WO2019176732A1 - Production method for tetrahydroisoquinoline ring-containing compound - Google Patents

Production method for tetrahydroisoquinoline ring-containing compound Download PDF

Info

Publication number
WO2019176732A1
WO2019176732A1 PCT/JP2019/009128 JP2019009128W WO2019176732A1 WO 2019176732 A1 WO2019176732 A1 WO 2019176732A1 JP 2019009128 W JP2019009128 W JP 2019009128W WO 2019176732 A1 WO2019176732 A1 WO 2019176732A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
compound represented
alkyl group
optionally substituted
Prior art date
Application number
PCT/JP2019/009128
Other languages
French (fr)
Japanese (ja)
Inventor
博毅 大栗
涼 谷藤
及川 英秋
Original Assignee
国立大学法人東京農工大学
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京農工大学, 国立大学法人北海道大学 filed Critical 国立大学法人東京農工大学
Priority to JP2020506453A priority Critical patent/JPWO2019176732A1/en
Publication of WO2019176732A1 publication Critical patent/WO2019176732A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/22Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/18Bridged systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4995Pyrazines or piperazines forming part of bridged ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing a compound having a structure in which a plurality of tetrahydroisoquinoline rings are linked, and particularly to a method for producing saframycins and analogs thereof.
  • the present invention also relates to an intermediate compound for synthesizing the compound.
  • the antitumor alkaloid group represented by saframycins is a compound having a complex pentacyclic skeleton in which a plurality of tetrahydroisoquinoline (THIQ) rings are linked.
  • THIQ tetrahydroisoquinoline
  • saframycin A compound 1
  • saframycin Y3 compound 2
  • Jornamycin A, Renieramycin M, Extenasaidin 743 Compounds 3 to 5 have been reported as a group of natural products sharing a similar pentacyclic mother skeleton.
  • Compounds 1 to 4 are composed of two THIQ rings and have a function of alkylating a guanine base of DNA with an iminium cation generated from an aminonitrile. Further, Compound 5 having both a nucleic acid alkylation site and a protein interaction site has been clinically applied as an anticancer drug ("Trabectedin", "Yonderis”).
  • Non-patent Documents 1 and 2 For the tetrahydroisoquinoline alkaloid compound group having such a unique structure and exhibiting excellent anticancer activity, various total synthesis studies have been actively developed (Non-patent Documents 1 and 2).
  • the above-mentioned ectenasaidin 743 (compound 5), which is an anticancer drug with a very complex polycyclic structure, is supplied in a multi-stage semi-synthetic cocoon (21 steps) cocoon obtained from cyanosafracin (compound 6) obtained by culture.
  • Non-Patent Document 3 Non-Patent Document 3
  • these conventionally reported synthesis processes involve complicated starting materials, and it is necessary to separate and purify the product every time the reaction is performed, so that there is a problem of production efficiency that requires a multi-step synthesis step. was there.
  • Non-patent Document 4 An enzyme with unique properties that forms a pentacyclic skeleton containing a THIQ ring by catalyzing imine formation between long-chain fatty acid aldehydes and amino acids and subsequent Pictet-Spengler (PS) -type cyclization This is reported (Non-patent Document 4).
  • an object of the present invention is to provide a production method capable of easily synthesizing a compound having a structure in which a plurality of tetrahydroisoquinoline rings are linked with fewer steps. It is another object of the present invention to provide a chemically modifiable intermediate that enables the synthesis of novel derivatives other than natural tetrahydroisoquinoline ring-containing alkaloids.
  • the present inventors have used a non-natural aldehyde substrate and a tyrosine derivative having a specific structure that do not exist in the biosynthetic pathway using a non-ribosome-dependent peptide synthase. It was found that a non-natural intermediate compound having a pentacyclic skeleton linked with a tetrahydroisoquinoline ring can be rapidly synthesized in one pot.
  • a non-natural aldehyde substrate having a specific structure chemical conversion after skeleton formation of an intermediate can be freely performed while ensuring adaptability to an enzyme reaction, and it is simple and highly efficient. It has been found that a class and its analogs are obtained. Based on these findings, the present invention has been completed.
  • ⁇ 1> A method for producing a compound represented by the following formula (I): Wherein X is —C (R 3 ) NH— or —C (R 3 ) O—; Y is —C ( ⁇ O) R 4 —NH—, —C ( ⁇ O) R 4 —O—, —S ( ⁇ O) 2 R 4 —NH—, —S ( ⁇ O) 2 R 4 —O—, —P ( ⁇ O) (OR 5 ) R 4 —NH—, or —P ( ⁇ O) (OR 5 ) R 4 —O—; Z is —C ( ⁇ O) R 6 , —C ( ⁇ O) OR 6 , —S ( ⁇ O) 2 R 6 , or —P ( ⁇ O) (OR 5 ) R 6 ; R 1 and R 2 are each independently a C 1 -C 10 alkyl group, which may be the same or different; R 3 is a hydrogen atom or a substituent An optional
  • Step A a compound represented by the following formula (a): (Wherein R 1 and R 2 have the same meaning as in formula (I).) A compound represented by the following formula (b): (In the formula, X, Y and Z have the same meaning as in formula (I).) A step of obtaining a compound represented by the following formula (II) by reacting in the presence of a non-ribosome-dependent peptide synthase (Wherein X, Y, Z, R 1 and R 2 have the same meaning as in formula (I)); [Step B] A step of adding a cyanide ion to the compound represented by the formula (II) to obtain a compound represented by the following formula (III) (Wherein X, Y, Z, R 1 and R 2 have the same meaning as in formula (I)); and [Step C] an aldehyde and a reducing agent for the compound represented by formula (III) N-alkylation of a secondary amine moiety by adding a compound to obtain a compound to obtain
  • the present invention provides ⁇ 6> From an intermediate compound represented by the following formula (I) Wherein X is —C (R 3 ) NH—; Y is —C ( ⁇ O) R 4 —NH—; Z is —C ( ⁇ O) OR 6 ; R 1 and R 2 are each independently a C 1 -C 10 alkyl group, which may be the same or different; R 3 is a hydrogen atom or an optionally substituted C 1 -C 5 alkyl group R 4 is an optionally substituted alkylene group; R 6 is a saturated or unsaturated hydrocarbon chain; R a is an optionally substituted alkyl group.)
  • Step E The production comprising the step of obtaining the compound represented by the formula (IV) by oxidizing the compound represented by the formula (V) in the presence of a transition metal catalyst and converting phenol to quinone.
  • the present invention provides: ⁇ 10> From the intermediate compound represented by the following formula (I) Wherein X is —C (R 3 ) NH—; Y is —C ( ⁇ O) R 4 —O—; Z is —C ( ⁇ O) R 6 ; R 1 and R 2 are each independently a C 1 -C 10 alkyl group, which may be the same or different; R 3 is a hydrogen atom or an optionally substituted C 1 -C 5 alkyl group R 4 is a 1-methylmethylene group; R 6 is a saturated or unsaturated hydrocarbon chain; R a is an optionally substituted alkyl group.)
  • a compound represented by the following formula (VII) is obtained by hydrolyzing the compound represented by the above formula (I) under basic conditions and converting the end of the Y site into
  • Step G A step of obtaining a compound represented by the following formula (VIII) by oxidizing the compound represented by the formula (VII) in the presence of a transition metal catalyst and converting phenol to quinone. (Wherein X, R 1 , R 2 and R a have the same meaning as in formula (I)); and [Step H] The compound represented by (VIII) is subjected to DMSO oxidation or hypervalence.
  • the production method comprising a step of obtaining a compound represented by the formula (VI) by converting a terminal OH group into a carbonyl group by oxidation with an iodine reagent; ⁇ 11>
  • the transition metal catalyst in is a cobalt complex, The manufacturing method as described in said ⁇ 10> or ⁇ 11> is provided.
  • the present invention also relates to the following intermediate compounds:
  • ⁇ 13> A compound represented by the following formula (I); Wherein X is —C (R 3 ) NH— or —C (R 3 ) O—; Y is —C ( ⁇ O) R 4 —NH—, —C ( ⁇ O) R 4 —O—, —S ( ⁇ O) 2 R 4 —NH—, —S ( ⁇ O) 2 R 4 —O—, —P ( ⁇ O) (OR 5 ) R 4 —NH—, or —P ( ⁇ O) (OR 5 ) R 4 —O—; Z is —C ( ⁇ O) R 6 , —C ( ⁇ O) OR 6 , —S ( ⁇ O) 2 R 6 , or —P ( ⁇ O) (OR 5 ) R 6 ; R 1 and R 2 are each independently a C 1 -C 10 alkyl group, which may be the same or different; R 3 is a hydrogen atom or a
  • ⁇ 14> The compound according to ⁇ 13>, selected from the group consisting of the following compounds; (Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.) ⁇ 15> a compound represented by the following formula (II); Wherein X is —C (R 3 ) NH— or —C (R 3 ) O—; Y is —C ( ⁇ O) R 4 —NH—, —C ( ⁇ O) R 4 —O—, —S ( ⁇ O) 2 R 4 —NH—, —S ( ⁇ O) 2 R 4 —O—, —P ( ⁇ O) (OR 5 ) R 4 —NH—, or —P ( ⁇ O) (OR 5 ) R 4 —O—; Z is —C ( ⁇ O) R 6 , —C ( ⁇ O) OR 6 , —S ( ⁇ O) 2 R 6 , or —P ( ⁇ O) (OR 5 ) R 6 ; R 1 and
  • a non-natural intermediate compound having a pentacyclic skeleton linked by a tetrahydroisoquinoline ring can be rapidly synthesized in one pot.
  • the terminal long-chain fatty acid moiety can be selectively removed even after the formation of the pentacyclic skeleton even in the presence of many other functional groups, compared with conventional synthesis methods.
  • an excellent effect is obtained that saframycins and analogs thereof can be efficiently obtained in a short process.
  • the intermediate compound of the present invention can not only selectively remove the long-chain fatty acid moiety, which has been difficult in the conventional enzyme-catalyzed reaction as described above, but also can be substituted with any substituent after the intermediate skeleton is formed. Since it can be introduced and subjected to chemical conversion freely, it can be applied to the synthesis of novel derivatives other than natural tetrahydroisoquinoline ring-containing alkaloids. Furthermore, there is an advantage that benzene rings / quinone rings at both ends of the pentacyclic skeleton involved in the activity expression of the final target product can be separately produced.
  • the “alkyl or alkyl group” may be any of an aliphatic hydrocarbon group composed of a straight chain, a branched chain, a ring, or a combination thereof.
  • the number of carbon atoms of the alkyl group is not particularly limited. For example, the number of carbon atoms is 1 to 20 (C 1-20 ), the number of carbons is 1 to 15 (C 1 to 15 ), and the number of carbon atoms is 1 to 10 (C 1 to 10).
  • the alkyl group may have one or more arbitrary substituents.
  • C 1-8 alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, isohexyl, n-heptyl, n-octyl and the like are included.
  • substituents examples include an alkoxy group, a halogen atom (which may be a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an amino group, a mono- or di-substituted amino group, a substituted silyl group, or Although acyl etc. can be mentioned, it is not limited to these.
  • the alkyl group has two or more substituents, they may be the same or different. The same applies to the alkyl part of other substituents containing an alkyl part (for example, an alkoxy group, an arylalkyl group, etc.).
  • alkylene is a divalent group consisting of a linear or branched saturated hydrocarbon, such as methylene, 1-methylmethylene, 1,1-dimethylmethylene, ethylene, 1-methylethylene, 1-ethylethylene, 1,1-dimethylethylene, 1,2-dimethylethylene, 1,1-diethylethylene, 1,2-diethylethylene, 1-ethyl-2-methylethylene, trimethylene, 1 -Methyltrimethylene, 2-methyltrimethylene, 1,1-dimethyltrimethylene, 1,2-dimethyltrimethylene, 2,2-dimethyltrimethylene, 1-ethyltrimethylene, 2-ethyltrimethylene, 1,1 -Diethyltrimethylene, 1,2-diethyltrimethylene, 2,2-diethyltrimethylene, 2-ethyl-2-methyltrime Len, tetramethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1,1-dimethyltetramethylene, 1,2-d
  • a functional group when a functional group is defined as “may be substituted”, the type of substituent, the position of substitution, and the number of substituents are not particularly limited, and two or more When they have a substituent, they may be the same or different.
  • the substituent group include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxyl group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, and an oxo group. These substituents may further have a substituent. Examples of such include, but are not limited to, a halogenated alkyl group.
  • acyl or acyl group may be either an aliphatic acyl group or an aromatic acyl group, or an aliphatic acyl group having an aromatic group as a substituent.
  • Acyl groups may contain one or more heteroatoms.
  • an alkylcarbonyl group such as an acetyl group
  • an alkyloxycarbonyl group such as an acetoxycarbonyl group
  • an arylcarbonyl group such as a benzoyl group
  • an aryloxycarbonyl group such as a phenyloxycarbonyl group
  • an aralkylcarbonyl group Benzylcarbonyl group
  • alkylthiocarbonyl group such as methylthiocarbonyl group
  • alkylaminocarbonyl group such as methylaminocarbonyl group
  • arylthiocarbonyl group such as phenylthiocarbonyl group
  • arylaminocarbonyl group phenylaminocarbonyl group
  • acyl groups may have one or more arbitrary substituents.
  • substituents include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and an acyl group.
  • the acyl group has two or more substituents, they may be the same or different.
  • the “aryl or aryl group” may be either a monocyclic or condensed polycyclic aromatic hydrocarbon group, and a hetero atom (for example, an oxygen atom, a nitrogen atom, Or a sulfur atom or the like). In this case, it may be referred to as “heteroaryl” or “heteroaromatic”. Whether aryl is a single ring or a fused ring, it can be attached at all possible positions. In the present specification, an aryl group may have one or more arbitrary substituents on the ring.
  • substituents examples include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and acyl.
  • the aryl group has two or more substituents, they may be the same or different. The same applies to the aryl moiety of other substituents containing the aryl moiety (for example, an aryloxy group and an arylalkyl group).
  • the “alkoxy group” is a structure in which the alkyl group is bonded to an oxygen atom, and examples thereof include a saturated alkoxy group that is linear, branched, cyclic, or a combination thereof.
  • methoxy group, ethoxy group, n-propoxy group, isopropoxy group, cyclopropoxy group, n-butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, cyclobutoxy group, cyclopropylmethoxy group, n- Pentyloxy group, cyclopentyloxy group, cyclopropylethyloxy group, cyclobutylmethyloxy group, n-hexyloxy group, cyclohexyloxy group, cyclopropylpropyloxy group, cyclobutylethyloxy group, cyclopentylmethyloxy group, etc. are preferable Take as an example.
  • ring structure when formed by a combination of two substituents, means a heterocyclic or carbocyclic ring, such ring being saturated, unsaturated, or aromatic. be able to. Accordingly, it includes cycloalkyl, cycloalkenyl, aryl, and heteroaryl as defined above.
  • phenolic OH group or phenolic hydroxyl group means an OH group bonded to an arbitrary position on the benzene ring.
  • a specific substituent can form a ring structure with another substituent, and when such substituents are bonded to each other, those skilled in the art will recognize a specific substituent, for example, hydrogen. It can be understood that the bonds are formed. Therefore, when it is described that specific substituents together form a ring structure, those skilled in the art can understand that the ring structure can be formed by an ordinary chemical reaction and can be easily generated. Both such ring structures and their process of formation are within the purview of those skilled in the art. Moreover, the said heterocyclic structure may have arbitrary substituents on the ring.
  • the intermediate compound represented by the formula (I) has a pentacyclic skeleton in which two tetrahydroisoquinoline (THIQ) rings are connected.
  • the XYZ moiety in the molecule is a side chain containing a long-chain alkyl necessary for proceeding with the enzyme reaction in Step A described later. Since saframycins such as saframycin Y3 and saframycin A have the pentacyclic skeleton as a common skeleton, the long chain alkyl moiety in XYZ is finally cleaved and removed. Saframycins are obtained. Therefore, a desired target product can be obtained by selecting the linker portions of X and Y together with the structure of the target product.
  • R 4 is an optionally substituted alkylene group.
  • X and Y can be selected according to the desired structure of the target object.
  • X is —C (R 3 ) NH—
  • Y is —C ( ⁇ O) R 4 —NH—.
  • —NHC ( ⁇ O) O— in the connecting portion of X and Y has a structure called carbamate or urethane.
  • X is preferably —C (R 3 ) NH—
  • Y is preferably —C ( ⁇ O) R 4 —O—.
  • R 3 in X is a hydrogen atom or an optionally substituted C 1 -C 5 alkyl group, preferably a hydrogen atom or a methyl group.
  • R 4 which is a linking group in Y is an optionally substituted alkylene group.
  • a C 2 -alkylene group is preferred, and 1-methylmethylene (—CH (CH 3 ) —) is more preferred.
  • R 4 -NH- or -P ( O) (OR 5 )
  • R 4 -O- 5 Is an optionally substituted C 1 -C 5 alkyl group, preferably methyl.
  • Z is —C ( ⁇ O) R 6 , —C ( ⁇ O) OR 6 , —S ( ⁇ O) 2 R 6 , or —P ( ⁇ O) (OR 5 ) R 6 .
  • R 6 is a saturated or unsaturated hydrocarbon chain.
  • the number of carbon atoms of R 6 is not particularly limited, but is preferably a C 5 -C 30 alkyl group, and more preferably a C 10 -C 20 alkyl group.
  • R 1 and R 2 are each independently a C 1 -C 10 alkyl group which may be the same or different, preferably a methyl group. More preferably, each of R 1 and R 2 is preferably a methyl group. However, any substituent other than an alkyl group can be used depending on the final product of interest.
  • R a is a substituent on the tertiary amine in the pentacyclic skeleton.
  • R a is preferably an optionally substituted alkyl group, and more preferably a methyl group.
  • substituents other than alkyl groups can be used depending on the final product of interest.
  • the method for producing an intermediate compound represented by the formula (I) of the invention includes the following steps A to C. That is, in Step A, a precursor compound (II) having a pentacyclic skeleton in which two THIQ rings are linked by an enzymatic reaction is synthesized, and in Steps B and C, this is subjected to cyanation and reductive N-methylation. Thus, an intermediate compound represented by the formula (I) is obtained.
  • Step A Enzyme-catalyzed reaction
  • Step A comprises a compound represented by the following formula (a):
  • Step A comprises the steps of THIQ ring formation and pentacyclic skeleton formation from a compound represented by formula (a) which is a tyrosine derivative and a compound represented by formula (b) which is a non-natural aldehyde substrate.
  • Reaction is performed to produce precursor compound (II).
  • the reaction is a biosynthetic reaction using an enzyme as a catalyst.
  • the enzyme used in Step A is a module constituting at least a part of a peptide synthase called non-ribosomal peptide synthetase (NRPS).
  • NRPS non-ribosomal peptide synthetase
  • NRPS is a huge multi-module enzyme complex with a molecular weight of several thousand kDa, and is known to synthesize short-chain physiologically active peptides without going through ribosomes.
  • a module which is a repeating unit constituting NRPS, captures an activated amino acid as a thioester by recognizing and activating an amino acid serving as a substrate (A domain: adenylation domain), and forms a covalent bond.
  • Basic composition of peptidyl carrier protein site (PCP site) also referred to as T domain (thiolation domain)
  • condensation domain C domain condensation domain
  • SfmC which is a module of saframycin A biosynthetic enzyme is preferably used.
  • This SfmC enzyme does not promote peptide formation, which is the original function, but imine formation between a long-chain fatty acid aldehyde and an amino acid (L-tyrosine derivative), followed by Pictet-Spenger (PS) -type cyclization
  • PS Pictet-Spenger
  • the SfmC enzyme is a PS domain that catalyzes the Pictet-Spengler reaction; an A domain that recognizes and activates L-tyrosine as a substrate; PCP that converts activated amino acids into thioesters and loads them onto the enzyme (Peptidyl carrier protein site); and a Red domain that reduces the thioester.
  • the PS domain originally corresponds to the C domain (condensation domain) that catalyzes peptide bonds, but here it is referred to as a “PS domain” because it catalyzes a position- and stereoselective Pictet-Spangler reaction. ing.
  • Non-Patent Document 4 The details of the reaction mechanism of pentacyclic skeleton formation by the SfmC enzyme are described in Non-Patent Document 4, and a method for producing the SfmC enzyme is also described. Therefore, those skilled in the art can understand that the SfmC enzyme is obtained and used by referring to the literature.
  • Step A of the present invention it is preferable to add ATP, NADPH, Mg 2+ and Mn 2+ .
  • non-natural aldehyde substrate represented by the formula (b) include the following compounds. However, it is not limited to this.
  • Z a is a C 6 -C 20 alkyl group
  • Me represents a methyl group
  • Step B Cyanation Reaction Step B is a step of adding a cyanide compound to the compound represented by the formula (II) obtained in Step A to convert an OH group on the pentacyclic skeleton to a cyano group (CN Group) to obtain a compound represented by the following formula (III).
  • cyan compound used in Step B a compound containing cyanide ions can be used.
  • an alkali metal cyanide such as potassium cyanide (KCN).
  • KCN potassium cyanide
  • a cyanating agent known in the art can be used.
  • Step C N-alkylation reaction
  • the compound represented by the formula (III) obtained in the above Step A is N-alkylated at the secondary amine moiety by adding an aldehyde and a reducing agent, In this step, a compound represented by (I) is obtained.
  • the aldehyde used in Step C is selected according to the type of alkyl group added by N-alkylation. For example, when adding a methyl group, formaldehyde is used.
  • a reducing agent the compound well-known in the said technical field used in a reductive amination reaction can be used.
  • a borohydride compound such as sodium triacetoxyborohydride or sodium cyanoborohydride can be used.
  • the present invention also relates to a method for producing saframycins using an intermediate compound represented by the following formula (I).
  • a method for producing saframycin Y3 and a derivative thereof (“saframycin Y3 compound”) and a method for producing saframycin A and a derivative thereof (“saframycin A compound”) will be described below.
  • the compound of the formula (IV) has a structure corresponding to saframycin Y3, and the Z-site of the side chain is converted to A in the pentacyclic skeleton, and the end of Y is the amino group end or the hydrogen of the amino group A compound having an atom as a protecting group.
  • a protecting group known in the art such as a carbamate group such as Fmoc, Boc or Alloc (allyloxycarbonyl), an ester group, a sulfonate group or a silyl group can be used.
  • A is a protecting group, the terminal can be changed to an amino group in the same manner as saframycin Y3 by subsequent deprotection.
  • X is —C (R 3 ) NH—
  • Y is —C ( ⁇ O) R 4 —NH—
  • Z is It is preferred to use a compound that is —C ( ⁇ O) OR 6 .
  • R 1 , R 2 , and R a may be the same as those described above for formula (I).
  • the method for producing the saframycin Y3 compound includes the following steps D and E.
  • Step D the acyl chain is removed from the Z site of the side chain and converted to an amino group or a protected amino group.
  • Step E the phenol in the pentacyclic skeleton is converted to quinone.
  • Step D Conversion reaction of side chain to amino group (removal of acyl chain)
  • step D the intermediate compound represented by formula (I) is converted to A which is an amino group or a protected amino group by removing the acyl chain from the Z site in the presence of a transition metal catalyst.
  • step D a compound represented by formula (V) is obtained.
  • X, Y, A, R 1 , R 2 and R a have the same meaning as in formula (IV).
  • the conversion from the Z site to A can be performed in one step by including “—NHC ( ⁇ O) O—” in X and Y, that is, a carbamate structure or a urethane structure. It has been done. Conventionally, in the situation where there are many other functional groups, selective removal and amination of the terminal acyl chain has been difficult, and thus such a conversion reaction can be achieved for the first time by the present invention.
  • the transition metal catalyst used in Step D is preferably a palladium complex.
  • Specific examples of the palladium complex include tetrakis (triphenylphosphine) palladium.
  • Step E Oxidation reaction to quinone Step E oxidizes the compound represented by the formula (V) obtained in Step D in the presence of a transition metal catalyst to convert the phenol moiety in the pentacyclic skeleton to quinone. This is a step of obtaining a saframycin Y3 compound represented by the above formula (IV).
  • the transition metal catalyst used is preferably a cobalt complex.
  • the cobalt complex include sarcomin (N, N'-ethylenebis (salicylideneaminato) cobalt (II)), Fremy salt (potassium nitrosodisulfonate), and the like.
  • R 1 , R 2 and R a are all methyl groups; R 4 is —CH (CH 3 ) — and A is a hydrogen atom.
  • the compound of formula (IV) is saframycin Y3.
  • the compound of the formula (VI) has a structure corresponding to saframycin A, and is a compound having a carbonyl group terminal by converting the YZ site of the side chain into a pentacyclic skeleton.
  • X is —C (R 3 ) NH—
  • Y is —C ( ⁇ O) R 4 —O—
  • Z is It is preferred to use a compound that is —C ( ⁇ O) R 6 .
  • R 1 , R 2 , and R a may be the same as those described above for formula (I).
  • the method for producing the saframycin A compound includes the following steps F to H.
  • Step F the acyl chain is removed from the YZ site of the side chain and converted to an OH group.
  • Step G the phenol in the pentacyclic skeleton is converted to quinone.
  • Step H the OH group at the end of the side chain is converted. Converted to a carbonyl group.
  • Step F Conversion reaction of side chain to OH group (removal of acyl chain)
  • Step F is a compound represented by the following formula (VII) by hydrolyzing the compound represented by the formula (I) under basic conditions and converting it to the OH group terminal from which the YZ site acyl chain has been removed.
  • the conversion from the YZ site to the OH group end can be performed in one step by using “—OC ( ⁇ O) —”, ie, an ester structure, as the linking part of Y and Z. It was discovered for the first time.
  • hydroxide ions OH ⁇
  • an alkali metal hydroxide such as lithium hydroxide can be used.
  • Step G Oxidation reaction to quinone Step G involves oxidation of the compound of formula (VII) obtained in Step F in the presence of a transition metal catalyst to convert the phenol moiety in the pentacyclic skeleton to quinone. And a step of obtaining a compound represented by the following formula (VIII). This process is the same reaction as in Step E above. (In the formula, X, R 1 , R 2 and R a have the same meaning as in formula (I).)
  • the transition metal catalyst used is preferably a cobalt complex.
  • the cobalt complex include sarcomin (N, N′-ethylenebis (salicylideneiminato) cobalt (II)), Fremy salt (potassium nitrosodisulfonate), and the like.
  • Step H Carbonylation of terminal OH group
  • Step H is a step of oxidizing the compound of formula (VIII) obtained in Step G using DMSO oxidation or a hypervalent iodine reagent to convert the terminal OH group to a carbonyl group.
  • This is a step of obtaining a saframycin A-based compound represented by the formula (VI).
  • Hypervalent iodine reagent used in Step H preferably a compound containing pentavalent iodine, typically 1,1,1-triacetoxy-1,1-dihydro-1, called Dess-Martin reagent Mention may be made of 2-benziodoxol-3 (1H) -one.
  • DMSO oxidation can be performed using a known activator, and examples of the activator include oxalyl chloride. In addition to these, oxidation can be carried out using compounds and reagents well known in the art.
  • R 1 , R 2 and Ra are all methyl groups; R 3 is a hydrogen atom.
  • the final product, the compound of formula (VI), is saframycin A.
  • the manufacturing method of the OH group-terminated compound includes the following steps D2 and E2.
  • Step D2 the acyl chain is removed from the XYZ site of the side chain to convert it to an OH group
  • Step E2 the phenol site in the pentacyclic skeleton is converted to quinone.
  • Step D2 Side chain OH reaction (acyl chain removal)
  • the intermediate compound represented by formula (I) is hydrolyzed under basic conditions to remove the acyl chain from the XYZ site of the side chain, and the XYZ site is This is a step of converting to a C (R 3 ) OH group.
  • step D2 hydroxide ions (OH ⁇ ) are preferably added in order to achieve basic conditions.
  • an alkali metal hydroxide such as lithium hydroxide can be used.
  • the conversion from the XYZ moiety to the primary hydroxyl group is carried out in one step by using “—O—C ( ⁇ O) R 3 ”, that is, an ester structure, as the linking part of X and Y. It has been found for the first time in the present invention. Conventionally, it has been difficult for the present invention to achieve such a conversion reaction for the first time because selective removal of an acyl chain and OH formation have been difficult in the presence of many other functional groups.
  • Step E2 Oxidation reaction to quinone Step E2 is a step of oxidizing the compound obtained in Step D2 in the presence of a transition metal catalyst to convert the phenol moiety in the pentacyclic skeleton to quinone. This process is the same reaction as in Step E above.
  • the transition metal catalyst used is preferably a cobalt complex.
  • the cobalt complex include sarcomin (N, N′-ethylenebis (salicylideneiminato) cobalt (II)), Fremy salt (potassium nitrosodisulfonate), and the like.
  • reaction conditions such as the solvent and reaction temperature in each step of the production method of the present invention described above are described in detail as typical examples in the examples described later, but are not necessarily limited thereto. Those skilled in the art can appropriately select each based on general knowledge in organic synthesis.
  • the intermediate compound represented by formula (I) has the following structure. (Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
  • the precursor compound represented by formula (II) has the following structure. (Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
  • the non-natural aldehyde substrate represented by the formula (b) is selected from the following compounds:
  • the intermediate compound represented by formula (I) has the following structure. (Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
  • the precursor compound represented by formula (II) has the following structure. (Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
  • Various intermediate compounds or products in the present invention have a plurality of asymmetric carbons, and there exist stereoisomers such as optical isomers or diastereoisomers, but pure forms of stereoisomers and stereoisomers are present. Any mixtures, racemates and the like are included within the scope of the present invention.
  • various intermediate compounds or products in the present invention may exist as hydrates or solvates, and any of these substances is included in the scope of the present invention.
  • solvents such as ethanol, acetone, isopropanol, can be illustrated.
  • Multiplicity is described as s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), m (multiplet), br (broad) .
  • Bruker Daltonics micrOTOF-QII was used.
  • Medium pressure liquid chromatography (MPLC) purification was performed with YAMAZEN YFLC-AI-580 and Biotage Isolera.
  • Dess-Martin periodinane and sarcomin were obtained from Tokyo Chemical Industry Co., Ltd.
  • ATP sodium salt trihydrate
  • EDC / HCl, HATU and HBTU were purchased from Watanabe Chemical Co., Ltd.
  • Grubbs catalyst first generation and Pd (PPh 3 ) 4 were obtained from Sigma-Aldrich. NADPH and NADH were purchased from Oriental Yeast Co. Ltd. All reagents and commercially available solvents were used as received. The reaction was monitored by thin layer chromatography using Merck Millipore TLC silica gel F254 plates (0.25 mm). Flash column chromatography was performed using Kanto Silica Gel 60N.
  • tyrosine derivative (Compound 1) was synthesized by using a non-patent document 5 (Tanifuji, R .; Oguri, H .; Koketsu, K .; Yoshinaga, Y .; Minami, A .; Oikawa, H. Tetrahedron Lett. 2016 , 57, 623.).
  • Aldehyde substrate 1 (Compound 11) was synthesized from Compound 6 according to the following reaction scheme.
  • Aldehyde substrate 11 (Compound 4) was synthesized from Compound 8 according to the following reaction scheme.
  • Ozone was bubbled through a solution of 10 (209 mg, 0.616 mmol) in CHCl 3 (140 mL, 4.4 mM) at ⁇ 30 ° C. until the solution turned blue-violet. Excess ozone was removed from the solution by bubbling oxygen and nitrogen. After repeating this process once more, Me 2 S (1.37 mL, 18.5 mmol, 30 eq) was added and stirred at ⁇ 30 ° C. for 10 minutes and at room temperature for 40 minutes. After concentration under reduced pressure, the crude residue was purified by silica gel column chromatography (CHCl 3 / AcOEt) to obtain 11 (168 mg, 0.493 mmol, 80%) as a white solid.
  • the residue was purified by HPLC using Inertsilsustain C18 (GL Sciences, ⁇ 10 ⁇ 250 mm, 5 ⁇ m) under the following conditions: increasing the ratio of MeCN to water from 30% to 75% with a linear gradient for 35 minutes It was. At this time, the flow rate was 5.0 mL / min, the column temperature was room temperature, and the wavelength of the UV detector was 280 nm. Fractions containing the desired product were concentrated under reduced pressure to give compound 13 (1.37 mg, 1.84 ⁇ mol, 23% yield over 3 steps). The resulting compound 13 was analyzed by a series of NMR measurements including 1 H-NMR, 13 C-NMR, H-COSY, HSQC, HMBC and ROESY.
  • the residue was purified by HPLC using Inertsustain C18 (GL Sciences, ⁇ 10 ⁇ 250 mm, 5 ⁇ m) under the following conditions: Increase the ratio of MeCN to water from 30% to 75% with a linear gradient for 30 minutes. It was. At this time, the flow rate was 5.0 mL / min, the column temperature was room temperature, and the wavelength of the UV detector was 280 nm. Fractions containing the desired product were concentrated under reduced pressure to give compound 15 (10.4 mg, 13.7 ⁇ mol, 80% yield over 2 steps). The resulting compound 15 was analyzed by a series of NMR measurements including 1 H-NMR, 13 C-NMR, H-COSY, HSQC, HMBC and ROESY.
  • the organic extract was washed with saturated brine and dried over Na 2 SO 4 . After filtration and concentration in vacuo, the crude product was passed through Sep-Pak® C18 and eluted with MeCN. After concentration, the residue was purified by HPLC using Inertsustain C18 (GL Sciences, ⁇ 10 ⁇ 250 mm, 5 ⁇ m) under the following conditions: Increase the ratio of MeCN to water from 30% to 75% with a linear gradient for 30 minutes. It was. At this time, the flow rate was 5.0 mL / min, the column temperature was room temperature, and the wavelength of the UV detector was 280 nm.
  • Triethylamine (56.4 ⁇ L, 40.9 mg, 404 ⁇ mol, 30 equivalents) was added to the obtained mixture at ⁇ 78 ° C., and the mixture was stirred for 10 minutes.
  • the reaction solution was heated to 0 ° C. over 50 minutes, then passed through Sep-Pak (registered trademark) Florisil and eluted with AcOEt. After concentration, the residue was purified by HPLC using Inertsil Diol (GL Sciences, ⁇ 10 ⁇ 250 mm, 5 ⁇ m) under the following conditions: The ratio of AcOEt acetate to hexane was 30% to 60% in a straight line for 30 minutes. Increased with gradient.

