WO2019176530A1 - Biological-information measuring device - Google Patents

Biological-information measuring device Download PDF

Info

Publication number
WO2019176530A1
WO2019176530A1 PCT/JP2019/007328 JP2019007328W WO2019176530A1 WO 2019176530 A1 WO2019176530 A1 WO 2019176530A1 JP 2019007328 W JP2019007328 W JP 2019007328W WO 2019176530 A1 WO2019176530 A1 WO 2019176530A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
band
support member
measurement
blood pressure
Prior art date
Application number
PCT/JP2019/007328
Other languages
French (fr)
Japanese (ja)
Inventor
小澤 尚志
啓吾 鎌田
哲志 八瀬
彩花 岩出
真行 菅野
啓介 齋藤
康大 川端
Original Assignee
オムロン株式会社
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社, オムロンヘルスケア株式会社 filed Critical オムロン株式会社
Publication of WO2019176530A1 publication Critical patent/WO2019176530A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers

Definitions

  • Embodiments of the present invention relate to a biological information measuring apparatus including, for example, a functional unit that measures blood pressure using a pressure cuff and a functional unit that measures pulse waves of an artery using radio waves.
  • a functional unit that measures a blood pressure of a subject by pressing a measurement site such as a subject's upper arm or wrist with a pressure cuff and measuring the pressure. And a transmitting antenna and a receiving antenna that are paired with each other, are placed opposite to the measurement site including the subject's artery, and a radio wave (measurement signal) is transmitted from the transmission antenna to the measurement site.
  • An apparatus including a functional unit that measures a pulse wave of a subject by receiving a reflected wave (reflected signal) from a measurement site with the receiving antenna is known (see, for example, Patent Document 1).
  • a conventional biological information measuring device having both a blood pressure measurement function based on an oscillometric method and a pulse wave measurement function using radio waves is, for example, a pressing surface of a pressure cuff that presses a transmission antenna and a reception antenna for pulse wave measurement. That is, it has a structure attached to the surface in contact with the skin. For this reason, there is a concern that the attachment state of the transmitting antenna and the receiving antenna with respect to the pressure cuff may deteriorate due to repeated pressurization and pressure reduction of the pressure cuff, resulting in dropout, deformation, etc. It was. In addition, since the transmitting antenna and the receiving antenna are pressed against the skin of the subject due to the pressurization of the pressing cuff, the subject sometimes feels uncomfortable feeling such as pain on the skin.
  • the present invention has been made paying attention to the above circumstances, and is intended to provide a biological information measuring apparatus that improves the reliability of the apparatus and reduces the discomfort given to the subject.
  • a first aspect of the biological information measuring device includes a band-shaped band member attached so as to surround a measurement site including a biological artery, and the band member A pressing member that is disposed on a surface facing the measurement site and that expands by injecting fluid during blood pressure measurement to press the measurement site; and the pressing member of the surface of the band member that faces the measurement site And at least one antenna support member that is installed in a non-contact state with respect to the measurement target region in a state where the band member is attached to the measurement target region.
  • the antenna support member is provided with an antenna element that transmits a measurement signal including a radio wave to the measurement site and receives a reflection signal of the measurement signal from the measurement site.
  • the antenna support member is not attached to the pressing surface of the pressing member, but is installed at a site where the pressing member on the band member is not disposed. For this reason, the installation state of the antenna support member does not deteriorate even if the pressing member is repeatedly pressed and depressurized, thereby preventing the occurrence of problems such as dropping and deformation of the antenna support member. Can increase the sex. In addition, since the antenna support member has a structure that cannot be pressed against the skin of the subject by pressurization of the pressing member, the subject does not have to worry about discomfort such as pain.
  • a plurality of the antenna support members are arranged at predetermined intervals in a direction along the artery included in the measurement site. It is a thing.
  • a third aspect of the biological information measuring apparatus is the biological information measuring apparatus according to the first aspect, wherein the antenna element is placed on one antenna support member at a predetermined interval in a direction along the artery included in the measurement site. A plurality of them are arranged with a gap therebetween.
  • measurement signals are transmitted and reflected waves are received at a plurality of different positions upstream and downstream of one artery. For this reason, it becomes possible to detect a pulse wave signal at a different position of the artery, and based on these pulse wave signals, it is possible to perform blood pressure estimation paying attention to a pulse wave transit time (PTT). .
  • PTT pulse wave transit time
  • the antenna support member is separated from the artery included in the measurement site at a predetermined interval. A plurality are arranged.
  • the antenna element is disposed on one antenna support member in a direction perpendicular to the artery included in the measurement site. A plurality of them are arranged at predetermined intervals.
  • measurement signals and reflected signals are transmitted and received at a plurality of positions in a direction orthogonal to the artery. For this reason, for example, even if there is an individual difference in the position of the subject's artery, or even if the mounting position of the apparatus with respect to the measurement site is shifted in a direction perpendicular to the artery, at least one of the plurality of antenna support members One can be brought close to the artery, and the pulse wave representing the motion of the artery can be measured with high quality.
  • the antenna support member is electrically connected between the band member and the pressing member.
  • a control circuit support member is arranged, and the control circuit support member includes a transmission circuit unit that generates the measurement signal, supplies the measurement signal to the antenna element, and transmits the signal as the radio wave, and a radio wave received by the antenna element At least a receiving circuit unit for receiving and detecting the reflected signal is provided.
  • the control circuit support member can be disposed at a position close to the antenna support member. For this reason, it becomes possible to transmit the measurement signal and the reflected signal between the control circuit support member and the antenna support member without causing a large attenuation, thereby increasing the signal-to-noise ratio of the pulse wave signal. .
  • the antenna support member and the control circuit support member are integrally configured by a common circuit support member.
  • the antenna element is provided in a portion of the common circuit support member exposed from the pressing member, and the transmission circuit portion and the reception circuit portion are provided in a portion of the common circuit support member in contact with the pressing member. It is comprised as follows.
  • the antenna support member and the control circuit support member are integrally configured by a common circuit support member. For this reason, the production cost of the apparatus can be reduced.
  • a sixth aspect of the device according to the present invention is the apparatus according to the fifth aspect, wherein the common circuit support member is constituted by a flexible support member.
  • the antenna support member and the control circuit support member are less likely to be cracked or broken. Reliability can be increased. Moreover, the dimension of the thickness direction of a band member can be made small, and the weight reduction of an apparatus can also be anticipated.
  • a spacer member made of a dielectric material is interposed between the band member and the antenna support member. They are arranged.
  • the antenna support member is stably held, and thereby the reliability of the apparatus can be further improved.
  • a dielectric material is interposed between the antenna support member and the measurement site of the subject, the space between the antenna element and the measurement site is eliminated and radio waves on the surface of the measurement site are obtained. Reflection, attenuation of radio waves, and external contamination can be reduced, thereby further improving pulse wave measurement quality.
  • each aspect of the present invention it is possible to provide a biological information measuring apparatus that improves the reliability of the apparatus and reduces the discomfort given to the subject.
  • FIG. 1 is a perspective view showing an appearance of a biological information measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view showing a main part of the biological information measuring apparatus shown in FIG. 3 is a view showing a cross section taken along the line CC of the main part of the apparatus shown in FIG. 4 is a cross-sectional view taken along the line FF in FIG. 3, showing an example of a state in which the biological information measuring device shown in FIG. 1 is worn on the user's left wrist.
  • FIG. 5 is a cross-sectional view showing a contact state of the device with the skin surface of the left wrist when the biological information measuring device shown in FIG. 1 is worn on the left wrist of the user.
  • FIG. 1 is a perspective view showing an appearance of a biological information measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view showing a main part of the biological information measuring apparatus shown in FIG. 3 is a view showing a cross section taken along the line CC of the main part of
  • FIG. 6 is a plan view showing an arrangement position of the antenna substrate and the press cuff with respect to the wrist when the biological information measuring device shown in FIG. 1 is attached to the left wrist of the user.
  • FIG. 7 is a block diagram showing the overall configuration of the control system of the biological information measuring apparatus shown in FIG.
  • FIG. 8 is a block diagram showing a configuration of a pulse wave sensor in the control system shown in FIG.
  • FIG. 9 is a block diagram showing a configuration of a blood pressure measurement system based on the oscillometric method in the control system shown in FIG.
  • FIG. 10 is a flowchart showing an example of control procedures and control contents by the control system of the biological information measuring apparatus shown in FIG. 11A and 11B are diagrams for explaining a pulse wave measurement operation, where FIG.
  • FIG. 11A is a diagram schematically showing a cross section along the longitudinal direction of the left wrist
  • FIG. 11B is a diagram illustrating first and second pulse wave sensors. It is a figure which shows an example of the waveform of the pulse wave detected by this.
  • FIG. 12 is an enlarged cross-sectional view of a main part in a state where the biological information measuring device according to the modification (1) of the present invention is attached to the left wrist.
  • FIG. 13 is an enlarged cross-sectional view of a main part in a state where the biological information measuring device according to the modification (2) of the present invention is attached to the left wrist.
  • FIG. 14 is an enlarged cross-sectional view of the main part in a state where the biological information measuring device according to the modification (3) of the present invention is attached to the left wrist.
  • a biological information measuring apparatus includes a first blood pressure measuring unit that estimates blood pressure based on a pulse wave transit time (Pulse2Transit Time; PTT), and a second blood pressure that is measured by an oscillometric method.
  • the blood pressure measuring unit is provided.
  • the first blood pressure measurement unit using the PTT transmits radio waves to the artery and receives the reflected waves at two different sites to be measured where an artery such as the wrist or the upper arm exists. To measure the pulse wave representing the motion of the artery, and calculate the PTT based on the measurement result. Then, the blood pressure value is estimated using the calculated value of PTT and a predetermined relational expression between the PTT and the blood pressure value.
  • the second blood pressure measurement unit that uses the oscillometric method, in a state where the pressure cuff is wound around the measurement site where an artery such as the wrist or the upper arm exists, pressurizes the pressure cuff and then reduces the pressure of the pulse wave. Measure blood pressure by measuring.
  • an antenna substrate as an antenna support member having an antenna element for transmitting and receiving radio waves to and from the measurement site, and pressing It is desirable to install both cuffs.
  • the antenna substrate and the pressing cuff are generally installed on the pressing surface of the pressing cuff, that is, on the surface in contact with the part to be measured.
  • the installation state of the antenna substrate with respect to the pressure cuff may deteriorate and dropout, deformation, etc. occur while the pressure cuff is repeatedly pressed and depressurized. Is done.
  • the antenna substrate is pressed against the skin of the subject by the pressure, and there is a concern that the subject may feel discomfort such as pain on the skin.
  • a band for example, a belt-shaped body made of a resin member
  • a part for installing the press cuff 21 and a part for installing the antenna boards 41 and 42 are provided separately, and the press cuff 21 and the antenna boards 41 and 42 are installed in these parts, respectively.
  • Reference numerals 412 and 422 denote antenna elements provided on the antenna boards 41 and 42
  • reference numeral 43 denotes a control circuit board as a control circuit support member connected to the antenna boards 41 and.
  • the antenna substrates 41 and 42 are installed not on the pressing surface of the pressing cuff 21 but on the band-like body 23 of the band 20. For this reason, even if pressurization and decompression of the press cuff 21 are repeated, there is no fear that the antenna substrates 41 and 42 are deteriorated in the installation state such as deformation or dropout, and thereby the reliability of the apparatus can be kept high. it can.
  • the antenna substrates 41 and 42 do not contact the skin of the measurement site 90 in a state where the apparatus is mounted on the measurement site 90 of the subject, and the pressure cuff 21 is also pressed by the pressure.
  • the antenna substrates 41 and 42 are not pressed against the skin. Therefore, there is no worry that the subject feels discomfort such as pain on the skin, thereby reducing the stress during use of the subject.
  • FIG. 1 is a perspective view illustrating the overall structure of a biometric apparatus according to an embodiment of the present invention
  • FIG. 2 is an enlarged view of the main part of the biometric information measuring apparatus shown in FIG.
  • FIG. 3 and FIG. 3 are sectional views taken along the line CC in FIG.
  • the biological information measuring apparatus is a wrist-type sphygmomanometer 1 that is used by being worn on the left wrist of a subject.
  • the sphygmomanometer 1 includes a band 20 that is attached to the user's left wrist so as to surround the outer periphery thereof, and a main body 10 that is integrally attached to the band 20.
  • the band 20 has an elongated band shape so as to surround the left wrist along the outer peripheral direction thereof, and has an inner peripheral surface 20a in contact with the left wrist and an outer peripheral surface 20b opposite to the inner peripheral surface 20a. ing.
  • the dimension in the width direction Y of the band 20 is set to about 35 to 40 mm in this example, but may be set to other values.
  • the main body 10 is integrally provided at one end 20e in the outer peripheral direction of the band 20 by integral molding in this example.
  • the band 20 and the main body 10 may be formed separately, and the main body 10 may be integrally attached to the band 20 via an engagement member (for example, a hinge).
  • an engagement member for example, a hinge
  • the part where the main body 10 is disposed corresponds to the back side surface (the surface on the back side of the hand) of the left wrist in the mounted state.
  • the main body 10 has a three-dimensional shape having a thickness in a direction perpendicular to the outer peripheral surface 20 b of the band 20.
  • the main body 10 is small and thin so as not to disturb the daily activities of the user.
  • the main body 10 has a quadrangular frustum-shaped outline projecting outward from the band 20.
  • a display 50 that forms a display screen is provided on the top surface 10a of the main body 10 (the surface farthest from the part to be measured). Further, an operation unit 52 for inputting an instruction from the user is provided along the side surface 10f of the main body 10 (the side surface on the left front side in FIG. 1).
  • the bottom surface 10 b of the main body 10 (the surface closest to the part to be measured) and the end 20 f of the band 20 are connected by a three-fold buckle 24.
  • the buckle 24 includes a first plate-like member 25 arranged on the outer peripheral side and a second plate-like member 26 arranged on the inner peripheral side.
  • One end 25 e of the first plate-like member 25 is attached to the main body 10 via a connecting rod 27 extending along the width direction Y so as to be rotatable.
  • the other end portion 25f of the first plate-like member 25 is rotatably attached to one end portion 26e of the second plate-like member 26 via a connecting rod 28 extending along the width direction Y.
  • the other end portion 26 f of the second plate-like member 26 is fixed in the vicinity of the end portion 20 f of the band 20 by a fixing portion 29.
  • the attachment position of the fixing portion 29 in the circumferential direction (X direction) of the band 20 is variably set in advance according to the length of the outer periphery of the user's left wrist.
  • the sphygmomanometer 1 (band 20) is configured in a substantially annular shape as a whole, and the bottom surface 10b of the main body 10 and the end portion 20f of the band 20 can be opened and closed in the direction of arrow B by the buckle 24. .
  • the sphygmomanometer 1 When the sphygmomanometer 1 is attached to the left wrist, the user who is the subject in the direction indicated by the arrow A in FIG. Pass your left hand through. Then, the user adjusts the position of the band 20 in the circumferential direction of the left wrist, and an antenna substrate (described in detail later) 41 installed on the inner peripheral surface of the band 20 on the radial artery passing through the left wrist. , 42 are set to face each other. As a result, the pair of transmitting and receiving antennas provided on the antenna substrates 41 and 42 is in contact with the portion corresponding to the radial artery on the palm side surface of the left wrist. In this state, the user closes and fixes the buckle 24. In this way, the user wears the sphygmomanometer 1 on the left wrist.
  • FIG. 4 shows an example of a state in which the sphygmomanometer 1 is attached to the user's left wrist 90, and is a cross-sectional view taken along the line FF in FIG.
  • FIG. 5 is an enlarged longitudinal sectional view showing the main part of FIG.
  • the band 20 includes a band-like body 23 that constitutes the base of the band.
  • the band-like body 23 is made of a resin material (silicone resin in this example).
  • the belt-like body 23 has flexibility in the thickness direction Z shown in FIG. Non-stretchable.
  • the inner peripheral surface of the belt-like body 23 is provided with a first installation portion having a belt-like shape that is long in the circumferential direction (X direction) at the center in the width direction (Y direction).
  • a pressing cuff 21 as a pressing member is installed at one installation site.
  • the press cuff 21 is made of a fluid bag made by facing two stretchable polyurethane sheets in the thickness direction Z and welding their peripheral portions. Further, in this example, as shown in FIG. 1, for example, the pressing cuff 21 is set to have a width direction of 25 mm which is smaller than the width of 35 to 40 mm which is the width of the band-like body 23.
  • a pair of antenna substrates 41 and 42 are installed on the inner peripheral surface of the belt-like body 23 exposed from both sides of the pressing cuff 21 as shown in FIGS.
  • a control circuit board 43 is provided at a portion hidden by the pressing cuff 21 on the inner peripheral surface of the band-like body 23, that is, at a position sandwiched between the band-like body 232 and the pressing cuff 21, as shown in FIG. Installed.
  • Each of the antenna boards 41 and 42 and the control circuit board 43 are configured by using a common dielectric substrate having a strip shape as a base. That is, the central portion of the common dielectric substrate is manufactured as the control circuit substrate 43 and the both end portions are manufactured as the antenna substrates 41 and 42.
  • the dielectric substrate is made of, for example, an epoxy resin and has a thickness of about 1 to 2 mm.
  • a pair of the transmission antenna 411 and the reception antenna 412 and a pair of the transmission antenna 421 and the reception antenna 422 are provided in each part used as the antenna substrates 41 and 42 of the dielectric substrate. These transmission / reception antennas 411 to 422 are all provided by printing and forming a conductive pattern on the antenna substrates 41 and.
  • Each of the transmission antennas 411 and 421 and the reception antennas 412 and 422 is a patch antenna having a rectangular shape, and is arranged in the circumferential direction X of the band 20 with a certain interval.
  • each of the transmission antennas 411 and 421 and the reception antennas 412 and 422 has a square shape with a length and width of 3 mm.
  • the distance between the transmission antenna 411 and the reception antenna 412 and the distance between the transmission antenna 421 and the reception antenna 422 are within the range of 8 mm to 10 mm in distance between the centers with respect to the circumferential direction X of the band 20. It is set to be inside.
  • the arrangement interval between the pair of the transmission antenna 411 and the reception antenna 412 and the pair of the transmission antenna 421 and the reception antenna 422 is 25 mm which is the width length of the pressing cuff 21 in this example. A slightly longer 30 mm is set. Note that the arrangement interval between the pair of the transmission antenna 411 and the reception antenna 412 and the pair of the transmission antenna 421 and the reception antenna 422 depends on the size of the sphygmomanometer 1, the width of the pressure cuff 21, and the like. You just have to choose.
  • a control circuit 430 is provided in a portion used as the control circuit board 43 of the dielectric substrate.
  • the control circuit 430 includes two sets of transmission circuits and reception circuits.
  • the control circuit 430 is normally composed of an integrated circuit, but may be a discrete circuit.
  • the transmission circuit and reception circuit of the set are connected to the transmission antenna 411 and the reception antenna 412, and the transmission antenna 421 and the reception antenna 422 through a conductive pattern formed on a dielectric substrate.
  • the height of the antenna boards 41 and 42 is about 1 to 2 mm, whereas the pressure cuff 21 is pressurized. Since the thickness of the antenna substrate 41 is not 3 to 5 mm, the antenna substrates 41 and 42 maintain a non-contact state with respect to the skin surface of the left wrist 90 as shown in FIGS. 4 and 5, for example.
