WO2019176866A1 - Bispecific polypeptide structurally based on uteroglobin - Google Patents

Bispecific polypeptide structurally based on uteroglobin Download PDF

Info

Publication number
WO2019176866A1
WO2019176866A1 PCT/JP2019/009745 JP2019009745W WO2019176866A1 WO 2019176866 A1 WO2019176866 A1 WO 2019176866A1 JP 2019009745 W JP2019009745 W JP 2019009745W WO 2019176866 A1 WO2019176866 A1 WO 2019176866A1
Authority
WO
WIPO (PCT)
Prior art keywords
uteroglobin
chain
polypeptide
heterodimeric
amino acid
Prior art date
Application number
PCT/JP2019/009745
Other languages
French (fr)
Japanese (ja)
Inventor
真由美 新山
宏樹 秋葉
康弘 阿部
永田 諭志
知子 伊勢
知生子 長尾
春彦 鎌田
浩平 津本
賢司 水口
アファナシェヴァ・アリーナ
井上 豪
庸太 福田
Original Assignee
国立研究開発法人医薬基盤・健康・栄養研究所
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人医薬基盤・健康・栄養研究所, 国立大学法人大阪大学 filed Critical 国立研究開発法人医薬基盤・健康・栄養研究所
Priority to JP2020506514A priority Critical patent/JP7398677B2/en
Publication of WO2019176866A1 publication Critical patent/WO2019176866A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum

Definitions

  • the present invention relates to a polypeptide having bispecificity, in particular, a bispecific polypeptide based on a heterodimeric uteroglobin and a method for producing the same.
  • a natural antibody molecule is usually a molecule with a molecular weight of about 150 kDa, which exhibits a single binding property that recognizes one type of antigen and has the C-terminal region Fc region of an immunoglobulin heavy chain.
  • the Fc region alone is thought to be a heavy chain homodimer containing CH2 and CH3 regions.
  • bispecific antibodies with two different binding properties can be created by using recombinant techniques. Bispecific antibodies can simultaneously inhibit two receptors on the cell surface, bind simultaneously with two ligands, allow signal transduction by binding two different receptors, and allow cells to interact with each other. The usefulness of being able to act is shown (nonpatent literature 1).
  • an amino acid residue present in the CH3 region of one heavy chain is replaced with a larger residue (knob), and an amino acid residue present in the CH3 region of the other heavy chain Is replaced with a smaller residue so that the protrusion is located within the gap, thereby promoting heterogeneous heavy chain formation and inhibiting homogeneous heavy chain formation.
  • a knob-in-to-hole method is known (Patent Document 1).
  • an amino acid residue present in the CH3 region of one heavy chain is replaced with an amino acid residue having a positive charge, and an amino acid residue present in the CH3 region of the other heavy chain is negatively charged.
  • Patent Documents 2, 3, 4 and 5 There is also reported a method in which the substituted amino acid residues are electrostatically interacted with each other, thereby promoting hetero heavy chain formation and inhibiting homo heavy chain formation.
  • Advantages of these methods are that the production efficiency of the bispecific antibody is relatively high, that the amino acid in the CH3 region is modified, so that antigenicity is not easily impaired, and antibody-dependent cellular cytotoxicity of the Fc region. Examples thereof include the ability to produce antibodies with high in vivo stability while maintaining activities such as (ADCC) and complement-dependent cytotoxicity (CDC).
  • ADCC antibody-dependent cytotoxicity
  • CDC complement-dependent cytotoxicity
  • the antibody since the antibody has a large molecular weight of about 150 kDa, the retention in blood is maintained at a high level, but the effect may be reduced by lowering the tissue permeability. Furthermore, normal antibodies are difficult to develop into expression systems that can be produced at a relatively low cost such as Escherichia coli due to the characteristics of molecular weight and three-dimensional structure, and their production is almost limited to expensive mammalian expression systems. is the current situation.
  • Uteroglobin is a relatively low molecular weight (15.8 kDa) homodimeric polypeptide and does not interact with cells such as natural killer cells and macrophages that have a cytocidal effect.
  • it since it is a low molecular weight polypeptide, it is expected that it can be developed into various expression systems without depending only on the expression system in mammalian cells, and has a great advantage from the viewpoint of protein production.
  • uteroglobin is a highly safe polypeptide that is expected to have an anti-inflammatory effect (Patent Document 6) and is used in clinical trials.
  • Uteroglobin is used as an antibody base for expressing a bivalent antibody (Non-Patent Document 2).
  • bispecific antibodies generally include high drug prices, limited efficacy, and limited target antigens.
  • High drug prices are common to biopharmaceuticals, and the cause of this is that development time is often required to establish a manufacturing process compared to low molecular weight compounds.
  • antibodies use expensive animal cell expression systems due to their large molecular weight. It must be unavoidable.
  • Bispecific antibodies have so far been reported with at least 50 various non-wild-type derivatives with a wide variety of structures and targets. On the other hand, the creation of functional and effective bispecific antibodies is still inevitable through trial and error.
  • bispecific molecules that have a low molecular weight compared to general antibodies are sought, and uteroglobin is used as the structural basis instead of the Fc region in bispecific antibodies created based on natural antibodies.
  • Diligent studies were conducted on polypeptides having bispecificity.
  • the present inventors estimated the three-dimensional structure of human uteroglobin from the structural analysis of rabbit uteroglobin, and paid attention to the site where human uteroglobin associates when forming a homodimer from the estimated structure. As a result, it was found that heterodimers can be efficiently formed by adding amino acid residue mutations to the sites where they are associated.
  • the present invention relates to bispecific polypeptides based on heterodimeric uteroglobin, methods for producing the same, and heterodimeric uteroglobin itself and methods for producing the same. Accordingly, the present invention includes the following aspects. ⁇ Bispecific polypeptide defining heterodimeric uteroglobin> [1] A bispecific polypeptide based on a heterodimeric uteroglobin.
  • the heterodimeric uteroglobin comprises an A chain and a B chain, wherein the A chain and the B chain are different from each other and have one or several amino acid residue mutations in the wild type uteroglobin monomer, and
  • the mutation of the A chain and the B chain is a pair substitution of amino acid residues, and the pair substitution results in association, thereby promoting the formation of heterodimeric uteroglobin and inhibiting the formation of homodimeric uteroglobin.
  • the paired substitution of amino acid residues is the 5th serine (S) and 68th leucine (L), 27th leucine (L) and 68th leucine, 28th in the amino acid sequence represented by SEQ ID NO: 1. Pairs of phenylalanine (F) and 66th serine (S), 33rd aspartic acid (D) and 51st lysine (K), and 44th leucine (L) and 47th threonine (T) The bispecific polypeptide according to [3], which is a substitution.
  • the pair substitution of amino acid residues is a pair of substitutions in the A chain with the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 and the 51st lysine (K) in the B chain, [ 4] The bispecific polypeptide of description. [6] Pair substitution replaces the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 in the A chain with lysine (K), arginine (R) or histidine (H), and in the B chain.
  • the bispecific polypeptide according to any one of [1] to [9], wherein the uteroglobin is human uteroglobin.
  • the amino acid residue pair substitution is that the 29th serine (S) in the amino acid sequence represented by SEQ ID NO: 1 in the A chain is substituted with lysine (K), and the sequence shown in SEQ ID NO: 1 in the B chain.
  • the pair substitution of amino acid residues is a pair of substitutions in the A chain with the 28th phenylalanine (F) of the amino acid sequence represented by SEQ ID NO: 1 and the 66th serine (S) in the B chain [3 ]
  • the bispecific polypeptide of description is a pair of substitutions in the A chain with the 28th phenylalanine (F) of the amino acid sequence represented by SEQ ID NO: 1 and the 66th serine (S) in the B chain [3 ] The bispecific polypeptide of description.
  • ⁇ Bispecific polypeptide that defines the binding region> [11] A first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain is linked to a second binding region that is different from the first binding region
  • the bispecific polypeptide according to any one of [1] to [10], [10-2] and [10-3], which comprises a second polypeptide.
  • the bispecific poly of any one of [1] to [11] which binds to one or more target molecules selected from the group consisting of a receptor or a fragment thereof, a cancer antigen, an MHC antigen, and a differentiation antigen. peptide.
  • a first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain is linked to a second binding region that is different from the first binding region A method for producing the bispecific polypeptide according to any one of [1] to [14], comprising a second polypeptide, a) providing a first vector comprising a nucleic acid encoding the first polypeptide; b) providing a second vector comprising a nucleic acid encoding a second polypeptide; c) co-transfecting the cells with the first and second vectors, culturing the resulting transfectants, and d) recovering the heterodimer comprising the first and second polypeptides, A method for producing the bispecific polypeptide.
  • a first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain is linked to a second binding region that is different from the first binding region A method for producing the bispecific polypeptide according to any one of [1] to [14], comprising a second polypeptide, a) providing a first cell expressing a first polypeptide; b) providing a second cell expressing the second polypeptide; c) co-culturing the first and second cells; and d) recovering the heterodimer comprising the first and second polypeptides.
  • a method for producing the bispecific polypeptide comprising the first and second polypeptides.
  • a first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain is linked to a second binding region that is different from the first binding region The bispecific polypeptide according to any one of [1] to [14], wherein the nucleic acid encodes the first polypeptide or the second polypeptide.
  • a vector comprising the nucleic acid according to [25].
  • a cell comprising the vector according to [26].
  • a and B chains which are different from each other, have one or several amino acid residue mutations in the wild-type uteroglobin monomer, and are heterodimeric due to associations derived from that mutation Heterodimeric uteroglobin that forms the body.
  • the mutation of the A chain and the B chain is a pair substitution of amino acid residues, and the pair substitution results in association, thereby promoting the formation of heterodimeric uteroglobin and inhibiting the formation of homodimeric uteroglobin.
  • the heterodimeric uteroglobin according to [32].
  • Pairs of phenylalanine (F) and 66th serine (S), 33rd aspartic acid (D) and 51st lysine (K), and 44th leucine (L) and 47th threonine (T) The heterodimeric uteroglobin according to [34], which is a substitution.
  • the pair substitution of amino acid residues is a pair of substitutions in the A chain with the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 and the 51st lysine (K) in the B chain, [ 35] The heterodimeric uteroglobin according to [35].
  • Pair substitution replaces the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 in the A chain with lysine (K), arginine (R) or histidine (H), and in the B chain.
  • lysine K
  • arginine R
  • histidine H
  • the heterodimer uteroglobin according to [36], wherein the 51st lysine (K) is substituted with glutamic acid (E) or aspartic acid (D).
  • Pair substitution replaces the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 with lysine (K) in the A chain, and the 51st lysine (K) in the B chain with glutamic acid (E ) Is a heterodimeric uteroglobin according to [35].
  • the advantages of the bispecific antibody include that it can recognize two targets at the same time, can obtain a synergistic effect similar to co-administration, and can reduce the cost of developing two types of antibodies.
  • the present invention since the present invention is based on uteroglobin, it is a low molecular weight compared to general antibodies, can be expected to have high tissue permeability, and has no Fc region. It is possible to suppress unexpected effects that occur due to the presence of this, and safety is high.
  • the polypeptide of this invention can be synthesize
  • FIG. 1-1 illustrates one embodiment of a heterodimeric uteroglobin.
  • FIG. 1-1 is an embodiment in which the formation of heterodimeric uteroglobin is promoted.
  • Heterodimeric uteroglobin has an A chain and a B chain, and is a mutation from the 33rd aspartic acid (D) to lysine (K) amino acid sequence represented by SEQ ID NO: 1 with respect to wild-type uteroglobin. (D33K mutation), and the B chain has a mutation from the 51st lysine (K) to glutamic acid (E) (K51E mutation).
  • FIG. 2 shows the formation of dimeric uteroglobin promoted.
  • FIG. 1-2 shows that the pair substitution results in electrostatic interaction between the D33K site of the A chain and the K51 site of the A chain, and the K51E site of the B chain and the D33 site of the B chain. It shows how the formation of uteroglobin is inhibited.
  • It is a schematic diagram which shows the structure and electrostatic interaction site
  • Both the light black boxed X chain and the white boxed Y chain interact electrostatically in one 33rd aspartic acid (D) and the other 51st lysine (K) to form a homodimer.
  • D 33rd aspartic acid
  • K 51st lysine
  • It is a structural schematic diagram of wild-type human uteroglobin deduced from the structural analysis of rabbit uteroglobin.
  • A- and B- represent A chain and B chain, respectively.
  • A-S5 indicates S (serine) at the 5-position of the A chain.
  • Dotted lines indicate possible pairs.
  • the criteria for pairing are the results of exhaustive searches for pairs that are visually adjacent to the exposed amino acids.
  • FIG. 3-1 shows the model structure as viewed from the N-terminal side of the A chain.
  • FIG. 3-2 is a view from the opposite side. The results of electrophoresis of various expression products under reducing conditions containing 2-mercaptoethanol and non-reducing conditions not containing are shown.
  • [1] is wild-type uteroglobin expression product
  • [2] is mutant uteroglobin (K51E) expression product
  • [3] is ROBO4 scFv expression product
  • [4] is ROBO4 scFv-mutant uteroglobin (D33K) (ROBO4 scFv-D33K )
  • Expression product [5] is an expression product obtained by double transfection with plasmids encoding mutant uteroglobin (K51E) and ROBO4 scFv-mutant uteroglobin (ROBO4 scFv-D33K), respectively
  • [6] is mutation Electrophoresis of expression products obtained by co-culturing cells transfected with a plasmid encoding type uteroglobin (K51E) and cells transfected with a plasmid encoding ROBO4 scFv-mutant uteroglobin (D33K) Is the result of In [7], ROBO4
  • [1] is a wild-type uteroglobin expression product
  • [8] is a mutant uteroglobin (S66F) expression product
  • [3] is a ROBO4 scFv expression product
  • [9] is a ROBO4 scFv-mutant uteroglobin (F28S) (ROBO4 scFv-F28S ) Expression product
  • [10] is the double transfection with plasmids encoding mutant uteroglobin (S66F) and ROBO4 scFv-mutant uteroglobin (ROBO4 scFv-F28S), respectively
  • [11] is the mutation Of the expression products obtained by co-culturing cells transfected with a plasmid encoding type uteroglobin (S66F) and cells
  • [1] is a wild-type uteroglobin expression product
  • [13] is a mutant uteroglobin (S29K) expression product
  • [3] is a ROBO4 scFv expression product
  • [14] is a ROBO4 scFv-mutant uteroglobin (S29D, K62D) (ROBO4 scFv -S29D, K62D) expression product
  • [15] is an expression product obtained by double transfection with plasmids encoding mutant uteroglobin (S29K) and ROBO4 scFv-mutant uteroglobin (ROBO4 scFv-S29D, K62D)
  • [16] are obtained by co-culturing cells transfected with a plasmid encoding mutant uteroglobin
  • Uteroglobin is a homodimeric polypeptide in which two structurally identical monomers are electrostatically associated (Nature structural biology 1994, vol. 1, No. 8, 538).
  • the amino acid sequence of human wild-type uteroglobin monomer is shown in SEQ ID NO: 1.
  • Wild-type uteroglobin is a protein with no relatively low molecular weight (15.8 kDa) sugar chain, and its properties combine high solubility and pH stability, and is resistant to proteolytic enzymes (JBC 2009, vol.284, No.39, 26646.).
  • Uteroglobin is also called CC10, and a paper on crystallization of human uteroglobin has been reported (1.9 ⁇ diffractivity, Nat Struct Biol vol. 1 (8) 1994 538-545).
  • uteroglobin is a kind of protein secreted into the bronchus, and is described as having phospholipase A2 (PLA2) inhibition and PCB binding activity. Crystallization was performed by obtaining and purifying the wild-type protein from individuals under the conditions: 100 ⁇ ug / mL protein, 70% ammonium sulfate, 20 mM Tris (pH 7.5), 16-18% glycerol.
  • human uteroglobin has a structure that can bind phospholipids such as phosphatidylcholine and phosphatidylinositol, and has a similar structure with 62% amino acid homology compared to rabbit uteroglobin Are listed.
  • Human uteroglobin is not registered in the protein data bank (PDB), but structural similarity to rabbit uteroglobin that is registered in the PDB is presumed. Therefore, when human uteroglobin forms a homodimer, a region where amino acids interact is presumed to some extent.
  • the present inventors estimated the identification of amino acids to be mutated to form a heterodimer from the structural analysis of rabbit uteroglobin. The estimation of the structural analysis is described in detail below.
  • the present invention provides various inventions based on heterodimeric uteroglobin.
  • Table 1 shows pairs of amino acid residues that can be associated with each other to form a heterodimeric uteroglobin estimated as described above.
  • the first line means a pair of substitutions in the A chain with the fifth cysteine (S) of the amino acid sequence represented by SEQ ID NO: 1 and the 68th leucine (L) in the B chain. The same applies to the following lines.
  • the A chain and the B chain can be converted to each other.
  • the numbers are numbers from the N-terminal of the amino acid sequence represented by SEQ ID NO: 1.
  • a preferred example of a pair of substitutions is a pair of substitutions in the A chain with the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 and the 51st lysine (K) in the B chain.
  • the association may include an affinity electrostatic interaction, a repulsive interaction between amino acid residues having the same type of charge, and an interaction between hydrophobic amino acids.
  • the present invention promotes heterodimer formation by mutating amino acid residues that have an affinity electrostatic interaction in each monomer of wild-type uteroglobin, and promotes homodimerization. Inhibits the formation of mers.
  • “pair substitution” is established by mutating one of the amino acid residues in each monomer having an affinity interaction with each other in wild-type uteroglobin to an amino acid residue having a repulsive interaction. That is, a heterodimeric uteroglobin with one paired substitution contains one amino acid mutation in the A chain and another amino acid mutation in the B chain. This embodiment is called “wild substitution type”.
  • pair substitution in the wild substitution type are shown in Table 2.
  • the A chain and the B chain can be converted to each other.
  • Table 2 shows that aspartic substitution in this embodiment, the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 is changed to lysine (K), arginine (R) or histidine (H) in the A chain.
  • lysine (K), arginine (R) or histidine (H) in the A chain A total of six examples are shown in which substitution is performed and the 51st lysine (K) in the B chain is substituted with glutamic acid (E) or aspartic acid (D).
  • the pair substitution results in D33K on the A chain and K51E on the B chain and
  • the 51st K of the chain and the 33rd D of the B chain interact electrostatically to promote the formation of heterodimeric uteroglobin.
  • Pair substitution replaces the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 with lysine (K) in the A chain, and the 51st lysine (K) in the B chain with glutamic acid (E ) Are preferred.
  • a heterodimer is formed by newly generating a pair substitution at a portion where the amino acid residues of wild-type uteroglobin do not have a clear affinity interaction with each other.
  • Table 3 shows the following example as a pair substitution in this embodiment.
  • An example with substitution site 5-68 will be described. From the first line, S68D is introduced into the A chain and L68R is introduced into the B chain (first pair substitution). From the second line, L68D is introduced into the A chain and S5K is introduced into the B chain (second pair substitution). ). In this case, the A chain becomes a mutant having two mutations of S5D and L68D, and the B chain becomes a mutant having two mutations of S5K and L68R. This establishes a pair of pair substitutions.
  • the present invention includes, as yet another embodiment, a mode in which heterodimeric uteroglobin is formed as a pair substitution through an association in which hydrophobic amino acids interact with each other instead of electrostatic interaction.
  • This embodiment is called “hydrophobic pocket inversion type”.
  • Table 4 shows a total of nine examples of pair substitution in this aspect. Preferably, it has a F28S substitution in the A chain and S66F in the B chain.
  • amino acid residues charged residues are known.
  • lysine (K), arginine (R), and histidine (H) are known as positively charged amino acids (positively charged amino acids).
  • negatively charged amino acid (negatively charged amino acid) aspartic acid (D), glutamic acid (E) and the like are known. Therefore, the amino acid residue having the same kind of charge in the present invention preferably means an amino acid residue having positive charges or an amino acid residue having negative charges.
  • mutants specifically refers to substitution of the original amino acid residue with another amino acid residue, deletion of the original amino acid residue, This refers to addition of an amino acid residue, etc., but preferably means to substitute the original amino acid residue with another amino acid residue.
  • homodimer refers to a state in which polypeptides having the same amino acid sequence are associated with each other.
  • Heterodimer refers to a state in which polypeptides having at least one amino acid residue in an amino acid sequence are associated with each other.
  • heterodimeric uteroglobin means that wild-type uteroglobin is a homodimer, whereas each monomer is heterodimeric due to mutation of one or several amino acid residues in each monomer. It means a heterodimer of mutant uteroglobin that constitutes the body.
  • heterodimeric uteroglobin is a heterodimeric uteroglobin comprising an A chain and a B chain, wherein the A chain and the B chain are different from each other, one or several in the wild type uteroglobin monomer, respectively. Of amino acid residues, and both are associated by that mutation.
  • the A chain and the B chain do not represent specific monomers in the heterodimeric uteroglobin, and are interchangeable. That is, a reference to each mutation in the A chain and the B chain should be understood as a reference to each mutation in the B chain and the A chain, respectively.
  • the heterodimeric uteroglobin as described above can further have another mutation.
  • the uteroglobin A chain and the B chain can form a disulfide bond.
  • Disulfide bond formation refers to the process of forming a covalent bond between two cysteines present in one or two polypeptides, and this bond is schematized as “—S—S—”.
  • the heterodimer uteroglobin of the present invention includes the leucine (L) at the 44th amino acid sequence, the methionine (M) at the 34th amino acid sequence represented by SEQ ID NO: 1, and both the uteroglobin A chain and the B chain.
  • At least one selected from the 59th leucine (L) can have a mutation replacing cysteine (C).
  • a “bispecific polypeptide” is a molecule comprising at least a first polypeptide and a second polypeptide. That is, the “bispecific polypeptide” of the present invention comprises a first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain in the first. A second polypeptide linked to a second binding region different from the binding region.
  • the connection between the A chain and the first binding region and the connection between the B chain and the second binding region do not destroy the specificity of the region. It is.
  • the bispecific polypeptide of the present invention has binding specificities or binding sites for two different ligands.
  • the ligand is not particularly limited, and any ligand may be used. Examples of the ligand include, but are not limited to, a receptor or a fragment thereof, a cancer antigen, an MHC antigen, a differentiation antigen, and the like.
  • receptors include, for example, hematopoietic factor receptor family, cytokine receptor family, tyrosine kinase type receptor family, serine / threonine kinase type receptor family, TNF receptor family, G protein coupled receptor family, GPI
  • the receptor family include an anchor type receptor family, a tyrosine phosphatase type receptor family, an adhesion factor family, and a hormone receptor family.
  • Specific receptors belonging to the above receptor family include, for example, human or mouse erythropoietin (EPO) receptor, human or mouse granulocyte colony stimulating factor (G-CSF) receptor, human or mouse thrombopoietin (TPO).
  • EPO erythropoietin
  • G-CSF granulocyte colony stimulating factor
  • Receptor human or mouse insulin receptor, human or mouse Flt-3 ligand receptor, human or mouse platelet derived growth factor (PDGF) receptor, human or mouse interferon (IFN) - ⁇ , ⁇ receptor, human or Mouse leptin receptor, human or mouse growth hormone (GH) receptor, human or mouse interleukin (IL) -10 receptor, human or mouse insulin-like growth factor (IGF) -I receptor, human or mouse leukemia inhibitory factor Examples include (LIF) receptors, human or mouse ciliary neurotrophic factor (CNTF) receptors, and the like.
  • PDGF platelet derived growth factor
  • IFN interferon
  • GH growth hormone
  • IL interleukin
  • IGF insulin-like growth factor
  • IGF insulin-like growth factor
  • human or mouse leukemia inhibitory factor examples include (LIF) receptors, human or mouse ciliary neurotrophic factor (CNTF) receptors, and the like.
  • Cancer antigens are antigens that are expressed as cells become malignant or antigens that are highly expressed in peripheral cells other than cancer cells due to the characteristics of cancer.
  • abnormal sugar chains appearing on the cell surface and protein molecules when cells become cancerous also become cancer antigens, and are particularly called cancer sugar chain antigens.
  • cancer antigens include CA19-9, CA15-3, and roundabout homolog 4 (ROBO4).
  • MHC antigens are roughly classified into MHC class I antigens and MHC class II antigens, and MHC class I antigens include HLA-A, -B, -C, -E, -F, -G, -H, MHC class II antigens include HLA-DR, -DQ, and -DP.
  • Differentiation antigens include differentiation antigen groups such as CD1, CD2, CD3, CD4, CD5, and CD6.
  • the bispecific polypeptides of the present invention have binding specificities or binding sites for two different ligands. That is, each of the first binding region and the second binding region has a monovalent specificity. One or both of the first binding region and the second binding region can link at least one additional binding region in a manner that does not destroy the specificity of the region.
  • the polypeptide of the present invention may be a “multispecific polypeptide”.
  • the bispecific polypeptide of the present invention includes a “heterodimeric uteroglobin” formed by the A and B chains of the heterodimeric uteroglobin in the first polypeptide and the second polypeptide. .
  • a “first polypeptide” and a “second polypeptide” each bind to a “binding region”, eg, an antibody variable region, a receptor binding region, a ligand binding region or an enzyme active region, or another molecule.
  • a binding region eg, an antibody variable region, a receptor binding region, a ligand binding region or an enzyme active region, or another molecule.
  • An affinity polypeptide with activity can be included.
  • the binding region comprises immunoglobulin heavy and light chains.
  • the first polypeptide and the second polypeptide each comprise at least one region derived from the primary sequence of uteroglobin. This region is the portion where the first and second polypeptides associate.
  • the binding region is derived from the variable region of the antibody or has sequence identity with the variable region of the antibody.
  • antibodies include full length antibodies, antibody fragments, single chain molecules, bispecific or bifunctional molecules, scFv, diabodies, single domain antibodies (VHH), chimeric antibodies, and immunoadhesive factors Is included.
  • Antibody fragments include fragments of Fv, Fv ′, Fab, Fab ′ and F (ab ′) 2.
  • “Antibody”, as it relates to the present invention, means a polypeptide that contains one or more regions that bind to an epitope of an antigen of interest.
  • Antibody fragments can be obtained by treating an antibody with an enzyme, for example, a protease such as papain, pepsin (MorimotoMet al., J. Biochem. Biophys. Methods (1992) 24: 107-17; Brennan et al ., See Science (1985) 229: 81). It can also be produced by gene recombination based on the amino acid sequence of the antibody fragment.
  • an enzyme for example, a protease such as papain, pepsin (MorimotoMet al., J. Biochem. Biophys. Methods (1992) 24: 107-17; Brennan et al ., See Science (1985) 229: 81). It can also be produced by gene recombination based on the amino acid sequence of the antibody fragment.
  • a low molecular weight antibody having a structure obtained by modifying an “antibody fragment” can be constructed using an antibody fragment obtained by enzyme treatment or gene recombination.
  • a gene encoding the entire low molecular weight antibody can be constructed, introduced into an expression vector, and then expressed in an appropriate host cell (for example, Co et al., J. Immunol. (1994) 152). : 2968-76; Better and Horwitz, Methods Enzymol. (1989) 178: 476-96; Pluckthun and Skerra, Methods Enzymol. (1989) 178: 497-515; Lamoyi, Methods Enzymol. (1986) 121: 652-63 Rousseaux et al., Methods Enzymol. (1986) 121: 663-9; Bird and Walker, Trends Biotechnol. (1991) 9: 132-7).
  • “ScFv” is a single-chain polypeptide in which two variable regions are bound via a linker or the like, if necessary.
  • the two variable regions included in scFv are usually one heavy chain variable region (VH) and one light chain variable region (VL), but may be two VHs or two VLs.
  • scFv polypeptides include a linker between the VH and VL regions, thereby forming the VH and VL paired portions necessary for antigen binding.
  • the linker connecting VH and VL is a peptide linker having a length of 10 amino acids or more.
  • the scFv linker in the present invention is not limited to such a peptide linker as long as it does not interfere with the formation of scFv.
  • scFv As a review of scFv, reference can be made to Pluckthun, The Pharmacology of Monoclonal Antibody, Vol.113 (Rosenburg and Moore ed., Springer Verlag, NY, pp.269-315 (1994)).
  • diabody refers to a divalent antibody fragment constructed by gene fusion (P. Holliger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993), EP404,097). No., WO93 / 11161 etc.).
  • a diabody is a dimer composed of two polypeptide chains, each of which is in a position where the light chain variable region (VL) and the heavy chain variable region (VH) cannot bind to each other in the same chain. They are linked by a short linker, for example, about 5 residues.
  • VL and VH encoded on the same polypeptide chain cannot form a single-chain V region fragment due to a short linker between them, a diabody forms two antigen-binding sites. Will have.
  • VL and VH for two different epitopes (a and b) are combined with VLa-VHb and VLb-VHa and linked together by a linker of about 5 residues, they are secreted as bispecific Db.
  • the two different epitopes may be two different epitopes on the same antigen, or may be two epitopes on each of the two different antigens.
  • a “diabody” contains two molecules of scFv, so it contains four variable regions, resulting in two antigen-binding sites. Unlike the case of scFv that does not form a dimer, when aiming at the formation of a diabody, the linker that connects between VH and VL in each scFv molecule is usually about 5 amino acids when used as a peptide linker. To do. However, the scFv linker that forms a diabody is not limited to such peptide linkers as long as it does not interfere with scFv expression and does not interfere with diabody formation.
  • a “single domain antibody” is a molecule generally having a high affinity and specificity for a specific antigen, and is an antibody variable region consisting only of a heavy chain found in camelids or imitating this structure. This refers to an antibody variable region consisting of a single domain obtained by modifying human or other VH. These include those that have undergone stabilization and affinity improvement measures through humanization and amino acid optimization.
  • Affinity polypeptide refers to a peptide or partial structure consisting of several amino acids contained in the adhesion site of protein-protein interaction, or a peptide showing binding affinity for a specific molecule screened from a random peptide library. It refers to a polypeptide that is different from a structure, or a partial structure thereof.
  • an adhesion molecule active center such as Arg-Gly-Asp-Ser, a cyclic polypeptide and the like are included.
  • peptides having specific binding affinity found by methods such as phage surface display, yeast display, and ribosomal display such as Cys-Asp-Cys-Arg-Gly-Asp-Cys-Phe-Cys (RGD-4C) is also preferred (Arap, W .; Pasqualini, R .; Ruoslahti, E. Science 1998, 279, 377.).
  • the present invention can link at least one additional binding region in one or both of the first binding region and the second binding region in a manner that does not destroy the specificity of the region
  • the polypeptide can be a “multispecific polypeptide”.
  • multispecific polypeptides include those in which one or both of the first binding region and the second binding region are linked to an scFv that binds to one or more ligands.
  • affinity polypeptide with the linker etc. can be utilized as multispecific polypeptide.
  • polypeptide generally refers to peptides and proteins having a length of about 10 amino acids or more. Moreover, although it is normally a polypeptide derived from a living organism
  • Linkage between uteroglobin A chain and first binding region and second binding different from uteroglobin B chain and first binding region in the first polypeptide and the second polypeptide of the bispecific polypeptide of the present invention Linkage with a region can be performed through a linker as necessary.
  • the linker that links the A chain and B chain to the binding region is a peptide linker having a length of 10 amino acids or more.
  • the linker in the present invention is not particularly limited as long as the specificity and binding characteristics of the binding region are not hindered.
  • a GS4 (Gly + Ser x4, GSSSSGSSSS) linker represented by SEQ ID NO: 2 can be mentioned.
  • association of the A chain and the B chain means a state in which the A chain and the B chain interact in a specific region of each other.
  • the specific regions of each other are usually one or a plurality of amino acid residues that are subjected to association, and are preferably amino acid residues that approach and participate in the interaction during the association.
  • the interaction includes a case where amino acid residues approaching at the time of association form a hydrogen bond, an electrostatic interaction, a salt bridge, and the like.
  • the present invention includes a complex formed by covalently binding the bispecific polypeptide of the present invention and a drug, an ADC (antibody-drug conjugate) complex.
  • a drug an ADC (antibody-drug conjugate) complex.
  • systemic administration of drugs can cause unacceptable levels of toxicity not only to tumor cells to be eliminated but also to normal cells (Baldwin et al., (1986) Lancet pp. (Mar. 15, 1986): 603 -05).
  • antibody-drug conjugates are used to locally deliver drugs to pursue maximum efficacy while minimizing toxicity and to kill or inhibit tumor cells in cancer therapy (Syrigos and Epenetos (1999) Anticancer Research 19: 605-614; U.S. Pat. No. 4,975,278).
  • the bispecific polypeptide of the present invention has a binding property to the corresponding antigen or ligand, while many drug molecules do not selectively kill cancer cells, and thus are difficult to use for cancer treatment. There is. Therefore, a highly selective and specific drug complex can be obtained by binding of the bispecific polypeptide of the present invention to a highly toxic drug such as a toxin.
  • Drugs used in the complex of the present invention include daunomycin, doxorubicin, methotrexate and vindesine (Rowland et al., “Cancer” Immunol. “Immunother.” 21: 183-87 (1986)).
  • bacterial toxins such as diphtheria toxin and phytotoxins such as ricin are included.
  • the present invention provides a first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a second polypeptide in which the heterodimeric uteroglobin B chain is different from the first binding region.
  • the bispecific polypeptide according to any one of claims 10 to 13, which comprises a second polypeptide linked to a binding region of the nucleic acid encoding the first polypeptide or the second polypeptide. .
  • nucleic acid sequences encoding immunoglobulin regions including VH, VL, hinge, CH1, CH2, CH3 and CH4 regions are known in the art (eg, Kabat et al. In SEQUENCES OFIMMUNOLOGICAL INTEREST, Public Health Service NIH , Bethesda, MD, 1991). Using the guidance herein, one of ordinary skill in the art can combine such nucleic acid sequences and / or other nucleic acid sequences known in the art to build on the heterodimeric uteroglobin described herein. Nucleic acid sequences encoding bispecific polypeptides can be made.
  • nucleic acid sequence encoding the bispecific polypeptide of the present invention can be determined by one skilled in the art based on the amino acid sequence provided herein and knowledge in the art.
  • the traditional method of producing cloned DNA segments encoding specific amino acid sequences it is now readily chemically synthesized and DNA of any desired sequence is produced routinely upon order, The production process is streamlined (GenScript, Eurofin Genomics, etc.).
  • the present invention provides a first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a second polypeptide in which the heterodimeric uteroglobin B chain is different from the first binding region.
  • a method for producing a bispecific polypeptide of the present invention comprising a second polypeptide linked to a binding region of
  • the present invention relates to the pair of amino acid residues of one mutation in the A chain and another mutation in the B chain so that the association between the polypeptides is controlled.
  • Methods of producing bispecific polypeptides based on the heterodimeric uteroglobin of the present invention comprising pair substitutions are provided. Examples of such pair substitutions are shown in Tables 1 to 4.
  • the A chain and B chain containing pair substitutions are made by modifying a nucleic acid encoding wild-type uteroglobin.
  • the present invention relates to a first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a second binding region in which the heterodimeric uteroglobin B chain is different from the first binding region.
  • a nucleic acid encoding the first polypeptide or the second polypeptide is provided in the bispecific polypeptide of the invention.
  • “Modifying a nucleic acid” refers to modifying a nucleic acid so as to correspond to an amino acid residue introduced by “modification” in the present invention.
  • nucleic acid encoding an original (before modification) amino acid residue is modified to a nucleic acid encoding an amino acid residue introduced by the modification.
  • genetic manipulation or mutation treatment is carried out such that at least one base is inserted, deleted or substituted into the original nucleic acid so as to be a codon encoding the target amino acid residue. That is, the codon encoding the original amino acid residue is replaced by the codon encoding the amino acid residue introduced by modification.
  • nucleic acid modification can be appropriately performed by those skilled in the art using known techniques such as site-directed mutagenesis and PCR mutagenesis.
  • the nucleic acid in the present invention is usually carried (inserted) into an appropriate vector and introduced into a host cell.
  • the present invention provides a vector comprising the nucleic acid of the present invention and a cell comprising the vector of the present invention.
  • the vector is not particularly limited as long as it stably holds the inserted nucleic acid.
  • the cloning vector is preferably a pBluescript vector (Stratagene), but is commercially available.
  • Various vectors can be used.
  • An expression vector is particularly useful when a vector is used for the purpose of producing the polypeptide of the present invention.
  • the expression vector is not particularly limited as long as it is a vector that expresses a polypeptide in vitro, in E.
  • coli in cultured cells, or in an individual organism.
  • pBEST vector manufactured by Promega
  • E. coli PET vector manufactured by Invitrogen
  • pME18S-FL3 vector GenBank Accession No. AB009864
  • pME18S vector Mol Cell Biol. 8: 466-472 (1988)
  • the insertion of the DNA of the present invention into a vector can be performed by a conventional method, for example, by a ligase reaction using a restriction enzyme site (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons). Section 11.4-11.11).
  • host cell there is no restriction
  • various host cells are used.
  • cells for expressing the polypeptide include bacterial cells (eg, Streptococcus, Staphylococcus, E. coli, Streptomyces, Bacillus subtilis), fungal cells (eg, yeast, Aspergillus), insect cells (eg, Drosophila S2). , Spodoptera SF9), animal cells (eg, CHO, COS, HeLa, C127, 3T3, BHK, HEK293, Bowes melanoma cells) and plant cells.
  • Vector introduction into host cells can be performed by, for example, calcium phosphate precipitation method, electric pulse perforation method (Current protocols in Molecular Biology edit.
  • the present invention provides a cell comprising both a vector comprising a nucleic acid encoding each of the first polypeptide and the second polypeptide, and a cell comprising a vector comprising a nucleic acid encoding the first polypeptide, and a second A cell mixture or co-culture of cells comprising a vector comprising a nucleic acid encoding a polypeptide is provided.
  • These cells and co-cultures are suitable for suitably preparing the bispecific polypeptide of the present invention.
  • an appropriate secretion signal can be incorporated into the polypeptide of interest.
  • These signals may be endogenous to the polypeptide of interest or may be heterologous signals.
  • the polypeptide is collected when the polypeptide of the present invention is secreted into the medium.
  • the polypeptide of the present invention is produced intracellularly, the cell is first lysed, and then the polypeptide is recovered.
  • ammonium sulfate or ethanol precipitation acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, Known methods including hydroxylapatite chromatography and lectin chromatography can be used.
  • a first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region and a second polypeptide in which the heterodimeric uteroglobin B chain is different from the first binding region
  • the purified polypeptide may not be a heterodimer simply by mixing together. It was found. See Example 3. Therefore, in the present invention, the first polypeptide and the second polypeptide are obtained by co-transfection of a vector encoding them into a cell (double transfection) or by including each of the vectors encoding them. Cells need to be co-cultured.
  • a first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain is linked to a second binding region that is different from the first binding region A method for producing a bispecific polypeptide according to any of claims 1 to 13, comprising a second polypeptide comprising: a) providing a first vector comprising a nucleic acid encoding the first polypeptide; b) providing a second vector comprising a nucleic acid encoding a second polypeptide; c) co-transfecting the cells with the first and second vectors, culturing the resulting transfectants, and d) recovering the heterodimer comprising the first and second polypeptides, A method of producing the bispecific polypeptide is provided.
  • the present invention provides a method for producing the bispecific polypeptide of the present invention, a) providing a first cell expressing a first polypeptide; b) providing a second cell expressing the second polypeptide; c) co-culturing the first and second cells; and d) recovering the heterodimer comprising the first and second polypeptides.
  • a method of producing the bispecific polypeptide is provided.
  • An example of producing wild-type human uteroglobin as a basis for producing the bispecific polypeptide of the present invention is as follows.
  • a gene encoding a wild-type human uteroglobin monomer and His tag, FLAG tag, GST tag, etc. is introduced into Escherichia coli, yeast, Brevibacillus, insect cells, mammalian cells and the like.
  • a culture solution or cell disruption solution containing uteroglobin is passed through a resin that captures a His tag, and a fraction containing uteroglobin is eluted with a solution containing imidazole.
  • the eluate is subjected to solution exchange by dialysis to lower the salt concentration, and then purified by anion exchange chromatography.
  • an anion exchange resin is used, and uteroglobin is separated and purified by a salt concentration gradient. After collecting the eluted fraction, it is further purified by gel filtration chromatography to collect highly pure uteroglobin. The eluted fraction is collected and concentrated using an ultrafiltration membrane to obtain a uteroglobin solution.
  • the wild-type uteroglobin obtained here is a dimer. The same applies to the production of mutant uteroglobin.
  • the present invention in another aspect, relates to a composition comprising a bispecific polypeptide of the present invention and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition usually means a drug for treatment or prevention of a disease, or examination / diagnosis.
  • the pharmaceutical composition of the present invention can be formulated by methods known to those skilled in the art. For example, it can be used parenterally in the form of a sterile solution with water or other pharmaceutically acceptable liquid, or an injection in suspension.
  • a pharmacologically acceptable carrier or medium specifically, sterile water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, preservative
  • a pharmaceutical preparation by combining with a binder or the like as appropriate and mixing in a unit dosage form generally required for pharmaceutical practice. The amount of the active ingredient in these preparations is set so as to obtain an appropriate volume within the indicated range.
  • a sterile composition for injection can be formulated in accordance with normal pharmaceutical practice using a vehicle such as distilled water for injection.
  • aqueous solutions for injection examples include isotonic solutions containing, for example, physiological saline, glucose and other adjuvants (for example, D-sorbitol, D-mannose, D-mannitol, sodium chloride).
  • a suitable solubilizing agent such as alcohol (ethanol etc.), polyalcohol (propylene glycol, polyethylene glycol etc.), nonionic surfactant (polysorbate 80 (TM), HCO-50 etc.) may be used in combination.
  • oily liquid examples include sesame oil and soybean oil, and benzyl benzoate and / or benzyl alcohol may be used in combination as a solubilizing agent.
  • a buffer for example, phosphate buffer and sodium acetate buffer
  • a soothing agent for example, procaine hydrochloride
  • a stabilizer for example, benzyl alcohol and phenol
  • an antioxidant for example, benzyl alcohol and phenol
  • composition of the present invention is preferably administered by parenteral administration.
  • the composition can be an injection, nasal, pulmonary, or transdermal composition.
  • it can be administered systemically or locally by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, or the like.
  • the administration method can be appropriately selected depending on the age and symptoms of the patient.
  • the dosage of the pharmaceutical composition containing the polypeptide can be set, for example, in the range of 0.0001 mg to 1000 mg per kg body weight at a time. Alternatively, for example, the dose may be 0.001 to 100,000 mg per patient, but the present invention is not necessarily limited to these values.
  • the dose and administration method vary depending on the patient's weight, age, symptoms, etc., but those skilled in the art can set an appropriate dose and administration method in consideration of these conditions.
  • the polypeptide or complex of the present invention is particularly useful as an active ingredient of a therapeutic or prophylactic agent for cancer, blood vessel-related diseases, and inflammatory diseases.
  • Cancers include, but are not limited to: lung cancer (including small cell lung cancer, non-small cell lung cancer, lung adenocarcinoma and squamous cell carcinoma), colon cancer, rectal cancer, colon cancer, breast cancer, Liver cancer, stomach cancer, pancreatic cancer, renal cancer, prostate cancer, ovarian cancer, thyroid cancer, bile duct cancer, peritoneal cancer, mesothelioma, squamous cell carcinoma, cervical cancer, endometrial cancer, bladder cancer, esophageal cancer, head and neck cancer, Nasopharyngeal cancer, salivary gland tumor, thymoma, skin cancer, basal cell tumor, malignant melanoma, anal cancer, penile cancer, testicular cancer, Wilms tumor, acute myeloid leukemia (acute myelocytic leuk)
  • Blood vessel-related diseases include arteriosclerosis and vasculitis.
  • Inflammatory diseases include acute or chronic inflammatory diseases, specifically including but not limited to: alcoholic hepatitis. Viral hepatitis. Nonalcoholic steatohepatitis. Interstitial pneumonia. Ulcerative colitis. Crohn's disease.
  • the present invention also provides a kit for use in the therapeutic or prophylactic method of the present invention, comprising at least the polypeptide produced by the production method of the present invention or the pharmaceutical composition of the present invention.
  • the kit may be packaged with a pharmaceutically acceptable carrier, a medium, instructions describing the method of use, and the like.
  • the present invention also relates to the use of the polypeptide of the present invention or the polypeptide produced by the production method of the present invention in the manufacture of a therapeutic or prophylactic agent for immunoinflammatory diseases.
  • the present invention also relates to the polypeptide of the present invention or the polypeptide produced by the production method of the present invention for use in the therapeutic or prophylactic method of the present invention.
  • Example 1 Construction of expression plasmid EcoRI cleavage sequence, DNA sequence encoding mouse IgG ⁇ signal peptide, DNA sequence encoding full-length wild type human uteroglobin monomer (NCBI), linker sequence GSSSSGSSSS, His tag and stop codon sequence, XhoI A gene containing a cleavage sequence was synthesized.
  • the synthesized gene and the mammalian expression vector pcDNA6.0 mycHisB (Invitrogen) were cleaved with EcoRI (NEB) and XhoI (NEB).
  • the two cleaved products were ligated using a DNA ligation kit mighty mix (TAKARA) to prepare a wild-type uteroglobin mammalian expression plasmid.
  • TAKARA DNA ligation kit mighty mix
  • the mutant was prepared as follows. Primers containing a sequence in which the codon aag encoding lysine (K), the 51st amino acid of the uteroglobin monomer, was converted to the codon gaa of glutamic acid (E) were synthesized. A PCR reaction was performed using the synthesized primer and a wild-type uteroglobin mammalian expression plasmid as a template to prepare a mutant uteroglobin (K51E) mammalian expression plasmid.
  • a mutant uteroglobin (D33K) mammalian expression plasmid was prepared by converting aspartate gac, the 33rd amino acid, into lysine aag. Subsequently, ROBO4 scFv-mutant uteroglobin (D33K) for mammalian expression, in which the mouse IgG ⁇ signal peptide of the mutant uteroglobin (D33K) mammalian expression plasmid is inserted with a single chain antibody scFv sequence against ROBO4 and linker sequence GSSSSGSSSS. A plasmid was prepared.
  • wild-type uteroglobin mammalian expression plasmid [1] mutant uteroglobin (K51E) mammalian expression plasmid [2]
  • ROBO4 scFv-mutant uteroglobin (D33K) ROBO4 scFv-D33K mammalian expression plasmid [ 4] was prepared.
  • a mutant uteroglobin (S66F) mammalian expression plasmid was prepared by converting serine (S) agc, which is the 66th amino acid, into phenylalanine (F) ttc in the same manner. Subsequently, a single chain antibody scFv sequence and a linker sequence GSSSSGSSSS were inserted into the 3 ′ end of the mouse IgG ⁇ signal peptide of the mutant uteroglobin (F28S) mammalian expression plasmid in which the 28th amino acid phenylalanine ttc was converted to serine agc. ROBO4 scFv-mutant uteroglobin (F28S) mammalian expression plasmid was prepared.
  • mutant uteroglobin (S66F) mammalian expression plasmid [8] and a ROBO4BOscFv-mutant uteroglobin (F28S) (ROBO4 scFv-F28S) mammalian expression plasmid [9] were prepared.
  • a mutant uteroglobin (S29K) mammalian expression plasmid was prepared by converting serine (S) agc, the 29th amino acid, into lysine (K) aag. Subsequently, the same method was used to convert the 29th amino acid serine (S) agc to aspartic acid (D) gac and the 62nd amino acid lysine (K) aaa to aspartic acid (D) gac.
  • mutant uteroglobin (S29K) mammalian expression plasmid [13] and a ROBO4 scFv-mutant uteroglobin (S29D, K62D) (ROBO4 scFv-S29D, K62D) mammalian expression plasmid [14] were prepared.
  • Example 2 Preparation of expression product 2-1: Expression Transfection (transduction) was performed using ExpiFectamine293 Transfection kit (Thermo Fisher Scentific). The procedure is as follows. Expi293F cells (Invitrogen) were cultured in 100 mL of Expi293 expression medium (Thermo Fisher Scentific) under conditions of 37 ° C., 125 rpm, and 8% CO 2 at 3.0 ⁇ 10 6 cells / mL.
  • ROBO4 scFv-D33K and K51E double transfection was performed as follows. Mix 50 ⁇ g of uteroglobin (K51E) mammalian expression plasmid [2] with 50 ⁇ g of ROBO4 scFv-mutated uteroglobin (D33K) mammalian expression plasmid [4] and add to 5 mL of Opti-MEM I reducing serum medium (Thermo Fisher Scentific). After gently mixing, the mixture was allowed to stand at room temperature for 5 minutes.
  • ExpiFectamine293 reagent (Thermo Fisher Scentific) and 5 mL of Opti-MEM I reducing serum medium (Thermo Fisher Scentific) were gently mixed and allowed to stand at room temperature for 5 minutes. After 5 minutes, the plasmid solution and ExpiFectamine solution were gently mixed and allowed to stand at room temperature for 20 minutes.
  • Expi293F cell solution 3.0 ⁇ 10 6 cells / mL, 100 mL, and incubate at 37 ° C, 125 rpm, 8% CO 2 for 20 hours, then ExpiFectamine 293 Transfection Enhancer 1 (Thermo Fisher Scentific) 500 ⁇ L and ExpiFectamine 293 transfection enhancer 2 (Thermo Fisher Scentific) 5mL were added 37 ° C., and cultured for one week at 125rpm, 8% CO 2 conditions.
  • ROBO4 scFv-F28S and S66F double transfection using mutant uteroglobin (S66F) mammalian expression plasmid and ROBO4 scFv-mutant uteroglobin (F28S) (ROBO4 scFv-F28S) mammalian expression plasmid [10]
  • ROBO4 scFv-S29D, K62D and S29K double transfection using mutant uteroglobin (S29K) mammalian expression plasmid and ROBO4 scFv-mutant uteroglobin (S29D, DK62D) (ROBO4 scFv-S29D, K62D) mammalian expression plasmid [15] was performed.
  • ROBO4 scFv-D33K_K51E co-culture was performed as follows.
  • Expi293F cells (Invitrogen) were cultured in 37 mL of Expi293 expression medium (Thermo Fisher Scentific) at 37 ° C., 125 rpm, and 8% CO 2 at 3.0 ⁇ 10 6 cells / mL.
  • 50 ⁇ g of uteroglobin (K51E) mammalian expression plasmid [2] and 2.5 mL of Opti-MEM I reducing serum medium (Thermo Fisher Scentific) were gently mixed and allowed to stand at room temperature for 5 minutes.
  • ExpiFectamine293 reagent (Thermo Fisher Scentific) 135 ⁇ L and Opti-MEM I reducing serum medium (Thermo Fisher Scentific) 2.5 mL were gently mixed and allowed to stand at room temperature for 5 minutes. After 5 minutes, the plasmid solution and ExpiFectamine solution were gently mixed and allowed to stand at room temperature for 20 minutes. Gently add the mixed solution to 50 mL of Expi293F cell solution and incubate at 37 ° C, 125 rpm, 8% CO 2 for 20 hours.
  • Expi293F cells (Invitrogen) were cultured in 50 mL of Expi293 Expression medium (Thermo Fisher Scentific) under conditions of 37 ° C., 125 rpm, and 8% CO 2 at 3.0 ⁇ 10 6 cells / mL.
  • ExpiFectamine293 reagent (Thermo Fisher Scentific) 135 ⁇ L and Opti-MEM I reducing serum medium (Thermo Fisher Scentific) 2.5 mL were gently mixed and allowed to stand at room temperature for 5 minutes. After 5 minutes, the plasmid solution and ExpiFectamine solution were gently mixed and allowed to stand at room temperature for 20 minutes.
  • ROBO4FscFv-F28S and S66F co-culture using a mutant uteroglobin (S66F) mammalian expression plasmid and ROBO4 scFv-mutant uteroglobin (F28S) (ROBO4 scFv-F28S) mammalian expression plasmid [11]
  • ROBO4 scFv-S29D, K62D and S29K co-cultures using mutant uteroglobin (S29K) mammalian expression plasmid and ROBO4 scFv-mutant uteroglobin (S29D, K62D) (ROBO4 scFv-S29D, K62D) mammalian expression plasmid [16 ] Went.
  • the eluted fractions were collected and dialyzed overnight at 50 mM Hepes-NaOH pH 7.5, 4 ° C.
  • the dialyzed solution was collected and subjected to anion exchange chromatography.
  • the column was 5 mL of HiTrapQ HP (GE healthcare) and eluted with a concentration gradient of 50 mM Hepes-NaOH pH7.5, 0-1M NaCl.
  • the eluted fraction was collected and subjected to gel filtration chromatography.
  • the column used was HiLoad16 / 600 Superdex75 (GE healthcare), and the mobile phase was 50 mM Hepes-NaOH pH 7.5, 300 mM NaCl.
  • the eluted fraction was collected and concentrated with Amicon Ultra15.
  • ROBO4 scFv expression product was also prepared [3]. Moreover, the sample preparation before electrophoresis shown by lane [7] in FIG. 4 was performed as follows. ROBO4 scFv-mutant uteroglobin (D33K) [4] expression product and mutant uteroglobin (K51E) expression product [2] were mixed at a molar ratio of 1: 1, and allowed to stand on ice for 1 hour. By the same method, scFv-F28S and S66F mixed at a molar ratio of 1: 1 [12] and scFv-S29D, K62D and S29K mixed [17] were prepared.
  • Example 3 Electrophoresis Each solution of expression products [1]-[6], [8]-[11], [13]-[16] obtained in Example 2 was adjusted to 0.2 mg / mL. Dilute with 50 mM Hepes-NaOH pH 7.5, 300 mM NaCl. For [1]-[17], a sample for electrophoresis under reducing conditions was prepared as follows. To 10 ⁇ L of the diluted protein solution, 0.5 ⁇ L of 2-mercaptoethanol and 9.5 ⁇ L of 2 ⁇ Laemmli sample buffer (BIO-RAD) were added and heated at 95 ° C. for 5 minutes.
  • BIO-RAD Laemmli sample buffer
  • the band position should be confirmed around 20 kDa, but it was observed on the lower molecular weight side. Since the disulfide bond is retained under non-reducing conditions, it cannot be separated purely by molecular weight, and is considered to have shifted to a lower molecular weight side than the original molecular weight position.
  • a main band (main band) was present at 72 kDa, a homodimer, and a minor band was present at 36 kDa, a monomer.
  • the amount ratio can be determined depending on the degree of staining, so it was found that ROBO4 scFv-D33K mainly contains homodimers and contains a small amount of monomers.
  • [5] and [6] have bands around 17, 36, 45 and 72 kDa, and ROBO4 scFv-D33K and K51E mixed have bands around 17, 36 and 72 kD Was.
  • 17 kDa is a K51E homodimer
  • 36 kDa is a ROBO4 scFv-D33K monomer
  • 72 kDa is a ROBO4 scFv-D33K homodimer.
  • the molecular weights of the monomers of wild type uteroglobin and mutant uteroglobin are 9.6 kDa
  • ROBO4 scFv is 25 kDa
  • ROBO4 scFv-mutant uteroglobin F28S
  • ROBO4 scFv-F28S is 36 kDa.
  • the molecular weights of the wild-type and mutant uteroglobin (S29K) monomers are 9.6 kDa
  • ROBO4 scFv is 25 kDa
  • ROBO4 scFv-mutant uteroglobin (S29D, K62D) (ROBO4 scFv-S29D, K62D) is 36 kDa.
  • wild-type uteroglobin has an intermolecular disulfide bond and forms a homodimer.
  • [1], [3], [13], and [14] bands were observed in the molecular weight of the monomer.
  • the bispecific polypeptide of the present invention is based on uteroglobin, it has a lower molecular weight than a general bispecific antibody. Therefore, high tissue permeability can be expected, and since there is no Fc region, an unexpected effect can be suppressed. Therefore, it is highly expected that the tool will be a tool for creating a highly safe pharmaceutical product.