Abstract

[Problem] To provide a production method capable of easily synthesizing a compound having a structure in which a plurality of tetrahydroisoquinoline rings are linked together, using a reduced number of steps. [Solution] It was found that a non-naturally-occurring intermediate compound having a pentacyclic backbone in which tetrahydroisoquinoline rings are linked together, can be quickly one-pot synthesized by reacting a tyrosine derivative with a non-naturally-occurring aldehyde substrate having a particular structure by using a nonribosomal peptide synthetase. Also, it was found that saframycins and analogs thereof can be easily and highly efficiently obtained using a non-naturally-occurring aldehyde substrate having a particular structure, where adaptiveness to an enzyme reaction is ensured, and chemical transformation of the intermediate after formation of the backbone can be freely performed.

Description

テトラヒドロイソキノリン環含有化合物の製造方法Method for producing tetrahydroisoquinoline ring-containing compound
 複数のテトラヒドロイソキノリン環が連結した構造を有する化合物の製造方法、特にサフラマイシン類及びその類縁体の製造方法に関する。また、本発明は、当該化合物を合成するための中間体化合物にも関する。 The present invention relates to a method for producing a compound having a structure in which a plurality of tetrahydroisoquinoline rings are linked, and particularly to a method for producing saframycins and analogs thereof. The present invention also relates to an intermediate compound for synthesizing the compound.
 サフラマイシン類に代表される抗腫瘍性アルカロイド群は、テトラヒドロイソキノリン(THIQ)環が複数連結した複雑な五環性骨格を有する化合物である。例えば、サフラマイシン類であるサフラマイシンA(化合物1)及びサフラマイシンY3(化合物2)は以下に示す構造を有している。その他にも同様の五環性母骨格を共有する天然物群として、ジョルナマイシンA、レニエラマイシンM、エクテナサイジン743(化合物3~5)など、数多くの類縁体が報告されている。化合物1~4は、二つのTHIQ環で構成され、アミノニトリルから生じるイミニウムカチオンでDNAのグアニン塩基をアルキル化する機能を有している。また、核酸アルキル化部位とタンパク質相互作用部位を併せ持つ化合物5は制ガン薬(「トラベクテジン」、「ヨンデリス」)として臨床応用がなされている。
Figure JPOXMLDOC01-appb-C000020
The antitumor alkaloid group represented by saframycins is a compound having a complex pentacyclic skeleton in which a plurality of tetrahydroisoquinoline (THIQ) rings are linked. For example, saframycin A (compound 1) and saframycin Y3 (compound 2), which are saframycins, have the structures shown below. In addition, many analogs such as Jornamycin A, Renieramycin M, Extenasaidin 743 (Compounds 3 to 5) have been reported as a group of natural products sharing a similar pentacyclic mother skeleton. Compounds 1 to 4 are composed of two THIQ rings and have a function of alkylating a guanine base of DNA with an iminium cation generated from an aminonitrile. Further, Compound 5 having both a nucleic acid alkylation site and a protein interaction site has been clinically applied as an anticancer drug ("Trabectedin", "Yonderis").
Figure JPOXMLDOC01-appb-C000020
 このような特異な構造を持ち、優れた制ガン作用を発現するテトラヒドロイソキノリンアルカロイド化合物群については、種々の全合成研究が活発に展開されてきた(非特許文献1及び2)。また、極めて複雑な多環性構造の制ガン薬である上記エクテナサイジン743(化合物5)は、培養で得られるシアノサフラシン(化合物6)からの多段階半合成 (21工程) で供給されている(非特許文献3)。しかし、従来報告されているこれらの合成工程は、出発原料が複雑であり、また、反応を行う度に生成物を分離精製する必要があるため、多段階の合成ステップを要するという生産効率の問題があった。 For the tetrahydroisoquinoline alkaloid compound group having such a unique structure and exhibiting excellent anticancer activity, various total synthesis studies have been actively developed (Non-patent Documents 1 and 2). In addition, the above-mentioned ectenasaidin 743 (compound 5), which is an anticancer drug with a very complex polycyclic structure, is supplied in a multi-stage semi-synthetic cocoon (21 steps) cocoon obtained from cyanosafracin (compound 6) obtained by culture. (Non-Patent Document 3). However, these conventionally reported synthesis processes involve complicated starting materials, and it is necessary to separate and purify the product every time the reaction is performed, so that there is a problem of production efficiency that requires a multi-step synthesis step. was there.
 一方、これまで、発明者らは、サフラマイシンAの生合成を触媒する非リボソーム依存型ペプチド合成酵素(NRPS)であるSfmCモジュールタンパク質が、元来の機能であるぺプチド形成を促進せず、長鎖脂肪酸アルデヒドとアミノ酸との間でのイミン形成及びその後のPictet-Spengler (PS) 型環化を触媒することで、THIQ環を含む五環性骨格を形成させる特異な特性を有する酵素であることを報告している(非特許文献4)。しかしながら、他の官能基が分子内に多数存在する状況で、かかる酵素反応に必須の長鎖脂肪酸部分を選択的に除去することは極めて困難であった。そのため、酵素反応を利用して五環性骨格を形成させた後に、目的とするサフラマイシン類や化学修飾による新規類縁体の化学合成には制限があった。 On the other hand, to date, the inventors have not promoted peptide formation, which is the original function of SfmC module protein, which is a non-ribosome-dependent peptide synthase (NRPS) that catalyzes biosynthesis of saframycin A, An enzyme with unique properties that forms a pentacyclic skeleton containing a THIQ ring by catalyzing imine formation between long-chain fatty acid aldehydes and amino acids and subsequent Pictet-Spengler (PS) -type cyclization This is reported (Non-patent Document 4). However, in the situation where there are many other functional groups in the molecule, it has been extremely difficult to selectively remove the long-chain fatty acid moiety essential for such enzymatic reaction. Therefore, after forming a pentacyclic skeleton using an enzymatic reaction, there has been a limit to the chemical synthesis of the desired saframycins and novel analogs by chemical modification.
 このような背景から、本発明は、複数のテトラヒドロイソキノリン環が連結した構造を有する化合物をより少ない工程で簡便に合成することができる製造方法を提供することを課題とする。また、天然のテトラヒドロイソキノリン環含有アルカロイド群以外の新規誘導体の合成をも可能とする化学修飾可能な中間体を提供することも課題とする。 From such a background, an object of the present invention is to provide a production method capable of easily synthesizing a compound having a structure in which a plurality of tetrahydroisoquinoline rings are linked with fewer steps. It is another object of the present invention to provide a chemically modifiable intermediate that enables the synthesis of novel derivatives other than natural tetrahydroisoquinoline ring-containing alkaloids.
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、生合成経路には存在しない特定の構造を有する非天然型アルデヒド基質とチロシン誘導体を、非リボソーム依存型ペプチド合成酵素を用いて反応させることで、テトラヒドロイソキノリン環が連結した五環性骨格を有する非天然型中間体化合物をワンポットで迅速に合成できることを見出した。また、特定の構造を有する非天然型アルデヒド基質を用いることで、酵素反応への適応性を確保しつつ、中間体の骨格形成後の化学変換を自在に実施でき、簡便かつ高効率でサフラマイシン類及びその類縁体が得られることを見出した。これら知見に基づき、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have used a non-natural aldehyde substrate and a tyrosine derivative having a specific structure that do not exist in the biosynthetic pathway using a non-ribosome-dependent peptide synthase. It was found that a non-natural intermediate compound having a pentacyclic skeleton linked with a tetrahydroisoquinoline ring can be rapidly synthesized in one pot. In addition, by using a non-natural aldehyde substrate having a specific structure, chemical conversion after skeleton formation of an intermediate can be freely performed while ensuring adaptability to an enzyme reaction, and it is simple and highly efficient. It has been found that a class and its analogs are obtained. Based on these findings, the present invention has been completed.
 すなわち、本発明は、一態様において、
<1> 以下の式(I)で表される化合物を製造する方法であって
Figure JPOXMLDOC01-appb-C000021
(式中、Xは、-C(R)NH-又は-C(R)O-であり、;Yは、-C(=O)R-NH-、-C(=O)R-O-、-S(=O)-NH-、-S(=O)-O-、-P(=O)(OR)R-NH-、又は-P(=O)(OR)R-O-であり;Zは、-C(=O)R、-C(=O)OR、-S(=O)、又は-P(=O)(OR)Rであり;R及びRは、それぞれ独立に、同一でも異なっていてもよい、C-C10アルキル基であり;Rは、水素原子又は置換されていてもよいC-Cアルキル基であり;Rは、置換されていてもよいアルキレン基であり;Rは、置換されていてもよいC-Cアルキル基であり;Rは、飽和又は不飽和の炭化水素鎖であり;Rは、置換されていてもよいアルキル基である。)、
 [ステップA]以下の式(a)で表される化合物と、
Figure JPOXMLDOC01-appb-C000022
(式中、R及びRは、式(I)中と同じ意味を有する。)
以下の式(b)で表される化合物とを、
Figure JPOXMLDOC01-appb-C000023
(式中、X、Y、及びZは、式(I)中と同じ意味を有する。)
非リボソーム依存型ペプチド合成酵素の存在下で反応させることによって、以下の式(II)で表される化合物を得る工程
Figure JPOXMLDOC01-appb-C000024
(式中、X、Y、Z、R及びRは、式(I)中と同じ意味を有する。);
 [ステップB]前記式(II)で表される化合物にシアン化物イオンを添加し、以下の式(III)で表される化合物を得る工程
Figure JPOXMLDOC01-appb-C000025
(式中、X、Y、Z、R及びRは、式(I)中と同じ意味を有する。);及び
 [ステップC]前記式(III)で表される化合物にアルデヒド及び還元剤を添加することにより第二級アミン部位をN-アルキル化し、前記式(I)で表される化合物を得る工程を含む、該製造方法;
<2>前記非リボソーム依存型ペプチド合成酵素が、サフラマイシンA生合成酵素SfmCである、上記<1>に記載の製造方法;
<3>前記ステップAにおいて、ATP、NADPH、Mg2+、及びMn2+を添加することを含む、上記<1>又は<2>に記載の製造方法;
<4>R及びRが、いずれもメチル基である、上記<1>~<3>のいずれか1に記載の製造方法;及び
<5>式(b)で表される化合物が、以下の化合物よりなる群から選択される、上記<1>~<4>のいずれか1に記載の製造方法;
Figure JPOXMLDOC01-appb-C000026
(式中、Zは、C6-C20アルキル基であり、Meはメチル基を表す。)
を提供するものである。
That is, the present invention in one aspect,
<1> A method for producing a compound represented by the following formula (I):
Figure JPOXMLDOC01-appb-C000021
Wherein X is —C (R 3 ) NH— or —C (R 3 ) O—; Y is —C (═O) R 4 —NH—, —C (═O) R 4 —O—, —S (═O) 2 R 4 —NH—, —S (═O) 2 R 4 —O—, —P (═O) (OR 5 ) R 4 —NH—, or —P (═O) (OR 5 ) R 4 —O—; Z is —C (═O) R 6 , —C (═O) OR 6 , —S (═O) 2 R 6 , or —P (═O) (OR 5 ) R 6 ; R 1 and R 2 are each independently a C 1 -C 10 alkyl group, which may be the same or different; R 3 is a hydrogen atom or a substituent An optionally substituted C 1 -C 5 alkyl group; R 4 is an optionally substituted alkylene group; R 5 is an optionally substituted C 1 -C 5 alkyl group; R 6 is a saturated or A hydrocarbon chain, saturated; R a is optionally substituted alkyl group).
[Step A] a compound represented by the following formula (a):
Figure JPOXMLDOC01-appb-C000022
(Wherein R 1 and R 2 have the same meaning as in formula (I).)
A compound represented by the following formula (b):
Figure JPOXMLDOC01-appb-C000023
(In the formula, X, Y and Z have the same meaning as in formula (I).)
A step of obtaining a compound represented by the following formula (II) by reacting in the presence of a non-ribosome-dependent peptide synthase
Figure JPOXMLDOC01-appb-C000024
(Wherein X, Y, Z, R 1 and R 2 have the same meaning as in formula (I));
[Step B] A step of adding a cyanide ion to the compound represented by the formula (II) to obtain a compound represented by the following formula (III)
Figure JPOXMLDOC01-appb-C000025
(Wherein X, Y, Z, R 1 and R 2 have the same meaning as in formula (I)); and [Step C] an aldehyde and a reducing agent for the compound represented by formula (III) N-alkylation of a secondary amine moiety by adding a compound to obtain a compound represented by the formula (I);
<2> The production method according to <1>, wherein the non-ribosome-dependent peptide synthase is saframycin A biosynthetic enzyme SfmC;
<3> The production method according to <1> or <2> above, which comprises adding ATP, NADPH, Mg 2+ , and Mn 2+ in Step A;
<4> The production method according to any one of <1> to <3>, wherein R 1 and R 2 are both methyl groups; and <5> the compound represented by formula (b): The production method according to any one of the above <1> to <4>, selected from the group consisting of the following compounds;
Figure JPOXMLDOC01-appb-C000026
(Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
Is to provide.
 一つの好ましい態様において、本発明は、
<6>以下の式(I)で表される中間体化合物から
Figure JPOXMLDOC01-appb-C000027
(式中、Xは、-C(R)NH-であり;Yは、-C(=O)R-NH-であり;Zは、-C(=O)ORであり;R及びRは、それぞれ独立に、同一でも異なっていてもよい、C-C10アルキル基であり;Rは、水素原子又は置換されていてもよいC-Cアルキル基であり;Rは、置換されていてもよいアルキレン基であり;Rは、飽和又は不飽和の炭化水素鎖であり;Rは、置換されていてもよいアルキル基である。)
以下の式(IV)で表される化合物を製造する方法であって
Figure JPOXMLDOC01-appb-C000028
(式中、X、Y、R、R及びRは、式(I)中と同じ意味を有し、Aは、水素原子又は保護基である。);
 [ステップD] 遷移金属触媒存在下において前記式(I)で表される化合物のZ部位をAに変換することにより、以下の式(V)で表される化合物を得る工程
Figure JPOXMLDOC01-appb-C000029
(式中、X、Y、A、R、R及びRは、式(IV)中と同じ意味を有する。)
 [ステップE] 前記式(V)で表される化合物を遷移金属触媒存在下において酸化し、フェノールをキノンに変換することにより、前記式(IV)で表される化合物を得る工程を含む該製造方法;
<7>R、R及びRが、いずれもメチル基であり;Rが、水素原子であり;Rが、-CH(CH)-である、上記<6>に記載の製造方法;
<8>ステップDにおける遷移金属触媒が、パラジウム錯体である、上記<6>又は<7>に記載の製造方法;及び
<9>ステップEにおける遷移金属触媒が、コバルト錯体である、上記<6>~<8>のいずれか1に記載の製造方法
を提供するものである。
In one preferred embodiment, the present invention provides
<6> From an intermediate compound represented by the following formula (I)
Figure JPOXMLDOC01-appb-C000027
Wherein X is —C (R 3 ) NH—; Y is —C (═O) R 4 —NH—; Z is —C (═O) OR 6 ; R 1 and R 2 are each independently a C 1 -C 10 alkyl group, which may be the same or different; R 3 is a hydrogen atom or an optionally substituted C 1 -C 5 alkyl group R 4 is an optionally substituted alkylene group; R 6 is a saturated or unsaturated hydrocarbon chain; R a is an optionally substituted alkyl group.)
A method for producing a compound represented by the following formula (IV):
Figure JPOXMLDOC01-appb-C000028
(Wherein X, Y, R 1 , R 2 and R a have the same meaning as in formula (I), and A is a hydrogen atom or a protecting group);
[Step D] A step of obtaining a compound represented by the following formula (V) by converting the Z site of the compound represented by the formula (I) into A in the presence of a transition metal catalyst.
Figure JPOXMLDOC01-appb-C000029
(In the formula, X, Y, A, R 1 , R 2 and R a have the same meaning as in formula (IV).)
[Step E] The production comprising the step of obtaining the compound represented by the formula (IV) by oxidizing the compound represented by the formula (V) in the presence of a transition metal catalyst and converting phenol to quinone. Method;
<7> R 1, R 2 and R a are both a methyl group; R 3 is hydrogen atom; R 4 is, -CH (CH 3) - is, according to the above <6> Production method;
<8> The method according to <6> or <7> above, wherein the transition metal catalyst in Step D is a palladium complex; and <9> the above <6, wherein the transition metal catalyst in Step E is a cobalt complex. The manufacturing method according to any one of <8> to <8> is provided.
 別の好ましい態様において、本発明は、
<10>以下の式(I)で表される中間体化合物から
Figure JPOXMLDOC01-appb-C000030
(式中、Xは、-C(R)NH-であり;Yは、-C(=O)R-O-であり;Zは、-C(=O)Rであり;R及びRは、それぞれ独立に、同一でも異なっていてもよい、C-C10アルキル基であり;Rは、水素原子又は置換されていてもよいC-Cアルキル基であり;Rは、1-メチルメチレン基であり;Rは、飽和又は不飽和の炭化水素鎖であり;Rは、置換されていてもよいアルキル基である。)
以下の式(VI)で表される化合物を製造する方法であって
Figure JPOXMLDOC01-appb-C000031
(式中、X、R、R及びRは、式(I)中と同じ意味を有する。);
 [ステップF] 前記式(I)で表される化合物を塩基性条件下で加水分解し、Y部位の末端をOH基に変換することにより、以下の式(VII)で表される化合物を得る工程
Figure JPOXMLDOC01-appb-C000032
(式中、X、R、R及びRは、式(I)中と同じ意味を有する。)
 [ステップG] 前記式(VII)で表される化合物を遷移金属触媒存在下において酸化し、フェノールをキノンに変換することにより、以下の式(VIII)で表される化合物を得る工程
Figure JPOXMLDOC01-appb-C000033
(式中、X、R、R及びRは、式(I)中と同じ意味を有する。);及び
 [ステップH] 前記(VIII)で表される化合物をDMSO酸化又は超原子価ヨウ素試薬を用いる酸化により、末端のOH基をカルボニル基に変換することにより、前記式(VI)で表される化合物を得る工程
を含む該製造方法;
<11>R、R及びRが、いずれもメチル基であり;Rが、-CH(CH)-である、上記<10>に記載の製造方法;及び
<12>ステップGにおける遷移金属触媒が、コバルト錯体である、上記<10>又は<11>に記載の製造方法
を提供するものである。
In another preferred embodiment, the present invention provides:
<10> From the intermediate compound represented by the following formula (I)
Figure JPOXMLDOC01-appb-C000030
Wherein X is —C (R 3 ) NH—; Y is —C (═O) R 4 —O—; Z is —C (═O) R 6 ; R 1 and R 2 are each independently a C 1 -C 10 alkyl group, which may be the same or different; R 3 is a hydrogen atom or an optionally substituted C 1 -C 5 alkyl group R 4 is a 1-methylmethylene group; R 6 is a saturated or unsaturated hydrocarbon chain; R a is an optionally substituted alkyl group.)
A method for producing a compound represented by the following formula (VI):
Figure JPOXMLDOC01-appb-C000031
(Wherein X, R 1 , R 2 and R a have the same meaning as in formula (I));
[Step F] A compound represented by the following formula (VII) is obtained by hydrolyzing the compound represented by the above formula (I) under basic conditions and converting the end of the Y site into an OH group. Process
Figure JPOXMLDOC01-appb-C000032
(In the formula, X, R 1 , R 2 and R a have the same meaning as in formula (I).)
[Step G] A step of obtaining a compound represented by the following formula (VIII) by oxidizing the compound represented by the formula (VII) in the presence of a transition metal catalyst and converting phenol to quinone.
Figure JPOXMLDOC01-appb-C000033
(Wherein X, R 1 , R 2 and R a have the same meaning as in formula (I)); and [Step H] The compound represented by (VIII) is subjected to DMSO oxidation or hypervalence. The production method comprising a step of obtaining a compound represented by the formula (VI) by converting a terminal OH group into a carbonyl group by oxidation with an iodine reagent;
<11> The production method according to the above <10>, wherein R 1 , R 2 and R a are all methyl groups; and R 3 is —CH (CH 3 ) —; and <12> Step G The transition metal catalyst in is a cobalt complex, The manufacturing method as described in said <10> or <11> is provided.
 一つの好ましい態様において、本発明は以下の中間体化合物にも関する。具体的には、
<13>以下の式(I)で表される化合物;
Figure JPOXMLDOC01-appb-C000034
(式中、Xは、-C(R)NH-又は-C(R)O-であり、;Yは、-C(=O)R-NH-、-C(=O)R-O-、-S(=O)-NH-、-S(=O)-O-、-P(=O)(OR)R-NH-、又は-P(=O)(OR)R-O-であり;Zは、-C(=O)R、-C(=O)OR、-S(=O)、又は-P(=O)(OR)Rであり;R及びRは、それぞれ独立に、同一でも異なっていてもよい、C-C10アルキル基であり;Rは、水素原子又は置換されていてもよいC-Cアルキル基であり;Rは、置換されていてもよいアルキレン基であり;Rは、置換されていてもよいC-Cアルキル基であり;Rは、飽和又は不飽和の炭化水素鎖であり;Rは、置換されていてもよいアルキル基である。)
<14>以下の化合物よりなる群から選択される、上記<13>に記載の化合物;
Figure JPOXMLDOC01-appb-C000035
(式中、Zは、C-C20アルキル基であり、Meはメチル基を表す。)
<15>以下の式(II)で表される化合物;
Figure JPOXMLDOC01-appb-C000036
(式中、Xは、-C(R)NH-又は-C(R)O-であり、;Yは、-C(=O)R-NH-、-C(=O)R-O-、-S(=O)-NH-、-S(=O)-O-、-P(=O)(OR)R-NH-、又は-P(=O)(OR)R-O-であり;Zは、-C(=O)R、-C(=O)OR、-S(=O)、又は-P(=O)(OR)Rであり;R及びRは、それぞれ独立に、同一でも異なっていてもよい、C-C10アルキル基であり;Rは、水素原子又は置換されていてもよいC-Cアルキル基であり;Rは、置換されていてもよいアルキレン基であり;Rは、置換されていてもよいC-Cアルキル基であり;Rは、飽和又は不飽和の炭化水素鎖であり;Rは、置換されていてもよいアルキル基である。)
<16>以下の構造を有する、上記<15>に記載の化合物;
Figure JPOXMLDOC01-appb-C000037
(式中、Zは、C-C20アルキル基であり、Meはメチル基を表す。)
<17>以下の式(b)で表されるアルデヒド化合物;
Figure JPOXMLDOC01-appb-C000038
(式中、Xは、-C(R)NH-又は-C(R)O-であり、;Yは、-C(=O)R-NH-、-C(=O)R-O-、-S(=O)-NH-、-S(=O)-O-、-P(=O)(OR)R-NH-、又は-P(=O)(OR)R-O-であり;Zは、-C(=O)R、-C(=O)OR、-S(=O)、又は-P(=O)(OR)Rであり;Rは、水素原子又は置換されていてもよいC-Cアルキル基であり;Rは、置換されていてもよいアルキレン基であり;Rは、置換されていてもよいC-Cアルキル基であり;Rは、飽和又は不飽和の炭化水素鎖である。)
<18>以下の化合物よりなる群から選択される、上記<17>に記載のアルデヒド化合物。
Figure JPOXMLDOC01-appb-C000039
(式中、Zは、C-C20アルキル基であり、Meはメチル基を表す。)
を提供するものである。
In one preferred embodiment, the present invention also relates to the following intermediate compounds: In particular,
<13> A compound represented by the following formula (I);
Figure JPOXMLDOC01-appb-C000034
Wherein X is —C (R 3 ) NH— or —C (R 3 ) O—; Y is —C (═O) R 4 —NH—, —C (═O) R 4 —O—, —S (═O) 2 R 4 —NH—, —S (═O) 2 R 4 —O—, —P (═O) (OR 5 ) R 4 —NH—, or —P (═O) (OR 5 ) R 4 —O—; Z is —C (═O) R 6 , —C (═O) OR 6 , —S (═O) 2 R 6 , or —P (═O) (OR 5 ) R 6 ; R 1 and R 2 are each independently a C 1 -C 10 alkyl group, which may be the same or different; R 3 is a hydrogen atom or a substituent An optionally substituted C 1 -C 5 alkyl group; R 4 is an optionally substituted alkylene group; R 5 is an optionally substituted C 1 -C 5 alkyl group; R 6 is a saturated or A hydrocarbon chain, saturated; R a is optionally substituted alkyl group).
<14> The compound according to <13>, selected from the group consisting of the following compounds;
Figure JPOXMLDOC01-appb-C000035
(Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
<15> a compound represented by the following formula (II);
Figure JPOXMLDOC01-appb-C000036
Wherein X is —C (R 3 ) NH— or —C (R 3 ) O—; Y is —C (═O) R 4 —NH—, —C (═O) R 4 —O—, —S (═O) 2 R 4 —NH—, —S (═O) 2 R 4 —O—, —P (═O) (OR 5 ) R 4 —NH—, or —P (═O) (OR 5 ) R 4 —O—; Z is —C (═O) R 6 , —C (═O) OR 6 , —S (═O) 2 R 6 , or —P (═O) (OR 5 ) R 6 ; R 1 and R 2 are each independently a C 1 -C 10 alkyl group, which may be the same or different; R 3 is a hydrogen atom or a substituent An optionally substituted C 1 -C 5 alkyl group; R 4 is an optionally substituted alkylene group; R 5 is an optionally substituted C 1 -C 5 alkyl group; R 6 is a saturated or A hydrocarbon chain, saturated; R a is optionally substituted alkyl group).
<16> The compound according to <15>, which has the following structure;
Figure JPOXMLDOC01-appb-C000037
(Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
<17> an aldehyde compound represented by the following formula (b);
Figure JPOXMLDOC01-appb-C000038
Wherein X is —C (R 3 ) NH— or —C (R 3 ) O—; Y is —C (═O) R 4 —NH—, —C (═O) R 4 —O—, —S (═O) 2 R 4 —NH—, —S (═O) 2 R 4 —O—, —P (═O) (OR 5 ) R 4 —NH—, or —P (═O) (OR 5 ) R 4 —O—; Z is —C (═O) R 6 , —C (═O) OR 6 , —S (═O) 2 R 6 , or —P (═O) (OR 5 ) R 6 ; R 3 is a hydrogen atom or an optionally substituted C 1 -C 5 alkyl group; R 4 is an optionally substituted alkylene group R 5 is an optionally substituted C 1 -C 5 alkyl group; R 6 is a saturated or unsaturated hydrocarbon chain.)
<18> The aldehyde compound according to <17>, selected from the group consisting of the following compounds.
Figure JPOXMLDOC01-appb-C000039
(Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
Is to provide.
 本発明の製造方法によれば、テトラヒドロイソキノリン環が連結した五環性骨格を有する非天然型中間体化合物をワンポットで迅速に合成することができる。かかる中間体化合物を経る合成スキームを用いることで、五環性骨格形成後に、他の官能基が多数存在する状況においても末端の長鎖脂肪酸部分を選択的に除去でき、従来の合成手法に比して短工程で効率的にサフラマイシン類及びその類縁体を得ることができるという優れた効果を奏するものである。 According to the production method of the present invention, a non-natural intermediate compound having a pentacyclic skeleton linked by a tetrahydroisoquinoline ring can be rapidly synthesized in one pot. By using a synthesis scheme through such an intermediate compound, the terminal long-chain fatty acid moiety can be selectively removed even after the formation of the pentacyclic skeleton even in the presence of many other functional groups, compared with conventional synthesis methods. Thus, an excellent effect is obtained that saframycins and analogs thereof can be efficiently obtained in a short process.
 また、本発明の中間体化合物は、上述のように従来の酵素触媒反応では難しかった長鎖脂肪酸部分の選択的な除去が可能であるのみならず、中間体の骨格形成後に任意の置換基を導入し化学変換を自在に実施できるため、天然のテトラヒドロイソキノリン環含有アルカロイド群以外の新規誘導体の合成への応用が可能となる。さらに、最終目的物の活性発現に関与する五環性骨格両端のベンゼン環/キノン環の作り分けが可能であるという利点も有する。 In addition, the intermediate compound of the present invention can not only selectively remove the long-chain fatty acid moiety, which has been difficult in the conventional enzyme-catalyzed reaction as described above, but also can be substituted with any substituent after the intermediate skeleton is formed. Since it can be introduced and subjected to chemical conversion freely, it can be applied to the synthesis of novel derivatives other than natural tetrahydroisoquinoline ring-containing alkaloids. Furthermore, there is an advantage that benzene rings / quinone rings at both ends of the pentacyclic skeleton involved in the activity expression of the final target product can be separately produced.
