the substrate W is, for example, film formation by plasma CVD, etching, ashing, sputtering, or the like.
なお、このプラズマ処理装置100は、プラズマCVD法によって膜形成を行う場合はプラズマCVD装置、エッチングを行う場合はプラズマエッチング装置、アッシングを行う場合はプラズマアッシング装置、スパッタリングを行う場合はプラズマスパッタリング装置とも呼ばれる。 The plasma processing apparatus 100 is a plasma CVD apparatus when a film is formed by plasma CVD, a plasma etching apparatus when etching is performed, a plasma ashing apparatus when ashing is performed, and a plasma sputtering apparatus when sputtering is performed. be called.
具体的にプラズマ処理装置100は、図1に示すように、真空排気され且つガスGが導入される真空容器2と、真空容器2内に配置された長尺状のアンテナ3と、真空容器2内に誘導結合型のプラズマPを生成するための高周波をアンテナ3に印加する高周波電源4とを備えている。なお、アンテナ3に高周波電源4から高周波を印加することによりアンテナ3には高周波電流IRが流れて、真空容器2内に誘導電界が発生して誘導結合型のプラズマPが生成される。 Specifically, as shown in FIG. 1, the plasma processing apparatus 100 includes a vacuum vessel 2 that is evacuated and into which a gas G is introduced, a long antenna 3 disposed in the vacuum vessel 2, and a vacuum vessel 2. A high frequency power source 4 for applying a high frequency for generating inductively coupled plasma P to the antenna 3 is provided. When a high frequency is applied to the antenna 3 from the high frequency power source 4, a high frequency current IR flows through the antenna 3, an induction electric field is generated in the vacuum chamber 2, and inductively coupled plasma P is generated.
真空容器2は、例えば金属製の容器であり、その内部は真空排気装置5によって真空排気される。真空容器2はこの例では電気的に接地されている。 The vacuum vessel 2 is, for example, a metal vessel, and the inside thereof is evacuated by the evacuation device 5. The vacuum vessel 2 is electrically grounded in this example.
真空容器2内に、例えば流量調整器(図示省略)及び真空容器2の側壁に形成されたガス導入口21を経由して、ガスGが導入される。ガスGは、基板Wに施す処理内容に応じたものにすれば良い。 The gas G is introduced into the vacuum vessel 2 via, for example, a flow rate regulator (not shown) and a gas inlet 21 formed on the side wall of the vacuum vessel 2. The gas G may be set in accordance with the processing content applied to the substrate W.
また、真空容器2内には、基板Wを保持する基板ホルダ6が設けられている。この例のように、基板ホルダ6にバイアス電源7からバイアス電圧を印加するようにしても良い。バイアス電圧は、例えば負の直流電圧、負のパルス電圧等であるが、これに限られるものではない。このようなバイアス電圧によって、例えば、プラズマP中の正イオンが基板Wに入射する時のエネルギーを制御して、基板Wの表面に形成される膜の結晶化度の制御等を行うことができる。基板ホルダ6内に、基板Wを加熱するヒータ61を設けておいても良い。 A substrate holder 6 that holds the substrate W is provided in the vacuum container 2. As in this example, a bias voltage may be applied to the substrate holder 6 from the bias power source 7. The bias voltage is, for example, a negative DC voltage, a negative pulse voltage, or the like, but is not limited thereto. With such a bias voltage, for example, the energy when positive ions in the plasma P are incident on the substrate W can be controlled to control the crystallinity of the film formed on the surface of the substrate W. . A heater 61 for heating the substrate W may be provided in the substrate holder 6.
アンテナ3は、ここでは直線状のものであり、真空容器2内における基板Wの上方に、基板Wの表面に沿うように(例えば、基板Wの表面と実質的に平行に)、ここでは1本配置されている。 The antenna 3 is linear here, and is 1 above the substrate W in the vacuum chamber 2 and along the surface of the substrate W (for example, substantially parallel to the surface of the substrate W). The book is arranged.
アンテナ3の両端部付近は、真空容器2の相対向する側壁をそれぞれ貫通している。アンテナ3の両端部を真空容器2外へ貫通させる部分には、絶縁部材8がそれぞれ設けられている。この各絶縁部材8を、アンテナ3の両端部が貫通しており、その貫通部は例えばパッキン91によって真空シールされている。各絶縁部材8と真空容器2との間も、例えばパッキン92によって真空シールされている。なお、絶縁部材8の材質は、例えば、アルミナ等のセラミックス、石英、又はポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等のエンジニアリングプラスチック等である。 Near both ends of the antenna 3, the opposite side walls of the vacuum container 2 are respectively penetrated. Insulating members 8 are respectively provided at portions where both end portions of the antenna 3 penetrate outside the vacuum vessel 2. Both end portions of the antenna 3 pass through the insulating members 8, and the through portions are vacuum-sealed by packing 91, for example. Each insulating member 8 and the vacuum vessel 2 are also vacuum sealed by, for example, packing 92. The material of the insulating member 8 is, for example, ceramics such as alumina, quartz, or engineering plastic such as polyphenylene sulfide (PPS) or polyether ether ketone (PEEK).
真空容器2の外部に位置するアンテナ3の両端部のうち、一方の端部は、高周波電源4に接続される給電側端部3aであり、他方の端部は、接地される接地側端部3bである。具体的に、給電側端部3aは、整合回路41を介して高周波電源4に接続されており、接地側端部3bは、可変コンデンサVCを介して接地されている。なお、この可変コンデンサVCは、高周波電源4から供給される高周波電流を消費するものであり、リアクタンスが可変なリアクタンス素子の一例である。 Of the both ends of the antenna 3 located outside the vacuum vessel 2, one end is a power supply side end 3a connected to the high frequency power supply 4, and the other end is a ground side end that is grounded. 3b. Specifically, the power supply side end 3a is connected to the high frequency power source 4 via the matching circuit 41, and the ground side end 3b is grounded via the variable capacitor VC. The variable capacitor VC consumes a high-frequency current supplied from the high-frequency power supply 4, and is an example of a reactance element having a variable reactance.
上記構成によって、高周波電源4から、整合回路41を介して、アンテナ3に高周波電流IRを流すことができ、可変コンデンサVCの容量を変更することで、高周波電流IRに対するリアクタンスを変更することができる。なお、高周波の周波数は、例えば、一般的な13.56MHzであるが、これに限られるものではない。 With the configuration described above, the high frequency current IR can flow from the high frequency power supply 4 to the antenna 3 via the matching circuit 41, and the reactance with respect to the high frequency current IR can be changed by changing the capacitance of the variable capacitor VC. . The high frequency is, for example, a general 13.56 MHz, but is not limited thereto.
さらに、アンテナ3において、真空容器2内に位置する部分は、直管状の絶縁カバー10により覆われている。この絶縁カバー10の両端部は絶縁部材8によって支持されている。なお、絶縁カバー10の材質は、例えば、石英、アルミナ、フッ素樹脂、窒化シリコン、炭化シリコン、シリコン等である。 Further, a portion of the antenna 3 located in the vacuum vessel 2 is covered with a straight tubular insulating cover 10. Both ends of the insulating cover 10 are supported by insulating members 8. The material of the insulating cover 10 is, for example, quartz, alumina, fluororesin, silicon nitride, silicon carbide, silicon or the like.