Abstract

Provided is a low-molecular weight bispecific polypeptide. A heterodimer uteroglobin is prepared by modifying, to a low-molecular weight uteroglobin, an Fc region in a bispecific antibody constructed from a natural antibody, and causing a uteroglobin monomer to be mutated, and a bispecific polypeptide is constructed by using the same.

Description

ウテログロビンを構造基盤とする二重特異性ポリペプチドBispecific polypeptides based on uteroglobin
 本発明は、二重特異性を有するポリペプチド、詳細にはヘテロ二量体ウテログロビンを構造基盤とする二重特異性ポリペプチド、およびその製造方法に関する。 The present invention relates to a polypeptide having bispecificity, in particular, a bispecific polypeptide based on a heterodimeric uteroglobin and a method for producing the same.
 天然の抗体分子は通常、1種類の抗原を認識する単一結合特性を示し、免疫グロブリン重鎖のC末端領域Fc領域を有する、分子量約150kDaの分子である。Fc領域は、単独ではCH2およびCH3領域を含む重鎖のホモ二量体と考えられる。
 他方、組換え技術を用いることで異なる二つの結合特性を有する二重特異性抗体を創出することができる。二重特異性抗体は、細胞表面上の二つの受容体を同時に阻害でき、二つのリガンドと同時に結合でき、二つの異なる受容体を結合させることでシグナル伝達が可能であり、および細胞同士を相互作用させることができる、といった有用性を示す(非特許文献1)。
A natural antibody molecule is usually a molecule with a molecular weight of about 150 kDa, which exhibits a single binding property that recognizes one type of antigen and has the C-terminal region Fc region of an immunoglobulin heavy chain. The Fc region alone is thought to be a heavy chain homodimer containing CH2 and CH3 regions.
On the other hand, bispecific antibodies with two different binding properties can be created by using recombinant techniques. Bispecific antibodies can simultaneously inhibit two receptors on the cell surface, bind simultaneously with two ligands, allow signal transduction by binding two different receptors, and allow cells to interact with each other. The usefulness of being able to act is shown (nonpatent literature 1).
 二重特異性抗体の製造として、一方の重鎖のCH3領域に存在するアミノ酸残基をより大きい残基(knob;突起)に置換し、もう一方の重鎖のCH3領域に存在するアミノ酸残基をより小さい残基(hole;空隙)に置換し、当該突起が当該空隙内に配置されるようにし、それにより、ヘテロ(異種)重鎖形成の促進やホモ(同種)重鎖形成の阻害を引き起こすノブ・イントゥー・ホール(knob into hole)法が知られている(特許文献1)。また、一方の重鎖のCH3領域に存在するアミノ酸残基を、正電荷を有するアミノ酸残基に置換し、もう一方の重鎖のCH3領域に存在するアミノ酸残基を負電荷を有するアミノ酸残基に置換し、当該置換アミノ酸残基同士を静電的に相互作用させ、それにより、ヘテロ重鎖形成の促進やホモ重鎖形成の阻害を引き起こす方法も報告されている(特許文献2、3、4および5)。これらの方法の利点として、二重特異性抗体の作成効率が比較的高いこと、CH3領域の内部にあるアミノ酸を改変するため抗原性を損ないにくいこと、Fc領域が持つ抗体依存性細胞性細胞毒性(ADCC)や補体依存性細胞毒性(CDC)といった活性をそのままに体内安定性の高い抗体が作製できること等が挙げられる。その一方で、期待しない二量体が形成されることがあり、軽鎖に組換えが起こり、抗原性が変化する可能性があるという欠点を有している。また、抗体は分子量約150kDaと大きいため、血中滞留性が高く維持される反面、組織への浸透性を下げることで効果が減弱する可能性も考えられる。さらに、通常の抗体は分子量や立体構造の特徴から、大腸菌等の比較的安価で産生可能な発現系への展開が難しいために、その作製については、高価な哺乳類発現系にほぼ限定されているのが現状である。 For the production of a bispecific antibody, an amino acid residue present in the CH3 region of one heavy chain is replaced with a larger residue (knob), and an amino acid residue present in the CH3 region of the other heavy chain Is replaced with a smaller residue so that the protrusion is located within the gap, thereby promoting heterogeneous heavy chain formation and inhibiting homogeneous heavy chain formation. A knob-in-to-hole method is known (Patent Document 1). In addition, an amino acid residue present in the CH3 region of one heavy chain is replaced with an amino acid residue having a positive charge, and an amino acid residue present in the CH3 region of the other heavy chain is negatively charged. There is also reported a method in which the substituted amino acid residues are electrostatically interacted with each other, thereby promoting hetero heavy chain formation and inhibiting homo heavy chain formation ( Patent Documents 2, 3, 4 and 5). Advantages of these methods are that the production efficiency of the bispecific antibody is relatively high, that the amino acid in the CH3 region is modified, so that antigenicity is not easily impaired, and antibody-dependent cellular cytotoxicity of the Fc region. Examples thereof include the ability to produce antibodies with high in vivo stability while maintaining activities such as (ADCC) and complement-dependent cytotoxicity (CDC). On the other hand, an unexpected dimer may be formed, and there is a drawback that recombination occurs in the light chain and antigenicity may change. In addition, since the antibody has a large molecular weight of about 150 kDa, the retention in blood is maintained at a high level, but the effect may be reduced by lowering the tissue permeability. Furthermore, normal antibodies are difficult to develop into expression systems that can be produced at a relatively low cost such as Escherichia coli due to the characteristics of molecular weight and three-dimensional structure, and their production is almost limited to expensive mammalian expression systems. is the current situation.
 ウテログロビンは、比較的低分子量(15.8kDa)のホモ二量体のポリペプチドであり、殺細胞効果を持つナチュラルキラー細胞やマクロファージ等の細胞との相互作用はない。また、低分子量ポリペプチドであることからも、哺乳類細胞での発現系のみに依存せず、様々な発現系への展開が可能であると期待され、タンパク質産生の点からも大きな利点がある。それに加え、ウテログロビンはその抗炎症作用が期待され(特許文献6)、臨床試験に供されている安全性の高いポリペプチドである。ウテログロビンは二価抗体を発現するための抗体基盤として利用されているが(非特許文献2)、これは野生型のウテログロビンの特徴であるホモ二量体形成を基本に考案された二価抗体であることから、二重特異性はなく、抗原との結合領域もscFvを利用したものに限定されている。 Uteroglobin is a relatively low molecular weight (15.8 kDa) homodimeric polypeptide and does not interact with cells such as natural killer cells and macrophages that have a cytocidal effect. In addition, since it is a low molecular weight polypeptide, it is expected that it can be developed into various expression systems without depending only on the expression system in mammalian cells, and has a great advantage from the viewpoint of protein production. In addition, uteroglobin is a highly safe polypeptide that is expected to have an anti-inflammatory effect (Patent Document 6) and is used in clinical trials. Uteroglobin is used as an antibody base for expressing a bivalent antibody (Non-Patent Document 2). This is a bivalent antibody devised based on the formation of a homodimer that is characteristic of wild-type uteroglobin. For this reason, there is no bispecificity, and the binding region with the antigen is limited to those using scFv.
WO1996/027011公報WO1996 / 027011 WO2006/106905公報WO2006 / 106905 Publication 特表2011-508604公報Special table 2011-508604 特表2014-509857公報Special Table 2014-509857 WO2015/046467公報WO2015 / 046467 特表2002-511856公報Special Table 2002-511856
 二重特異性抗体を含む抗体医薬の問題点として、一般に高い薬価、薬効の限界および標的抗原の制限が挙げられる。高い薬価はバイオ医薬品に共通しており、その要因は、低分子化合物に比べ製造プロセスの確立に開発期間を要することが多く、特に抗体はその分子量の大きさから高価な動物細胞発現系を用いざるをえないことが挙げられる。二重特異性抗体はこれまで、構造や狙いが極めて多岐に渡る少なくとも50以上の種々の非野生型誘導体が報告されている。一方では、機能的かつ効果的な二重特異性抗体の創出はまだまだ、試行錯誤が避けられないのが現状である。 Problems with antibody drugs including bispecific antibodies generally include high drug prices, limited efficacy, and limited target antigens. High drug prices are common to biopharmaceuticals, and the cause of this is that development time is often required to establish a manufacturing process compared to low molecular weight compounds. Particularly, antibodies use expensive animal cell expression systems due to their large molecular weight. It must be unavoidable. Bispecific antibodies have so far been reported with at least 50 various non-wild-type derivatives with a wide variety of structures and targets. On the other hand, the creation of functional and effective bispecific antibodies is still inevitable through trial and error.
 以上の知見から、一般的な抗体と比較して低分子量である二重特異性分子を求め、天然抗体を基に作成される二重特性抗体におけるFc領域の代わりにウテログロビンを構造基盤とする、二重特異性を有するポリペプチドについて鋭意検討を行った。
 本発明者らは、ウサギウテログロビンの構造解析からヒトウテログロビンの立体構造を推定し、その推定構造からヒトウテログロビンがホモ二量体を形成する際に会合している部位に着目した。結果、会合している部位にアミノ酸残基の変異を加えることで、効率的にヘテロ二量体を形成できることを見出した。
Based on the above knowledge, bispecific molecules that have a low molecular weight compared to general antibodies are sought, and uteroglobin is used as the structural basis instead of the Fc region in bispecific antibodies created based on natural antibodies. Diligent studies were conducted on polypeptides having bispecificity.
The present inventors estimated the three-dimensional structure of human uteroglobin from the structural analysis of rabbit uteroglobin, and paid attention to the site where human uteroglobin associates when forming a homodimer from the estimated structure. As a result, it was found that heterodimers can be efficiently formed by adding amino acid residue mutations to the sites where they are associated.
 驚くべきことに、本発明によれば、野生型ウテログロビンのモノマーそれぞれにおいて少なくとも1個のアミノ酸残基を置換するだけで、効率よく二重特異性ポリペプチドを形成させることが可能である。 Surprisingly, according to the present invention, it is possible to efficiently form a bispecific polypeptide simply by substituting at least one amino acid residue in each monomer of wild-type uteroglobin.
 本発明は、ヘテロ二量体ウテログロビンを基盤とする二重特異性ポリペプチド、それを製造する方法、およびヘテロ二量体ウテログロビン自体およびその製造方法に関する。従って、本発明は以下の態様を含む。
<ヘテロ二量体ウテログロビンを規定する二重特異性ポリペプチド>
[1]
 ヘテロ二量体ウテログロビンを構造基盤とする二重特異性ポリペプチド。
[2]
 ヘテロ二量体ウテログロビンはA鎖およびB鎖を含み、ここに、A鎖およびB鎖は、互いに異なり、野生型ウテログロビンモノマーにおいて1個または数個のアミノ酸残基の変異を有し、そしてその変異に由来する会合によってヘテロ二量体を形成させる、[1]記載の二重特異性ポリペプチド。
[3]
 A鎖およびB鎖が有する変異がアミノ酸残基の対置換であり、その対置換により会合が生じ、それによりヘテロ二量体ウテログロビンの形成が促進し、かつホモ二量体ウテログロビンの形成が阻害される、[1]または[2]記載の二重特異性ポリペプチド。
[4]
 アミノ酸残基の対置換が、配列番号1で表されるアミノ酸配列における5番目のセリン(S)および68番目のロイシン(L)、27番目のロイシン(L)および68番目のロイシン、28番目のフェニルアラニン(F)および66番目のセリン(S)、33番目のアスパラギン酸(D)および51番目のリジン(K)、ならびに44番目のロイシン(L)および47番目のスレオニン(T)での一対の置換である、[3]記載の二重特異性ポリペプチド。
[5]
 アミノ酸残基の対置換が、A鎖における、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)およびB鎖における51番目のリジン(K)での一対の置換である、[4]記載の二重特異性ポリペプチド。
[6]
 対置換が、A鎖において、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)を、リジン(K)、アルギニン(R)またはヒスチジン(H)に置換し、かつB鎖において51番目のリジン(K)を、グルタミン酸(E)またはアスパラギン酸(D)に置換する、[4]記載の二重特異性ポリペプチド。
[7]
 対置換が、A鎖において、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)をリジン(K)に置換し、かつB鎖において51番目のリジン(K)をグルタミン酸(E)に置換するものである、[6]記載の二重特異性ポリペプチド。
The present invention relates to bispecific polypeptides based on heterodimeric uteroglobin, methods for producing the same, and heterodimeric uteroglobin itself and methods for producing the same. Accordingly, the present invention includes the following aspects.
<Bispecific polypeptide defining heterodimeric uteroglobin>
[1]
A bispecific polypeptide based on a heterodimeric uteroglobin.
[2]
The heterodimeric uteroglobin comprises an A chain and a B chain, wherein the A chain and the B chain are different from each other and have one or several amino acid residue mutations in the wild type uteroglobin monomer, and The bispecific polypeptide according to [1], wherein a heterodimer is formed by association derived from a mutation.
[3]
The mutation of the A chain and the B chain is a pair substitution of amino acid residues, and the pair substitution results in association, thereby promoting the formation of heterodimeric uteroglobin and inhibiting the formation of homodimeric uteroglobin. The bispecific polypeptide according to [1] or [2].
[4]
The paired substitution of amino acid residues is the 5th serine (S) and 68th leucine (L), 27th leucine (L) and 68th leucine, 28th in the amino acid sequence represented by SEQ ID NO: 1. Pairs of phenylalanine (F) and 66th serine (S), 33rd aspartic acid (D) and 51st lysine (K), and 44th leucine (L) and 47th threonine (T) The bispecific polypeptide according to [3], which is a substitution.
[5]
The pair substitution of amino acid residues is a pair of substitutions in the A chain with the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 and the 51st lysine (K) in the B chain, [ 4] The bispecific polypeptide of description.
[6]
Pair substitution replaces the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 in the A chain with lysine (K), arginine (R) or histidine (H), and in the B chain. The bispecific polypeptide according to [4], wherein the 51st lysine (K) is substituted with glutamic acid (E) or aspartic acid (D).
[7]
Pair substitution replaces the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 with lysine (K) in the A chain, and the 51st lysine (K) in the B chain with glutamic acid (E The bispecific polypeptide according to [6], wherein
<ヘテロ二量体ウテログロビンにさらなる変異を有する二重特異性ポリペプチド>
[8]
 ウテログロビンA鎖およびB鎖がジスルフィド結合している、[1]から[7]のいずれか記載の二重特異性ポリペプチド。
[9]
 ウテログロビンA鎖およびB鎖がともに、配列番号1で表されるアミノ酸配列の44番目のロイシン(L)、34番目のメチオニン(M)および59番目のロイシン(L)の中から選ばれる少なくとも1つがシステイン(C)に置換する変異を有する、[1]から[8]のいずれか記載の二重特異性ポリペプチド。
[10]
 ウテログロビンがヒトウテログロビンである、[1]から[9]のいずれか記載の二重特異性ポリペプチド。
[10-2]
 アミノ酸残基の対置換が、A鎖における、配列番号1で表されるアミノ酸配列における29番目のセリン(S)がリジン(K)に置換していること、B鎖における、配列番号1で表されるアミノ酸配列における62番目のリジン(K)がアスパラギン酸(D)にかつ29番目のセリン(S)がアスパラギン酸(D)に置換していることである、[3]記載の二重特異性ポリペプチド。
[10-3]
 アミノ酸残基の対置換が、A鎖における、配列番号1で表されるアミノ酸配列の28番目のフェニルアラニン(F)およびB鎖における66番目のセリン(S)での一対の置換である、[3]記載の二重特異性ポリペプチド。
<Bispecific Polypeptide Having Additional Mutation in Heterodimeric Uteroglobin>
[8]
The bispecific polypeptide according to any one of [1] to [7], wherein the uteroglobin A chain and B chain are disulfide bonded.
[9]
Both the uteroglobin A chain and the B chain are at least one selected from the 44th leucine (L), 34th methionine (M) and 59th leucine (L) of the amino acid sequence represented by SEQ ID NO: 1. The bispecific polypeptide according to any one of [1] to [8], which has a mutation that substitutes for cysteine (C).
[10]
The bispecific polypeptide according to any one of [1] to [9], wherein the uteroglobin is human uteroglobin.
[10-2]
The amino acid residue pair substitution is that the 29th serine (S) in the amino acid sequence represented by SEQ ID NO: 1 in the A chain is substituted with lysine (K), and the sequence shown in SEQ ID NO: 1 in the B chain. The bispecificity according to [3], wherein the lysine (K) at position 62 is substituted with aspartic acid (D) and the serine (S) at position 29 is substituted with aspartic acid (D). Sex polypeptide.
[10-3]
The pair substitution of amino acid residues is a pair of substitutions in the A chain with the 28th phenylalanine (F) of the amino acid sequence represented by SEQ ID NO: 1 and the 66th serine (S) in the B chain [3 ] The bispecific polypeptide of description.
<結合領域を規定する二重特異性ポリペプチド>
[11]
 ヘテロ二量体ウテログロビンA鎖が第1の結合領域と連結している第1のポリペプチド、およびヘテロ二量体ウテログロビンB鎖が第1の結合領域と異なる第2の結合領域と連結している第2のポリペプチドを含む、[1]から[10]、[10-2]および[10-3]のいずれか記載の二重特異性ポリペプチド。
[12]
 受容体もしくはその断片、癌抗原、MHC抗原、分化抗原からなる群から選択される1つまたはそれ以上の標的分子に結合する、[1]~[11]のいずれか記載の二重特異性ポリペプチド。
[13]
 標的分子が癌抗原の標的分子に結合する、[1]~[12]のいずれか記載の二重特異性ポリペプチド。
[14]
 第1または第2のポリペプチドのいずれかが癌抗原に結合する、[1]~[13]のいずれか記載の二重特異性ポリペプチド。
[15]
 第1のポリペプチドおよび第2のポリペプチドにおいて、A鎖と第1の結合領域との連結およびB鎖と第2の結合領域との連結が、該領域の特異性を破壊しない態様である、[11]記載の二重特異性ポリペプチド。
[16]
 A鎖と第1の結合領域との連結およびB鎖と第2の結合領域との連結がリンカーを介する、[15]記載の二重特異性ポリペプチド。
[17]
 リンカーが配列番号2で示されるアミノ酸配列を有する、[16]記載の二重特異性ポリペプチド。
[18]
 第1の結合領域および第2の結合領域がそれぞれ一価の特異性を有する、[1]から[17]のいずれか記載の二重特異性ポリペプチド。
<Bispecific polypeptide that defines the binding region>
[11]
A first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain is linked to a second binding region that is different from the first binding region The bispecific polypeptide according to any one of [1] to [10], [10-2] and [10-3], which comprises a second polypeptide.
[12]
The bispecific poly of any one of [1] to [11], which binds to one or more target molecules selected from the group consisting of a receptor or a fragment thereof, a cancer antigen, an MHC antigen, and a differentiation antigen. peptide.
[13]
The bispecific polypeptide according to any one of [1] to [12], wherein the target molecule binds to a target molecule of a cancer antigen.
[14]
The bispecific polypeptide according to any one of [1] to [13], wherein either the first or second polypeptide binds to a cancer antigen.
[15]
In the first polypeptide and the second polypeptide, the connection between the A chain and the first binding region and the connection between the B chain and the second binding region are such that the specificity of the region is not destroyed. [11] The bispecific polypeptide according to [11].
[16]
The bispecific polypeptide according to [15], wherein the linkage between the A chain and the first binding region and the linkage between the B chain and the second binding region are via a linker.
[17]
The bispecific polypeptide according to [16], wherein the linker has the amino acid sequence represented by SEQ ID NO: 2.
[18]
The bispecific polypeptide according to any one of [1] to [17], wherein each of the first binding region and the second binding region has monovalent specificity.
<多重特異性ポリペプチド>
[19]
 第1の結合領域および第2の結合領域の一方または両者が、少なくとも1つのさらなる結合領域を該領域の特異性を破壊しない態様で連結している、[1]から[18]のいずれか記載の二重特異性ポリペプチド。
<抗体-薬物複合体>
[20]
 [1]から[19]のいずれか記載の二重特異性ポリペプチドおよび薬物を含む複合体。
<医薬組成物>
[21]
 [1]から19]のいずれか記載の二重特異性ポリペプチドを含有する医薬組成物。
[22]
 [20]記載の複合体を含有する医薬組成物。
<Multispecific polypeptide>
[19]
Any one of [1] to [18], wherein one or both of the first binding region and the second binding region links at least one additional binding region in a manner that does not destroy the specificity of the region. Bispecific polypeptide.
<Antibody-drug complex>
[20]
[1] A complex comprising the bispecific polypeptide according to any one of [19] and a drug.
<Pharmaceutical composition>
[21]
[1] A pharmaceutical composition comprising the bispecific polypeptide according to any one of [19] to [19].
[22]
[20] A pharmaceutical composition comprising the complex according to [20].
<二重特異性ポリペプチドの製造方法>
[23]
 ヘテロ二量体ウテログロビンA鎖が第1の結合領域と連結している第1のポリペプチド、およびヘテロ二量体ウテログロビンB鎖が第1の結合領域と異なる第2の結合領域と連結している第2のポリペプチドを含む、[1]から[14]のいずれか記載の二重特異性ポリペプチドを製造する方法であって、
 a)第1のポリペプチドをコードする核酸を含む第1のベクターを用意し、
 b)第2のポリペプチドをコードする核酸を含む第2のベクターを用意し、
 c)第1のベクターおよび第2のベクターを細胞に同時トランスフェクションし、得られたトランスフェクト体を培養し、そして
 d)第1および第2のポリペプチドを含むヘテロ二量体を回収する、
該二重特異性ポリペプチドを製造する方法。
[24]
 ヘテロ二量体ウテログロビンA鎖が第1の結合領域と連結している第1のポリペプチド、およびヘテロ二量体ウテログロビンB鎖が第1の結合領域と異なる第2の結合領域と連結している第2のポリペプチドを含む、[1]から[14]のいずれか記載の二重特異性ポリペプチドを製造する方法であって、
 a)第1のポリペプチドを発現する第1の細胞を用意し、
 b)第2のポリペプチドを発現する第2の細胞を用意し、
 c)第1の細胞および第2の細胞を共培養し、そして
 d)第1および第2のポリペプチドを含むヘテロ二量体を回収する、
該二重特異性ポリペプチドを製造する方法。
<Method for producing bispecific polypeptide>
[23]
A first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain is linked to a second binding region that is different from the first binding region A method for producing the bispecific polypeptide according to any one of [1] to [14], comprising a second polypeptide,
a) providing a first vector comprising a nucleic acid encoding the first polypeptide;
b) providing a second vector comprising a nucleic acid encoding a second polypeptide;
c) co-transfecting the cells with the first and second vectors, culturing the resulting transfectants, and d) recovering the heterodimer comprising the first and second polypeptides,
A method for producing the bispecific polypeptide.
[24]
A first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain is linked to a second binding region that is different from the first binding region A method for producing the bispecific polypeptide according to any one of [1] to [14], comprising a second polypeptide,
a) providing a first cell expressing a first polypeptide;
b) providing a second cell expressing the second polypeptide;
c) co-culturing the first and second cells; and d) recovering the heterodimer comprising the first and second polypeptides.
A method for producing the bispecific polypeptide.
<核酸、ベクター等>
[25]
 ヘテロ二量体ウテログロビンA鎖が第1の結合領域と連結している第1のポリペプチド、およびヘテロ二量体ウテログロビンB鎖が第1の結合領域と異なる第2の結合領域と連結している第2のポリペプチドを含む、[1]から[14]のいずれか記載の二重特異性ポリペプチドにおいて、第1のポリペプチドまたは第2のポリペプチドをコードする核酸。
[26]
 [25]記載の核酸を含む、ベクター。
[27]
 [26]記載のベクターを含む、細胞。
[28]
 第1のポリペプチドおよび第2のポリペプチドをコードする核酸を含む[25]記載のベクターをともに含む、[26]記載の細胞。
[29]
 細胞が大腸菌である、[27]または[28]記載の細胞。
[30]
 第1のポリペプチドをコードする核酸を含むベクターを含む細胞、および第2のポリペプチドをコードする核酸を含むベクターを含む細胞を含有する共培養物。
[31]
 細胞が大腸菌である、[30]記載の共培養物。
<Nucleic acids, vectors, etc.>
[25]
A first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain is linked to a second binding region that is different from the first binding region The bispecific polypeptide according to any one of [1] to [14], wherein the nucleic acid encodes the first polypeptide or the second polypeptide.
[26]
[25] A vector comprising the nucleic acid according to [25].
[27]
[26] A cell comprising the vector according to [26].
[28]
The cell according to [26], including both the vector according to [25], which includes a nucleic acid encoding the first polypeptide and the second polypeptide.
[29]
The cell according to [27] or [28], wherein the cell is Escherichia coli.
[30]
A co-culture containing a cell comprising a vector comprising a nucleic acid encoding a first polypeptide and a cell comprising a vector comprising a nucleic acid encoding a second polypeptide.
[31]
The co-culture according to [30], wherein the cell is Escherichia coli.
<ヘテロ二量体ウテログロビン>
[32]
 A鎖およびB鎖を含み、A鎖およびB鎖は、互いに異なり、野生型ウテログロビンモノマーにおいて1個または数個のアミノ酸残基の変異を有し、そしてその変異に由来する会合によってヘテロ二量体を形成する、ヘテロ二量体ウテログロビン。
[33]
 A鎖およびB鎖が有する変異がアミノ酸残基の対置換であり、その対置換により会合が生じ、それによりヘテロ二量体ウテログロビンの形成が促進し、かつホモ二量体ウテログロビンの形成が阻害される、[32]記載のヘテロ二量体ウテログロビン。
[34]
 対置換に由来する親和性および反発性の静電的相互作用により会合が生じ、それによりヘテロ二量体ウテログロビンの形成が促進し、かつホモ二量体ウテログロビンの形成が阻害される、[33]記載のヘテロ二量体ウテログロビン。
[35]
 アミノ酸残基の対置換が、配列番号1で表されるアミノ酸配列における5番目のセリン(S)および68番目のロイシン(L)、27番目のロイシン(L)および68番目のロイシン、28番目のフェニルアラニン(F)および66番目のセリン(S)、33番目のアスパラギン酸(D)および51番目のリジン(K)、ならびに44番目のロイシン(L)および47番目のスレオニン(T)での一対の置換である、[34]記載のヘテロ二量体ウテログロビン。
[36]
 アミノ酸残基の対置換が、A鎖における、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)およびB鎖における51番目のリジン(K)での一対の置換である、[35]記載のヘテロ二量体ウテログロビン。
[37]
 対置換が、A鎖において、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)を、リジン(K)、アルギニン(R)またはヒスチジン(H)に置換し、かつB鎖において51番目のリジン(K)を、グルタミン酸(E)またはアスパラギン酸(D)に置換するものである、[36]記載のヘテロ二量体ウテログロビン。
[38]
 対置換が、A鎖において、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)をリジン(K)に置換し、かつB鎖において51番目のリジン(K)をグルタミン酸(E)に置換するものである、[35]記載のヘテロ二量体ウテログロビン。
<Heterodimeric uteroglobin>
[32]
A and B chains, which are different from each other, have one or several amino acid residue mutations in the wild-type uteroglobin monomer, and are heterodimeric due to associations derived from that mutation Heterodimeric uteroglobin that forms the body.
[33]
The mutation of the A chain and the B chain is a pair substitution of amino acid residues, and the pair substitution results in association, thereby promoting the formation of heterodimeric uteroglobin and inhibiting the formation of homodimeric uteroglobin. The heterodimeric uteroglobin according to [32].
[34]
Affinity and repulsive electrostatic interactions from pair substitution result in association, which promotes the formation of heterodimeric uteroglobin and inhibits the formation of homodimeric uteroglobin [33] The described heterodimeric uteroglobin.
[35]
The paired substitution of amino acid residues is the 5th serine (S) and 68th leucine (L), 27th leucine (L) and 68th leucine, 28th in the amino acid sequence represented by SEQ ID NO: 1. Pairs of phenylalanine (F) and 66th serine (S), 33rd aspartic acid (D) and 51st lysine (K), and 44th leucine (L) and 47th threonine (T) The heterodimeric uteroglobin according to [34], which is a substitution.
[36]
The pair substitution of amino acid residues is a pair of substitutions in the A chain with the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 and the 51st lysine (K) in the B chain, [ 35] The heterodimeric uteroglobin according to [35].
[37]
Pair substitution replaces the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 in the A chain with lysine (K), arginine (R) or histidine (H), and in the B chain. The heterodimer uteroglobin according to [36], wherein the 51st lysine (K) is substituted with glutamic acid (E) or aspartic acid (D).
[38]
Pair substitution replaces the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 with lysine (K) in the A chain, and the 51st lysine (K) in the B chain with glutamic acid (E ) Is a heterodimeric uteroglobin according to [35].
<さらなる変異を有するヘテロ二量体ウテログロビン>
[39]
 ウテログロビンA鎖およびB鎖がジスルフィド結合している、[32]から[38]のいずれか記載のヘテロ二量体ウテログロビン。
[40]
 ウテログロビンA鎖およびB鎖がともに、配列番号1で表されるアミノ酸配列の44番目のロイシン(L)、34番目のメチオニン(M)および59番目のロイシン(L)の中から選ばれる少なくとも1つがシステイン(C)に置換する変異を有する、[32]から39]のいずれか記載のヘテロ二量体ウテログロビン。
[41] ヒトウテログロビンである、[32から40のいずれか記載のヘテロ二量体ウテログロビン。
<Heterodimeric Uteroglobin with Additional Mutations>
[39]
The heterodimeric uteroglobin according to any one of [32] to [38], wherein the uteroglobin A chain and the B chain are disulfide bonded.
[40]
Both the uteroglobin A chain and the B chain are at least one selected from the 44th leucine (L), 34th methionine (M) and 59th leucine (L) of the amino acid sequence represented by SEQ ID NO: 1. The heterodimeric uteroglobin according to any of [32] to 39], which has a mutation substituting for cysteine (C).
