WO2019176825A1 - Method for evaluating contamination state of separation membrane - Google Patents
Method for evaluating contamination state of separation membrane Download PDFInfo
- Publication number
- WO2019176825A1 WO2019176825A1 PCT/JP2019/009575 JP2019009575W WO2019176825A1 WO 2019176825 A1 WO2019176825 A1 WO 2019176825A1 JP 2019009575 W JP2019009575 W JP 2019009575W WO 2019176825 A1 WO2019176825 A1 WO 2019176825A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separation membrane
- detection method
- membrane
- evaluating
- contamination
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 96
- 238000000926 separation method Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000011109 contamination Methods 0.000 title claims abstract description 26
- 239000000126 substance Substances 0.000 claims abstract description 41
- 244000005700 microbiome Species 0.000 claims abstract description 34
- 238000001514 detection method Methods 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000011156 evaluation Methods 0.000 claims abstract description 24
- 239000005416 organic matter Substances 0.000 claims description 23
- 238000004020 luminiscence type Methods 0.000 claims description 9
- 150000001720 carbohydrates Chemical class 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 8
- 102000053602 DNA Human genes 0.000 claims description 4
- 108020004414 DNA Proteins 0.000 claims description 4
- 239000000356 contaminant Substances 0.000 claims description 4
- 238000002331 protein detection Methods 0.000 claims description 4
- 229920002477 rna polymer Polymers 0.000 claims description 4
- UDMBCSSLTHHNCD-UHFFFAOYSA-N Coenzym Q(11) Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(O)=O)C(O)C1O UDMBCSSLTHHNCD-UHFFFAOYSA-N 0.000 claims description 3
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 claims description 3
- 229950006790 adenosine phosphate Drugs 0.000 claims description 3
- 238000012758 nuclear staining Methods 0.000 claims description 3
- 239000012192 staining solution Substances 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 238000001223 reverse osmosis Methods 0.000 description 30
- 239000003153 chemical reaction reagent Substances 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- 238000009285 membrane fouling Methods 0.000 description 13
- 238000004140 cleaning Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 8
- 230000000813 microbial effect Effects 0.000 description 6
- 150000002894 organic compounds Chemical class 0.000 description 6
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 238000001471 micro-filtration Methods 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- 150000001491 aromatic compounds Chemical class 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000001506 fluorescence spectroscopy Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000005374 membrane filtration Methods 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 238000007447 staining method Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000013566 allergen Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 239000003899 bactericide agent Substances 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001728 nano-filtration Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000011158 quantitative evaluation Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 235000020681 well water Nutrition 0.000 description 2
- 239000002349 well water Substances 0.000 description 2
- 238000009636 ATP test Methods 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- AFYNADDZULBEJA-UHFFFAOYSA-N bicinchoninic acid Chemical compound C1=CC=CC2=NC(C=3C=C(C4=CC=CC=C4N=3)C(=O)O)=CC(C(O)=O)=C21 AFYNADDZULBEJA-UHFFFAOYSA-N 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 229910052806 inorganic carbonate Inorganic materials 0.000 description 1
- 229910001853 inorganic hydroxide Inorganic materials 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- CTYRPMDGLDAWRQ-UHFFFAOYSA-N phenyl hydrogen sulfate Chemical compound OS(=O)(=O)OC1=CC=CC=C1 CTYRPMDGLDAWRQ-UHFFFAOYSA-N 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/10—Testing of membranes or membrane apparatus; Detecting or repairing leaks
- B01D65/109—Testing of membrane fouling or clogging, e.g. amount or affinity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6804—Nucleic acid analysis using immunogens
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
Definitions
- the present invention relates to a method for evaluating the state of contamination of a separation membrane, in which the deposits of the contamination separation membrane that cause clogging in a water treatment system are identified and evaluated.
- Membrane filtration methods used for water treatment have features such as space saving, energy saving cost, high treatment water quality, etc., and are used in a wide range of fields such as water production process, food / medical water production process, wastewater recovery process, etc. Yes.
- cleaning is performed for the purpose of removing substances adhering to the separation membrane. Cleaning includes physical cleaning such as air scrubbing and back pressure cleaning, and chemical cleaning using chemicals.
- the permeation performance of the separation membrane can be recovered by physical cleaning. If the causative substance of membrane fouling is compatible with the material of the separation membrane, precipitates as crystals, or is covered with an adhesive organic substance called biopolymer, it is necessary to perform chemical cleaning. is there.
- a chelating agent for forming a complex with an inorganic acid, organic acid or inorganic element should be added.
- a cleaning agent is used.
- a halogen-based oxidizing agent such as sodium hypochlorite or a bactericide is used.
- an alkaline cleaner or a surfactant is used.
- the membrane with reduced permeation performance is disassembled and the membrane surface deposits are analyzed.
- fluorescent X-ray analysis As a method of directly analyzing film surface deposits, in the case of inorganic elements, fluorescent X-ray analysis or the like is used. For determination of the content ratio between organic and inorganic substances, ignition analysis is used. For analysis of organic substances, Fourier transform infrared is used. A spectrophotometer (FT-IR) or the like is used.
- FT-IR spectrophotometer
- Patent Document 2 Fluorescence spectroscopy can detect fluorescent organic substances with high sensitivity, but cannot detect organic substances that do not emit fluorescence, such as polysaccharides.
- the fluorescence intensity depends on the state of the surface, so if the deposits on the separation membrane surface are not uniform, a quantitative evaluation cannot be performed.
- the object of the present invention is to provide a method for evaluating the state of contamination of a separation membrane in order to devise an appropriate improvement measure against the trouble of clogging of the separation membrane in a water treatment system.
- the present inventor has found that the above-described problems can be solved by using a combination of a microorganism detection method and an organic matter detection method.
- the separation membrane contamination status evaluation method of the present invention is a method for evaluating the contamination status of a separation membrane contaminated by use in a water treatment system, and evaluates using a combination of a microorganism detection method and an organic matter detection method. It is characterized by that.
- the deposit on the separation membrane may be directly used for evaluation while remaining attached to the separation membrane, or the deposit separated from the separation membrane may be used for evaluation.
- an extract obtained by immersing a separation membrane with attached substances cut into an appropriate size in an appropriate solvent may be used for evaluation.
- An extract obtained by immersing the peeled deposit in an appropriate solvent may be used for evaluation.
- microbiological examination method examples include microscopic observation, nuclear staining method, deoxyribonucleic acid (DNA), ribonucleic acid (RNA) or adenosine phosphate (ATP) detection method, and ATP-derived luminescence measurement method.
- DNA deoxyribonucleic acid
- RNA ribonucleic acid
- ATP adenosine phosphate
- organic substance detection method use one or more of proteins, saccharides, hydrocarbons, surfactants, aromatic compounds, natural organic compounds (NOM), or methods for detecting structural features of these organic compounds.
- a saccharide and protein detection method using an absorptiometer and a saccharide and protein detection method in which a staining solution is brought into contact with a contaminant can be used.
- the separation membrane contamination status evaluation method of the present invention is based on the results obtained by evaluating the amount of microorganisms in the deposit on the separation membrane based on the results obtained by the microorganism detection method and the results obtained by the organic matter detection method. It is preferable to evaluate the contamination status based on the result of evaluating the amount of organic matter in the deposit on the separation membrane.
- the present invention it is possible to determine whether the contaminant attached to the separation membrane is mainly a microorganism or a non-biological organic substance, and it is possible to devise an appropriate improvement measure according to the contamination state.
- Examples of the separation membrane to be evaluated in the method for evaluating the contamination state of the separation membrane of the present invention include a microfiltration (MF) membrane, an ultrafiltration (UF) membrane, a nanofiltration (NF) membrane, and a reverse osmosis (RO) membrane. It is done.