本実施形態のアンテナ3は、内部に冷却液CLが流通する流路3Sを有する中空構造のものである。本実施形態では、直管状をなす金属パイプ31である。金属パイプ31の材質は、例えば、銅、アルミニウム、これらの合金、ステンレス等である。 The antenna 3 of the present embodiment has a hollow structure having a flow path 3S through which the coolant CL flows. In the present embodiment, the metal pipe 31 is a straight pipe. The material of the metal pipe 31 is, for example, copper, aluminum, alloys thereof, stainless steel, or the like.
なお、冷却液CLは、真空容器2の外部に設けられた循環流路11によりアンテナ3を流通するものであり、前記循環流路11には、冷却液CLを一定温度に調整するための熱交換器などの温調機構111と、循環流路11において冷却液CLを循環させるためのポンプなどの循環機構112とが設けられている。冷却液CLとしては、電気絶縁の観点から、高抵抗の水が好ましく、例えば純水またはそれに近い水が好ましい。その他、例えばフッ素系不活性液体などの水以外の液冷媒を用いても良い。 The coolant CL circulates through the antenna 3 through a circulation channel 11 provided outside the vacuum vessel 2, and the circulation channel 11 has heat for adjusting the coolant CL to a constant temperature. A temperature control mechanism 111 such as an exchanger and a circulation mechanism 112 such as a pump for circulating the coolant CL in the circulation flow path 11 are provided. As the cooling liquid CL, high resistance water is preferable from the viewpoint of electrical insulation, for example, pure water or water close thereto is preferable. In addition, a liquid refrigerant other than water, such as a fluorine-based inert liquid, may be used.
然して、本実施形態のプラズマ処理装置100は、アンテナ3の給電側端部3aに流れる電流を検出する第1電流検出部S1と、アンテナ3の接地側端部3bに流れる電流を検出する第2電流検出部S2と、第1電流検出部S1により検出された第1電流値及び第2電流検出部S2により検出された第2電流値をパラメータとして可変コンデンサVCの容量を制御する制御装置Xとをさらに具備してなる。 However, the plasma processing apparatus 100 according to the present embodiment detects the current flowing through the power supply side end 3a of the antenna 3 and the second current detecting the current flowing through the ground side end 3b of the antenna 3. A current detection unit S2, and a control device X that controls the capacitance of the variable capacitor VC using the first current value detected by the first current detection unit S1 and the second current value detected by the second current detection unit S2 as parameters. It further comprises.
第1電流検出部S1は、給電側端部3a又はその近傍に取り付けられて真空容器2の外部に位置する例えばカレントトランス等のカレントモニタであり、給電側端部3aに流れる電流の大きさである第1電流値I1を検出し、この第1電流値I1を示す信号を制御装置Xに出力するものである。 The first current detection unit S1 is a current monitor, such as a current transformer, which is attached to the power supply side end 3a or the vicinity thereof and is located outside the vacuum vessel 2, and has a magnitude of current flowing through the power supply side end 3a. A certain first current value I1 is detected, and a signal indicating the first current value I1 is output to the control device X.
第2電流検出部S2は、接地側端部3b又はその近傍に取り付けられて真空容器2の外部に位置する例えばカレントトランス等のカレントモニタであり、接地側端部3bに流れる電流の大きさである第2電流値I2を検出し、この第2電流値I2を示す信号を制御装置Xに出力するものである。 The second current detection unit S2 is a current monitor, such as a current transformer, which is attached to the ground side end 3b or the vicinity thereof and is located outside the vacuum vessel 2, and has a magnitude of current flowing through the ground side end 3b. A certain second current value I2 is detected, and a signal indicating the second current value I2 is output to the control device X.
制御装置Xは、物理的にはCPU、メモリ、A/Dコンバータ、入出力インターフェース等を備えたコンピュータであり、前記メモリに記憶されたプログラムが実行され、各機器が協業することで、図2に示すように、第1電流値取得部X1、第2電流値取得部X2、及びリアクタンス制御部X3としての機能を発揮するように構成されている。
以下、各部について説明する。
The control device X is physically a computer including a CPU, a memory, an A / D converter, an input / output interface, and the like. A program stored in the memory is executed, and each device cooperates, so that FIG. As shown in FIG. 4, the first current value acquisition unit X1, the second current value acquisition unit X2, and the reactance control unit X3 are configured to exhibit functions.
Hereinafter, each part will be described.
第1電流値取得部X1は、第1電流検出部S1から第1電流値I1を示す信号を有線又は無線により取得するとともに、その第1電流値I1をリアクタンス制御部X3に送信するものである。 The first current value acquisition unit X1 acquires a signal indicating the first current value I1 from the first current detection unit S1 by wire or wireless, and transmits the first current value I1 to the reactance control unit X3. .
第2電流値取得部X2は、第2電流検出部S2から第2電流値I2を示す信号を有線又は無線により取得するとともに、その第2電流値I2をリアクタンス制御部X3に送信するものである。 The second current value acquisition unit X2 acquires a signal indicating the second current value I2 from the second current detection unit S2 by wire or wireless, and transmits the second current value I2 to the reactance control unit X3. .
リアクタンス制御部X3は、第1電流値取得部X1が取得した第1電流値I1及び第2電流値取得部X2が取得した第2電流値I2をパラメータとして可変コンデンサVCの容量を制御するものである。 The reactance control unit X3 controls the capacitance of the variable capacitor VC using the first current value I1 acquired by the first current value acquisition unit X1 and the second current value I2 acquired by the second current value acquisition unit X2 as parameters. is there.
ここで、リアクタンス制御部X3の詳細な制御内容について説明する前に、第1電流値I1及び第2電流値I2と、可変コンデンサVCの容量との関係について説明する。 Here, before describing the detailed control contents of the reactance control unit X3, the relationship between the first current value I1 and the second current value I2 and the capacitance of the variable capacitor VC will be described.
例えば、ネットワークアナライザ等によりリアクタンスを測定したリアクタンス素子たる負荷を複数準備し、図3に示すように、アンテナ3の接地側にリアクタンスの異なる負荷を順次接続する。そして、第1電流検出部S1により検出された第1電流値I1から、第2電流検出部S2により検出された第2電流値I2を差し引いた電流差をこれらの電流値I1、I2の平均値で割った値と、そのときにアンテナ3の接地側に接続されている負荷のリアクタンスとをプロットしたものが図4に示す測定データである。 For example, a plurality of loads as reactance elements whose reactances are measured by a network analyzer or the like are prepared, and loads having different reactances are sequentially connected to the ground side of the antenna 3 as shown in FIG. The current difference obtained by subtracting the second current value I2 detected by the second current detection unit S2 from the first current value I1 detected by the first current detection unit S1 is an average value of these current values I1 and I2. The measured data shown in FIG. 4 is a plot of the value divided by and the reactance of the load connected to the ground side of the antenna 3 at that time.