[41] The heterodimeric uteroglobin according to any one of [32 to 40], which is human uteroglobin.
 二重特異性抗体の有利な点として、二つの標的を同時に認識できること、共投与と同様の相乗作用を得ることができること、2種類の抗体の開発にかかる費用を軽減できることが挙げられる。これら二重特異性抗体の利点に加え、本発明はウテログロビンを基盤とするため、一般的な抗体と比較して低分子であり、高い組織浸透性が期待でき、Fc領域が無いため、Fc領域が有ることで発生する期待しない効果を抑制でき、安全性が高い。そして、本発明のポリペプチドは、大腸菌等の様々な発現系を用いて合成できるため、低コストを実現でき、バイオ医薬に共通する高い薬価の問題を回避できると期待される。 The advantages of the bispecific antibody include that it can recognize two targets at the same time, can obtain a synergistic effect similar to co-administration, and can reduce the cost of developing two types of antibodies. In addition to the advantages of these bispecific antibodies, since the present invention is based on uteroglobin, it is a low molecular weight compared to general antibodies, can be expected to have high tissue permeability, and has no Fc region. It is possible to suppress unexpected effects that occur due to the presence of this, and safety is high. And since the polypeptide of this invention can be synthesize | combined using various expression systems, such as colon_bacillus | E._coli, it can implement | achieve low cost and is anticipated that the problem of the high drug price common to biopharmaceuticals can be avoided.
ヘテロ二量体ウテログロビンの一態様を示す。図1-1は、ヘテロ二量体ウテログロビンの形成が促進されている態様である。ヘテロ二量体ウテログロビンはA鎖およびB鎖を有し、野生型ウテログロビンに対し、A鎖が配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)からリジン(K)への変異(D33K変異)、およびB鎖が51番目のリジン(K)からグルタミン酸(E)への変異(K51E変異)を各々有している例である。ここでは、その対置換により、A鎖のD33K部位およびB鎖のK51E部位が、かつA鎖の51番目のK部位とB鎖の33番目のD部位とが静電的に相互作用し、ヘテロ二量体ウテログロビンの形成が促進される様子を示す。1 illustrates one embodiment of a heterodimeric uteroglobin. FIG. 1-1 is an embodiment in which the formation of heterodimeric uteroglobin is promoted. Heterodimeric uteroglobin has an A chain and a B chain, and is a mutation from the 33rd aspartic acid (D) to lysine (K) amino acid sequence represented by SEQ ID NO: 1 with respect to wild-type uteroglobin. (D33K mutation), and the B chain has a mutation from the 51st lysine (K) to glutamic acid (E) (K51E mutation). Here, due to the pair substitution, the D33K site of the A chain and the K51E site of the B chain, and the 51st K site of the A chain and the 33rd D site of the B chain interact electrostatically, Fig. 2 shows the formation of dimeric uteroglobin promoted. 図1-2は、その対置換により、A鎖のD33K部位およびA鎖のK51部位が、かつB鎖のK51E部位およびB鎖のD33部位とが静電的に相互作用し、ホモ二量体ウテログロビンの形成が阻害される様子を示す。FIG. 1-2 shows that the pair substitution results in electrostatic interaction between the D33K site of the A chain and the K51 site of the A chain, and the K51E site of the B chain and the D33 site of the B chain. It shows how the formation of uteroglobin is inhibited. 野生型ウテログロビンの構造と静電相互作用部位を示す模式図である。淡黒色囲みのX鎖および白抜き囲みのY鎖がともに、一方の33番目のアスパラギン酸(D)と他方の51番目のリジン(K)において静電的に相互作用し、ホモ二量体を形成している様子を示す。It is a schematic diagram which shows the structure and electrostatic interaction site | part of wild type uteroglobin. Both the light black boxed X chain and the white boxed Y chain interact electrostatically in one 33rd aspartic acid (D) and the other 51st lysine (K) to form a homodimer. The state of forming is shown. ウサギウテログロビンの構造解析から推定される野生型ヒトウテログロビンの構造模式図である。A-、B-はそれぞれA鎖、B鎖を示す。たとえばA-S5であれば、A鎖の5位におけるS(セリン)を示す。点線は可能な対を示す。対にする基準は、外側に露出したアミノ酸について、目視で近接した対を網羅的に探索した結果である。β炭素間の距離をPymolにおいて算出し(5.4などと書いてある数字がそれにあたる:単位Å)、5~10Åの範囲に入るもので、α炭素-β炭素間結合の互いになす角度から明らかにペア形成が不可能であるものを除外している。図3-1はモデル構造をA鎖のN末端側から見た図である。It is a structural schematic diagram of wild-type human uteroglobin deduced from the structural analysis of rabbit uteroglobin. A- and B- represent A chain and B chain, respectively. For example, A-S5 indicates S (serine) at the 5-position of the A chain. Dotted lines indicate possible pairs. The criteria for pairing are the results of exhaustive searches for pairs that are visually adjacent to the exposed amino acids. The distance between β carbons is calculated in Pymol (the number written as 5.4 corresponds to the unit: Å), which falls within the range of 5 to 10 mm, and is apparent from the angle between the α carbon-β carbon bonds. Excludes those that cannot be paired. FIG. 3-1 shows the model structure as viewed from the N-terminal side of the A chain. 図3-2はその逆側から見た図である。FIG. 3-2 is a view from the opposite side. 各種発現産物を2-メルカプトエタノールを含む還元条件下と含まない非還元条件下で電気泳動した結果を示す。[1]は野生型ウテログロビン発現産物、[2]は変異型ウテログロビン(K51E)発現産物、[3]はROBO4 scFv発現産物、[4]はROBO4 scFv-変異型ウテログロビン(D33K)(ROBO4 scFv-D33K)発現産物、[5]は変異型ウテログロビン(K51E)およびROBO4 scFv-変異型ウテログロビン(ROBO4 scFv-D33K)をそれぞれコードするプラスミドによってダブルトランスフェクションして得られた発現産物、および[6]は変異型ウテログロビン(K51E)をコードするプラスミドによってトランスフェクトされた細胞およびROBO4 scFv-変異型ウテログロビン(D33K)をコードするプラスミドによってトランスフェクトされた細胞を共培養して得られた発現産物のそれぞれの電気泳動の結果である。また、[7]は、ROBO4 scFv-変異型ウテログロビン(D33K)[4]発現産物および変異型ウテログロビン(K51E)発現産物[2]をモル比で1:1になるように混合し、氷上で1時間静置した後における電気泳動の結果である。The results of electrophoresis of various expression products under reducing conditions containing 2-mercaptoethanol and non-reducing conditions not containing are shown. [1] is wild-type uteroglobin expression product, [2] is mutant uteroglobin (K51E) expression product, [3] is ROBO4 scFv expression product, [4] is ROBO4 scFv-mutant uteroglobin (D33K) (ROBO4 scFv-D33K ) Expression product, [5] is an expression product obtained by double transfection with plasmids encoding mutant uteroglobin (K51E) and ROBO4 scFv-mutant uteroglobin (ROBO4 scFv-D33K), respectively, and [6] is mutation Electrophoresis of expression products obtained by co-culturing cells transfected with a plasmid encoding type uteroglobin (K51E) and cells transfected with a plasmid encoding ROBO4 scFv-mutant uteroglobin (D33K) Is the result of In [7], ROBO4 scFv-mutant uteroglobin (D33K) [4] and mutant uteroglobin (K51E) expression product [2] were mixed at a molar ratio of 1: 1, and 1 on ice. It is the result of electrophoresis after leaving still for time. 各種発現産物を2-メルカプトエタノールを含む還元条件下と含まない非還元条件下で電気泳動した結果を示す。[1]は野生型ウテログロビン発現産物、[8]は変異型ウテログロビン(S66F)発現産物、[3]はROBO4 scFv 発現 産物、[9]はROBO4 scFv-変異型ウテログロビン(F28S)(ROBO4 scFv-F28S)発現産物、[10]は変異型ウテログロビン(S66F)およびROBO4 scFv-変異型ウテログロビン(ROBO4 scFv-F28S)をそれぞれコードするプラスミドによってダブルトランスフェクションして得られた発現産物、および[11]は変異型ウテログロビン(S66F)をコードするプラスミドによってトランスフェクトされた細胞およびROBO4 scFv-変異型ウテログロビン(F28S)をコードするプラスミドによってトランスフェクトされた細胞を共培養して得られた発現産物のそれぞれの電気泳動の結果である。また、[12]は、ROBO4 scFv-変異型ウテログロビン(F28S)[9]発現産物および変異型ウテログロビン(S66F)発現産物[8]をモル比で1:1になるように混合し、氷上で1時間静置した後における電気泳動の結果である。The results of electrophoresis of various expression products under reducing conditions containing 2-mercaptoethanol and non-reducing conditions not containing are shown. [1] is a wild-type uteroglobin expression product, [8] is a mutant uteroglobin (S66F) expression product, [3] is a ROBO4 scFv expression product, [9] is a ROBO4 scFv-mutant uteroglobin (F28S) (ROBO4 scFv-F28S ) Expression product, [10] is the double transfection with plasmids encoding mutant uteroglobin (S66F) and ROBO4 scFv-mutant uteroglobin (ROBO4 scFv-F28S), respectively, and [11] is the mutation Of the expression products obtained by co-culturing cells transfected with a plasmid encoding type uteroglobin (S66F) and cells transfected with a plasmid encoding ROBO4 scFv-mutant uteroglobin (F28S) Is the result of [12] is a mixture of ROBO4 scFv-mutant uteroglobin (F28S) [9] expression product and mutant uteroglobin (S66F) expression product [8] in a molar ratio of 1: 1, and 1 on ice. It is the result of electrophoresis after leaving still for time. 各種発現産物を2-メルカプトエタノールを含む還元条件下と含まない非還元条件下で電気泳動した結果を示す。[1]は野生型ウテログロビン発現産物、[13]は変異型ウテログロビン(S29K)発現産物、[3]はROBO4 scFv 発現 産物、[14]はROBO4 scFv-変異型ウテログロビン(S29D, K62D)(ROBO4 scFv-S29D, K62D)発現産物、[15]は変異型ウテログロビン(S29K)およびROBO4 scFv-変異型ウテログロビン(ROBO4 scFv-S29D, K62D)をそれぞれコードするプラスミドによってダブルトランスフェクションして得られた発現産物、および[16]は変異型ウテログロビン(S29K)をコードするプラスミドによってトランスフェクトされた細胞およびROBO4 scFv-変異型ウテログロビン(S29D, K62D)をコードするプラスミドによってトランスフェクトされた細胞を共培養して得られた発現産物のそれぞれの電気泳動の結果である。また、[17]は、ROBO4 scFv-変異型ウテログロビン(S29D, K62D)[14]発現産物および変異型ウテログロビン(S29K)発現産物[13]をモル比で1:1になるように混合し、氷上で1時間静置した後における電気泳動の結果である。The results of electrophoresis of various expression products under reducing conditions containing 2-mercaptoethanol and non-reducing conditions not containing are shown. [1] is a wild-type uteroglobin expression product, [13] is a mutant uteroglobin (S29K) expression product, [3] is a ROBO4 scFv expression product, [14] is a ROBO4 scFv-mutant uteroglobin (S29D, K62D) (ROBO4 scFv -S29D, K62D) expression product, [15] is an expression product obtained by double transfection with plasmids encoding mutant uteroglobin (S29K) and ROBO4 scFv-mutant uteroglobin (ROBO4 scFv-S29D, K62D), And [16] are obtained by co-culturing cells transfected with a plasmid encoding mutant uteroglobin (S29K) and cells transfected with a plasmid encoding ROBO4 scFv-mutant uteroglobin (S29D, K62D) It is the result of each electrophoresis of the expressed product. In [17], ROBO4 scFv-mutated uteroglobin (S29D, K62D) [14] and mutant uteroglobin (S29K) expression product [13] were mixed at a molar ratio of 1: 1 and on ice. It is the result of electrophoresis after leaving still for 1 hour.
<ヘテロ二量体ウテログロビン、およびそれを構造基盤とする二重特異性ポリペプチド>
 ウテログロビンは、構造的には同一のモノマー2個が静電的に会合しているホモ二量体のポリペプチドである(Nature structural biology 1994,vol.1, No.8,538)。ヒトの野生型ウテログロビンモノマーのアミノ酸配列を配列番号1に示す。野生型ウテログロビンは比較的低分子量(15.8 kDa)の糖鎖が存在しないタンパク質であり、その性質は高い溶解性とpH安定性を兼ね備え、そしてタンパク分解酵素に対しても耐性である(JBC 2009,vol.284,No.39, 26646.)。
<Heterodimeric uteroglobin and bispecific polypeptide based on it>
Uteroglobin is a homodimeric polypeptide in which two structurally identical monomers are electrostatically associated (Nature structural biology 1994, vol. 1, No. 8, 538). The amino acid sequence of human wild-type uteroglobin monomer is shown in SEQ ID NO: 1. Wild-type uteroglobin is a protein with no relatively low molecular weight (15.8 kDa) sugar chain, and its properties combine high solubility and pH stability, and is resistant to proteolytic enzymes (JBC 2009, vol.284, No.39, 26646.).
 ウテログロビンはCC10とも呼ばれ、ヒトウテログロビンについて結晶化に関する論文が報告されている(1.9Å(オングストローム)回折度、Nat Struct Biol vol.1(8) 1994 538-545)。ここでは、ウテログロビンは気管支に分泌されるタンパク質の一種であり、ホスホリパーゼA2(PLA2)阻害やPCBが結合する活性があると記載されている。結晶化は、条件:100 ug/mL タンパク質、70% 硫酸アンモニウム、20mM トリス (pH7.5)、16-18% グリセロールの下、野生型タンパク質を個体から入手し精製し、行われた。1.9オングストロームÅの分解能で構造解析し、ヒトウテログロビンはホスファチジルコリンやホスファチジルイノシトール等のリン脂質が結合可能な構造を持ち、ウサギウテログロビンと比較し、アミノ酸のホモロジーが62%の類似構造であることが記載されている。 Uteroglobin is also called CC10, and a paper on crystallization of human uteroglobin has been reported (1.9 Å diffractivity, Nat Struct Biol vol. 1 (8) 1994 538-545). Here, uteroglobin is a kind of protein secreted into the bronchus, and is described as having phospholipase A2 (PLA2) inhibition and PCB binding activity. Crystallization was performed by obtaining and purifying the wild-type protein from individuals under the conditions: 100 μug / mL protein, 70% ammonium sulfate, 20 mM Tris (pH 7.5), 16-18% glycerol. Structural analysis with a resolution of 1.9 angstrom 、, human uteroglobin has a structure that can bind phospholipids such as phosphatidylcholine and phosphatidylinositol, and has a similar structure with 62% amino acid homology compared to rabbit uteroglobin Are listed.
 ヒトウテログロビンはタンパク質データバンク(PDB)への登録がないが、PDBへの登録があるウサギウテログロビンとの構造上の類似性が推測される。そのため、ヒトウテログロビンがホモ二量体を形成する際、アミノ酸が相互作用している領域がある程度推測される。そこで、本発明者らは、ヒトウテログロビンの構造解析の一環として、ヘテロ二量体を形成させるために変異するべきアミノ酸の同定をウサギウテログロビンの構造解析から推定した。構造解析の推定は以下に詳述する。 Human uteroglobin is not registered in the protein data bank (PDB), but structural similarity to rabbit uteroglobin that is registered in the PDB is presumed. Therefore, when human uteroglobin forms a homodimer, a region where amino acids interact is presumed to some extent. Thus, as part of the structural analysis of human uteroglobin, the present inventors estimated the identification of amino acids to be mutated to form a heterodimer from the structural analysis of rabbit uteroglobin. The estimation of the structural analysis is described in detail below.
 その結果、配列番号1で表されるヒトウテログロビンモノマーのアミノ酸配列において、一方のモノマーにおける33番目のアスパラギン酸(D)と他方のモノマーにおける51番目のリジン(K)が相互に会合している可能性が推測された。その会合は、互いに反対の電荷を有するアミノ酸残基間における親和性の静電的相互作用と推定される。野生型ウテログロビンの模式的な立体構造を図2に示す。
 なお、野生型ヒトウテログロビンにおける一方のモノマーの33Dと他方のモノマーの51Kとが相互に会合していることは、それらを一定アミノ酸残基と対置換することでヘテロ二量体が形成されることが本件明細書の実施例において実験的に証明されたので、事実であることが明らかになった。
As a result, in the amino acid sequence of the human uteroglobin monomer represented by SEQ ID NO: 1, the 33rd aspartic acid (D) in one monomer and the 51st lysine (K) in the other monomer are associated with each other. The possibility was speculated. The association is presumed to be an affinity electrostatic interaction between amino acid residues having opposite charges. A schematic three-dimensional structure of wild-type uteroglobin is shown in FIG.
In addition, the fact that 33D of one monomer and 51K of the other monomer in wild-type human uteroglobin are associated with each other means that a heterodimer is formed by pair-substituting them with a certain amino acid residue. Was proved experimentally in the examples of the present specification, so it became clear.
 さらに、ヒトウテログロビンの構造解析に基づき、ウテログロビン二量体としてその外側に側鎖が伸びているアミノ酸残基を特定し、他に、ヘテロ二量体ウテログロビンを形成し得る会合が可能性あるアミノ酸残基を推測した。
 これらの事実および推測に基づき、本発明は、ヘテロ二量体ウテログロビンを基本とする種々の発明を提供する。
Furthermore, based on the structural analysis of human uteroglobin, the amino acid residues whose side chains extend outside as uteroglobin dimers are identified, and other amino acids that may form heterodimer uteroglobin. Residue guessed.
Based on these facts and assumptions, the present invention provides various inventions based on heterodimeric uteroglobin.
 ここに、ヒトウテログロビンの構造解析の一環として、ヘテロ二量体を形成させるために変異するべきアミノ酸の同定をウサギウテログロビンの構造解析からの推定について、詳述する。
 Swiss-model(swissmodel.expasy.org)においてヒトウテログロビンの配列を入力し、アミノ酸配列の相同性からモデルを構築する。最もスコアのよいものを選別、得られたPDBファイルをPymol(pymol.org)において表示させる。
・原子間距離はmeasurementタブによって算出される。表示させたモデルを図3-1および図3-2に示す。
Here, as part of the structural analysis of human uteroglobin, the identification of amino acids that should be mutated to form a heterodimer will be described in detail from the structural analysis of rabbit uteroglobin.
In Swiss-model (swissmodel.expasy.org), the human uteroglobin sequence is input and a model is constructed from the homology of amino acid sequences. The one with the best score is selected and the obtained PDB file is displayed on Pymol (pymol.org).
• The interatomic distance is calculated using the measurement tab. The displayed models are shown in FIGS. 3-1 and 3-2.
 以上により推定された、ヘテロ二量体ウテログロビンを形成する会合が有り得るアミノ酸残基の対を表1に示す。
 表1中、1行目は、A鎖における、配列番号1で表されるアミノ酸配列の5番目のシステイン(S)およびB鎖における68番目のロイシン(L)での一対の置換を意味する。以下の行において同様である。なお、A鎖、B鎖は相互に変換可能である。
Table 1 shows pairs of amino acid residues that can be associated with each other to form a heterodimeric uteroglobin estimated as described above.
In Table 1, the first line means a pair of substitutions in the A chain with the fifth cysteine (S) of the amino acid sequence represented by SEQ ID NO: 1 and the 68th leucine (L) in the B chain. The same applies to the following lines. The A chain and the B chain can be converted to each other.
Figure JPOXMLDOC01-appb-T000001
 なお、他の表においても、数字は配列番号1で表されるアミノ酸配列のN末からの番号である。
Figure JPOXMLDOC01-appb-T000001
In other tables, the numbers are numbers from the N-terminal of the amino acid sequence represented by SEQ ID NO: 1.
 一対の置換の好ましい例としては、A鎖における、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)およびB鎖における51番目のリジン(K)での一対の置換である。 A preferred example of a pair of substitutions is a pair of substitutions in the A chain with the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 and the 51st lysine (K) in the B chain.
 本発明において、会合としては、親和性の静電的相互作用のほか、同種の電荷を有するアミノ酸残基間における反発性の相互作用、および疎水性のアミノ酸同士の相互作用もあり得る。
 本発明は一つの態様として、野生型ウテログロビンの各モノマーにおける親和性の静電的相互作用を行っているアミノ酸残基をそれぞれ変異することにより、ヘテロ二量体の形成を促進し、かつホモ二量体の形成を阻害する。本発明では、野生型ウテログロビンにおいて互いに親和性の相互作用を行う各モノマーにおけるアミノ酸残基の一方を反発性の相互作用を行うアミノ酸残基にそれぞれ変異することによって、「対置換」を成立させる。即ち、1つの対置換を有するヘテロ二量体ウテログロビンは、A鎖中の1つのアミノ酸変異およびB鎖中の別の1つのアミノ酸変異を含有する。この態様を「野生置換型」と呼ぶ。
In the present invention, the association may include an affinity electrostatic interaction, a repulsive interaction between amino acid residues having the same type of charge, and an interaction between hydrophobic amino acids.
In one aspect, the present invention promotes heterodimer formation by mutating amino acid residues that have an affinity electrostatic interaction in each monomer of wild-type uteroglobin, and promotes homodimerization. Inhibits the formation of mers. In the present invention, “pair substitution” is established by mutating one of the amino acid residues in each monomer having an affinity interaction with each other in wild-type uteroglobin to an amino acid residue having a repulsive interaction. That is, a heterodimeric uteroglobin with one paired substitution contains one amino acid mutation in the A chain and another amino acid mutation in the B chain. This embodiment is called “wild substitution type”.
 野生置換型における対置換の具体的な例を表2に示す。なお、A鎖、B鎖は相互に変換可能である。
Figure JPOXMLDOC01-appb-T000002
Specific examples of pair substitution in the wild substitution type are shown in Table 2. The A chain and the B chain can be converted to each other.
Figure JPOXMLDOC01-appb-T000002
 表2は、この態様における対置換として、A鎖において、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)を、リジン(K)、アルギニン(R)またはヒスチジン(H)に置換し、かつB鎖において51番目のリジン(K)を、グルタミン酸(E)またはアスパラギン酸(D)に置換する、計6つの例を示す。例えば、野生型ウテログロビンに対し、A鎖にD33K変異およびB鎖にK51E変異を各々有しているヘテロ二量体ウテログロビンでは、その対置換により、A鎖のD33KおよびB鎖のK51Eが、かつA鎖の51番目のKとB鎖の33番目のDとが静電的に相互作用し、ヘテロ二量体ウテログロビンの形成が促進される。この態様を図1に示す。
 対置換が、A鎖において、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)をリジン(K)に置換し、かつB鎖において51番目のリジン(K)をグルタミン酸(E)に置換するものであるものが好ましい。
Table 2 shows that aspartic substitution in this embodiment, the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 is changed to lysine (K), arginine (R) or histidine (H) in the A chain. A total of six examples are shown in which substitution is performed and the 51st lysine (K) in the B chain is substituted with glutamic acid (E) or aspartic acid (D). For example, in a heterodimeric uteroglobin having a D33K mutation in the A chain and a K51E mutation in the B chain relative to wild-type uteroglobin, the pair substitution results in D33K on the A chain and K51E on the B chain and The 51st K of the chain and the 33rd D of the B chain interact electrostatically to promote the formation of heterodimeric uteroglobin. This embodiment is shown in FIG.
Pair substitution replaces the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 with lysine (K) in the A chain, and the 51st lysine (K) in the B chain with glutamic acid (E ) Are preferred.
 本発明は別の態様として、野生型ウテログロビンではアミノ酸残基が互いに明確な親和性の相互作用を行っていない部分に、新たに対置換を生じさせることによってヘテロ二量体を形成させる。この態様では、1つの対置換によって親和性の静電的相互作用を生じさせ、別の1つの対置換によってホモ二量体の反発を付加することが好ましく、この場合、ヘテロ二量体ウテログロビンは2つの対置換を有する。この態様を「電荷ペア形成型」と呼ぶ。 As another aspect of the present invention, a heterodimer is formed by newly generating a pair substitution at a portion where the amino acid residues of wild-type uteroglobin do not have a clear affinity interaction with each other. In this embodiment, it is preferred to generate an affinity electrostatic interaction with one pair substitution and add a homodimeric repulsion with another pair substitution, in which case the heterodimeric uteroglobin is Has two pair substitutions. This mode is called “charge pair formation type”.
 電荷ペア形成型における対置換の具体的な例を表3に示す。なお、A鎖、B鎖は相互に変換可能である。
Figure JPOXMLDOC01-appb-T000003
Specific examples of pair substitution in the charge pair formation type are shown in Table 3. The A chain and the B chain can be converted to each other.
Figure JPOXMLDOC01-appb-T000003
 表3は、この態様における対置換として次の例を示す。
 置換部位5-68での例で説明する。1行目から、A鎖にS5DかつB鎖にL68Rを導入し(1つ目の対置換)、さらに2行目から、A鎖にL68DかつB鎖にS5K導入する(2つ目の対置換)。この場合、A鎖はS5DおよびL68Dの2つの変異を有する変異体になり、B鎖はS5KおよびL68Rの2つの変異を有する変異体になる。このことによって、対置換同士の組が成立する。
 さらに詳細には、置換部位5-68での例として、A鎖およびB鎖の対置換は、
1行目:S5D-L68R, S5D-L68K, S5D-L68H, S5E-L68R, S5E-L68K, S5E-L68Hの6つ、
2行目:L68D-S5K, L68D-S5R, L68D-S5H, L68E-S5K, L68E-S5R, L68E-S5Hの6つ、
で、6+6=12通りある。なお、各1つの対置換を導入したヘテロ二量体も本発明の範囲内である。
 1行目と2行目から各1つを選択した対置換の組み合わせは6×6=36通りである。よって、置換部位5-68におけるヘテロ二量体ウテログロビンの合計数は、12+36=48通りとなる。
 他の一対の置換27-68、44-47、および29-62において同様である。
Table 3 shows the following example as a pair substitution in this embodiment.
An example with substitution site 5-68 will be described. From the first line, S68D is introduced into the A chain and L68R is introduced into the B chain (first pair substitution). From the second line, L68D is introduced into the A chain and S5K is introduced into the B chain (second pair substitution). ). In this case, the A chain becomes a mutant having two mutations of S5D and L68D, and the B chain becomes a mutant having two mutations of S5K and L68R. This establishes a pair of pair substitutions.
More specifically, as an example at substitution site 5-68, pair substitution of A and B chains is
First line: Six S5D-L68R, S5D-L68K, S5D-L68H, S5E-L68R, S5E-L68K, S5E-L68H,
2nd line: L68D-S5K, L68D-S5R, L68D-S5H, L68E-S5K, L68E-S5R, L68E-S5H,
There are 6 + 6 = 12 ways. In addition, the heterodimer which introduce | transduced each one pair substitution is also within the scope of the present invention.
There are 6 × 6 = 36 combinations of pair replacement in which one is selected from each of the first and second rows. Therefore, the total number of heterodimeric uteroglobins at the substitution site 5-68 is 12 + 36 = 48.
The same is true for the other pair of substitutions 27-68, 44-47, and 29-62.
 本発明はさらに別の態様として、対置換として、静電的相互作用でなく、疎水性のアミノ酸同士が相互作用する会合を介し、ヘテロ二量体ウテログロビンを形成する態様も含まれる。この態様を「疎水ポケット逆転型」と呼ぶ。 The present invention includes, as yet another embodiment, a mode in which heterodimeric uteroglobin is formed as a pair substitution through an association in which hydrophobic amino acids interact with each other instead of electrostatic interaction. This embodiment is called “hydrophobic pocket inversion type”.
 疎水ポケット逆転型における対置換の具体的な例を表4に示す。なお、A鎖、B鎖は相互に変換可能である。
Figure JPOXMLDOC01-appb-T000004
Specific examples of pair substitution in the hydrophobic pocket inverted type are shown in Table 4. The A chain and the B chain can be converted to each other.
Figure JPOXMLDOC01-appb-T000004
 表4は、この態様における対置換として、計9つの例を示す。好ましくは、A鎖においてF28S置換を有し、B鎖においてS66Fを有する。 Table 4 shows a total of nine examples of pair substitution in this aspect. Preferably, it has a F28S substitution in the A chain and S66F in the B chain.
 アミノ酸残基の中には、電荷を帯びた残基が知られている。一般的に正の電荷を帯びたアミノ酸(正電荷アミノ酸)としては、リジン(K)、アルギニン(R)、ヒスチジン(H)が知られている。負の電荷を帯びたアミノ酸(負電荷アミノ酸)としては、アスパラギン酸(D)、グルタミン酸(E)等が知られている。従って、好ましくは、本発明において同種の電荷を有するアミノ酸残基とは、正の電荷同士のアミノ酸残基、あるいは負の電荷同士のアミノ酸残基を意味する。 Among amino acid residues, charged residues are known. Generally, lysine (K), arginine (R), and histidine (H) are known as positively charged amino acids (positively charged amino acids). As the negatively charged amino acid (negatively charged amino acid), aspartic acid (D), glutamic acid (E) and the like are known. Therefore, the amino acid residue having the same kind of charge in the present invention preferably means an amino acid residue having positive charges or an amino acid residue having negative charges.
 ここに、本発明において、アミノ酸残基の「変異」とは、具体的には、元のアミノ酸残基を他のアミノ酸残基へ置換すること、元のアミノ酸残基を欠失させること、新たなアミノ酸残基を付加すること等を指すが、好ましくは、元のアミノ酸残基を他のアミノ酸残基へ置換することを意味する。 Here, in the present invention, “mutation” of an amino acid residue specifically refers to substitution of the original amino acid residue with another amino acid residue, deletion of the original amino acid residue, This refers to addition of an amino acid residue, etc., but preferably means to substitute the original amino acid residue with another amino acid residue.
 本発明において、「ホモ二量体」とは、同一のアミノ酸配列を有するポリペプチド同士が会合している状態をいう。「ヘテロ二量体」とは、アミノ酸配列において少なくとも1個のアミノ酸残基が異なるポリペプチド同士が会合している状態をいう。 In the present invention, “homodimer” refers to a state in which polypeptides having the same amino acid sequence are associated with each other. “Heterodimer” refers to a state in which polypeptides having at least one amino acid residue in an amino acid sequence are associated with each other.