- MF microfiltration
- UF ultrafiltration
- NF nanofiltration
- RO reverse osmosis
- Examples of the raw water to be treated by the water treatment system using this separation membrane include, but are not limited to, factory wastewater, rivers, lake water, seawater, sewage and the like.
- the separation membrane to be evaluated may be one used in an actual apparatus or one used in a flat membrane test at a desktop test level.
- separation element deposit analysis is performed by inorganic element analysis and organic substance analysis, and cleaning chemicals are selected based on the analysis results.
- microorganisms are deeply involved in membrane fouling, application of a bactericide is effective.
- non-biological organic matter is involved in membrane fouling, the application of an alkaline solution is effective.
- the organic matter analysis of the deposit on the separation membrane if the deposit is misjudged, not only a sufficient performance recovery cannot be expected, but also time and cost are required to solve the problem.
- the microorganism means bacteria (bacteria), fungi, microalgae, protozoa and their remains.
- a non-biological organic substance means a compound containing carbon and not containing the aforementioned microorganism.
- specific examples of non-biological organic materials include proteins, saccharides, hydrocarbons, surfactants, aromatic compounds, natural organic compounds (NOM), and their decomposition products.
- examples of the microorganism detection method include a method of detecting an organic compound that is closely related to the microorganism itself or the microorganism biological activity.
- Microorganism detection methods include a method of directly observing the shape and number of microorganisms with a microscope, a method of fluorescently staining microorganisms and observing them using a fluorescence microscope, a nuclear staining method, an activity staining method, DNA, RNA, ATP sequencer, FISH Any one or more of a method, a microarray method, a culture method, and a method for detecting the amount of luminescence derived from ATP can be used.
- the number of microorganisms obtained as a result of the microorganism detection method, the degree of color development, the amount of organic compound closely related to the biological activity of the microorganism and the absorbance or luminescence intensity are used as indicators of the amount of microorganisms present.
- the deposits on the separation membrane surface can be evaluated as they are; no special pretreatment is required; results can be obtained in a short time; analysis costs can be kept low; It is particularly preferable to use the ATP test kit used in the above.
- Examples of the organic substance detection method include a method of detecting structural characteristics of proteins, saccharides, hydrocarbons, surfactants, aromatic compounds, NOM, or these organic compounds.
- Organic detection methods include Bradford method, bicinchoninic acid method, biuret method, phenol sulfate method, PAS staining method, Alcian blue staining method, FT-IR, UV-visible spectroscopy, fluorescence spectroscopy, Raman spectroscopy, gas chromatography (GC), GC-mass spectrometry (MS), pyrolysis GC-MS, liquid chromatography (LC), LC-MS, nuclear magnetic resonance (NMR), elemental analysis, molecular weight distribution analysis, viscosity analysis One or more can be used.
- the organic substance concentration, the degree of color development, the absorbance or the luminescence intensity obtained as a result of carrying out the organic substance detection method can be used as an indicator of the organic substance abundance.
- a method for detecting organic substances quantitative evaluation can be performed; results can be obtained in a short time; analysis costs can be kept low; therefore, a method for detecting saccharides and proteins using an absorptiometer, and a staining solution for contaminants can be used. It is preferable to use one or more of the methods for detecting sugars and proteins to be contacted.
- the organic matter adhering to the separation membrane is mainly biological or non-biological organic matter based on the obtained indicator of microbial abundance and organic matter abundance.
- the index indicating the microbial abundance is greater than or equal to the reference value and the index indicating the organic abundance is less than the reference value, it can be determined that the organic matter attached to the separation membrane is mainly microbial.
- the index indicating the microbial abundance is less than the reference value and the index indicating the organic abundance is greater than or equal to the reference value, it can be determined that the organic matter attached to the separation membrane is mainly a non-biological organic matter.
- the microorganism detection method and the organic matter detection method are preferably performed at a plurality of locations on the separation membrane in order to increase the accuracy of evaluation.
- the method for evaluating the state of contamination of the separation membrane of the present invention it is possible to reliably determine whether the membrane deposits that cause the blockage of the separation membrane are mainly microbial or non-biological organic matter. Thereby, it becomes possible to formulate and cope with an appropriate improvement measure according to the contamination state of the separation membrane, and to realize an early solution to the clogging trouble of the separation membrane in the water treatment system.
- RO membrane sample cutting> The RO membrane element used in the actual apparatus was disassembled to expose the sheet-like RO membrane, and the RO membrane on the inner side of the RO membrane about 20 cm from the treated water supply side was cut into a size of 25 cm ⁇ 30 cm.
- a cotton swab was extracted from the tube of the ATP measurement reagent kit “Ultrasnap (registered trademark)”, and a 1 cm ⁇ 1 cm area of the RO membrane sample was wiped off.
- the cotton swab was returned to the tube, the upper end containing the reagent was folded, and all the reagents were injected.
- the mixture was shaken for about 5 seconds, and the tube was inserted into “EnSURE (registered trademark)”.
- the measurement start button of “EnSURE (registered trademark)” was pressed, and the light emission amount (RLU) was measured.
- a swab was extracted from the tube of the residual allergen test reagent kit “AllerSnap (registered trademark)”, and a 1 cm ⁇ 1 cm region of the RO membrane sample was wiped off.
- the cotton swab was returned to the tube, the upper end containing the reagent was folded, and all the reagents were injected.
- the mixture was shaken for about 5 seconds, and the tube was placed in a thermostatic bath set at 55 ° C.
- the tube was taken out, and the color development degree of the reagent solution was compared with the color chart attached to the kit.
- the reagent solution was discolored, it was determined that the amount of organic matter on the RO membrane surface was at a level related to RO membrane contamination.
- Example 1 When the RO membrane surface adhering material was evaluated for the RO membrane sample 1 obtained by disassembling the RO element used in the water treatment system using river water as raw water, the evaluation by "Ultrasnap (registered trademark)” was performed. As a result, the light emission amount was 245 RLU, and as a result of evaluation by “AllerSnap (registered trademark)”, the reagent solution was discolored. Therefore, it was determined that this RO membrane sample 1 was contaminated with deposits mainly composed of non-biological organic substances.
- Example 2 Regarding the RO membrane sample 2 obtained by disassembling the RO element used in the water treatment system using well water as the raw water, the above-mentioned RO membrane surface deposits were evaluated. Evaluation based on "Ultrasnap (registered trademark)" As a result, as a result of evaluation by 1918 RLU, “AllerSnap (registered trademark)”, the reagent solution was not discolored. Therefore, it was determined that this RO membrane sample 2 was contaminated with deposits mainly composed of microorganisms.
- Example 3 The RO membrane sample 3 obtained by disassembling the RO element used in the water treatment system using industrial water as raw water was evaluated for the above-mentioned RO membrane surface adhering, and was evaluated according to “Ultrasnap (registered trademark)”. As a result, the amount of luminescence was 6953 RLU, and as a result of evaluation by “AllerSnap (registered trademark)”, discoloration of the reagent solution was observed. Therefore, it was determined that this RO membrane sample 3 was contaminated with both microbial and non-biological organic matter deposits.
- Example 4 Regarding the RO membrane sample 4 obtained by disassembling the RO element used in the water treatment system using well water as the raw water, the above-mentioned RO membrane surface deposits were evaluated. Evaluation based on “Ultrasnap (registered trademark)” As a result, the amount of luminescence was 190 RLU, and as a result of evaluation by “AllerSnap (registered trademark)”, the reagent solution was not discolored. Therefore, it was determined that this RO membrane sample 4 was not contaminated.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Toxicology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
This method for evaluating a contamination state of a separation membrane is for evaluating a contamination state of a separation membrane contaminated by use in a water treatment system, and is for performing evaluation by use in combination with a microorganism detection method and an organic substance detection method. The method makes it possible to determine whether a substance stuck to the separation membrane is mainly a microorganism or mainly an abiotic organic substance and makes it possible to prepare accurate improvement measures.