この測定データから分かるように、第1電流値I1及び第2電流値I2の差分と、負荷のリアクタンスとの間には相関があり、リアクタンスが大きくなる程、第1電流値I1から第2電流値I2を差し引いた差分が小さくなり、リアクタンスが小さくなる程、第1電流値I1から第2電流値I2を差し引いた差分が大きくなることが分かる。
このことから、第1電流値I1-第2電流値I2<0の場合、負荷のリアクタンスを小さくすることで、第1電流値I1と第2電流値I2とが等しくなるように制御される。
一方、第1電流値I1-第2電流値I2>0の場合は、負荷のリアクタンスを大きくすることで、第1電流値I1と第2電流値I2とが等しくなるように制御される。
As can be seen from this measurement data, there is a correlation between the difference between the first current value I1 and the second current value I2 and the reactance of the load. The greater the reactance, the more the first current value I1 and the second current It can be seen that the difference obtained by subtracting the value I2 decreases and the difference obtained by subtracting the second current value I2 from the first current value I1 increases as the reactance decreases.
Therefore, when the first current value I1−the second current value I2 <0, the first current value I1 and the second current value I2 are controlled to be equal by reducing the reactance of the load.
On the other hand, when the first current value I1−the second current value I2> 0, the first current value I1 and the second current value I2 are controlled to be equal by increasing the reactance of the load.
そこで、リアクタンス制御部X3は、第1電流値I1と第2電流値I2とが等しくなるように可変コンデンサVCの容量をフィードバック制御するように構成されており、具体的には、第1電流値I1-第2電流値I2<0の場合、可変コンデンサVCの容量を小さくしてリアクタンスを小さくし、第1電流値I1-第2電流値I2>0の場合、可変コンデンサVCの容量を大きくしてリアクタンスを大きくする。 Therefore, the reactance control unit X3 is configured to feedback control the capacitance of the variable capacitor VC so that the first current value I1 and the second current value I2 are equal. When I1-second current value I2 <0, the capacitance of the variable capacitor VC is reduced to reduce reactance, and when first current value I1-second current value I2> 0, the capacitance of the variable capacitor VC is increased. To increase the reactance.
<本実施形態の効果>
ここで、本実施形態のプラズマ処理装置100を用いて第1電流値I1と第2電流値I2とが等しくなるように可変コンデンサVCを制御した場合と、本実施形態の可変コンデンサVCに相当する構成を備えておらず、上述した制御をしていない場合(比較例)とで、アンテナの長手方向に沿った成膜速度のばらつきを比較した結果を図5に示す。なお、ここでの「ばらつき」は、下記の式で求めた値である。
(最大値-最小値)/(最大値+最小値)×100
この比較結果から、本実施形態の制御をしていない場合(比較例)では、アンテナ3の長さ方向に沿った成膜速度のばらつきが±12.7%であるのに対して、本実施形態のプラズマ処理装置100を用いた場合には、アンテナ3の長さ方向に沿った成膜速度のばらつきが±4.6%であり、長手方向に沿った成膜速度のばらつきが少ないことが分かる。
<Effect of this embodiment>
Here, the case where the variable capacitor VC is controlled using the plasma processing apparatus 100 of the present embodiment so that the first current value I1 and the second current value I2 are equal to each other corresponds to the variable capacitor VC of the present embodiment. FIG. 5 shows a result of comparison of variations in film forming speed along the longitudinal direction of the antenna when the configuration is not provided and the above-described control is not performed (comparative example). Here, the “variation” is a value obtained by the following equation.
(Maximum value-minimum value) / (maximum value + minimum value) x 100
From this comparison result, in the case where the control of the present embodiment is not performed (comparative example), the variation in the deposition rate along the length direction of the antenna 3 is ± 12.7%, whereas the present embodiment When the plasma processing apparatus 100 of the embodiment is used, the variation in the deposition rate along the length direction of the antenna 3 is ± 4.6%, and the variation in the deposition rate along the longitudinal direction is small. I understand.
ところで、図6に示すように、アンテナ3に流れる電流と成膜速度とには相関があり、アンテナ3に流れる電流が大きい程、成膜速度が速くなり、アンテナ3に流れる電流が小さい程、成膜速度が遅くなる傾向にある。なお、この相関は、例えば6本のアンテナから検出された電流値をこれらの平均値で規格化した値を横軸にとり、各アンテナによる成膜速度をこれらの平均値で規格化した値を縦軸にとり、それらの6点をプロットした一例である。
この相関に鑑みれば、図5に示した結果、すなわち本実施形態のプラズマ処理装置100を用いた場合に長手方向に沿った成膜速度のばらつきが少ないという結果は、本実施形態のプラズマ処理装置100を用いることでアンテナ3に流れる電流が長手方向に沿って均一である証左である。
By the way, as shown in FIG. 6, there is a correlation between the current flowing through the antenna 3 and the film formation speed, and the larger the current flowing through the antenna 3, the faster the film formation speed is, and the smaller the current flowing through the antenna 3 is, The deposition rate tends to be slow. This correlation is obtained by, for example, taking the values obtained by normalizing the current values detected from six antennas with these average values on the horizontal axis, and the values obtained by normalizing the film formation speed of each antenna with these average values. It is an example of plotting those 6 points on the axis.
In view of this correlation, the result shown in FIG. 5, that is, the result that there is little variation in the deposition rate along the longitudinal direction when the plasma processing apparatus 100 of the present embodiment is used is the result of the plasma processing apparatus of the present embodiment. The use of 100 is evidence that the current flowing through the antenna 3 is uniform along the longitudinal direction.
このように、本実施形態のプラズマ処理装置100によれば、アンテナ3の給電側端部3aに流れる第1電流値と、アンテナ3の接地側端部3bに流れる第2電流値とが等しくなるように、可変コンデンサVCの容量をフィードバック制御しているので、アンテナ3に流れる電流を長手方向に沿って可及的に均一にすることができる。
その結果、長尺状のアンテナ3を用いて基板Wの大型化に対応できるようにしつつ、アンテナ3の長手方向に沿って均一なプラズマPを発生させることが可能となる。
Thus, according to the plasma processing apparatus 100 of the present embodiment, the first current value flowing through the power feeding side end 3a of the antenna 3 is equal to the second current value flowing through the ground side end 3b of the antenna 3. Thus, since the capacitance of the variable capacitor VC is feedback-controlled, the current flowing through the antenna 3 can be made as uniform as possible along the longitudinal direction.
As a result, it is possible to generate a uniform plasma P along the longitudinal direction of the antenna 3 while making it possible to cope with an increase in the size of the substrate W using the long antenna 3.
また、リアクタンスが可変な負荷として可変コンデンサVCを用いているので、例えばアンテナに容量が異なる複数の固定コンデンサを切り替え可能に並列接続する構成に比べて、装置全体の構成を簡素化することができる。 Further, since the variable capacitor VC is used as a load with variable reactance, for example, the configuration of the entire apparatus can be simplified as compared with a configuration in which a plurality of fixed capacitors having different capacities are connected to the antenna in a switchable manner. .