 以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。 Hereinafter, embodiments of the present invention will be described. The scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention can be appropriately changed and implemented without departing from the spirit of the present invention.
1.定義
 本明細書中において、「アルキル又はアルキル基」は直鎖状、分枝鎖状、環状、又はそれらの組み合わせからなる脂肪族炭化水素基のいずれであってもよい。アルキル基の炭素数は特に限定されないが、例えば、炭素数1~20個(C1~20)、炭素数1~15個(C1~15)、炭素数1~10個(C1~10)である。本明細書において、アルキル基は任意の置換基を1個以上有していてもよい。例えば、C1~8アルキルには、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、neo-ペンチル、n-ヘキシル、イソヘキシル、n-ヘプチル、n-オクチル等が含まれる。該置換基としては、例えば、アルコキシ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子のいずれであってもよい)、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシルなどを挙げることができるが、これらに限定されることはない。アルキル基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アルキル部分を含む他の置換基(例えばアルコシ基、アリールアルキル基など)のアルキル部分についても同様である。
1. Definitions In the present specification, the “alkyl or alkyl group” may be any of an aliphatic hydrocarbon group composed of a straight chain, a branched chain, a ring, or a combination thereof. The number of carbon atoms of the alkyl group is not particularly limited. For example, the number of carbon atoms is 1 to 20 (C 1-20 ), the number of carbons is 1 to 15 (C 1 to 15 ), and the number of carbon atoms is 1 to 10 (C 1 to 10). ). In the present specification, the alkyl group may have one or more arbitrary substituents. For example, C 1-8 alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, isohexyl, n-heptyl, n-octyl and the like are included. Examples of the substituent include an alkoxy group, a halogen atom (which may be a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an amino group, a mono- or di-substituted amino group, a substituted silyl group, or Although acyl etc. can be mentioned, it is not limited to these. When the alkyl group has two or more substituents, they may be the same or different. The same applies to the alkyl part of other substituents containing an alkyl part (for example, an alkoxy group, an arylalkyl group, etc.).
 本明細書中において、「アルキレン」とは、直鎖状または分枝状の飽和炭化水素からなる二価の基であり、例えば、メチレン、1-メチルメチレン、1,1-ジメチルメチレン、エチレン、1-メチルエチレン、1-エチルエチレン、1,1-ジメチルエチレン、1,2-ジメチルエチレン、1,1-ジエチルエチレン、1,2-ジエチルエチレン、1-エチル-2-メチルエチレン、トリメチレン、1-メチルトリメチレン、2-メチルトリメチレン、1,1-ジメチルトリメチレン、1,2-ジメチルトリメチレン、2,2-ジメチルトリメチレン、1-エチルトリメチレン、2-エチルトリメチレン、1,1-ジエチルトリメチレン、1,2-ジエチルトリメチレン、2,2-ジエチルトリメチレン、2-エチル-2-メチルトリメチレン、テトラメチレン、1-メチルテトラメチレン、2-メチルテトラメチレン、1,1-ジメチルテトラメチレン、1,2-ジメチルテトラメチレン、2,2-ジメチルテトラメチレン、2,2-ジ-n-プロピルトリメチレン等が挙げられる。 In the present specification, “alkylene” is a divalent group consisting of a linear or branched saturated hydrocarbon, such as methylene, 1-methylmethylene, 1,1-dimethylmethylene, ethylene, 1-methylethylene, 1-ethylethylene, 1,1-dimethylethylene, 1,2-dimethylethylene, 1,1-diethylethylene, 1,2-diethylethylene, 1-ethyl-2-methylethylene, trimethylene, 1 -Methyltrimethylene, 2-methyltrimethylene, 1,1-dimethyltrimethylene, 1,2-dimethyltrimethylene, 2,2-dimethyltrimethylene, 1-ethyltrimethylene, 2-ethyltrimethylene, 1,1 -Diethyltrimethylene, 1,2-diethyltrimethylene, 2,2-diethyltrimethylene, 2-ethyl-2-methyltrime Len, tetramethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1,1-dimethyltetramethylene, 1,2-dimethyltetramethylene, 2,2-dimethyltetramethylene, 2,2-di-n-propyl Trimethylene and the like.
 本明細書中において、ある官能基について「置換されていてもよい」と定義されている場合には、置換基の種類、置換位置、及び置換基の個数は特に限定されず、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。置換基としては、例えば、アルキル基、アルコキシ基、水酸基、カルボキシル基、ハロゲン原子、スルホ基、アミノ基、アルコキシカルボニル基、オキソ基などを挙げることができるが、これらに限定されることはない。これらの置換基にはさらに置換基が存在していてもよい。このような例として、例えば、ハロゲン化アルキル基などを挙げることができるが、これらに限定されることはない。 In the present specification, when a functional group is defined as “may be substituted”, the type of substituent, the position of substitution, and the number of substituents are not particularly limited, and two or more When they have a substituent, they may be the same or different. Examples of the substituent group include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxyl group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, and an oxo group. These substituents may further have a substituent. Examples of such include, but are not limited to, a halogenated alkyl group.
 本明細書中において、「アシルまたはアシル基」は、脂肪族アシル基又は芳香族アシル基のいずれであってもよく、芳香族基を置換基として有する脂肪族アシル基であってもよい。アシル基は1個又は2個以上のヘテロ原子を含んでいてもよい。例えば、アシル基としてアルキルカルボニル基(アセチル基など)、アルキルオキシカルボニル基(アセトキシカルボニル基など)、アリールカルボニル基(ベンゾイル基など)、アリールオキシカルボニル基(フェニルオキシカルボニル基など)、アラルキルカルボニル基(ベンジルカルボニル基など)、アルキルチオカルボニル基(メチルチオカルボニル基など)、アルキルアミノカルボニル基(メチルアミノカルボニル基など)、アリールチオカルボニル基(フェニルチオカルボニル基など)、又はアリールアミノカルボニル基(フェニルアミノカルボニル基など)などのアシル基を挙げることができるが、これらに限定されることはない。これらのアシル基は任意の置換基を1個以上有していてもよい。該置換基としては、例えば、アルコキシ基、ハロゲン原子、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシル基などを挙げることができるが、これらに限定されることはない。アシル基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。 In the present specification, the “acyl or acyl group” may be either an aliphatic acyl group or an aromatic acyl group, or an aliphatic acyl group having an aromatic group as a substituent. Acyl groups may contain one or more heteroatoms. For example, as an acyl group, an alkylcarbonyl group (such as an acetyl group), an alkyloxycarbonyl group (such as an acetoxycarbonyl group), an arylcarbonyl group (such as a benzoyl group), an aryloxycarbonyl group (such as a phenyloxycarbonyl group), an aralkylcarbonyl group ( Benzylcarbonyl group), alkylthiocarbonyl group (such as methylthiocarbonyl group), alkylaminocarbonyl group (such as methylaminocarbonyl group), arylthiocarbonyl group (such as phenylthiocarbonyl group), or arylaminocarbonyl group (phenylaminocarbonyl group) And the like, but is not limited thereto. These acyl groups may have one or more arbitrary substituents. Examples of the substituent include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and an acyl group. When the acyl group has two or more substituents, they may be the same or different.
 本明細書中において、「アリール又はアリール基」は単環式又は縮合多環式の芳香族炭化水素基のいずれであってもよく、環構成原子としてヘテロ原子(例えば、酸素原子、窒素原子、又は硫黄原子など)を1個以上含んでいてもよい。この場合、これを「ヘテロアリール」または「ヘテロ芳香族」と呼ぶ場合もある。アリールが単環および縮合環のいずれである場合も、すべての可能な位置で結合しうる。本明細書において、アリール基はその環上に任意の置換基を1個以上有していてもよい。該置換基としては、例えば、アルコキシ基、ハロゲン原子、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシルなどを挙げることができるが、これらに限定されることはない。アリール基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アリール部分を含む他の置換基(例えばアリールオキシ基やアリールアルキル基など)のアリール部分についても同様である。 In the present specification, the “aryl or aryl group” may be either a monocyclic or condensed polycyclic aromatic hydrocarbon group, and a hetero atom (for example, an oxygen atom, a nitrogen atom, Or a sulfur atom or the like). In this case, it may be referred to as “heteroaryl” or “heteroaromatic”. Whether aryl is a single ring or a fused ring, it can be attached at all possible positions. In the present specification, an aryl group may have one or more arbitrary substituents on the ring. Examples of the substituent include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and acyl. When the aryl group has two or more substituents, they may be the same or different. The same applies to the aryl moiety of other substituents containing the aryl moiety (for example, an aryloxy group and an arylalkyl group).
 本明細書中において、「アルコキシ基」とは、前記アルキル基が酸素原子に結合した構造であり、例えば直鎖状、分枝状、環状又はそれらの組み合わせである飽和アルコキシ基が挙げられる。例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、シクロプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、シクロブトキシ基、シクロプロピルメトキシ基、n-ペンチルオキシ基、シクロペンチルオキシ基、シクロプロピルエチルオキシ基、シクロブチルメチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、シクロプロピルプロピルオキシ基、シクロブチルエチルオキシ基又はシクロペンチルメチルオキシ基等が好適な例として挙げられる。 In the present specification, the “alkoxy group” is a structure in which the alkyl group is bonded to an oxygen atom, and examples thereof include a saturated alkoxy group that is linear, branched, cyclic, or a combination thereof. For example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, cyclopropoxy group, n-butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, cyclobutoxy group, cyclopropylmethoxy group, n- Pentyloxy group, cyclopentyloxy group, cyclopropylethyloxy group, cyclobutylmethyloxy group, n-hexyloxy group, cyclohexyloxy group, cyclopropylpropyloxy group, cyclobutylethyloxy group, cyclopentylmethyloxy group, etc. are preferable Take as an example.
 本明細書中において用いられる「アミド」とは、RNR’CO-(R=アルキルの場合、アルキルアミノカルボニル-)およびRCONR’-(R=アルキルの場合、アルキルカルボニルアミノ-)の両方を含む。 As used herein, “amide” includes both RNR′CO— (where R = alkyl, alkylaminocarbonyl-) and RCONR′— (where R = alkyl, alkylcarbonylamino-).
 本明細書中において用いられる「エステル」とは、ROCO-(R=アルキルの場合、アルコキシカルボニル-)およびRCOO-(R=アルキルの場合、アルキルカルボニルオキシ-)の両方を含む。 As used herein, “ester” includes both ROCO— (in the case of R = alkyl, alkoxycarbonyl-) and RCOO— (in the case of R = alkyl, alkylcarbonyloxy-).
 本明細書中において、「環構造」という用語は、二つの置換基の組み合わせによって形成される場合、複素環または炭素環を意味し、そのような環は飽和、不飽和、または芳香族であることができる。従って、上記において定義した、シクロアルキル、シクロアルケニル、アリール、及びヘテロアリールを含むものである。 As used herein, the term “ring structure”, when formed by a combination of two substituents, means a heterocyclic or carbocyclic ring, such ring being saturated, unsaturated, or aromatic. be able to. Accordingly, it includes cycloalkyl, cycloalkenyl, aryl, and heteroaryl as defined above.
 本明細書中において、「フェノール性OH基又はフェノール性水酸基」とは、ベンゼン環上の任意の位置に結合したOH基を意味する。 In the present specification, “phenolic OH group or phenolic hydroxyl group” means an OH group bonded to an arbitrary position on the benzene ring.
 本明細書中において、特定の置換基は、別の置換基と環構造を形成することができ、そのような置換基同士が結合する場合、当業者であれば、特定の置換、例えば水素への結合が形成されることを理解できる。従って、特定の置換基が共に環構造を形成すると記載されている場合、当業者であれば、当該環構造は通常の化学反応によって形成することができ、また容易に生成することを理解できる。かかる環構造およびそれらの形成過程はいずれも、当業者の認識範囲内である。また、当該ヘテロ環構造は、環上に任意の置換基を有していてもよい。 In the present specification, a specific substituent can form a ring structure with another substituent, and when such substituents are bonded to each other, those skilled in the art will recognize a specific substituent, for example, hydrogen. It can be understood that the bonds are formed. Therefore, when it is described that specific substituents together form a ring structure, those skilled in the art can understand that the ring structure can be formed by an ordinary chemical reaction and can be easily generated. Both such ring structures and their process of formation are within the purview of those skilled in the art. Moreover, the said heterocyclic structure may have arbitrary substituents on the ring.
2.式(I)の中間体化合物の製造方法
 本発明は、1の態様において、以下の式(I)で表される中間体化合物の製造方法に関する。
Figure JPOXMLDOC01-appb-C000040
2. The manufacturing method of the intermediate compound of a formula (I) This invention relates to the manufacturing method of the intermediate compound represented by the following formula | equation (I) in one aspect | mode.
Figure JPOXMLDOC01-appb-C000040
 式(I)で表される中間体化合物は、テトラヒドロイソキノリン(THIQ)環が二つ連結した五環性骨格を有している。分子中のX-Y-Z部分は、後述のステップAにおける酵素反応を進行させるために必要な長鎖アルキルを含む側鎖である。サフラマイシンY3やサフラマイシンA等のサフラマイシン類は、上記五環性骨格を共通の骨格として有するため、最終的にこのX-Y-Zにおける長鎖アルキル部分を切断・除去することで目的とするサフラマイシン類等が得られる。したがって、X及びYのリンカー部分を当該目的物の構造に併せて選択することで所望の目的物を得ることができる。 The intermediate compound represented by the formula (I) has a pentacyclic skeleton in which two tetrahydroisoquinoline (THIQ) rings are connected. The XYZ moiety in the molecule is a side chain containing a long-chain alkyl necessary for proceeding with the enzyme reaction in Step A described later. Since saframycins such as saframycin Y3 and saframycin A have the pentacyclic skeleton as a common skeleton, the long chain alkyl moiety in XYZ is finally cleaved and removed. Saframycins are obtained. Therefore, a desired target product can be obtained by selecting the linker portions of X and Y together with the structure of the target product.
 式中、Xは、-C(R)NH-又は-C(R)O-であり;Yは、-C(=O)R-NH-、-C(=O)R-O-、-S(=O)-NH-、-S(=O)-O-、-P(=O)(OR)R-NH-、又は-P(=O)(OR)R-O-である。Rは、置換されていてもよいアルキレン基である。上述のように、X及びYは、所望の目的物の構造に応じて選択することができる。例えば、後述のように、サフラマイシンY3を目的物とする場合には、Xは、-C(R)NH-であり、Yは、-C(=O)R-NH-であることが好ましい。ここで、XとYの連結部における「-NHC(=O)O-」は、カルバメート或いはウレタンと呼ばれる構造である。これにより、サフラマイシンY3の末端におけるNH基を1工程で得ることができる。また、サフラマイシンAを目的物とする場合には、Xは、-C(R)NH-であり、Yは、-C(=O)R-O-であることが好ましい。 In the formula, X is —C (R 3 ) NH— or —C (R 3 ) O—; Y is —C (═O) R 4 —NH—, —C (═O) R 4 —. O—, —S (═O) 2 R 4 —NH—, —S (═O) 2 R 4 —O—, —P (═O) (OR 5 ) R 4 —NH—, or —P (= O) (OR 5 ) R 4 —O—. R 4 is an optionally substituted alkylene group. As described above, X and Y can be selected according to the desired structure of the target object. For example, as described later, when saframycin Y3 is the target product, X is —C (R 3 ) NH—, and Y is —C (═O) R 4 —NH—. Is preferred. Here, “—NHC (═O) O—” in the connecting portion of X and Y has a structure called carbamate or urethane. Thereby, the NH 2 group at the end of saframycin Y3 can be obtained in one step. When saframycin A is the target product, X is preferably —C (R 3 ) NH— and Y is preferably —C (═O) R 4 —O—.
 XにおけるRは、水素原子又は置換されていてもよいC-Cアルキル基であり、好ましくは水素原子又はメチル基である。 R 3 in X is a hydrogen atom or an optionally substituted C 1 -C 5 alkyl group, preferably a hydrogen atom or a methyl group.
 Yにおける連結基であるRは、置換されていてもよいアルキレン基である。好ましくは、C-アルキレン基であり、より好ましくは、1-メチルメチレン(-CH(CH)-)である。Yが、リン酸エステル又はリン酸アミドの場合、すなわち-P(=O)(OR)R-NH-又は-P(=O)(OR)R-O-の場合におけるRは、置換されていてもよいC-Cアルキル基であり、好ましくはメチルである。 R 4 which is a linking group in Y is an optionally substituted alkylene group. A C 2 -alkylene group is preferred, and 1-methylmethylene (—CH (CH 3 ) —) is more preferred. Y is, R in the case of phosphoric acid esters or phosphoric acid amides, i.e. -P (= O) (OR 5 ) R 4 -NH- or -P (= O) (OR 5 ) For R 4 -O- 5 Is an optionally substituted C 1 -C 5 alkyl group, preferably methyl.
 また、式中、Zは、-C(=O)R、-C(=O)OR、-S(=O)、又は-P(=O)(OR)Rであり、ここで、Rは、飽和又は不飽和の炭化水素鎖である。後述のステップAの酵素反応が進行する限り、Rの炭素数は特に限定されないが、好ましくは、C-C30アルキル基であり、より好ましくは、C10-C20アルキル基である。また、最終的に遷移金属触媒で側鎖を切断するという観点から、炭化水素鎖の任意の位置に不飽和二重結合を有していることが好ましい。 In the formula, Z is —C (═O) R 6 , —C (═O) OR 6 , —S (═O) 2 R 6 , or —P (═O) (OR 5 ) R 6 . Where R 6 is a saturated or unsaturated hydrocarbon chain. As long as the enzymatic reaction in Step A described below proceeds, the number of carbon atoms of R 6 is not particularly limited, but is preferably a C 5 -C 30 alkyl group, and more preferably a C 10 -C 20 alkyl group. Moreover, it is preferable that it has an unsaturated double bond in the arbitrary positions of a hydrocarbon chain from a viewpoint of finally cut | disconnecting a side chain with a transition metal catalyst.
 式中、R及びRは、それぞれ独立に、同一でも異なっていてもよい、C-C10アルキル基であり、好ましくはメチル基である。より好ましくは、各R及びRのいずれもメチル基であることが好ましい。ただし、目的とする最終生成物に応じてアルキル基以外の任意の置換基とすることもできる。 In the formula, R 1 and R 2 are each independently a C 1 -C 10 alkyl group which may be the same or different, preferably a methyl group. More preferably, each of R 1 and R 2 is preferably a methyl group. However, any substituent other than an alkyl group can be used depending on the final product of interest.
 式中、Rは、五環性骨格における第三級アミン上の置換基である。Rは、好ましくは、置換されていてもよいアルキル基であり、より好ましくはメチル基である。ただし、目的とする最終生成物に応じてアルキル基以外の置換基とすることもできる。 Where R a is a substituent on the tertiary amine in the pentacyclic skeleton. R a is preferably an optionally substituted alkyl group, and more preferably a methyl group. However, substituents other than alkyl groups can be used depending on the final product of interest.
 発明の式(I)で表される中間体化合物の製造方法は、以下のステップA~Cを含むことを特徴とする。すなわち、ステップAでは、酵素反応によりTHIQ環が二つ連結した五環性骨格を有する前駆体化合物(II)を合成し、ステップB及びCにおいてこれをシアノ化及び還元的N-メチル化を行うことで、式(I)で表される中間体化合物が得られる。 The method for producing an intermediate compound represented by the formula (I) of the invention includes the following steps A to C. That is, in Step A, a precursor compound (II) having a pentacyclic skeleton in which two THIQ rings are linked by an enzymatic reaction is synthesized, and in Steps B and C, this is subjected to cyanation and reductive N-methylation. Thus, an intermediate compound represented by the formula (I) is obtained.
[ステップA]:酵素触媒反応
 ステップAは、以下の式(a)で表される化合物と、
Figure JPOXMLDOC01-appb-C000041
以下の式(b)で表される化合物とを、
Figure JPOXMLDOC01-appb-C000042
非リボソーム依存型ペプチド合成酵素の存在下で反応させることによって、以下の式(II)で表される化合物を得る工程である。
Figure JPOXMLDOC01-appb-C000043
[Step A]: Enzyme-catalyzed reaction Step A comprises a compound represented by the following formula (a):
Figure JPOXMLDOC01-appb-C000041
A compound represented by the following formula (b):
Figure JPOXMLDOC01-appb-C000042
This is a step of obtaining a compound represented by the following formula (II) by reacting in the presence of a non-ribosome-dependent peptide synthase.
Figure JPOXMLDOC01-appb-C000043
 これらの式中において、X、Y、Z、R及びRは、式(I)に関して述べたものと同じである。 In these formulas, X, Y, Z, R 1 and R 2 are the same as those described for formula (I).
 ステップAは、チロシン誘導体である式(a)で表される化合物と、非天然型アルデヒド基質である式(b)で表される化合物から、THIQ環の形成及び五環性骨格の形成の各反応を行い、前駆体化合物(II)が生成する。ここで、当該反応は、酵素を触媒とする、生合成反応である Step A comprises the steps of THIQ ring formation and pentacyclic skeleton formation from a compound represented by formula (a) which is a tyrosine derivative and a compound represented by formula (b) which is a non-natural aldehyde substrate. Reaction is performed to produce precursor compound (II). Here, the reaction is a biosynthetic reaction using an enzyme as a catalyst.
 ステップAで用いられる酵素は、非リボソーム依存型ペプチド合成酵素(NRPS:non-ribosomal peptide synthetase)と呼ばれるペプチド合成酵素の少なくとも一部を構成するモジュールである。NRPSは、分子量数千kDaにも及ぶ巨大なマルチモジュール酵素複合体であり、リボソームを介することなく短鎖の生理活性ペプチドを合成することが知られている。一般に、NRPSを構成する繰返し単位であるモジュールは、基質となるアミノ酸を認識・活性化するアデニル化活性ドメイン(Aドメイン:adenylation domain)、活性化アミノ酸をチオエステルとして捕捉し、共有結合を形成してアミノ酸ユニットを酵素上へローディングするペプチジルキャリアタンパク質部位(PCP部位)(又は、Tドメイン(thiolation domain)ともいう)、そしてペプチド結合の形成を触媒する縮合ドメイン(Cドメインcondensation domain)を基本的な構成要素とする。 The enzyme used in Step A is a module constituting at least a part of a peptide synthase called non-ribosomal peptide synthetase (NRPS). NRPS is a huge multi-module enzyme complex with a molecular weight of several thousand kDa, and is known to synthesize short-chain physiologically active peptides without going through ribosomes. In general, a module, which is a repeating unit constituting NRPS, captures an activated amino acid as a thioester by recognizing and activating an amino acid serving as a substrate (A domain: adenylation domain), and forms a covalent bond. Basic composition of peptidyl carrier protein site (PCP site) (also referred to as T domain (thiolation domain)) that loads amino acid unit onto enzyme, and condensation domain (C domain condensation domain) that catalyzes the formation of peptide bond Element.
 本発明において用いられるNRPSとしては、サフラマイシンA生合成酵素のモジュールであるSfmCを用いることが好ましい。このSfmC酵素は、元来の機能であるぺプチド形成を促進せず、長鎖脂肪酸アルデヒドとアミノ酸(L-チロシン誘導体)との間でのイミン形成及びその後のPictet-Spengler (PS) 型環化を触媒することで、THIQ環を含む五環性骨格を形成させる特異な特性を有する酵素であることが、本発明の発明者らによって見出されている(非特許文献4:Koketsu, K.; Watanabe, K.; Suda, H.; Oguri, H.; Oikawa, H., Nat. Chem. Biol., 2010, 6, 408)。 As the NRPS used in the present invention, SfmC which is a module of saframycin A biosynthetic enzyme is preferably used. This SfmC enzyme does not promote peptide formation, which is the original function, but imine formation between a long-chain fatty acid aldehyde and an amino acid (L-tyrosine derivative), followed by Pictet-Spenger (PS) -type cyclization It has been found by the inventors of the present invention that the enzyme has a unique property of forming a pentacyclic skeleton containing a THIQ ring by catalyzing (Non-patent Document 4: Koketsu, K. Watanabe, K .; Suda, H .; Oguri, H .; Oikawa, H., Nat. Chem. Biol., 2010, 6, 408).
 SfmC酵素は、以下に示されるように、Pictet-Spengler反応を触媒するPSドメイン;基質となるL-チロシンを認識・活性化するAドメイン;活性化アミノ酸をチオエステルへ変換し酵素上へローディングするPCP(ペプチジルキャリアタンパク質部位);及び、チオエステルを還元するRedドメインを有している。なお、PSドメインは、本来はペプチド結合を触媒するCドメイン(縮合ドメイン)に対応するが、ここでは、位置・立体選択的なPictet-Spengler反応を触媒することから、「PSドメイン」と表記している。
Figure JPOXMLDOC01-appb-C000044
As shown below, the SfmC enzyme is a PS domain that catalyzes the Pictet-Spengler reaction; an A domain that recognizes and activates L-tyrosine as a substrate; PCP that converts activated amino acids into thioesters and loads them onto the enzyme (Peptidyl carrier protein site); and a Red domain that reduces the thioester. The PS domain originally corresponds to the C domain (condensation domain) that catalyzes peptide bonds, but here it is referred to as a “PS domain” because it catalyzes a position- and stereoselective Pictet-Spangler reaction. ing.
Figure JPOXMLDOC01-appb-C000044
 かかるSfmC酵素による五環性骨格形成の反応機構の詳細は、非特許文献4において説明されており、SfmC酵素の作成方法についても記載されている。したがって、当業者であれば、当該文献を参照することにより、SfmC酵素を取得し、使用することが理解できる。 The details of the reaction mechanism of pentacyclic skeleton formation by the SfmC enzyme are described in Non-Patent Document 4, and a method for producing the SfmC enzyme is also described. Therefore, those skilled in the art can understand that the SfmC enzyme is obtained and used by referring to the literature.
 また、SfmC酵素以外に用いられ得る酵素としては、エクテナサイジンやサフラシンの生合成において触媒機能を担っているEtuA2、SacC等の酵素を挙げることができる。 Further, examples of enzymes that can be used in addition to the SfmC enzyme include enzymes such as EtuA2 and SacC that have a catalytic function in the biosynthesis of ectenasaidin and safracin.
 本発明のステップAの酵素反応を行うために、ATP、NADPH、Mg2+、及びMn2+を添加することが好ましい。 In order to perform the enzyme reaction of Step A of the present invention, it is preferable to add ATP, NADPH, Mg 2+ and Mn 2+ .
 また、式(b)で表される非天然型アルデヒド基質の具体例としては、以下の化合物を挙げることができる。ただし、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000045
Specific examples of the non-natural aldehyde substrate represented by the formula (b) include the following compounds. However, it is not limited to this.