Description
本発明は、水処理システムにおいて閉塞を引き起こした汚染分離膜の付着物を判別して評価する分離膜の汚染状況評価方法に関する。
The present invention relates to a method for evaluating the state of contamination of a separation membrane, in which the deposits of the contamination separation membrane that cause clogging in a water treatment system are identified and evaluated.
水処理に用いられる膜ろ過法は、省スペース、省エネルギーコスト、高処理水質等の特徴を有し、用水の造水プロセス、食品・医薬用水の製造プロセス、排水回収プロセスなど幅広い分野で使用されている。
Membrane filtration methods used for water treatment have features such as space saving, energy saving cost, high treatment water quality, etc., and are used in a wide range of fields such as water production process, food / medical water production process, wastewater recovery process, etc. Yes.
膜ろ過法では、供給水に含まれる様々な物質が分離膜表面や膜細孔に堆積することで透過性能が低下する現象、いわゆる膜ファウリングの問題があり、これが効率的な運用の妨げとなっている。
In the membrane filtration method, there is a phenomenon in which the permeation performance is reduced by depositing various substances contained in the feed water on the surface of the separation membrane and the membrane pores, so-called membrane fouling, which hinders efficient operation. It has become.
膜ファウリングを改善する手段として、分離膜に付着した物質を除去する目的で洗浄が行われる。洗浄にはエアースクラビングや逆圧洗浄のような物理洗浄や化学品を用いる薬品洗浄がある。
As a means of improving membrane fouling, cleaning is performed for the purpose of removing substances adhering to the separation membrane. Cleaning includes physical cleaning such as air scrubbing and back pressure cleaning, and chemical cleaning using chemicals.
比較的軽度な膜ファウリングの場合は、物理洗浄によって分離膜の透過性能の回復が可能である。膜ファウリングの原因物質が分離膜の素材と親和性があるものの場合や、結晶となって析出する場合、バイオポリマーと呼ばれる粘着性有機物で覆われている場合等は、薬品洗浄を行う必要がある。
In the case of relatively mild membrane fouling, the permeation performance of the separation membrane can be recovered by physical cleaning. If the causative substance of membrane fouling is compatible with the material of the separation membrane, precipitates as crystals, or is covered with an adhesive organic substance called biopolymer, it is necessary to perform chemical cleaning. is there.
薬品洗浄を行う場合は、膜ファウリングの原因物質によって使用する薬品が異なるため、事前に原因となる物質を特定しておくことが重要となる。
When chemical cleaning is performed, it is important to specify the causative substance in advance because the chemical used depends on the causative substance of membrane fouling.
無機酸化物、無機炭酸塩、無機水酸化物などが分離膜表面に析出することで透過性能が低下している場合は、無機酸や有機酸または無機元素と錯体を形成させるためのキレート剤を含む洗浄剤が用いられる。
If the permeation performance is reduced by depositing inorganic oxide, inorganic carbonate, inorganic hydroxide, etc. on the surface of the separation membrane, a chelating agent for forming a complex with an inorganic acid, organic acid or inorganic element should be added. A cleaning agent is used.
微生物や微生物が生産するバイオポリマーによって分離膜表面に透水性の低い有機物層、いわゆるバイオフィルムが形成されている場合は、次亜塩素酸ナトリウムなどのハロゲン系酸化剤や殺菌剤が用いられる。
In the case where an organic substance layer with low water permeability, a so-called biofilm, is formed on the surface of the separation membrane by a microorganism or a biopolymer produced by the microorganism, a halogen-based oxidizing agent such as sodium hypochlorite or a bactericide is used.
疎水性有機物や高分子有機物が分離膜の細孔を閉塞している場合は、アルカリ洗浄剤や界面活性剤が用いられる。
When an organic hydrophobic substance or a hydrophobic organic substance closes the pores of the separation membrane, an alkaline cleaner or a surfactant is used.
膜ファウリングの原因となる物質を特定するために、透過性能が低下した膜を解体し、膜面付着物の分析が行われる。
In order to identify the substances that cause membrane fouling, the membrane with reduced permeation performance is disassembled and the membrane surface deposits are analyzed.
膜面付着物を直接分析する方法として、無機元素の場合は、蛍光X線分析等が、有機物と無機物の含有比の判定には強熱分析等が、有機物の分析にはフーリエ変換型赤外分光光度計(FT-IR)等が用いられる。
As a method of directly analyzing film surface deposits, in the case of inorganic elements, fluorescent X-ray analysis or the like is used. For determination of the content ratio between organic and inorganic substances, ignition analysis is used. For analysis of organic substances, Fourier transform infrared is used. A spectrophotometer (FT-IR) or the like is used.
分離膜に供給される被処理水の分離膜に対する汚染性を評価する方法として、被処理水の精密ろ過(MF)膜捕捉物をFT-IRを用いて分析する方法が提案されている(特許文献1)。FT-IRでは有機物の官能基に関する情報を得ることができるが、有機物の種類や微生物の存在を判断することは困難である。
As a method for evaluating the contamination of the separation membrane to be treated supplied to the separation membrane, a method of analyzing the treated water microfiltration (MF) membrane capture using FT-IR has been proposed (patent) Reference 1). FT-IR can obtain information on functional groups of organic matter, but it is difficult to determine the type of organic matter and the presence of microorganisms.
分離膜表面の付着物を分析する方法として、蛍光分光分析用いた有機物付着状態の評価方法が提案されている(特許文献2)。蛍光分光分析は蛍光性有機物を高感度で検出することができるが、多糖類等の蛍光を発しない有機物については検出することができない。
As a method for analyzing the deposit on the surface of the separation membrane, an organic substance adhesion state evaluation method using fluorescence spectroscopic analysis has been proposed (Patent Document 2). Fluorescence spectroscopy can detect fluorescent organic substances with high sensitivity, but cannot detect organic substances that do not emit fluorescence, such as polysaccharides.
蛍光分光分析による分離膜表面の付着物分析では、蛍光強度は表面の状態に依存するため、分離膜表面の付着物が均一でない場合は定量性のある評価は行えない。
In the analysis of deposits on the separation membrane surface by fluorescence spectroscopic analysis, the fluorescence intensity depends on the state of the surface, so if the deposits on the separation membrane surface are not uniform, a quantitative evaluation cannot be performed.
膜ファウリングに関与する分離膜の付着物を同定する場合、FT-ITや蛍光分光分析では微生物か非生物有機物かの判別を行うことが困難であり、誤った膜ファウリングの改善策が選定されてしまうおそれがある。
When identifying deposits on separation membranes that are involved in membrane fouling, it is difficult to distinguish between microorganisms and non-biological organic substances using FT-IT or fluorescence spectroscopy analysis, and erroneous measures to improve membrane fouling are selected. There is a risk of being.
膜ファウリングの原因となる付着物を判別することは、膜ろ過システムにとって重要であり、迅速かつ簡便で確実に判別できる評価方法が求められている。
It is important for a membrane filtration system to discriminate deposits that cause membrane fouling, and there is a need for an evaluation method that can quickly, easily and reliably discriminate.
本発明は、水処理システムにおける分離膜の閉塞トラブルに対し、的確な改善策を立案するための分離膜の汚染状況評価方法を提供することを目的とする。
The object of the present invention is to provide a method for evaluating the state of contamination of a separation membrane in order to devise an appropriate improvement measure against the trouble of clogging of the separation membrane in a water treatment system.
本発明者は、微生物検出方法と有機物検出方法とを組み合わせて用いることにより、上記課題を解決することができることを見出した。
The present inventor has found that the above-described problems can be solved by using a combination of a microorganism detection method and an organic matter detection method.