  • the positions of the antenna boards 41 and 42 in the circumferential direction X of the band-like body 23 are two different positions in the longitudinal direction of the radial artery 91 in a state where the sphygmomanometer 1 is attached to the left wrist 90 in a normal state. They are set to face each other.
  • FIG. 6 shows the arrangement positions of the pair of the transmission antenna 411 and the reception antenna 412 and the pair of the transmission antenna 421 and the reception antenna 422 with respect to the radial artery 91 when the main body 10 is attached to the left wrist 90 of the user.
  • FIG. 6 is a plan view exemplified with the arrangement position of a press cuff 21.
  • the transmission / reception antenna pair 411, 412 and the transmission / reception antenna pair 421, 422 are arranged at a predetermined distance (30 mm in this example) along the longitudinal direction Y of the radial artery 91.
  • the transmission / reception antenna pair 411, 412 and the transmission / reception antenna pair 421, 422 are both positioned between the transmission antenna 411 and the reception antenna 412, and between the transmission antenna 421 and the reception antenna 422. It is desirable to arrange so that.
  • FIG. 7 is a block illustrating the overall configuration of the control system of the blood pressure monitor 1.
  • the main body 10 of the sphygmomanometer 1 includes a hardware processor that operates as a control unit such as a central processing unit (CPU) 100 in addition to the display unit 50 and the operation unit 52 described above, and a memory as a storage unit 51, a communication unit 59, a pressure sensor 31, a pump 32, a valve 33, an oscillation circuit 310 that converts the output from the pressure sensor 31 into a frequency, and a pump drive circuit 320 that drives the pump 32 are provided.
  • CPU central processing unit
  • Reference numeral 53 denotes a battery that outputs a power supply voltage.
  • the control circuit board 43 described above is connected to the CPU 100 via an interface circuit (not shown).
  • the display 50 is composed of an organic EL (Electro Luminescence) display, and displays information related to blood pressure measurement such as blood pressure measurement results and other information according to display data output from the CPU 100.
  • the display device 50 is not limited to the organic EL display, and may be another type of display device such as a liquid crystal display (LCD).
  • the operation unit 52 includes a push switch in this example, and inputs an operation signal to the CPU 100 according to an instruction to start or stop blood pressure measurement by the user.
  • the operation unit 52 is not limited to a push-type switch, and may be, for example, a pressure-sensitive (resistance) or proximity (capacitance) touch panel switch.
  • a microphone (not shown) may be provided, and a blood pressure measurement start instruction may be input by a user's voice.
  • the operation unit 52 is not essential, and the CPU 100 described later can be configured to automatically generate a blood pressure measurement start instruction or a stop instruction in accordance with, for example, a start signal output from a timer.
  • the memory 51 uses an HDD (Hard Disk Drive), SSD (Solid State Drive), ROM, RAM, or the like as a storage medium, and is used to control the blood pressure monitor 1 and a program for controlling the blood pressure monitor 1. Control data, setting data for setting various functions of the sphygmomanometer 1, pressure and pulse wave detection signals, data representing blood pressure measurement results, and the like are stored. The memory 51 is also used as a work memory when the program is executed.
  • HDD Hard Disk Drive
  • SSD Solid State Drive
  • ROM Read Only Memory
  • RAM Random Access Memory 51
  • the CPU 100 executes various functions as a control unit in accordance with a program stored in the memory 51. For example, when executing control for estimating blood pressure using PTT, the CPU 100 gives a transmission start instruction for radio waves (measurement signals) to the transmission circuits 44 and 46 of the control circuit board 43. Then, the reception signal corresponding to the reflected wave of the measurement signal from the radial artery 91 is taken from the reception circuits 45 and 47, the pulse wave signal is detected from the reception signal, and the PTT is calculated based on the pulse wave signal. The blood pressure value is estimated based on the calculated PTT value and the relational expression between the PTT and the blood pressure stored in the memory 51, and the estimated blood pressure value exceeds the range defined by the predetermined threshold value. It is determined whether or not.
  • the CPU 100 when performing blood pressure measurement by the oscillometric method, starts blood pressure measurement in the operation unit 52 when it is determined that the estimated blood pressure value obtained by the PTT exceeds the range defined by the threshold value.
  • control for driving the pump 32 (and the valve 33) is performed based on the pressure detection signal output from the pressure sensor 31.
  • the CPU 100 performs control to calculate the blood pressure value based on the pressure detection signal output from the pressure sensor 31.
  • the communication unit 59 transmits information including the blood pressure measurement result calculated by the CPU 100 to an external terminal device via the network 900, or receives information from the external terminal device via the network 900.
  • the data is transferred to the CPU 100.
  • Communication via the network 900 may be either wireless or wired.
  • the network 900 is the Internet, but is not limited thereto, and may be another type of network such as a hospital LAN (Local Area Network), or a USB cable 1 or the like. One-to-one communication may be used.
  • the communication unit 59 may include a micro USB connector.
  • the pump 32 and the valve 33 are connected to the press cuff 21 via an air pipe 39, and the pressure sensor 31 is connected via an air pipe 38, respectively.
  • the air pipes 39 and 38 may be a single common pipe.
  • the pressure sensor 31 detects the pressure in the pressing cuff 21 via the air pipe 38.
  • the pump 32 is a piezoelectric pump in this example, and supplies air as a pressurizing fluid to the press cuff 21 through the air pipe 39 in order to pressurize the pressure (cuff pressure) in the press cuff 21.
  • the valve 33 is mounted on the pump 32 and is configured to be opened and closed as the pump 32 is turned on / off.
  • valve 33 closes when the pump 32 is turned on and encloses the air in the pressing cuff 21, while it opens when the pump 32 is turned off, and the air in the pressing cuff 21 enters the atmosphere through the air pipe 39. Let it drain.
  • the valve 33 has a check valve function, and the discharged air does not flow backward.
  • the pump drive circuit 320 drives the pump 32 based on a control signal given from the CPU 100.
  • the pressure sensor 31 is a piezoresistive pressure sensor in this example, and detects the pressure of the band 20 (pressing cuff 21) through the air pipe 38, in this example, the pressure based on the atmospheric pressure (zero) as a time series. Output as a signal.
  • the oscillation circuit 310 oscillates based on an electric signal value based on a change in electric resistance due to the piezoresistance effect from the pressure sensor 31, and outputs a frequency signal having a frequency corresponding to the electric signal value of the pressure sensor 31 to the CPU 100.
  • the output of the pressure sensor 31 controls blood pressure values (systolic blood pressure (SBP) and diastolic blood pressure (Diastolic blood pressure) and DBP) in order to control the pressure of the pressure cuff 21 and by an oscillometric method. Is used to calculate.
  • the battery 53 is an element mounted on the main body 10, and in this example, each element of the CPU 100, the pressure sensor 31, the pump 32, the valve 33, the display 50, the memory 51, the communication unit 59, the oscillation circuit 310, and the pump drive circuit 320. To supply power.
  • the battery 53 also supplies power to the transmission circuits 44 and 46 and the reception circuits 45 and 47 of the control circuit board 43 through the feeder line 71.
  • the power supply line 71, together with the signal wiring 72, is sandwiched between the band-like body 23 of the band 20 and the pressing cuff 21, and is connected between the main body 10 and the transmission / reception unit 40 along the circumferential direction X of the band 20. It extends between them.
  • FIG. 8 is a block diagram illustrating the configuration of the first pulse wave sensor 40-1 and the second pulse wave sensor 40-2. is there.
  • the control circuit board 43 is provided with two sets of transmission / reception circuits, that is, a pair of transmission circuit 44 and reception circuit 45 and a pair of transmission circuit 46 and reception circuit 47.
  • the transmission circuit 44 and the reception circuit 45 are connected to a transmission antenna 411 and a reception antenna 412 provided on the antenna substrate 41 through conductive patterns formed on the common circuit substrate, respectively.
  • the transmission circuit 46 and the reception circuit 47 are connected to a transmission antenna 421 and a reception antenna 422 provided on the antenna substrate 42 through conductive patterns formed on the common circuit substrate, respectively.
  • the first pulse wave sensor 40-1 includes a transmission antenna 411 and a reception antenna 412 of the antenna substrate 41, a transmission circuit 44 and a reception circuit 45 connected to these antennas 411 and 412, respectively, and a pulse wave detection unit 101. It consists of.
  • the second pulse wave sensor 40-2 includes a transmission antenna 421 and a reception antenna 422 on the antenna substrate 42, transmission circuits 46 and 47 connected to these antennas 421 and 422, respectively, and a pulse wave detection unit 102. Composed.
  • the transmission circuits 44 and 46 supply measurement signals to the transmission antennas 411 and 421 connected thereto, respectively, and the left wrist 90 (more precisely, the radial artery 91) as the measurement site.
  • Radio waves E1 and E2 are transmitted toward the corresponding part).
  • radio waves having a frequency of 24 GHz band are used as the radio waves E1 and E2.
  • the receiving circuits 45 and 47 receive the reflected waves E1 'and E2' of the radio waves E1 and E2 by the radial artery 91 via the receiving antennas 412 and 422, respectively, detect and amplify the received signals, and the CPU 100 Output to.
  • the pulse wave detectors 101 and 102 convert the received signals output from the receiving circuits 45 and 47 into digital signals by an A / D converter (not shown) and capture the pulse signals representing the pulsatile waveform of the radial artery 91, respectively.
  • the wave signals PS 1 and PS 2 are detected and output to the PTT calculation unit 103.
  • the PTT calculation unit 103 calculates a time difference between the pulse wave signals PS1 and PS2 output from the pulse wave detection units 101 and 102 as a pulse wave propagation time (PTT), and calculates the calculated pulse wave propagation time (PTT). ) Is output to the first blood pressure calculation unit 104.
  • the first blood pressure calculation unit 104 reads a preset relational expression between PTT and blood pressure from the memory 51 and estimates a blood pressure value corresponding to the calculated pulse wave propagation time (PTT) according to the relational expression. .
  • each of the pulse wave detection units 101 and 102, the PTT calculation unit 103, and the first blood pressure calculation unit 104 is realized by the CPU 100 executing a predetermined program.
  • FIG. 9 is a block diagram illustrating the configuration of the blood pressure measurement unit using the oscillometric method.
  • the blood pressure measurement unit using the oscillometric method includes a pressure control unit 201, a second blood pressure calculation unit 204, and an output unit 205. All of these functional units are realized by causing the CPU 100 to execute a program.
  • the pressure control unit 201 includes a pressure detection unit 202 and a pump drive unit 203.
  • the pressure detection unit 202 processes the frequency signal input from the pressure sensor 31 through the oscillation circuit 310 and performs processing for detecting the pressure (cuff pressure) in the pressing cuff 21.
  • the pump drive unit 203 performs a process for driving the pump 32 and the valve 33 through the pump drive circuit 320 based on the detected cuff pressure. Accordingly, the pressure control unit 201 controls the pressure by supplying air to the pressing cuff 21 at a predetermined pressing speed.
  • the second blood pressure calculation unit 204 acquires a fluctuation component of the arterial volume included in the cuff pressure as a pulse wave signal, and applies a known algorithm based on the oscillometric method based on the acquired pulse wave signal, Processing for calculating (systolic blood pressure SBP and diastolic blood pressure DBP) is performed. When the calculation of the blood pressure value is completed, the second blood pressure calculation unit 204 stops the processing of the pump drive unit 203.
  • the output unit 205 performs processing for displaying the calculated blood pressure values (systolic blood pressure SBP and diastolic blood pressure DBP) on the display 50 in this example.
  • FIG. 10 is a flowchart illustrating a control procedure and control contents by the CPU 100.
  • the description will be made assuming that the sphygmomanometer 1 is attached to the left wrist 90 of the user by the above-described attachment procedure.
  • the blood pressure measurement start instruction based on the PTT may be configured to be automatically generated by the CPU 100 in accordance with, for example, an activation signal output from a timer.
  • the CPU 100 first closes the valve 33 in step S11 and drives the pump 32 via the pump drive circuit 320 to perform control to send air to the press cuff 21 so that the press cuff 21 is predetermined. Pressurize to value.
  • the pressure is such that the mounting position of the sphygmomanometer 1 does not shift during the user's activity, that is, the pressure that the user does not feel uncomfortable and the contact position of the transmitting / receiving antenna pair with respect to the measurement site does not shift. (For example, about 5 mmHg).
  • the protrusions 20g and 20h set at appropriate heights are formed on the inner peripheral surface of the band-like body 23 that is the base of the band 20, and the protrusions 20g, Antenna substrates 41 and 42 are installed on 20h. For this reason, it becomes possible to make the transmitting antennas 411 and 421 and the receiving antennas 412 and 422 contact with the skin surface of the measurement site of the user with appropriate pressure. Therefore, step S11 can be omitted.
  • the CPU 100 instructs the control circuit board 43 to start transmitting a measurement signal in step S12.
  • measurement signals are supplied from the transmission circuits 44 and 46 to the transmission antennas 411 and 421 at a preset cycle.
  • radio waves E1 and E2 corresponding to the measurement signal are transmitted from the transmission antennas 411 and 421 to the measurement site 90.
  • the measurement signal may be generated from the transmission circuits 44 and 46 at irregular time intervals, or may be generated continuously.
  • the signals are received by the receiving antennas 412 and 422, and the waveform signals are detected and amplified by the receiving circuits 45 and 47 and output to the CPU 100.
  • the CPU 100 takes in the received signals of the reflected waves E1 ′ and E2 ′ output from the receiving circuits 45 and 47, and detects the pulse wave signals PS1 and PS2 as follows in step S13, respectively.
  • FIG. 11B is a diagram showing a detection example of the pulse wave signals PS1 and PS2.
  • the CPU 100 functions as the pulse wave detection unit 101 to detect the pulse wave signal PS1 representing the pulse wave of the upstream portion 91u of the radial artery 91 from the vasodilator output and the vasoconstriction output of the receiving circuit 45.
  • the CPU 100 also functions as a pulse wave detection unit 102 to detect a pulse wave signal PS2 representing a pulse wave of the downstream portion 91d of the radial artery 91 from the vasodilator output and the vasoconstriction output of the reception circuit 47. .
  • the pair of transmission / reception antennas 411 and 412 is in the left wrist with respect to the longitudinal direction of the left wrist 90 (corresponding to the width direction Y of the band 20). It faces the upstream portion 91u of the radial artery 91 passing through 90.
  • the transmitting / receiving antenna pair 421 and 422 faces the downstream portion 91 d of the radial artery 91.
  • the signals detected by the transmission / reception antenna pair 411, 412 change the distance between the upstream portion 91u of the radial artery 91 and the transmission / reception antenna pair 411, 412 due to the pulse wave (which causes expansion and contraction of the blood vessel).
  • the signals detected by the transmission / reception antenna pair 421 and 422 represent a change in distance between the downstream portion 91d of the radial artery 91 and the transmission / reception antenna pair 241 and 422 due to the pulse wave.
  • the pulse wave detection unit 101 of the first pulse wave sensor 40-1 and the pulse wave detection unit 102 of the second pulse wave sensor 40-2 are respectively based on the output signals of the reception circuits 45 and 47, respectively, as shown in FIG.
  • a first pulse wave signal PS1 and a second pulse wave signal PS2 having a mountain-shaped waveform as shown in (B) are output in time series.
  • the reception level of the reception antennas 412 and 422 is about 1 ⁇ W ( ⁇ 30 dBm in decibel value for 1 mW).
  • the output levels of the receiving circuits 45 and 47 are about 1 volt.
  • the respective peaks A1 and A2 of the first pulse wave signal PS1 and the second pulse wave signal PS2 are about 100 mV to 1 volt.
  • step S14 the CPU 100 operates as the PTT calculation unit 103, and calculates the time difference between the pulse wave signal PS1 and the pulse wave signal PS2 as a pulse wave propagation time (PTT). More specifically, in this example, the time difference ⁇ t between the peak A1 of the first pulse wave signal PS1 and the peak A2 of the second pulse wave signal PS2 shown in FIG. Calculate as (PTT).
  • the pulse wave propagation time (PTT) is not limited to the time difference ⁇ t between the peaks of the first and second pulse wave signals PS1 and PS2, but for example, the waveforms of the first and second pulse wave signals PS1 and PS2 It may be calculated as a time difference between rising timings.
  • step S ⁇ b> 15 the CPU 100 operates as the first blood pressure calculation unit 104 and reads a relational expression (also referred to as a corresponding expression) Eq between the pulse wave propagation time (PTT) and the blood pressure from the memory 51. Based on this correspondence equation Eq and the pulse wave propagation time (PTT) calculated in step S14, an estimated value of the blood pressure value is calculated.
  • This correspondence formula is described in detail, for example, in Japanese Patent Laid-Open No. 10-201724.
  • EBP ⁇ / DT2 + ⁇ / DT + ⁇ DT + ⁇ (Eq.2) (Where ⁇ , ⁇ , ⁇ , and ⁇ represent known coefficients or constants, respectively), in addition to the 1 / DT2 term, formulas that include a 1 / DT term and a DT term are known. Another corresponding equation can be used.
  • the CPU 100 next compares the estimated value of the blood pressure with a preset threshold value representing a normal range of blood pressure in step S16, and determines the range indicated by the threshold value. It is determined whether or not it is off. If the estimated value of the blood pressure is within the range indicated by the threshold value, the control in step S12 is repeated until the operation unit 52 inputs a blood pressure measurement end instruction using the PTT.
  • step S16 Blood pressure measurement using oscillometric method
  • CPU 100 performs blood pressure measurement control using oscillometric method, Run as follows:
  • the CPU 100 first turns off the pump 32 via the pump drive circuit 320, opens the valve 33, and exhausts the air in the pressing cuff 21. Subsequently, control is performed to set the current output value of the pressure sensor 31 as a value corresponding to the atmospheric pressure (0 mmHg adjustment).
  • step S ⁇ b> 17 the CPU 100 operates as the pump driving unit 203 of the pressure control unit 201 to close the valve 33, and then drives the pump 32 via the pump driving circuit 320 to supply air to the pressing cuff 21. Control sending. As a result, the pressure cuff 21 is inflated and the cuff pressure is gradually increased, and the left wrist 90 as the measurement site is gradually compressed.
  • the CPU 100 operates as the pressure detection unit 202 of the pressure control unit 201 to monitor the cuff pressure by the pressure sensor 31 and calculate an artery generated at the radial artery 91 of the left wrist 90 in order to calculate the blood pressure value.
  • a volume fluctuation component is detected as a pulse wave signal.
  • step S18 the CPU 100 operates as the second blood pressure calculation unit 204, and applies a known algorithm by an oscillometric method based on the pulse wave signal detected at this time, to thereby detect a blood pressure value (systolic period). Attempts to calculate blood pressure SBP and diastolic blood pressure DBP). Then, it is determined in step S19 whether or not the blood pressure value has been calculated.
  • step S ⁇ b> 21 the CPU 100 functions as the output unit 205 to display the blood pressure value measurement result on the display device 50 and store it in the memory 51.