さらに、第1電流検出部S1を真空容器2の外部に位置する給電側端部3aに設け、第2電流検出部S2を真空容器2の外部に位置する接地側端部3bに設けているので、第1電流検出部S1や第2電流検出部S2のメンテナンスや校正を簡単に行うことができる。 Furthermore, the first current detection unit S1 is provided at the power supply side end 3a located outside the vacuum vessel 2, and the second current detection unit S2 is provided at the ground side end 3b located outside the vacuum vessel 2. The maintenance and calibration of the first current detection unit S1 and the second current detection unit S2 can be easily performed.
加えて、アンテナ3を冷却液CLにより冷却することができるので、プラズマPを安定して発生させることができる。 In addition, since the antenna 3 can be cooled by the coolant CL, the plasma P can be generated stably.
<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
<Other modified embodiments>
The present invention is not limited to the above embodiment.
例えば、前記実施形態ではプラズマ処理装置100が、アンテナ3を1本備えたものであったが、直列又は並列に接続した複数のアンテナ3を備えていても良い。 For example, in the above-described embodiment, the plasma processing apparatus 100 includes one antenna 3, but may include a plurality of antennas 3 connected in series or in parallel.
具体的には、図7に示すように、例えば2本のアンテナ3が直列接続されており、この直列接続された2本のアンテナ3が複数組並列に設けられている構成が挙げられる。なお、直列接続されるアンテナ3は3本以上であっても構わない。 Specifically, as shown in FIG. 7, for example, a configuration in which two antennas 3 are connected in series, and a plurality of sets of the two antennas 3 connected in series are provided in parallel can be given. The number of antennas 3 connected in series may be three or more.
2本のアンテナ3のうち、高周波電源側のアンテナ3(以下、第1のアンテナ3Aという)は、その給電側端部3aが整合回路41を介して高周波電源4に接続されており、他方のアンテナ3(以下、第2のアンテナ3Bという)は、その接地側端部3bが接地されている。 Of the two antennas 3, the antenna 3 on the high frequency power supply side (hereinafter referred to as the first antenna 3 </ b> A) has its power supply side end 3 a connected to the high frequency power supply 4 via the matching circuit 41, The antenna 3 (hereinafter referred to as the second antenna 3B) has a ground side end 3b grounded.
各第1のアンテナ3Aと整合回路41との間それぞれには、第1の可変コンデンサVC1が設けられており、各第1のアンテナ3Aは、共通の高周波電源4や整合回路41に接続されている。一方、各第2のアンテナ3Bはそれぞれ、第2の可変コンデンサVC2を介して接地されている。 A first variable capacitor VC1 is provided between each first antenna 3A and the matching circuit 41, and each first antenna 3A is connected to a common high-frequency power source 4 or matching circuit 41. Yes. On the other hand, each second antenna 3B is grounded via a second variable capacitor VC2.
上述した構成において、第1のアンテナ3A及び第2のアンテナ3Bは、図8に示すように、各アンテナ3A、3Bの同じ側の端部の間に介在する接続導体12によって互いに電気的に接続されて1本のアンテナ構造をなす。なお、図7においては、説明の便宜上、接続導体12を省略している。 In the configuration described above, the first antenna 3A and the second antenna 3B are electrically connected to each other by the connection conductor 12 interposed between the end portions on the same side of the antennas 3A and 3B, as shown in FIG. Thus, one antenna structure is formed. In FIG. 7, the connection conductor 12 is omitted for convenience of explanation.
この接続導体12は、第1のアンテナ3Aの接地側端部3bと第2のアンテナ3Bの給電側端部3aを接続するものであり、内部に流路を有し、その流路に各アンテナ3A、3Bを冷却する冷却液CLが流れように構成されている。これにより、第1のアンテナ3Aを流れた冷却液CLは、接続導体12の流路を介して第2のアンテナ3Bに流れ込む。 The connection conductor 12 connects the ground side end 3b of the first antenna 3A and the power supply side end 3a of the second antenna 3B, and has a flow path inside, and each antenna is connected to the flow path. A cooling liquid CL for cooling 3A and 3B flows. Thereby, the coolant CL that has flowed through the first antenna 3 </ b> A flows into the second antenna 3 </ b> B through the flow path of the connection conductor 12.
具体的に接続導体12は、アンテナ3に電気的に接続される第3の可変コンデンサVC3と、当該第3の可変コンデンサVC3と第1のアンテナ3Aの接地側端部3bとを接続する第1の接続部14と、第3の可変コンデンサVC3と第2のアンテナ3Bの給電側端部3aとを接続する第2の接続部15とを有している。 Specifically, the connection conductor 12 connects the third variable capacitor VC3 that is electrically connected to the antenna 3, and the first variable capacitor VC3 and the ground-side end 3b of the first antenna 3A. And a second connection portion 15 for connecting the third variable capacitor VC3 and the power feeding side end portion 3a of the second antenna 3B.
第1の接続部14は、第1のアンテナ3Aの接地側端部3bを取り囲むことによって、該アンテナ3Aに電気的に接触するとともに、該アンテナ3Aの端部に形成された開口部3Hから冷却液CLを第3の可変コンデンサVC3に導くものである。 The first connection portion 14 surrounds the ground-side end portion 3b of the first antenna 3A, thereby making electrical contact with the antenna 3A and cooling from the opening 3H formed at the end portion of the antenna 3A. The liquid CL is guided to the third variable capacitor VC3.
第2の接続部15は、第2のアンテナ3Bの給電側端部3aを取り囲むことによって、該アンテナ3Bに電気的に接触するとともに、第3の可変コンデンサVC3を通過した冷却液CLを該アンテナ3Bの端部に形成された開口部3Hに導くものである。 The second connection portion 15 surrounds the power supply side end portion 3a of the second antenna 3B, thereby making electrical contact with the antenna 3B and supplying the coolant CL that has passed through the third variable capacitor VC3 to the antenna 3B. It leads to the opening 3H formed at the end of 3B.
これらの接続部14、15の材質は、例えば、銅、アルミニウム、これらの合金、ステンレス等である。 The material of these connection parts 14 and 15 is copper, aluminum, these alloys, stainless steel etc., for example.
第3の可変コンデンサVC3は、第1のアンテナ3Aに電気的に接続される第1の固定電極16と、第2のアンテナ3Bに電気的に接続される第2の固定電極17と、第1の固定電極16との間で第1のコンデンサを形成するとともに、第2の固定電極17との間で第2のコンデンサを形成する可動電極18とを有し、可動電極18が所定の回転軸C周りに回転することによって、その静電容量を変更できるように構成されている。 The third variable capacitor VC3 includes a first fixed electrode 16 electrically connected to the first antenna 3A, a second fixed electrode 17 electrically connected to the second antenna 3B, and a first A first capacitor is formed with the fixed electrode 16 and a movable electrode 18 is formed between the second fixed electrode 17 and a second capacitor. The movable electrode 18 has a predetermined rotation axis. By rotating around C, the capacitance can be changed.
この可変コンデンサ13は、第1の固定電極16、第2の固定電極17及び可動電極18を収容する絶縁性を有する収容容器19を備えており、収容容器19の内部を満たす冷却液CLが、可変コンデンサ13の誘電体となる。 The variable capacitor 13 includes an insulating storage container 19 that stores the first fixed electrode 16, the second fixed electrode 17, and the movable electrode 18, and the cooling liquid CL that fills the inside of the storage container 19 is It becomes a dielectric of the variable capacitor 13.