本発明の分離膜の汚染状況評価方法は、水処理システムで使用されて汚染した分離膜の汚染状況を評価する方法であって、微生物検出方法と有機物検出方法とを組み合わせて用いて評価を行うことを特徴とする。
The separation membrane contamination status evaluation method of the present invention is a method for evaluating the contamination status of a separation membrane contaminated by use in a water treatment system, and evaluates using a combination of a microorganism detection method and an organic matter detection method. It is characterized by that.
分離膜の付着物は分離膜に付着したままの状態で直接評価に用いてもよいし、分離膜から剥離した付着物を評価に用いてもよい。
The deposit on the separation membrane may be directly used for evaluation while remaining attached to the separation membrane, or the deposit separated from the separation membrane may be used for evaluation.
別の評価方法として、付着物が付着している状態の分離膜を適当な大きさに切り出したものを適当な溶媒に浸漬して得られる抽出液を評価に用いてもよいし、分離膜から剥離した付着物を適当な溶媒に浸漬して得られる抽出液を評価に用いてもよい。
As another evaluation method, an extract obtained by immersing a separation membrane with attached substances cut into an appropriate size in an appropriate solvent may be used for evaluation. An extract obtained by immersing the peeled deposit in an appropriate solvent may be used for evaluation.
微生物検方法としては、例えば、顕微鏡観察、核染色法、デオキシリボ核酸(DNA)、リボ核酸(RNA)またはアデノシン酸リン酸(ATP)を検出する方法、ATP由来の発光量を計測する方法のうちの一つを用いることができる。
Examples of the microbiological examination method include microscopic observation, nuclear staining method, deoxyribonucleic acid (DNA), ribonucleic acid (RNA) or adenosine phosphate (ATP) detection method, and ATP-derived luminescence measurement method. One of these can be used.
有機物検出方法としては、タンパク質、糖類、炭化水素、界面活性剤、芳香族化合物、天然有機化合物(NOM)あるいはこれらの有機化合物の構造的な特徴を検出する方法のうちの一つ以上を用いることができる。例えば、吸光光度計を用いた糖類およびタンパク質の検出方法、汚染物に染色液を接触させる糖類およびタンパク質の検出方法のうちの一つ以上を用いることができる。
As the organic substance detection method, use one or more of proteins, saccharides, hydrocarbons, surfactants, aromatic compounds, natural organic compounds (NOM), or methods for detecting structural features of these organic compounds. Can do. For example, one or more of a saccharide and protein detection method using an absorptiometer and a saccharide and protein detection method in which a staining solution is brought into contact with a contaminant can be used.
本発明の分離膜の汚染状況評価方法は、微生物検出方法によって得られた結果に基づいて、分離膜の付着物中の微生物量を評価した結果と、有機物検出方法によって得られた結果に基づいて、分離膜の付着物中の有機物量を評価した結果に基づいて汚染状況を評価することが好ましい。
The separation membrane contamination status evaluation method of the present invention is based on the results obtained by evaluating the amount of microorganisms in the deposit on the separation membrane based on the results obtained by the microorganism detection method and the results obtained by the organic matter detection method. It is preferable to evaluate the contamination status based on the result of evaluating the amount of organic matter in the deposit on the separation membrane.
本発明によれば、分離膜に付着した汚染物質が微生物主体か非生物有機物主体かを判別することができ、汚染状況に応じて的確な改善策を立案することが可能となる。
According to the present invention, it is possible to determine whether the contaminant attached to the separation membrane is mainly a microorganism or a non-biological organic substance, and it is possible to devise an appropriate improvement measure according to the contamination state.
以下、本発明の分離膜の汚染状況評価方法の実施の形態を詳細に説明する。
Hereinafter, an embodiment of the separation membrane contamination status evaluation method of the present invention will be described in detail.
本発明の分離膜の汚染状況評価方法の評価対象となる分離膜としては、精密ろ過(MF)膜、限外ろ過(UF)膜、ナノろ過(NF)膜、逆浸透(RO)膜が挙げられる。
Examples of the separation membrane to be evaluated in the method for evaluating the contamination state of the separation membrane of the present invention include a microfiltration (MF) membrane, an ultrafiltration (UF) membrane, a nanofiltration (NF) membrane, and a reverse osmosis (RO) membrane. It is done.
この分離膜が用いられる水処理システムの処理対象となる原水としては、工場排水、河川、湖沼水、海水、下水などが例示されるが、これらに限定されるものではない。
Examples of the raw water to be treated by the water treatment system using this separation membrane include, but are not limited to, factory wastewater, rivers, lake water, seawater, sewage and the like.
評価対象となる分離膜は、実機装置で使用されていたものであっても良いし、机上試験レベルの平膜試験で使用されたものであっても良い。
The separation membrane to be evaluated may be one used in an actual apparatus or one used in a flat membrane test at a desktop test level.
分離膜の透水性が低下する現象、いわゆる膜ファウリングが発生した場合、薬品による分離膜の洗浄が実施される。使用される薬品の種類や濃度は膜ファウリングを引き起こした付着物や付着状態に応じて最適なものを選定する必要があるため、付着物の成分を特定することが重要となる。
When a phenomenon that the water permeability of the separation membrane decreases, so-called membrane fouling, cleaning of the separation membrane with chemicals is performed. Since it is necessary to select the most appropriate type and concentration of chemicals to be used in accordance with the deposit that causes film fouling and the state of adhesion, it is important to identify the components of the deposit.
一般的に分離膜の付着物分析は無機元素分析と有機物分析が行われ、その分析結果を基に洗浄薬品が選定される。微生物が膜ファウリングに深く関与する場合、殺菌剤の適用が有効となる。非生物有機物が膜ファウリングに関与していた場合、アルカリ溶液の適用が有効となる。分離膜付着物の有機物分析において、付着物の判断を誤れば、十分な性能回復が見込めないばかりでなく、解決までに時間と費用を要することとなる。
In general, separation element deposit analysis is performed by inorganic element analysis and organic substance analysis, and cleaning chemicals are selected based on the analysis results. When microorganisms are deeply involved in membrane fouling, application of a bactericide is effective. When non-biological organic matter is involved in membrane fouling, the application of an alkaline solution is effective. In the organic matter analysis of the deposit on the separation membrane, if the deposit is misjudged, not only a sufficient performance recovery cannot be expected, but also time and cost are required to solve the problem.
本明細書において、微生物とは、細菌(バクテリア)、真菌、微細藻類、原生動物およびそれらの遺骸を意味する。
本明細書において非生物有機物とは、炭素を含む化合物であって、前述の微生物を含まないものを意味する。非生物有機物の具体例としては、タンパク質、糖類、炭化水素、界面活性剤、芳香族化合物、天然有機化合物(NOM)およびそれらの分解生成物などが挙げられる。 In this specification, the microorganism means bacteria (bacteria), fungi, microalgae, protozoa and their remains.
In this specification, a non-biological organic substance means a compound containing carbon and not containing the aforementioned microorganism. Specific examples of non-biological organic materials include proteins, saccharides, hydrocarbons, surfactants, aromatic compounds, natural organic compounds (NOM), and their decomposition products.
本明細書において非生物有機物とは、炭素を含む化合物であって、前述の微生物を含まないものを意味する。非生物有機物の具体例としては、タンパク質、糖類、炭化水素、界面活性剤、芳香族化合物、天然有機化合物(NOM)およびそれらの分解生成物などが挙げられる。 In this specification, the microorganism means bacteria (bacteria), fungi, microalgae, protozoa and their remains.
In this specification, a non-biological organic substance means a compound containing carbon and not containing the aforementioned microorganism. Specific examples of non-biological organic materials include proteins, saccharides, hydrocarbons, surfactants, aromatic compounds, natural organic compounds (NOM), and their decomposition products.