Figure JPOXMLDOC01-appb-C000045
 式中、Zは、C-C20アルキル基であり、Meはメチル基を表す。 Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.
[ステップB]:シアノ化反応
 ステップBは、上記ステップAで得られた式(II)で表される化合物にシアン化合物を添加することで、五環性骨格上のOH基をシアノ基(CN基)に変換し、以下の式(III)で表される化合物を得る工程である。
Figure JPOXMLDOC01-appb-C000046
[Step B]: Cyanation Reaction Step B is a step of adding a cyanide compound to the compound represented by the formula (II) obtained in Step A to convert an OH group on the pentacyclic skeleton to a cyano group (CN Group) to obtain a compound represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000046
 式中、X、Y、Z、R及びRは、式(I)に関して述べたものと同じである。 In which X, Y, Z, R 1 and R 2 are the same as those described for formula (I).
 ステップBで用いられるシアン化合物としては、シアン化物イオンを含む化合物を用いることができる。典型的には、シアン化カリウム(KCN)等のアルカリ金属シアン化物である。その他、当該技術分野公知のシアン化剤を用いることができる。 As the cyan compound used in Step B, a compound containing cyanide ions can be used. Typically, an alkali metal cyanide such as potassium cyanide (KCN). In addition, a cyanating agent known in the art can be used.
[ステップC]:N-アルキル化反応
 上記ステップAで得られた式(III)で表される化合物に、アルデヒド及び還元剤を添加することにより第二級アミン部位をN-アルキル化し、前記式(I)で表される化合物を得る工程である。
[Step C]: N-alkylation reaction The compound represented by the formula (III) obtained in the above Step A is N-alkylated at the secondary amine moiety by adding an aldehyde and a reducing agent, In this step, a compound represented by (I) is obtained.
 ステップCで用いられるアルデヒドは、N-アルキル化により付加されるアルキル基の種類に応じて選択される。例えば、メチル基を付加する場合には、ホルムアルデヒドが用いられる。また、還元剤としては、還元的アミノ化反応において用いられる、当該技術分野において公知の化合物を用いることができる。例えば、水素化トリアセトキシホウ素ナトリウム、シアノ水素化ホウ素ナトリウム等の水素化ホウ素化合物を用いることができる。 The aldehyde used in Step C is selected according to the type of alkyl group added by N-alkylation. For example, when adding a methyl group, formaldehyde is used. Moreover, as a reducing agent, the compound well-known in the said technical field used in a reductive amination reaction can be used. For example, a borohydride compound such as sodium triacetoxyborohydride or sodium cyanoborohydride can be used.
3.中間体化合物を用いるサフラマイシン類の製造方法
 別の態様において、本発明は、以下の式(I)で表される中間体化合物を用いるサフラマイシン類の製造方法にも関する。以下では、その具体例として、サフラマイシンY3及びその誘導体(「サフラマイシンY3系化合物」)の製造方法、及びサフラマイシンA及びその誘導体(「サフラマイシンA系化合物」)の製造方法について説明する。
3. Method for Producing Saframycins Using Intermediate Compound In another aspect, the present invention also relates to a method for producing saframycins using an intermediate compound represented by the following formula (I). As specific examples, a method for producing saframycin Y3 and a derivative thereof (“saframycin Y3 compound”) and a method for producing saframycin A and a derivative thereof (“saframycin A compound”) will be described below.
(1)サフラマイシンY3系化合物の製造方法
 上記式(I)で表される中間体化合物から、以下の式(IV)で表される化合物を製造することができる。
Figure JPOXMLDOC01-appb-C000047
(式中、X、R、R及びRは、式(I)中と同じ意味を有すし、Aは、水素原子又は保護基である。)
(1) Manufacturing method of saframycin Y3 type | system | group compound The compound represented by the following formula | equation (IV) can be manufactured from the intermediate compound represented by the said formula (I).
Figure JPOXMLDOC01-appb-C000047
(In the formula, X, R 1 , R 2 and R a have the same meaning as in formula (I), and A is a hydrogen atom or a protecting group.)
 式(IV)の化合物は、サフラマイシンY3に対応する構造を有するものであり、五環性骨格に側鎖のZ部位をAに変換し、Yの末端をアミノ基末端又は当該アミノ基の水素原子を保護基とした化合物である。Aの保護基としては、Fmoc、BocやAlloc(アリルオキシカルボニル)等のカルバメート系やエステル系、スルホン酸エステル系、シリル系の保護基などの当該技術分野において公知の保護基を用いることができる。Aが保護基の場合でも、その後、脱保護を行うことにより、サフラマイシンY3と同様に末端をアミノ基に変化することができる。 The compound of the formula (IV) has a structure corresponding to saframycin Y3, and the Z-site of the side chain is converted to A in the pentacyclic skeleton, and the end of Y is the amino group end or the hydrogen of the amino group A compound having an atom as a protecting group. As the protecting group for A, a protecting group known in the art such as a carbamate group such as Fmoc, Boc or Alloc (allyloxycarbonyl), an ester group, a sulfonate group or a silyl group can be used. . Even when A is a protecting group, the terminal can be changed to an amino group in the same manner as saframycin Y3 by subsequent deprotection.
かかる側鎖の変換を行う観点から、式(I)において、Xは、-C(R)NH-であり、Yは、-C(=O)R-NH-であり、Zは、-C(=O)ORである化合物を用いることが好適である。それら以外のR、R、及びRは、式(I)について上述したとおりのものを用いることができる。 From the viewpoint of performing such side chain conversion, in formula (I), X is —C (R 3 ) NH—, Y is —C (═O) R 4 —NH—, and Z is It is preferred to use a compound that is —C (═O) OR 6 . Other than these, R 1 , R 2 , and R a may be the same as those described above for formula (I).
 当該サフラマイシンY3系化合物の製造方法は、以下のステップD及びEを含むことを特徴とする。ステップDでは、側鎖のZ部位からアシル鎖が除去されアミノ基又は保護化アミノ基に変換され、ステップEでは、五環性骨格におけるフェノールがキノンに変換される。 The method for producing the saframycin Y3 compound includes the following steps D and E. In Step D, the acyl chain is removed from the Z site of the side chain and converted to an amino group or a protected amino group. In Step E, the phenol in the pentacyclic skeleton is converted to quinone.
[ステップD]:側鎖のアミノ基への変換反応(アシル鎖の除去)
 ステップDは、式(I)で表される中間体化合物を、遷移金属触媒存在下においてZ部位からアシル鎖を除去し、アミノ基又は保護化アミノ基であるAに変換することにより、以下の式(V)で表される化合物を得る工程である。
Figure JPOXMLDOC01-appb-C000048
(式中、X、Y、A、R、R及びRは、式(IV)中と同じ意味を有する。)
[Step D]: Conversion reaction of side chain to amino group (removal of acyl chain)
In step D, the intermediate compound represented by formula (I) is converted to A which is an amino group or a protected amino group by removing the acyl chain from the Z site in the presence of a transition metal catalyst. In this step, a compound represented by formula (V) is obtained.
Figure JPOXMLDOC01-appb-C000048
(In the formula, X, Y, A, R 1 , R 2 and R a have the same meaning as in formula (IV).)
 当該Z部位からAへの変換は、XとYに「-NHC(=O)O-」、すなわち、カルバメート構造或いはウレタン構造を含むことにより、1工程で行い得ることが本発明において初めて見出されたものである。従来は、他の官能基が多数存在する状況で、末端アシル鎖の選択的除去及びアミノ化は困難であったため、かかる変換反応は本発明によって初めて達成できたものである。 It has been found for the first time in the present invention that the conversion from the Z site to A can be performed in one step by including “—NHC (═O) O—” in X and Y, that is, a carbamate structure or a urethane structure. It has been done. Conventionally, in the situation where there are many other functional groups, selective removal and amination of the terminal acyl chain has been difficult, and thus such a conversion reaction can be achieved for the first time by the present invention.
 ステップDにおいて用いられる遷移金属触媒は、好ましくはパラジウム錯体である。パラジウム錯体の具体例としては、テトラキス(トリフェニルホスフィン)パラジウムを挙げることができる。 The transition metal catalyst used in Step D is preferably a palladium complex. Specific examples of the palladium complex include tetrakis (triphenylphosphine) palladium.
[ステップE]:キノンへの酸化反応
 ステップEは、ステップDで得られた式(V)で表される化合物を遷移金属触媒存在下において酸化し、五環性骨格におけるフェノール部位をキノンに変換することにより、上記式(IV)で表されるサフラマイシンY3系化合物を得る工程である。
[Step E]: Oxidation reaction to quinone Step E oxidizes the compound represented by the formula (V) obtained in Step D in the presence of a transition metal catalyst to convert the phenol moiety in the pentacyclic skeleton to quinone. This is a step of obtaining a saframycin Y3 compound represented by the above formula (IV).
 ここで、用いられる遷移金属触媒は、好ましくはコバルト錯体である。コバルト錯体の具体例としては、サルコミン(N,N’‐エチレンビス(サリチリデンアミナト)コバルト(II))、Fremy塩(ニトロソジスルホン酸カリウム)等を挙げることができる。 Here, the transition metal catalyst used is preferably a cobalt complex. Specific examples of the cobalt complex include sarcomin (N, N'-ethylenebis (salicylideneaminato) cobalt (II)), Fremy salt (potassium nitrosodisulfonate), and the like.
 なお、上述のように、式(IV)中のAが保護基の場合でも、その後、脱保護を行うことにより、Aを水素原子に戻し、サフラマイシンY3と同様に末端をアミノ基に変化することができる。かかる脱保護は、当該技術分野において慣用されている手法を用いることができる。 As described above, even when A in the formula (IV) is a protective group, by subsequent deprotection, A is returned to a hydrogen atom, and the terminal is changed to an amino group in the same manner as saframycin Y3. be able to. For such deprotection, a technique commonly used in this technical field can be used.
 式(IV)において、好ましくは、R、R及びRが、いずれもメチル基であり;Rが、-CH(CH)-であり、Aは水素原子である。この場合、式(IV)の化合物は、サフラマイシンY3となる。 In the formula (IV), preferably, R 1 , R 2 and R a are all methyl groups; R 4 is —CH (CH 3 ) — and A is a hydrogen atom. In this case, the compound of formula (IV) is saframycin Y3.
(2)サフラマイシンA系化合物の製造方法
 上記式(I)で表される中間体化合物から、以下の式(VI)で表される化合物を製造することができる。
Figure JPOXMLDOC01-appb-C000049
(式中、X、R、R及びRは、式(I)中と同じ意味を有する。)
(2) Method for Producing Saframycin A-Based Compound From the intermediate compound represented by the above formula (I), a compound represented by the following formula (VI) can be produced.
Figure JPOXMLDOC01-appb-C000049
(In the formula, X, R 1 , R 2 and R a have the same meaning as in formula (I).)
 式(VI)の化合物は、サフラマイシンAに対応する構造を有するものであり、五環性骨格に側鎖のY-Z部位を変換し、カルボニル基末端とした化合物である。かかる側鎖の変換を行う観点から、式(I)において、Xは、-C(R)NH-であり、Yは、-C(=O)R-O-であり、Zは、-C(=O)Rである化合物を用いることが好適である。それら以外のR、R、及びRは、式(I)について上述したとおりのものを用いることができる。 The compound of the formula (VI) has a structure corresponding to saframycin A, and is a compound having a carbonyl group terminal by converting the YZ site of the side chain into a pentacyclic skeleton. From the viewpoint of performing such side chain conversion, in formula (I), X is —C (R 3 ) NH—, Y is —C (═O) R 4 —O—, and Z is It is preferred to use a compound that is —C (═O) R 6 . Other than these, R 1 , R 2 , and R a may be the same as those described above for formula (I).
 当該サフラマイシンA系化合物の製造方法は、以下のステップF~Hを含むことを特徴とする。ステップFでは、側鎖のY-Z部位からアシル鎖が除去されOH基に変換され、ステップGでは、五環性骨格におけるフェノールがキノンに変換され、ステップHでは、側鎖末端のOH基がカルボニル基に変換される。 The method for producing the saframycin A compound includes the following steps F to H. In Step F, the acyl chain is removed from the YZ site of the side chain and converted to an OH group. In Step G, the phenol in the pentacyclic skeleton is converted to quinone. In Step H, the OH group at the end of the side chain is converted. Converted to a carbonyl group.
[ステップF]:側鎖のOH基への変換反応(アシル鎖の除去)
 ステップFは、式(I)で表される化合物を塩基性条件下で加水分解し、Y-Z部位アシル鎖が除去されたOH基末端に変換することにより、以下の式(VII)で表される化合物を得る工程である。当該Y-Z部位からOH基末端への変換は、YとZの連結部として「-OC(=O)-」、すなわち、エステル構造を用いることにより、1工程で行い得ることが本発明において初めて見出されたものである。従来は、他の官能基が多数存在する状況で、末端アシル鎖の選択的除去及びOH基化は困難であったため、かかる変換反応は本発明によって初めて達成できたものである。
Figure JPOXMLDOC01-appb-C000050
(式中、X、R、R及びRは、式(I)中と同じ意味を有する。)
[Step F]: Conversion reaction of side chain to OH group (removal of acyl chain)
Step F is a compound represented by the following formula (VII) by hydrolyzing the compound represented by the formula (I) under basic conditions and converting it to the OH group terminal from which the YZ site acyl chain has been removed. A step of obtaining a compound to be produced. In the present invention, the conversion from the YZ site to the OH group end can be performed in one step by using “—OC (═O) —”, ie, an ester structure, as the linking part of Y and Z. It was discovered for the first time. Conventionally, in the situation where many other functional groups exist, selective removal of the terminal acyl chain and OH group formation have been difficult, and thus such a conversion reaction can be achieved for the first time by the present invention.
Figure JPOXMLDOC01-appb-C000050
(In the formula, X, R 1 , R 2 and R a have the same meaning as in formula (I).)
 ステップFにおいて塩基性条件下とするため、好ましくは水酸化物イオン(OH)が添加される。典型的には、水酸化リチウム等のアルカリ金属水酸化物を用いることができる。 In order to achieve basic conditions in Step F, hydroxide ions (OH ) are preferably added. Typically, an alkali metal hydroxide such as lithium hydroxide can be used.
 [ステップG]:キノンへの酸化反応
 ステップGは、ステップFで得られた式(VII)の化合物を遷移金属触媒存在下において酸化し、五環性骨格におけるフェノール部位をキノンに変換することにより、以下の式(VIII)で表される化合物を得る工程である。当該工程は、上記ステップEと同様の反応である。
Figure JPOXMLDOC01-appb-C000051
(式中、X、R、R及びRは、式(I)中と同じ意味を有する。)
[Step G]: Oxidation reaction to quinone Step G involves oxidation of the compound of formula (VII) obtained in Step F in the presence of a transition metal catalyst to convert the phenol moiety in the pentacyclic skeleton to quinone. And a step of obtaining a compound represented by the following formula (VIII). This process is the same reaction as in Step E above.
Figure JPOXMLDOC01-appb-C000051
(In the formula, X, R 1 , R 2 and R a have the same meaning as in formula (I).)
 ここで、用いられる遷移金属触媒は、好ましくはコバルト錯体である。コバルト錯体の具体例としては、サルコミン(N,N’‐エチレンビス(サリチリデンイミナト)コバルト(II))、Fremy塩(ニトロソジスルホン酸カリウム)等を挙げることができる。 Here, the transition metal catalyst used is preferably a cobalt complex. Specific examples of the cobalt complex include sarcomin (N, N′-ethylenebis (salicylideneiminato) cobalt (II)), Fremy salt (potassium nitrosodisulfonate), and the like.
 [ステップH]:末端OH基のカルボニル化
 ステップHは、ステップGで得られた式(VIII)の化合物をDMSO酸化又は超原子価ヨウ素試薬を用いて酸化し末端のOH基をカルボニル基に変換することにより、前記式(VI)で表されるサフラマイシンA系化合物を得る工程である。
[Step H]: Carbonylation of terminal OH group Step H is a step of oxidizing the compound of formula (VIII) obtained in Step G using DMSO oxidation or a hypervalent iodine reagent to convert the terminal OH group to a carbonyl group. This is a step of obtaining a saframycin A-based compound represented by the formula (VI).
 ステップHで用いられる超原子価ヨウ素試薬好ましくは5価のヨウ素を含む化合物であり、典型的には、デス・マーチン試薬と呼ばれる1,1,1-トリアセトキシ-1,1-ジヒドロ-1,2-ベンズヨードキソール-3(1H)-オンを挙げることができる。また、DMSO酸化は公知の活性化剤を用いて行うことができ、活性化剤としては塩化オキサリルを挙げることができる。これら以外に、当該技術分野において周知の化合物・試薬を用いて酸化を行うことができる。 Hypervalent iodine reagent used in Step H, preferably a compound containing pentavalent iodine, typically 1,1,1-triacetoxy-1,1-dihydro-1, called Dess-Martin reagent Mention may be made of 2-benziodoxol-3 (1H) -one. DMSO oxidation can be performed using a known activator, and examples of the activator include oxalyl chloride. In addition to these, oxidation can be carried out using compounds and reagents well known in the art.
 式(I)において、好ましくは、R、R及びRが、いずれもメチル基であり;Rが、水素原子である。この場合、最終生成物である式(VI)の化合物は、サフラマイシンAとなる。 In the formula (I), preferably, R 1 , R 2 and Ra are all methyl groups; R 3 is a hydrogen atom. In this case, the final product, the compound of formula (VI), is saframycin A.
(3)その他の化合物の製造方法
 また、上述のサフラマイシンY3系化合物の製造方法の変形例として、上記式(I)で表される中間体化合物から、五環性骨格に側鎖のX-Y-Z部位を変換し、OH基末端とした化合物を製造することもできる。かかる側鎖の変換を行う観点から、式(I)において、Xは、-C(R)O-であり、Yは、-C(=O)R-NH-であり、Zが、-C(=O)Rである化合物を用いることが好適である。それら以外のR、R、及びRは、式(I)について上述したとおりのものを用いることができる。
(3) Method for Producing Other Compounds As a modification of the method for producing the saframycin Y3-based compound described above, an intermediate compound represented by the above formula (I) is transformed into a side chain X- It is also possible to produce a compound in which the YZ moiety is converted to terminate the OH group. From the viewpoint of performing such side chain conversion, in formula (I), X is —C (R 3 ) O—, Y is —C (═O) R 4 —NH—, and Z is It is preferred to use a compound that is —C (═O) R 6 . Other than these, R 1 , R 2 , and R a may be the same as those described above for formula (I).
 当該OH基末端の化合物の製造方法は、以下のステップD2及びE2を含むことを特徴とする。ステップD2では、側鎖のX-Y-Z部位からアシル鎖を除去することでOH基に変換され、ステップE2では、五環性骨格におけるフェノール部位がキノンに変換される。 The manufacturing method of the OH group-terminated compound includes the following steps D2 and E2. In Step D2, the acyl chain is removed from the XYZ site of the side chain to convert it to an OH group, and in Step E2, the phenol site in the pentacyclic skeleton is converted to quinone.
[ステップD2]:側鎖のOH化反応(アシル鎖の除去)
 ステップD2は、式(I)で表される中間体化合物を塩基性条件下で加水分解して、側鎖のX-Y-Z部位からアシル鎖を除去し、X-Y-Z部位を-C(R)OH基に変換する工程である。
[Step D2]: Side chain OH reaction (acyl chain removal)
In step D2, the intermediate compound represented by formula (I) is hydrolyzed under basic conditions to remove the acyl chain from the XYZ site of the side chain, and the XYZ site is This is a step of converting to a C (R 3 ) OH group.
 ステップD2において、塩基性条件下とするため、好ましくは水酸化物イオン(OH)が添加される。典型的には、水酸化リチウム等のアルカリ金属水酸化物を用いることができる。 In step D2, hydroxide ions (OH ) are preferably added in order to achieve basic conditions. Typically, an alkali metal hydroxide such as lithium hydroxide can be used.
 当該X-Y-Z部位から第一級水酸基への変換は、XとYの連結部として「-O-C(=O)R」、すなわち、エステル構造を用いることにより、1工程で行い得ることが本発明において初めて見出されたものである。従来は、他の官能基が多数存在する状況で、アシル鎖の選択的除去及びOH化は困難であったため、かかる変換反応は本発明によって初めて達成できたものである。 The conversion from the XYZ moiety to the primary hydroxyl group is carried out in one step by using “—O—C (═O) R 3 ”, that is, an ester structure, as the linking part of X and Y. It has been found for the first time in the present invention. Conventionally, it has been difficult for the present invention to achieve such a conversion reaction for the first time because selective removal of an acyl chain and OH formation have been difficult in the presence of many other functional groups.
[ステップE2]:キノンへの酸化反応
 ステップE2は、ステップD2で得られた化合物を遷移金属触媒存在下において酸化し、五環性骨格におけるフェノール部位をキノンに変換する工程である。当該工程は、上記ステップEと同様の反応である。
[Step E2]: Oxidation reaction to quinone Step E2 is a step of oxidizing the compound obtained in Step D2 in the presence of a transition metal catalyst to convert the phenol moiety in the pentacyclic skeleton to quinone. This process is the same reaction as in Step E above.
 ここで、用いられる遷移金属触媒は、好ましくはコバルト錯体である。コバルト錯体の具体例としては、サルコミン(N,N’‐エチレンビス(サリチリデンイミナト)コバルト(II))、Fremy塩(ニトロソジスルホン酸カリウム)等を挙げることができる。 Here, the transition metal catalyst used is preferably a cobalt complex. Specific examples of the cobalt complex include sarcomin (N, N′-ethylenebis (salicylideneiminato) cobalt (II)), Fremy salt (potassium nitrosodisulfonate), and the like.
 以上で説明した本発明の製造方法における各工程における溶媒や反応温度等の反応条件は、後述の実施例において代表的な例として詳細に記載するが、必ずしもそれらに限定されるわけではなく、当該技術分野における当業者であれば、有機合成における一般的な知識に基づいてそれぞれ適宜選択可能である。 The reaction conditions such as the solvent and reaction temperature in each step of the production method of the present invention described above are described in detail as typical examples in the examples described later, but are not necessarily limited thereto. Those skilled in the art can appropriately select each based on general knowledge in organic synthesis.
 式(b)で表される非天然型アルデヒド基質が、以下の化合物から選択される場合、
Figure JPOXMLDOC01-appb-C000052
式(I)で表される中間体化合物は、以下の構造を有する。
Figure JPOXMLDOC01-appb-C000053
(式中、Zは、C6-C20アルキル基であり、Meはメチル基を表す。)
When the non-natural aldehyde substrate represented by the formula (b) is selected from the following compounds:
Figure JPOXMLDOC01-appb-C000052
The intermediate compound represented by formula (I) has the following structure.
Figure JPOXMLDOC01-appb-C000053
(Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
 同様に、式(b)で表される非天然型アルデヒド基質が上記の具体例から選択される場合、式(II)で表される前駆体化合物は、以下の構造を有する。
Figure JPOXMLDOC01-appb-C000054
(式中、Zは、C6-C20アルキル基であり、Meはメチル基を表す。)
Similarly, when the non-natural aldehyde substrate represented by formula (b) is selected from the above specific examples, the precursor compound represented by formula (II) has the following structure.
Figure JPOXMLDOC01-appb-C000054
(Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
 また、別の態様において、式(b)で表される非天然型アルデヒド基質が、以下の化合物から選択される場合、
Figure JPOXMLDOC01-appb-C000055
式(I)で表される中間体化合物は、以下の構造を有する。
Figure JPOXMLDOC01-appb-C000056
(式中、Zは、C6-C20アルキル基であり、Meはメチル基を表す。)
In another embodiment, when the non-natural aldehyde substrate represented by the formula (b) is selected from the following compounds:
Figure JPOXMLDOC01-appb-C000055
The intermediate compound represented by formula (I) has the following structure.
Figure JPOXMLDOC01-appb-C000056
(Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
 同様に、式(b)で表される非天然型アルデヒド基質が上記の具体例から選択される場合、式(II)で表される前駆体化合物は、以下の構造を有する。
Figure JPOXMLDOC01-appb-C000057
(式中、Zは、C6-C20アルキル基であり、Meはメチル基を表す。)
Similarly, when the non-natural aldehyde substrate represented by formula (b) is selected from the above specific examples, the precursor compound represented by formula (II) has the following structure.
Figure JPOXMLDOC01-appb-C000057
(Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
 本発明における各種中間体化合物又は生成物は、複数の不斉炭素を有し、光学異性体又はジアステレオ異性体などの立体異性体が存在するが、純粋な形態の立体異性体、立体異性体の任意の混合物、ラセミ体などはいずれも本発明の範囲に包含される。 Various intermediate compounds or products in the present invention have a plurality of asymmetric carbons, and there exist stereoisomers such as optical isomers or diastereoisomers, but pure forms of stereoisomers and stereoisomers are present. Any mixtures, racemates and the like are included within the scope of the present invention.
 また、本発明における各種中間体化合物又は生成物は、水和物又は溶媒和物として存在する場合もあるが、これらの物質はいずれも本発明の範囲に包含される。溶媒和物を形成する溶媒の種類は特に限定されないが、例えば、エタノール、アセトン、イソプロパノールなどの溶媒を例示することができる。 In addition, various intermediate compounds or products in the present invention may exist as hydrates or solvates, and any of these substances is included in the scope of the present invention. Although the kind of solvent which forms a solvate is not specifically limited, For example, solvents, such as ethanol, acetone, isopropanol, can be illustrated.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[試薬、装置等]
 すべての反応は、特記しない限り、窒素雰囲気下で行った。 NMRスペクトルはJEOL JNM-ECA 500(1H / 500MHz、13C / 125MHz)分光計、Bruker VSP 500(1H / 500MHz、13C / 125MHz)分光計およびBruker AMX500(1H / 500MHz、13C / 125 MHz)分光計を用いた。1H、13C-NMRでは内部標準としてクロロホルム、アセトニトリルおよびジメチルスルホキシドを用いた。1H-NMRのデータは、化学シフト(水素数、多重度、カップリング定数)として記載する。多重度は、s(一重項)、d(二重項)、t(三重項)、q(四重項)、quin(五重項)、m(多重項)、br (ブロード)として記載する。ESI-マススペクトルはBruker Daltonics micrOTOF-QIIを用いた。中圧液体クロマトグラフィー(MPLC)精製は、YAMAZEN YFLC-AI-580およびBiotage Isoleraで行った。Dess-Martinペルヨージナンおよびサルコミンは、東京化成工業株式会社から入手した。ATP(二ナトリウム塩三水和物)は、和光純薬工業より購入した。 EDC・HCl、HATUおよびHBTUは渡辺化学工業株式会社から購入した。Grubbs触媒第1世代およびPd(PPh34はSigma-Aldrichから得た。 NADPHおよびNADHはOriental Yeast Co.Ltd.から購入した。すべての試薬および市販の溶媒は入手したまま使用した。反応は、Merck Millipore TLCシリカゲルF254プレート(0.25mm)を用いた薄層クロマトグラフィーによりモニターした。フラッシュカラムクロマトグラフィーは、Kanto Silica Gel 60Nを用いて行った。
[Reagents, equipment, etc.]