  • the blood pressure value calculation process is not limited to the pressurization process, and may be performed in the decompression process. Further, the measurement result of the blood pressure value may be stored in the memory 51 without being displayed on the display device 50, and further transmitted from the communication unit 59 to a user terminal such as a smartphone associated in advance. You may make it display on a user terminal. Further, the data representing the blood pressure measurement result may be transferred from the communication unit 59 or the smartphone to the family or doctor's terminal.
  • the blood pressure estimation operation using the PTT and the blood pressure measurement operation using the oscillometric method can be independently performed according to the operation of the operation unit.
  • Antenna substrates 41 and 42 are respectively formed at portions exposed from both sides of the pressing cuff 21 of the substrate, and are hidden by the pressing cuff 21 of the common circuit substrate, that is, between the strip 232 and the pressing cuff 21.
  • a control circuit board 43 is formed at the sandwiched position.
  • the antenna substrates 41 and 42 are directly installed not on the pressing surface of the pressing cuff 21 but on the inner peripheral surface of the band-like body 23 of the band 20. For this reason, even if pressurization and pressure reduction of the press cuff 21 are repeated, there is no concern that the antenna substrates 41 and 42 are deteriorated in the installed state such as deformation or dropout, thereby improving the structural reliability of the sphygmomanometer 1. It can be kept high.
  • the antenna substrates 41 and 42 maintain a non-contact state with respect to the skin of the measurement site 90 while the sphygmomanometer 1 is mounted on the measurement site 90 of the user. For this reason, the antenna substrates 41 and 42 are not pressed against the skin regardless of whether the pressing cuff 21 is pressurized, and as a result, the user does not have to worry about discomfort such as pain on the skin. High usability can be maintained.
  • spacer members 413 and 423 made of a dielectric material may be installed on the installation surfaces of the transmitting and receiving antennas 411, 412 and 421, 422 of the antenna substrates 41, 42.
  • the spacer members 413 and 423 are made of an elastic resin material such as silicone resin, and the height of the spacer members 413 and 423 is such that the top surface of the spacer members 413 and 423 is the height of the user's left wrist 90 when measuring blood pressure by PTT. The height is set so as to contact the skin surface with a small pressure.
  • a dielectric material is interposed between the antenna substrates 41 and 42 and the user's measured part 90, thereby eliminating the space between the transmitting / receiving antennas 411 to 422 and the measured part 90, and It is possible to reduce radio wave reflection, radio wave attenuation, and external contamination on the skin surface of the measurement site 90, thereby further improving pulse wave measurement quality.
  • two sets of antenna boards 41 and 42 each having a pair of transmitting and receiving antennas are installed in the width direction Y of the band 20, that is, the longitudinal direction of the radial artery 91, thereby estimating blood pressure by PTT.
  • the case of performing is described as an example.
  • the present invention is not limited to this configuration, and only one antenna substrate having one transmission / reception antenna pair is provided, thereby detecting the pulse wave at any one location of the radial artery 91. You may comprise as follows.
  • FIG. 13 is a cross-sectional view showing an example of the configuration.
  • a control circuit board 43 constituted by a common circuit board and one antenna board 41 are installed on the inner peripheral surface of the band-like body 23 of the band 20.
  • the antenna substrate 41 is disposed at a position exposed from the pressing cuff 21, and the control circuit substrate 43 is disposed at a position hidden by the pressing cuff 21, that is, between the pressing cuff 21 and the belt-shaped body 23. This point is the same as the configuration of the embodiment shown in FIG.
  • the antenna substrate 41 is directly installed on the inner peripheral surface of the band-like body 23 of the band 20, not on the pressing surface of the pressing cuff 21. For this reason, even if pressurization and depressurization of the press cuff 21 are repeated, there is no fear that the antenna substrate 41 is deteriorated in the installed state such as deformation or dropout. Therefore, the structural reliability of the sphygmomanometer 1 can be increased, and the pulse wave can be reliably measured with high quality.
  • a spacer member 413 made of a dielectric material may be installed on the antenna installation surface of the antenna substrate 41 as illustrated in FIG. With this configuration, it is possible to stably hold the antenna substrate 41 as in the configuration shown in FIG. 12, thereby further improving the reliability of the device.
  • a dielectric material is interposed between the antenna substrate 41 and the measured part 90 of the user, thereby eliminating the space between the transmitting / receiving antennas 411 and 412 and the measured part 90 and measuring the measured part. It is possible to reduce radio wave reflection, radio wave attenuation, and extraneous contamination on the 90 skin surface, thereby further improving pulse wave measurement quality.
  • a groove-shaped recess may be formed in the circumferential direction at the center in the width direction (Y direction) of the inner peripheral surface of the belt-like body 23, and the pressing cuff 21 may be disposed in the recess. If comprised in this way, the press cuff 21 which repeats pressurization and pressure reduction operation
  • the control circuit board 43 may be installed on the bottom surface of the groove, but may be arranged in an empty space of the band-like body 23 of the band 20, that is, in a position that does not overlap the pressing cuff 21. Good.
  • the case where the plurality of antenna substrates 41 and 42 are arranged at predetermined intervals along the longitudinal direction (Y direction) of the radial artery 91 has been described as an example.
  • the present invention is not limited thereto, and a set of antenna boards having the same configuration as the antenna boards 41 and 42 is arranged at a predetermined interval in the direction orthogonal to the radial artery 91, that is, in the circumferential direction (X direction) of the band 20. You may make it do.
  • the set of the antenna substrate may be one set, but a plurality of sets may be arranged at a predetermined interval in the X direction.
  • a plurality of antenna substrates 41 are arranged at predetermined intervals in a direction (X direction) orthogonal to the radial artery 91. It may be.
  • the measurement signal and the reflection signal are transmitted and received at a plurality of positions in a direction orthogonal to the radial artery 91, respectively. For this reason, for example, even if the position of the radial artery 91 of the user varies between individuals, or even if the mounting position of the band 20 on the measurement site is shifted in the X direction, at least one of the plurality of antenna substrates is It becomes possible to make it approach to an artery, and this makes it possible to measure a pulse wave with good quality.
  • the antenna boards 41 and 42 and the control circuit board 43 may be configured by flexible boards. In this way, the thickness of the band 20 can be further reduced, and the antenna substrates 41 and 42 and the control circuit substrate 43 can be configured by one common flexible substrate. Further, a protective film made of a dielectric material for protecting the transmitting antenna and the receiving antenna may be covered or installed on the antenna substrate. If comprised in this way, the effect which further eases the discomfort at the time of a transmitting antenna and a receiving antenna contacting a user's skin can be anticipated.
  • the sphygmomanometer 1 measures a pulse wave signal, a pulse wave propagation time, and a blood pressure value as biological information has been described as an example.
  • the present invention is not limited to this, and other information is acquired from the pulse wave, such as measuring the pulse rate, analyzing the waveform of the pulse wave to determine the user's cardiovascular condition, and authenticating the user. May be.
  • the biological information measuring device may be worn on other parts such as the upper limb such as the upper arm or the lower limb such as the thigh or ankle. .
  • any part may be used as long as the part has an artery under the skin and can be pressurized by the pressure cuff.
  • the arrangement direction of the transmission / reception antenna pair may be arranged in the longitudinal direction (Y direction) of the radial artery 91 instead of the direction (X direction) orthogonal to the longitudinal direction (Y direction) of the radial artery 91.
  • the pattern of the transmitting antenna and the receiving antenna may be a line or a loop instead of a square.
  • the antenna support member for installing the transmission antenna and the reception antenna and the control circuit member for installing the control circuit are not limited to the printed wiring board, and may be simple members made of, for example, a resin material.
  • the number of installed antenna support members (transmission / reception antenna pairs), their installation position, installation structure, blood pressure measurement control procedure and control contents by the PTT and oscillometric methods are variously modified without departing from the scope of the present invention. Can be implemented.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
  • a pressing member (21) which is disposed on a surface of the band member (20) facing the measurement site (90) and which expands by injecting fluid during blood pressure measurement and presses the measurement site (90);
  • the band member (20) is attached to the measurement site (90) on the surface of the band member (20) facing the measurement site (90) where the pressing member (21) is not disposed.
  • At least one antenna support member (41), (42) installed in a non-contact state with respect to the measurement site (90).
  • the antenna support members (41) and (42) transmit a measurement signal including a radio wave to the measurement site (90) and receive a reflected signal of the measurement signal from the measurement site (90).
  • antenna elements (411), (412), (421), (422), Biological information measuring device Having antenna elements (411), (412), (421), (422), Biological information measuring device.

Abstract

The present invention enhances the reliability of a device and reduces the discomfort experienced by a subject. An embodiment of the present invention is a sphygmomanometer 1 that is used by being worn on the left wrist 90 of a user, wherein, at the inner circumferential surface of a band-like body 23 that constitutes a base body of a band 20, a pressing cuff 21 that serves as a pressing member is disposed at a center section of the band-like body 23 in the width direction (Y-direction). In addition, together therewith at a position that is sandwiched by the inner circumferential surface of the band-like body 23 and the pressing cuff 21, a rectangular shared circuit board is disposed in the width direction (Y-direction) of the band-like body 23, antenna boards 41, 42 are individually formed at sites of the shared circuit board that are exposed from two side sections of the pressing cuff 21, and a control circuit board 43 is formed at a position in the shared circuit board, which is flanked by the pressing cuff 21 and band-like body 232.

Description

生体情報測定装置Biological information measuring device
 この発明の実施形態は、例えば、押圧カフを用いて血圧を測定する機能部と、電波を用いて動脈の脈波を測定する機能部とを備えた生体情報測定装置に関する。 Embodiments of the present invention relate to a biological information measuring apparatus including, for example, a functional unit that measures blood pressure using a pressure cuff and a functional unit that measures pulse waves of an artery using radio waves.
 従来、生体情報測定装置の1つとして、例えば、被検者の上腕部または手首等の被測定部位を押圧カフにより圧迫してその圧力を測定することで被検者の血圧を測定する機能部と、対をなす送信アンテナと受信アンテナを被検者の動脈を含む被測定部位に対向配置し、上記送信アンテナから電波(測定信号)を被測定部位に対し送信して、この測定信号の上記被測定部位による反射波(反射信号)を上記受信アンテナで受信することで、被検者の脈波を測定する機能部を備えた装置が知られている(例えば特許文献1を参照)。 Conventionally, as one of the biological information measuring devices, for example, a functional unit that measures a blood pressure of a subject by pressing a measurement site such as a subject's upper arm or wrist with a pressure cuff and measuring the pressure. And a transmitting antenna and a receiving antenna that are paired with each other, are placed opposite to the measurement site including the subject's artery, and a radio wave (measurement signal) is transmitted from the transmission antenna to the measurement site. An apparatus including a functional unit that measures a pulse wave of a subject by receiving a reflected wave (reflected signal) from a measurement site with the receiving antenna is known (see, for example, Patent Document 1).
日本国特開2013-132437号公報Japanese Unexamined Patent Publication No. 2013-132437
 ところが、オシロメトリック法による血圧測定機能と、電波を用いた脈波の測定機能とを併せ持った従来の生体情報測定装置は、例えば、脈波測定用の送信アンテナおよび受信アンテナを押圧カフの押圧面、つまり皮膚に接触する面に取着した構造となっている。このため、押圧カフの加圧および減圧が繰り返されるうちに押圧カフに対する送信アンテナおよび受信アンテナの取着状態が劣化して脱落や変形等を生じるおそれがあり、装置の信頼性の低下が懸念されていた。また、押圧カフの加圧により送信アンテナおよび受信アンテナが被検者の皮膚に押し付けられるため、被検者が皮膚に痛み等を感じるなど、不快感を覚えることがあった。 However, a conventional biological information measuring device having both a blood pressure measurement function based on an oscillometric method and a pulse wave measurement function using radio waves is, for example, a pressing surface of a pressure cuff that presses a transmission antenna and a reception antenna for pulse wave measurement. That is, it has a structure attached to the surface in contact with the skin. For this reason, there is a concern that the attachment state of the transmitting antenna and the receiving antenna with respect to the pressure cuff may deteriorate due to repeated pressurization and pressure reduction of the pressure cuff, resulting in dropout, deformation, etc. It was. In addition, since the transmitting antenna and the receiving antenna are pressed against the skin of the subject due to the pressurization of the pressing cuff, the subject sometimes feels uncomfortable feeling such as pain on the skin.
 この発明は上記事情に着目してなされたもので、装置の信頼性の向上を図ると共に被検者に与える不快感の軽減を図った生体情報測定装置を提供しようとするものである。 The present invention has been made paying attention to the above circumstances, and is intended to provide a biological information measuring apparatus that improves the reliability of the apparatus and reduces the discomfort given to the subject.
 上記課題を解決するために、この発明に係る生体情報測定装置の第1の態様は、生体の動脈を含む被測定部位を取り巻くように装着される帯状をなすバンド部材と、前記バンド部材の前記被測定部位と対向する面に配置され、血圧測定時に流体の注入により膨張動作して前記被測定部位を押圧する押圧部材と、前記バンド部材の前記被測定部位と対向する面のうち前記押圧部材が配置されていない部位に、前記バンド部材が前記被測定部位に装着された状態で当該被測定部位に対し非接触の状態に設置される少なくとも1つのアンテナ支持部材とを具備する。前記アンテナ支持部材には、前記被測定部位に対し電波からなる測定信号を送波すると共に、当該測定信号の前記被測定部位による反射信号を受波するアンテナ素子が設けられる。 In order to solve the above-described problem, a first aspect of the biological information measuring device according to the present invention includes a band-shaped band member attached so as to surround a measurement site including a biological artery, and the band member A pressing member that is disposed on a surface facing the measurement site and that expands by injecting fluid during blood pressure measurement to press the measurement site; and the pressing member of the surface of the band member that faces the measurement site And at least one antenna support member that is installed in a non-contact state with respect to the measurement target region in a state where the band member is attached to the measurement target region. The antenna support member is provided with an antenna element that transmits a measurement signal including a radio wave to the measurement site and receives a reflection signal of the measurement signal from the measurement site.
 この発明の第1の態様によれば、アンテナ支持部材は押圧部材の押圧面に取着されるのではなく、バンド部材上の押圧部材が配置されていない部位に設置される。このため、押圧部材の加圧および減圧が繰り返されてもアンテナ支持部材の設置状態は劣化せず、これによりアンテナ支持部材の脱落や変形等の不具合の発生は未然に回避されて、装置の信頼性を高めることができる。また、アンテナ支持部材は押圧部材の加圧により被検者の皮膚に押し付けられない構造であるため、被検者が痛み等の不快感を覚える心配もない。 According to the first aspect of the present invention, the antenna support member is not attached to the pressing surface of the pressing member, but is installed at a site where the pressing member on the band member is not disposed. For this reason, the installation state of the antenna support member does not deteriorate even if the pressing member is repeatedly pressed and depressurized, thereby preventing the occurrence of problems such as dropping and deformation of the antenna support member. Can increase the sex. In addition, since the antenna support member has a structure that cannot be pressed against the skin of the subject by pressurization of the pressing member, the subject does not have to worry about discomfort such as pain.
 この発明に係る生体情報測定装置の第2の態様は、前記第1の態様において、前記アンテナ支持部材を、前記被測定部位に含まれる動脈に沿う方向に所定の間隔を隔てて複数配置するようにしたものである。 In a second aspect of the biological information measuring apparatus according to the present invention, in the first aspect, a plurality of the antenna support members are arranged at predetermined intervals in a direction along the artery included in the measurement site. It is a thing.
 この発明に係る生体情報測定装置の第3の態様は、前記第1の態様において、前記アンテナ素子を、1個のアンテナ支持部材に、前記被測定部位に含まれる動脈に沿う方向に所定の間隔を隔てて複数個配置するようにしたものである。 A third aspect of the biological information measuring apparatus according to the present invention is the biological information measuring apparatus according to the first aspect, wherein the antenna element is placed on one antenna support member at a predetermined interval in a direction along the artery included in the measurement site. A plurality of them are arranged with a gap therebetween.
 この発明の第2および第3の態様によれば、例えば、1本の動脈の上流側と下流側の異なる複数の位置においてそれぞれ測定信号の送波と反射波の受波が行われる。このため、動脈の異なる位置で脈波信号を検出することが可能となり、これらの脈波信号に基づいて脈波伝播時間(Pulse Transit Time;PTT)に着目した血圧推定を行うことが可能となる。 According to the second and third aspects of the present invention, for example, measurement signals are transmitted and reflected waves are received at a plurality of different positions upstream and downstream of one artery. For this reason, it becomes possible to detect a pulse wave signal at a different position of the artery, and based on these pulse wave signals, it is possible to perform blood pressure estimation paying attention to a pulse wave transit time (PTT). .
 この発明に係る生体情報測定装置の第4の態様は、前記第1または第2の態様において、前記アンテナ支持部材を、前記被測定部位に含まれる動脈と直交する方向に所定の間隔を隔てて複数個配置するようにしたものである。 According to a fourth aspect of the biological information measuring apparatus according to the present invention, in the first or second aspect, the antenna support member is separated from the artery included in the measurement site at a predetermined interval. A plurality are arranged.
 この発明に係る生体情報測定装置の第5の態様は、前記第1または第3の態様において、前記アンテナ素子を、1個のアンテナ支持部材に、前記被測定部位に含まれる動脈と直交する方向に所定の間隔を隔てて複数個配置するようにしたものである。 According to a fifth aspect of the biological information measuring apparatus of the present invention, in the first or third aspect, the antenna element is disposed on one antenna support member in a direction perpendicular to the artery included in the measurement site. A plurality of them are arranged at predetermined intervals.
 この発明の第4および第5の態様によれば、動脈と直交する方向の複数の位置でそれぞれ測定信号および反射信号の送受波が行われる。このため、例えば、被検者の動脈の位置に個人差があっても、また被測定部位に対する装置の装着位置が動脈と直交する方向にずれても、前記複数のアンテナ支持部材のうちの少なくとも1つを動脈に近接させることが可能となり、これにより動脈の動きを表す脈波を品質良く測定することが可能となる。 According to the fourth and fifth aspects of the present invention, measurement signals and reflected signals are transmitted and received at a plurality of positions in a direction orthogonal to the artery. For this reason, for example, even if there is an individual difference in the position of the subject's artery, or even if the mounting position of the apparatus with respect to the measurement site is shifted in a direction perpendicular to the artery, at least one of the plurality of antenna support members One can be brought close to the artery, and the pulse wave representing the motion of the artery can be measured with high quality.
 この発明に係る生体情報測定装置の第4の態様は、前記第1乃至第3の態様のいずれかにおいて、前記バンド部材と前記押圧部材との間に前記アンテナ支持部材と電気的に接続される制御回路支持部材を配置し、この制御回路支持部材に、前記測定信号を生成して前記アンテナ素子に供給し前記電波として送波させる送信回路部と、前記アンテナ素子により受波された電波からなる前記反射信号を受信して検波する受信回路部とを少なくとも設けるようにしたものである。 According to a fourth aspect of the biological information measuring apparatus of the present invention, in any one of the first to third aspects, the antenna support member is electrically connected between the band member and the pressing member. A control circuit support member is arranged, and the control circuit support member includes a transmission circuit unit that generates the measurement signal, supplies the measurement signal to the antenna element, and transmits the signal as the radio wave, and a radio wave received by the antenna element At least a receiving circuit unit for receiving and detecting the reflected signal is provided.