そして、図7に示すように、第1のアンテナ3A及び第2のアンテナ3Bそれぞれに対して、第1電流検出部S1及び第2電流検出部S2が設けられている。 And as shown in FIG. 7, 1st electric current detection part S1 and 2nd electric current detection part S2 are provided with respect to each of the 1st antenna 3A and the 2nd antenna 3B.
より具体的に説明すると、第1のアンテナ3Aに対する第1電流検出部S1は、第1のアンテナ3Aの給電側端部3aと第1の可変コンデンサVC1との間に設けられており、第1のアンテナ3Aに対する第2電流検出部S2は、第1のアンテナ3Aの接地側端部3bと第2のアンテナ3Bの給電側端部3aとの間に設けられている。
一方、第2のアンテナ3Bに対する第1電流検出部S1は、第1のアンテナ3Aの接地側端部3bと第2のアンテナ3Bの給電側端部3aとの間に設けられており、第2のアンテナ3Bに対する第2電流検出部S2は、第2のアンテナ3Bの接地側端部3bと第2の可変コンデンサVC2との間に設けられている。
More specifically, the first current detection unit S1 for the first antenna 3A is provided between the power supply side end 3a of the first antenna 3A and the first variable capacitor VC1. The second current detection unit S2 for the antenna 3A is provided between the ground side end 3b of the first antenna 3A and the power supply side end 3a of the second antenna 3B.
On the other hand, the first current detector S1 for the second antenna 3B is provided between the ground side end 3b of the first antenna 3A and the power supply side end 3a of the second antenna 3B. The second current detector S2 for the second antenna 3B is provided between the ground-side end 3b of the second antenna 3B and the second variable capacitor VC2.
ここでは、第1のアンテナ3Aに対して設けられた第2電流検出部S2が、第2のアンテナ3Bに対する第1電流検出部S1として兼用されており、第3の可変コンデンサVC3と第2のアンテナ3Bの給電側端部3aとの間に配置されている。以下、この電流検出部を兼用電流検出部S1(S2)ともいう。なお、兼用電流検出部S1(S2)は、第3の可変コンデンサVC3と第1のアンテナ3Aの接地側端部3bとの間に配置されていても良い。 Here, the second current detection unit S2 provided for the first antenna 3A is also used as the first current detection unit S1 for the second antenna 3B, and the second variable capacitor VC3 and the second current detection unit S2 are used. It arrange | positions between the electric power feeding side edge parts 3a of the antenna 3B. Hereinafter, this current detection unit is also referred to as a combined current detection unit S1 (S2). The shared current detection unit S1 (S2) may be disposed between the third variable capacitor VC3 and the ground side end 3b of the first antenna 3A.
上述した構成により、第1のアンテナ3Aに対して設けられた第1電流検出部S1により、第1のアンテナ3Aの給電側端部3aを流れる第1電流値I1が検出される。また、兼用電流検出部S1(S2)により、第1のアンテナ3Aの接地側端部3bを流れるとともに第2のアンテナ3Bの給電側端部3aを流れる第2電流値I2が検出される。また、第2のアンテナ3Bに対して設けられた第2電流検出部S2により、第2のアンテナ3Bの接地側端部3bを流れる第3電流値I3が検出される。 With the configuration described above, the first current detection unit S1 provided for the first antenna 3A detects the first current value I1 flowing through the power feeding side end 3a of the first antenna 3A. Further, the shared current detector S1 (S2) detects the second current value I2 that flows through the ground-side end 3b of the first antenna 3A and flows through the power-feed end 3a of the second antenna 3B. Further, the second current detection unit S2 provided for the second antenna 3B detects the third current value I3 flowing through the ground-side end 3b of the second antenna 3B.
そして、前記実施形態と同様に、図示しない制御装置が、第1電流値I1、第2電流値I2、及び第3電流値I3をパラメータとして、第2の可変コンデンサVC2及び第3の可変コンデンサVC3の容量を制御する。 Similarly to the above embodiment, the control device (not shown) uses the first current value I1, the second current value I2, and the third current value I3 as parameters, and the second variable capacitor VC2 and the third variable capacitor VC3. Control the capacity.
ここで、第1電流値I1、第2電流値I2、及び第3電流値I3と、第2の可変コンデンサVC2及び第3の可変コンデンサVC3のリアクタンスとの関係について、図9に示す測定データを参照しながら説明する。
この測定データは、第1のアンテナ3Aの接地側端部3bと第2のアンテナ3Bの給電側端部3aとの間のリアクタンスX20を横軸にとり、第2のアンテナ3Bの接地側端部3bのリアクタンスX30を縦軸にとり、プロットされた円の大きさによって、第1電流値I1、第2電流値I2、及び第3電流値I3の標準偏差σをこれらの電流値I1、I2、I3の平均値で割った値を示したものである。
Here, regarding the relationship between the first current value I1, the second current value I2, the third current value I3, and the reactance of the second variable capacitor VC2 and the third variable capacitor VC3, the measurement data shown in FIG. The description will be given with reference.
This measurement data is obtained by taking the reactance X20 between the ground side end 3b of the first antenna 3A and the power supply side end 3a of the second antenna 3B on the horizontal axis, and the ground side end 3b of the second antenna 3B. The reactance X30 of the first current value I1, the second current value I2, and the third current value I3 is represented by the standard deviation σ of the current values I1, I2, and I3 according to the size of the plotted circle. The value divided by the average value is shown.
プロットされた円の大きさが小さい程、各電流値I1、I2、I3のばらつきが小さいことを示しており、例えばリアクタンスX20が約23[Ω]であり、リアクタンスX30が約4.5[Ω]である場合に、各電流値I1、I2、I3のばらつきが殆どなく、各電流値I1、I2、I3がほぼ等しくなることが分かる。なお、ここでの「ばらつき」は、下記の式で求めた値である。
(I1、I2、及びI3の標準偏差σ)/(I1、I2、及びI3の平均値)
The smaller the size of the plotted circle, the smaller the variation of the current values I1, I2, and I3. For example, the reactance X20 is about 23 [Ω], and the reactance X30 is about 4.5 [Ω. ], It can be seen that there is almost no variation in the current values I1, I2, and I3, and the current values I1, I2, and I3 are substantially equal. Here, the “variation” is a value obtained by the following equation.
(Standard deviation σ of I1, I2, and I3) / (average value of I1, I2, and I3)
そこで、図示しない制御装置は、第1電流値I1、第2電流値I2、及び第3電流値I3が等しくなるように、第2の可変コンデンサVC2の容量及び第3の可変コンデンサVC3の容量をフィードバック制御するように構成されている。
より具体的には、第1電流値I1-第2電流値I2<0の場合、第2の可変コンデンサVC2の容量を小さくしてリアクタンスを小さくし、第1電流値I1-第2電流値I2>0の場合、第2の可変コンデンサVC2の容量を大きくしてリアクタンスを大きくする。
一方、第2電流値I2-第3電流値I3<0の場合、第3の可変コンデンサVC3の容量を小さくしてリアクタンスを小さくし、第2電流値I2-第3電流値I3>0の場合、第3の可変コンデンサVC3の容量を大きくしてリアクタンスを大きくする。
Therefore, the control device (not shown) sets the capacitance of the second variable capacitor VC2 and the capacitance of the third variable capacitor VC3 so that the first current value I1, the second current value I2, and the third current value I3 are equal. It is configured to perform feedback control.