All reactions were performed under a nitrogen atmosphere unless otherwise noted. NMR spectra for JEOL JNM-ECA 500 (1H / 500MHz, 13C / 125MHz) spectrometer, Bruker VSP 500 (1H / 500MHz, 13C / 125MHz) spectrometer and Bruker AMX500 (1H / 500MHz, 13C / 125MHz) spectrometer Using. In 1 H, 13 C-NMR, chloroform, acetonitrile and dimethyl sulfoxide were used as internal standards. 1 H-NMR data are described as chemical shifts (hydrogen number, multiplicity, coupling constant). Multiplicity is described as s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), m (multiplet), br (broad) . For the ESI-mass spectrum, Bruker Daltonics micrOTOF-QII was used. Medium pressure liquid chromatography (MPLC) purification was performed with YAMAZEN YFLC-AI-580 and Biotage Isolera. Dess-Martin periodinane and sarcomin were obtained from Tokyo Chemical Industry Co., Ltd. ATP (disodium salt trihydrate) was purchased from Wako Pure Chemical Industries. EDC / HCl, HATU and HBTU were purchased from Watanabe Chemical Co., Ltd. Grubbs catalyst first generation and Pd (PPh 3 ) 4 were obtained from Sigma-Aldrich. NADPH and NADH were purchased from Oriental Yeast Co. Ltd. All reagents and commercially available solvents were used as received. The reaction was monitored by thin layer chromatography using Merck Millipore TLC silica gel F254 plates (0.25 mm). Flash column chromatography was performed using Kanto Silica Gel 60N.
1.チロシン誘導体基質の合成
 チロシン誘導体(化合物1)を非特許文献5(Tanifuji, R.; Oguri, H.; Koketsu, K.; Yoshinaga, Y.; Minami, A.; Oikawa, H. Tetrahedron Lett. 2016, 57, 623.)の記載にしたがって合成した。
Figure JPOXMLDOC01-appb-C000058
1. Synthesis of Tyrosine Derivative Substrate The tyrosine derivative (Compound 1) was synthesized by using a non-patent document 5 (Tanifuji, R .; Oguri, H .; Koketsu, K .; Yoshinaga, Y .; Minami, A .; Oikawa, H. Tetrahedron Lett. 2016 , 57, 623.).
Figure JPOXMLDOC01-appb-C000058
2.アルデヒド基質の合成 2. Synthesis of aldehyde substrates
(1)アルデヒド基質1(化合物11)の合成
 以下の反応スキームにより、化合物6からアルデヒド基質1(化合物11)を合成した。
(1) Synthesis of Aldehyde Substrate 1 (Compound 11) Aldehyde substrate 1 (Compound 11) was synthesized from Compound 6 according to the following reaction scheme.
[化合物4の合成]
Figure JPOXMLDOC01-appb-C000059
[Synthesis of Compound 4]
Figure JPOXMLDOC01-appb-C000059
THF(10mL)中の2(281mg、0.557mmol)及び10%Pd/C(178mg、0.167mmol、30mol%)の懸濁液を低水素圧(0.60MPa)下、室温で1.5時間撹拌した 。混合物からCeliteろ過により触媒を除去し、減圧濃縮して3を得、これをさらに精製することなく使用した。
CH2Cl2(10mL)中の粗精製7およびEt3N(0.621mL、4.46mmol、8.0当量)の懸濁液に、CH2Cl2(10mL)中のAlloc-OSu(222mg、1.11mmol、2.0当量)を添加し、 室温で13.5時間撹拌した。得られた混合物に水(20mL)、1M HCl水溶液5.0mLを加え、CH2Cl2(50mL×3)で抽出した。有機抽出物を飽和食塩水で洗浄し、Na2SO4で乾燥し、減圧濃縮した。粗残留物をシリカゲルカラムクロマトグラフィー(hexane/AcOEt)で精製して、4(224mg、0.492mmol、2工程で収率88%)を白色固体として得た。
1H NMR (500 MHz, CDCl3, δ): 1.06 (9H, s), 1.36 (3H, d, J = 6.9 Hz), 3.36-3.46 (2H, m), 3.74 (2H, t, J = 5.2 Hz), 4.11-4.24 (1H, m), 4.49-4.62 (2H, m), 5.16-5.33 (3H, m), 5.85-5.95 (1H, m), 6.30 (1H, br), 7.36--7.47 (6H, m), 7.61-7.66 (4H, m).; 13C NMR (125 MHz, CDCl3, δ):19.00, 19.33, 26.97, 41.73, 50.70, 62.64, 66.03, 118.11, 128.00, 130.06, 132.65, 133.26, 133.30, 135.64, 155.89, 172.16.; HRMS (ESI, m/z): [M+Na]+ calcd. for C25H34N2O4SiNa, 477.2186; found, 477.2173.
A suspension of 2 (281 mg, 0.557 mmol) and 10% Pd / C (178 mg, 0.167 mmol, 30 mol%) in THF (10 mL) was stirred under low hydrogen pressure (0.60 MPa) at room temperature for 1.5 hours. The catalyst was removed from the mixture by Celite filtration and concentrated under reduced pressure to give 3, which was used without further purification.
CH 2 Cl 2 (10mL) solution of crude 7 and Et 3 N (0.621mL, 4.46mmol, 8.0 eq) to a suspension of, CH 2 Cl 2 (10mL) solution of Alloc-OSu (222mg, 1.11mmol, 2.0 equivalents) was added and stirred at room temperature for 13.5 hours. Water (20 mL) and 1 M HCl aqueous solution 5.0 mL were added to the obtained mixture, and the mixture was extracted with CH 2 Cl 2 (50 mL × 3). The organic extract was washed with saturated brine, dried over Na 2 SO 4 and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (hexane / AcOEt) to give 4 (224 mg, 0.492 mmol, 88% yield over 2 steps) as a white solid.
1 H NMR (500 MHz, CDCl 3 , δ): 1.06 (9H, s), 1.36 (3H, d, J = 6.9 Hz), 3.36-3.46 (2H, m), 3.74 (2H, t, J = 5.2 Hz), 4.11-4.24 (1H, m), 4.49-4.62 (2H, m), 5.16-5.33 (3H, m), 5.85-5.95 (1H, m), 6.30 (1H, br), 7.36--7.47 (6H, m), 7.61-7.66 (4H, m) .; 13 C NMR (125 MHz, CDCl 3 , δ): 19.00, 19.33, 26.97, 41.73, 50.70, 62.64, 66.03, 118.11, 128.00, 130.06, 132.65 , 133.26, 133.30, 135.64, 155.89, 172.16 .; HRMS (ESI, m / z): [M + Na] + calcd.for C 25 H 34 N 2 O 4 SiNa, 477.2186; found, 477.2173.
[化合物5の合成]
Figure JPOXMLDOC01-appb-C000060
[Synthesis of Compound 5]
Figure JPOXMLDOC01-appb-C000060
 Grubbs触媒の第1世代(222mg、0.267mmol、5.0mol%)の還流溶液に、4(2.45g、5.40mmol)および1-ウンデセン(11.1mL、54.0mmol、10当量)のCH2Cl2(20mL)溶液に加えた。混合物を17.5時間加熱還流した後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(hexane/AcOEt)で精製して5(2.45g、4.22mmol、収率78%)を淡黄色油状物として得た。
1H NMR (500 MHz, CDCl3, δ): 0.88 (3H, t, J = 6.9 Hz), 1.06 (9H, s), 1.20-1.31 (12H, m), 1.32-1.41 (4H, m), 2.03 (2H, q, J = 7.5 Hz), 3.36-3.47 (2H, m), 3.74 (2H, t, J = 5.2 Hz), 4.13-4.25 (1H, m), 4.41-4.57 (2H, m), 5.14 (1H, br), 5.49-5.60 (1H, m), 5.70-5.79 (1H, m), 6.33 (1H, s), 7.35-7.48 (6H, m), 7.60-7.67 (4H, m).; 13C NMR (125 MHz, CDCl3, δ):14.28, 18.95, 19.33, 22.83, 26.97, 29.05, 29.33, 29.48, 29.63, 29.70, 32.04, 32.41, 41.70, 50.68, 62.64, 66.25, 124.04, 127.99, 130.05, 133.25, 133.30, 135.42, 135.64, 136.75, 156.08, 172.22.; HRMS (ESI, m/z): [M+Na]+ calcd. for C34H52N2O4SiNa, 603.3588; found, 603.3573.
To the reflux solution of the first generation of Grubbs catalyst (222 mg, 0.267 mmol, 5.0 mol%), 4 (2.45 g, 5.40 mmol) and 1-undecene (11.1 mL, 54.0 mmol, 10 eq) CH 2 Cl 2 (20 mL ) Added to solution. The mixture was heated to reflux for 17.5 hours and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / AcOEt) to obtain 5 (2.45 g, 4.22 mmol, 78% yield) as a pale yellow oil.
1 H NMR (500 MHz, CDCl 3, δ): 0.88 (3H, t, J = 6.9 Hz), 1.06 (9H, s), 1.20-1.31 (12H, m), 1.32-1.41 (4H, m), 2.03 (2H, q, J = 7.5 Hz), 3.36-3.47 (2H, m), 3.74 (2H, t, J = 5.2 Hz), 4.13-4.25 (1H, m), 4.41-4.57 (2H, m) , 5.14 (1H, br), 5.49-5.60 (1H, m), 5.70-5.79 (1H, m), 6.33 (1H, s), 7.35-7.48 (6H, m), 7.60-7.67 (4H, m) .; 13 C NMR (125 MHz, CDCl 3 , δ): 14.28, 18.95, 19.33, 22.83, 26.97, 29.05, 29.33, 29.48, 29.63, 29.70, 32.04, 32.41, 41.70, 50.68, 62.64, 66.25, 124.04, 127.99 , 130.05, 133.25, 133.30, 135.42, 135.64, 136.75, 156.08, 172.22 .; HRMS (ESI, m / z): [M + Na] + calcd. For C 34 H 52 N 2 O 4 SiNa, 603.3588; found, 603.3573.
[化合物6の合成]
Figure JPOXMLDOC01-appb-C000061
[Synthesis of Compound 6]
Figure JPOXMLDOC01-appb-C000061
 5(280mg、0.482mmol)のTHF(15.0mL、0.032M)溶液に、1M TBAFのTHF溶液(0.627mL、0.627mmol、1.3当量)を添加した。混合物を室温で45分間撹拌した。次に飽和NH4Cl水溶液(10mL)でクエンチし、室温で5分間撹拌した。混合物を減圧濃縮し、水20mLを加え、CH2Cl2(50mL×3)で抽出した。有機抽出物を飽和食塩水で洗浄し、Na2SO4で乾燥し、減圧濃縮した。粗残留物をシリカゲルカラムクロマトグラフィー(CHCl3/MeOH)で精製して、6(127mg、0.372mmol、収率77%)を白色固体として得た。
1H NMR (500 MHz, CDCl3, δ): 0.87 (3H, t, J = 7.5 Hz), 1.19-1.41 (17H, m), 2.02 (2H, q, J = 6.9 Hz), 3.29-3.50 (2H, m), 3.69 (1H, br), 4.13-4.30 (1H, m), 4.41-4.54 (2H, m), 5.45-5.57 (2H, m), 5.70-5.80 (1H, m), 6.88 (1H, br).; 13C NMR (125 MHz, CDCl3, δ): 14.26, 18.75, 22.81, 29.04, 29.33, 29.46, 29.61, 29.69, 29,83, 32.03, 32.41, 42.25, 50.80, 61.82, 66.37, 123.87, 136.90, 156.45, 173.62.; HRMS (ESI, m/z): [M+Na]+ calcd. for C18H34N2O4Na, 365.2411; found, 365.2394.
To a solution of 5 (280 mg, 0.482 mmol) in THF (15.0 mL, 0.032 M) was added 1 M TBAF in THF (0.627 mL, 0.627 mmol, 1.3 eq). The mixture was stirred at room temperature for 45 minutes. It was then quenched with saturated aqueous NH 4 Cl (10 mL) and stirred at room temperature for 5 minutes. The mixture was concentrated under reduced pressure, 20 mL of water was added, and the mixture was extracted with CH 2 Cl 2 (50 mL × 3). The organic extract was washed with saturated brine, dried over Na 2 SO 4 and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (CHCl 3 / MeOH) to give 6 (127 mg, 0.372 mmol, 77% yield) as a white solid.
1 H NMR (500 MHz, CDCl 3 , δ): 0.87 (3H, t, J = 7.5 Hz), 1.19-1.41 (17H, m), 2.02 (2H, q, J = 6.9 Hz), 3.29-3.50 ( 2H, m), 3.69 (1H, br), 4.13-4.30 (1H, m), 4.41-4.54 (2H, m), 5.45-5.57 (2H, m), 5.70-5.80 (1H, m), 6.88 ( 13 C NMR (125 MHz, CDCl 3 , δ): 14.26, 18.75, 22.81, 29.04, 29.33, 29.46, 29.61, 29.69, 29,83, 32.03, 32.41, 42.25, 50.80, 61.82, 66.37 , 123.87, 136.90, 156.45, 173.62 .; HRMS (ESI, m / z): [M + Na] + calcd.for C 18 H 34 N 2 O 4 Na, 365.2411; found, 365.2394.
[化合物7の合成]
Figure JPOXMLDOC01-appb-C000062
[Synthesis of Compound 7]
Figure JPOXMLDOC01-appb-C000062
 CH2Cl2(10mL、0.0090M)中の6(30.9mg、0.0902mmol)の溶液に、Dess-Martinペルヨージナン(134mg、0.316mmol、3.5当量)を添加した。混合物を0℃で1時間撹拌した。得られた混合物を10% Na2S2O3の飽和NaHCO3 水溶液(5.0mL)でクエンチし、0℃で15分間撹拌した。混合物をCH2Cl2(30mL×3)で抽出し、有機抽出物を塩水で洗浄し、Na2SO4で乾燥し、減圧濃縮した。粗残留物をシリカゲルカラムクロマトグラフィー(CH2Cl2/AcOEt)で精製して、化合物7(22.0mg、0.0646mmol、収率72%)を白色固体として得た。
1H NMR (500 MHz, CDCl3, δ): 0.87 (3H, t, J = 6.9 Hz), 1.16-1.43 (18H, m), 19.98-2.11 (2H, m), 4.19 (2H, t, J = 5.2 Hz), 4.25-4.36 (1H, m), 4.44-4.55 (2H, m), 5.33 (1H, m), 5.46-5.58 (2H, m), 5.69-5.81 (2H, m), 6.95 (1H, br), 9.64 (1H, s).; 13C NMR (125 MHz, CDCl3, δ): 14.25, 18.56, 22.80, 27.69, 29.01, 29.31, 29.45, 29.60, 29.67, 29.82, 32.02, 32.39, 50.27, 50.50, 66.37, 123.48, 123.89, 135.56, 136.89, 156.26, 173.01, 196.36.; HRMS (ESI, m/z): [M+K]calcd. for C18H32N2O4K, 379.1994; found, 379.1984.
To a solution of 6 (30.9 mg, 0.0902 mmol) in CH 2 Cl 2 (10 mL, 0.0090 M) was added Dess-Martin periodinane (134 mg, 0.316 mmol, 3.5 eq). The mixture was stirred at 0 ° C. for 1 hour. The resulting mixture was quenched with 10% Na 2 S 2 O 3 saturated aqueous NaHCO 3 (5.0 mL) and stirred at 0 ° C. for 15 min. The mixture was extracted with CH 2 Cl 2 (30 mL × 3) and the organic extract was washed with brine, dried over Na 2 SO 4 and concentrated in vacuo. The crude residue was purified by silica gel column chromatography (CH 2 Cl 2 / AcOEt) to give compound 7 (22.0 mg, 0.0646 mmol, 72% yield) as a white solid.
1 H NMR (500 MHz, CDCl 3 , δ): 0.87 (3H, t, J = 6.9 Hz), 1.16-1.43 (18H, m), 19.98-2.11 (2H, m), 4.19 (2H, t, J = 5.2 Hz), 4.25-4.36 (1H, m), 4.44-4.55 (2H, m), 5.33 (1H, m), 5.46-5.58 (2H, m), 5.69-5.81 (2H, m), 6.95 ( 1H, br), 9.64 (1H, s) .; 13 C NMR (125 MHz, CDCl 3 , δ): 14.25, 18.56, 22.80, 27.69, 29.01, 29.31, 29.45, 29.60, 29.67, 29.82, 32.02, 32.39, 50.27, 50.50, 66.37, 123.48, 123.89, 135.56, 136.89, 156.26, 173.01, 196.36 .; HRMS (ESI, m / z): [M + K] + calcd.for C 18 H 32 N 2 O 4 K, 379.1994 ; found, 379.1984.
(2)アルデヒド基質2(化合物11)の合成
 以下の反応スキームにより、化合物8からアルデヒド基質11(化合物4を合成した。
(2) Synthesis of Aldehyde Substrate 2 (Compound 11) Aldehyde substrate 11 (Compound 4) was synthesized from Compound 8 according to the following reaction scheme.
[化合物9の合成]
Figure JPOXMLDOC01-appb-C000063
[Synthesis of Compound 9]
Figure JPOXMLDOC01-appb-C000063
 乳酸エチル 8 (962 μL, 8.47 mmol) とアリルアミン (1.90 mL, 25.4 mmol, 3.0当量) のEtOH溶液 (10 mL, 0.85 M) をマイクロウェーブ照射下、120 °C で35時間撹拌した。エタノールを減圧留去した後、液体残渣を酢酸エチルを用いてシリカゲルを通過させ、粗精製した。減圧濃縮の後、粗残留物をシリカゲルカラムクロマトグラフィー(CHCl3/AcOEt)で精製して、9 (1.01 g, 7.83 mmol, 92%) を無色油状物として得た。
1H NMR (500 MHz, CDCl3, δ): 1.36 (3H, d, J = 6.9 Hz), 3.81-3.83 (2H, m), 4.17 (1H , m), 4.58 (1H, s), 5.08-5.16 (2H, m), 5.74-5.81 (1H, m), 7.05 (1H, br).; 13C NMR (125 MHz, CDCl3, δ): 21.16, 41.41, 68.28, 116.43, 133.75, 175.39.; HRMS (ESI, m/z): [M+Na]+ calcd. for C6H11NO2Na, 152.0682; found, 152.0688.
An EtOH solution (10 mL, 0.85 M) of ethyl lactate 8 (962 μL, 8.47 mmol) and allylamine (1.90 mL, 25.4 mmol, 3.0 equivalents) was stirred at 120 ° C. for 35 hours under microwave irradiation. After the ethanol was distilled off under reduced pressure, the liquid residue was roughly purified by passing it through silica gel using ethyl acetate. After concentration under reduced pressure, the crude residue was purified by silica gel column chromatography (CHCl 3 / AcOEt) to give 9 (1.01 g, 7.83 mmol, 92%) as a colorless oil.
1 H NMR (500 MHz, CDCl 3 , δ): 1.36 (3H, d, J = 6.9 Hz), 3.81-3.83 (2H, m), 4.17 (1H, m), 4.58 (1H, s), 5.08- 5.16 (2H, m), 5.74-5.81 (1H, m), 7.05 (1H, br) .; 13 C NMR (125 MHz, CDCl 3 , δ): 21.16, 41.41, 68.28, 116.43, 133.75, 175.39 .; HRMS (ESI, m / z): [M + Na] + calcd. For C 6 H 11 NO 2 Na, 152.0682; found, 152.0688.
[化合物10の合成]
Figure JPOXMLDOC01-appb-C000064
[Synthesis of Compound 10]
Figure JPOXMLDOC01-appb-C000064
 MNBA (2.52 g, 7.32 mmol, 1.2 当量)、ミリスチン酸 (2.03 g, 7.32 mmol, 1.2 当量)、DMAP (149 mg, 1.22 mmol, 20 mol%)とトリエチルアミン (2.13 mL, 15.2 mmol, 2.5 当量) のCH2Cl2溶液(5.0 mL) に9 (788 mg, 6.10 mmol) のCH2Cl2 溶液(15.3 mL, 0.30 M)を加えて室温で13 時間撹拌した。0 °Cまで冷却した後、飽和NaHCO3 水溶液 (15 mL)を加えて反応を終結させた。得られた混合物をCH2Cl2 (50 mL × 3)で抽出した。有機抽出物を飽和食塩水で洗浄し、Na2SO4で乾燥し、減圧濃縮した。粗残留物をシリカゲルカラムクロマトグラフィー(CHCl3/AcOEt, hexane/AcOEt) で精製して10 (1.41 g, 4.15 mmol, 68%)を白色固体として得た。
1H NMR (500 MHz, CDCl3, δ): 0.86 (3H, t, J = 6.9 Hz), 1.24-1.32 (20H, m), 1.46 (3H, d, J = 6.9 Hz), 1.60-1.66 (2H, m), 2.36 (2H, t, J = 7.4 Hz), 3.89 (2H, m,), 5.13-5.24 (3H, m), 5.78-5.86 (1H, m), 6.21 (1H, br).; 13C NMR (125 MHz, CDCl3, δ): 14.21, 18.06, 22.78, 24.99, 29.18, 29.34, 29.45, 29.54, 29.69, 29.74, 29.76, 32.02, 34.43, 41.60, 70.49, 116.67, 133.87, 170.45, 172.39.; HRMS (ESI, m/z): [M+Na]+ calcd. for C20H37NO3Na, 362.2665; found, 362.2652.
MNBA (2.52 g, 7.32 mmol, 1.2 eq), myristic acid (2.03 g, 7.32 mmol, 1.2 eq), DMAP (149 mg, 1.22 mmol, 20 mol%) and triethylamine (2.13 mL, 15.2 mmol, 2.5 eq) A CH 2 Cl 2 solution (15.3 mL, 0.30 M) of 9 (788 mg, 6.10 mmol) was added to the CH 2 Cl 2 solution (5.0 mL), and the mixture was stirred at room temperature for 13 hours. After cooling to 0 ° C., saturated aqueous NaHCO 3 (15 mL) was added to terminate the reaction. The resulting mixture was extracted with CH 2 Cl 2 (50 mL × 3). The organic extract was washed with saturated brine, dried over Na 2 SO 4 and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (CHCl 3 / AcOEt, hexane / AcOEt) to obtain 10 (1.41 g, 4.15 mmol, 68%) as a white solid.
1 H NMR (500 MHz, CDCl 3 , δ): 0.86 (3H, t, J = 6.9 Hz), 1.24-1.32 (20H, m), 1.46 (3H, d, J = 6.9 Hz), 1.60-1.66 ( 2H, m), 2.36 (2H, t, J = 7.4 Hz), 3.89 (2H, m,), 5.13-5.24 (3H, m), 5.78-5.86 (1H, m), 6.21 (1H, br). ; 13 C NMR (125 MHz, CDCl 3 , δ): 14.21, 18.06, 22.78, 24.99, 29.18, 29.34, 29.45, 29.54, 29.69, 29.74, 29.76, 32.02, 34.43, 41.60, 70.49, 116.67, 133.87, 170.45, 172.39 .; HRMS (ESI, m / z): [M + Na] + calcd. For C 20 H 37 NO 3 Na, 362.2665; found, 362.2652.
[化合物11の合成]
Figure JPOXMLDOC01-appb-C000065
[Synthesis of Compound 11]
Figure JPOXMLDOC01-appb-C000065
 10 (209 mg, 0.616 mmol) の CHCl3 (140 mL, 4.4 mM) 溶液へ、溶液が青紫色を呈するまで-30 °Cでオゾンを通気した。酸素と窒素を通気して過剰なオゾンを溶液から除いた。この過程をもう一度繰り返した後、Me2S (1.37 mL, 18.5 mmol, 30 当量) を加え、-30 °Cで10分間、室温で40分間撹拌した。減圧濃縮の後、粗残留物をシリカゲルカラムクロマトグラフィー(CHCl3/AcOEt)で精製して、11 (168 mg, 0.493 mmol, 80%)を白色固体として得た。
[α]D 29 -7.1° (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3, δ): 0.85 (3H, t, J = 6.9 Hz), 1.17-1.29 (20H, m), 1.42-1.46 (3H, m), 1.61-1.67 (2H, m), 2.35-2.40 (2H, m), 4.20 (2H, d, J = 4.6 Hz), 5.24 (1H, q, J = 6.9 Hz), 6.89 (1H, s), 9.65 (1H, s).; 13C NMR (125 MHz, CDCl3, δ): 14.19, 17.95, 22.76, 24.93, 29.17, 29.32, 29.42, 29.52, 29.66, 29.72, 29.74, 32.00, 34.37, 49.99, 70.23, 171.06, 172.44, 195.83.; HRMS (ESI, m/z): [M+Na]+ calcd. for C19H35NO4Na, 364.2458; found, 364.2447.
Ozone was bubbled through a solution of 10 (209 mg, 0.616 mmol) in CHCl 3 (140 mL, 4.4 mM) at −30 ° C. until the solution turned blue-violet. Excess ozone was removed from the solution by bubbling oxygen and nitrogen. After repeating this process once more, Me 2 S (1.37 mL, 18.5 mmol, 30 eq) was added and stirred at −30 ° C. for 10 minutes and at room temperature for 40 minutes. After concentration under reduced pressure, the crude residue was purified by silica gel column chromatography (CHCl 3 / AcOEt) to obtain 11 (168 mg, 0.493 mmol, 80%) as a white solid.
[α] D 29 -7.1 ° (c 1.0, CHCl 3 ); 1 H NMR (500 MHz, CDCl 3 , δ): 0.85 (3H, t, J = 6.9 Hz), 1.17-1.29 (20H, m), 1.42-1.46 (3H, m), 1.61-1.67 (2H, m), 2.35-2.40 (2H, m), 4.20 (2H, d, J = 4.6 Hz), 5.24 (1H, q, J = 6.9 Hz) , 6.89 (1H, s), 9.65 (1H, s) .; 13 C NMR (125 MHz, CDCl 3 , δ): 14.19, 17.95, 22.76, 24.93, 29.17, 29.32, 29.42, 29.52, 29.66, 29.72, 29.74 , 32.00, 34.37, 49.99, 70.23, 171.06, 172.44, 195.83 .; HRMS (ESI, m / z): [M + Na] + calcd. For C 19 H 35 NO 4 Na, 364.2458; found, 364.2447.
3.サフラマイシンY3の合成
 実施例1で得たチロシン誘導体(化合物1)と実施例2で得たアルデヒド基質1(化合物7)から、サフラマイシンY3(化合物16’)の合成を行った。反応に用いたホロ化酵素SfmCは、非特許文献4(Koketsu, K.; Watanabe, K.; Suda, H.; Oguri, H.; Oikawa, H. Nat. Chem. Biol. 2010, 6, 408)の記載にしたがって作成した。
3. Synthesis of Saframycin Y3 Saframycin Y3 (Compound 16 ′) was synthesized from the tyrosine derivative (Compound 1) obtained in Example 1 and the aldehyde substrate 1 (Compound 7) obtained in Example 2. The holoenzyme SfmC used in the reaction is described in Non-Patent Document 4 (Koketsu, K .; Watanabe, K .; Suda, H .; Oguri, H .; Oikawa, H. Nat. Chem. Biol. 2010, 6, 408). ).
[化合物13の合成]
Figure JPOXMLDOC01-appb-C000066
[Synthesis of Compound 13]
Figure JPOXMLDOC01-appb-C000066
 13.7μMのホロ化SfmC、1.0mMの化合物1、400μMの化合物7(DMSO溶液として添加)、20mMのMgCl2、20μMのMnCl2、2.0mMのATPを含有する50mM KH2PO4-KOH緩衝液(pH7.5)の20mL溶液に、2.0 mMの NADPHを添加し、酵素反応を開始させ、30℃で2時間インキュベートした。反応混合物を100mM KCN 水溶液(750μL)で処理し、30℃で5分間インキュベートした。得られた混合物をMeCN(60mL)で希釈した後、7000×gで5分間遠心分離して SfmCを除去した。これをろ過して化合物12を含む溶液を得、さらに精製することなく使用した。 50 mM KH 2 PO 4 -KOH buffer containing 13.7 μM Holified SfmC, 1.0 mM Compound 1, 400 μM Compound 7 (added as DMSO solution), 20 mM MgCl 2 , 20 μM MnCl 2 , 2.0 mM ATP 2.0 mM NADPH was added to a 20 mL solution of (pH 7.5) to initiate the enzyme reaction and incubated at 30 ° C. for 2 hours. The reaction mixture was treated with 100 mM KCN aqueous solution (750 μL) and incubated at 30 ° C. for 5 minutes. The resulting mixture was diluted with MeCN (60 mL) and then centrifuged at 7000 × g for 5 minutes to remove SfmC. This was filtered to give a solution containing compound 12, which was used without further purification.
 MeCN(60mL), 水(20mL)中の化合物12の粗精製物および37%HCHO水溶液(39.8μL、14.7mg、50当量)の懸濁液に、2-ピコリンボラン(42.8mg、0.40mmol、50当量)を添加し、室温で30分間撹拌した。得られた混合物を減圧濃縮した。残渣に水(20mL)を加え、Et2O(30mL×3)で抽出した。有機抽出物を飽和食塩水で洗浄し、Na2SO4で乾燥させた。ろ過及び減圧濃縮した後、粗生成物をSep-Pak(登録商標)C18に通し、MeCNで溶離した。濃縮後、残渣を以下の条件下でInertsilsustain C18(GL Sciences、φ10×250mm、5μm)を用いたHPLCにより精製した:水に対するMeCNの割合を30%から75%まで35分間、直線勾配で増加させた。この際、流速は5.0mL /分、カラム温度は室温、UV検出器の波長は280nmとした。目的生成物を含む画分を減圧下で濃縮して化合物13を得た(1.37mg、1.84μmol、3段階で収率23%)。得られた化合物13を、1H-NMR、13C-NMR、H-COSY、HSQC、HMBCおよびROESYを含む一連のNMR測定によって分析した。
1H NMR (500 MHz, CDCl3, δ): 0.87 (3H, t, J = 6.9 Hz), 0.93 (3H, d, J = 6.9 Hz), 1.20-1.39 (17H, m), 2.02 (2H, q, J = 6.9 Hz), 2.09-2.19 (1H, m), 2.21 (3H, s), 2.27 (3H, s), 2.30 (3H, s), 2.56 (1H, d, J = 18.3 Hz), 2.80 (1H, dd, J = 15.5, 2.3 Hz), 3.05 (1H, dd, J = 18.0, 8.6 Hz), 3.20-3.33 (2H, m), 3.36 (1H, m), 3.45 (1H, m), 3.67-3.75 (4H, m), 3.79 (3H, s), 4.03 (1H, d, J = 2.3 Hz), 4.00-4.05 (1H, m), 4.14 (1H, br), 4.34-4.46 (2H, m), 5.16 (1H, br), 5.35 (1H, br), 5.43-5.54 (1H, m), 5.66-5.76 (1H, m), 5.85 (1H, s), 6,00 (1H, s), 6.42 (1H, s), 6.49 (1H, s).; 13C NMR (125 MHz, CDCl3, δ): 14.29, 15.83, 15.94, 19.14, 22.83, 25.51, 25.62, 29.08, 29.34, 29.48, 29.63, 29.70, 32.04, 32.11, 32.42, 41.53, 41.92, 50.18, 55.46, 56.63, 56.75, 57.00, 59.96, 60.92, 60.95, 64.61, 65.90, 111.80, 117.13, 117.59, 118.22, 121.14, 121.28, 124.18, 129.20, 131.02, 131.93, 136.45, 143.20, 143.66, 145.09, 146.99, 155.51, 171.68.; HRMS (ESI, m/z): [M+H]calcd. for C43H63N4O7, 747.4692; found, 747.4698.
To a suspension of crude compound 12 and 37% aqueous HCHO (39.8 μL, 14.7 mg, 50 eq) in MeCN (60 mL), water (20 mL) was added 2-picoline borane (42.8 mg, 0.40 mmol, 50 Equivalent) was added and stirred at room temperature for 30 minutes. The resulting mixture was concentrated under reduced pressure. Water (20 mL) was added to the residue and extracted with Et 2 O (30 mL × 3). The organic extract was washed with saturated brine and dried over Na 2 SO 4 . After filtration and concentration in vacuo, the crude product was passed through Sep-Pak® C18 and eluted with MeCN. After concentration, the residue was purified by HPLC using Inertsilsustain C18 (GL Sciences, φ10 × 250 mm, 5 μm) under the following conditions: increasing the ratio of MeCN to water from 30% to 75% with a linear gradient for 35 minutes It was. At this time, the flow rate was 5.0 mL / min, the column temperature was room temperature, and the wavelength of the UV detector was 280 nm. Fractions containing the desired product were concentrated under reduced pressure to give compound 13 (1.37 mg, 1.84 μmol, 23% yield over 3 steps). The resulting compound 13 was analyzed by a series of NMR measurements including 1 H-NMR, 13 C-NMR, H-COSY, HSQC, HMBC and ROESY.
1 H NMR (500 MHz, CDCl 3 , δ): 0.87 (3H, t, J = 6.9 Hz), 0.93 (3H, d, J = 6.9 Hz), 1.20-1.39 (17H, m), 2.02 (2H, q, J = 6.9 Hz), 2.09-2.19 (1H, m), 2.21 (3H, s), 2.27 (3H, s), 2.30 (3H, s), 2.56 (1H, d, J = 18.3 Hz), 2.80 (1H, dd, J = 15.5, 2.3 Hz), 3.05 (1H, dd, J = 18.0, 8.6 Hz), 3.20-3.33 (2H, m), 3.36 (1H, m), 3.45 (1H, m) , 3.67-3.75 (4H, m), 3.79 (3H, s), 4.03 (1H, d, J = 2.3 Hz), 4.00-4.05 (1H, m), 4.14 (1H, br), 4.34-4.46 (2H , m), 5.16 (1H, br), 5.35 (1H, br), 5.43-5.54 (1H, m), 5.66-5.76 (1H, m), 5.85 (1H, s), 6,00 (1H, s ), 6.42 (1H, s), 6.49 (1H, s) .; 13 C NMR (125 MHz, CDCl 3 , δ): 14.29, 15.83, 15.94, 19.14, 22.83, 25.51, 25.62, 29.08, 29.34, 29.48, 29.63, 29.70, 32.04, 32.11, 32.42, 41.53, 41.92, 50.18, 55.46, 56.63, 56.75, 57.00, 59.96, 60.92, 60.95, 64.61, 65.90, 111.80, 117.13, 117.59, 118.22, 121.14, 121.28, 124.18, 121.129 131.02, 131.93, 136.45, 143.20, 143.66, 145.09, 146.99, 155.51, 171.68 .; HRMS (ESI, m / z): [M + H] + calcd. For C 43 H 63 N 4 O 7 , 747.4692; found, 747.4698.