 この発明の第4の態様によれば、制御回路支持部材をアンテナ支持部材と近接する位置に配置することが可能となる。このため、制御回路支持部材とアンテナ支持部材との間で、測定信号および反射信号を大きな減衰を生じることなく伝達することが可能となり、これにより脈波信号の信号対雑音比を高めることができる。 According to the fourth aspect of the present invention, the control circuit support member can be disposed at a position close to the antenna support member. For this reason, it becomes possible to transmit the measurement signal and the reflected signal between the control circuit support member and the antenna support member without causing a large attenuation, thereby increasing the signal-to-noise ratio of the pulse wave signal. .
 この発明に係る装置の第5の態様は、前記第4の態様において、前記アンテナ支持部材および前記制御回路支持部材を共通の回路支持部材により一体的に構成する。そして、前記アンテナ素子を前記共通の回路支持部材の前記押圧部材から露出している部位に設け、前記送信回路部および受信回路部を前記共通の回路支持部材の前記押圧部材と接触する部位に設けるように構成したものである。 According to a fifth aspect of the apparatus of the present invention, in the fourth aspect, the antenna support member and the control circuit support member are integrally configured by a common circuit support member. The antenna element is provided in a portion of the common circuit support member exposed from the pressing member, and the transmission circuit portion and the reception circuit portion are provided in a portion of the common circuit support member in contact with the pressing member. It is comprised as follows.
 この発明の第5の態様によれば、前記アンテナ支持部材および前記制御回路支持部材が共通の回路支持部材により一体的に構成される。このため、装置の生産コストを低減することができる。 According to the fifth aspect of the present invention, the antenna support member and the control circuit support member are integrally configured by a common circuit support member. For this reason, the production cost of the apparatus can be reduced.
 この発明に係る装置の第6の態様は、前記第5の態様において、前記共通の回路支持部材をフレキシブル支持部材により構成するようにしたものである。 A sixth aspect of the device according to the present invention is the apparatus according to the fifth aspect, wherein the common circuit support member is constituted by a flexible support member.
 この発明の第6の態様によれば、バンド部材に例えば曲げや捻り等の外力が加わった場合でも、アンテナ支持部材および制御回路支持部材にひび割れや折損等が発生し難くなり、これにより装置の信頼性を高めることができる。また、バンド部材の厚さ方向の寸法を小さくすることができ、また装置の軽量化も期待できる。 According to the sixth aspect of the present invention, even when an external force such as bending or twisting is applied to the band member, the antenna support member and the control circuit support member are less likely to be cracked or broken. Reliability can be increased. Moreover, the dimension of the thickness direction of a band member can be made small, and the weight reduction of an apparatus can also be anticipated.
 この発明に係る生体情報測定装置の第7の態様は、前記第1乃至第6の態様のいずれかにおいて、前記バンド部材と前記アンテナ支持部材との間に、誘電体材料からなるスペーサ部材を介在配置するようにしたものである。 According to a seventh aspect of the biological information measuring apparatus of the present invention, in any one of the first to sixth aspects, a spacer member made of a dielectric material is interposed between the band member and the antenna support member. They are arranged.
 この発明の第7の態様によれば、アンテナ支持部材が安定に保持されることになり、これにより装置の信頼性をより高めることができる。加えて、アンテナ支持部材と被検者の被測定部位との間に誘電体材料が介在配置されることにより、アンテナ素子と被測定部位との間の空間をなくして、被測定部位表面における電波の反射や電波の減衰、外来の混入を低減することが可能となり、これにより脈波の測定品質をさらに高めることが可能となる。 According to the seventh aspect of the present invention, the antenna support member is stably held, and thereby the reliability of the apparatus can be further improved. In addition, since a dielectric material is interposed between the antenna support member and the measurement site of the subject, the space between the antenna element and the measurement site is eliminated and radio waves on the surface of the measurement site are obtained. Reflection, attenuation of radio waves, and external contamination can be reduced, thereby further improving pulse wave measurement quality.
 すなわちこの発明の各態様によれば、装置の信頼性の向上を図ると共に被検者に与える不快感の軽減を図った生体情報測定装置することができる。 That is, according to each aspect of the present invention, it is possible to provide a biological information measuring apparatus that improves the reliability of the apparatus and reduces the discomfort given to the subject.
図1は、この発明の一実施形態に係る生体情報測定装置の外観を示す斜視図である。FIG. 1 is a perspective view showing an appearance of a biological information measuring apparatus according to an embodiment of the present invention. 図2は、図1に示した生体情報測定装置の要部を拡大して示す斜視図である。FIG. 2 is an enlarged perspective view showing a main part of the biological information measuring apparatus shown in FIG. 図3は、図2に示した装置の要部のC-C矢視断面を示す図である。3 is a view showing a cross section taken along the line CC of the main part of the apparatus shown in FIG. 図4は、図1に示した生体情報測定装置をユーザの左手首に装着した状態の一例を示す、図3のF-F矢視断面図である。4 is a cross-sectional view taken along the line FF in FIG. 3, showing an example of a state in which the biological information measuring device shown in FIG. 1 is worn on the user's left wrist. 図5は、図1に示した生体情報測定装置をユーザの左手首に装着したときの左手首の皮膚面に対する装置の接触状態を示す断面図である。FIG. 5 is a cross-sectional view showing a contact state of the device with the skin surface of the left wrist when the biological information measuring device shown in FIG. 1 is worn on the left wrist of the user. 図6は、図1に示した生体情報測定装置をユーザの左手首に装着したときの手首に対するアンテナ基板および押圧カフの配置位置を示す平面図である。FIG. 6 is a plan view showing an arrangement position of the antenna substrate and the press cuff with respect to the wrist when the biological information measuring device shown in FIG. 1 is attached to the left wrist of the user. 図7は、図1に示した生体情報測定装置の制御系の全体構成を示すブロック図である。FIG. 7 is a block diagram showing the overall configuration of the control system of the biological information measuring apparatus shown in FIG. 図8は、図7に示した制御系のうち脈波センサの構成を示すブロック図である。FIG. 8 is a block diagram showing a configuration of a pulse wave sensor in the control system shown in FIG. 図9は、図7に示した制御系のうちオシロメトリック法による血圧測定系の構成を示すブロック図である。FIG. 9 is a block diagram showing a configuration of a blood pressure measurement system based on the oscillometric method in the control system shown in FIG. 図10は、図1に示した生体情報測定装置の制御系による制御手順と制御内容の一例を示すフローチャートである。FIG. 10 is a flowchart showing an example of control procedures and control contents by the control system of the biological information measuring apparatus shown in FIG. 図11は、脈波の測定動作を説明するための図で、(A)は左手首の長手方向に沿った断面を模式的に示す図、(B)は第1および第2の脈波センサにより検出される脈波の波形の一例を示す図である。11A and 11B are diagrams for explaining a pulse wave measurement operation, where FIG. 11A is a diagram schematically showing a cross section along the longitudinal direction of the left wrist, and FIG. 11B is a diagram illustrating first and second pulse wave sensors. It is a figure which shows an example of the waveform of the pulse wave detected by this. 図12は、この発明の変形例(1)に係る生体情報測定装置を左手首に装着した状態における要部の拡大横断面図である。FIG. 12 is an enlarged cross-sectional view of a main part in a state where the biological information measuring device according to the modification (1) of the present invention is attached to the left wrist. 図13は、この発明の変形例(2)に係る生体情報測定装置を左手首に装着した状態における要部の拡大横断面図である。FIG. 13 is an enlarged cross-sectional view of a main part in a state where the biological information measuring device according to the modification (2) of the present invention is attached to the left wrist. 図14は、この発明の変形例(3)に係る生体情報測定装置を左手首に装着した状態における要部の拡大横断面図である。FIG. 14 is an enlarged cross-sectional view of the main part in a state where the biological information measuring device according to the modification (3) of the present invention is attached to the left wrist.
以下、図面を参照してこの発明に係わる実施形態を説明する。 Embodiments according to the present invention will be described below with reference to the drawings.
 [適用例]
 先ず、この発明の一実施形態に係る生体情報測定装置の適用例の1つについて説明する。
[Application example]
First, one application example of the biological information measuring apparatus according to an embodiment of the present invention will be described.
 この発明の一実施形態に係る生体情報測定装置は、脈波伝播時間(Pulse Transit Time;PTT)に基づいて血圧を推定する第1の血圧測定部と、オシロメトリック法により血圧を測定する第2の血圧測定部を備えたものである。 A biological information measuring apparatus according to an embodiment of the present invention includes a first blood pressure measuring unit that estimates blood pressure based on a pulse wave transit time (Pulse2Transit Time; PTT), and a second blood pressure that is measured by an oscillometric method. The blood pressure measuring unit is provided.
 PTTを使用する第1の血圧測定部は、例えば、手首または上腕等の動脈が存在する被測定部位の異なる2箇所において、上記動脈に対し電波を送波してその反射波を受波することにより上記動脈の動きを表す脈波を測定し、その測定結果に基づいてPTTを算出する。そして、このPTTの算出値と、予め定められたPTTと血圧値との関係式とを用いて、血圧値を推定する。 The first blood pressure measurement unit using the PTT, for example, transmits radio waves to the artery and receives the reflected waves at two different sites to be measured where an artery such as the wrist or the upper arm exists. To measure the pulse wave representing the motion of the artery, and calculate the PTT based on the measurement result. Then, the blood pressure value is estimated using the calculated value of PTT and a predetermined relational expression between the PTT and the blood pressure value.
 オシロメトリック法を使用する第2の血圧測定部は、押圧カフを手首または上腕等の動脈が存在する被測定部位に巻き付けた状態で、押圧カフを加圧しその後減圧する過程で脈波の圧力を測定することにより血圧を測定する。 The second blood pressure measurement unit that uses the oscillometric method, in a state where the pressure cuff is wound around the measurement site where an artery such as the wrist or the upper arm exists, pressurizes the pressure cuff and then reduces the pressure of the pulse wave. Measure blood pressure by measuring.
 上記PTTに基づく血圧測定と、オシロメトリック法による血圧測定を、1個の装置で実現するには、被測定部位に対し電波を送受波するアンテナ素子を有するアンテナ支持部材としてのアンテナ基板と、押圧カフの両方を設置することが望ましい。このアンテナ基板および押圧カフの設置構造としては、アンテナ基板を押圧カフの押圧面上、つまり被測定部位と接触する面に設置する構造が一般的である。ところが、このような構造では、押圧カフの加圧および減圧が繰り返されるうちに押圧カフに対するアンテナ基板の設置状態が劣化して脱落や変形等を生じるおそれがあり、装置の信頼性の低下が懸念される。また、押圧カフが加圧されるごとに、その圧力によりアンテナ基板が被検者の皮膚に押し付けられるため、被検者が皮膚に痛み等の不快感を覚えることが懸念される。 In order to realize the blood pressure measurement based on the PTT and the blood pressure measurement by the oscillometric method with a single device, an antenna substrate as an antenna support member having an antenna element for transmitting and receiving radio waves to and from the measurement site, and pressing It is desirable to install both cuffs. The antenna substrate and the pressing cuff are generally installed on the pressing surface of the pressing cuff, that is, on the surface in contact with the part to be measured. However, in such a structure, there is a concern that the installation state of the antenna substrate with respect to the pressure cuff may deteriorate and dropout, deformation, etc. occur while the pressure cuff is repeatedly pressed and depressurized. Is done. Further, each time the pressure cuff is pressed, the antenna substrate is pressed against the skin of the subject by the pressure, and there is a concern that the subject may feel discomfort such as pain on the skin.
 そこで、この発明の一実施形態では、例えば図5に示すように、装置を被検者(ユーザ)の左手首等の被測定部位に装着するためのバンド(例えば樹脂部材からなる帯状体)23に、押圧カフ21を設置する部位と、アンテナ基板41,42を設置する部位を別々に設け、これらの部位にそれぞれ押圧カフ21およびアンテナ基板41,42を設置するように構成している。なお、412,422はアンテナ基板41,42に設けられるアンテナ素子であり、また43は上記アンテナ基板41,42に接続される制御回路支持部材としての制御回路基板を示している。 Therefore, in one embodiment of the present invention, for example, as shown in FIG. 5, a band (for example, a belt-shaped body made of a resin member) 23 for mounting the apparatus on a measurement site such as a left wrist of a subject (user). In addition, a part for installing the press cuff 21 and a part for installing the antenna boards 41 and 42 are provided separately, and the press cuff 21 and the antenna boards 41 and 42 are installed in these parts, respectively. Reference numerals 412 and 422 denote antenna elements provided on the antenna boards 41 and 42, and reference numeral 43 denotes a control circuit board as a control circuit support member connected to the antenna boards 41 and.
 このような構成であるから、以下のような作用効果が奏せられる。すなわち、アンテナ基板41,42は、押圧カフ21の押圧面ではなく、バンド20の帯状体23に設置される。このため、押圧カフ21の加圧および減圧が繰り返されても、アンテナ基板41,42に変形や脱落等の設置状態の劣化が生じる心配はなく、これにより装置の信頼性を高く保持することができる。 Because of such a configuration, the following effects can be achieved. That is, the antenna substrates 41 and 42 are installed not on the pressing surface of the pressing cuff 21 but on the band-like body 23 of the band 20. For this reason, even if pressurization and decompression of the press cuff 21 are repeated, there is no fear that the antenna substrates 41 and 42 are deteriorated in the installation state such as deformation or dropout, and thereby the reliability of the apparatus can be kept high. it can.
 また、装置を被検者の被測定部位90に装着した状態で、アンテナ基板41,42は被測定部位90の皮膚に接触せず、また押圧カフ21が加圧されたときにもその圧力によりアンテナ基板41,42は皮膚に押し付けられることはない。従って、被検者が皮膚に痛み等の不快感を覚える心配はなくなり、これにより被検者の使用中のストレスを軽減することができる。 In addition, the antenna substrates 41 and 42 do not contact the skin of the measurement site 90 in a state where the apparatus is mounted on the measurement site 90 of the subject, and the pressure cuff 21 is also pressed by the pressure. The antenna substrates 41 and 42 are not pressed against the skin. Therefore, there is no worry that the subject feels discomfort such as pain on the skin, thereby reducing the stress during use of the subject.
 [一実施形態]
 (構成例)
 (1)装置の構造
 図1はこの発明の一実施形態に係る生体測定装置の全体構造を例示する斜視図、図2は図1に示した生体情報測定装置の要部を拡大して示した図、図3は図2のC-C矢視断面図である。
[One Embodiment]
(Configuration example)
(1) Device Structure FIG. 1 is a perspective view illustrating the overall structure of a biometric apparatus according to an embodiment of the present invention, and FIG. 2 is an enlarged view of the main part of the biometric information measuring apparatus shown in FIG. FIG. 3 and FIG. 3 are sectional views taken along the line CC in FIG.
 一実施形態に係る生体情報測定装置は、被検者の左手首に装着して使用される手首式の血圧計1である。この血圧計1は、ユーザの左手首にその外周を取り巻くように装着されるバンド20と、このバンド20に一体的に取り付けられた本体10とを備えている。 The biological information measuring apparatus according to an embodiment is a wrist-type sphygmomanometer 1 that is used by being worn on the left wrist of a subject. The sphygmomanometer 1 includes a band 20 that is attached to the user's left wrist so as to surround the outer periphery thereof, and a main body 10 that is integrally attached to the band 20.
 バンド20は、左手首をその外周方向に沿って取り巻くように細長い帯状の形状を有し、左手首に接する内周面20aと、この内周面20aと反対側の外周面20bとを有している。バンド20の幅方向Yの寸法(幅寸法)は、この例では約35~40mmに設定されているが、他の値に設定してもよい。 The band 20 has an elongated band shape so as to surround the left wrist along the outer peripheral direction thereof, and has an inner peripheral surface 20a in contact with the left wrist and an outer peripheral surface 20b opposite to the inner peripheral surface 20a. ing. The dimension in the width direction Y of the band 20 (width dimension) is set to about 35 to 40 mm in this example, but may be set to other values.
 本体10は、バンド20のうち、外周方向に関して一方の端部20eに、この例では一体成形により一体的に設けられる。なお、バンド20と本体10とを別々に形成し、バンド20に対して本体10を係合部材(例えばヒンジなど)を介して一体的に取り付けてもよい。この例では、本体10が配置された部位は、装着状態で左手首の背側面(手の甲側の面)に対応することが想定される。 The main body 10 is integrally provided at one end 20e in the outer peripheral direction of the band 20 by integral molding in this example. The band 20 and the main body 10 may be formed separately, and the main body 10 may be integrally attached to the band 20 via an engagement member (for example, a hinge). In this example, it is assumed that the part where the main body 10 is disposed corresponds to the back side surface (the surface on the back side of the hand) of the left wrist in the mounted state.
 本体10は、バンド20の外周面20bに対して垂直な方向に厚さを有する立体的形状を有している。この本体10は、ユーザの日常活動の邪魔にならないように、小型で、薄厚に形成されている。この例では、本体10は、バンド20から外向きに突起した四角錐台状の輪郭を有している。 The main body 10 has a three-dimensional shape having a thickness in a direction perpendicular to the outer peripheral surface 20 b of the band 20. The main body 10 is small and thin so as not to disturb the daily activities of the user. In this example, the main body 10 has a quadrangular frustum-shaped outline projecting outward from the band 20.
 本体10の頂面(被測定部位から最も遠い側の面)10aには、表示画面をなす表示器50が設けられている。また、本体10の側面(図1における左手前側の側面)10fに沿って、ユーザからの指示を入力するための操作部52が設けられている。 On the top surface 10a of the main body 10 (the surface farthest from the part to be measured), a display 50 that forms a display screen is provided. Further, an operation unit 52 for inputting an instruction from the user is provided along the side surface 10f of the main body 10 (the side surface on the left front side in FIG. 1).
 本体10の底面(被測定部位に最も近い側の面)10bとバンド20の端部20fとは、三つ折れバックル24によって接続されている。このバックル24は、外周側に配置された第1の板状部材25と、内周側に配置された第2の板状部材26とを含んでいる。第1の板状部材25の一方の端部25eは、幅方向Yに沿って延びる連結棒27を介して本体10に対して回動自在に取り付けられている。第1の板状部材25の他方の端部25fは、幅方向Yに沿って延びる連結棒28を介して第2の板状部材26の一方の端部26eに対して回動自在に取り付けられている。第2の板状部材26の他方の端部26fは、固定部29によってバンド20の端部20f近傍に固定されている。 The bottom surface 10 b of the main body 10 (the surface closest to the part to be measured) and the end 20 f of the band 20 are connected by a three-fold buckle 24. The buckle 24 includes a first plate-like member 25 arranged on the outer peripheral side and a second plate-like member 26 arranged on the inner peripheral side. One end 25 e of the first plate-like member 25 is attached to the main body 10 via a connecting rod 27 extending along the width direction Y so as to be rotatable. The other end portion 25f of the first plate-like member 25 is rotatably attached to one end portion 26e of the second plate-like member 26 via a connecting rod 28 extending along the width direction Y. ing. The other end portion 26 f of the second plate-like member 26 is fixed in the vicinity of the end portion 20 f of the band 20 by a fixing portion 29.