本発明において、微生物検出方法としては、微生物そのものあるいは微生物生体活動との関わりが深い有機化合物を検出する方法が挙げられる。
In the present invention, examples of the microorganism detection method include a method of detecting an organic compound that is closely related to the microorganism itself or the microorganism biological activity.
微生物検出方法としては、顕微鏡により微生物の形状や数を直接観察する方法、微生物を蛍光染色し、蛍光顕微鏡を用いて観察する方法、核染色法、活性染色法、DNA、RNA、ATPシーケンサー、FISH法、マイクロアレイ法、培養法、ATP由来の発光量を検出する方法のうちのいずれか一つまたは複数を用いることができる。
Microorganism detection methods include a method of directly observing the shape and number of microorganisms with a microscope, a method of fluorescently staining microorganisms and observing them using a fluorescence microscope, a nuclear staining method, an activity staining method, DNA, RNA, ATP sequencer, FISH Any one or more of a method, a microarray method, a culture method, and a method for detecting the amount of luminescence derived from ATP can be used.
微生物検出方法を実施した結果得られる微生物の数、発色の程度、微生物生体活動との関わりが深い有機化合物の量および吸光度または発光強度を微生物存在量の指標として用いる。
The number of microorganisms obtained as a result of the microorganism detection method, the degree of color development, the amount of organic compound closely related to the biological activity of the microorganism and the absorbance or luminescence intensity are used as indicators of the amount of microorganisms present.
微生物検出方法としては、分離膜面の付着物をそのまま評価できる;特別な前処理が不要である;短時間で結果が得られる;分析費用を低く抑えられる;等の特長を有するため、衛生検査で使用されるATP検査キットを用いることが特に好ましい。
As a method for detecting microorganisms, the deposits on the separation membrane surface can be evaluated as they are; no special pretreatment is required; results can be obtained in a short time; analysis costs can be kept low; It is particularly preferable to use the ATP test kit used in the above.
有機物検出方法としては、タンパク質、糖類、炭化水素、界面活性剤、芳香族化合物、NOMあるいはこれらの有機化合物の構造的な特徴を検出する方法が挙げられる。
Examples of the organic substance detection method include a method of detecting structural characteristics of proteins, saccharides, hydrocarbons, surfactants, aromatic compounds, NOM, or these organic compounds.
有機物検出方法としては、Bradford法、ビシンコニン酸法、ビウレット法、フェノール硫酸法、PAS染色法、アルシアンブルー染色法、FT-IR、紫外可視分光分析、蛍光分光法、ラマン分光分析、ガスクロマトグラフィー(GC)、GC-質量分析法(MS)、熱分解GC-MS、液体クロマトグラフィー(LC)、LC-MS、核磁気共鳴(NMR)、元素分析、分子量分布分析、粘度分析のうちのいずれか一つまたは複数を用いることができる。
Organic detection methods include Bradford method, bicinchoninic acid method, biuret method, phenol sulfate method, PAS staining method, Alcian blue staining method, FT-IR, UV-visible spectroscopy, fluorescence spectroscopy, Raman spectroscopy, gas chromatography (GC), GC-mass spectrometry (MS), pyrolysis GC-MS, liquid chromatography (LC), LC-MS, nuclear magnetic resonance (NMR), elemental analysis, molecular weight distribution analysis, viscosity analysis One or more can be used.
有機物検出方法を実施した結果得られる有機物濃度、発色の程度、吸光度または発光強度等を有機物存在量の指標として用いることができる。
The organic substance concentration, the degree of color development, the absorbance or the luminescence intensity obtained as a result of carrying out the organic substance detection method can be used as an indicator of the organic substance abundance.
有機物検出方法としては、定量的な評価ができる;短時間で結果が得られる;分析費用を低く抑えられる;ことから、吸光光度計を用いた糖類およびタンパク質の検出方法、汚染物に染色液を接触させる糖類およびタンパク質の検出方法のうちの一つ以上を用いることが好ましい。
As a method for detecting organic substances, quantitative evaluation can be performed; results can be obtained in a short time; analysis costs can be kept low; therefore, a method for detecting saccharides and proteins using an absorptiometer, and a staining solution for contaminants can be used. It is preferable to use one or more of the methods for detecting sugars and proteins to be contacted.
微生物検出方法および有機物検出方法を実施した結果、得られた微生物存在量の指標と有機物存在量の指標から、分離膜に付着した有機物が生物主体か非生物有機物主体かを判別することができる。
As a result of performing the microorganism detection method and the organic matter detection method, it is possible to determine whether the organic matter adhering to the separation membrane is mainly biological or non-biological organic matter based on the obtained indicator of microbial abundance and organic matter abundance.
例えば、微生物存在量を示す指標が基準値以上であり、有機物存在量を示す指標が基準値未満であった場合、分離膜に付着した有機物は微生物主体であると判断できる。微生物存在量を示す指標が基準値未満であり、有機物存在量を示す指標が基準値以上であった場合、分離膜に付着した有機物は非生物有機物主体であると判断できる。
For example, when the index indicating the microbial abundance is greater than or equal to the reference value and the index indicating the organic abundance is less than the reference value, it can be determined that the organic matter attached to the separation membrane is mainly microbial. When the index indicating the microbial abundance is less than the reference value and the index indicating the organic abundance is greater than or equal to the reference value, it can be determined that the organic matter attached to the separation membrane is mainly a non-biological organic matter.
微生物検出方法および有機物検出方法は、評価の精度を上げるために、分離膜の複数個所で実施することが好ましい。
The microorganism detection method and the organic matter detection method are preferably performed at a plurality of locations on the separation membrane in order to increase the accuracy of evaluation.
分離膜の付着物の付着状態に偏りや不均一性が認められる場合は、それぞれの個所で微生物検出方法および有機物検出方法を実施することが好ましい。これにより、より的確な評価を行って、分離膜の汚染状況に応じた効果的な膜ファウリング解決策を講じることができる。
When there is a bias or non-uniformity in the adhesion state of the deposit on the separation membrane, it is preferable to carry out the microorganism detection method and the organic matter detection method at each location. Thereby, more accurate evaluation can be performed and an effective membrane fouling solution according to the state of contamination of the separation membrane can be taken.
本発明の分離膜の汚染状況評価方法によれば、分離膜の閉塞原因となる膜付着物が微生物主体か非生物有機物主体かを確実に判別することができる。これにより、分離膜の汚染状況に応じて的確な改善策を立案して対応することが可能となり、水処理システムにおける分離膜の閉塞トラブルの早期解決を実現することができる。
According to the method for evaluating the state of contamination of the separation membrane of the present invention, it is possible to reliably determine whether the membrane deposits that cause the blockage of the separation membrane are mainly microbial or non-biological organic matter. Thereby, it becomes possible to formulate and cope with an appropriate improvement measure according to the contamination state of the separation membrane, and to realize an early solution to the clogging trouble of the separation membrane in the water treatment system.
以下に実施例を挙げて本発明をより具体的に説明する。
Hereinafter, the present invention will be described more specifically with reference to examples.
<RO膜サンプル切り出し>
実機装置で使用されたRO膜エレメントを解体し、シート状のRO膜を露出させ、RO膜の被処理水供給側から20cm程度内側のRO膜を25cm×30cmの大きさに切り分けた。 <RO membrane sample cutting>
The RO membrane element used in the actual apparatus was disassembled to expose the sheet-like RO membrane, and the RO membrane on the inner side of the RO membrane about 20 cm from the treated water supply side was cut into a size of 25 cm × 30 cm.