 本発明において、「ヘテロ二量体ウテログロビン」とは、野生型ウテログロビンがホモ二量体であるのに対し、その各モノマーにおける1個または数個のアミノ酸残基の変異によって各モノマーがヘテロ二量体を構成している、変異型ウテログロビンのヘテロ二量体を意味する。本発明では、「ヘテロ二量体ウテログロビン」は、ヘテロ二量体ウテログロビンはA鎖およびB鎖を含み、A鎖およびB鎖は互いに異なっており、それぞれ野生型ウテログロビンモノマーにおいて1個または数個のアミノ酸残基の変異を有し、そして両者はその変異によって会合している。ここに、A鎖およびB鎖はヘテロ二量体ウテログロビンにおける特定のモノマーを示すものではなく、相互に交換可能である。即ち、A鎖およびB鎖における各変異の言及は、それぞれB鎖およびA鎖における各変異の言及と理解すべきである。 In the present invention, “heterodimeric uteroglobin” means that wild-type uteroglobin is a homodimer, whereas each monomer is heterodimeric due to mutation of one or several amino acid residues in each monomer. It means a heterodimer of mutant uteroglobin that constitutes the body. In the present invention, “heterodimeric uteroglobin” is a heterodimeric uteroglobin comprising an A chain and a B chain, wherein the A chain and the B chain are different from each other, one or several in the wild type uteroglobin monomer, respectively. Of amino acid residues, and both are associated by that mutation. Here, the A chain and the B chain do not represent specific monomers in the heterodimeric uteroglobin, and are interchangeable. That is, a reference to each mutation in the A chain and the B chain should be understood as a reference to each mutation in the B chain and the A chain, respectively.
<ヘテロ二量体ウテログロビンにさらなる変異を有する二重特異性ポリペプチド>
 上記のようなヘテロ二量体ウテログロビンはさらに、別の変異を有することができる。例えば、本発明のヘテロ二量体ウテログロビンは、ウテログロビンA鎖およびB鎖がジスルフィド結合を形成することができる。ジスルフィド結合形成とは、1つまたは2つのポリペプチド中に存在する2つのシステイン間で共有結合を形成する過程を意味し、この結合は「-S--S-」として図式化される。本発明のヘテロ二量体ウテログロビンは、具体的には、ウテログロビンA鎖およびB鎖がともに、配列番号1で表されるアミノ酸配列の44番目のロイシン(L)、34番目のメチオニン(M)および59番目のロイシン(L)の中から選ばれる少なくとも1つがシステイン(C)に置換する変異を有することができる。これにより、本発明のヘテロ二量体ウテログロビンおよび二重特異性ポリペプチドは安定性が向上し、タンパク質の生産量が格段に上昇する。
<Bispecific Polypeptide Having Additional Mutation in Heterodimeric Uteroglobin>
The heterodimeric uteroglobin as described above can further have another mutation. For example, in the heterodimeric uteroglobin of the present invention, the uteroglobin A chain and the B chain can form a disulfide bond. Disulfide bond formation refers to the process of forming a covalent bond between two cysteines present in one or two polypeptides, and this bond is schematized as “—S—S—”. Specifically, the heterodimer uteroglobin of the present invention includes the leucine (L) at the 44th amino acid sequence, the methionine (M) at the 34th amino acid sequence represented by SEQ ID NO: 1, and both the uteroglobin A chain and the B chain. At least one selected from the 59th leucine (L) can have a mutation replacing cysteine (C). Thereby, the stability of the heterodimeric uteroglobin and bispecific polypeptide of the present invention is improved, and the amount of protein produced is significantly increased.
<結合領域を規定する二重特異性ポリペプチド>
 本発明において、「二重特異性ポリペプチド」とは、少なくとも、第1のポリペプチドおよび第2のポリペプチドを含む分子である。即ち、本発明の「二重特異性ポリペプチド」は、ヘテロ二量体ウテログロビンA鎖が第1の結合領域と連結している第1のポリペプチド、およびヘテロ二量体ウテログロビンB鎖が第1の結合領域と異なる第2の結合領域と連結している第2のポリペプチドを含む。好ましくは、第1のポリペプチドおよび第2のポリペプチドにおいて、A鎖と第1の結合領域との連結およびB鎖と第2の結合領域との連結は、該領域の特異性を破壊しない態様である。
<Bispecific polypeptide that defines the binding region>
In the present invention, a “bispecific polypeptide” is a molecule comprising at least a first polypeptide and a second polypeptide. That is, the “bispecific polypeptide” of the present invention comprises a first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain in the first. A second polypeptide linked to a second binding region different from the binding region. Preferably, in the first polypeptide and the second polypeptide, the connection between the A chain and the first binding region and the connection between the B chain and the second binding region do not destroy the specificity of the region. It is.
 本発明の二重特異性ポリペプチドは、2つの異なるリガンドに対する結合特異性または結合部位を有する。リガンドとは特に限定されず、どのようなリガンドでもよい。リガンドの例としては、例えば、受容体もしくはその断片、癌抗原、MHC抗原、分化抗原等を挙げることができるが、特にこれらに制限されない。 The bispecific polypeptide of the present invention has binding specificities or binding sites for two different ligands. The ligand is not particularly limited, and any ligand may be used. Examples of the ligand include, but are not limited to, a receptor or a fragment thereof, a cancer antigen, an MHC antigen, a differentiation antigen, and the like.
 受容体の例としては、例えば、造血因子受容体ファミリー、サイトカイン受容体ファミリー、チロシンキナーゼ型受容体ファミリー、セリン/スレオニンキナーゼ型受容体ファミリー、TNF受容体ファミリー、Gタンパク質共役型受容体ファミリー、GPIアンカー型受容体ファミリー、チロシンホスファターゼ型受容体ファミリー、接着因子ファミリー、ホルモン受容体ファミリー等の受容体ファミリーなどを挙げることができる。上記受容体ファミリーに属する具体的な受容体としては、例えば、ヒトまたはマウスエリスロポエチン(EPO)受容体、ヒトまたはマウス顆粒球コロニー刺激因子(G-CSF)受容体、ヒトまたはマウストロンボポイエチン(TPO)受容体、ヒトまたはマウスインスリン受容体、ヒトまたはマウスFlt-3リガンド受容体、ヒトまたはマウス血小板由来増殖因子(PDGF)受容体、ヒトまたはマウスインターフェロン(IFN)-α、β受容体、ヒトまたはマウスレプチン受容体、ヒトまたはマウス成長ホルモン(GH)受容体、ヒトまたはマウスインターロイキン(IL)-10受容体、ヒトまたはマウスインスリン様増殖因子(IGF)-I受容体、ヒトまたはマウス白血病抑制因子(LIF)受容体、ヒトまたはマウス毛様体神経栄養因子(CNTF)受容体等を例示することができる。 Examples of receptors include, for example, hematopoietic factor receptor family, cytokine receptor family, tyrosine kinase type receptor family, serine / threonine kinase type receptor family, TNF receptor family, G protein coupled receptor family, GPI Examples of the receptor family include an anchor type receptor family, a tyrosine phosphatase type receptor family, an adhesion factor family, and a hormone receptor family. Specific receptors belonging to the above receptor family include, for example, human or mouse erythropoietin (EPO) receptor, human or mouse granulocyte colony stimulating factor (G-CSF) receptor, human or mouse thrombopoietin (TPO). ) Receptor, human or mouse insulin receptor, human or mouse Flt-3 ligand receptor, human or mouse platelet derived growth factor (PDGF) receptor, human or mouse interferon (IFN) -α, β receptor, human or Mouse leptin receptor, human or mouse growth hormone (GH) receptor, human or mouse interleukin (IL) -10 receptor, human or mouse insulin-like growth factor (IGF) -I receptor, human or mouse leukemia inhibitory factor Examples include (LIF) receptors, human or mouse ciliary neurotrophic factor (CNTF) receptors, and the like.
 癌抗原は細胞の悪性化に伴って発現する抗原、あるいはがんの特性に伴って癌細胞以外の周辺細胞に高発現する抗原である。又、細胞が癌化した際に細胞表面やタンパク質分子上に現れる異常な糖鎖も癌抗原となり、特に癌糖鎖抗原と呼ばれる。癌抗原の例としては、CA19-9、CA15-3、ラウンドアバウトホモログ4(ROBO4)などを挙げることができる。
 MHC抗原には、MHCクラスI抗原とMHCクラスII抗原に大別され、MHCクラスI抗原にはHLA-A、-B、-C、-E、-F、-G、-Hが含まれ、MHCクラスII抗原にはHLA-DR、-DQ、-DPが含まれる。
 分化抗原には、CD1、CD2、CD3、CD4、CD5、CD6などの分化抗原群が含まれる。
Cancer antigens are antigens that are expressed as cells become malignant or antigens that are highly expressed in peripheral cells other than cancer cells due to the characteristics of cancer. In addition, abnormal sugar chains appearing on the cell surface and protein molecules when cells become cancerous also become cancer antigens, and are particularly called cancer sugar chain antigens. Examples of cancer antigens include CA19-9, CA15-3, and roundabout homolog 4 (ROBO4).
MHC antigens are roughly classified into MHC class I antigens and MHC class II antigens, and MHC class I antigens include HLA-A, -B, -C, -E, -F, -G, -H, MHC class II antigens include HLA-DR, -DQ, and -DP.
Differentiation antigens include differentiation antigen groups such as CD1, CD2, CD3, CD4, CD5, and CD6.
 上記の通り、本発明の二重特異性ポリペプチドは、2つの異なるリガンドに対する結合特異性または結合部位を有する。即ち、第1の結合領域および第2の結合領域がそれぞれ一価の特異性を有する。第1の結合領域および第2の結合領域の一方または両者は、少なくとも1つのさらなる結合領域を該領域の特異性を破壊しない態様で連結することができる。その場合、本発明のポリペプチドは、「多重特異性ポリペプチド」になり得る。ここに、本発明の二重特異性ポリペプチドは、第1のポリペプチドおよび第2のポリペプチドにおけるヘテロ二量体ウテログロビンのA鎖およびB鎖によって形成される「ヘテロ二量体ウテログロビン」を含む。 As described above, the bispecific polypeptides of the present invention have binding specificities or binding sites for two different ligands. That is, each of the first binding region and the second binding region has a monovalent specificity. One or both of the first binding region and the second binding region can link at least one additional binding region in a manner that does not destroy the specificity of the region. In that case, the polypeptide of the present invention may be a “multispecific polypeptide”. Here, the bispecific polypeptide of the present invention includes a “heterodimeric uteroglobin” formed by the A and B chains of the heterodimeric uteroglobin in the first polypeptide and the second polypeptide. .
 本発明において、「第1のポリペプチド」および「第2のポリペプチド」はそれぞれ、「結合領域」、例えば抗体の可変領域、レセプター結合領域、リガンド結合領域または酵素活性領域、他の分子に結合活性を持つ親和性ポリペプチドを含むことができる。好ましい態様では、結合領域は免疫グロブリンの重鎖および軽鎖を含む。通常、第1のポリペプチドおよび第2のポリペプチドはそれぞれ、ウテログロビンの一次配列から誘導される少なくとも1つの領域を含む。この領域が、第1および第2のポリペプチドが会合する部分である。 In the present invention, a “first polypeptide” and a “second polypeptide” each bind to a “binding region”, eg, an antibody variable region, a receptor binding region, a ligand binding region or an enzyme active region, or another molecule. An affinity polypeptide with activity can be included. In a preferred embodiment, the binding region comprises immunoglobulin heavy and light chains. Usually, the first polypeptide and the second polypeptide each comprise at least one region derived from the primary sequence of uteroglobin. This region is the portion where the first and second polypeptides associate.
 結合領域は、抗体の可変領域から誘導されるか、または抗体の可変領域との配列同一性を有する。抗体の例には、全長の抗体、抗体断片、単鎖分子、二重特異性分子または二機能性分子、scFv、ダイアボディー(diabody)、シングルドメイン抗体(VHH)、キメラ抗体、および免疫付着因子が含まれる。「抗体断片」には、Fv、Fv'、Fab、Fab’およびF(ab')2の断片が含まれる。「抗体」は、それが本発明に関連する場合、目的の抗原のエピトープと結合する領域を1つまたは複数含有するポリペプチドを意味する。 The binding region is derived from the variable region of the antibody or has sequence identity with the variable region of the antibody. Examples of antibodies include full length antibodies, antibody fragments, single chain molecules, bispecific or bifunctional molecules, scFv, diabodies, single domain antibodies (VHH), chimeric antibodies, and immunoadhesive factors Is included. “Antibody fragments” include fragments of Fv, Fv ′, Fab, Fab ′ and F (ab ′) 2. “Antibody”, as it relates to the present invention, means a polypeptide that contains one or more regions that bind to an epitope of an antigen of interest.
 「抗体断片」は、抗体を酵素、例えばパパイン、ペプシン等のプロテアーゼにより処理して得ることができる(Morimoto et al., J. Biochem. Biophys. Methods (1992) 24: 107-17; Brennan et al., Science (1985) 229: 81参照)。また、該抗体断片のアミノ酸配列を基に、遺伝子組換えにより製造することもできる。 “Antibody fragments” can be obtained by treating an antibody with an enzyme, for example, a protease such as papain, pepsin (MorimotoMet al., J. Biochem. Biophys. Methods (1992) 24: 107-17; Brennan et al ., See Science (1985) 229: 81). It can also be produced by gene recombination based on the amino acid sequence of the antibody fragment.
 「抗体断片」を改変した構造を有する低分子化抗体は、酵素処理若しくは遺伝子組換えにより得られた抗体断片を利用して構築することができる。または、低分子化抗体全体をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させることもできる(例えば、Co et al., J. Immunol. (1994) 152: 2968-76; Better and Horwitz, Methods Enzymol. (1989) 178: 476-96; Pluckthun and Skerra, Methods Enzymol.(1989) 178: 497-515; Lamoyi, Methods Enzymol. (1986) 121: 652-63; Rousseaux et al., Methods Enzymol. (1986) 121: 663-9; Bird and Walker, Trends Biotechnol. (1991) 9: 132-7参照)。 A low molecular weight antibody having a structure obtained by modifying an “antibody fragment” can be constructed using an antibody fragment obtained by enzyme treatment or gene recombination. Alternatively, a gene encoding the entire low molecular weight antibody can be constructed, introduced into an expression vector, and then expressed in an appropriate host cell (for example, Co et al., J. Immunol. (1994) 152). : 2968-76; Better and Horwitz, Methods Enzymol. (1989) 178: 476-96; Pluckthun and Skerra, Methods Enzymol. (1989) 178: 497-515; Lamoyi, Methods Enzymol. (1986) 121: 652-63 Rousseaux et al., Methods Enzymol. (1986) 121: 663-9; Bird and Walker, Trends Biotechnol. (1991) 9: 132-7).
 「scFv」は、2つの可変領域を、必要に応じリンカー等を介して結合させた一本鎖ポリペプチドである。scFvに含まれる2つの可変領域は、通常、1つの重鎖可変領域(VH)と1つの軽鎖可変領域(VL)であるが、2つのVHまたは2つのVLであってもよい。一般にscFvポリペプチドは、VHおよびVL領域の間にリンカーを含み、それにより抗原結合のために必要なVHおよびVLの対部分が形成される。通常、同じ分子内でVHおよびVLの間で対部分を形成させるために、一般に、VHおよびVLを連結するリンカーを10アミノ酸以上の長さのぺプチドリンカーとする。しかしながら、本発明におけるscFvのリンカーは、scFvの形成を妨げない限り、このようなペプチドリンカーに限定されるものではない。scFvの総説として、Pluckthun, The Pharmacology of Monoclonal Antibody, Vol.113 (Rosenburg and Moore ed., Springer Verlag, NY,pp.269-315 (1994))を参照することができる。 “ScFv” is a single-chain polypeptide in which two variable regions are bound via a linker or the like, if necessary. The two variable regions included in scFv are usually one heavy chain variable region (VH) and one light chain variable region (VL), but may be two VHs or two VLs. In general, scFv polypeptides include a linker between the VH and VL regions, thereby forming the VH and VL paired portions necessary for antigen binding. In general, in order to form a pair part between VH and VL in the same molecule, generally, the linker connecting VH and VL is a peptide linker having a length of 10 amino acids or more. However, the scFv linker in the present invention is not limited to such a peptide linker as long as it does not interfere with the formation of scFv. As a review of scFv, reference can be made to Pluckthun, The Pharmacology of Monoclonal Antibody, Vol.113 (Rosenburg and Moore ed., Springer Verlag, NY, pp.269-315 (1994)).
 また、「ダイアボディ」は、遺伝子融合により構築された二価の抗体断片を指す(P.Holliger et al., Proc.Natl.Acad.Sci.USA 90: 6444-6448 (1993)、EP404,097号、WO93/11161号等)。ダイアボディは、2本のポリペプチド鎖から構成されるダイマーであり、ポリペプチド鎖は各々、同じ鎖中で軽鎖可変領域(VL)および重鎖可変領域(VH)が、互いに結合できない位に短い、例えば、5残基程度のリンカーにより結合されている。同一ポリペプチド鎖上にコードされるVLとVHとは、その間のリンカーが短いため単鎖V領域フラグメントを形成することが出来ず二量体を形成するため、ダイアボディは2つの抗原結合部位を有することとなる。このとき2つの異なるエピトープ(a、b)に対するVLとVHをVLa-VHbとVLb-VHaの組合わせで5残基程度のリンカーで結んだものを同時に発現させると二重特異性Dbとして分泌される。このとき2つの異なるエピトープとは、同一の抗原上の異なる2箇所のエピトープであってもよく、また2つの異なる抗原のそれぞれにある2箇所のエピトープであってもよい。「ダイアボディ」は、2分子のscFvを含むことから、4つの可変領域を含み、その結果、2つの抗原結合部位を持つこととなる。ダイマーを形成させないscFvの場合と異なり、ダイアボディの形成を目的とする場合、通常、各scFv分子内のVHおよびVL間を結ぶリンカーは、ペプチドリンカーとする場合には、5アミノ酸前後のものとする。しかしながら、ダイアボディを形成するscFvのリンカーは、scFvの発現を妨げず、ダイアボディの形成を妨げない限り、このようなペプチドリンカーに限定されない。 In addition, “diabody” refers to a divalent antibody fragment constructed by gene fusion (P. Holliger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993), EP404,097). No., WO93 / 11161 etc.). A diabody is a dimer composed of two polypeptide chains, each of which is in a position where the light chain variable region (VL) and the heavy chain variable region (VH) cannot bind to each other in the same chain. They are linked by a short linker, for example, about 5 residues. Since VL and VH encoded on the same polypeptide chain cannot form a single-chain V region fragment due to a short linker between them, a diabody forms two antigen-binding sites. Will have. At this time, if VL and VH for two different epitopes (a and b) are combined with VLa-VHb and VLb-VHa and linked together by a linker of about 5 residues, they are secreted as bispecific Db. The In this case, the two different epitopes may be two different epitopes on the same antigen, or may be two epitopes on each of the two different antigens. A “diabody” contains two molecules of scFv, so it contains four variable regions, resulting in two antigen-binding sites. Unlike the case of scFv that does not form a dimer, when aiming at the formation of a diabody, the linker that connects between VH and VL in each scFv molecule is usually about 5 amino acids when used as a peptide linker. To do. However, the scFv linker that forms a diabody is not limited to such peptide linkers as long as it does not interfere with scFv expression and does not interfere with diabody formation.
 「シングルドメイン抗体」は、一般に特定の抗原へ高い親和性と特異性を有した分子であり、ラクダ科の動物に見出された重鎖のみからなる抗体可変領域もしくは、この構造を模してヒト等VHを改変して得られる、単一ドメインからなる抗体可変領域を指す。これらには、ヒト化やアミノ酸の最適化による安定化・親和性向上策を経たものを含む。 A “single domain antibody” is a molecule generally having a high affinity and specificity for a specific antigen, and is an antibody variable region consisting only of a heavy chain found in camelids or imitating this structure. This refers to an antibody variable region consisting of a single domain obtained by modifying human or other VH. These include those that have undergone stabilization and affinity improvement measures through humanization and amino acid optimization.
 「親和性ポリペプチド」とは、タンパク質間相互作用の接着部位に含まれる数アミノ酸からなるペプチドあるいは部分構造、ランダムペプチドライブラリからスクリーニングされた特定の分子に対する結合親和性を示すペプチドを指し、抗体の構造、あるいはその部分構造とは異なるポリペプチドを指す。好ましい態様では、Arg-Gly-Asp-Ser等の接着分子活性中心や環状ポリペプチド等が含まれる。また、ファージ表面提示法、酵母ディスプレイ、リボソーマルディスプレイ等の手法で見出された特異的結合親和性を示すペプチド、例えば、Cys-Asp-Cys-Arg-Gly-Asp-Cys-Phe-Cys (RGD-4C)も好ましい(Arap, W.; Pasqualini, R.; Ruoslahti, E. Science 1998, 279, 377.)。 “Affinity polypeptide” refers to a peptide or partial structure consisting of several amino acids contained in the adhesion site of protein-protein interaction, or a peptide showing binding affinity for a specific molecule screened from a random peptide library. It refers to a polypeptide that is different from a structure, or a partial structure thereof. In a preferred embodiment, an adhesion molecule active center such as Arg-Gly-Asp-Ser, a cyclic polypeptide and the like are included. In addition, peptides having specific binding affinity found by methods such as phage surface display, yeast display, and ribosomal display, such as Cys-Asp-Cys-Arg-Gly-Asp-Cys-Phe-Cys (RGD-4C) is also preferred (Arap, W .; Pasqualini, R .; Ruoslahti, E. Science 1998, 279, 377.).
 上記の通り、本発明は、第1の結合領域および第2の結合領域の一方または両者において、少なくとも1つのさらなる結合領域を該領域の特異性を破壊しない態様で連結することができ、その場合、ポリペプチドは、「多重特異性ポリペプチド」になり得る。多重特異性ポリペプチドの例としては、第1の結合領域および第2の結合領域の一方または両者において、1つまたはそれ以上のリガンドに結合するscFvが連結されているものが挙げられる。また、上記した親和性ポリペプチドをリンカー等で連結したものも多重特異性ポリペプチドとして利用できる。 As described above, the present invention can link at least one additional binding region in one or both of the first binding region and the second binding region in a manner that does not destroy the specificity of the region, The polypeptide can be a “multispecific polypeptide”. Examples of multispecific polypeptides include those in which one or both of the first binding region and the second binding region are linked to an scFv that binds to one or more ligands. Moreover, what connected above affinity polypeptide with the linker etc. can be utilized as multispecific polypeptide.
 本発明において、「ポリペプチド」とは、通常、10アミノ酸程度以上の長さを有するペプチド、およびタンパク質を指す。また、通常、生物由来のポリペプチドであるが、特に限定されず、例えば、人工的に設計された配列からなるポリペプチドであってもよい。また、天然ポリペプチド、あるいは合成ポリペプチド、組換えポリペプチド等のいずれであってもよい。さらに、上記のポリペプチドの断片もまた、本発明のポリペプチドに含まれる。 In the present invention, “polypeptide” generally refers to peptides and proteins having a length of about 10 amino acids or more. Moreover, although it is normally a polypeptide derived from a living organism | raw_food, it will not specifically limit, For example, the polypeptide which consists of a sequence designed artificially may be sufficient. Moreover, any of natural polypeptide, synthetic polypeptide, recombinant polypeptide, etc. may be sufficient. Furthermore, fragments of the above polypeptides are also included in the polypeptides of the present invention.
 本発明の二重特異性ポリペプチドの第1のポリペプチドおよび第2のポリペプチドにおけるウテログロビンA鎖と第1の結合領域との連結およびウテログロビンB鎖と第1の結合領域と異なる第2の結合領域との連結は、必要に応じてリンカーを介することができる。一般に、A鎖およびB鎖と結合領域とを連結するリンカーは、10アミノ酸以上の長さのぺプチドリンカーとする。しかしながら、本発明におけるリンカーは、結合領域の特異性、結合特性を妨げない限り、特に限定されるものではない。好ましいリンカーとしては、例えば、配列番号2で示されるGS4(Gly + Ser x4、GSSSSGSSSS)(非特許文献2)リンカーが挙げられる。 Linkage between uteroglobin A chain and first binding region and second binding different from uteroglobin B chain and first binding region in the first polypeptide and the second polypeptide of the bispecific polypeptide of the present invention Linkage with a region can be performed through a linker as necessary. In general, the linker that links the A chain and B chain to the binding region is a peptide linker having a length of 10 amino acids or more. However, the linker in the present invention is not particularly limited as long as the specificity and binding characteristics of the binding region are not hindered. As a preferable linker, for example, a GS4 (Gly + Ser x4, GSSSSGSSSS) linker represented by SEQ ID NO: 2 can be mentioned.
 本発明において、A鎖およびB鎖の「会合」とは、A鎖およびB鎖が相互の特定領域において相互作用する状態を意味する。相互の特定領域は、通常、会合に供される1または複数のアミノ酸残基であり、好ましくは会合の際に接近し相互作用に関与するアミノ酸残基である。相互作用には、具体的には、会合の際に接近するアミノ酸残基同士が水素結合、静電的相互作用、塩橋を形成する場合等が含まれる。 In the present invention, “association” of the A chain and the B chain means a state in which the A chain and the B chain interact in a specific region of each other. The specific regions of each other are usually one or a plurality of amino acid residues that are subjected to association, and are preferably amino acid residues that approach and participate in the interaction during the association. Specifically, the interaction includes a case where amino acid residues approaching at the time of association form a hydrogen bond, an electrostatic interaction, a salt bridge, and the like.
<抗体-薬物複合体>
 本発明は別の態様として、本発明の二重特異性ポリペプチドおよび薬物が共有結合してなる複合体、ADC(antibody-drug conjugate)複合体を含む。
 通常、薬物を全身投与すると、排除しようとする腫瘍細胞だけでなく、正常細胞にまでも許容されないレベルの毒性が生じ得る(Baldwin等, (1986) Lancet pp. (Mar. 15, 1986): 603-05)。従って、毒性を最小限にしつつ最大限の有効性を追求し、癌治療において腫瘍細胞を殺すまたは阻害するための薬物を局所的に運搬するため、抗体-薬剤複合体が使用される(Syrigos and Epenetos (1999) Anticancer Research 19:605-614;米国特許第4975278号)。同様、本発明の二重特異性ポリペプチドは、対応する抗原やリガンドに対して結合特性を有する一方で、多くの薬物分子は癌細胞を選択的に殺傷しないため、癌治療には用いにくい欠点がある。よって、本発明の二重特異性ポリペプチドと毒性の強い薬物、例えば毒素との結合により、高度に選択的かつ特異的な薬物複合体とすることができる。
<Antibody-drug complex>
As another embodiment, the present invention includes a complex formed by covalently binding the bispecific polypeptide of the present invention and a drug, an ADC (antibody-drug conjugate) complex.
In general, systemic administration of drugs can cause unacceptable levels of toxicity not only to tumor cells to be eliminated but also to normal cells (Baldwin et al., (1986) Lancet pp. (Mar. 15, 1986): 603 -05). Thus, antibody-drug conjugates are used to locally deliver drugs to pursue maximum efficacy while minimizing toxicity and to kill or inhibit tumor cells in cancer therapy (Syrigos and Epenetos (1999) Anticancer Research 19: 605-614; U.S. Pat. No. 4,975,278). Similarly, the bispecific polypeptide of the present invention has a binding property to the corresponding antigen or ligand, while many drug molecules do not selectively kill cancer cells, and thus are difficult to use for cancer treatment. There is. Therefore, a highly selective and specific drug complex can be obtained by binding of the bispecific polypeptide of the present invention to a highly toxic drug such as a toxin.
 本発明の複合体に用いる薬物には、ダウノマイシン、ドキソルビシン、メトトレキセートおよびビンデシンが含まれる(Rowland等, Cancer Immunol. Immunother. 21:183-87 (1986))。また、ジフテリア毒素などの細菌性毒素、リシンなどの植物毒が挙げられる。 Drugs used in the complex of the present invention include daunomycin, doxorubicin, methotrexate and vindesine (Rowland et al., “Cancer” Immunol. “Immunother.” 21: 183-87 (1986)). In addition, bacterial toxins such as diphtheria toxin and phytotoxins such as ricin are included.
<核酸、ベクター等>
 本発明は別の態様として、ヘテロ二量体ウテログロビンA鎖が第1の結合領域と連結している第1のポリペプチド、およびヘテロ二量体ウテログロビンB鎖が第1の結合領域と異なる第2の結合領域と連結している第2のポリペプチドを含む、請求項10から13のいずれか記載の二重特異性ポリペプチドにおいて、第1のポリペプチドまたは第2のポリペプチドをコードする核酸に関する。
<Nucleic acids, vectors, etc.>
In another aspect, the present invention provides a first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a second polypeptide in which the heterodimeric uteroglobin B chain is different from the first binding region. The bispecific polypeptide according to any one of claims 10 to 13, which comprises a second polypeptide linked to a binding region of the nucleic acid encoding the first polypeptide or the second polypeptide. .
 VH、VL、ヒンジ、CH1、CH2、CH3およびCH4領域を含む免疫グロブリン領域をコードする多数の核酸配列が、当分野において公知である(例えば、Kabat et al. in SEQUENCES OFIMMUNOLOGICAL INTEREST, Public Health Service N.I.H., Bethesda, MD, 1991)。本明細書における指針を用い、当業者であれば、そのような核酸配列および/または当技術分野において公知の他の核酸配列を組み合わせ、本明細書記載のヘテロ二量体ウテログロビンを構造基盤とする二重特異性ポリペプチドをコードする核酸配列を作製することができる。 Numerous nucleic acid sequences encoding immunoglobulin regions including VH, VL, hinge, CH1, CH2, CH3 and CH4 regions are known in the art (eg, Kabat et al. In SEQUENCES OFIMMUNOLOGICAL INTEREST, Public Health Service NIH , Bethesda, MD, 1991). Using the guidance herein, one of ordinary skill in the art can combine such nucleic acid sequences and / or other nucleic acid sequences known in the art to build on the heterodimeric uteroglobin described herein. Nucleic acid sequences encoding bispecific polypeptides can be made.