 なお、バンド20の周方向(X方向)に関して固定部29の取り付け位置は、ユーザの左手首の外周囲の長さに合わせて予め可変して設定されている。これにより、血圧計1(バンド20)は、全体として略環状に構成されるとともに、本体10の底面10bとバンド20の端部20fとが、バックル24によって矢印B方向に開閉可能になっている。 It should be noted that the attachment position of the fixing portion 29 in the circumferential direction (X direction) of the band 20 is variably set in advance according to the length of the outer periphery of the user's left wrist. Thereby, the sphygmomanometer 1 (band 20) is configured in a substantially annular shape as a whole, and the bottom surface 10b of the main body 10 and the end portion 20f of the band 20 can be opened and closed in the direction of arrow B by the buckle 24. .
 この血圧計1を左手首に装着する際には、バックル24を開いてバンド20の環の径を大きくした状態で、図1の矢印Aで示す向きに、被検者であるユーザがバンド20に左手を通す。そして、ユーザは、左手首の周方向のバンド20の位置を調節して、左手首を通っている橈骨動脈上に、バンド20の内周面に設置されるアンテナ基板(後に詳しく説明する)41,42が対向するように設定する。これにより、アンテナ基板41,42にそれぞれ設けられる送受信アンテナ対が、左手首の掌側面のうち橈骨動脈に対応する部分に当接する状態になる。この状態で、ユーザはバックル24を閉じて固定する。このようにして、ユーザは血圧計1を左手首に装着する。 When the sphygmomanometer 1 is attached to the left wrist, the user who is the subject in the direction indicated by the arrow A in FIG. Pass your left hand through. Then, the user adjusts the position of the band 20 in the circumferential direction of the left wrist, and an antenna substrate (described in detail later) 41 installed on the inner peripheral surface of the band 20 on the radial artery passing through the left wrist. , 42 are set to face each other. As a result, the pair of transmitting and receiving antennas provided on the antenna substrates 41 and 42 is in contact with the portion corresponding to the radial artery on the palm side surface of the left wrist. In this state, the user closes and fixes the buckle 24. In this way, the user wears the sphygmomanometer 1 on the left wrist.
 図4は、ユーザの左手首90に上記血圧計1を装着した状態の一例を示すもので、図3のF-F矢視断面図である。また、図5は図4の要部を拡大して示した縦断面図である。 FIG. 4 shows an example of a state in which the sphygmomanometer 1 is attached to the user's left wrist 90, and is a cross-sectional view taken along the line FF in FIG. FIG. 5 is an enlarged longitudinal sectional view showing the main part of FIG.
 バンド20は、バンドの基体を構成する帯状体23を備える。帯状体23は、樹脂材料(この例ではシリコーン樹脂)からなり、この例では、図4に示す厚さ方向Zに関して可撓性を有し、かつ周方向Xに関して殆ど伸縮しないように実質的に非伸縮性を有している。 The band 20 includes a band-like body 23 that constitutes the base of the band. The band-like body 23 is made of a resin material (silicone resin in this example). In this example, the belt-like body 23 has flexibility in the thickness direction Z shown in FIG. Non-stretchable.
 帯状体23の内周面には、その幅方向(Y方向)の中央部でおいて、周方向(X方向)に長い帯状の形状を有する第1の設置部位が設けられ、この帯状の第1の設置部位に押圧部材としての押圧カフ21が設置される。 The inner peripheral surface of the belt-like body 23 is provided with a first installation portion having a belt-like shape that is long in the circumferential direction (X direction) at the center in the width direction (Y direction). A pressing cuff 21 as a pressing member is installed at one installation site.
 押圧カフ21は、この例では、伸縮可能な2枚のポリウレタンシートを厚さ方向Zに対向させ、それらの周縁部を溶着することにより作製された流体袋からなっている。また押圧カフ21は、この例では、例えば図1に示すように、その幅方向の寸法が帯状体23の幅寸法である35~40mmより小さい25mmに設定されている。 In this example, the press cuff 21 is made of a fluid bag made by facing two stretchable polyurethane sheets in the thickness direction Z and welding their peripheral portions. Further, in this example, as shown in FIG. 1, for example, the pressing cuff 21 is set to have a width direction of 25 mm which is smaller than the width of 35 to 40 mm which is the width of the band-like body 23.
 また、上記帯状体23の内周面の上記押圧カフ21の両側部から露出する部位には、図1および図2に示すように対をなすアンテナ基板41,42が設置される。またそれと共に、上記帯状体23の内周面の上記押圧カフ21により隠れる部位、つまり帯状体232と押圧カフ21との間に挟まれる位置には、図3に示すように制御回路基板43が設置される。 Further, a pair of antenna substrates 41 and 42 are installed on the inner peripheral surface of the belt-like body 23 exposed from both sides of the pressing cuff 21 as shown in FIGS. At the same time, a control circuit board 43 is provided at a portion hidden by the pressing cuff 21 on the inner peripheral surface of the band-like body 23, that is, at a position sandwiched between the band-like body 232 and the pressing cuff 21, as shown in FIG. Installed.
 上記各アンテナ基板41,42と制御回路基板43とは、短冊状をなす共通の1枚の誘電体基板を基体として構成される。すなわち、共通の誘電体基板の中央部位が制御回路基板43として、また両端部位がアンテナ基板41,42として作製される。誘電体基板は、例えばエポキシ樹脂からなり、厚さは1~2mm程度である。 Each of the antenna boards 41 and 42 and the control circuit board 43 are configured by using a common dielectric substrate having a strip shape as a base. That is, the central portion of the common dielectric substrate is manufactured as the control circuit substrate 43 and the both end portions are manufactured as the antenna substrates 41 and 42. The dielectric substrate is made of, for example, an epoxy resin and has a thickness of about 1 to 2 mm.
 上記誘電体基板のアンテナ基板41,42として使用される各部位には、それぞれ、送信アンテナ411および受信アンテナ412の対と、送信アンテナ421および受信アンテナ422の対が設けられている。これらの送受信アンテナ411~422は、いずれも上記アンテナ基板41,42上に導電パターンを印刷形成することにより設けられる。 A pair of the transmission antenna 411 and the reception antenna 412 and a pair of the transmission antenna 421 and the reception antenna 422 are provided in each part used as the antenna substrates 41 and 42 of the dielectric substrate. These transmission / reception antennas 411 to 422 are all provided by printing and forming a conductive pattern on the antenna substrates 41 and.
 送信アンテナ411,421および受信アンテナ412,422は、いずれも方形をなすパッチアンテナからなり、バンド20の周方向Xに一定の間隔を隔てて配置される。この例では、送信アンテナ411,421および受信アンテナ412,422は、いずれも縦横が3mmの正方形の形状を有している。また、この例では、送信アンテナ411と受信アンテナ412との間、および送信アンテナ421と受信アンテナ422との間の間隔は、その中心間の距離がバンド20の周方向Xに関して8mm~10mmの範囲内になるように設定されている。 Each of the transmission antennas 411 and 421 and the reception antennas 412 and 422 is a patch antenna having a rectangular shape, and is arranged in the circumferential direction X of the band 20 with a certain interval. In this example, each of the transmission antennas 411 and 421 and the reception antennas 412 and 422 has a square shape with a length and width of 3 mm. In this example, the distance between the transmission antenna 411 and the reception antenna 412 and the distance between the transmission antenna 421 and the reception antenna 422 are within the range of 8 mm to 10 mm in distance between the centers with respect to the circumferential direction X of the band 20. It is set to be inside.
 また、バンド20の幅方向Yに関して、送信アンテナ411および受信アンテナ412の対と、送信アンテナ421および受信アンテナ422の対との間の配置間隔は、この例では押圧カフ21の幅長である25mmより若干長い30mmに設定される。なお、上記送信アンテナ411および受信アンテナ412の対と、送信アンテナ421および受信アンテナ422の対との配置間隔は、血圧計1のサイズや押圧カフ21の幅長等に応じて、適宜最適な長さを選択すればよい。 Further, with respect to the width direction Y of the band 20, the arrangement interval between the pair of the transmission antenna 411 and the reception antenna 412 and the pair of the transmission antenna 421 and the reception antenna 422 is 25 mm which is the width length of the pressing cuff 21 in this example. A slightly longer 30 mm is set. Note that the arrangement interval between the pair of the transmission antenna 411 and the reception antenna 412 and the pair of the transmission antenna 421 and the reception antenna 422 depends on the size of the sphygmomanometer 1, the width of the pressure cuff 21, and the like. You just have to choose.
 一方、上記誘電体基板の制御回路基板43として使用される部位には、制御回路430が設けられる。この制御回路430は、2組の送信回路および受信回路を含む。制御回路430は、通常では集積回路により構成されるが、ディスクリート回路であってもよい。上記組の送信回路および受信回路は、誘電体基板上に形成された導電パターンを介して、上記2組の送信アンテナ411および受信アンテナ412と、送信アンテナ421および受信アンテナ422に接続される。 On the other hand, a control circuit 430 is provided in a portion used as the control circuit board 43 of the dielectric substrate. The control circuit 430 includes two sets of transmission circuits and reception circuits. The control circuit 430 is normally composed of an integrated circuit, but may be a discrete circuit. The transmission circuit and reception circuit of the set are connected to the transmission antenna 411 and the reception antenna 412, and the transmission antenna 421 and the reception antenna 422 through a conductive pattern formed on a dielectric substrate.
 以上のような構造であるから、血圧計1をユーザの左手首90に装着した状態では、アンテナ基板41,42の高さ寸法は1~2mm程度あるのに対し、押圧カフ21の加圧されていないときの厚さ寸法は3~5mmであるため、アンテナ基板41,42は、例えば図4および図5に示すように、左手首90の皮膚面に対し非接触の状態を維持する。 Since the structure is as described above, when the sphygmomanometer 1 is attached to the user's left wrist 90, the height of the antenna boards 41 and 42 is about 1 to 2 mm, whereas the pressure cuff 21 is pressurized. Since the thickness of the antenna substrate 41 is not 3 to 5 mm, the antenna substrates 41 and 42 maintain a non-contact state with respect to the skin surface of the left wrist 90 as shown in FIGS. 4 and 5, for example.
 また、上記帯状体23の周方向Xにおける上記アンテナ基板41,42の位置は、血圧計1を左手首90に正規の状態に装着した状態で、橈骨動脈91の長手方向の異なる2つの位置にそれぞれ対向するように設定される。 The positions of the antenna boards 41 and 42 in the circumferential direction X of the band-like body 23 are two different positions in the longitudinal direction of the radial artery 91 in a state where the sphygmomanometer 1 is attached to the left wrist 90 in a normal state. They are set to face each other.
 図6は、上記本体10をユーザの左手首90に装着したときの、橈骨動脈91に対する、送信アンテナ411および受信アンテナ412の対と、送信アンテナ421および受信アンテナ422の対の各配置位置を、押圧カフ21の配置位置と共に例示した平面図である。 FIG. 6 shows the arrangement positions of the pair of the transmission antenna 411 and the reception antenna 412 and the pair of the transmission antenna 421 and the reception antenna 422 with respect to the radial artery 91 when the main body 10 is attached to the left wrist 90 of the user. FIG. 6 is a plan view exemplified with the arrangement position of a press cuff 21.
 図6に示すように、送受信アンテナ対411,412と、送受信アンテナ対421,422は、橈骨動脈91の長手方向Yに沿って所定距離(この例では30mm)離間して配置される。また、上記送受信アンテナ対411,412、および送受信アンテナ対421,422は、いずれも送信アンテナ411と受信アンテナ412との間、および送信アンテナ421と受信アンテナ422との間に、橈骨動脈91が位置するように配置されることが望ましい。 As shown in FIG. 6, the transmission / reception antenna pair 411, 412 and the transmission / reception antenna pair 421, 422 are arranged at a predetermined distance (30 mm in this example) along the longitudinal direction Y of the radial artery 91. The transmission / reception antenna pair 411, 412 and the transmission / reception antenna pair 421, 422 are both positioned between the transmission antenna 411 and the reception antenna 412, and between the transmission antenna 421 and the reception antenna 422. It is desirable to arrange so that.
 (2)血圧計1の回路系の構成例
 (2-1)全体の回路構成
 図7は、血圧計1の制御系の全体的な構成を例示したブロックである。 
 血圧計1の本体10には、前述した表示器50および操作部52に加えて、中央処理ユニット(Central Processing Unit:CPU)100等の制御部として動作するハードウェアプロセッサと、記憶部としてのメモリ51と、通信部59と、圧力センサ31と、ポンプ32と、弁33と、圧力センサ31からの出力を周波数に変換する発振回路310と、ポンプ32を駆動するポンプ駆動回路320が設けられている。なお、53は電源電圧を出力する電池である。
(2) Configuration Example of Circuit System of Blood Pressure Monitor 1 (2-1) Overall Circuit Configuration FIG. 7 is a block illustrating the overall configuration of the control system of the blood pressure monitor 1.
The main body 10 of the sphygmomanometer 1 includes a hardware processor that operates as a control unit such as a central processing unit (CPU) 100 in addition to the display unit 50 and the operation unit 52 described above, and a memory as a storage unit 51, a communication unit 59, a pressure sensor 31, a pump 32, a valve 33, an oscillation circuit 310 that converts the output from the pressure sensor 31 into a frequency, and a pump drive circuit 320 that drives the pump 32 are provided. Yes. Reference numeral 53 denotes a battery that outputs a power supply voltage.
 上記CPU100には、前述した制御回路基板43が図示しないインタフェース回路を介して接続されている。 The control circuit board 43 described above is connected to the CPU 100 via an interface circuit (not shown).
 表示器50は、この例では有機EL(Electro Luminescence)ディスプレイからなり、CPU100から出力される表示データに従い、血圧測定結果などの血圧測定に関する情報、その他の情報を表示する。なお、表示器50は、有機ELディスプレイに限られるものではなく、例えば液晶ディスプレイ(Liquid Cristal Display:LCD)等の、他のタイプの表示器であってもよい。 In this example, the display 50 is composed of an organic EL (Electro Luminescence) display, and displays information related to blood pressure measurement such as blood pressure measurement results and other information according to display data output from the CPU 100. The display device 50 is not limited to the organic EL display, and may be another type of display device such as a liquid crystal display (LCD).
 操作部52は、この例ではプッシュ式スイッチからなり、ユーザによる血圧測定開始又は停止の指示に応じた操作信号をCPU100に入力する。なお、操作部52は、プッシュ式スイッチに限られるものではなく、例えば感圧式(抵抗式)または近接式(静電容量式)のタッチパネル式スイッチなどであってもよい。また、図示しないマイクロフォンを備えて、ユーザの音声によって血圧測定開始の指示を入力するようにしてもよい。さらに、操作部52は必須ではなく、後述するCPU100が例えばタイマから出力される起動信号等に応じて、自動的に血圧測定開始指示又は停止指示を発生するように構成することも可能である。 The operation unit 52 includes a push switch in this example, and inputs an operation signal to the CPU 100 according to an instruction to start or stop blood pressure measurement by the user. The operation unit 52 is not limited to a push-type switch, and may be, for example, a pressure-sensitive (resistance) or proximity (capacitance) touch panel switch. In addition, a microphone (not shown) may be provided, and a blood pressure measurement start instruction may be input by a user's voice. Furthermore, the operation unit 52 is not essential, and the CPU 100 described later can be configured to automatically generate a blood pressure measurement start instruction or a stop instruction in accordance with, for example, a start signal output from a timer.
 メモリ51は、記憶媒体としてHDD(Hard Disk Drive)やSSD(Solid State Drive)、ROM、RAM等を使用したもので、血圧計1を制御するためのプログラム、血圧計1を制御するために用いられる制御データ、血圧計1の各種機能を設定するための設定データ、圧力や脈波の検出信号、血圧の測定結果を表すデータなどを記憶する。また、メモリ51は、プログラムが実行されるときのワークメモリなどとしても用いられる。 The memory 51 uses an HDD (Hard Disk Drive), SSD (Solid State Drive), ROM, RAM, or the like as a storage medium, and is used to control the blood pressure monitor 1 and a program for controlling the blood pressure monitor 1. Control data, setting data for setting various functions of the sphygmomanometer 1, pressure and pulse wave detection signals, data representing blood pressure measurement results, and the like are stored. The memory 51 is also used as a work memory when the program is executed.
 CPU100は、メモリ51に記憶されたプログラムに従って、制御部として各種機能を実行する。 
 例えば、PTTにより血圧を推定する制御を実行する場合、CPU100は、制御回路基板43の送信回路44,46に対し電波(測定信号)の送信開始指示を与える。そして、上記測定信号の橈骨動脈91による反射波に対応する受信信号を受信回路45,47から取り込み、当該受信信号から脈波信号を検出してこの脈波信号をもとにPTTを算出する。そして、算出されたPTTの値と、メモリ51に記憶されたPTTと血圧との関係式とに基づいて、血圧値を推定し、推定された血圧値が所定の閾値により規定される範囲を超えたか否かを判定する。
The CPU 100 executes various functions as a control unit in accordance with a program stored in the memory 51.
For example, when executing control for estimating blood pressure using PTT, the CPU 100 gives a transmission start instruction for radio waves (measurement signals) to the transmission circuits 44 and 46 of the control circuit board 43. Then, the reception signal corresponding to the reflected wave of the measurement signal from the radial artery 91 is taken from the reception circuits 45 and 47, the pulse wave signal is detected from the reception signal, and the PTT is calculated based on the pulse wave signal. The blood pressure value is estimated based on the calculated PTT value and the relational expression between the PTT and the blood pressure stored in the memory 51, and the estimated blood pressure value exceeds the range defined by the predetermined threshold value. It is determined whether or not.
 また、例えばオシロメトリック法による血圧測定を実行する場合、CPU100は、上記PTTにより得られた血圧推定値が閾値により規定される範囲を超えたと判定された場合に、或いは操作部52における血圧測定開始指示の入力に応じて、圧力センサ31から出力される圧力検出信号に基づいて、ポンプ32(および弁33)を駆動する制御を行う。また、CPU100は、この例では圧力センサ31から出力された圧力検出信号に基づいて、血圧値を算出する制御を行う。 For example, when performing blood pressure measurement by the oscillometric method, the CPU 100 starts blood pressure measurement in the operation unit 52 when it is determined that the estimated blood pressure value obtained by the PTT exceeds the range defined by the threshold value. In response to the input of the instruction, control for driving the pump 32 (and the valve 33) is performed based on the pressure detection signal output from the pressure sensor 31. In this example, the CPU 100 performs control to calculate the blood pressure value based on the pressure detection signal output from the pressure sensor 31.
 通信部59は、CPU100によって算出された血圧の測定結果を含む情報を、ネットワーク900を介して外部の端末装置に送信したり、外部の端末装置からの情報を、ネットワーク900を介して受信してCPU100に受け渡したりする。このネットワーク900を介した通信は、無線、有線のいずれでも良い。この実施形態において、ネットワーク900は、インターネットであるが、これに限定されず、病院内LAN(Local Area Network)のような他の種類のネットワークであってもよいし、USBケーブルなどを用いた1対1の通信であってもよい。この通信部59は、マイクロUSBコネクタを含んでいてもよい。 The communication unit 59 transmits information including the blood pressure measurement result calculated by the CPU 100 to an external terminal device via the network 900, or receives information from the external terminal device via the network 900. The data is transferred to the CPU 100. Communication via the network 900 may be either wireless or wired. In this embodiment, the network 900 is the Internet, but is not limited thereto, and may be another type of network such as a hospital LAN (Local Area Network), or a USB cable 1 or the like. One-to-one communication may be used. The communication unit 59 may include a micro USB connector.