More specifically, when the first current value I1−the second current value I2 <0, the capacitance of the second variable capacitor VC2 is reduced to reduce the reactance, and the first current value I1−the second current value I2 If> 0, the reactance is increased by increasing the capacitance of the second variable capacitor VC2.
On the other hand, when the second current value I2−the third current value I3 <0, the reactance is reduced by reducing the capacitance of the third variable capacitor VC3, and when the second current value I2−the third current value I3> 0. The reactance is increased by increasing the capacity of the third variable capacitor VC3.
このような構成であれば、第1電流値I1、第2電流値I2、及び第3電流値I3が等しくなるように、第2の可変コンデンサVC2の容量及び第3の可変コンデンサVC3の容量を制御しているので、第1のアンテナ3Aから第2のアンテナ3Bに亘って、長手方向に沿って均一なプラズマPを発生させることができる。 With such a configuration, the capacitance of the second variable capacitor VC2 and the capacitance of the third variable capacitor VC3 are set so that the first current value I1, the second current value I2, and the third current value I3 are equal. Since it is controlled, uniform plasma P can be generated along the longitudinal direction from the first antenna 3A to the second antenna 3B.
さらに、第1のアンテナ3Aの給電側端部3aそれぞれ対して設けられた第1電流検出部S1の第1電流値I1に基づいて、各第1のアンテナ3Aに対する高周波電流IRの分配比を把握することができる。従って、各第1電流値I1に基づき各第1の可変コンデンサVC1の容量を変更することで、各第1のアンテナ3Aに対して供給される高周波電流IRの分配比を調整することができる。 Furthermore, the distribution ratio of the high-frequency current IR to each first antenna 3A is grasped based on the first current value I1 of the first current detection unit S1 provided for each of the power supply side end portions 3a of the first antenna 3A. can do. Therefore, the distribution ratio of the high-frequency current IR supplied to each first antenna 3A can be adjusted by changing the capacitance of each first variable capacitor VC1 based on each first current value I1.
従って、第1のアンテナ3A及び第2のアンテナ3Bに流れる高周波電流IRを長手方向に沿って均一化しつつ、並列に設けられた各第1のアンテナ3Aに高周波電源4からの高周波電流IRを均等に分配することができ、空間的に均一なプラズマPを発生させることが可能となる。 Therefore, the high-frequency current IR flowing from the first antenna 3A and the second antenna 3B is made uniform along the longitudinal direction, and the high-frequency current IR from the high-frequency power source 4 is evenly distributed to the first antennas 3A provided in parallel. It is possible to generate plasma P that is spatially uniform.
ここで、各可変コンデンサVC1~VC3を上述したように制御した場合と、上述した制御をしていない場合(比較例)とで、アンテナ3の配列方向に沿った成膜速度のばらつきを比較した結果を図10に示す。なお、ここでの「ばらつき」は、下記の式で求めた値である。
(最大値-最小値)/(最大値+最小値)×100
この比較結果から、上述した制御をしていない場合(比較例)では、アンテナ3の配列方向に沿った成膜速度のばらつきが±14.1%であるのに対して、各可変コンデンサVC1~VC3を上述したように制御した場合には、アンテナ3の配列方向に沿った成膜速度のばらつきが±3.4%であり、アンテナ3の配列方向に沿った成膜速度のばらつきが少ないことが分かる。
Here, the variation in film formation speed along the arrangement direction of the antennas 3 was compared between the case where each of the variable capacitors VC1 to VC3 was controlled as described above and the case where the above-described control was not performed (comparative example). The results are shown in FIG. Here, the “variation” is a value obtained by the following equation.
(Maximum value-minimum value) / (maximum value + minimum value) x 100
From this comparison result, in the case where the above-described control is not performed (comparative example), the variation in the film forming speed along the arrangement direction of the antennas 3 is ± 14.1%, whereas each variable capacitor VC1˜ When the VC 3 is controlled as described above, the variation in the deposition rate along the arrangement direction of the antenna 3 is ± 3.4%, and the variation in the deposition rate along the arrangement direction of the antenna 3 is small. I understand.
別の装置構成としては、図11に示すように、複数本のアンテナ3が整合回路41を介して共通の高周波電源4に並列接続されていても良い。ここでは、例えば3本のアンテナ3が、第1の可変コンデンサVC1を介して高周波電源4に接続されるとともに、第2の可変コンデンサVC2を介して接地されている。なお、アンテナ3の本数は適宜変更して構わない。 As another device configuration, as shown in FIG. 11, a plurality of antennas 3 may be connected in parallel to a common high-frequency power supply 4 via a matching circuit 41. Here, for example, three antennas 3 are connected to the high-frequency power source 4 via the first variable capacitor VC1 and grounded via the second variable capacitor VC2. Note that the number of antennas 3 may be changed as appropriate.
そして、各アンテナ3の給電側端部3aそれぞれに第1電流検出部S1が設けられており、各アンテナ3の接地側端部3bそれぞれに第2電流検出部S2が設けられている。 A first current detection unit S1 is provided at each of the power feeding side end portions 3a of each antenna 3, and a second current detection unit S2 is provided at each of the ground side end portions 3b of each antenna 3.
このような構成であれば、前記実施形態と同様に、第1電流検出部S1により検出された第1電流値及び第2電流検出部S2により検出された第2電流値が等しくなるように各第2の可変コンデンサVC2の容量を制御することで、各アンテナ3の長手方向に沿って均一なプラズマPを発生させることができる。
さらに、図7の構成と同様に、それぞれの給電側端部3aに設けられた第1電流検出部S1により検出された第1電流値に基づいて、各アンテナ3に対する高周波電流IRの分配比を把握することができる。従って、第1電流値に基づき第1の可変コンデンサVC1の容量を変更することで、各アンテナ3に対して供給される高周波電流IRの分配比を調整することができる。
これにより、各アンテナ3に流れる高周波電流IRを長手方向に沿って均一化しつつ、各アンテナ3に高周波電流IRを均等に分配することができ、空間的に均一なプラズマPを発生させることが可能となる。
With such a configuration, each of the first current value detected by the first current detector S1 and the second current value detected by the second current detector S2 are equal to each other as in the above embodiment. By controlling the capacitance of the second variable capacitor VC2, a uniform plasma P can be generated along the longitudinal direction of each antenna 3.
Further, similarly to the configuration of FIG. 7, the distribution ratio of the high-frequency current IR to each antenna 3 is determined based on the first current value detected by the first current detection unit S1 provided at each power supply side end 3a. I can grasp it. Therefore, the distribution ratio of the high-frequency current IR supplied to each antenna 3 can be adjusted by changing the capacitance of the first variable capacitor VC1 based on the first current value.