[化合物14の合成]
Figure JPOXMLDOC01-appb-C000067
[Synthesis of Compound 14]
Figure JPOXMLDOC01-appb-C000067
 CH2Cl2(0.50mL)中のPd(PPh3)4(9.91mg、 8.58μmol、 50mol%)およびフェニルシラン(5.29μL、42.9μmol、2.5当量)の溶液に、化合物13(12.8mg、17.1μmol)のCH2Cl2(1.0mL)溶液を添加した。混合物を30℃で20分間撹拌し、SiliaMetS Thiourea (登録商標、85.1 mg, 103 μmol, 6.0 eq. SILI CYCLE)を加え50分間室温で撹拌した。得られた混合物を濾過、減圧濃縮した後、残渣をSep-Pak(登録商標)C18に通し、MeCNで溶離して化合物14を含む溶液を得、さらに精製することなく使用した。
  CH2Cl2(1.0mL)中の化合物14の溶液に、Fmoc-OSu (6.37 mg、18.9 μmol、1.1当量)のCH2Cl2(1.0mL)溶液を添加した。混合物を室温で6.5時間撹拌したのち、Sep-Pak(登録商標)C18に通し、MeCNで溶離した。濃縮後、残渣を以下の条件下でInertsustain C18(GL Sciences、φ10×250mm、5μm)を用いたHPLCにより精製した:水に対するMeCNの割合を30%から75%まで30分間、直線勾配で増加させた。この際、流速は5.0 mL /分、カラム温度は室温、UV検出器の波長は280 nmとした。目的生成物を含む画分を減圧下で濃縮して化合物15(10.4 mg、13.7 μmol、2段階で収率80%)を得た。得られた化合物15は、1H-NMR、13C-NMR、H-COSY、HSQC、HMBCおよびROESYを含む一連のNMR測定によって分析した。
1H NMR (500 MHz, CDCl3, δ): 0.96 (3H, d, J = 6.9 Hz), 2.11 (3H, s), 2.15-2.20 (1H, m), 2.25 (3H, s), 2.31 (3H, s), 2.55 (1H, d, J = 18.3 Hz), 2.80 (1H, dd, J = 15.5, 2.3 Hz), 3.05 (1H, dd, J = 18.3, 8.0 Hz), 3.26--3.32 (2H, m), 3.36 (1H, d, J = 8.0 Hz), 3.46 (1H, t, J = 6.6 Hz), 3.66 (3H, s), 3.73-3.82 (4H, m), 4.03 (1H, d, J = 2.3 Hz), 4.09-4.18 (3H, m), 4.21--4.34 (2H, m), 5.27 (1H, d, J = 6.3 Hz), 5.36 (1H, s), 5.86 (1H, s), 5.98 (1H, s), 6.38 (1H, s), 6.47 (1H, s), 7.27-7.34 (2H, m), 7.35-7.44 (2H, m), 7.47-7.60 (2H, m), 7.75 (2H, d, J = 7.4 Hz).; 13C NMR (125 MHz, CDCl3, δ): 15.72, 15.93, 19.12, 25.67, 32.11, 41.52, 41.91, 47.21, 50.29, 55.47, 56.64, 56.77, 56.92, 59.94, 60.81, 60.93, 66.97, 117.19, 117.63, 118.18, 120.12, 121.08, 121.24, 125.17, 125.24, 127.18, 127.83, 129.24, 130.99, 131.90, 141.37, 141.42, 143.21, 143.67, 143.89, 144.07, 145.11, 147.06, 155.50, 171.70.; HRMS (ESI, m/z): [M+H]+ calcd. For C44H48N5O7, 758.3548; found, 758.3557.
To a solution of Pd (PPh 3 ) 4 (9.91 mg, 8.58 μmol, 50 mol%) and phenylsilane (5.29 μL, 42.9 μmol, 2.5 eq) in CH 2 Cl 2 (0.50 mL), compound 13 (12.8 mg, 17.1 μmol) of CH 2 Cl 2 (1.0 mL) was added. The mixture was stirred at 30 ° C. for 20 minutes, SiliaMetS Thiourea (registered trademark, 85.1 mg, 103 μmol, 6.0 eq. SILI CYCLE) was added, and the mixture was stirred at room temperature for 50 minutes. After the resulting mixture was filtered and concentrated under reduced pressure, the residue was passed through Sep-Pak® C18, eluting with MeCN to give a solution containing compound 14, which was used without further purification.
To a solution of compound 14 in CH 2 Cl 2 (1.0mL), Fmoc-OSu (6.37 mg, 18.9 μmol, 1.1 eq) was added CH 2 Cl 2 (1.0mL) solution of. The mixture was stirred at room temperature for 6.5 hours, then passed through Sep-Pak® C18 and eluted with MeCN. After concentration, the residue was purified by HPLC using Inertsustain C18 (GL Sciences, φ10 × 250 mm, 5 μm) under the following conditions: Increase the ratio of MeCN to water from 30% to 75% with a linear gradient for 30 minutes. It was. At this time, the flow rate was 5.0 mL / min, the column temperature was room temperature, and the wavelength of the UV detector was 280 nm. Fractions containing the desired product were concentrated under reduced pressure to give compound 15 (10.4 mg, 13.7 μmol, 80% yield over 2 steps). The resulting compound 15 was analyzed by a series of NMR measurements including 1 H-NMR, 13 C-NMR, H-COSY, HSQC, HMBC and ROESY.
1 H NMR (500 MHz, CDCl 3 , δ): 0.96 (3H, d, J = 6.9 Hz), 2.11 (3H, s), 2.15-2.20 (1H, m), 2.25 (3H, s), 2.31 ( 3H, s), 2.55 (1H, d, J = 18.3 Hz), 2.80 (1H, dd, J = 15.5, 2.3 Hz), 3.05 (1H, dd, J = 18.3, 8.0 Hz), 3.26--3.32 ( 2H, m), 3.36 (1H, d, J = 8.0 Hz), 3.46 (1H, t, J = 6.6 Hz), 3.66 (3H, s), 3.73-3.82 (4H, m), 4.03 (1H, d , J = 2.3 Hz), 4.09-4.18 (3H, m), 4.21--4.34 (2H, m), 5.27 (1H, d, J = 6.3 Hz), 5.36 (1H, s), 5.86 (1H, s ), 5.98 (1H, s), 6.38 (1H, s), 6.47 (1H, s), 7.27-7.34 (2H, m), 7.35-7.44 (2H, m), 7.47-7.60 (2H, m), 7.75 (2H, d, J = 7.4 Hz) .; 13 C NMR (125 MHz, CDCl 3 , δ): 15.72, 15.93, 19.12, 25.67, 32.11, 41.52, 41.91, 47.21, 50.29, 55.47, 56.64, 56.77, 56.92, 59.94, 60.81, 60.93, 66.97, 117.19, 117.63, 118.18, 120.12, 121.08, 121.24, 125.17, 125.24, 127.18, 127.83, 129.24, 130.99, 131.90, 141.37, 141.42, 143.21, 143.67, 143.89, 144.07, 145.1 147.06, 155.50, 171.70 .; HRMS (ESI, m / z): [M + H] + calcd. For C 44 H 48 N 5 O 7 , 758.3548; found, 758.3557.
[サフラマイシンY3の合成]
Figure JPOXMLDOC01-appb-C000068
[Synthesis of saframycin Y3]
Figure JPOXMLDOC01-appb-C000068
  MeCN(10mL)、酢酸エチル(2mL)中の化合物15(10.3mg、13.6μmol)およびサルコミン(4.42mg、13.6μmol、1当量)の溶液に、室温で酸素ガスを 5分間吹き込んだ。酸素雰囲気下で2.5時間撹拌した後、再度酸素ガスを3分間吹き込んだ。30分間酸素雰囲気下で撹拌したのちSiliaMetS Thiourea (登録商標、89.9 mg, 108 μmol, 8.0 eq. SILI CYCLE)を加え15分間撹拌した。得られた混合物を濾過、減圧濃縮したのち、残渣をSep-Pak(登録商標)フロリジールに通し、AcOEtで溶離した。濃縮後、残渣を以下の条件下でInertsil Diol (GL Sciences, φ 10 × 250 mm, 5 μm)を用いたHPLCにより精製した:ヘキサンに対する酢酸AcOEtの割合を30%から60%まで30分間、直線勾配で増加させた。この際、流速は5.0 mL /分、カラム温度は室温、UV検出器の波長は280 nmとした。目的生成物を含む画分を減圧下で濃縮して化合物16(6.87 mg、8.74 μmol、収率64%)を得た。得られた化合物16は、1H-NMR、13C-NMR、H-COSY、HSQC、HMBCおよびROESYを含む一連のNMR測定によって分析した。1H NMR (500 MHz, CDCl3, δ): 1.19 (3H, d, J = 6.9 Hz), 1.81 (3H, s), 1.90 (3H, s), 2.30-2.37 (4H, m), 2.75-2.85 (2H, m), 3.09 (1H, dt, J = 11.3, 3.0 Hz), 3.29 (1H, m), 3.42 (1H, d, J = 7.7 Hz), 3.66-3.72 (2H, m), 3.85-3.95 (4H, m), 4.00 (3H, s), 4.06-4.14 (4H, m), 4.22-4.25 (1H, m), 4.91 (1H, d, J = 7.4 Hz), 5.90 (1H, br), 7.29-7.43 (4H, m), 7.60 (1H, d, J = 7.4 Hz), 7.71 (1H, d, J = 7.4 Hz), 7.76 (2H, d, J = 7.4 Hz).; 13C NMR (125 MHz, CDCl3, δ): 8.7, 8.8, 17.7, 21.4, 25.2, 40.1, 41.7, 47.1, 50.9, 54.1, 54.3, 54.7, 57.1, 58.2, 61.1, 61.2, 67.4, 117.0, 120.1, 120.1, 125.3, 125.4, 127.2, 127.3, 127.85, 127.90, 135.67, 135.74, 141.4, 141.6, 143.6, 144.3, 155.8, 156.2, 172.6, 181.3, 182.7, 185.5, 187.0.; HRMS (ESI, m/z): [M+H]+ calcd. for C44H44N5O9, 786.3134; found, 786.3110. A solution of compound 15 (10.3 mg, 13.6 μmol) and salcomine (4.42 mg, 13.6 μmol, 1 eq) in MeCN (10 mL), ethyl acetate (2 mL) was bubbled with oxygen gas for 5 min at room temperature. After stirring for 2.5 hours in an oxygen atmosphere, oxygen gas was blown again for 3 minutes. After stirring in an oxygen atmosphere for 30 minutes, SiliaMetS Thiourea (registered trademark, 89.9 mg, 108 μmol, 8.0 eq. SILI CYCLE) was added and stirred for 15 minutes. After the resulting mixture was filtered and concentrated under reduced pressure, the residue was passed through Sep-Pak (registered trademark) Florisil and eluted with AcOEt. After concentration, the residue was purified by HPLC using Inertsil Diol (GL Sciences, φ10 × 250 mm, 5 μm) under the following conditions: The ratio of AcOEt acetate to hexane was 30% to 60% in a straight line for 30 minutes. Increased with gradient. At this time, the flow rate was 5.0 mL / min, the column temperature was room temperature, and the wavelength of the UV detector was 280 nm. Fractions containing the desired product were concentrated under reduced pressure to give compound 16 (6.87 mg, 8.74 μmol, 64% yield). The resulting compound 16 was analyzed by a series of NMR measurements including 1 H-NMR, 13 C-NMR, H-COSY, HSQC, HMBC and ROESY. 1 H NMR (500 MHz, CDCl 3 , δ): 1.19 (3H, d, J = 6.9 Hz), 1.81 (3H, s), 1.90 (3H, s), 2.30-2.37 (4H, m), 2.75- 2.85 (2H, m), 3.09 (1H, dt, J = 11.3, 3.0 Hz), 3.29 (1H, m), 3.42 (1H, d, J = 7.7 Hz), 3.66-3.72 (2H, m), 3.85 -3.95 (4H, m), 4.00 (3H, s), 4.06-4.14 (4H, m), 4.22-4.25 (1H, m), 4.91 (1H, d, J = 7.4 Hz), 5.90 (1H, br ), 7.29-7.43 (4H, m), 7.60 (1H, d, J = 7.4 Hz), 7.71 (1H, d, J = 7.4 Hz), 7.76 (2H, d, J = 7.4 Hz) .; 13 C NMR (125 MHz, CDCl 3 , δ): 8.7, 8.8, 17.7, 21.4, 25.2, 40.1, 41.7, 47.1, 50.9, 54.1, 54.3, 54.7, 57.1, 58.2, 61.1, 61.2, 67.4, 117.0, 120.1, 120.1 , 125.3, 125.4, 127.2, 127.3, 127.85, 127.90, 135.67, 135.74, 141.4, 141.6, 143.6, 144.3, 155.8, 156.2, 172.6, 181.3, 182.7, 185.5, 187.0 .; HRMS (ESI, m / z): [ M + H] + calcd.for C 44 H 44 N 5 O 9 , 786.3134; found, 786.3110.
Figure JPOXMLDOC01-appb-C000069
 化合物16 (1.69 mg, 2.15 μmol)を5%ピペリジン/DMF(0.50mL)中、室温で40分間撹拌した。得られた混合物をSep-Pak(登録商標)C18に通し、MeCNで溶離した。この溶液をLC-MSで分析することにより、サフラマイシンY3(化合物16’)の生成を確認した。 
Figure JPOXMLDOC01-appb-C000069
Compound 16 (1.69 mg, 2.15 μmol) was stirred in 5% piperidine / DMF (0.50 mL) at room temperature for 40 minutes. The resulting mixture was passed through Sep-Pak® C18 and eluted with MeCN. This solution was analyzed by LC-MS to confirm the formation of saframycin Y3 (compound 16 ′).
4.サフラマイシンAの合成
 実施例1で得たチロシン誘導体(化合物1)と実施例2で得たアルデヒド基質2(化合物11)から、サフラマイシンA(化合物21)の合成を行った。反応に用いたホロ化酵素SfmCは、非特許文献4(Koketsu, K.; Watanabe, K.; Suda, H.; Oguri, H.; Oikawa, H. Nat. Chem. Biol. 2010, 6, 408)の記載にしたがって作成した。
4). Synthesis of Saframycin A Saframycin A (Compound 21) was synthesized from the tyrosine derivative (Compound 1) obtained in Example 1 and the aldehyde substrate 2 (Compound 11) obtained in Example 2. The holoenzyme SfmC used in the reaction is described in Non-Patent Document 4 (Koketsu, K .; Watanabe, K .; Suda, H .; Oguri, H .; Oikawa, H. Nat. Chem. Biol. 2010, 6, 408). ).
[化合物18の合成]
Figure JPOXMLDOC01-appb-C000070
[Synthesis of Compound 18]
Figure JPOXMLDOC01-appb-C000070
 14.2 μMのホロ化SfmC、1.0 mMの化合物1、400 μMの化合物11(DMSO溶液として添加)、20 mMのMgCl2、20 μMのMnCl2、2.0 mMのATPを含有する50 mM KH2PO4-KOH緩衝液(pH7.5)の120mL溶液に、2.0 mMの NADPHを添加し、酵素反応を開始させ、30℃で2時間インキュベートした。反応混合物を100mM KCN 水溶液(750μL)で処理し、30℃で5分間インキュベートした。得られた混合物をMeCN(360mL)で希釈した後、7000×gで5分間遠心分離して SfmCを除去した。これをろ過して化合物17を含む溶液を得、さらに精製することなく使用した。
 MeCN(360mL), 水(120mL)中の化合物17の粗精製物および37%HCHO水溶液(195 μL、72.0 mg、2.40 mmol、50当量)の懸濁液に、2-ピコリンボラン(103 mg、0.96 mmol、20当量)を添加し、室温で30分間撹拌した。得られた混合物を減圧濃縮した。残渣をAcOEt(80 mL × 3)で抽出した。有機抽出物を飽和食塩水で洗浄し、Na2SO4で乾燥させた。ろ過及び減圧濃縮した後、粗生成物をSep-Pak(登録商標)C18に通し、MeCNで溶離した。濃縮後、残渣を以下の条件下でInertsustain C18(GL Sciences、φ10×250mm、5μm)を用いたHPLCにより精製した:水に対するMeCNの割合を30%から75%まで30分間、直線勾配で増加させた。この際、流速は5.0 mL /分、カラム温度は室温、UV検出器の波長は280 nmとした。目的生成物を含む画分を減圧下で濃縮して化合物18(4.58 mg、6.13 μmol、3段階で収率13%)を得た。得られた化合物18は、1H-NMR、13C-NMR、H-COSY、HSQC、HMBCおよびROESYを含む一連のNMR測定によって分析した。1H NMR (500 MHz, CDCl3, δ): 0.88 (3H, t, J = 6.9 Hz), 1.16-1.31 (23H, m), 1.38-1.43 (2H, m), 1.99-2.06 (3H, m), 2.23-2.28 (9H, m), 2.67 (1H, d, J = 18.3 Hz), 2.78 (1H, dd, J = 15.5, 1.7 Hz), 2.94 (1H, q, J = 8.8 Hz), 3.20-3.28 (1H, m), 3.30-3.36 (1H, m), 3.37-3.44 (1H, m), 3.64-3.70 (1H, m), 3.74-3.82 (6H, m), 4.06 (2H, d, J = 2.6 Hz), 4.15 (1H, s), 4.32 (1H, q, J = 6.9 Hz), 5.58-5.66 (1H, m ), 5.71 (1H, s), 5.88 (1H, s), 6.42 (1H, s), 6.47 (1H, s).; 13C NMR (125 MHz, CDCl3, δ): 14.26, 15.84, 15.96, 17.67, 22.83, 24.87, 25.17, 29.27, 29.34, 29.50, 29.66, 29.75, 29.80, 32.06, 32.22, 34.14, 40.14, 41.91, 55.46, 56.40, 56.57, 57.57, 59.84, 60.90, 60.95, 70.09, 116.66, 117.62, 118.45, 121.24, 121.35, 128.79, 129.14, 131.21, 132.71, 142.75, 143.69, 145.11, 146.58, 170.14, 171.47.; HRMS (ESI, m/z): [M+H]calcd. for C43H63N4O7, 747.4691; found, 747.4706.
14.2 μM Holated SfmC, 1.0 mM Compound 1, 400 μM Compound 11 (added as DMSO solution), 20 mM MgCl 2 , 20 μM MnCl 2 , 50 mM KH 2 PO 4 containing 2.0 mM ATP -To a 120 mL solution of KOH buffer (pH 7.5), 2.0 mM NADPH was added to initiate the enzyme reaction and incubated at 30 ° C for 2 hours. The reaction mixture was treated with 100 mM KCN aqueous solution (750 μL) and incubated at 30 ° C. for 5 minutes. The resulting mixture was diluted with MeCN (360 mL) and then centrifuged at 7000 × g for 5 minutes to remove SfmC. This was filtered to give a solution containing compound 17, which was used without further purification.
To a suspension of crude compound 17 and 37% aqueous HCHO (195 μL, 72.0 mg, 2.40 mmol, 50 equiv) in MeCN (360 mL), water (120 mL) was added 2-picoline borane (103 mg, 0.96 mmol, 20 equivalents) was added and stirred at room temperature for 30 minutes. The resulting mixture was concentrated under reduced pressure. The residue was extracted with AcOEt (80 mL × 3). The organic extract was washed with saturated brine and dried over Na 2 SO 4 . After filtration and concentration in vacuo, the crude product was passed through Sep-Pak® C18 and eluted with MeCN. After concentration, the residue was purified by HPLC using Inertsustain C18 (GL Sciences, φ10 × 250 mm, 5 μm) under the following conditions: Increase the ratio of MeCN to water from 30% to 75% with a linear gradient for 30 minutes. It was. At this time, the flow rate was 5.0 mL / min, the column temperature was room temperature, and the wavelength of the UV detector was 280 nm. Fractions containing the desired product were concentrated under reduced pressure to give compound 18 (4.58 mg, 6.13 μmol, 13% yield over 3 steps). The resulting compound 18 was analyzed by a series of NMR measurements including 1 H-NMR, 13 C-NMR, H-COSY, HSQC, HMBC and ROESY. 1 H NMR (500 MHz, CDCl 3 , δ): 0.88 (3H, t, J = 6.9 Hz), 1.16-1.31 (23H, m), 1.38-1.43 (2H, m), 1.99-2.06 (3H, m ), 2.23-2.28 (9H, m), 2.67 (1H, d, J = 18.3 Hz), 2.78 (1H, dd, J = 15.5, 1.7 Hz), 2.94 (1H, q, J = 8.8 Hz), 3.20 -3.28 (1H, m), 3.30-3.36 (1H, m), 3.37-3.44 (1H, m), 3.64-3.70 (1H, m), 3.74-3.82 (6H, m), 4.06 (2H, d, J = 2.6 Hz), 4.15 (1H, s), 4.32 (1H, q, J = 6.9 Hz), 5.58-5.66 (1H, m), 5.71 (1H, s), 5.88 (1H, s), 6.42 ( 1H, s), 6.47 (1H, s) .; 13 C NMR (125 MHz, CDCl 3 , δ): 14.26, 15.84, 15.96, 17.67, 22.83, 24.87, 25.17, 29.27, 29.34, 29.50, 29.66, 29.75, 29.80, 32.06, 32.22, 34.14, 40.14, 41.91, 55.46, 56.40, 56.57, 57.57, 59.84, 60.90, 60.95, 70.09, 116.66, 117.62, 118.45, 121.24, 121.35, 128.79, 129.14, 131.21, 132.143, 142.75, 145.11, 146.58, 170.14, 171.47 .; HRMS (ESI, m / z): [M + H] + calcd. For C 43 H 63 N 4 O 7 , 747.4691; found, 747.4706.
[化合物19の合成]
Figure JPOXMLDOC01-appb-C000071
[Synthesis of Compound 19]
Figure JPOXMLDOC01-appb-C000071
 t-BuOH (3.0 mL)中の化合物18 (12.2 mg、16.3 μmol)へLiOH・H2O (2.05 mg、48.8 μmol、3.0当量)の水溶液 (1.0 mL)を加えて室温で7時間撹拌した。さらにLiOH・H2O (1.37 mg、32.6 μmol、2.0当量)の水溶液 (0.50 mL)を加えて1時間撹拌した。200 mM NaH2PO4・NaOH水溶液 (2.0 mL) を加えて室温で5分間撹拌し、反応を終結させた。減圧濃縮の後、得られた残渣に水 (10 mL)を加え、AcOEt (30 mL × 3)で抽出した。有機抽出物を飽和食塩水で洗浄し、Na2SO4で乾燥した。ろ過及び減圧濃縮した後、粗生成物をSep-Pak(登録商標)C18に通し、MeCNで溶離した。濃縮後、残渣を以下の条件下でInertsustain C18(GL Sciences、φ10×250mm、5μm)を用いたHPLCにより精製した:水に対するMeCNの割合を30%から75%まで30分間、直線勾配で増加させた。この際、流速は5.0 mL /分、カラム温度は室温、UV検出器の波長は280 nmとした。目的生成物を含む画分を減圧下で濃縮して化合物19(7.93 mg、14.8 μmol、収率91%)を得た。得られた化合物19は、1H-NMR、13C-NMR、H-COSY、HSQC、HMBCおよびROESYを含む一連のNMR測定によって分析した。1H NMR (500 MHz, CDCl3, δ): 0.98 (3H, d, J = 6.9 Hz), 2.13 (1H, m), 2.22 (3H, s), 2.26 (3H, s), 2.30 (3H, s), 2.58 (1H, d, J = 17.8 Hz), 2.81 (1H, dd, J = 15.5, 2.3 Hz), 3.02 (1H, q, J = 8.8 Hz), 3.30-3.37 (2H, m), 3.42--3.49 (1H, m), 3.55 (1H, q, J = 6.7 Hz), 3.60-3.67 (1H, m), 3.73 (3H, s), 3.78 (3H, s), 4.04 (1H, d, J = 2.3 Hz), 4.11 (1H, d, J = 2.3 Hz), 4.16 (1H, br), 5.68-5.87 (2H, m), 5.98 (1H, br), 6.42 (1H, s), 6.50 (1H, s).; 13C NMR (125 MHz, CDCl3, δ): 15.81, 15.85, 20.85, 25.49, 32.16, 40.61, 41.90, 55.45, 56.60, 56.66, 56.92, 59.85, 60.90, 60.94, 68.25, 117.37, 117.71, 118.24, 121.04, 121.23, 128.86, 129.28, 131.48, 131.84, 142.80, 143.79, 145.24, 146.93, 174.40.; HRMS (ESI, m/z): [M+H]calcd. for C29H37N4O6, 537.2708; found, 537.2711. An aqueous solution (1.0 mL) of LiOH.H 2 O (2.05 mg, 48.8 μmol, 3.0 eq) was added to compound 18 (12.2 mg, 16.3 μmol) in t-BuOH (3.0 mL) and stirred at room temperature for 7 hours. Further, an aqueous solution (0.50 mL) of LiOH.H 2 O (1.37 mg, 32.6 μmol, 2.0 equivalents) was added and stirred for 1 hour. 200 mM NaH 2 PO 4 .NaOH aqueous solution (2.0 mL) was added, and the mixture was stirred at room temperature for 5 minutes to complete the reaction. After concentration under reduced pressure, water (10 mL) was added to the resulting residue, and the mixture was extracted with AcOEt (30 mL × 3). The organic extract was washed with saturated brine and dried over Na 2 SO 4 . After filtration and concentration in vacuo, the crude product was passed through Sep-Pak® C18 and eluted with MeCN. After concentration, the residue was purified by HPLC using Inertsustain C18 (GL Sciences, φ10 × 250 mm, 5 μm) under the following conditions: Increase the ratio of MeCN to water from 30% to 75% with a linear gradient for 30 minutes. It was. At this time, the flow rate was 5.0 mL / min, the column temperature was room temperature, and the wavelength of the UV detector was 280 nm. Fractions containing the desired product were concentrated under reduced pressure to give compound 19 (7.93 mg, 14.8 μmol, 91% yield). The resulting compound 19 was analyzed by a series of NMR measurements including 1 H-NMR, 13 C-NMR, H-COSY, HSQC, HMBC and ROESY. 1 H NMR (500 MHz, CDCl 3 , δ): 0.98 (3H, d, J = 6.9 Hz), 2.13 (1H, m), 2.22 (3H, s), 2.26 (3H, s), 2.30 (3H, s), 2.58 (1H, d, J = 17.8 Hz), 2.81 (1H, dd, J = 15.5, 2.3 Hz), 3.02 (1H, q, J = 8.8 Hz), 3.30-3.37 (2H, m), 3.42--3.49 (1H, m), 3.55 (1H, q, J = 6.7 Hz), 3.60-3.67 (1H, m), 3.73 (3H, s), 3.78 (3H, s), 4.04 (1H, d , J = 2.3 Hz), 4.11 (1H, d, J = 2.3 Hz), 4.16 (1H, br), 5.68-5.87 (2H, m), 5.98 (1H, br), 6.42 (1H, s), 6.50 (1H, s) .; 13 C NMR (125 MHz, CDCl 3 , δ): 15.81, 15.85, 20.85, 25.49, 32.16, 40.61, 41.90, 55.45, 56.60, 56.66, 56.92, 59.85, 60.90, 60.94, 68.25, 117.37, 117.71, 118.24, 121.04, 121.23, 128.86, 129.28, 131.48, 131.84, 142.80, 143.79, 145.24, 146.93, 174.40 .; HRMS (ESI, m / z): [M + H] + calcd. For C 29 H 37 N 4 O 6 , 537.2708; found, 537.2711.
[サフラマイシンAの合成]
Figure JPOXMLDOC01-appb-C000072
[Synthesis of Saframycin A]
Figure JPOXMLDOC01-appb-C000072
 化合物19(7.61mg、10.2μmol)およびサルコミン(4.38 mg、13.5 μmol、1.0当量)のMeCN(5.0 mL)溶液に、室温で酸素ガスを 5分間吹き込んだ。酸素雰囲気下で1.5時間撹拌した後、SiliaMetS Thiourea (登録商標、89.1 mg、108 μmol、8.0当量)を加えて15分間室温で撹拌した。得られた混合物を濾過、減圧濃縮した後、残渣をSep-Pak(登録商標)C18に通し、MeCNで溶離して化合物20を含む溶液を得、さらに精製することなく使用した。
  塩化オキサリル (11.6 μL、17.1 mg、135 μmol、10当量)のCH2Cl2溶液(4.0 mL)へジメチルスルホキシド (14.4 μL、15.8 mg、202 μmol、15当量)を-78 °Cで滴下し、5分間撹拌した。この混合液へ化合物19の粗精製物 (7.34 mg)のCH2Cl2溶液(1.0 mL)を-78 °Cでゆっくりと滴下し、15分間撹拌した。得られた混合物へトリエチルアミン (56.4 μL、40.9 mg、404 μmol、30当量)を-78 °Cで加え、10分間撹拌した。反応溶液を50分間かけて0 °Cまで昇温したのち、Sep-Pak(登録商標) フロリジルに通し、AcOEtで溶離した。濃縮後、残渣を以下の条件下でInertsil Diol (GL Sciences, φ 10 × 250 mm, 5 μm)を用いたHPLCにより精製した:ヘキサンに対する酢酸AcOEtの割合を30%から60%まで30分間、直線勾配で増加させた。この際、流速は5.0 mL /分、カラム温度は室温、UV検出器の波長は280 nmとした。目的生成物を含む画分を減圧下で濃縮して化合物19(4.97 mg、8.83 μmol、2段階で収率66%)を得た。得られた化合物19は、1H-NMR、13C-NMR、H-COSY、HSQC、HMBCおよびROESYを含む一連のNMR測定によって分析した。1H NMR (500 MHz, CDCl3, δ): 1.24-1.32 (2H, m), 1.91 (3H, s), 1.98 (3H, s), 2.22-2.26 (4H, m), 2.31 (3H, s), 2.79-2.90 (2H, m), 3.13 (1H, dt, J = 11.5, 2.9 Hz), 3.26 (1H, dt, J = 14.3, 4.0 Hz), 3.43 (1H, d, J = 7.4 Hz), 3.72 (1H, m), 3.97 (1H, s), 3.99 (1H, d, J = 2.3 Hz), 4.02 (6H, m), 4.06 (1H, m), 6.67 (1H, br).; 13C NMR (125 MHz, CDCl3, δ): 8.88, 21.63, 24.43, 25.18, 40.75, 41.73, 54.07, 54.31, 54.60, 56.40, 58.37, 61.11, 61.27, 116.78, 128.46, 129.37, 135.68, 135.71, 141.36, 141.66, 155.77, 156.05, 160.31, 180.96, 182.60, 185.44, 186.75, 196.85.; HRMS (ESI, m/z): [M+H]+ calcd. for C29H31N4O8, 563.2136; found, 563.2152.
A solution of compound 19 (7.61 mg, 10.2 μmol) and salcomine (4.38 mg, 13.5 μmol, 1.0 equiv) in MeCN (5.0 mL) was bubbled with oxygen gas for 5 minutes at room temperature. After stirring for 1.5 hours under an oxygen atmosphere, SiliaMetS Thiourea (registered trademark, 89.1 mg, 108 μmol, 8.0 equivalents) was added and stirred for 15 minutes at room temperature. After the resulting mixture was filtered and concentrated under reduced pressure, the residue was passed through Sep-Pak® C18, eluting with MeCN to give a solution containing compound 20, which was used without further purification.
To a solution of oxalyl chloride (11.6 μL, 17.1 mg, 135 μmol, 10 equivalents) in CH 2 Cl 2 (4.0 mL) was added dimethyl sulfoxide (14.4 μL, 15.8 mg, 202 μmol, 15 equivalents) dropwise at −78 ° C. Stir for 5 minutes. A CH 2 Cl 2 solution (1.0 mL) of a crude product of Compound 19 (7.34 mg) (1.0 mL) was slowly added dropwise to this mixture at −78 ° C., and the mixture was stirred for 15 minutes. Triethylamine (56.4 μL, 40.9 mg, 404 μmol, 30 equivalents) was added to the obtained mixture at −78 ° C., and the mixture was stirred for 10 minutes. The reaction solution was heated to 0 ° C. over 50 minutes, then passed through Sep-Pak (registered trademark) Florisil and eluted with AcOEt. After concentration, the residue was purified by HPLC using Inertsil Diol (GL Sciences, φ10 × 250 mm, 5 μm) under the following conditions: The ratio of AcOEt acetate to hexane was 30% to 60% in a straight line for 30 minutes. Increased with gradient. At this time, the flow rate was 5.0 mL / min, the column temperature was room temperature, and the wavelength of the UV detector was 280 nm. Fractions containing the desired product were concentrated under reduced pressure to give compound 19 (4.97 mg, 8.83 μmol, 66% yield over 2 steps). The resulting compound 19 was analyzed by a series of NMR measurements including 1 H-NMR, 13 C-NMR, H-COSY, HSQC, HMBC and ROESY. 1 H NMR (500 MHz, CDCl 3 , δ): 1.24-1.32 (2H, m), 1.91 (3H, s), 1.98 (3H, s), 2.22-2.26 (4H, m), 2.31 (3H, s ), 2.79-2.90 (2H, m), 3.13 (1H, dt, J = 11.5, 2.9 Hz), 3.26 (1H, dt, J = 14.3, 4.0 Hz), 3.43 (1H, d, J = 7.4 Hz) , 3.72 (1H, m), 3.97 (1H, s), 3.99 (1H, d, J = 2.3 Hz), 4.02 (6H, m), 4.06 (1H, m), 6.67 (1H, br) .; 13 C NMR (125 MHz, CDCl 3 , δ): 8.88, 21.63, 24.43, 25.18, 40.75, 41.73, 54.07, 54.31, 54.60, 56.40, 58.37, 61.11, 61.27, 116.78, 128.46, 129.37, 135.68, 135.71, 141.36, 141.66, 155.77, 156.05, 160.31, 180.96, 182.60, 185.44, 186.75, 196.85 .; HRMS (ESI, m / z): [M + H] + calcd.for C 29 H 31 N 4 O 8 , 563.2136; found, 563.2152.