 ポンプ32および弁33はエア配管39を介して、また、圧力センサ31はエア配管38を介して、それぞれ押圧カフ21に接続されている。なお、エア配管39,38は、共通の1本の配管であってもよい。圧力センサ31は、エア配管38を介して、押圧カフ21内の圧力を検出する。ポンプ32は、この例では圧電ポンプからなり、押圧カフ21内の圧力(カフ圧)を加圧するために、エア配管39を通して押圧カフ21に加圧用の流体としての空気を供給する。弁33は、ポンプ32に搭載され、ポンプ32のオン/オフに伴って開閉が制御される構成になっている。 The pump 32 and the valve 33 are connected to the press cuff 21 via an air pipe 39, and the pressure sensor 31 is connected via an air pipe 38, respectively. The air pipes 39 and 38 may be a single common pipe. The pressure sensor 31 detects the pressure in the pressing cuff 21 via the air pipe 38. The pump 32 is a piezoelectric pump in this example, and supplies air as a pressurizing fluid to the press cuff 21 through the air pipe 39 in order to pressurize the pressure (cuff pressure) in the press cuff 21. The valve 33 is mounted on the pump 32 and is configured to be opened and closed as the pump 32 is turned on / off.
 すなわち、弁33は、ポンプ32がオンされると閉じて、押圧カフ21内に空気を封入する一方、ポンプ32がオフされると開いて、押圧カフ21の空気をエア配管39を通して大気中へ排出させる。なお、弁33は、逆止弁の機能を有し、排出されるエアが逆流することはない。ポンプ駆動回路320は、ポンプ32をCPU100から与えられる制御信号に基づいて駆動する。 That is, the valve 33 closes when the pump 32 is turned on and encloses the air in the pressing cuff 21, while it opens when the pump 32 is turned off, and the air in the pressing cuff 21 enters the atmosphere through the air pipe 39. Let it drain. The valve 33 has a check valve function, and the discharged air does not flow backward. The pump drive circuit 320 drives the pump 32 based on a control signal given from the CPU 100.
 圧力センサ31は、この例ではピエゾ抵抗式圧力センサであり、エア配管38を通してバンド20(押圧カフ21)の圧力、この例では大気圧を基準(ゼロ)とした圧力を検出して時系列の信号として出力する。発振回路310は、圧力センサ31からのピエゾ抵抗効果による電気抵抗の変化に基づく電気信号値に基づき発振して、圧力センサ31の電気信号値に応じた周波数を有する周波数信号をCPU100に出力する。この例では、圧力センサ31の出力は、押圧カフ21の圧力を制御するため、および、オシロメトリック法によって血圧値(収縮期血圧(Systolic Blood Pressure;SBP)と拡張期血圧(Diastolic Blood Pressure;DBP)とを含む。)を算出するために用いられる。 The pressure sensor 31 is a piezoresistive pressure sensor in this example, and detects the pressure of the band 20 (pressing cuff 21) through the air pipe 38, in this example, the pressure based on the atmospheric pressure (zero) as a time series. Output as a signal. The oscillation circuit 310 oscillates based on an electric signal value based on a change in electric resistance due to the piezoresistance effect from the pressure sensor 31, and outputs a frequency signal having a frequency corresponding to the electric signal value of the pressure sensor 31 to the CPU 100. In this example, the output of the pressure sensor 31 controls blood pressure values (systolic blood pressure (SBP) and diastolic blood pressure (Diastolic blood pressure) and DBP) in order to control the pressure of the pressure cuff 21 and by an oscillometric method. Is used to calculate.
 電池53は、本体10に搭載された要素、この例では、CPU100、圧力センサ31、ポンプ32、弁33、表示器50、メモリ51、通信部59、発振回路310、ポンプ駆動回路320の各要素へ電力を供給する。また、電池53は、給電線71を通して、制御回路基板43の送信回路44,46および受信回路45,47へも電力を供給する。この給電線71は、信号用の配線72とともに、バンド20の帯状体23と押圧カフ21との間に挟まれた状態で、バンド20の周方向Xに沿って本体10と送受信部40との間に延在して設けられている。 The battery 53 is an element mounted on the main body 10, and in this example, each element of the CPU 100, the pressure sensor 31, the pump 32, the valve 33, the display 50, the memory 51, the communication unit 59, the oscillation circuit 310, and the pump drive circuit 320. To supply power. The battery 53 also supplies power to the transmission circuits 44 and 46 and the reception circuits 45 and 47 of the control circuit board 43 through the feeder line 71. The power supply line 71, together with the signal wiring 72, is sandwiched between the band-like body 23 of the band 20 and the pressing cuff 21, and is connected between the main body 10 and the transmission / reception unit 40 along the circumferential direction X of the band 20. It extends between them.
 (2-2)脈波伝播時間(PTT)に基づく血圧推定部の構成
 図8は、第1の脈波センサ40-1および第2の脈波センサ40-2の構成を例示するブロック図である。
(2-2) Configuration of Blood Pressure Estimator Based on Pulse Wave Propagation Time (PTT) FIG. 8 is a block diagram illustrating the configuration of the first pulse wave sensor 40-1 and the second pulse wave sensor 40-2. is there.
 制御回路基板43には、前述したように2組の送受信回路、つまり送信回路44および受信回路45の対と、送信回路46および受信回路47の対が設けられている。送信回路44および受信回路45は、それぞれ共通回路基板上に形成された導電パターンを介して、アンテナ基板41に設けられた送信アンテナ411および受信アンテナ412に接続されている。送信回路46および受信回路47は、それぞれ共通回路基板上に形成された導電パターンを介して、アンテナ基板42に設けられた送信アンテナ421および受信アンテナ422に接続されている。 As described above, the control circuit board 43 is provided with two sets of transmission / reception circuits, that is, a pair of transmission circuit 44 and reception circuit 45 and a pair of transmission circuit 46 and reception circuit 47. The transmission circuit 44 and the reception circuit 45 are connected to a transmission antenna 411 and a reception antenna 412 provided on the antenna substrate 41 through conductive patterns formed on the common circuit substrate, respectively. The transmission circuit 46 and the reception circuit 47 are connected to a transmission antenna 421 and a reception antenna 422 provided on the antenna substrate 42 through conductive patterns formed on the common circuit substrate, respectively.
 第1の脈波センサ40-1は、上記アンテナ基板41の送信アンテナ411および受信アンテナ412と、これらのアンテナ411,412にそれぞれ接続された送信回路44および受信回路45と、脈波検出部101とにより構成される。第2の脈波センサ40-2は、上記アンテナ基板42の送信アンテナ421および受信アンテナ422と、これらのアンテナ421,422にそれぞれ接続された送信回路46,47と、脈波検出部102とにより構成される。 The first pulse wave sensor 40-1 includes a transmission antenna 411 and a reception antenna 412 of the antenna substrate 41, a transmission circuit 44 and a reception circuit 45 connected to these antennas 411 and 412, respectively, and a pulse wave detection unit 101. It consists of. The second pulse wave sensor 40-2 includes a transmission antenna 421 and a reception antenna 422 on the antenna substrate 42, transmission circuits 46 and 47 connected to these antennas 421 and 422, respectively, and a pulse wave detection unit 102. Composed.
 送信回路44,46は、上記CPU100からの送信指示に応じて、それぞれ接続された送信アンテナ411,421に測定信号を供給し、被測定部位としての左手首90(より正確には橈骨動脈91の対応する部分)に向けて電波E1,E2を送信する。この例では、上記電波E1,E2として24GHz帯の周波数の電波が用いられる。 In response to a transmission instruction from the CPU 100, the transmission circuits 44 and 46 supply measurement signals to the transmission antennas 411 and 421 connected thereto, respectively, and the left wrist 90 (more precisely, the radial artery 91) as the measurement site. Radio waves E1 and E2 are transmitted toward the corresponding part). In this example, radio waves having a frequency of 24 GHz band are used as the radio waves E1 and E2.
 受信回路45,47は、それぞれ上記電波E1,E2の上記橈骨動脈91による反射波E1′,E2′を、受信アンテナ412,422を介して受信して、検波および増幅し、この受信信号をCPU100へ出力する。 The receiving circuits 45 and 47 receive the reflected waves E1 'and E2' of the radio waves E1 and E2 by the radial artery 91 via the receiving antennas 412 and 422, respectively, detect and amplify the received signals, and the CPU 100 Output to.
 脈波検出部101,102は、それぞれ上記受信回路45,47から出力された受信信号を、図示しないA/D変換器によりディジタル信号に変換して取り込み、上記橈骨動脈91の脈動波形を表す脈波信号PS1,PS2を検出して、PTT算出部103へ出力する。 The pulse wave detectors 101 and 102 convert the received signals output from the receiving circuits 45 and 47 into digital signals by an A / D converter (not shown) and capture the pulse signals representing the pulsatile waveform of the radial artery 91, respectively. The wave signals PS 1 and PS 2 are detected and output to the PTT calculation unit 103.
 PTT算出部103は、上記脈波検出部101,102から出力された各脈波信号PS1,PS2間の時間差を、脈波伝播時間(PTT)として算出し、算出された脈波伝播時間(PTT)を第1の血圧算出部104に出力する。第1の血圧算出部104は、予め設定されたPTTと血圧との関係式をメモリ51から読み出し、この関係式に従い、上記算出された脈波伝播時間(PTT)に対応する血圧値を推定する。 The PTT calculation unit 103 calculates a time difference between the pulse wave signals PS1 and PS2 output from the pulse wave detection units 101 and 102 as a pulse wave propagation time (PTT), and calculates the calculated pulse wave propagation time (PTT). ) Is output to the first blood pressure calculation unit 104. The first blood pressure calculation unit 104 reads a preset relational expression between PTT and blood pressure from the memory 51 and estimates a blood pressure value corresponding to the calculated pulse wave propagation time (PTT) according to the relational expression. .
 ここで、上記脈波検出部101,102、PTT算出部103、および第1の血圧算出部104は、いずれもCPU100が所定のプログラムを実行することによって実現される。 Here, each of the pulse wave detection units 101 and 102, the PTT calculation unit 103, and the first blood pressure calculation unit 104 is realized by the CPU 100 executing a predetermined program.
 (2-3)オシロメトリック法を用いた血圧測定部の構成
 図9は、オシロメトリック法を用いた血圧測定部の構成を例示するブロック図である。
(2-3) Configuration of Blood Pressure Measurement Unit Using Oscillometric Method FIG. 9 is a block diagram illustrating the configuration of the blood pressure measurement unit using the oscillometric method.
 オシロメトリック法を用いた血圧測定部は、圧力制御部201と、第2の血圧算出部204と、出力部205とを備えている。これらの機能部はいずれもプログラムをCPU100に実行させることにより実現される。 The blood pressure measurement unit using the oscillometric method includes a pressure control unit 201, a second blood pressure calculation unit 204, and an output unit 205. All of these functional units are realized by causing the CPU 100 to execute a program.
 圧力制御部201は、圧力検知部202と、ポンプ駆動部203とを有している。圧力検知部202は、圧力センサ31から発振回路310を通して入力された周波数信号を処理して、押圧カフ21内の圧力(カフ圧)を検知するための処理を行う。ポンプ駆動部203は、検知されたカフ圧に基づいて、ポンプ駆動回路320を通してポンプ32と弁33を駆動するための処理を行う。これにより、圧力制御部201は、所定の加圧速度で、押圧カフ21に空気を供給して圧力を制御する。 The pressure control unit 201 includes a pressure detection unit 202 and a pump drive unit 203. The pressure detection unit 202 processes the frequency signal input from the pressure sensor 31 through the oscillation circuit 310 and performs processing for detecting the pressure (cuff pressure) in the pressing cuff 21. The pump drive unit 203 performs a process for driving the pump 32 and the valve 33 through the pump drive circuit 320 based on the detected cuff pressure. Accordingly, the pressure control unit 201 controls the pressure by supplying air to the pressing cuff 21 at a predetermined pressing speed.
 第2の血圧算出部204は、カフ圧に含まれる動脈容積の変動成分を脈波信号として取得し、取得された脈波信号に基づいて、オシロメトリック法による公知のアルゴリズムを適用して血圧値(収縮期血圧SBPと拡張期血圧DBP)を算出する処理を行う。血圧値の算出が完了すると、第2の血圧算出部204は、ポンプ駆動部203の処理を停止させる。 The second blood pressure calculation unit 204 acquires a fluctuation component of the arterial volume included in the cuff pressure as a pulse wave signal, and applies a known algorithm based on the oscillometric method based on the acquired pulse wave signal, Processing for calculating (systolic blood pressure SBP and diastolic blood pressure DBP) is performed. When the calculation of the blood pressure value is completed, the second blood pressure calculation unit 204 stops the processing of the pump drive unit 203.
 出力部205は、算出された血圧値(収縮期血圧SBPと拡張期血圧DBP)を、この例では表示器50に表示するための処理を行う。 The output unit 205 performs processing for displaying the calculated blood pressure values (systolic blood pressure SBP and diastolic blood pressure DBP) on the display 50 in this example.
 (動作例)
 次に、以上のように構成された血圧計1の動作例を説明する。 
 図10は、CPU100による制御手順と制御内容を例示するフローチャートである。なお、ここでは前述した装着手順により血圧計1がユーザの左手首90に装着されたものとして説明を行う。
(Operation example)
Next, an operation example of the sphygmomanometer 1 configured as described above will be described.
FIG. 10 is a flowchart illustrating a control procedure and control contents by the CPU 100. Here, the description will be made assuming that the sphygmomanometer 1 is attached to the left wrist 90 of the user by the above-described attachment procedure.
 (1)脈波伝播時間(PTT)による血圧推定
 ユーザが本体10に設けられた操作部52としてのプッシュ式スイッチによってPTTに基づく血圧測定を指示すると、CPU100は以下のように制御動作を実行する。なお、上記PTTに基づく血圧測定開始指示は、例えばタイマから出力される起動信号等に応じて、CPU100が自動的に発生するように構成することも可能である。
(1) Blood Pressure Estimation Based on Pulse Wave Propagation Time (PTT) When a user instructs blood pressure measurement based on PTT using a push switch as the operation unit 52 provided in the main body 10, the CPU 100 executes a control operation as follows. . The blood pressure measurement start instruction based on the PTT may be configured to be automatically generated by the CPU 100 in accordance with, for example, an activation signal output from a timer.
 すなわち、CPU100は、先ずステップS11において弁33を閉鎖するとともに、ポンプ駆動回路320を介してポンプ32を駆動して、押圧カフ21に空気を送る制御を行って、押圧カフ21を予め定められた値に加圧する。この例では、ユーザの活動中に血圧計1の装着位置がずれない程度の圧力に、つまりユーザが不快感を覚えず、かつ被測定部位に対する送受信アンテナ対の接触位置がずれない程度の低い圧力(例えば5mmHg程度)に設定する。 That is, the CPU 100 first closes the valve 33 in step S11 and drives the pump 32 via the pump drive circuit 320 to perform control to send air to the press cuff 21 so that the press cuff 21 is predetermined. Pressurize to value. In this example, the pressure is such that the mounting position of the sphygmomanometer 1 does not shift during the user's activity, that is, the pressure that the user does not feel uncomfortable and the contact position of the transmitting / receiving antenna pair with respect to the measurement site does not shift. (For example, about 5 mmHg).
 なお、一実施形態では、先に述べたようにバンド20の基体となる帯状体23の内周面に、適切な高さに設定された凸部20g,20hを形成し、この凸部20g,20h上にアンテナ基板41,42を設置している。このため、送信アンテナ411,421および受信アンテナ412,422をユーザの被測定部位の皮膚面に適切な圧力で当接させることが可能となる。このため、上記ステップS11は省略することもできる。 In one embodiment, as described above, the protrusions 20g and 20h set at appropriate heights are formed on the inner peripheral surface of the band-like body 23 that is the base of the band 20, and the protrusions 20g, Antenna substrates 41 and 42 are installed on 20h. For this reason, it becomes possible to make the transmitting antennas 411 and 421 and the receiving antennas 412 and 422 contact with the skin surface of the measurement site of the user with appropriate pressure. Therefore, step S11 can be omitted.
 この状態で、CPU100はステップS12により制御回路基板43に対し測定信号の送信開始を指示する。上記指示を受信すると、各送信回路44,46から送信アンテナ411,421に対し測定信号が予め設定された周期で供給される。この結果、例えば図11(A)に示すように、送信アンテナ411,421から上記測定信号に対応する電波E1,E2が被測定部位90に対し送波される。なお、上記測定信号は送信回路44,46から不規則な時間間隔で発生されるようにしてもよく、また連続的に発生されるようにしてもよい。 In this state, the CPU 100 instructs the control circuit board 43 to start transmitting a measurement signal in step S12. When the above instruction is received, measurement signals are supplied from the transmission circuits 44 and 46 to the transmission antennas 411 and 421 at a preset cycle. As a result, for example, as shown in FIG. 11A, radio waves E1 and E2 corresponding to the measurement signal are transmitted from the transmission antennas 411 and 421 to the measurement site 90. The measurement signal may be generated from the transmission circuits 44 and 46 at irregular time intervals, or may be generated continuously.
 そうすると、上記電波E1,E2の上記被測定部位90内の橈骨動脈91による反射波E1′,E2′が、例えば図11の(A)に示すように上記送信アンテナ411,421とそれぞれ対をなす受信アンテナ412,422により受波され、その波形信号が受信回路45,47において検波されかつ増幅されてCPU100へ出力される。 Then, the reflected waves E1 ′ and E2 ′ of the radio waves E1 and E2 by the radial artery 91 in the measurement site 90 pair with the transmission antennas 411 and 421, respectively, for example, as shown in FIG. The signals are received by the receiving antennas 412 and 422, and the waveform signals are detected and amplified by the receiving circuits 45 and 47 and output to the CPU 100.
 CPU100は、上記受信回路45,47から出力された反射波E1′,E2′の受信信号を取り込み、ステップS13においてそれぞれ以下のように脈波信号PS1,PS2を検出する。図11の(B)は脈波信号PS1,PS2の検出例を示す図である。 The CPU 100 takes in the received signals of the reflected waves E1 ′ and E2 ′ output from the receiving circuits 45 and 47, and detects the pulse wave signals PS1 and PS2 as follows in step S13, respectively. FIG. 11B is a diagram showing a detection example of the pulse wave signals PS1 and PS2.
 すなわち、CPU100は脈波検出部101として働いて、受信回路45の血管拡張期の出力と血管収縮期の出力から、橈骨動脈91の上流側部分91uの脈波を表す脈波信号PS1を検出する。また、CPU100は脈波検出部102として働いて、受信回路47の血管拡張期の出力と血管収縮期の出力から、橈骨動脈91の下流側部分91dの脈波を表す脈波信号PS2を検出する。 That is, the CPU 100 functions as the pulse wave detection unit 101 to detect the pulse wave signal PS1 representing the pulse wave of the upstream portion 91u of the radial artery 91 from the vasodilator output and the vasoconstriction output of the receiving circuit 45. . The CPU 100 also functions as a pulse wave detection unit 102 to detect a pulse wave signal PS2 representing a pulse wave of the downstream portion 91d of the radial artery 91 from the vasodilator output and the vasoconstriction output of the reception circuit 47. .