As a result, the high-frequency current IR flowing through each antenna 3 can be made uniform along the longitudinal direction, and the high-frequency current IR can be evenly distributed to each antenna 3, and a spatially uniform plasma P can be generated. It becomes.
前記実施形態のリアクタンス制御部X3は、第1電流値I1と第2電流値I2とが等しくなるように可変コンデンサVCの容量をフィードバック制御するように構成されていたが、第1電流値I1と第2電流値I2との差分が所定値(ゼロより大きい値)となるように、可変コンデンサVCの容量をフィードバック制御するように構成されていても良い。 The reactance control unit X3 of the embodiment is configured to feedback control the capacitance of the variable capacitor VC so that the first current value I1 and the second current value I2 are equal. The capacitance of the variable capacitor VC may be feedback-controlled so that the difference from the second current value I2 becomes a predetermined value (a value greater than zero).
また、例えば図4や図9などに示した相関データから各電流値が等しくなるリアクタンスを予め求めておけば、そのリアクタンスに基づいてリアクタンス制御部X3が可変コンデンサVCの容量の初期値を設定するように構成されていても良い。 For example, if a reactance in which each current value is equal is obtained in advance from the correlation data shown in FIGS. 4 and 9, the reactance control unit X3 sets an initial value of the capacity of the variable capacitor VC based on the reactance. It may be configured as follows.
第1電流検出部S1や第2電流検出部S2の配置としては、前記実施形態ではアンテナ3の給電側端部3aや接地側端部3bに設けられていたが、例えばアンテナ3の給電側端部3aに接続された導線や、接地側端部3bに接続された導線に設けられていても良い。 The arrangement of the first current detection unit S1 and the second current detection unit S2 is provided at the power supply side end 3a and the ground side end 3b of the antenna 3 in the above embodiment. You may provide in the conducting wire connected to the part 3a, and the conducting wire connected to the ground side edge part 3b.
前記実施形態では、制御装置が、第1電流値及び第2電流値に基づいて可変コンデンサの容量を変更していたが、オペレータが、第1電流値及び第2電流値に基づいて、手動で可変コンデンサの容量をリアクタンス素子のリアクタンスとして変更しても良い。 In the embodiment, the control device changes the capacity of the variable capacitor based on the first current value and the second current value. However, the operator manually changes the capacity of the variable capacitor based on the first current value and the second current value. The capacitance of the variable capacitor may be changed as the reactance of the reactance element.
前記実施形態では、リアクタンスが可変な負荷として可変コンデンサを用いていたが、例えば容量やリアクタンスが異なる複数のリアクタンス素子をアンテナに対して切り替え可能に並列接続したものを負荷として用いても良い。 In the embodiment, a variable capacitor is used as a load with variable reactance. However, for example, a load in which a plurality of reactance elements having different capacities and reactances are connected in parallel so as to be switchable with respect to an antenna may be used.
前記実施形態では、アンテナは直線状をなすものであったが、湾曲又は屈曲した形状であっても良い。この場合、金属パイプが湾曲又は屈曲した形状であっても良いし、絶縁パイプが湾曲又は屈曲した形状であっても良い。 In the above embodiment, the antenna is linear, but it may be curved or bent. In this case, the metal pipe may be curved or bent, or the insulating pipe may be curved or bent.
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
100・・・プラズマ処理装置
W  ・・・基板
P  ・・・誘導結合型プラズマ
IR ・・・高周波電流
2  ・・・真空容器
3  ・・・アンテナ
3a ・・・給電側端部
3b ・・・接地側端部
VC ・・・可変コンデンサ
CL ・・・冷却液(液体の誘電体)
S1 ・・・第1検出部
S2 ・・・第2検出部
X  ・・・制御装置
X1 ・・・第1取得部
X2 ・・・第2取得部
X3 ・・・制御用データ格納部
X4 ・・・コンデンサ制御部
DESCRIPTION OF SYMBOLS 100 ... Plasma processing apparatus W ... Board | substrate P ... Inductive coupling type plasma IR ... High frequency current 2 ... Vacuum container 3 ... Antenna 3a ... Feeding side edge part 3b ... Grounding Side end VC ... Variable capacitor CL ... Coolant (liquid dielectric)
S1 ... 1st detection part S2 ... 2nd detection part X ... Control apparatus X1 ... 1st acquisition part X2 ... 2nd acquisition part X3 ... Data storage part X4 for control ...・ Capacitor controller

Claims (8)

  1. 基板を収容する真空容器内にプラズマを発生させるためのアンテナと、
    前記アンテナに高周波電流を供給する高周波電源と、
    前記アンテナの給電側端部に流れる電流を検出する第1電流検出部と、
    前記アンテナの接地側端部に流れる電流を検出する第2電流検出部と、
    前記アンテナの接地側端部に接続されたリアクタンスが可変な負荷と、
    前記第1電流検出部により検出された第1電流値、及び、前記第2電流検出部により検出された第2電流値をパラメータとして、前記負荷のリアクタンスを制御する制御装置とを具備する、プラズマ処理装置。
    An antenna for generating plasma in a vacuum vessel containing a substrate;
    A high frequency power supply for supplying a high frequency current to the antenna;
    A first current detection unit for detecting a current flowing through a feeding side end of the antenna;
    A second current detection unit for detecting a current flowing in the ground side end of the antenna;
    A load having a variable reactance connected to a ground side end of the antenna;
    And a control device that controls the reactance of the load using the first current value detected by the first current detection unit and the second current value detected by the second current detection unit as parameters. Processing equipment.
  2. 前記負荷が可変コンデンサであり、
    前記制御装置が、前記第1電流値及び前記第2電流値をパラメータとして、前記可変コンデンサの容量を制御する、請求項1記載のプラズマ処理装置。
    The load is a variable capacitor;
    The plasma processing apparatus according to claim 1, wherein the control device controls the capacitance of the variable capacitor using the first current value and the second current value as parameters.
  3. 前記制御装置が、前記第1電流値及び前記第2電流値が等しくなるように、前記負荷のリアクタンスをフィードバック制御する、請求項1又は2記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the control device performs feedback control of reactance of the load so that the first current value and the second current value are equal.
  4. 前記アンテナが2つ直列接続されるとともに、前記第1電流検出部、前記第2電流検出部、及び前記負荷が、前記各アンテナに対して設けられており、
    前記2つのアンテナのうち前記高周波電源側のアンテナの接地側端部に流れる電流を検出する前記第2電流検出部が、他方のアンテナの給電側端部に流れる電流を検出する前記第1電流検出部として兼用されている、請求項1乃至3のうち何れか一項に記載のプラズマ処理装置。
    The two antennas are connected in series, and the first current detection unit, the second current detection unit, and the load are provided for each antenna.
    Of the two antennas, the second current detection unit that detects a current flowing through a ground-side end of an antenna on the high-frequency power source side detects a current flowing through a feeding-side end of the other antenna. The plasma processing apparatus according to claim 1, which is also used as a unit.