Claims (18)

  1.   以下の式(I)で表される化合物を製造する方法であって
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは、-C(R)NH-又は-C(R)O-であり、;Yは、-C(=O)R-NH-、-C(=O)R-O-、-S(=O)-NH-、-S(=O)-O-、-P(=O)(OR)R-NH-、又は-P(=O)(OR)R-O-であり;Zは、-C(=O)R、-C(=O)OR、-S(=O)、又は-P(=O)(OR)Rであり;;R及びRは、それぞれ独立に、同一でも異なっていてもよい、C-C10アルキル基であり;Rは、水素原子又は置換されていてもよいC-Cアルキル基であり;Rは、置換されていてもよいアルキレン基であり;Rは、置換されていてもよいC-Cアルキル基であり;Rは、飽和又は不飽和の炭化水素鎖であり;Rは、置換されていてもよいアルキル基である。)、
     [ステップA]以下の式(a)で表される化合物と、
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRは、式(I)中と同じ意味を有する。)
    以下の式(b)で表される化合物とを、
    Figure JPOXMLDOC01-appb-C000003
    (式中、X、Y、及びZは、式(I)中と同じ意味を有する。)
    非リボソーム依存型ペプチド合成酵素の存在下で反応させることによって、以下の式(II)で表される化合物を得る工程
    Figure JPOXMLDOC01-appb-C000004
    (式中、X、Y、Z、R及びRは、式(I)中と同じ意味を有する。);
     [ステップB]前記式(II)で表される化合物にシアン化物イオンを添加し、以下の式(III)で表される化合物を得る工程
    Figure JPOXMLDOC01-appb-C000005
    (式中、X、Y、Z、R及びRは、式(I)中と同じ意味を有する。);及び
     [ステップC]前記式(III)で表される化合物にアルデヒド及び還元剤を添加することにより第二級アミン部位をN-アルキル化し、前記式(I)で表される化合物を得る工程
    を含む、該製造方法。
    A method for producing a compound represented by the following formula (I):
    Figure JPOXMLDOC01-appb-C000001
    Wherein X is —C (R 3 ) NH— or —C (R 3 ) O—; Y is —C (═O) R 4 —NH—, —C (═O) R 4 —O—, —S (═O) 2 R 4 —NH—, —S (═O) 2 R 4 —O—, —P (═O) (OR 5 ) R 4 —NH—, or —P (═O) (OR 5 ) R 4 —O—; Z is —C (═O) R 6 , —C (═O) OR 6 , —S (═O) 2 R 6 , or —P (═O) (OR 5 ) R 6 ; R 1 and R 2 are each independently a C 1 -C 10 alkyl group, which may be the same or different; R 3 is a hydrogen atom or An optionally substituted C 1 -C 5 alkyl group; R 4 is an optionally substituted alkylene group; R 5 is an optionally substituted C 1 -C 5 alkyl group; ; R 6 is a saturated also A hydrocarbon chain of unsaturated; R a is optionally substituted alkyl group).
    [Step A] a compound represented by the following formula (a):
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 1 and R 2 have the same meaning as in formula (I).)
    A compound represented by the following formula (b):
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, X, Y and Z have the same meaning as in formula (I).)
    A step of obtaining a compound represented by the following formula (II) by reacting in the presence of a non-ribosome-dependent peptide synthase
    Figure JPOXMLDOC01-appb-C000004
    (Wherein X, Y, Z, R 1 and R 2 have the same meaning as in formula (I));
    [Step B] A step of adding a cyanide ion to the compound represented by the formula (II) to obtain a compound represented by the following formula (III)
    Figure JPOXMLDOC01-appb-C000005
    (Wherein X, Y, Z, R 1 and R 2 have the same meaning as in formula (I)); and [Step C] an aldehyde and a reducing agent for the compound represented by formula (III) A process for producing a compound represented by the formula (I) by N-alkylating a secondary amine moiety by adding
  2.  前記非リボソーム依存型ペプチド合成酵素が、サフラマイシンA生合成酵素SfmCである、請求項1に記載の製造方法。 The production method according to claim 1, wherein the non-ribosome-dependent peptide synthase is saframycin A biosynthetic enzyme SfmC.
  3.  前記ステップAにおいて、ATP、NADPH、Mg2+、及びMn2+を添加することを含む、請求項1又は2に記載の製造方法。 The manufacturing method of Claim 1 or 2 including adding ATP, NADPH, Mg <2+> , and Mn < 2+ > in the said step A. FIG.
  4.  R及びRが、いずれもメチル基である、請求項1~3のいずれか1に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein R 1 and R 2 are both methyl groups.
  5.  式(b)で表される化合物が、以下の化合物よりなる群から選択される、請求項1~4のいずれか1に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    (式中、Zは、C6-C20アルキル基であり、Meはメチル基を表す。)
    The production method according to any one of claims 1 to 4, wherein the compound represented by the formula (b) is selected from the group consisting of the following compounds.
    Figure JPOXMLDOC01-appb-C000006
    (Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
  6.   以下の式(I)で表される中間体化合物から
    Figure JPOXMLDOC01-appb-C000007
    (式中、Xは、-C(R)NH-であり;Yは、-C(=O)R-NH-であり;Zは、-C(=O)ORであり;R及びRは、それぞれ独立に、同一でも異なっていてもよい、C-C10アルキル基であり;Rは、水素原子又は置換されていてもよいC-Cアルキル基であり;Rは、置換されていてもよいアルキレン基であり;Rは、飽和又は不飽和の炭化水素鎖であり;Rは、置換されていてもよいアルキル基である。)
    以下の式(IV)で表される化合物を製造する方法であって
    Figure JPOXMLDOC01-appb-C000008
    (式中、X、Y、R、R及びRは、式(I)中と同じ意味を有し、Aは、水素原子又は保護基である。);
     [ステップD] 遷移金属触媒存在下において前記式(I)で表される化合物のZ部位をAに変換することにより、以下の式(V)で表される化合物を得る工程
    Figure JPOXMLDOC01-appb-C000009
    (式中、X、Y、A、R、R及びRは、式(IV)中と同じ意味を有する。)
     [ステップE] 前記式(V)で表される化合物を遷移金属触媒存在下において酸化し、フェノールをキノンに変換することにより、前記式(IV)で表される化合物を得る工程
    を含む該製造方法。
    From the intermediate compound represented by the following formula (I)
    Figure JPOXMLDOC01-appb-C000007
    Wherein X is —C (R 3 ) NH—; Y is —C (═O) R 4 —NH—; Z is —C (═O) OR 6 ; R 1 and R 2 are each independently a C 1 -C 10 alkyl group, which may be the same or different; R 3 is a hydrogen atom or an optionally substituted C 1 -C 5 alkyl group R 4 is an optionally substituted alkylene group; R 6 is a saturated or unsaturated hydrocarbon chain; R a is an optionally substituted alkyl group.)
    A method for producing a compound represented by the following formula (IV):
    Figure JPOXMLDOC01-appb-C000008
    (Wherein X, Y, R 1 , R 2 and R a have the same meaning as in formula (I), and A is a hydrogen atom or a protecting group);
    [Step D] A step of obtaining a compound represented by the following formula (V) by converting the Z site of the compound represented by the formula (I) into A in the presence of a transition metal catalyst.
    Figure JPOXMLDOC01-appb-C000009
    (In the formula, X, Y, A, R 1 , R 2 and R a have the same meaning as in formula (IV).)
    [Step E] The production comprising the step of obtaining the compound represented by the formula (IV) by oxidizing the compound represented by the formula (V) in the presence of a transition metal catalyst and converting phenol to quinone. Method.
  7.  R、R及びRが、いずれもメチル基であり;Rが、水素原子であり;Rが、-CH(CH)-である、請求項6に記載の製造方法。 The production method according to claim 6, wherein R 1 , R 2 and R a are all methyl groups; R 3 is a hydrogen atom; and R 4 is —CH (CH 3 ) —.
  8.  ステップDにおける遷移金属触媒が、パラジウム錯体である、請求項6又は7に記載の製造方法。 The production method according to claim 6 or 7, wherein the transition metal catalyst in Step D is a palladium complex.
  9.  ステップEにおける遷移金属触媒が、コバルト錯体である、請求項6~8のいずれか1に記載の製造方法。 The production method according to any one of claims 6 to 8, wherein the transition metal catalyst in Step E is a cobalt complex.
  10.   以下の式(I)で表される中間体化合物から
    Figure JPOXMLDOC01-appb-C000010
    (式中、Xは、-C(R)NH-であり;Yは、-C(=O)R-O-であり;Zは、-C(=O)Rであり;R及びRは、それぞれ独立に、同一でも異なっていてもよい、C-C10アルキル基であり;Rは、水素原子又は置換されていてもよいC-Cアルキル基であり;Rは、1-メチルメチレン基であり;Rは、飽和又は不飽和の炭化水素鎖であり;Rは、置換されていてもよいアルキル基である。)
    以下の式(VI)で表される化合物を製造する方法であって
    Figure JPOXMLDOC01-appb-C000011
    (式中、X、R、R及びRは、式(I)中と同じ意味を有する。);
     [ステップF] 前記式(I)で表される化合物を塩基性条件下で加水分解し、Y部位の末端をOH基に変換することにより、以下の式(VII)で表される化合物を得る工程
    Figure JPOXMLDOC01-appb-C000012
    (式中、X、R、R及びRは、式(I)中と同じ意味を有する。)
     [ステップG] 前記式(VII)で表される化合物を遷移金属触媒存在下において酸化し、フェノールをキノンに変換することにより、以下の式(VIII)で表される化合物を得る工程
    Figure JPOXMLDOC01-appb-C000013
    (式中、X、R、R及びRは、式(I)中と同じ意味を有する。);及び
     [ステップH] 前記(VIII)で表される化合物をDMSO酸化又は超原子価ヨウ素試薬を用いる酸化により、末端のOH基をカルボニル基に変換することにより、前記式(VI)で表される化合物を得る工程
    を含む該製造方法。
    From the intermediate compound represented by the following formula (I)
    Figure JPOXMLDOC01-appb-C000010
    Wherein X is —C (R 3 ) NH—; Y is —C (═O) R 4 —O—; Z is —C (═O) R 6 ; R 1 and R 2 are each independently a C 1 -C 10 alkyl group, which may be the same or different; R 3 is a hydrogen atom or an optionally substituted C 1 -C 5 alkyl group R 4 is a 1-methylmethylene group; R 6 is a saturated or unsaturated hydrocarbon chain; R a is an optionally substituted alkyl group.)
    A method for producing a compound represented by the following formula (VI):
    Figure JPOXMLDOC01-appb-C000011
    (Wherein X, R 1 , R 2 and R a have the same meaning as in formula (I));
    [Step F] A compound represented by the following formula (VII) is obtained by hydrolyzing the compound represented by the above formula (I) under basic conditions and converting the end of the Y site into an OH group. Process
    Figure JPOXMLDOC01-appb-C000012
    (In the formula, X, R 1 , R 2 and R a have the same meaning as in formula (I).)
    [Step G] A step of obtaining a compound represented by the following formula (VIII) by oxidizing the compound represented by the formula (VII) in the presence of a transition metal catalyst and converting phenol to quinone.
    Figure JPOXMLDOC01-appb-C000013
    (Wherein X, R 1 , R 2 and R a have the same meaning as in formula (I)); and [Step H] The compound represented by (VIII) is subjected to DMSO oxidation or hypervalence. This manufacturing method including the process of obtaining the compound represented by said Formula (VI) by converting the terminal OH group into a carbonyl group by oxidation using an iodine reagent.
  11.  R、R及びRが、いずれもメチル基である、請求項10に記載の製造方法。 The production method according to claim 10, wherein R 1 , R 2 and Ra are all methyl groups.
  12.  ステップGにおける遷移金属触媒が、コバルト錯体である、請求項10又は11に記載の製造方法。 The production method according to claim 10 or 11, wherein the transition metal catalyst in Step G is a cobalt complex.
  13.  以下の式(I)で表される化合物。
    Figure JPOXMLDOC01-appb-C000014
    (式中、Xは、-C(R)NH-又は-C(R)O-であり、;Yは、-C(=O)R-NH-、-C(=O)R-O-、-S(=O)-NH-、-S(=O)-O-、-P(=O)(OR)R-NH-、又は-P(=O)(OR)R-O-であり;Zは、-C(=O)R、-C(=O)OR、-S(=O)、又は-P(=O)(OR)Rであり;R及びRは、それぞれ独立に、同一でも異なっていてもよい、C-C10アルキル基であり;Rは、水素原子又は置換されていてもよいC-Cアルキル基であり;Rは、置換されていてもよいアルキレン基であり;Rは、置換されていてもよいC-Cアルキル基であり;Rは、飽和又は不飽和の炭化水素鎖であり;Rは、置換されていてもよいアルキル基である。)
    The compound represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000014
    Wherein X is —C (R 3 ) NH— or —C (R 3 ) O—; Y is —C (═O) R 4 —NH—, —C (═O) R 4 —O—, —S (═O) 2 R 4 —NH—, —S (═O) 2 R 4 —O—, —P (═O) (OR 5 ) R 4 —NH—, or —P (═O) (OR 5 ) R 4 —O—; Z is —C (═O) R 6 , —C (═O) OR 6 , —S (═O) 2 R 6 , or —P (═O) (OR 5 ) R 6 ; R 1 and R 2 are each independently a C 1 -C 10 alkyl group, which may be the same or different; R 3 is a hydrogen atom or a substituent An optionally substituted C 1 -C 5 alkyl group; R 4 is an optionally substituted alkylene group; R 5 is an optionally substituted C 1 -C 5 alkyl group; R 6 is a saturated or A hydrocarbon chain, saturated; R a is optionally substituted alkyl group).
  14.  以下の化合物よりなる群から選択される、請求項13に記載の化合物。
    Figure JPOXMLDOC01-appb-C000015
    (式中、Zは、C-C20アルキル基であり、Meはメチル基を表す。)
    14. A compound according to claim 13, selected from the group consisting of:
    Figure JPOXMLDOC01-appb-C000015
    (Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
  15.  以下の式(II)で表される化合物。
    Figure JPOXMLDOC01-appb-C000016
    (式中、Xは、-C(R)NH-又は-C(R)O-であり、;Yは、-C(=O)R-NH-、-C(=O)R-O-、-S(=O)-NH-、-S(=O)-O-、-P(=O)(OR)R-NH-、又は-P(=O)(OR)R-O-であり;Zは、-C(=O)R、-C(=O)OR、-S(=O)、又は-P(=O)(OR)Rであり;R及びRは、それぞれ独立に、同一でも異なっていてもよい、C-C10アルキル基であり;Rは、水素原子又は置換されていてもよいC-Cアルキル基であり;Rは、置換されていてもよいアルキレン基であり;Rは、置換されていてもよいC-Cアルキル基であり;Rは、飽和又は不飽和の炭化水素鎖であり;Rは、置換されていてもよいアルキル基である。)
    A compound represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000016
    Wherein X is —C (R 3 ) NH— or —C (R 3 ) O—; Y is —C (═O) R 4 —NH—, —C (═O) R 4 —O—, —S (═O) 2 R 4 —NH—, —S (═O) 2 R 4 —O—, —P (═O) (OR 5 ) R 4 —NH—, or —P (═O) (OR 5 ) R 4 —O—; Z is —C (═O) R 6 , —C (═O) OR 6 , —S (═O) 2 R 6 , or —P (═O) (OR 5 ) R 6 ; R 1 and R 2 are each independently a C 1 -C 10 alkyl group, which may be the same or different; R 3 is a hydrogen atom or a substituent An optionally substituted C 1 -C 5 alkyl group; R 4 is an optionally substituted alkylene group; R 5 is an optionally substituted C 1 -C 5 alkyl group; R 6 is a saturated or A hydrocarbon chain, saturated; R a is optionally substituted alkyl group).
  16.  以下の化合物よりなる群から選択される、請求項15に記載の化合物。
    Figure JPOXMLDOC01-appb-C000017
    (式中、Zは、C-C20アルキル基であり、Meはメチル基を表す。)
    16. A compound according to claim 15 selected from the group consisting of:
    Figure JPOXMLDOC01-appb-C000017
    (Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
  17.  以下の式(b)で表されるアルデヒド化合物。
    Figure JPOXMLDOC01-appb-C000018
    (式中、Xは、-C(R)NH-又は-C(R)O-であり、;Yは、-C(=O)R-NH-、-C(=O)R-O-、-S(=O)-NH-、-S(=O)-O-、-P(=O)(OR)R-NH-、又は-P(=O)(OR)R-O-であり;Zは、-C(=O)R、-C(=O)OR、-S(=O)、又は-P(=O)(OR)Rであり;Rは、水素原子又は置換されていてもよいC-Cアルキル基であり;Rは、置換されていてもよいアルキレン基であり;Rは、置換されていてもよいC-Cアルキル基であり;Rは、飽和又は不飽和の炭化水素鎖である。)
    An aldehyde compound represented by the following formula (b).
    Figure JPOXMLDOC01-appb-C000018
    Wherein X is —C (R 3 ) NH— or —C (R 3 ) O—; Y is —C (═O) R 4 —NH—, —C (═O) R 4 —O—, —S (═O) 2 R 4 —NH—, —S (═O) 2 R 4 —O—, —P (═O) (OR 5 ) R 4 —NH—, or —P (═O) (OR 5 ) R 4 —O—; Z is —C (═O) R 6 , —C (═O) OR 6 , —S (═O) 2 R 6 , or —P (═O) (OR 5 ) R 6 ; R 3 is a hydrogen atom or an optionally substituted C 1 -C 5 alkyl group; R 4 is an optionally substituted alkylene group R 5 is an optionally substituted C 1 -C 5 alkyl group; R 6 is a saturated or unsaturated hydrocarbon chain.)
  18.  以下の化合物よりなる群から選択される、請求項17に記載のアルデヒド化合物。
    Figure JPOXMLDOC01-appb-C000019
    (式中、Zは、C-C20アルキル基であり、Meはメチル基を表す。)
    The aldehyde compound according to claim 17, which is selected from the group consisting of the following compounds.
    Figure JPOXMLDOC01-appb-C000019
    (Wherein, Z a is a C 6 -C 20 alkyl group, Me represents a methyl group.)
PCT/JP2019/009128 2018-03-16 2019-03-07 Production method for tetrahydroisoquinoline ring-containing compound WO2019176732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020506453A JPWO2019176732A1 (en) 2018-03-16 2019-03-07 Method for Producing Tetrahydroisoquinoline Ring-Containing Compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-048897 2018-03-16
JP2018048897 2018-03-16
JP2018-144906 2018-08-01
JP2018144906 2018-08-01