 加えて、本発明の二重特異性ポリペプチドをコードする核酸配列は、本明細書において提供されたアミノ酸配列および当分野における知識に基づき、当業者が決定できる。特定のアミノ酸配列をコードするクローニングしたDNAセグメントを生産する、伝統的な方法以外に、現在、容易に化学合成され、任意の所望の配列のDNAが注文に応じて日常的に生産され、DNAの生産工程が能率化されている(GenScript社、ユーロフィンジェノミクス社等)。 In addition, the nucleic acid sequence encoding the bispecific polypeptide of the present invention can be determined by one skilled in the art based on the amino acid sequence provided herein and knowledge in the art. In addition to the traditional method of producing cloned DNA segments encoding specific amino acid sequences, it is now readily chemically synthesized and DNA of any desired sequence is produced routinely upon order, The production process is streamlined (GenScript, Eurofin Genomics, etc.).
<二重特異性ポリペプチドの製造方法>
 好ましい態様において、本発明は、ヘテロ二量体ウテログロビンA鎖が第1の結合領域と連結している第1のポリペプチド、およびヘテロ二量体ウテログロビンB鎖が第1の結合領域と異なる第2の結合領域と連結している第2のポリペプチドを含む、本発明の二重特異性ポリペプチドを製造する方法を提供する。本発明の製造方法の別の態様においては、本発明は、ポリペプチド間の会合が制御されるように、A鎖中の1つの変異およびB鎖中の別の変異の一対のアミノ酸残基の対置換を含む本発明のヘテロ二量体ウテログロビンを構造基盤とする二重特異性ポリペプチドの製造方法を提供する。そのような対置換の例は、表1から表4に示している。
<Method for producing bispecific polypeptide>
In preferred embodiments, the present invention provides a first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a second polypeptide in which the heterodimeric uteroglobin B chain is different from the first binding region. A method for producing a bispecific polypeptide of the present invention comprising a second polypeptide linked to a binding region of In another aspect of the production method of the present invention, the present invention relates to the pair of amino acid residues of one mutation in the A chain and another mutation in the B chain so that the association between the polypeptides is controlled. Methods of producing bispecific polypeptides based on the heterodimeric uteroglobin of the present invention comprising pair substitutions are provided. Examples of such pair substitutions are shown in Tables 1 to 4.
 本発明の上記方法において対置換を含むA鎖およびB鎖は、野生型のウテログロビンをコードする核酸を改変することによって作成される。
 本発明は、ヘテロ二量体ウテログロビンA鎖が第1の結合領域と連結している第1のポリペプチド、およびヘテロ二量体ウテログロビンB鎖が第1の結合領域と異なる第2の結合領域と連結している第2のポリペプチドを含む、本発明の二重特異性ポリペプチドにおいて、第1のポリペプチドまたは第2のポリペプチドをコードする核酸を提供する。
 「核酸を改変する」とは、本発明における「改変」によって導入されるアミノ酸残基に対応するように核酸を改変することを言う。より具体的には、元(改変前)のアミノ酸残基をコードする核酸について、改変によって導入されるアミノ酸残基をコードする核酸へ改変することを言う。通常、目的のアミノ酸残基をコードするコドンとなるように、元の核酸に対して、少なくとも1塩基を挿入、欠失または置換するような遺伝子操作もしくは変異処理を行うことを意味する。即ち、元のアミノ酸残基をコードするコドンは、改変によって導入されるアミノ酸残基をコードするコドンによって置換される。このような核酸の改変は、当業者においては公知の技術、例えば、部位特異的変異誘発法、PCR変異導入法等を用いて、適宜実施することが可能である。
In the above method of the present invention, the A chain and B chain containing pair substitutions are made by modifying a nucleic acid encoding wild-type uteroglobin.
The present invention relates to a first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a second binding region in which the heterodimeric uteroglobin B chain is different from the first binding region. In the bispecific polypeptide of the invention, comprising a linked second polypeptide, a nucleic acid encoding the first polypeptide or the second polypeptide is provided.
“Modifying a nucleic acid” refers to modifying a nucleic acid so as to correspond to an amino acid residue introduced by “modification” in the present invention. More specifically, it means that a nucleic acid encoding an original (before modification) amino acid residue is modified to a nucleic acid encoding an amino acid residue introduced by the modification. Usually, it means that genetic manipulation or mutation treatment is carried out such that at least one base is inserted, deleted or substituted into the original nucleic acid so as to be a codon encoding the target amino acid residue. That is, the codon encoding the original amino acid residue is replaced by the codon encoding the amino acid residue introduced by modification. Such nucleic acid modification can be appropriately performed by those skilled in the art using known techniques such as site-directed mutagenesis and PCR mutagenesis.
 また、本発明における核酸は、通常、適当なベクターへ担持(挿入)され、宿主細胞へ導入される。本発明は本発明の核酸を含むベクター、および本発明のベクターを含む細胞を提供する。
 該ベクターとしては、挿入した核酸を安定に保持するものであれば特に制限されず、例えば宿主に大腸菌を用いるのであれば、クローニング用ベクターとしてはpBluescriptベクター(Stratagene社製)などが好ましいが、市販の種々のベクターを利用することができる。本発明のポリペプチドを生産する目的においてベクターを用いる場合には、特に発現ベクターが有用である。発現ベクターとしては、試験管内、大腸菌内、培養細胞内、生物個体内でポリペプチドを発現するベクターであれば特に制限されないが、例えば、試験管内発現であればpBESTベクター(プロメガ社製)、大腸菌であればpETベクター(Invitrogen社製)、培養細胞であればpME18S-FL3ベクター(GenBank Accession No. AB009864)、生物個体であればpME18Sベクター(Mol Cell Biol. 8:466-472(1988))などが好ましい。ベクターへの本発明のDNAの挿入は、常法により、例えば、制限酵素サイトを用いたリガーゼ反応により行うことができる(Current protocols in Molecular Biologyedit. Ausubel et al. (1987) Publish. John Wiley & Sons.Section 11.4-11.11)。
In addition, the nucleic acid in the present invention is usually carried (inserted) into an appropriate vector and introduced into a host cell. The present invention provides a vector comprising the nucleic acid of the present invention and a cell comprising the vector of the present invention.
The vector is not particularly limited as long as it stably holds the inserted nucleic acid. For example, if E. coli is used as the host, the cloning vector is preferably a pBluescript vector (Stratagene), but is commercially available. Various vectors can be used. An expression vector is particularly useful when a vector is used for the purpose of producing the polypeptide of the present invention. The expression vector is not particularly limited as long as it is a vector that expresses a polypeptide in vitro, in E. coli, in cultured cells, or in an individual organism. For example, in the case of in vitro expression, pBEST vector (manufactured by Promega), E. coli PET vector (manufactured by Invitrogen), pME18S-FL3 vector (GenBank Accession No. AB009864) for cultured cells, pME18S vector (Mol Cell Biol. 8: 466-472 (1988)) for organisms, etc. Is preferred. The insertion of the DNA of the present invention into a vector can be performed by a conventional method, for example, by a ligase reaction using a restriction enzyme site (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons). Section 11.4-11.11).
 上記宿主細胞としては特に制限はなく、目的に応じて種々の宿主細胞が用いられる。ポリペプチドを発現させるための細胞としては、例えば、細菌細胞(例:ストレプトコッカス、スタフィロコッカス、大腸菌、ストレプトミセス、枯草菌)、真菌細胞(例:酵母、アスペルギルス)、昆虫細胞(例:ドロソフィラS2、スポドプテラSF9)、動物細胞(例:CHO、COS、HeLa、C127、3T3、BHK、HEK293、Bowes メラノーマ細胞)および植物細胞を例示することができる。宿主細胞へのベクター導入は、例えば、リン酸カルシウム沈殿法、電気パルス穿孔法(Current protocols in Molecular Biology edit. Ausubel et al.(1987) Publish. John Wiley & Sons.Section 9.1-9.9)、リポフェクタミン法(GIBCOBRL社製)、マイクロインジェクション法などの公知の方法で行うことが可能である。
 さらに、本発明は、第1のポリペプチドおよび第2のポリペプチドをコードする核酸それぞれ含むベクターをともに含む細胞、ならびに第1のポリペプチドをコードする核酸を含むベクターを含む細胞、および第2のポリペプチドをコードする核酸を含むベクターを含む細胞の細胞混合物、共培養物を提供する。これら細胞および共培養物は、本発明の二重特異性ポリペプチドを好適に調製するのに適している。
There is no restriction | limiting in particular as said host cell, According to the objective, various host cells are used. Examples of cells for expressing the polypeptide include bacterial cells (eg, Streptococcus, Staphylococcus, E. coli, Streptomyces, Bacillus subtilis), fungal cells (eg, yeast, Aspergillus), insect cells (eg, Drosophila S2). , Spodoptera SF9), animal cells (eg, CHO, COS, HeLa, C127, 3T3, BHK, HEK293, Bowes melanoma cells) and plant cells. Vector introduction into host cells can be performed by, for example, calcium phosphate precipitation method, electric pulse perforation method (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 9.1-9.9), lipofectamine method (GIBCOBRL And a known method such as a microinjection method.
Furthermore, the present invention provides a cell comprising both a vector comprising a nucleic acid encoding each of the first polypeptide and the second polypeptide, and a cell comprising a vector comprising a nucleic acid encoding the first polypeptide, and a second A cell mixture or co-culture of cells comprising a vector comprising a nucleic acid encoding a polypeptide is provided. These cells and co-cultures are suitable for suitably preparing the bispecific polypeptide of the present invention.
 宿主細胞において発現したポリペプチドを小胞体の内腔に、細胞周辺腔に、または細胞外の環境に分泌させるために、適当な分泌シグナルを目的のポリペプチドに組み込むことができる。これらのシグナルは目的のポリペプチドに対して内因性であっても、異種シグナルであってもよい。 In order to secrete the polypeptide expressed in the host cell into the lumen of the endoplasmic reticulum, into the periplasmic space, or into the extracellular environment, an appropriate secretion signal can be incorporated into the polypeptide of interest. These signals may be endogenous to the polypeptide of interest or may be heterologous signals.
 上記製造方法におけるポリペプチドの回収は、本発明のポリペプチドが培地に分泌される場合は、培地を回収する。本発明のポリペプチドが細胞内に産生される場合は、その細胞をまず溶解し、その後にポリペプチドを回収する。 In the above production method, the polypeptide is collected when the polypeptide of the present invention is secreted into the medium. When the polypeptide of the present invention is produced intracellularly, the cell is first lysed, and then the polypeptide is recovered.
 組換え細胞培養物から本発明のポリペプチドを回収し精製するには、硫酸アンモニウムまたはエタノール沈殿、酸抽出、アニオンまたはカチオン交換クロマトグラフィー、ホスホセルロースクロマトグラフィー、疎水性相互作用クロマトグラフィー、アフィニティクロマトグラフィー、ヒドロキシルアパタイトクロマトグラフィーおよびレクチンクロマトグラフィーを含めた公知の方法を用いることができる。 To recover and purify the polypeptides of the invention from recombinant cell culture, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, Known methods including hydroxylapatite chromatography and lectin chromatography can be used.
 本発明の好ましい実施態様として、ヘテロ二量体ウテログロビンA鎖が第1の結合領域と連結している第1のポリペプチド、およびヘテロ二量体ウテログロビンB鎖が第1の結合領域と異なる第2の結合領域と連結している第2のポリペプチドを含む、本発明の二重特異性ポリペプチドを製造する方法において、精製ポリペプチド同士を単に混合するだけでは、ヘテロ二量体にならないことが見出された。実施例3参照のこと。そこで、本発明においては、第1のポリペプチドおよび第2のポリペプチドは、それらをコードするベクターを細胞に同時トランスフェクション(ダブルトランスフェクション)するか、または、それらをコードするベクターを含むそれぞれの細胞を共培養する必要がある。 In a preferred embodiment of the invention, a first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a second polypeptide in which the heterodimeric uteroglobin B chain is different from the first binding region In the method for producing the bispecific polypeptide of the present invention comprising the second polypeptide linked to the binding region of the present invention, the purified polypeptide may not be a heterodimer simply by mixing together. It was found. See Example 3. Therefore, in the present invention, the first polypeptide and the second polypeptide are obtained by co-transfection of a vector encoding them into a cell (double transfection) or by including each of the vectors encoding them. Cells need to be co-cultured.
 本発明は、一つの態様として、
 ヘテロ二量体ウテログロビンA鎖が第1の結合領域と連結している第1のポリペプチド、およびヘテロ二量体ウテログロビンB鎖が第1の結合領域と異なる第2の結合領域と連結している第2のポリペプチドを含む、請求項1から13のいずれか記載の二重特異性ポリペプチドを製造する方法であって、
 a)第1のポリペプチドをコードする核酸を含む第1のベクターを用意し、
 b)第2のポリペプチドをコードする核酸を含む第2のベクターを用意し、
 c)第1のベクターおよび第2のベクターを細胞に同時トランスフェクションし、得られたトランスフェクト体を培養し、そして
 d)第1および第2のポリペプチドを含むヘテロ二量体を回収する、
該二重特異性ポリペプチドを製造する方法を提供する。
The present invention, as one aspect,
A first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain is linked to a second binding region that is different from the first binding region A method for producing a bispecific polypeptide according to any of claims 1 to 13, comprising a second polypeptide comprising:
a) providing a first vector comprising a nucleic acid encoding the first polypeptide;
b) providing a second vector comprising a nucleic acid encoding a second polypeptide;
c) co-transfecting the cells with the first and second vectors, culturing the resulting transfectants, and d) recovering the heterodimer comprising the first and second polypeptides,
A method of producing the bispecific polypeptide is provided.
 またh、本発明は、別の態様として、本発明の二重特異性ポリペプチドを製造する方法であって、
 a)第1のポリペプチドを発現する第1の細胞を用意し、
 b)第2のポリペプチドを発現する第2の細胞を用意し、
 c)第1の細胞および第2の細胞を共培養し、そして
 d)第1および第2のポリペプチドを含むヘテロ二量体を回収する、
該二重特異性ポリペプチドを製造する方法、を提供する。
In addition, h, as another aspect, the present invention provides a method for producing the bispecific polypeptide of the present invention,
a) providing a first cell expressing a first polypeptide;
b) providing a second cell expressing the second polypeptide;
c) co-culturing the first and second cells; and d) recovering the heterodimer comprising the first and second polypeptides.
A method of producing the bispecific polypeptide is provided.
 本発明の二重特異性ポリペプチドを製造する基本となる野生型ヒトウテログロビンを製造する一例は次の通りである。野生型ヒトウテログロビンモノマーとHisタグ、FLAGタグ、GSTタグ等をコードする遺伝子を大腸菌、酵母、ブレビバチルス、昆虫細胞、哺乳類細胞等に導入する。ウテログロビンを含む培養液または細胞破砕液をHisタグを捕捉する樹脂に通し、イミダゾールを含む溶液によりウテログロビンを含む画分を溶出させる。溶出液を透析法により溶液交換をして塩濃度を下げた後、陰イオン交換クロマトグラフィーにより精製する。樹脂は陰イオン交換樹脂を使用し、塩の濃度勾配によりウテログロビンを分離精製する。溶出画分を回収した後、ゲルろ過クロマトグラフィーによりさらに精製し、純度の高いウテログロビンを回収する。溶出画分を回収し、限外濾過膜を用いて濃縮し、ウテログロビン溶液を得る。ここで得られる野生型ウテログロビンは二量体である。
 変異型ウテログロビンの製造も同様である。
An example of producing wild-type human uteroglobin as a basis for producing the bispecific polypeptide of the present invention is as follows. A gene encoding a wild-type human uteroglobin monomer and His tag, FLAG tag, GST tag, etc. is introduced into Escherichia coli, yeast, Brevibacillus, insect cells, mammalian cells and the like. A culture solution or cell disruption solution containing uteroglobin is passed through a resin that captures a His tag, and a fraction containing uteroglobin is eluted with a solution containing imidazole. The eluate is subjected to solution exchange by dialysis to lower the salt concentration, and then purified by anion exchange chromatography. As the resin, an anion exchange resin is used, and uteroglobin is separated and purified by a salt concentration gradient. After collecting the eluted fraction, it is further purified by gel filtration chromatography to collect highly pure uteroglobin. The eluted fraction is collected and concentrated using an ultrafiltration membrane to obtain a uteroglobin solution. The wild-type uteroglobin obtained here is a dimer.
The same applies to the production of mutant uteroglobin.
<医薬組成物>
 本発明は別の態様として、本発明の二重特異性ポリペプチド、および医薬的に許容される担体を含む組成物に関する。
<Pharmaceutical composition>
The present invention, in another aspect, relates to a composition comprising a bispecific polypeptide of the present invention and a pharmaceutically acceptable carrier.
 本発明において医薬組成物とは、通常、疾患の治療もしくは予防、あるいは検査・診断のための薬剤を意味する。 In the present invention, the pharmaceutical composition usually means a drug for treatment or prevention of a disease, or examination / diagnosis.
 本発明の医薬組成物は、当業者に公知の方法で製剤化することが可能である。例えば、水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤の注射剤の形で非経口的に使用できる。例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤などと適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することが考えられる。これら製剤における有効成分量は、指示された範囲の適当な容量が得られるように設定する。 The pharmaceutical composition of the present invention can be formulated by methods known to those skilled in the art. For example, it can be used parenterally in the form of a sterile solution with water or other pharmaceutically acceptable liquid, or an injection in suspension. For example, a pharmacologically acceptable carrier or medium, specifically, sterile water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, preservative It is conceivable to prepare a pharmaceutical preparation by combining with a binder or the like as appropriate and mixing in a unit dosage form generally required for pharmaceutical practice. The amount of the active ingredient in these preparations is set so as to obtain an appropriate volume within the indicated range.
 注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施に従って処方することができる。 A sterile composition for injection can be formulated in accordance with normal pharmaceutical practice using a vehicle such as distilled water for injection.
 注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬(例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウム)を含む等張液が挙げられる。適当な溶解補助剤、例えばアルコール(エタノール等)、ポリアルコール(プロピレングリコール、ポリエチレングリコール等)、非イオン性界面活性剤(ポリソルベート80(TM)、HCO-50等)を併用してもよい。 Examples of aqueous solutions for injection include isotonic solutions containing, for example, physiological saline, glucose and other adjuvants (for example, D-sorbitol, D-mannose, D-mannitol, sodium chloride). A suitable solubilizing agent such as alcohol (ethanol etc.), polyalcohol (propylene glycol, polyethylene glycol etc.), nonionic surfactant (polysorbate 80 (TM), HCO-50 etc.) may be used in combination.
 油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジルおよび/またはベンジルアルコールを併用してもよい。また、緩衝剤(例えば、リン酸塩緩衝液および酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩酸プロカイン)、安定剤(例えば、ベンジルアルコールおよびフェノール)、酸化防止剤と配合してもよい。調製された注射液は通常、適当なアンプルに充填する。 Examples of the oily liquid include sesame oil and soybean oil, and benzyl benzoate and / or benzyl alcohol may be used in combination as a solubilizing agent. Moreover, you may mix | blend with a buffer (for example, phosphate buffer and sodium acetate buffer), a soothing agent (for example, procaine hydrochloride), a stabilizer (for example, benzyl alcohol and phenol), and an antioxidant. The prepared injection solution is usually filled in a suitable ampoule.
 本発明の医薬組成物は、好ましくは非経口投与により投与される。例えば、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与型の組成物とすることができる。例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与することができる。 The pharmaceutical composition of the present invention is preferably administered by parenteral administration. For example, the composition can be an injection, nasal, pulmonary, or transdermal composition. For example, it can be administered systemically or locally by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, or the like.
 投与方法は、患者の年齢、症状により適宜選択することができる。ポリペプチドを含有する医薬組成物の投与量は、例えば、1回につき体重1kgあたり0.0001mgから1000mgの範囲に設定することが可能である。または、例えば、患者あたり0.001~100000mgの投与量とすることもできるが、本発明はこれらの数値に必ずしも制限されるものではない。投与量および投与方法は、患者の体重、年齢、症状などにより変動するが、当業者であればそれらの条件を考慮し適当な投与量および投与方法を設定することが可能である。 The administration method can be appropriately selected depending on the age and symptoms of the patient. The dosage of the pharmaceutical composition containing the polypeptide can be set, for example, in the range of 0.0001 mg to 1000 mg per kg body weight at a time. Alternatively, for example, the dose may be 0.001 to 100,000 mg per patient, but the present invention is not necessarily limited to these values. The dose and administration method vary depending on the patient's weight, age, symptoms, etc., but those skilled in the art can set an appropriate dose and administration method in consideration of these conditions.
 本発明においては、上記本発明のポリペプチドまたは複合体は、特に、癌、血管関連疾患、および炎症疾患に対する治療剤または予防剤の有効成分として有用である。癌は次のものを包含するが、それらに限定されない:、肺癌(小細胞肺癌、非小細胞肺癌、肺腺癌および肺扁平上皮癌を含む)、大腸癌、直腸癌、結腸癌、乳癌、肝癌、胃癌、膵癌、腎癌、前立腺癌、卵巣癌、甲状腺癌、胆管癌、腹膜癌、中皮腫、扁平上皮癌、子宮頸癌、子宮体癌、膀胱癌、食道癌、頭頚部癌、鼻咽頭癌、唾液腺腫瘍、胸腺腫、皮膚癌、基底細胞腫、悪性黒色腫、肛門癌、陰茎癌、精巣癌、ウィルムス腫瘍、急性骨髄性白血病(急性骨髄球性白血病、急性骨髄芽球性白血病、急性前骨髄球性白血病、急性骨髄単球性白血病および急性単球性白血病を含む)、慢性骨髄性白血病、急性リンパ性白血病、慢性リンパ性白血病、ホジキンリンパ腫、非ホジキンリンパ腫(バーキットリンパ腫、慢性リンパ球性白血病、菌状息肉腫、マントル細胞リンパ腫、濾胞性リンパ腫、びまん性大細胞型リンパ腫、辺縁帯リンパ腫、毛様細胞白血病形質細胞腫、末梢性T細胞リンパ腫および成人T細胞白血病/リンパ腫)、ランゲルハンス細胞組織球症、多発性骨髄腫、骨髄異形成症候群、脳腫瘍(神経膠腫、星細胞腫、グリア芽細胞腫、髄膜腫および上衣腫を含む)、神経芽細胞腫、網膜芽細胞腫、骨肉腫、カポジ肉腫、ユーイング肉腫、血管肉腫、血管外皮細胞腫。血管関連疾患には、動脈硬化、血管炎がある。炎症疾患は急性あるいは慢性炎症性疾患を包み、具体的には次のものを包含するが、それらに限定されない:アルコール性肝炎。ウイルス性肝炎。非アルコール性脂肪性肝炎。間質性肺炎。潰瘍性大腸炎。クローン病。 In the present invention, the polypeptide or complex of the present invention is particularly useful as an active ingredient of a therapeutic or prophylactic agent for cancer, blood vessel-related diseases, and inflammatory diseases. Cancers include, but are not limited to: lung cancer (including small cell lung cancer, non-small cell lung cancer, lung adenocarcinoma and squamous cell carcinoma), colon cancer, rectal cancer, colon cancer, breast cancer, Liver cancer, stomach cancer, pancreatic cancer, renal cancer, prostate cancer, ovarian cancer, thyroid cancer, bile duct cancer, peritoneal cancer, mesothelioma, squamous cell carcinoma, cervical cancer, endometrial cancer, bladder cancer, esophageal cancer, head and neck cancer, Nasopharyngeal cancer, salivary gland tumor, thymoma, skin cancer, basal cell tumor, malignant melanoma, anal cancer, penile cancer, testicular cancer, Wilms tumor, acute myeloid leukemia (acute myelocytic leukemia, acute myeloblastic leukemia) , Including acute promyelocytic leukemia, acute myelomonocytic leukemia and acute monocytic leukemia), chronic myelogenous leukemia, acute lymphocytic leukemia, chronic lymphocytic leukemia, Hodgkin lymphoma, non-Hodgkin lymphoma (Burkitt lymphoma, Chronic lymphocytic leukemia, mycosis fungoides, Center cell lymphoma, follicular lymphoma, diffuse large cell lymphoma, marginal zone lymphoma, hairy cell leukemia plasmacytoma, peripheral T cell lymphoma and adult T cell leukemia / lymphoma), Langerhans cell histiocytosis, multiple Myeloma, myelodysplastic syndrome, brain tumor (including glioma, astrocytoma, glioblastoma, meningioma and ependymoma), neuroblastoma, retinoblastoma, osteosarcoma, Kaposi sarcoma, Ewing Sarcoma, hemangiosarcoma, vascular epithelioma. Blood vessel-related diseases include arteriosclerosis and vasculitis. Inflammatory diseases include acute or chronic inflammatory diseases, specifically including but not limited to: alcoholic hepatitis. Viral hepatitis. Nonalcoholic steatohepatitis. Interstitial pneumonia. Ulcerative colitis. Crohn's disease.
 また本発明は、少なくとも本発明の製造方法により製造されたポリペプチド、または本発明の医薬組成物を含む、本発明の治療方法または予防方法に用いるためのキットを提供する。該キットには、その他、薬学的に許容される担体、媒体、使用方法を記載した指示書等をパッケージしておくこともできる。また本発明は、本発明のポリペプチドもしくは本発明の製造方法により製造されたポリペプチドの、免疫炎症性疾患の治療剤または予防剤の製造における使用に関する。また本発明は、本発明の治療方法または予防方法に使用するための、本発明のポリペプチドまたは本発明の製造方法により製造されたポリペプチドに関する。 The present invention also provides a kit for use in the therapeutic or prophylactic method of the present invention, comprising at least the polypeptide produced by the production method of the present invention or the pharmaceutical composition of the present invention. In addition, the kit may be packaged with a pharmaceutically acceptable carrier, a medium, instructions describing the method of use, and the like. The present invention also relates to the use of the polypeptide of the present invention or the polypeptide produced by the production method of the present invention in the manufacture of a therapeutic or prophylactic agent for immunoinflammatory diseases. The present invention also relates to the polypeptide of the present invention or the polypeptide produced by the production method of the present invention for use in the therapeutic or prophylactic method of the present invention.
 なお、本明細書で用いられているアミノ酸の3文字表記と1文字表記の対応は以下の通りである。
アラニン:Ala:A
アルギニン:Arg:R
アスパラギン:Asn:N
アスパラギン酸:Asp:D
システイン:Cys:C
グルタミン:Gln:Q
グルタミン酸:Glu:E
グリシン:Gly:G
ヒスチジン:His:H
イソロイシン:Ile:I
ロイシン:Leu:L
リジン:Lys:K
メチオニン:Met:M
フェニルアラニン:Phe:F
プロリン:Pro:P
セリン:Ser:S
スレオニン:Thr:T
トリプトファン:Trp:W
チロシン:Tyr:Y
バリン:Val:V
The correspondence between the three-letter code and the one-character code of amino acids used in this specification is as follows.
Alanine: Ala: A
Arginine: Arg: R
Asparagine: Asn: N
Aspartic acid: Asp: D
Cysteine: Cys: C
Glutamine: Gln: Q
Glutamate: Glu: E
Glycine: Gly: G
Histidine: His: H
Isoleucine: Ile: I
Leucine: Leu: L
Lysine: Lys: K
Methionine: Met: M
Phenylalanine: Phe: F
Proline: Pro: P
Serine: Ser: S
Threonine: Thr: T
Tryptophan: Trp: W
Tyrosine: Tyr: Y
Valine: Val: V
 以下、本発明を実施例により、詳細に説明するが、これらは本発明の範囲を限定するものでなく、単なる例示であることに留意すべきである。 Hereinafter, the present invention will be described in detail by way of examples. However, it should be noted that these are merely examples, not limiting the scope of the present invention.
実施例1: 発現プラスミドの構築
 EcoRI切断配列、マウスIgGκシグナルペプチドをコードするDNA配列、野生型ヒトウテログロビンモノマー全長をコードするDNA配列(NCBI)、リンカー配列GSSSSGSSSS、Hisタグおよびストップコドン配列、XhoI切断配列を含む遺伝子を合成した。合成した遺伝子および哺乳類発現ベクターであるpcDNA6.0 mycHisB(Invitrogen)をEcoRI(NEB)とXhoI(NEB)で切断した。切断した2つの産物をDNAライゲーションキットmighty mix(TAKARA)を用いて連結させ、野生型ウテログロビン哺乳類発現用プラスミドを作製した。
Example 1: Construction of expression plasmid EcoRI cleavage sequence, DNA sequence encoding mouse IgGκ signal peptide, DNA sequence encoding full-length wild type human uteroglobin monomer (NCBI), linker sequence GSSSSGSSSS, His tag and stop codon sequence, XhoI A gene containing a cleavage sequence was synthesized. The synthesized gene and the mammalian expression vector pcDNA6.0 mycHisB (Invitrogen) were cleaved with EcoRI (NEB) and XhoI (NEB). The two cleaved products were ligated using a DNA ligation kit mighty mix (TAKARA) to prepare a wild-type uteroglobin mammalian expression plasmid.