  5. 少なくとも2つの前記アンテナが、前記真空容器の対向する側壁それぞれを貫通するとともに、前記各アンテナの同じ側の端部の間に介在する接続導体によって互いに直列接続されており、
    前記接続導体が、前記一対のアンテナに電気的に接続される可変コンデンサを有している、請求項1乃至4のうち何れか一項に記載のプラズマ処理装置。
    At least two of the antennas pass through each opposing side wall of the vacuum vessel, and are connected in series with each other by a connecting conductor interposed between the end portions on the same side of the antennas,
    The plasma processing apparatus according to claim 1, wherein the connection conductor includes a variable capacitor that is electrically connected to the pair of antennas.
  6. 前記アンテナは、内部に冷却液が流れる流路を有しており、
    前記接続導体が、
    前記可変コンデンサと一方のアンテナの端部とを接続するとともに、その端部に形成された開口部から流出する前記冷却液を前記可変コンデンサに導く第1の接続部と、
    前記可変コンデンサと他方のアンテナの端部とを接続するとともに、その端部に形成された開口部に前記可変コンデンサを通過した前記冷却液を導く第2の接続部とを有し、
    前記冷却液が前記可変コンデンサの誘電体である、請求項5記載のプラズマ処理装置。
    The antenna has a flow path through which a coolant flows.
    The connecting conductor is
    A first connecting portion that connects the variable capacitor and an end of one antenna and guides the coolant flowing out from an opening formed at the end to the variable capacitor;
    A second connecting portion for connecting the variable capacitor and an end of the other antenna, and leading the coolant that has passed through the variable capacitor to an opening formed at the end;
    The plasma processing apparatus of claim 5, wherein the coolant is a dielectric of the variable capacitor.
  7. 基板を収容する真空容器内にプラズマを発生させるためのアンテナと、前記アンテナに高周波電流を供給する高周波電源と、前記アンテナの給電側端部に流れる電流を検出する第1電流検出部と、前記アンテナの接地側端部に流れる電流を検出する第2電流検出部と、前記アンテナの接地側端部に接続されたリアクタンスが可変な負荷とを具備するプラズマ処理装置を用いたプラズマ処理方法であって、
    前記第1電流検出部により検出された第1電流値、及び、前記第2電流検出部により検出された第2電流値をパラメータとして、前記負荷のリアクタンスを変更する、プラズマ処理方法。
    An antenna for generating plasma in a vacuum container that accommodates a substrate; a high-frequency power source that supplies a high-frequency current to the antenna; a first current detection unit that detects a current flowing through a power-feed end of the antenna; A plasma processing method using a plasma processing apparatus comprising: a second current detection unit configured to detect a current flowing through an antenna ground side end; and a load having a variable reactance connected to the antenna ground side end. And
    A plasma processing method, wherein the reactance of the load is changed using the first current value detected by the first current detection unit and the second current value detected by the second current detection unit as parameters.
  8. 基板を収容する真空容器内にプラズマを発生させるためのアンテナと、前記アンテナに高周波電流を供給する高周波電源と、前記アンテナの給電側端部に流れる電流を検出する第1電流検出部と、前記アンテナの接地側端部に流れる電流を検出する第2電流検出部と、前記アンテナの接地側端部に接続されたリアクタンスが可変な負荷とを具備するプラズマ処理装置に用いられるプログラムであって、
    前記第1電流検出部により検出された第1電流値、及び、前記第2電流検出部により検出された第2電流値をパラメータとして、前記負荷のリアクタンスを制御する機能をコンピュータに発揮させる、プラズマ処理装置用プログラム。
    An antenna for generating plasma in a vacuum container that accommodates a substrate; a high-frequency power source that supplies a high-frequency current to the antenna; a first current detection unit that detects a current flowing through a power-feed end of the antenna; A program used for a plasma processing apparatus comprising: a second current detection unit that detects a current flowing through an end portion on the ground side of an antenna; and a load connected to the end portion on the ground side of the antenna and having a variable reactance.
    Plasma that causes a computer to exert a function of controlling the reactance of the load using the first current value detected by the first current detection unit and the second current value detected by the second current detection unit as parameters. Program for processing device.
PCT/JP2019/010315 2018-03-16 2019-03-13 Plasma processing device, plasma processing method, and program for plasma processing device WO2019177038A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018049075A JP7001959B2 (en) 2018-03-16 2018-03-16 Plasma processing equipment, plasma processing method, and programs for plasma processing equipment
JP2018-049075 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019177038A1 true WO2019177038A1 (en) 2019-09-19

Family

ID=67908327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010315 WO2019177038A1 (en) 2018-03-16 2019-03-13 Plasma processing device, plasma processing method, and program for plasma processing device

Country Status (3)

Country Link
JP (1) JP7001959B2 (en)
TW (1) TWI700390B (en)
WO (1) WO2019177038A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7306221B2 (en) * 2019-10-29 2023-07-11 日新電機株式会社 Sputtering apparatus, sputtering method, and program for sputtering apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233289A (en) * 1998-02-17 1999-08-27 Univ Nagoya High frequency discharge device and high frequency processing device
JP2005149887A (en) * 2003-11-14 2005-06-09 Mitsui Eng & Shipbuild Co Ltd Matching method of antenna for plasma generator, and plasma generator
JP2016207322A (en) * 2015-04-17 2016-12-08 日新電機株式会社 Plasma processing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11232289A (en) * 1998-02-13 1999-08-27 Dainippon Printing Co Ltd Material registering and retrieving system
CN105491780B (en) * 2014-10-01 2018-03-30 日新电机株式会社 The antenna of plasma generation and the plasma processing apparatus for possessing the antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233289A (en) * 1998-02-17 1999-08-27 Univ Nagoya High frequency discharge device and high frequency processing device
JP2005149887A (en) * 2003-11-14 2005-06-09 Mitsui Eng & Shipbuild Co Ltd Matching method of antenna for plasma generator, and plasma generator
JP2016207322A (en) * 2015-04-17 2016-12-08 日新電機株式会社 Plasma processing apparatus

Also Published As

Publication number Publication date
JP2019160718A (en) 2019-09-19
JP7001959B2 (en) 2022-02-04
TW201938838A (en) 2019-10-01
TWI700390B (en) 2020-08-01

Similar Documents

Publication Publication Date Title
TWI239794B (en) Plasma processing apparatus and method
US5556549A (en) Power control and delivery in plasma processing equipment
JP5874853B1 (en) Plasma processing equipment
KR102435177B1 (en) Plasma control system and computer readable recording medium
US11217429B2 (en) Plasma processing device
JP4122467B2 (en) High frequency discharge device and high frequency processing device
WO2019177038A1 (en) Plasma processing device, plasma processing method, and program for plasma processing device
JP2018156864A (en) Plasma processing apparatus
WO2019172252A1 (en) Plasma processing device
JP7298320B2 (en) PLASMA PROCESSING APPARATUS, PLASMA PROCESSING METHOD AND PROGRAM FOR PLASMA PROCESSING APPARATUS
WO2021010302A1 (en) Plasma control system and plasma control program
CN115053398B (en) Antenna mechanism and plasma processing apparatus
JP3966669B2 (en) Plasma processing equipment
JP2018156763A (en) Antenna for plasma generation and plasma processing apparatus including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767774

Country of ref document: EP

Kind code of ref document: A1