実機装置で使用されたRO膜エレメントを解体し、シート状のRO膜を露出させ、RO膜の被処理水供給側から20cm程度内側のRO膜を25cm×30cmの大きさに切り分けた。 <RO membrane sample cutting>
The RO membrane element used in the actual apparatus was disassembled to expose the sheet-like RO membrane, and the RO membrane on the inner side of the RO membrane about 20 cm from the treated water supply side was cut into a size of 25 cm × 30 cm.
<RO膜面上のATPの測定方法>
ATP測定には携帯型分析装置「EnSURE(登録商標)」(Hygiena社製)及び専用試薬キット「Ultrasnap(登録商標)」(Hygiena社製)を使用した。
測定手順は次の通りとした。 <ATP measurement method on RO membrane surface>
A portable analyzer “EnSURE (registered trademark)” (manufactured by Hygiena) and a dedicated reagent kit “Ultrasap (registered trademark)” (manufactured by Hygiena) were used for ATP measurement.
The measurement procedure was as follows.
ATP測定には携帯型分析装置「EnSURE(登録商標)」(Hygiena社製)及び専用試薬キット「Ultrasnap(登録商標)」(Hygiena社製)を使用した。
測定手順は次の通りとした。 <ATP measurement method on RO membrane surface>
A portable analyzer “EnSURE (registered trademark)” (manufactured by Hygiena) and a dedicated reagent kit “Ultrasap (registered trademark)” (manufactured by Hygiena) were used for ATP measurement.
The measurement procedure was as follows.
(1)ATP測定用試薬キット「Ultrasnap(登録商標)」のチューブから綿棒を抜き出し、RO膜サンプルの1cm×1cmの領域をふき取った。
(2)綿棒をチューブに戻し、試薬の入った上端部を折って、試薬を全て注入した。
(3)5秒程度振り混ぜ、チューブを「EnSURE(登録商標)」に差し込んだ。
(4)「EnSURE(登録商標)」の測定開始ボタンを押し、発光量(RLU)を測定した。
(5)測定はn(サンプル数)=3で行い、発光量の平均値を算出した。
(6)発光量が1000RLU以上の場合、RO膜面の微生物量がRO膜の汚染に関与するレベルにあると判定した。 (1) A cotton swab was extracted from the tube of the ATP measurement reagent kit “Ultrasnap (registered trademark)”, and a 1 cm × 1 cm area of the RO membrane sample was wiped off.
(2) The cotton swab was returned to the tube, the upper end containing the reagent was folded, and all the reagents were injected.
(3) The mixture was shaken for about 5 seconds, and the tube was inserted into “EnSURE (registered trademark)”.
(4) The measurement start button of “EnSURE (registered trademark)” was pressed, and the light emission amount (RLU) was measured.
(5) Measurement was performed with n (number of samples) = 3, and the average value of the amount of luminescence was calculated.
(6) When the amount of luminescence was 1000 RLU or more, it was determined that the amount of microorganisms on the RO membrane surface was at a level related to RO membrane contamination.
(2)綿棒をチューブに戻し、試薬の入った上端部を折って、試薬を全て注入した。
(3)5秒程度振り混ぜ、チューブを「EnSURE(登録商標)」に差し込んだ。
(4)「EnSURE(登録商標)」の測定開始ボタンを押し、発光量(RLU)を測定した。
(5)測定はn(サンプル数)=3で行い、発光量の平均値を算出した。
(6)発光量が1000RLU以上の場合、RO膜面の微生物量がRO膜の汚染に関与するレベルにあると判定した。 (1) A cotton swab was extracted from the tube of the ATP measurement reagent kit “Ultrasnap (registered trademark)”, and a 1 cm × 1 cm area of the RO membrane sample was wiped off.
(2) The cotton swab was returned to the tube, the upper end containing the reagent was folded, and all the reagents were injected.
(3) The mixture was shaken for about 5 seconds, and the tube was inserted into “EnSURE (registered trademark)”.
(4) The measurement start button of “EnSURE (registered trademark)” was pressed, and the light emission amount (RLU) was measured.
(5) Measurement was performed with n (number of samples) = 3, and the average value of the amount of luminescence was calculated.
(6) When the amount of luminescence was 1000 RLU or more, it was determined that the amount of microorganisms on the RO membrane surface was at a level related to RO membrane contamination.
<RO膜付着物の有機物検出方法>
有機物検出には残留アレルゲン検査試薬キット「AllerSnap(登録商標)」(Hygiena社製)を使用した。
測定手順は次の通りとした。 <Organic substance detection method of RO membrane deposit>
A residual allergen test reagent kit “AllerSnap (registered trademark)” (manufactured by Hygiena) was used for organic substance detection.
The measurement procedure was as follows.
有機物検出には残留アレルゲン検査試薬キット「AllerSnap(登録商標)」(Hygiena社製)を使用した。
測定手順は次の通りとした。 <Organic substance detection method of RO membrane deposit>
A residual allergen test reagent kit “AllerSnap (registered trademark)” (manufactured by Hygiena) was used for organic substance detection.
The measurement procedure was as follows.
(1)残留アレルゲン検査試薬キット「AllerSnap(登録商標)」のチューブから綿棒を抜き出し、RO膜サンプルの1cm×1cmの領域をふき取った。
(2)綿棒をチューブに戻し、試薬の入った上端部を折って、試薬を全て注入した。
(3)5秒程度振り混ぜ、チューブを55℃に設定した恒温槽に入れた。
(4)15分後、チューブを取出し、試薬液の発色度合いをキットに付属しているカラーチャートと比較した。
(5)試薬液の変色が見られた場合、RO膜面の有機物量がRO膜の汚染に関与するレベルにあると判定した。 (1) A swab was extracted from the tube of the residual allergen test reagent kit “AllerSnap (registered trademark)”, and a 1 cm × 1 cm region of the RO membrane sample was wiped off.
(2) The cotton swab was returned to the tube, the upper end containing the reagent was folded, and all the reagents were injected.
(3) The mixture was shaken for about 5 seconds, and the tube was placed in a thermostatic bath set at 55 ° C.
(4) After 15 minutes, the tube was taken out, and the color development degree of the reagent solution was compared with the color chart attached to the kit.
(5) When the reagent solution was discolored, it was determined that the amount of organic matter on the RO membrane surface was at a level related to RO membrane contamination.
(2)綿棒をチューブに戻し、試薬の入った上端部を折って、試薬を全て注入した。
(3)5秒程度振り混ぜ、チューブを55℃に設定した恒温槽に入れた。
(4)15分後、チューブを取出し、試薬液の発色度合いをキットに付属しているカラーチャートと比較した。
(5)試薬液の変色が見られた場合、RO膜面の有機物量がRO膜の汚染に関与するレベルにあると判定した。 (1) A swab was extracted from the tube of the residual allergen test reagent kit “AllerSnap (registered trademark)”, and a 1 cm × 1 cm region of the RO membrane sample was wiped off.
(2) The cotton swab was returned to the tube, the upper end containing the reagent was folded, and all the reagents were injected.
(3) The mixture was shaken for about 5 seconds, and the tube was placed in a thermostatic bath set at 55 ° C.
(4) After 15 minutes, the tube was taken out, and the color development degree of the reagent solution was compared with the color chart attached to the kit.
(5) When the reagent solution was discolored, it was determined that the amount of organic matter on the RO membrane surface was at a level related to RO membrane contamination.
[実施例1]
河川水を原水とする水処理システムで使用されたROエレメントを解体して得たRO膜サンプル1について、前述のRO膜面付着物の評価を行ったところ、「Ultrasnap(登録商標)」による評価の結果、発光量は245RLU、「AllerSnap(登録商標)」による評価の結果、試薬液の変色が見られた。よって、このRO膜サンプル1は非生物有機物を主体とする付着物で汚染されていると判定した。 [Example 1]
When the RO membrane surface adhering material was evaluated for the RO membrane sample 1 obtained by disassembling the RO element used in the water treatment system using river water as raw water, the evaluation by "Ultrasnap (registered trademark)" was performed. As a result, the light emission amount was 245 RLU, and as a result of evaluation by “AllerSnap (registered trademark)”, the reagent solution was discolored. Therefore, it was determined that this RO membrane sample 1 was contaminated with deposits mainly composed of non-biological organic substances.