 変異体は次のように作製した。ウテログロビンモノマーの51番目のアミノ酸であるリシン(K)をコードするコドンaagをグルタミン酸(E)のコドンgaaに変換した配列を含むプライマーを合成した。合成したプライマーと野生型ウテログロビン哺乳類発現用プラスミドを鋳型としてPCR反応を行い、変異型ウテログロビン(K51E)哺乳類発現用プラスミドを作製した。 The mutant was prepared as follows. Primers containing a sequence in which the codon aag encoding lysine (K), the 51st amino acid of the uteroglobin monomer, was converted to the codon gaa of glutamic acid (E) were synthesized. A PCR reaction was performed using the synthesized primer and a wild-type uteroglobin mammalian expression plasmid as a template to prepare a mutant uteroglobin (K51E) mammalian expression plasmid.
 同様の方法で33番目のアミノ酸であるアスパラギン酸gacをリシンaagに変換した変異型ウテログロビン(D33K)哺乳類発現用プラスミドを作製した。続いて変異型ウテログロビン(D33K)哺乳類発現用プラスミドのマウスIgGκシグナルペプチドの3‘末端に、ROBO4に対する一本鎖抗体scFv配列、リンカー配列GSSSSGSSSSを挿入したROBO4 scFv-変異型ウテログロビン(D33K)哺乳類発現用プラスミドを作製した。 In the same manner, a mutant uteroglobin (D33K) mammalian expression plasmid was prepared by converting aspartate gac, the 33rd amino acid, into lysine aag. Subsequently, ROBO4 scFv-mutant uteroglobin (D33K) for mammalian expression, in which the mouse IgGκ signal peptide of the mutant uteroglobin (D33K) mammalian expression plasmid is inserted with a single chain antibody scFv sequence against ROBO4 and linker sequence GSSSSGSSSS. A plasmid was prepared.
 このようにして、野生型ウテログロビン哺乳類発現用プラスミド[1]、変異型ウテログロビン(K51E)哺乳類発現用プラスミド[2]、ROBO4 scFv-変異型ウテログロビン(D33K)(ROBO4 scFv-D33K)哺乳類発現用プラスミド[4]を調製した。 In this way, wild-type uteroglobin mammalian expression plasmid [1], mutant uteroglobin (K51E) mammalian expression plasmid [2], ROBO4 scFv-mutant uteroglobin (D33K) (ROBO4 scFv-D33K) mammalian expression plasmid [ 4] was prepared.
 同様の方法で66番目のアミノ酸であるセリン(S)agcをフェニルアラニン(F)ttcに変換した変異型ウテログロビン(S66F)哺乳類発現用プラスミドを作製した。続いて28番目のアミノ酸であるフェニルアラニンttcをセリンagcに変換した変異型ウテログロビン(F28S)哺乳類発現用プラスミドのマウスIgGκシグナルペプチドの3‘末端にに対する一本鎖抗体scFv配列、リンカー配列GSSSSGSSSSを挿入したROBO4 scFv-変異型ウテログロビン(F28S)哺乳類発現用プラスミドを作製した。 A mutant uteroglobin (S66F) mammalian expression plasmid was prepared by converting serine (S) agc, which is the 66th amino acid, into phenylalanine (F) ttc in the same manner. Subsequently, a single chain antibody scFv sequence and a linker sequence GSSSSGSSSS were inserted into the 3 ′ end of the mouse IgGκ signal peptide of the mutant uteroglobin (F28S) mammalian expression plasmid in which the 28th amino acid phenylalanine ttc was converted to serine agc. ROBO4 scFv-mutant uteroglobin (F28S) mammalian expression plasmid was prepared.
 このようにして、変異型ウテログロビン(S66F)哺乳類発現用プラスミド[8]、ROBO4 scFv-変異型ウテログロビン(F28S)(ROBO4 scFv-F28S)哺乳類発現用プラスミド[9]を調製した。 Thus, a mutant uteroglobin (S66F) mammalian expression plasmid [8] and a ROBO4BOscFv-mutant uteroglobin (F28S) (ROBO4 scFv-F28S) mammalian expression plasmid [9] were prepared.
 同様の方法で29番目のアミノ酸であるセリン(S)agcをリジン(K)aagに変換した変異型ウテログロビン(S29K)哺乳類発現用プラスミドを作製した。続いて同様の方法で29番目のアミノ酸であるセリン(S)agcをアスパラギン酸(D)gacに、62番目のアミノ酸であるリジン(K)aaaをアスパラギン酸(D)gacに変換した変異型ウテログロビン(S29D, K62D)哺乳類発現用プラスミドのマウスIgGκシグナルペプチドの3‘末端にROBO4に対する一本鎖抗体scFv配列、リンカー配列GSSSSGSSSSを挿入したROBO4 scFv-変異型ウテログロビン(S29D, K62D)哺乳類発現用プラスミドを作製した。 In the same manner, a mutant uteroglobin (S29K) mammalian expression plasmid was prepared by converting serine (S) agc, the 29th amino acid, into lysine (K) aag. Subsequently, the same method was used to convert the 29th amino acid serine (S) agc to aspartic acid (D) gac and the 62nd amino acid lysine (K) aaa to aspartic acid (D) gac. (S29D, K62D) ROBO4 scFv-mutant uteroglobin (S29D, K62D) mammalian expression plasmid in which the mouse IgGκ signal peptide of the mammalian expression plasmid inserts a single-chain antibody scFv sequence against ROBO4 and the linker sequence GSSSSGSSSS at the 3 ′ end Produced.
 このようにして、変異型ウテログロビン(S29K)哺乳類発現用プラスミド[13]、ROBO4 scFv-変異型ウテログロビン(S29D, K62D)(ROBO4 scFv-S29D, K62D)哺乳類発現用プラスミド[14]を調製した。 Thus, a mutant uteroglobin (S29K) mammalian expression plasmid [13] and a ROBO4 scFv-mutant uteroglobin (S29D, K62D) (ROBO4 scFv-S29D, K62D) mammalian expression plasmid [14] were prepared.
実施例2: 発現産物の調製
2-1:発現
 トランスフェクション(形質導入)はExpiFectamine293 Transfection kit (Thermo Fisher Scentific)を用いて行った。手順は次の通りである。
 Expi293F細胞(Invitrogen)をExpi293発現培地(Thermo Fisher Scentific)100mL中、3.0×106 細胞/mLとなるように37℃、125rpm、8% CO2条件下で培養した。実施例1にて調製したプラスミド[1]、[2]、[4]、[8]、[9]、[13]および[14]を100μgとOpti-MEM I 還元血清培地(Thermo Fisher Scentific)5mLを穏やかに混合し、室温で5分間静置した。ExpiFectamine293 試薬(Thermo Fisher Scentific)270μLとOpti-MEM I 還元血清培地(Thermo Fisher Scentific)5mLを穏やかに混合し、室温で5分間静置した。5分後、各プラスミド溶液とExpiFectamine溶液を穏やかに混合し、室温で20分間静置した。Expi293F細胞液100mLに混合溶液を穏やかに加え、37℃、125rpm、8% CO2で20時間培養後、ExpiFectamine 293 トランスフェクション・エンハンサー1(Transfection Enhancer 1、Thermo Fisher Scentific)500μLとExpiFectamine 293 トランスフェクション・エンハンサー2(Thermo Fisher Scentific)5mLを加えて37℃、125rpm、8% CO2条件下で1週間培養した。
Example 2: Preparation of expression product 2-1: Expression Transfection (transduction) was performed using ExpiFectamine293 Transfection kit (Thermo Fisher Scentific). The procedure is as follows.
Expi293F cells (Invitrogen) were cultured in 100 mL of Expi293 expression medium (Thermo Fisher Scentific) under conditions of 37 ° C., 125 rpm, and 8% CO 2 at 3.0 × 10 6 cells / mL. 100 μg of plasmid [1], [2], [4], [8], [9], [13] and [14] prepared in Example 1 and Opti-MEM I reduced serum medium (Thermo Fisher Scentific) 5 mL was mixed gently and left at room temperature for 5 minutes. 270 μL of ExpiFectamine293 reagent (Thermo Fisher Scentific) and 5 mL of Opti-MEM I reducing serum medium (Thermo Fisher Scentific) were gently mixed and allowed to stand at room temperature for 5 minutes. After 5 minutes, each plasmid solution and ExpiFectamine solution were gently mixed and allowed to stand at room temperature for 20 minutes. Gently add the mixed solution to 100 mL of Expi293F cell solution, and incubate at 37 ° C, 125 rpm, 8% CO 2 for 20 hours. enhancer 2 (Thermo Fisher Scentific) 5mL were added 37 ° C., and cultured for one week at 125rpm, 8% CO 2 conditions.
 ROBO4 scFv-D33KおよびK51Eダブルトランスフェクションは以下のように行った。ウテログロビン(K51E)哺乳類発現用プラスミド[2]50μgとROBO4 scFv-変異型ウテログロビン(D33K)哺乳類発現用プラスミド[4]50μgを混合し、Opti-MEM I 還元血清培地(Thermo Fisher Scentific)5mLに添加して穏やかに混合した後、室温で5分間静置した。ExpiFectamine293 試薬(Thermo Fisher Scentific)270μLとOpti-MEM I 還元血清培地(Thermo Fisher Scentific)5mLを穏やかに混合し、室温で5分間静置した。5分後、プラスミド溶液とExpiFectamine溶液を穏やかに混合し、室温で20分間静置した。Expi293F細胞液3.0×106 細胞/mL 、100mLに混合溶液を穏やかに加え、37℃、125rpm、8% CO2で20時間培養後、ExpiFectamine 293 トランスフェクション・エンハンサー1(Thermo Fisher Scentific)500μLとExpiFectamine 293 トランスフェクション・エンハンサー 2(Thermo Fisher Scentific)5mLを加えて37℃、125rpm、8% CO2条件下で1週間培養した。 ROBO4 scFv-D33K and K51E double transfection was performed as follows. Mix 50 μg of uteroglobin (K51E) mammalian expression plasmid [2] with 50 μg of ROBO4 scFv-mutated uteroglobin (D33K) mammalian expression plasmid [4] and add to 5 mL of Opti-MEM I reducing serum medium (Thermo Fisher Scentific). After gently mixing, the mixture was allowed to stand at room temperature for 5 minutes. 270 μL of ExpiFectamine293 reagent (Thermo Fisher Scentific) and 5 mL of Opti-MEM I reducing serum medium (Thermo Fisher Scentific) were gently mixed and allowed to stand at room temperature for 5 minutes. After 5 minutes, the plasmid solution and ExpiFectamine solution were gently mixed and allowed to stand at room temperature for 20 minutes. Gently add the mixed solution to Expi293F cell solution 3.0 × 10 6 cells / mL, 100 mL, and incubate at 37 ° C, 125 rpm, 8% CO 2 for 20 hours, then ExpiFectamine 293 Transfection Enhancer 1 (Thermo Fisher Scentific) 500 μL and ExpiFectamine 293 transfection enhancer 2 (Thermo Fisher Scentific) 5mL were added 37 ° C., and cultured for one week at 125rpm, 8% CO 2 conditions.
 同様の方法で、変異型ウテログロビン(S66F)哺乳類発現用プラスミドおよびROBO4 scFv-変異型ウテログロビン(F28S)(ROBO4 scFv-F28S)哺乳類発現用プラスミドを用いてROBO4 scFv-F28SおよびS66Fダブルトランスフェクション[10]、ならびに変異型ウテログロビン(S29K)哺乳類発現用プラスミドおよびROBO4 scFv-変異型ウテログロビン(S29D, K62D)(ROBO4 scFv-S29D, K62D)哺乳類発現用プラスミドを用いてROBO4 scFv-S29D, K62DおよびS29Kダブルトランスフェクション[15]を行った。 In a similar manner, ROBO4 scFv-F28S and S66F double transfection using mutant uteroglobin (S66F) mammalian expression plasmid and ROBO4 scFv-mutant uteroglobin (F28S) (ROBO4 scFv-F28S) mammalian expression plasmid [10] And ROBO4 scFv-S29D, K62D and S29K double transfection using mutant uteroglobin (S29K) mammalian expression plasmid and ROBO4 scFv-mutant uteroglobin (S29D, DK62D) (ROBO4 scFv-S29D, K62D) mammalian expression plasmid [15] was performed.
 ROBO4 scFv-D33K_K51E共培養は以下のように行った。Expi293F細胞(Invitrogen)をExpi293 発現培地(Thermo Fisher Scentific)50mL中、3.0×106 細胞/mLとなるように37℃、125rpm、8% CO2条件下で培養した。ウテログロビン(K51E)哺乳類発現用プラスミド[2]50μgとOpti-MEM I 還元血清培地(Thermo Fisher Scentific)2.5mLを穏やかに混合し、室温で5分間静置した。ExpiFectamine293 試薬(Thermo Fisher Scentific)135μLとOpti-MEM I 還元血清培地(Thermo Fisher Scentific)2.5mLを穏やかに混合し、室温で5分間静置した。5分後、プラスミド溶液とExpiFectamine溶液を穏やかに混合し、室温で20分間静置した。Expi293F細胞液50mLに混合溶液を穏やかに加えて、37℃、125rpm、8% CO2で20時間培養後、ExpiFectamine 293 トランスフェクション・エンハンサー 1(Thermo Fisher Scentific)250μLとExpiFectamine 293 トランスフェクション・エンハンサー 2(Thermo Fisher Scentific)2.5mLを加えて37℃、125rpm、8% CO2条件下で3時間培養した。Expi293F細胞(Invitrogen)をExpi293 Expression medium(Thermo Fisher Scentific)50mL中、3.0×106 cells/mLとなるように37℃、125rpm、8% CO2条件下で培養した。ROBO4 scFv-変異型ウテログロビン(D33K)哺乳類発現用プラスミド[4]50μgとOpti-MEM I 還元血清培地(Thermo Fisher Scentific)2.5mLを穏やかに混合し、室温で5分間静置した。ExpiFectamine293 試薬(Thermo Fisher Scentific)135μLとOpti-MEM I 還元血清培地(Thermo Fisher Scentific)2.5mLを穏やかに混合し、室温で5分間静置した。5分後、プラスミド溶液とExpiFectamine溶液を穏やかに混合し、室温で20分間静置した。Expi293F細胞液50mLに混合溶液を穏やかに加え、37℃、125rpm、8% CO2で20時間培養後、ExpiFectamine 293 トランスフェクション・エンハンサー 1(Thermo Fisher Scentific)250μLとExpiFectamine 293 トランスフェクション・エンハンサー 2(Thermo Fisher Scentific)2.5mLを加えて37℃、125rpm、8% CO2条件下で3時間培養した。その後、K51E細胞溶液50mLとROBO4 scFv-D33K細胞溶液50mLを混合し、37℃、125rpm、8% CO2で1週間培養した。 ROBO4 scFv-D33K_K51E co-culture was performed as follows. Expi293F cells (Invitrogen) were cultured in 37 mL of Expi293 expression medium (Thermo Fisher Scentific) at 37 ° C., 125 rpm, and 8% CO 2 at 3.0 × 10 6 cells / mL. 50 μg of uteroglobin (K51E) mammalian expression plasmid [2] and 2.5 mL of Opti-MEM I reducing serum medium (Thermo Fisher Scentific) were gently mixed and allowed to stand at room temperature for 5 minutes. ExpiFectamine293 reagent (Thermo Fisher Scentific) 135 μL and Opti-MEM I reducing serum medium (Thermo Fisher Scentific) 2.5 mL were gently mixed and allowed to stand at room temperature for 5 minutes. After 5 minutes, the plasmid solution and ExpiFectamine solution were gently mixed and allowed to stand at room temperature for 20 minutes. Gently add the mixed solution to 50 mL of Expi293F cell solution and incubate at 37 ° C, 125 rpm, 8% CO 2 for 20 hours. Then, 250 µL of ExpiFectamine 293 Transfection Enhancer 1 (Thermo Fisher Scentific) and ExpiFectamine 293 Transfection Enhancer 2 ( Thermo Fisher Scentific) 2.5 mL was added and cultured under conditions of 37 ° C., 125 rpm, 8% CO 2 for 3 hours. Expi293F cells (Invitrogen) were cultured in 50 mL of Expi293 Expression medium (Thermo Fisher Scentific) under conditions of 37 ° C., 125 rpm, and 8% CO 2 at 3.0 × 10 6 cells / mL. ROBO4 scFv-mutated uteroglobin (D33K) mammalian expression plasmid [4] 50 μg and Opti-MEM I reducing serum medium (Thermo Fisher Scentific) 2.5 mL were gently mixed and allowed to stand at room temperature for 5 minutes. ExpiFectamine293 reagent (Thermo Fisher Scentific) 135 μL and Opti-MEM I reducing serum medium (Thermo Fisher Scentific) 2.5 mL were gently mixed and allowed to stand at room temperature for 5 minutes. After 5 minutes, the plasmid solution and ExpiFectamine solution were gently mixed and allowed to stand at room temperature for 20 minutes. Gently add the mixed solution to 50 mL of Expi293F cell solution, and incubate at 37 ° C, 125 rpm, 8% CO 2 for 20 hours. Fisher Scentific) 2.5 mL was added and cultured under conditions of 37 ° C., 125 rpm, 8% CO 2 for 3 hours. Thereafter, 50 mL of the K51E cell solution and 50 mL of the ROBO4 scFv-D33K cell solution were mixed and cultured at 37 ° C., 125 rpm, 8% CO 2 for 1 week.
 同様の方法で、変異型ウテログロビン(S66F)哺乳類発現用プラスミドおよびROBO4 scFv-変異型ウテログロビン(F28S)(ROBO4 scFv-F28S)哺乳類発現用プラスミドを用いてROBO4 scFv-F28SおよびS66F共培養[11]、ならびに変異型ウテログロビン(S29K)哺乳類発現用プラスミドおよびROBO4 scFv-変異型ウテログロビン(S29D, K62D)(ROBO4 scFv-S29D, K62D)哺乳類発現用プラスミドを用いてROBO4 scFv-S29D, K62DおよびS29K共培養[16]を行った。 In a similar manner, ROBO4FscFv-F28S and S66F co-culture using a mutant uteroglobin (S66F) mammalian expression plasmid and ROBO4 scFv-mutant uteroglobin (F28S) (ROBO4 scFv-F28S) mammalian expression plasmid [11], And ROBO4 scFv-S29D, K62D and S29K co-cultures using mutant uteroglobin (S29K) mammalian expression plasmid and ROBO4 scFv-mutant uteroglobin (S29D, K62D) (ROBO4 scFv-S29D, K62D) mammalian expression plasmid [16 ] Went.
2-2:精製
 1-1にて発現させて得られた[1]、[2]、[4]、[5]、[6] 、[8]、[9]、[10]、[11]、[13]、[14]、[15]および[16]のそれぞれの発現産物の精製はすべて以下のように行った。
 培養液を遠心分離して上清を回収後、0.45umのフィルターでろ過した。ろ過した試料をアフィニティークロマトグラフィーにより精製した。カラムはHisTrap Excel 5mL(GE healthcare)を用い、カラムの平衡化、洗浄は50mM Hepes-NaOH pH7.5, 500mM NaClで行い、50mM Hepes-NaOH pH7.5, 500mM NaCl, 500mM イミダゾールで溶出した。溶出画分を回収し、50mM Hepes-NaOH pH7.5、4℃で一晩透析した。透析内液を回収し、陰イオン交換クロマトグラフィーを行った。カラムはHiTrapQ HP 5mL(GE healthcare)を用い、50mM Hepes-NaOH pH7.5, 0-1M NaClの濃度勾配で溶出した。溶出画分を回収し、ゲルろ過クロマトグラフィーを行った。カラムはHiLoad16/600 Superdex75(GE healthcare)、移動相は50mM Hepes-NaOH pH7.5, 300mM NaClを用いた。溶出画分を回収し、Amicon Ultra15で濃縮した。
2-2: Purification [1], [2], [4], [5], [6], [8], [9], [10], [11] obtained by expression in 1-1 ], [13], [14], [15] and [16] were all purified as follows.
The culture solution was centrifuged and the supernatant was collected, and then filtered through a 0.45 um filter. The filtered sample was purified by affinity chromatography. The column was HisTrap Excel 5 mL (GE healthcare), and the column was equilibrated and washed with 50 mM Hepes-NaOH pH 7.5, 500 mM NaCl, and eluted with 50 mM Hepes-NaOH pH 7.5, 500 mM NaCl, 500 mM imidazole. The eluted fractions were collected and dialyzed overnight at 50 mM Hepes-NaOH pH 7.5, 4 ° C. The dialyzed solution was collected and subjected to anion exchange chromatography. The column was 5 mL of HiTrapQ HP (GE healthcare) and eluted with a concentration gradient of 50 mM Hepes-NaOH pH7.5, 0-1M NaCl. The eluted fraction was collected and subjected to gel filtration chromatography. The column used was HiLoad16 / 600 Superdex75 (GE healthcare), and the mobile phase was 50 mM Hepes-NaOH pH 7.5, 300 mM NaCl. The eluted fraction was collected and concentrated with Amicon Ultra15.
 なお、ROBO4 scFv発現産物も調製した[3]。
 また、図4においてレーン[7]で示される電気泳動前の試料調製は次のように行った。ROBO4 scFv-変異型ウテログロビン(D33K)[4]発現産物および変異型ウテログロビン(K51E)発現産物[2]をモル比で1:1になるように混合し、氷上で1時間静置した。
 同様の方法によって、scFv-F28SとS66Fをモル比で1:1に混合したもの[12]およびscFv-S29D,K62DとS29Kを混合したもの[17]を調製した。
ROBO4 scFv expression product was also prepared [3].
Moreover, the sample preparation before electrophoresis shown by lane [7] in FIG. 4 was performed as follows. ROBO4 scFv-mutant uteroglobin (D33K) [4] expression product and mutant uteroglobin (K51E) expression product [2] were mixed at a molar ratio of 1: 1, and allowed to stand on ice for 1 hour.
By the same method, scFv-F28S and S66F mixed at a molar ratio of 1: 1 [12] and scFv-S29D, K62D and S29K mixed [17] were prepared.
実施例3 電気泳動
 実施例2にて得られた発現産物[1]-[6]、[8]-[11]、[13]-[16]の各溶液を0.2mg/mLとなるように50mM Hepes-NaOH pH7.5, 300mM NaClで希釈した。
 [1]-[17]について、還元条件の電気泳動用試料は次のように調製した。
 希釈したタンパク質溶液10μLに2-メルカプトエタノール0.5μLと2×Laemmli 試料緩衝液(BIO-RAD)9.5μLを加え、95℃で5分間加熱した。非還元条件の試料は希釈したタンパク質溶液10μLに2×Laemmli 試料緩衝液(BIO-RAD)10μLを加え、95℃で5分間加熱した。還元条件、非還元条件の各試料を10-20% グラジエントゲル(アトー)に1レーン当たり20μL適用し、25mM Tris, 192mM グリシン, 3.5mM SDS溶液中、25mAで60分間通電し、電気泳動を行った。泳動後のゲルを25%エタノール, 10%アセトニトリル, 0.1%クマシーブリリアントブルー250染色液で染色し、お湯で脱色した。
Example 3 Electrophoresis Each solution of expression products [1]-[6], [8]-[11], [13]-[16] obtained in Example 2 was adjusted to 0.2 mg / mL. Dilute with 50 mM Hepes-NaOH pH 7.5, 300 mM NaCl.
For [1]-[17], a sample for electrophoresis under reducing conditions was prepared as follows.
To 10 μL of the diluted protein solution, 0.5 μL of 2-mercaptoethanol and 9.5 μL of 2 × Laemmli sample buffer (BIO-RAD) were added and heated at 95 ° C. for 5 minutes. For the sample under non-reducing conditions, 10 μL of 2 × Laemmli sample buffer (BIO-RAD) was added to 10 μL of the diluted protein solution and heated at 95 ° C. for 5 minutes. Apply each sample under reducing and non-reducing conditions to a 10-20% gradient gel (ato), 20 μL per lane, and conduct electrophoresis at 25 mA in 25 mM Tris, 192 mM glycine, 3.5 mM SDS solution for 60 minutes. It was. The gel after electrophoresis was stained with 25% ethanol, 10% acetonitrile, 0.1% Coomassie brilliant blue 250 staining solution, and decolorized with hot water.
 得られた結果を図4、図5、図6に示す。
 図4において、野生型ウテログロビンおよび変異型ウテログロビン(K51E)のモノマーの分子量は9.6kDa、ROBO4 scFvは25kDa、ROBO4 scFv-変異型ウテログロビン(D33K)(ROBO4 scFv-D33K)は36kDaである。構造解析の結果から、野生型ウテログロビンは分子間ジスルフィド結合を有し、ホモ二量体を形成していることが分かっている。還元条件下での電気泳動の結果から、[1]、[2]、[3]、[4]はモノマーの分子量にバンドが観察された。これは還元条件下ではジスルフィド結合が切断されるためである。[5]と[6]、[7]においてもK51EモノマーとROBO4 scFv-D33Kモノマーの分子量にバンドが存在していた。一方、非還元条件下ではジスルフィド結合は保持されるため、ウテログロビンはホモ二量体を形成しており、[1]と[2]では還元条件下と比較して高分子量側にバンドが観察された。ホモ二量体の分子量は19.2kDaであるので、バンドの位置は20kDa付近に確認できるはずだが、それよりも低分子量側に観察された。これは非還元条件下ではジスルフィド結合が保持されているため、純粋に分子量だけで分離できず、本来の分子量の位置よりも低分子量側にずれたと考えられる。
The obtained results are shown in FIG. 4, FIG. 5, and FIG.
In FIG. 4, the molecular weights of the monomers of wild type uteroglobin and mutant uteroglobin (K51E) are 9.6 kDa, ROBO4 scFv is 25 kDa, and ROBO4 scFv-mutant uteroglobin (D33K) (ROBO4 scFv-D33K) is 36 kDa. From the results of structural analysis, it is known that wild-type uteroglobin has an intermolecular disulfide bond and forms a homodimer. From the results of electrophoresis under reducing conditions, bands were observed for [1], [2], [3] and [4] in the molecular weight of the monomer. This is because the disulfide bond is cleaved under reducing conditions. In [5], [6], and [7], bands existed in the molecular weights of the K51E monomer and the ROBO4 scFv-D33K monomer. On the other hand, since disulfide bonds are retained under non-reducing conditions, uteroglobin forms a homodimer, and in [1] and [2], a band is observed on the higher molecular weight side compared to reducing conditions. It was. Since the molecular weight of the homodimer is 19.2 kDa, the band position should be confirmed around 20 kDa, but it was observed on the lower molecular weight side. Since the disulfide bond is retained under non-reducing conditions, it cannot be separated purely by molecular weight, and is considered to have shifted to a lower molecular weight side than the original molecular weight position.
 非還元条件下の[4]においては、ホモ二量体である72kDaに主バンド(メインのバンド)が存在し、モノマーである36kDaにマイナーなバンドが存在していた。電気泳動では染色の度合いにより量比が分かるため、ROBO4 scFv-D33Kはホモ二量体が主に存在し、少量のモノマーが混在していることが分かった。 In [4] under non-reducing conditions, a main band (main band) was present at 72 kDa, a homodimer, and a minor band was present at 36 kDa, a monomer. In electrophoresis, the amount ratio can be determined depending on the degree of staining, so it was found that ROBO4 scFv-D33K mainly contains homodimers and contains a small amount of monomers.
 非還元条件下において、[5]および[6]は、17、36、45、72kDa付近にバンドが存在し、ROBO4 scFv-D33KとK51Eを混合したものは17、36、72kD付近にバンドが存在していた。これまでの結果から、17kDaはK51Eホモ二量体、36kDaはROBO4 scFv-D33Kモノマー、72kDaはROBO4 scFv-D33Kホモ二量体である。ROBO4 scFv-D33Kモノマー36kDaとK51Eモノマー9.6kDaがヘテロ二量体を形成した場合、45kDaとなることから、45kDa付近のバンドはROBO4 scFv-D33K_K51Eヘテロ二量体であると考えられる。 Under non-reducing conditions, [5] and [6] have bands around 17, 36, 45 and 72 kDa, and ROBO4 scFv-D33K and K51E mixed have bands around 17, 36 and 72 kD Was. Based on the results thus far, 17 kDa is a K51E homodimer, 36 kDa is a ROBO4 scFv-D33K monomer, and 72 kDa is a ROBO4 scFv-D33K homodimer. When the ROBO4 scFv-D33K monomer 36 kDa and the K51E monomer 9.6 kDa form a heterodimer, it becomes 45 kDa, so the band around 45 kDa is considered to be a ROBO4 scFv-D33K_K51E heterodimer.
 図5において、野生型ウテログロビンおよび変異型ウテログロビン(S66F)のモノマーの分子量は9.6kDa、ROBO4 scFvは25kDa、ROBO4 scFv-変異型ウテログロビン(F28S)(ROBO4 scFv-F28S)は36kDaである。構造解析の結果から、野生型ウテログロビンは分子間ジスルフィド結合を有し、ホモ二量体を形成していることが分かっている。還元条件下での電気泳動の結果から、[1]、[3]、[8]、[9]はモノマーの分子量にバンドが観察された。これは還元条件下ではジスルフィド結合が切断されるためである。また[10]と[11]、[12]においてもバンドは薄いがS66FモノマーとROBO4 scFv-F28Sモノマーの分子量にバンドが存在していた。一方、非還元条件下ではジスルフィド結合は保持されるため、ウテログロビンはホモ二量体を形成しており、[8]と[12]では還元条件下と比較して高分子量側にバンドが観察された。 In FIG. 5, the molecular weights of the monomers of wild type uteroglobin and mutant uteroglobin (S66F) are 9.6 kDa, ROBO4 scFv is 25 kDa, and ROBO4 scFv-mutant uteroglobin (F28S) (ROBO4 scFv-F28S) is 36 kDa. From the results of structural analysis, it is known that wild-type uteroglobin has an intermolecular disulfide bond and forms a homodimer. From the results of electrophoresis under reducing conditions, [1], [3], [8], and [9] bands were observed in the molecular weight of the monomer. This is because the disulfide bond is cleaved under reducing conditions. In [10], [11], and [12], the bands were thin, but there were bands in the molecular weights of S66F monomer and ROBO4 scFv-F28S monomer. On the other hand, since disulfide bonds are retained under non-reducing conditions, uteroglobin forms a homodimer, and in [8] and [12], a band is observed on the higher molecular weight side compared with reducing conditions. It was.
 非還元条件下の[9]においては、モノマーである36kDaにメインバンドが存在し、ホモ二量体である72kDaにマイナーバンド、さらに夾雑物と考えられる80kDa付近にもマイナーバンドが見られた。 In [9] under non-reducing conditions, a main band was present at 36 kDa as a monomer, a minor band was observed at 72 kDa as a homodimer, and a minor band was also observed near 80 kDa, which is considered to be a contaminant.
 非還元条件下において、同様に[10]、[11]]にヘテロ二量体と考えられるバンドが見られた。 Similarly, bands considered to be heterodimers were observed in [10] and [11] under non-reducing conditions.
 図6において、野生型ウテログロビンおよび変異型ウテログロビン(S29K)のモノマーの分子量は9.6kDa、ROBO4 scFvは25kDa、ROBO4 scFv-変異型ウテログロビン(S29D, K62D)(ROBO4 scFv-S29D, K62D)は36kDaである。構造解析の結果から、野生型ウテログロビンは分子間ジスルフィド結合を有し、ホモ二量体を形成していることが分かっている。還元条件下での電気泳動の結果から、[1]、[3]、[13]、[14]はモノマーの分子量にバンドが観察された。これは還元条件下ではジスルフィド結合が切断されるためである。また[15]と[16]、[17]においてもS29KモノマーとROBO4 scFv-S29D, K62Dモノマーの分子量にバンドが存在していた。 In FIG. 6, the molecular weights of the wild-type and mutant uteroglobin (S29K) monomers are 9.6 kDa, ROBO4 scFv is 25 kDa, ROBO4 scFv-mutant uteroglobin (S29D, K62D) (ROBO4 scFv-S29D, K62D) is 36 kDa. . From the results of structural analysis, it is known that wild-type uteroglobin has an intermolecular disulfide bond and forms a homodimer. From the results of electrophoresis under reducing conditions, [1], [3], [13], and [14] bands were observed in the molecular weight of the monomer. This is because the disulfide bond is cleaved under reducing conditions. Also in [15], [16], and [17], bands existed in the molecular weights of S29K monomer and ROBO4BOscFv-S29D, DK62D monomer.
 非還元条件下の[14]においては、モノマーである36kDaにメインバンドが存在し、ホモ二量体である72kDaにマイナーバンド、さらに夾雑物と考えられる80kDa付近にもマイナーバンドが見られた。 In [14] under non-reducing conditions, a main band was present at 36 kDa as a monomer, a minor band was observed at 72 kDa as a homodimer, and a minor band was also observed near 80 kDa, which is considered to be a contaminant.
 非還元条件下において、同様に[15]、[16]]に、ヘテロ二量体と考えられるバンドが見られた。 Under non-reducing conditions, bands considered to be heterodimers were also observed in [15] and [16].
考察
 電気泳動の結果から、scFv-D33K_K51Eダブルトランスフェクションと共培養でscFv-D33K_K51Eのヘテロ二量体を形成していた。また、ヘテロ二量体の45kDaのバンドは結果[7]および[12]では存在していなかった。このため、scFv-D33KとK51Eを単に混ぜ合わせただけでは、ヘテロ二量体は形成しないことが判明した。
Discussion From the results of electrophoresis, the scFv-D33K_K51E double transfection and co-culture formed a heterodimer of scFv-D33K_K51E. In addition, a 45 kDa band of heterodimer was not present in the results [7] and [12]. For this reason, it was found that a heterodimer was not formed by simply mixing scFv-D33K and K51E.
 本発明の二重特異性ポリペプチドは、ウテログロビンを構造基盤とするため、一般的な二重特異性抗体と比較して低分子量である。そのため、高い組織浸透性が期待でき、Fc領域が無いため期待しない効果を抑制でき、よって、安全性が高い医薬品を創製するツールとなると大きく期待される。 Since the bispecific polypeptide of the present invention is based on uteroglobin, it has a lower molecular weight than a general bispecific antibody. Therefore, high tissue permeability can be expected, and since there is no Fc region, an unexpected effect can be suppressed. Therefore, it is highly expected that the tool will be a tool for creating a highly safe pharmaceutical product.