 以上の動作をさらに詳しく説明する。すなわち、血圧計1が装着された状態では、図11の(A)に示すように、左手首90の長手方向(バンド20の幅方向Yに相当)に関して、送受信アンテナ対411,412は左手首90を通る橈骨動脈91の上流側部分91uに対向する。一方、送受信アンテナ対421,422は橈骨動脈91の下流側部分91dに対向する。送受信アンテナ対411,412によって検出された信号は、橈骨動脈91の上流側部分91uと送受信アンテナ対411,412との間の、脈波(血管の拡張と収縮をもたらす)に伴う距離の変化を表す。同様に、送受信アンテナ対421,422によって検出された信号は、橈骨動脈91の下流側部分91dと送受信アンテナ対241,422との間の、脈波に伴う距離の変化を表す。第1の脈波センサ40-1の脈波検出部101、第2の脈波センサ40-2の脈波検出部102は、それぞれ受信回路45,47の出力信号に基づいて、それぞれ図11の(B)に示すような山形状の波形をもつ第1の脈波信号PS1,第2の脈波信号PS2を時系列で出力する。 The above operation will be described in more detail. In other words, when the sphygmomanometer 1 is attached, as shown in FIG. 11A, the pair of transmission / reception antennas 411 and 412 is in the left wrist with respect to the longitudinal direction of the left wrist 90 (corresponding to the width direction Y of the band 20). It faces the upstream portion 91u of the radial artery 91 passing through 90. On the other hand, the transmitting / receiving antenna pair 421 and 422 faces the downstream portion 91 d of the radial artery 91. The signals detected by the transmission / reception antenna pair 411, 412 change the distance between the upstream portion 91u of the radial artery 91 and the transmission / reception antenna pair 411, 412 due to the pulse wave (which causes expansion and contraction of the blood vessel). To express. Similarly, the signals detected by the transmission / reception antenna pair 421 and 422 represent a change in distance between the downstream portion 91d of the radial artery 91 and the transmission / reception antenna pair 241 and 422 due to the pulse wave. The pulse wave detection unit 101 of the first pulse wave sensor 40-1 and the pulse wave detection unit 102 of the second pulse wave sensor 40-2 are respectively based on the output signals of the reception circuits 45 and 47, respectively, as shown in FIG. A first pulse wave signal PS1 and a second pulse wave signal PS2 having a mountain-shaped waveform as shown in (B) are output in time series.
 この例では、受信アンテナ412,422の受信レベルは、約1μW(1mWに対するデシベル値では-30dBm)程度になっている。受信回路45,47の出力レベルは、約1ボルト程度になっている。また、第1の脈波信号PS1および第2の脈波信号PS2のそれぞれのピークA1,A2は、約100mV~1ボルトの程度になっている。 In this example, the reception level of the reception antennas 412 and 422 is about 1 μW (−30 dBm in decibel value for 1 mW). The output levels of the receiving circuits 45 and 47 are about 1 volt. Further, the respective peaks A1 and A2 of the first pulse wave signal PS1 and the second pulse wave signal PS2 are about 100 mV to 1 volt.
 CPU100は、次にステップS14において、PTT算出部103として働いて、脈波信号PS1と脈波信号PS2との間の時間差を、脈波伝播時間(PTT)として算出する。より詳しくは、この例では、図11の(B)中に示した第1の脈波信号PS1のピークA1と第2の脈波信号PS2のピークA2との間の時間差Δtを脈波伝播時間(PTT)として算出する。なお、脈波伝播時間(PTT)は、第1および第2の脈波信号PS1,PS2のピーク間の時間差Δtに限らず、例えば第1および第2の脈波信号PS1,PS2の各波形の立ち上がりタイミング間の時間差として算出されるようにしてもよい。 Next, in step S14, the CPU 100 operates as the PTT calculation unit 103, and calculates the time difference between the pulse wave signal PS1 and the pulse wave signal PS2 as a pulse wave propagation time (PTT). More specifically, in this example, the time difference Δt between the peak A1 of the first pulse wave signal PS1 and the peak A2 of the second pulse wave signal PS2 shown in FIG. Calculate as (PTT). The pulse wave propagation time (PTT) is not limited to the time difference Δt between the peaks of the first and second pulse wave signals PS1 and PS2, but for example, the waveforms of the first and second pulse wave signals PS1 and PS2 It may be calculated as a time difference between rising timings.
 CPU100は、続いてステップS15において、第1の血圧算出部104として働いて、メモリ51から脈波伝播時間(PTT)と血圧との関係式(対応式とも云う)Eqを読み出す。そして、この対応式Eqと、上記ステップS14で算出された脈波伝播時間(PTT)とに基づいて、血圧値の推定値を算出する。ここで、脈波伝播時間(PTT)と血圧との対応式Eqは、それぞれ脈波伝播時間をDT、血圧をEBPと表すとき、例えば
   EBP=α/DT2+β            …(Eq.1)
   (ただし、α、βはそれぞれ既知の係数または定数を表す)で示すような、1/DT2の項を含む公知の分数関数として提供される。この対応式は、例えば日本国特開平10-201724号公報に詳しく述べられている。
Subsequently, in step S <b> 15, the CPU 100 operates as the first blood pressure calculation unit 104 and reads a relational expression (also referred to as a corresponding expression) Eq between the pulse wave propagation time (PTT) and the blood pressure from the memory 51. Based on this correspondence equation Eq and the pulse wave propagation time (PTT) calculated in step S14, an estimated value of the blood pressure value is calculated. Here, the correspondence equation Eq between the pulse wave propagation time (PTT) and the blood pressure, when the pulse wave propagation time is represented as DT and the blood pressure as EBP, respectively, for example, EBP = α / DT2 + β (Eq. 1)
(Where α and β each represent a known coefficient or constant), and is provided as a known fractional function including a 1 / DT2 term. This correspondence formula is described in detail, for example, in Japanese Patent Laid-Open No. 10-201724.
 なお、脈波伝播時間と血圧との対応式Eqとしては、その他に、
   EBP=α/DT2+β/DT+γDT+δ   …(Eq.2)
   (ただし、α、β、γ、δはそれぞれ既知の係数または定数を表す)のように、1/DT2の項に加えて、1/DTの項と、DTの項とを含む式など、公知の別の対応式を用いることができる。
In addition, as a correspondence equation Eq between the pulse wave propagation time and the blood pressure,
EBP = α / DT2 + β / DT + γDT + δ (Eq.2)
(Where α, β, γ, and δ represent known coefficients or constants, respectively), in addition to the 1 / DT2 term, formulas that include a 1 / DT term and a DT term are known. Another corresponding equation can be used.
 上記したようにPTTにより血圧値が推定されると、CPU100は次にステップS16において、上記血圧の推定値を予め設定された血圧の正常範囲を表す閾値と比較し、この閾値で示される範囲を外れているか否かを判定する。そして、上記血圧の推定値が閾値で示される範囲内であれば、操作部52によりPTTによる血圧測定の終了指示が入力されるまで、上記ステップS12による制御を繰り返す。 When the blood pressure value is estimated by the PTT as described above, the CPU 100 next compares the estimated value of the blood pressure with a preset threshold value representing a normal range of blood pressure in step S16, and determines the range indicated by the threshold value. It is determined whether or not it is off. If the estimated value of the blood pressure is within the range indicated by the threshold value, the control in step S12 is repeated until the operation unit 52 inputs a blood pressure measurement end instruction using the PTT.
 (2)オシロメトリック法を使用した血圧測定
 上記ステップS16において上記血圧の推定値が閾値で示される範囲を外れていると判定されると、CPU100はオシロメトリック法を使用した血圧の測定制御を、以下のように実行する。
(2) Blood pressure measurement using oscillometric method When it is determined in step S16 that the estimated value of blood pressure is outside the range indicated by the threshold value, CPU 100 performs blood pressure measurement control using oscillometric method, Run as follows:
 すなわち、CPU100は、先ずポンプ駆動回路320を介してポンプ32をオフし、弁33を開いて、押圧カフ21内の空気を排気する。続いて、圧力センサ31の現時点の出力値を大気圧に相当する値として設定する制御を行う(0mmHg調整)。 That is, the CPU 100 first turns off the pump 32 via the pump drive circuit 320, opens the valve 33, and exhausts the air in the pressing cuff 21. Subsequently, control is performed to set the current output value of the pressure sensor 31 as a value corresponding to the atmospheric pressure (0 mmHg adjustment).
 CPU100は、続いてステップS17において、圧力制御部201のポンプ駆動部203として働いて、弁33を閉鎖し、その後、ポンプ駆動回路320を介してポンプ32を駆動して、押圧カフ21に空気を送る制御を行う。これにより、押圧カフ21を膨張させるとともにカフ圧を徐々に加圧して、被測定部位としての左手首90を徐々に圧迫してゆく。 Subsequently, in step S <b> 17, the CPU 100 operates as the pump driving unit 203 of the pressure control unit 201 to close the valve 33, and then drives the pump 32 via the pump driving circuit 320 to supply air to the pressing cuff 21. Control sending. As a result, the pressure cuff 21 is inflated and the cuff pressure is gradually increased, and the left wrist 90 as the measurement site is gradually compressed.
 この加圧過程においてCPU100は、血圧値を算出するために、圧力制御部201の圧力検知部202として働いて、圧力センサ31によってカフ圧をモニタし、左手首90の橈骨動脈91で発生する動脈容積の変動成分を脈波信号として検出する。 In this pressurization process, the CPU 100 operates as the pressure detection unit 202 of the pressure control unit 201 to monitor the cuff pressure by the pressure sensor 31 and calculate an artery generated at the radial artery 91 of the left wrist 90 in order to calculate the blood pressure value. A volume fluctuation component is detected as a pulse wave signal.
 CPU100は、次にステップS18において、第2の血圧算出部204として働いて、この時点で検出されている脈波信号に基づいて、オシロメトリック法により公知のアルゴリズムを適用して血圧値(収縮期血圧SBPと拡張期血圧DBP)の算出を試みる。そして、血圧値を算出できたか否かをステップS19で判定する。 Next, in step S18, the CPU 100 operates as the second blood pressure calculation unit 204, and applies a known algorithm by an oscillometric method based on the pulse wave signal detected at this time, to thereby detect a blood pressure value (systolic period). Attempts to calculate blood pressure SBP and diastolic blood pressure DBP). Then, it is determined in step S19 whether or not the blood pressure value has been calculated.
 この時点で、データ不足のためにまだ血圧値を算出できない場合には、カフ圧が上限圧力(安全のために、例えば300mmHgというように予め定められている)に達していない限り、ステップS17~S19の処理を繰り返す。 At this time, if the blood pressure value cannot be calculated yet due to insufficient data, unless the cuff pressure has reached the upper limit pressure (for example, a predetermined value of 300 mmHg for safety), steps S17 to S17 The process of S19 is repeated.
 一方、血圧値を算出できたとする。そうすると、CPU100はステップS20によりポンプ32を停止し、弁33を開いて、押圧カフ21内の空気を排気する制御を行う。そして最後にステップS21により、CPU100は出力部205として働いて、血圧値の測定結果を表示器50に表示するとともに、メモリ51に記憶させる。 On the other hand, it is assumed that the blood pressure value can be calculated. If it does so, CPU100 will stop the pump 32 by step S20, will open the valve 33, and performs control which exhausts the air in the press cuff 21. FIG. Finally, in step S <b> 21, the CPU 100 functions as the output unit 205 to display the blood pressure value measurement result on the display device 50 and store it in the memory 51.
 なお、血圧値の算出処理は、加圧過程に限らず、減圧過程において行われてもよい。また、血圧値の測定結果を、表示器50に表示せずに、メモリ51に記憶させるだけにしてもよく、さらには通信部59から予め対応付けられたスマートフォンなどのユーザ端末へ送信し、このユーザ端末において表示するようにしてもよい。さらに、上記血圧の測定結果を表すデータを通信部59またはスマートフォンから家族や医師の端末へ転送するようにしてもよい。 The blood pressure value calculation process is not limited to the pressurization process, and may be performed in the decompression process. Further, the measurement result of the blood pressure value may be stored in the memory 51 without being displayed on the display device 50, and further transmitted from the communication unit 59 to a user terminal such as a smartphone associated in advance. You may make it display on a user terminal. Further, the data representing the blood pressure measurement result may be transferred from the communication unit 59 or the smartphone to the family or doctor's terminal.
 また、以上の説明では、PTTによる血圧推定値が閾値により規定される範囲を超えている場合に、オシロメトリック法による血圧測定動作を行う場合を例にとって説明した。しかし、一実施形態では、PTTによる血圧推定動作と、オシロメトリック法を用いた血圧測定動作とを、それぞれ操作部の操作に応じて独立して行うこともできる。 In the above description, the case where the blood pressure measurement operation by the oscillometric method is performed when the blood pressure estimated value by the PTT exceeds the range defined by the threshold value has been described as an example. However, in one embodiment, the blood pressure estimation operation using the PTT and the blood pressure measurement operation using the oscillometric method can be independently performed according to the operation of the operation unit.
 (一実施形態の効果)
 以上詳述したようにこの発明の一実施形態では、被検者(ユーザ)の左手首90に装着して使用される血圧計1において、バンド20の基体を構成する帯状体23の内周面に、その幅方向(Y方向)の中央部に押圧部材としての押圧カフ21を配置している。またそれと共に、上記帯状体23の内周面と上記押圧カフ21とにより挟まれる位置に、上記帯状体23の幅方向(Y方向)に短冊状をなす共通回路基板を配置し、この共通回路基板の上記押圧カフ21の両側部から露出する部位にそれぞれアンテナ基板41,42を形成し、かつ上記共通回路基板の上記押圧カフ21により隠れる部位、つまり帯状体232と押圧カフ21との間に挟まれる位置に制御回路基板43を形成している。
(Effect of one embodiment)
As described above in detail, in one embodiment of the present invention, in the sphygmomanometer 1 used by being worn on the left wrist 90 of a subject (user), the inner peripheral surface of the band-like body 23 constituting the base of the band 20 In addition, a pressing cuff 21 as a pressing member is disposed at the center in the width direction (Y direction). At the same time, a common circuit board having a strip shape in the width direction (Y direction) of the band-like body 23 is arranged at a position sandwiched between the inner peripheral surface of the band-like body 23 and the pressing cuff 21. Antenna substrates 41 and 42 are respectively formed at portions exposed from both sides of the pressing cuff 21 of the substrate, and are hidden by the pressing cuff 21 of the common circuit substrate, that is, between the strip 232 and the pressing cuff 21. A control circuit board 43 is formed at the sandwiched position.
 従って、アンテナ基板41,42は、押圧カフ21の押圧面ではなく、バンド20の帯状体23の内周面に直接設置される。このため、押圧カフ21の加圧および減圧が繰り返されても、アンテナ基板41,42に変形や脱落等の設置状態の劣化が生じる心配はなくなり、これにより血圧計1の構造上の信頼性を高く保持することが可能となる。 Therefore, the antenna substrates 41 and 42 are directly installed not on the pressing surface of the pressing cuff 21 but on the inner peripheral surface of the band-like body 23 of the band 20. For this reason, even if pressurization and pressure reduction of the press cuff 21 are repeated, there is no concern that the antenna substrates 41 and 42 are deteriorated in the installed state such as deformation or dropout, thereby improving the structural reliability of the sphygmomanometer 1. It can be kept high.
 また、血圧計1をユーザの被測定部位90に装着した状態で、アンテナ基板41,42は被測定部位90の皮膚に対し非接触状態を維持する。このため、押圧カフ21の加圧の有無にかかわらず、アンテナ基板41,42が皮膚に押し付けられることはなくなり、その結果ユーザが皮膚に痛み等の不快感を覚える心配は生じず、血圧計1の使用感を高く維持することができる。 In addition, the antenna substrates 41 and 42 maintain a non-contact state with respect to the skin of the measurement site 90 while the sphygmomanometer 1 is mounted on the measurement site 90 of the user. For this reason, the antenna substrates 41 and 42 are not pressed against the skin regardless of whether the pressing cuff 21 is pressurized, and as a result, the user does not have to worry about discomfort such as pain on the skin. High usability can be maintained.
 [変形例]
 (1)例えば図12に示すように、アンテナ基板41,42の送受信アンテナ411,412および421,422の設置面上に誘電体材料からなるスペーサ部材413,423を設置するようにしてもよい。スペーサ部材413,423は、例えばシリコーン樹脂のような弾力性を有する樹脂材料により構成され、その高さ寸法はPTTによる血圧測定時において上記スペーサ部材413,423の頂面がユーザの左手首90の皮膚面に小さい圧力で当接する程度の高さに設定される。
[Modification]
(1) For example, as shown in FIG. 12, spacer members 413 and 423 made of a dielectric material may be installed on the installation surfaces of the transmitting and receiving antennas 411, 412 and 421, 422 of the antenna substrates 41, 42. The spacer members 413 and 423 are made of an elastic resin material such as silicone resin, and the height of the spacer members 413 and 423 is such that the top surface of the spacer members 413 and 423 is the height of the user's left wrist 90 when measuring blood pressure by PTT. The height is set so as to contact the skin surface with a small pressure.
 このように構成すると、アンテナ基板41,42を安定に保持することが可能となり、これにより装置の信頼性をさらに高めることができる。加えて、アンテナ基板41,42とユーザの被測定部位90との間に誘電体材料が介在配置されることにより、送受信アンテナ411~422と被測定部位90との間の空間をなくして、被測定部位90の皮膚面における電波の反射や電波の減衰、外来の混入を低減することが可能となり、これにより脈波の測定品質をさらに高めることが可能となる。 With this configuration, it is possible to stably hold the antenna substrates 41 and 42, thereby further improving the reliability of the device. In addition, a dielectric material is interposed between the antenna substrates 41 and 42 and the user's measured part 90, thereby eliminating the space between the transmitting / receiving antennas 411 to 422 and the measured part 90, and It is possible to reduce radio wave reflection, radio wave attenuation, and external contamination on the skin surface of the measurement site 90, thereby further improving pulse wave measurement quality.
 (2)前記一実施形態では、各々送受信アンテナ対が設けられた2組のアンテナ基板41,42をバンド20の幅方向Y、つまり橈骨動脈91の長手方向に設置し、これによりPTTによる血圧推定を行う場合を例にとって説明した。しかし、この発明はこの構成に限定されるものではなく、1個の送受信アンテナ対を備えたアンテナ基板を1個のみ設けて、これにより橈骨動脈91の任意の1箇所においてその脈波を検出するように構成してもよい。 (2) In the above embodiment, two sets of antenna boards 41 and 42 each having a pair of transmitting and receiving antennas are installed in the width direction Y of the band 20, that is, the longitudinal direction of the radial artery 91, thereby estimating blood pressure by PTT. The case of performing is described as an example. However, the present invention is not limited to this configuration, and only one antenna substrate having one transmission / reception antenna pair is provided, thereby detecting the pulse wave at any one location of the radial artery 91. You may comprise as follows.