河川水を原水とする水処理システムで使用されたROエレメントを解体して得たRO膜サンプル1について、前述のRO膜面付着物の評価を行ったところ、「Ultrasnap(登録商標)」による評価の結果、発光量は245RLU、「AllerSnap(登録商標)」による評価の結果、試薬液の変色が見られた。よって、このRO膜サンプル1は非生物有機物を主体とする付着物で汚染されていると判定した。 [Example 1]
When the RO membrane surface adhering material was evaluated for the RO membrane sample 1 obtained by disassembling the RO element used in the water treatment system using river water as raw water, the evaluation by "Ultrasnap (registered trademark)" was performed. As a result, the light emission amount was 245 RLU, and as a result of evaluation by “AllerSnap (registered trademark)”, the reagent solution was discolored. Therefore, it was determined that this RO membrane sample 1 was contaminated with deposits mainly composed of non-biological organic substances.
[実施例2]
井水を原水とする水処理システムで使用されたROエレメントを解体して得たRO膜サンプル2について、前述のRO膜面付着物の評価を行ったところ、「Ultrasnap(登録商標)」による評価の結果、発光量は1918RLU、「AllerSnap(登録商標)」による評価の結果、試薬液の変色が見られなかった。よって、このRO膜サンプル2は微生物を主体とする付着物で汚染されていると判定した。 [Example 2]
Regarding the RO membrane sample 2 obtained by disassembling the RO element used in the water treatment system using well water as the raw water, the above-mentioned RO membrane surface deposits were evaluated. Evaluation based on "Ultrasnap (registered trademark)" As a result, as a result of evaluation by 1918 RLU, “AllerSnap (registered trademark)”, the reagent solution was not discolored. Therefore, it was determined that this RO membrane sample 2 was contaminated with deposits mainly composed of microorganisms.
井水を原水とする水処理システムで使用されたROエレメントを解体して得たRO膜サンプル2について、前述のRO膜面付着物の評価を行ったところ、「Ultrasnap(登録商標)」による評価の結果、発光量は1918RLU、「AllerSnap(登録商標)」による評価の結果、試薬液の変色が見られなかった。よって、このRO膜サンプル2は微生物を主体とする付着物で汚染されていると判定した。 [Example 2]
Regarding the RO membrane sample 2 obtained by disassembling the RO element used in the water treatment system using well water as the raw water, the above-mentioned RO membrane surface deposits were evaluated. Evaluation based on "Ultrasnap (registered trademark)" As a result, as a result of evaluation by 1918 RLU, “AllerSnap (registered trademark)”, the reagent solution was not discolored. Therefore, it was determined that this RO membrane sample 2 was contaminated with deposits mainly composed of microorganisms.
[実施例3]
工業用水を原水とする水処理システムで使用されたROエレメントを解体して得たRO膜サンプル3について、前述のRO膜面付着物の評価を行ったところ、「Ultrasnap(登録商標)」による評価の結果、発光量は6953RLU、「AllerSnap(登録商標)」による評価の結果、試薬液の変色が見られた。よって、このRO膜サンプル3は微生物および非生物有機物双方の付着物で汚染されていると判定した。 [Example 3]
The RO membrane sample 3 obtained by disassembling the RO element used in the water treatment system using industrial water as raw water was evaluated for the above-mentioned RO membrane surface adhering, and was evaluated according to “Ultrasnap (registered trademark)”. As a result, the amount of luminescence was 6953 RLU, and as a result of evaluation by “AllerSnap (registered trademark)”, discoloration of the reagent solution was observed. Therefore, it was determined that this RO membrane sample 3 was contaminated with both microbial and non-biological organic matter deposits.
工業用水を原水とする水処理システムで使用されたROエレメントを解体して得たRO膜サンプル3について、前述のRO膜面付着物の評価を行ったところ、「Ultrasnap(登録商標)」による評価の結果、発光量は6953RLU、「AllerSnap(登録商標)」による評価の結果、試薬液の変色が見られた。よって、このRO膜サンプル3は微生物および非生物有機物双方の付着物で汚染されていると判定した。 [Example 3]
The RO membrane sample 3 obtained by disassembling the RO element used in the water treatment system using industrial water as raw water was evaluated for the above-mentioned RO membrane surface adhering, and was evaluated according to “Ultrasnap (registered trademark)”. As a result, the amount of luminescence was 6953 RLU, and as a result of evaluation by “AllerSnap (registered trademark)”, discoloration of the reagent solution was observed. Therefore, it was determined that this RO membrane sample 3 was contaminated with both microbial and non-biological organic matter deposits.
[実施例4]
井水を原水とする水処理システムで使用されたROエレメントを解体して得たRO膜サンプル4について、前述のRO膜面付着物の評価を行ったところ、「Ultrasnap(登録商標)」による評価の結果、発光量は190RLU、「AllerSnap(登録商標)」による評価の結果、試薬液の変色が見られなかった。よって、このRO膜サンプル4は汚染されていないと判定した。 [Example 4]
Regarding the RO membrane sample 4 obtained by disassembling the RO element used in the water treatment system using well water as the raw water, the above-mentioned RO membrane surface deposits were evaluated. Evaluation based on “Ultrasnap (registered trademark)” As a result, the amount of luminescence was 190 RLU, and as a result of evaluation by “AllerSnap (registered trademark)”, the reagent solution was not discolored. Therefore, it was determined that this RO membrane sample 4 was not contaminated.
井水を原水とする水処理システムで使用されたROエレメントを解体して得たRO膜サンプル4について、前述のRO膜面付着物の評価を行ったところ、「Ultrasnap(登録商標)」による評価の結果、発光量は190RLU、「AllerSnap(登録商標)」による評価の結果、試薬液の変色が見られなかった。よって、このRO膜サンプル4は汚染されていないと判定した。 [Example 4]
Regarding the RO membrane sample 4 obtained by disassembling the RO element used in the water treatment system using well water as the raw water, the above-mentioned RO membrane surface deposits were evaluated. Evaluation based on “Ultrasnap (registered trademark)” As a result, the amount of luminescence was 190 RLU, and as a result of evaluation by “AllerSnap (registered trademark)”, the reagent solution was not discolored. Therefore, it was determined that this RO membrane sample 4 was not contaminated.
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
本出願は、2018年3月12日付で出願された日本特許出願2018-044357に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2018-044357 filed on Mar. 12, 2018, which is incorporated by reference in its entirety.
本出願は、2018年3月12日付で出願された日本特許出願2018-044357に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2018-044357 filed on Mar. 12, 2018, which is incorporated by reference in its entirety.
Claims (6)
- 水処理システムで使用されて汚染した分離膜の汚染状況を評価する方法であって、微生物検出方法と有機物検出方法とを組み合わせて用いて評価を行うことを特徴とする分離膜の汚染状況評価方法。 A method for evaluating the contamination status of a separation membrane used in a water treatment system, wherein the evaluation is performed using a combination of a microorganism detection method and an organic matter detection method. .
- 前記分離膜の付着物を直接評価に用いることを特徴とする、請求項1に記載の分離膜の汚染状況評価方法。 The method for evaluating the state of contamination of a separation membrane according to claim 1, wherein the deposit on the separation membrane is used for direct evaluation.