Claims (41)

  1.  ヘテロ二量体ウテログロビンを構造基盤とする二重特異性ポリペプチド。 Bispecific polypeptide based on the structure of heterodimer uteroglobin.
  2.  ヘテロ二量体ウテログロビンはA鎖およびB鎖を含み、ここに、A鎖およびB鎖は、互いに異なり、野生型ウテログロビンモノマーにおいて1個または数個のアミノ酸残基の変異を有し、そしてその変異に由来する会合によってヘテロ二量体を形成させる、請求項1記載の二重特異性ポリペプチド。 The heterodimeric uteroglobin comprises an A chain and a B chain, wherein the A chain and the B chain are different from each other and have one or several amino acid residue mutations in the wild type uteroglobin monomer, and The bispecific polypeptide according to claim 1, wherein heterodimer is formed by association derived from mutation.
  3.  A鎖およびB鎖が有する変異がアミノ酸残基の対置換であり、その対置換により会合が生じ、それによりヘテロ二量体ウテログロビンの形成が促進し、かつホモ二量体ウテログロビンの形成が阻害される、請求項1または2記載の二重特異性ポリペプチド。 The mutation of the A chain and the B chain is a pair substitution of amino acid residues, and the pair substitution results in association, thereby promoting the formation of heterodimeric uteroglobin and inhibiting the formation of homodimeric uteroglobin. The bispecific polypeptide according to claim 1 or 2.
  4.  アミノ酸残基の対置換が、配列番号1で表されるアミノ酸配列における5番目のセリン(S)および68番目のロイシン(L)、27番目のロイシン(L)および68番目のロイシン、28番目のフェニルアラニン(F)および66番目のセリン(S)、33番目のアスパラギン酸(D)および51番目のリジン(K)、ならびに44番目のロイシン(L)および47番目のスレオニン(T)での一対の置換である、請求項3記載の二重特異性ポリペプチド。 The paired substitution of amino acid residues is the 5th serine (S) and 68th leucine (L), 27th leucine (L) and 68th leucine, 28th in the amino acid sequence represented by SEQ ID NO: 1. Pairs of phenylalanine (F) and 66th serine (S), 33rd aspartic acid (D) and 51st lysine (K), and 44th leucine (L) and 47th threonine (T) 4. The bispecific polypeptide according to claim 3, which is a substitution.
  5.  アミノ酸残基の対置換が、A鎖における、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)およびB鎖における51番目のリジン(K)での一対の置換である、請求項4記載の二重特異性ポリペプチド。 The pair substitution of amino acid residues is a pair of substitutions in the A chain with the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 and the 51st lysine (K) in the B chain. Item 5. The bispecific polypeptide according to Item 4.
  6.  対置換が、A鎖において、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)を、リジン(K)、アルギニン(R)またはヒスチジン(H)に置換し、かつB鎖において51番目のリジン(K)を、グルタミン酸(E)またはアスパラギン酸(D)に置換する、請求項4記載の二重特異性ポリペプチド。 Pair substitution replaces the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 in the A chain with lysine (K), arginine (R) or histidine (H), and in the B chain. The bispecific polypeptide according to claim 4, wherein the 51st lysine (K) is substituted with glutamic acid (E) or aspartic acid (D).
  7.  対置換が、A鎖において、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)をリジン(K)に置換し、かつB鎖において51番目のリジン(K)をグルタミン酸(E)に置換するものである、請求項6記載の二重特異性ポリペプチド。 Pair substitution replaces the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 with lysine (K) in the A chain, and the 51st lysine (K) in the B chain with glutamic acid (E The bispecific polypeptide according to claim 6, which substitutes for
  8.  ウテログロビンA鎖およびB鎖がジスルフィド結合している、請求項1から7のいずれか記載の二重特異性ポリペプチド。 The bispecific polypeptide according to any one of claims 1 to 7, wherein the uteroglobin A chain and B chain are disulfide bonded.
  9.  ウテログロビンA鎖およびB鎖がともに、配列番号1で表されるアミノ酸配列の44番目のロイシン(L)、34番目のメチオニン(M)および59番目のロイシン(L)の中から選ばれる少なくとも1つがシステイン(C)に置換する変異を有する、請求項1から8のいずれか記載の二重特異性ポリペプチド。 Both the uteroglobin A chain and the B chain are at least one selected from the 44th leucine (L), 34th methionine (M) and 59th leucine (L) of the amino acid sequence represented by SEQ ID NO: 1. The bispecific polypeptide according to any one of claims 1 to 8, which has a mutation substituting for cysteine (C).
  10.  ウテログロビンがヒトウテログロビンである、請求項1から9のいずれか記載の二重特異性ポリペプチド。 The bispecific polypeptide according to any one of claims 1 to 9, wherein the uteroglobin is human uteroglobin.
  11.  ヘテロ二量体ウテログロビンA鎖が第1の結合領域と連結している第1のポリペプチド、およびヘテロ二量体ウテログロビンB鎖が第1の結合領域と異なる第2の結合領域と連結している第2のポリペプチドを含む、請求項1から10のいずれか記載の二重特異性ポリペプチド。 A first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain is linked to a second binding region that is different from the first binding region The bispecific polypeptide according to any of claims 1 to 10, comprising a second polypeptide.
  12.  受容体もしくはその断片、癌抗原、MHC抗原、分化抗原からなる群から選択される1つまたはそれ以上の標的分子に結合する、請求項1から11のいずれか記載の二重特異性ポリペプチド。 The bispecific polypeptide according to any one of claims 1 to 11, which binds to one or more target molecules selected from the group consisting of a receptor or a fragment thereof, a cancer antigen, an MHC antigen, and a differentiation antigen.
  13.  標的分子が癌抗原の標的分子に結合する、請求項1から12のいずれか記載の二重特異性ポリペプチド。 The bispecific polypeptide according to any one of claims 1 to 12, wherein the target molecule binds to a target molecule of a cancer antigen.
  14.  第1または第2のポリペプチドのいずれかが癌抗原に結合する、請求項1から13のいずれか記載の二重特異性ポリペプチド。 The bispecific polypeptide according to any one of claims 1 to 13, wherein either the first polypeptide or the second polypeptide binds to a cancer antigen.
  15.  第1のポリペプチドおよび第2のポリペプチドにおいて、A鎖と第1の結合領域との連結およびB鎖と第2の結合領域との連結が、該領域の特異性を破壊しない態様である、請求項11記載の二重特異性ポリペプチド。 In the first polypeptide and the second polypeptide, the connection between the A chain and the first binding region and the connection between the B chain and the second binding region are such that the specificity of the region is not destroyed. 12. A bispecific polypeptide according to claim 11.
  16.  A鎖と第1の結合領域との連結およびB鎖と第2の結合領域との連結がリンカーを介する、請求項15記載の二重特異性ポリペプチド。 The bispecific polypeptide according to claim 15, wherein the linkage between the A chain and the first binding region and the linkage between the B chain and the second binding region are via a linker.
  17.  リンカーが配列番号2で示されるアミノ酸配列を有する、請求項16記載の二重特異性ポリペプチド。 The bispecific polypeptide according to claim 16, wherein the linker has an amino acid sequence represented by SEQ ID NO: 2.
  18.  第1の結合領域および第2の結合領域がそれぞれ一価の特異性を有する、請求項1から17のいずれか記載の二重特異性ポリペプチド。 The bispecific polypeptide according to any one of claims 1 to 17, wherein each of the first binding region and the second binding region has monovalent specificity.
  19.  第1の結合領域および第2の結合領域の一方または両者が、少なくとも1つのさらなる結合領域を該領域の特異性を破壊しない態様で連結している、請求項1から18のいずれか記載の二重特異性ポリペプチド。 19. The two of claims 1 to 18, wherein one or both of the first binding region and the second binding region links at least one additional binding region in a manner that does not destroy the specificity of the region. Bispecific polypeptide.
  20.  請求項1から19のいずれか記載の二重特異性ポリペプチドおよび薬物を含む複合体。 A complex comprising the bispecific polypeptide according to any one of claims 1 to 19 and a drug.
  21.  請求項1から19のいずれか記載の二重特異性ポリペプチドを含有する医薬組成物。 A pharmaceutical composition comprising the bispecific polypeptide according to any one of claims 1 to 19.
  22.  請求項20記載の複合体を含有する医薬組成物。 A pharmaceutical composition comprising the complex according to claim 20.
  23.  ヘテロ二量体ウテログロビンA鎖が第1の結合領域と連結している第1のポリペプチド、およびヘテロ二量体ウテログロビンB鎖が第1の結合領域と異なる第2の結合領域と連結している第2のポリペプチドを含む、請求項1から14のいずれか記載の二重特異性ポリペプチドを製造する方法であって、
     a)第1のポリペプチドをコードする核酸を含む第1のベクターを用意し、
     b)第2のポリペプチドをコードする核酸を含む第2のベクターを用意し、
     c)第1のベクターおよび第2のベクターを細胞に同時トランスフェクションし、得られたトランスフェクト体を培養し、そして
     d)第1および第2のポリペプチドを含むヘテロ二量体を回収する、
    該二重特異性ポリペプチドを製造する方法。
    A first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain is linked to a second binding region that is different from the first binding region A method for producing a bispecific polypeptide according to any of claims 1 to 14, comprising a second polypeptide, comprising:
    a) providing a first vector comprising a nucleic acid encoding the first polypeptide;
    b) providing a second vector comprising a nucleic acid encoding a second polypeptide;
    c) co-transfecting the cells with the first and second vectors, culturing the resulting transfectants, and d) recovering the heterodimer comprising the first and second polypeptides,
    A method for producing the bispecific polypeptide.
  24.  ヘテロ二量体ウテログロビンA鎖が第1の結合領域と連結している第1のポリペプチド、およびヘテロ二量体ウテログロビンB鎖が第1の結合領域と異なる第2の結合領域と連結している第2のポリペプチドを含む、請求項1から14のいずれか記載の二重特異性ポリペプチドを製造する方法であって、
     a)第1のポリペプチドを発現する第1の細胞を用意し、
     b)第2のポリペプチドを発現する第2の細胞を用意し、
     c)第1の細胞および第2の細胞を共培養し、そして
     d)第1および第2のポリペプチドを含むヘテロ二量体を回収する、
    該二重特異性ポリペプチドを製造する方法。
    A first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain is linked to a second binding region that is different from the first binding region A method for producing a bispecific polypeptide according to any of claims 1 to 14, comprising a second polypeptide, comprising:
    a) providing a first cell expressing a first polypeptide;
    b) providing a second cell expressing the second polypeptide;
    c) co-culturing the first and second cells; and d) recovering the heterodimer comprising the first and second polypeptides.
    A method for producing the bispecific polypeptide.
  25.  ヘテロ二量体ウテログロビンA鎖が第1の結合領域と連結している第1のポリペプチド、およびヘテロ二量体ウテログロビンB鎖が第1の結合領域と異なる第2の結合領域と連結している第2のポリペプチドを含む、請求項1から14のいずれか記載の二重特異性ポリペプチドにおいて、第1のポリペプチドまたは第2のポリペプチドをコードする核酸。 A first polypeptide in which a heterodimeric uteroglobin A chain is linked to a first binding region, and a heterodimeric uteroglobin B chain is linked to a second binding region that is different from the first binding region The bispecific polypeptide according to any of claims 1 to 14, comprising a second polypeptide, the nucleic acid encoding the first polypeptide or the second polypeptide.
  26.  請求項25記載の核酸を含む、ベクター。 A vector comprising the nucleic acid according to claim 25.
  27.  請求項26記載のベクターを含む、細胞。 A cell comprising the vector according to claim 26.
  28.  第1のポリペプチドおよび第2のポリペプチドをコードする核酸を含む請求項25記載のベクターをともに含む、請求項26記載の細胞。 27. The cell of claim 26, comprising both the vector of claim 25 comprising a nucleic acid encoding the first polypeptide and the second polypeptide.
  29.  細胞が大腸菌である、請求項27または28記載の細胞。 The cell according to claim 27 or 28, wherein the cell is Escherichia coli.
  30.  第1のポリペプチドをコードする核酸を含むベクターを含む細胞、および第2のポリペプチドをコードする核酸を含むベクターを含む細胞を含有する共培養物。 A co-culture containing a cell containing a vector containing a nucleic acid encoding a first polypeptide and a cell containing a vector containing a nucleic acid encoding a second polypeptide.
  31.  細胞が大腸菌である、請求項30記載の共培養物。 The co-culture according to claim 30, wherein the cells are Escherichia coli.
  32.  A鎖およびB鎖を含み、A鎖およびB鎖は、互いに異なり、野生型ウテログロビンモノマーにおいて1個または数個のアミノ酸残基の変異を有し、そしてその変異に由来する会合によってヘテロ二量体を形成する、ヘテロ二量体ウテログロビン。 A and B chains, which are different from each other, have one or several amino acid residue mutations in the wild-type uteroglobin monomer, and are heterodimeric due to associations derived from that mutation Heterodimeric uteroglobin that forms the body.
  33.  A鎖およびB鎖が有する変異がアミノ酸残基の対置換であり、その対置換により会合が生じ、それによりヘテロ二量体ウテログロビンの形成が促進し、かつホモ二量体ウテログロビンの形成が阻害される、請求項32記載のヘテロ二量体ウテログロビン。 The mutation of the A chain and the B chain is a pair substitution of amino acid residues, and the pair substitution results in association, thereby promoting the formation of heterodimeric uteroglobin and inhibiting the formation of homodimeric uteroglobin. 33. The heterodimeric uteroglobin of claim 32.
  34.  対置換に由来する親和性および反発性の静電的相互作用により会合が生じ、それによりヘテロ二量体ウテログロビンの形成が促進し、かつホモ二量体ウテログロビンの形成が阻害される、請求項33記載のヘテロ二量体ウテログロビン。 34. Affinity and repulsive electrostatic interactions from pair substitution result in association, thereby promoting the formation of heterodimeric uteroglobin and inhibiting the formation of homodimeric uteroglobin. The described heterodimeric uteroglobin.
  35.  アミノ酸残基の対置換が、配列番号1で表されるアミノ酸配列における5番目のセリン(S)および68番目のロイシン(L)、27番目のロイシン(L)および68番目のロイシン、28番目のフェニルアラニン(F)および66番目のセリン(S)、33番目のアスパラギン酸(D)および51番目のリジン(K)、ならびに44番目のロイシン(L)および47番目のスレオニン(T)での一対の置換である、請求項34記載のヘテロ二量体ウテログロビン。 The paired substitution of amino acid residues is the 5th serine (S) and 68th leucine (L), 27th leucine (L) and 68th leucine, 28th in the amino acid sequence represented by SEQ ID NO: 1. Pairs of phenylalanine (F) and 66th serine (S), 33rd aspartic acid (D) and 51st lysine (K), and 44th leucine (L) and 47th threonine (T) 35. The heterodimeric uteroglobin of claim 34 which is a substitution.
  36.  アミノ酸残基の対置換が、A鎖における、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)およびB鎖における51番目のリジン(K)での一対の置換である、請求項35記載のヘテロ二量体ウテログロビン。 The pair substitution of amino acid residues is a pair of substitutions in the A chain with the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 and the 51st lysine (K) in the B chain. Item 36. The heterodimeric uteroglobin according to Item 35.
  37.  対置換が、A鎖において、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)を、リジン(K)、アルギニン(R)またはヒスチジン(H)に置換し、かつB鎖において51番目のリジン(K)を、グルタミン酸(E)またはアスパラギン酸(D)に置換するものである、請求項36記載のヘテロ二量体ウテログロビン。 Pair substitution replaces the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 in the A chain with lysine (K), arginine (R) or histidine (H), and in the B chain. The heterodimeric uteroglobin according to claim 36, wherein the 51st lysine (K) is substituted with glutamic acid (E) or aspartic acid (D).
  38.  対置換が、A鎖において、配列番号1で表されるアミノ酸配列の33番目のアスパラギン酸(D)をリジン(K)に置換し、かつB鎖において51番目のリジン(K)をグルタミン酸(E)に置換するものである、請求項35記載のヘテロ二量体ウテログロビン。 Pair substitution replaces the 33rd aspartic acid (D) of the amino acid sequence represented by SEQ ID NO: 1 with lysine (K) in the A chain, and the 51st lysine (K) in the B chain with glutamic acid (E 36) The heterodimeric uteroglobin of claim 35, wherein
  39.  ウテログロビンA鎖およびB鎖がジスルフィド結合している、請求項32から38のいずれか記載のヘテロ二量体ウテログロビン。 The heterodimeric uteroglobin according to any one of claims 32 to 38, wherein the uteroglobin A chain and the B chain are disulfide bonded.
  40.  ウテログロビンA鎖およびB鎖がともに、配列番号1で表されるアミノ酸配列の44番目のロイシン(L)、34番目のメチオニン(M)および59番目のロイシン(L)の中から選ばれる少なくとも1つがシステイン(C)に置換する変異を有する、請求項32から39のいずれか記載のヘテロ二量体ウテログロビン。 Both the uteroglobin A chain and the B chain are at least one selected from the 44th leucine (L), 34th methionine (M) and 59th leucine (L) of the amino acid sequence represented by SEQ ID NO: 1. 40. The heterodimeric uteroglobin according to any of claims 32 to 39, having a mutation that replaces cysteine (C).
  41.  ヒトウテログロビンである、請求項32から40のいずれか記載のヘテロ二量体ウテログロビン。 The heterodimeric uteroglobin according to any one of claims 32 to 40, which is human uteroglobin.
PCT/JP2019/009745 2018-03-12 2019-03-11 Bispecific polypeptide structurally based on uteroglobin WO2019176866A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020506514A JP7398677B2 (en) 2018-03-12 2019-03-11 Bispecific polypeptide based on uteroglobin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-044364 2018-03-12
JP2018044364 2018-03-12