Publications (1)

Publication Number Publication Date
WO2019176732A1 true WO2019176732A1 (en) 2019-09-19

Family

ID=67906721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009128 WO2019176732A1 (en) 2018-03-16 2019-03-07 Production method for tetrahydroisoquinoline ring-containing compound

Country Status (2)

Country Link
JP (1) JPWO2019176732A1 (en)
WO (1) WO2019176732A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479113A (en) * 1987-05-21 1989-03-24 Shozo Shoji Virus multiplication inhibitor comprising myristyl compound
JPH02268145A (en) * 1989-04-10 1990-11-01 Suntory Ltd Proteolytic enzyme inhibitor
WO2005118584A2 (en) * 2004-05-26 2005-12-15 Axys Pharmaceuticals, Inc. Saframycin analogs as therapeutic agents in the treatment of cancer
CN1795861A (en) * 2004-12-24 2006-07-05 博瑞生物医药技术(苏州)有限公司 Medication composition of containing nucleotide of 1,3- oxathipentane and preparation method
JP2013526599A (en) * 2010-05-25 2013-06-24 ファルマ、マール、ソシエダード、アノニマ Synthetic methods for the production of echinasaidin compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479113A (en) * 1987-05-21 1989-03-24 Shozo Shoji Virus multiplication inhibitor comprising myristyl compound
JPH02268145A (en) * 1989-04-10 1990-11-01 Suntory Ltd Proteolytic enzyme inhibitor
WO2005118584A2 (en) * 2004-05-26 2005-12-15 Axys Pharmaceuticals, Inc. Saframycin analogs as therapeutic agents in the treatment of cancer
CN1795861A (en) * 2004-12-24 2006-07-05 博瑞生物医药技术(苏州)有限公司 Medication composition of containing nucleotide of 1,3- oxathipentane and preparation method
JP2013526599A (en) * 2010-05-25 2013-06-24 ファルマ、マール、ソシエダード、アノニマ Synthetic methods for the production of echinasaidin compounds

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DRAG, M. ET AL.: "Toward very potent, non-covalent organophosphonate inhibitors of cathepsin C and related enzymes by 2-amino-1-hydroxy- alkanephosphonates dipeptides", BIOCHIMIE, vol. 95, no. 8, 2013, pages 1640 - 1649, XP028574644, DOI: 10.1016/j.biochi.2013.05.006 *
KANKANAMALAGE, A. C. G. ET AL.: "Structure-based exploration and exploitation of the S4 subsite of norovirus 3CL protease in the design of potent and permeable inhibitors", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 126, 2017, pages 502 - 516, XP029885682, DOI: 10.1016/j.ejmech.2016.11.027 *
RATH, C. M. ET AL.: "Meta-omic Characterization of the Marine Invertebrate Microbial Consortium That Produces the Chemotherapeutic Natural Product ET-7 43", ACS CHEMICAL BIOLOGY, vol. 6, no. 11, 2011, pages 1244 - 1256, XP055641548 *
TANIFUJI, R. ET AL.: "Chemo-enzymatic Total Syntheses of Jorunnamycin A, Saframycin A, and N- Fmoc Saframycin Y3", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 140, no. 34, 16 August 2018 (2018-08-16), pages 10705 - 10709, XP055641551 *
TANIFUJI, RYO ET AL.: "Chemistry of Jorunnamycins A - Total synthesis of enzyme hybrid", LECTURE PREPRINTS OF THE 97TH SPRING ANNUAL CONFERENCE OF THE CHEMICAL SOCIETY OF JAPAN, vol. 97 th, no. 97, 2017, pages 2C8 - 52 *
TANIFUJI, RYO ET AL.: "Chemistry of saframycins - Development of enzyme hybrid synthesis method", LECTURE PREPRINTS OF THE 95TH SPRING ANNUAL CONFERENCE OF THE CHEMICAL SOCIETY OF JAPAN, vol. 95, no. 4, 2015, pages 1399 *
TANIFUJI, RYO ET AL.: "Chemistry of saframycins - Enzyme synthesis: Catalytic asymmetric synthesis and enzymatic conversion of tyrosine derivatives", LECTURE PREPRINTS OF THE 96TH SPRING ANNUAL CONFERENCE OF THE CHEMICAL, vol. 96, 2016, pages 2C1 - 20 *

Also Published As

Publication number Publication date
JPWO2019176732A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
CN110317212B (en) Synthesis of polycyclic carbamoylpyridone compounds
ES2746801T3 (en) Preparation process for beta-3 agonists and intermediates
AU2016366795B2 (en) New process and intermediates
AU2008307573A1 (en) Production of monatin stereoisomers
MX2012009926A (en) A process for the preparation of substituted prolyl peptides and similar peptidomimetics.
CN1240380C (en) Phase transfer catalyzed glycosidation of an indolocarbazole
JP2022553225A (en) Method for producing acyloxymethyl ester of (4S)-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid
EP1211254B1 (en) Process for the preparation of benzoxazine derivatives and intermediates therefor
WO2005073388A1 (en) Processes for producing optically active 1-substituted 2-methylpyrrolidine and intermediate therefor
Jackson et al. Enantioselective syntheses of 1-carbacephalosporins from chemoenzymically derived β-hydroxy-α-amino acids: applications to the total synthesis of carbacephem antibiotic Loracarbef
WO2019176732A1 (en) Production method for tetrahydroisoquinoline ring-containing compound
JP2020502244A (en) A new method for an early sacbitril intermediate
CN111757940B (en) Microbiological method for producing amides
JP2021520807A (en) 4-Cyano Substitution 1-Aminoindane and Ozanimod Enantioselective Biocatalytic Preparation
Asano et al. Short-step and scalable synthesis of (±)-cytoxazone
EP1434870B1 (en) Enzymatic process for the preparation of substituted 2-amino-3-(2-amino-phenylsulfanyl)-propionic acid
Sakai et al. Enantioselective photosensitized oxygenation. its application to Nb-methoxycarbonyltryptamine and determination of absolute configuration of the product
Bertoli et al. Chemoenzymatic synthesis of optically active α-methylene-γ-carboxy-γ-lactams and γ-lactones
Ling et al. A practical route to optically active CBI, a potent analog of the CC-1065 alkylation subunit
González-Sabín et al. Highly efficient chemoenzymatic syntheses of trans-2-aminocyclopentanol derivatives
JP5365005B2 (en) Neutral and cleavable resin for nucleic acid synthesis
JP2007153789A (en) Method for producing optically active 3-aminopyrolidine derivative
CN117487866A (en) Enzymatic catalysis method for synthesizing gamma-tertiary alcohol- (S) -alpha-amino acid
CN116120229A (en) Preparation method of polysubstituted 1,2,3, 4-tetrahydroquinoline
CN117802177A (en) Method for synthesizing single chiral 2-aryl substituted nitrogen heterocyclic derivative by imine reductase catalysis and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506453

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766898

Country of ref document: EP

Kind code of ref document: A1