- 前記分離膜の付着物から抽出された抽出液を評価に用いることを特徴とする、請求項1に記載の分離膜の汚染状況評価方法。 2. The method for evaluating the state of contamination of a separation membrane according to claim 1, wherein an extraction liquid extracted from the deposit on the separation membrane is used for evaluation.
- 前記微生物検出方法が、顕微鏡観察、核染色法、デオキシリボ核酸、リボ核酸またはアデノシン酸リン酸を検出する方法、並びに、アデノシン酸リン酸由来の発光量を計測する方法のうちの一つ以上であることを特徴とする、請求項1から3のいずれか一項に記載の分離膜の汚染状況評価方法。 The microorganism detection method is one or more of a microscopic observation, a nuclear staining method, a method for detecting deoxyribonucleic acid, ribonucleic acid or adenosine phosphate, and a method for measuring the amount of luminescence derived from adenosine phosphate. The method for evaluating a contamination state of a separation membrane according to any one of claims 1 to 3, wherein
- 前記有機物検出方法が、吸光光度計を用いた糖類およびタンパク質の検出方法、並びに汚染物に染色液を接触させる糖類およびタンパク質の検出方法のうちの一つ以上であることを特徴とする、請求項1から4のいずれか一項に記載の分離膜の汚染状況評価方法。 The organic substance detection method is one or more of a saccharide and protein detection method using an absorptiometer, and a saccharide and protein detection method in which a staining solution is brought into contact with a contaminant. 5. The method for evaluating a contamination state of a separation membrane according to any one of 1 to 4.
- 前記微生物検出方法で得られた測定結果から前記分離膜の付着物中の微生物量を評価した結果と、前記有機物検出方法で得られた測定結果から前記分離膜の付着物中の有機物量を評価した結果とに基づいて、前記分離膜の汚染状況の評価を行うことを特徴とする、請求項1から5のいずれか一項に記載の分離膜の汚染状況評価方法。 The result of evaluating the amount of microorganisms in the deposit on the separation membrane from the measurement result obtained by the microorganism detection method and the amount of organic matter in the deposit on the separation membrane from the measurement result obtained by the organic matter detection method 6. The separation membrane contamination status evaluation method according to claim 1, wherein the separation membrane contamination status is evaluated based on the result.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018044357A JP2019155257A (en) | 2018-03-12 | 2018-03-12 | Method for evaluating contamination state of separation membrane |
JP2018-044357 | 2018-03-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019176825A1 true WO2019176825A1 (en) | 2019-09-19 |
Family
ID=67907097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/009575 WO2019176825A1 (en) | 2018-03-12 | 2019-03-11 | Method for evaluating contamination state of separation membrane |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019155257A (en) |
WO (1) | WO2019176825A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110865059A (en) * | 2019-11-27 | 2020-03-06 | 江南大学 | Method for monitoring growth process of MBR (membrane bioreactor) membrane surface organic pollutants in real time |
WO2022085802A1 (en) * | 2020-10-23 | 2022-04-28 | 国立研究開発法人理化学研究所 | Important factor calculation device for filter membrane fouling, fouling occurrence prediction device, important factor calculation method, fouling occurrence prediction method, program, trained model, storage medium, and trained model creation method |
JPWO2022234751A1 (en) * | 2021-05-06 | 2022-11-10 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011177604A (en) * | 2010-02-26 | 2011-09-15 | Hitachi Ltd | Seawater desalination apparatus |
JP2012106237A (en) * | 2010-10-21 | 2012-06-07 | Nitto Denko Corp | Membrane separation apparatus, membrane separation apparatus operation method and evaluation method using the membrane separation apparatus |
JP2013137279A (en) * | 2011-12-28 | 2013-07-11 | Hitachi Plant Technologies Ltd | Water quality evaluation method, control method for water treatment system, and water treatment system |
WO2013129111A1 (en) * | 2012-02-29 | 2013-09-06 | 東レ株式会社 | Water production method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101175698B1 (en) * | 2010-11-22 | 2012-08-21 | 광주과학기술원 | method for detecting biofouling of seawater desalination plant and system of the same |
JP2015134327A (en) * | 2014-01-17 | 2015-07-27 | 株式会社日立製作所 | Evaluation method of separation membrane surface, control method of water treatment system and water treatment system |
FI20156009A (en) * | 2015-12-23 | 2017-06-24 | Kemira Oyj | A method and apparatus for controlling and controlling deposit formation |
-
2018
- 2018-03-12 JP JP2018044357A patent/JP2019155257A/en active Pending
-
2019
- 2019-03-11 WO PCT/JP2019/009575 patent/WO2019176825A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011177604A (en) * | 2010-02-26 | 2011-09-15 | Hitachi Ltd | Seawater desalination apparatus |
JP2012106237A (en) * | 2010-10-21 | 2012-06-07 | Nitto Denko Corp | Membrane separation apparatus, membrane separation apparatus operation method and evaluation method using the membrane separation apparatus |
JP2013137279A (en) * | 2011-12-28 | 2013-07-11 | Hitachi Plant Technologies Ltd | Water quality evaluation method, control method for water treatment system, and water treatment system |
WO2013129111A1 (en) * | 2012-02-29 | 2013-09-06 | 東レ株式会社 | Water production method |
Also Published As
Publication number | Publication date |
---|---|
JP2019155257A (en) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Molecular spectroscopic characterization of membrane fouling: a critical review | |
WO2019176825A1 (en) | Method for evaluating contamination state of separation membrane | |
Yu et al. | Characterization of fluorescence foulants on ultrafiltration membrane using front-face excitation-emission matrix (FF-EEM) spectroscopy: Fouling evolution and mechanism analysis | |
ITRM20120218A1 (en) | DEVICE AND METHOD FOR ANALYSIS AND MONITORING OF TOXICITY IN WATERS. | |
Haas et al. | Unraveling the unseen players in the ocean-a field guide to water chemistry and marine microbiology | |
JP2005318890A (en) | Method for counting and identifying microorganism | |
Samendra et al. | Rapid detection technologies for monitoring microorganisms in water | |
Padisák et al. | Laboratory analyses of cyanobacteria and water chemistry | |
US8525130B2 (en) | Method for measuring biological contamination of sea water desalination facility and system thereof | |
Yin et al. | Establishment and application of a novel fluorescence-based analytical method for the rapid detection of viable bacteria in different samples | |
KR101175698B1 (en) | method for detecting biofouling of seawater desalination plant and system of the same | |
CN103940797B (en) | Utilize copper ion specific DNA and the method for SYBR Green I Fluorometric assay copper | |
Yu et al. | Characterization of activated sludge in wastewater treatment processes using front-face excitation–emission matrix (FF-EEM) fluorescence spectroscopy | |
US20240150815A1 (en) | Measurement method and measurement system | |
US20230391645A1 (en) | Water treatment method, control apparatus, and water treatment system | |
JP2022033527A (en) | Rna filter and rna filtering method | |
Salinas-Rodriguez et al. | Methods for Assessing Fouling and Scaling of Saline Water in Membrane-Based Desalination | |
Kaur et al. | Development of exobiopolymer-based biosensor for detection of phosphate in water | |
US20230393070A1 (en) | Method of detecting a biofilm in closed plants | |
Yun et al. | Accuracy of quantitative analysis of eDNA in seawater: comparison of filter pore size and real-time PCR methods | |
EP4194538A1 (en) | Nucleic acid extraction container and nucleic acid extraction method | |
US20090221013A1 (en) | Method for quantifying living coliform microorganisms in a water sample | |
CN113234837B (en) | Kit for detecting cotton bollworms based on terrestrial environment DNA and application thereof | |
US20240052431A1 (en) | Apparatus and method for quantifying environmental dna with no sample preparation | |
Salinas-Rodriguez et al. | 3 Methods for Assessing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19768314 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19768314 Country of ref document: EP Kind code of ref document: A1 |