Publications (1)

Publication Number Publication Date
WO2019176866A1 true WO2019176866A1 (en) 2019-09-19

Family

ID=67907143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009745 WO2019176866A1 (en) 2018-03-12 2019-03-11 Bispecific polypeptide structurally based on uteroglobin

Country Status (2)

Country Link
JP (1) JP7398677B2 (en)
WO (1) WO2019176866A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521316A (en) * 1998-07-21 2002-07-16 クララジェン、インコーポレイテッド Use of recombinant human uteroglobin in the treatment of inflammatory and fibrotic conditions
US20130189735A1 (en) * 2009-01-19 2013-07-25 Luciano Zardi Process for engineering polyvalent, polyspecific fusion proteins using uteroglobin as skeleton and so obtained products.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521316A (en) * 1998-07-21 2002-07-16 クララジェン、インコーポレイテッド Use of recombinant human uteroglobin in the treatment of inflammatory and fibrotic conditions
US20130189735A1 (en) * 2009-01-19 2013-07-25 Luciano Zardi Process for engineering polyvalent, polyspecific fusion proteins using uteroglobin as skeleton and so obtained products.

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MUKHERJEE, A. B. ET AL.: "Uteroglobin: a novel cytokine?, CMLS", CELL . MOL. LIFE SCI., vol. 55, 1999, pages 771 - 787, XP000961126, DOI: 10.1007/s000180050331 *
SPIESS, C. ET AL.: "Bispecific antibodies with natural architecture produced by co-culture of bacterial expressing two distinct half-antibodies", NATURE BIOTECHNOLOGY, vol. 31, no. 8, 2013, pages 753 - 758, XP055127867, DOI: 10.1038/nbt.2621 *
VENTURA, E. ET AL.: "Use of the Uteroglobin Platform for the Expression of a Bivalent Antibody against Oncofetal Fibronectin in Escherichia coli", PLOS ONE, vol. 8, no. 12, 2013, pages 1 - 10, XP055636126 *
vol. 07, no. 10, 2 February 2018 (2018-02-02), pages 7, Retrieved from the Internet <URL:https://www.mhlw.go.jp/stf/shingi2/0000172914_00001.html> *

Also Published As

Publication number Publication date
JPWO2019176866A1 (en) 2021-02-25
JP7398677B2 (en) 2023-12-15

Similar Documents

Publication Publication Date Title
AU2021201003B2 (en) Trispecific binding proteins and methods of use
JP6449359B2 (en) Pseudomonas exotoxin A having low immunogenic T cell and / or B cell epitopes
KR102609197B1 (en) Interleukin 15 protein complex and use thereof
US11845806B2 (en) Proteinaceous heterodimer and use thereof
JP6484634B2 (en) IL-15 heterodimeric protein and use thereof
RU2687143C2 (en) Modified exotoxin a pseudomonades
US11866481B2 (en) TGF-β-receptor ectodomain fusion molecules and uses thereof
JP2022536898A (en) NOVEL IL-15 PRODRUGS AND METHODS OF USE THEREOF
CN114616244A (en) Antigen binding proteins that specifically bind MAGE-a
WO2017107914A1 (en) Drug design method, obtained drug and application thereof
JP2022538139A (en) Immune complex comprising mutant interleukin-2 and anti-CD8 antibody
KR20190094382A (en) High affinity TCR for NY-ESO
CN117042809A (en) anti-HER 2 antibody-immune agonist conjugate and application thereof
JP2023528341A (en) Combination therapy to treat cancers with hypomethylating agents
US20230132241A1 (en) Antigen binding proteins specifically binding prame
US20210246217A1 (en) Trimeric polypeptide complexes and uses thereof
TWI825459B (en) A SIRPα-Fc fusion protein
KR20210108941A (en) High Affinity T Cell Receptor for AFP Antigen Recognition
JP7398677B2 (en) Bispecific polypeptide based on uteroglobin
WO2019055955A1 (en) Immunotoxins with albumin binding domain
CN115304680A (en) Preparation and application of bispecific cell adaptor molecule constructed based on Pep42
CN101914161A (en) Fusion protein HGF alpha-Fc for restraining tumor growth and application thereof
KR102579687B1 (en) A novel pharmaceutical composition for treating cancer
TW202035440A (en) Novel rationally designed protein compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506514

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767474

Country of ref document: EP

Kind code of ref document: A1