 図13はその構成の一例を示す断面図である。同図に示すように、バンド20の帯状体23の内周面には、共通回路基板により構成される制御回路基板43と1個のアンテナ基板41が設置されている。アンテナ基板41は、押圧カフ21から露出する位置に配置され、制御回路基板43は押圧カフ21により隠れる位置に、つまり押圧カフ21と帯状体23との間に配置される。この点は、前記図5に示した一実施形態の構成と同じである。 FIG. 13 is a cross-sectional view showing an example of the configuration. As shown in the figure, a control circuit board 43 constituted by a common circuit board and one antenna board 41 are installed on the inner peripheral surface of the band-like body 23 of the band 20. The antenna substrate 41 is disposed at a position exposed from the pressing cuff 21, and the control circuit substrate 43 is disposed at a position hidden by the pressing cuff 21, that is, between the pressing cuff 21 and the belt-shaped body 23. This point is the same as the configuration of the embodiment shown in FIG.
 以上のような構成によれば、アンテナ基板41は、押圧カフ21の押圧面ではなく、バンド20の帯状体23の内周面に直接設置される。このため、押圧カフ21の加圧および減圧が繰り返されても、アンテナ基板41に変形や脱落等の設置状態の劣化が生じる心配はなくなる。従って、血圧計1の構造上の信頼性を高めることができ、また脈波を品質よく確実に測定することが可能となる。 According to the above configuration, the antenna substrate 41 is directly installed on the inner peripheral surface of the band-like body 23 of the band 20, not on the pressing surface of the pressing cuff 21. For this reason, even if pressurization and depressurization of the press cuff 21 are repeated, there is no fear that the antenna substrate 41 is deteriorated in the installed state such as deformation or dropout. Therefore, the structural reliability of the sphygmomanometer 1 can be increased, and the pulse wave can be reliably measured with high quality.
 (3)アンテナ基板41を1個のみ設けた場合においても、図14に例示するように、アンテナ基板41のアンテナ設置面上に誘電体材料からなるスペーサ部材413を設置するとよい。このように構成すると、図12に示した構成と同様に、アンテナ基板41を安定に保持することが可能となり、これにより装置の信頼性をさらに高めることができる。加えて、アンテナ基板41とユーザの被測定部位90との間に誘電体材料が介在配置されることにより、送受信アンテナ411,412と被測定部位90との間の空間をなくして、被測定部位90の皮膚面における電波の反射や電波の減衰、外来の混入を低減することが可能となり、これにより脈波の測定品質をさらに高めることが可能となる。 (3) Even when only one antenna substrate 41 is provided, a spacer member 413 made of a dielectric material may be installed on the antenna installation surface of the antenna substrate 41 as illustrated in FIG. With this configuration, it is possible to stably hold the antenna substrate 41 as in the configuration shown in FIG. 12, thereby further improving the reliability of the device. In addition, a dielectric material is interposed between the antenna substrate 41 and the measured part 90 of the user, thereby eliminating the space between the transmitting / receiving antennas 411 and 412 and the measured part 90 and measuring the measured part. It is possible to reduce radio wave reflection, radio wave attenuation, and extraneous contamination on the 90 skin surface, thereby further improving pulse wave measurement quality.
 (4)帯状体23の内周面の幅方向(Y方向)の中央部に、周方向に溝状の凹部を形成し、この凹部内に押圧カフ21を配置するようにしてもよい。このように構成すると、加圧および減圧動作を繰り返す押圧カフ21をより安定して保持することができ、これにより隣接して配置されるアンテナ基板41,42に対し接触などの不具合が生じないようにすることができる。なお、この場合、制御回路基板43は、上記溝の底面に設置してもよいが、バンド20の帯状体23の空きスペースに、つまり押圧カフ21と重ならない位置に配置されるようにしてもよい。 (4) A groove-shaped recess may be formed in the circumferential direction at the center in the width direction (Y direction) of the inner peripheral surface of the belt-like body 23, and the pressing cuff 21 may be disposed in the recess. If comprised in this way, the press cuff 21 which repeats pressurization and pressure reduction operation | movement can be hold | maintained more stably, and thereby malfunctions, such as a contact, do not arise with respect to the antenna board | substrates 41 and 42 arrange | positioned adjacently. Can be. In this case, the control circuit board 43 may be installed on the bottom surface of the groove, but may be arranged in an empty space of the band-like body 23 of the band 20, that is, in a position that does not overlap the pressing cuff 21. Good.
 (5)前記一実施形態では、複数のアンテナ基板41,42を橈骨動脈91の長手方向(Y方向)に沿って所定の間隔を隔てて配置した場合を例にとって説明した。しかし、それに限らず、上記アンテナ基板41,42と同一構成を有するアンテナ基板のセットを、橈骨動脈91と直交する方向、つまりバンド20の周方向(X方向)に、所定の間隔を隔てて配置するようにしてもよい。このとき、上記アンテナ基板のセットは1セットでもよいが、複数のセットを上記X方向に所定の間隔を隔てて配置するようにしてもよい。
 なお、上記図13に示したようにアンテナ基板41が1個の場合にも、アンテナ基板41を、橈骨動脈91と直交する方向(X方向)に、所定の間隔を隔てて複数個配置するようにしてもよい。
(5) In the above-described embodiment, the case where the plurality of antenna substrates 41 and 42 are arranged at predetermined intervals along the longitudinal direction (Y direction) of the radial artery 91 has been described as an example. However, the present invention is not limited thereto, and a set of antenna boards having the same configuration as the antenna boards 41 and 42 is arranged at a predetermined interval in the direction orthogonal to the radial artery 91, that is, in the circumferential direction (X direction) of the band 20. You may make it do. At this time, the set of the antenna substrate may be one set, but a plurality of sets may be arranged at a predetermined interval in the X direction.
As shown in FIG. 13, even when there is one antenna substrate 41, a plurality of antenna substrates 41 are arranged at predetermined intervals in a direction (X direction) orthogonal to the radial artery 91. It may be.
 以上のように構成すると橈骨動脈91と直交する方向の複数の位置でそれぞれ測定信号および反射信号の送受波が行われる。このため、例えば、ユーザの橈骨動脈91の位置に個人差があっても、また被測定部位に対するバンド20の装着位置がX方向にずれても、上記複数のアンテナ基板のうちの少なくとも1つを動脈に近接させることが可能となり、これにより脈波を品質良く測定することが可能となる。 With the above configuration, the measurement signal and the reflection signal are transmitted and received at a plurality of positions in a direction orthogonal to the radial artery 91, respectively. For this reason, for example, even if the position of the radial artery 91 of the user varies between individuals, or even if the mounting position of the band 20 on the measurement site is shifted in the X direction, at least one of the plurality of antenna substrates is It becomes possible to make it approach to an artery, and this makes it possible to measure a pulse wave with good quality.
 (6)アンテナ基板41,42および制御回路基板43はフレキシブル基板により構成するようにしてもよい。このようにすると、バンド20の厚さをより薄くすることができ、さらにアンテナ基板41,42と制御回路基板43を1枚の共通のフレキシブル基板により構成することが可能となる。また、アンテナ基板には、送信アンテナおよび受信アンテナを保護するための誘電体材料からなる保護膜を被覆または設置するようにしてもよい。このように構成すると、送信アンテナおよび受信アンテナがユーザの皮膚に接触する際の不快感をさらに緩和する効果が期待できる。 (6) The antenna boards 41 and 42 and the control circuit board 43 may be configured by flexible boards. In this way, the thickness of the band 20 can be further reduced, and the antenna substrates 41 and 42 and the control circuit substrate 43 can be configured by one common flexible substrate. Further, a protective film made of a dielectric material for protecting the transmitting antenna and the receiving antenna may be covered or installed on the antenna substrate. If comprised in this way, the effect which further eases the discomfort at the time of a transmitting antenna and a receiving antenna contacting a user's skin can be anticipated.
 (7)前記一実施形態では、血圧計1により、生体情報として、脈波信号、脈波伝播時間および血圧値を測定する場合を例にとって説明した。しかし、それに限らず、脈拍数を測定したり、脈波の波形を分析してユーザの心血管の状態を判定したりユーザの本人認証を行う等、脈波からその他の情報を取得するようにしてもよい。 (7) In the above embodiment, the case where the sphygmomanometer 1 measures a pulse wave signal, a pulse wave propagation time, and a blood pressure value as biological information has been described as an example. However, the present invention is not limited to this, and other information is acquired from the pulse wave, such as measuring the pulse rate, analyzing the waveform of the pulse wave to determine the user's cardiovascular condition, and authenticating the user. May be.
 (8)生体情報測定装置は、手首に装着するタイプのもの以外に、上腕部等の他の上肢や、大腿部、足首等の下肢等、その他の部位に装着するものであってもよい。要するに、皮下に動脈が存在しかつ押圧カフにより加圧可能な部位であれば、どの部位に装着するものであってもよい。 (8) In addition to the type worn on the wrist, the biological information measuring device may be worn on other parts such as the upper limb such as the upper arm or the lower limb such as the thigh or ankle. . In short, any part may be used as long as the part has an artery under the skin and can be pressurized by the pressure cuff.
 (9)前記一実施形態では、脈波および押圧カフによる圧力測定から血圧値の算出処理までの一連の処理を全て血圧計1において行う場合を例にとって説明したが、生体情報測定装置では、脈波の測定と、押圧カフの加圧および減圧とその過程における圧力の測定動作のみを行い、これらの各測定値を例えば無線ネットワーク、有線ネットワーク、または記憶媒体を介して、スマートフォンやパーソナルコンピュータ、サーバコンピュータ等の外部端末に直接又は間接的に送信し、これらの外部端末においてPTTによる血圧値およびオシロメトリック法による血圧値をそれぞれ算出するように構成してもよい。 (9) In the above-described embodiment, the case where a series of processing from pressure measurement using a pulse wave and a pressure cuff to blood pressure value calculation processing is all performed in the sphygmomanometer 1 is described as an example. Only the wave measurement, pressurization and depressurization of the pressure cuff, and the pressure measurement operation in the process are performed, and these measured values are transmitted to a smartphone, a personal computer, a server via a wireless network, a wired network, or a storage medium, for example. It may be configured to transmit directly or indirectly to an external terminal such as a computer, and to calculate the blood pressure value by PTT and the blood pressure value by the oscillometric method, respectively.
 (10)送受信アンテナ対の配置方向は、橈骨動脈91の長手方向(Y方向)と直交する方向(X方向)ではなく、橈骨動脈91の長手方向(Y方向)に配置してもよい。また、送信アンテナおよび受信アンテナのパターンは、方形以外に線状またはループ状であってもよい。さらに、送信アンテナおよび受信アンテナを設置するアンテナ支持部材、および制御回路を設置する制御回路部材は、印刷配線基板に限るものではなく、例えば樹脂材料からなる単なる部材であってもよい。 (10) The arrangement direction of the transmission / reception antenna pair may be arranged in the longitudinal direction (Y direction) of the radial artery 91 instead of the direction (X direction) orthogonal to the longitudinal direction (Y direction) of the radial artery 91. Further, the pattern of the transmitting antenna and the receiving antenna may be a line or a loop instead of a square. Furthermore, the antenna support member for installing the transmission antenna and the reception antenna and the control circuit member for installing the control circuit are not limited to the printed wiring board, and may be simple members made of, for example, a resin material.
 その他、アンテナ支持部材(送受信アンテナ対)の設置数やその設置位置、設置構造、PTTおよびオシロメトリック法による血圧測定制御の手順と制御内容等についても、この発明の要旨を逸脱しない範囲で種々変形して実施できる。 In addition, the number of installed antenna support members (transmission / reception antenna pairs), their installation position, installation structure, blood pressure measurement control procedure and control contents by the PTT and oscillometric methods are variously modified without departing from the scope of the present invention. Can be implemented.
 以上、本発明の実施形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。つまり、本発明の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。 As mentioned above, although embodiment of this invention has been described in detail, the above description is only illustration of this invention in all points. It goes without saying that various improvements and modifications can be made without departing from the scope of the present invention. That is, in implementing the present invention, a specific configuration according to the embodiment may be adopted as appropriate.
 要するにこの発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。 In short, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
 [付記]
 上記各実施形態の一部または全部は、特許請求の範囲のほか以下の付記に示すように記載することも可能であるが、これに限られない。 
 (付記1) 
 生体の動脈(91)を含む被測定部位(90)を取り巻くように装着される、帯状をなすバンド部材(20)と、
 前記バンド部材(20)の前記被測定部位(90)と対向する面に配置され、血圧測定時に流体の注入により膨張動作して前記被測定部位(90)を押圧する押圧部材(21)と、
 前記バンド部材(20)の前記被測定部位(90)と対向する面のうち前記押圧部材(21)が配置されていない部位に、前記バンド部材(20)が前記被測定部位(90)に装着された状態で当該被測定部位(90)に対し非接触の状態に設置される少なくとも1つのアンテナ支持部材(41),(42)と
 を具備し、
 前記アンテナ支持部材(41),(42)は、前記被測定部位(90)に対し電波からなる測定信号を送波すると共に当該測定信号の前記被測定部位(90)による反射信号を受波するアンテナ素子(411),(412),(421),(422)を有する、
 生体情報測定装置。
[Appendix]
A part or all of each of the embodiments described above can be described as shown in the following supplementary notes in addition to the claims, but is not limited thereto.
(Appendix 1)
A band-shaped band member (20) that is mounted so as to surround a measurement site (90) including a living artery (91);
A pressing member (21) which is disposed on a surface of the band member (20) facing the measurement site (90) and which expands by injecting fluid during blood pressure measurement and presses the measurement site (90);
The band member (20) is attached to the measurement site (90) on the surface of the band member (20) facing the measurement site (90) where the pressing member (21) is not disposed. And at least one antenna support member (41), (42) installed in a non-contact state with respect to the measurement site (90).
The antenna support members (41) and (42) transmit a measurement signal including a radio wave to the measurement site (90) and receive a reflected signal of the measurement signal from the measurement site (90). Having antenna elements (411), (412), (421), (422),
Biological information measuring device.
 1…血圧計
 10…本体
 20…バンド
 21…押圧カフ
 23…帯状体
 41,42…アンテナ基板
 43…制御回路基板
 411,421…送信アンテナ
 412,422…受信アンテナ
 430…制御回路
 90…被測定部位(左手首)
 91…橈骨動脈
DESCRIPTION OF SYMBOLS 1 ... Blood pressure monitor 10 ... Main body 20 ... Band 21 ... Pressure cuff 23 ... Band-shaped body 41, 42 ... Antenna board 43 ... Control circuit board 411, 421 ... Transmission antenna 412, 422 ... Reception antenna 430 ... Control circuit 90 ... Measurement part (Left wrist)
91 ... radial artery

Claims (9)

  1.  生体の動脈を含む被測定部位を取り巻くように装着される、帯状をなすバンド部材と、
     前記バンド部材の前記被測定部位と対向する面に配置され、血圧測定時に流体の注入により膨張動作して前記被測定部位を押圧する押圧部材と、
     前記バンド部材の前記被測定部位と対向する面のうち前記押圧部材が配置されていない部位に、前記バンド部材が前記被測定部位に装着された状態で当該被測定部位に対し非接触の状態に設置される少なくとも1つのアンテナ支持部材と
     を具備し、
     前記アンテナ支持部材は、前記被測定部位に対し電波からなる測定信号を送波すると共に当該測定信号の前記被測定部位による反射信号を受波するアンテナ素子を有する、
     生体情報測定装置。
    A band-shaped band member mounted so as to surround a measurement site including a living artery,
    A pressing member that is disposed on a surface of the band member that faces the measurement site and that expands by injecting fluid during blood pressure measurement and presses the measurement site;
    Of the surface of the band member that faces the site to be measured, the portion where the pressing member is not disposed is in a non-contact state with respect to the site to be measured while the band member is attached to the site to be measured. And at least one antenna support member to be installed,
    The antenna support member includes an antenna element that transmits a measurement signal including a radio wave to the measurement site and receives a reflection signal of the measurement signal from the measurement site.
    Biological information measuring device.
  2.  前記アンテナ支持部材は、前記被測定部位に含まれる動脈に沿う方向に所定の間隔を隔てて複数配置される、請求項1に記載の生体情報測定装置。 The biological information measuring apparatus according to claim 1, wherein a plurality of the antenna support members are arranged at a predetermined interval in a direction along the artery included in the measurement site.
  3.  前記アンテナ素子は、1個のアンテナ支持部材に、前記被測定部位に含まれる動脈に沿う方向に所定の間隔を隔てて複数個配置される、請求項1に記載の生体情報測定装置。 The biological information measuring apparatus according to claim 1, wherein a plurality of the antenna elements are arranged on one antenna support member at a predetermined interval in a direction along the artery included in the measurement site.
  4.  前記アンテナ支持部材は、前記被測定部位に含まれる動脈と直交する方向に所定の間隔を隔てて複数個配置される、請求項1又は2に記載の生体情報測定装置。 The biological information measuring device according to claim 1 or 2, wherein a plurality of the antenna support members are arranged at a predetermined interval in a direction orthogonal to an artery included in the measurement site.
  5.  前記アンテナ素子は、1個のアンテナ支持部材に、前記被測定部位に含まれる動脈と直交する方向に所定の間隔を隔てて複数個配置される、請求項1又は3に記載の生体情報測定装置。 The biological information measuring device according to claim 1 or 3, wherein a plurality of the antenna elements are arranged on one antenna support member at a predetermined interval in a direction orthogonal to an artery included in the measurement site. .
  6.  前記バンド部材と前記押圧部材との間に配置され、前記アンテナ支持部材と電気的に接続される制御回路支持部材を、さらに具備し、
     前記制御回路支持部材は、
      前記測定信号を生成して前記アンテナ素子に供給し前記電波として送波させる送信回路部と、
      前記アンテナ素子により受波された電波からなる前記反射信号を受信して検波する受信回路部と
     を少なくとも有する、請求項1乃至5のいずれかに記載の生体情報測定装置。
    A control circuit support member disposed between the band member and the pressing member and electrically connected to the antenna support member;
    The control circuit support member is
    A transmission circuit unit that generates the measurement signal, supplies the measurement signal to the antenna element, and transmits the signal as the radio wave;
    The biological information measuring device according to claim 1, further comprising: a receiving circuit unit that receives and detects the reflected signal including the radio wave received by the antenna element.
  7.  前記アンテナ支持部材および前記制御回路支持部材は共通の回路支持部材により一体的に構成され、
     前記アンテナ素子は、前記共通の回路支持部材の前記押圧部材から露出している部位に設けられ、
     前記送信回路部および受信回路部は、前記共通の回路支持部材の前記押圧部材と接触する部位に設けられる、
     請求項6に記載の生体情報測定装置。
    The antenna support member and the control circuit support member are integrally configured by a common circuit support member,
    The antenna element is provided in a portion exposed from the pressing member of the common circuit support member,
    The transmission circuit unit and the reception circuit unit are provided in a portion that contacts the pressing member of the common circuit support member.
    The biological information measuring device according to claim 6.
  8.  前記共通の回路支持部材は、フレキシブル基板により構成される、請求項7に記載の生体情報測定装置。 The biological information measuring device according to claim 7, wherein the common circuit support member is formed of a flexible substrate.
  9.  前記バンド部材と前記アンテナ基板との間に介在配置される、誘電体材料からなるスペーサ部材を、さらに具備する請求項1乃至8のいずれかに記載の生体情報測定装置。 The biological information measuring device according to any one of claims 1 to 8, further comprising a spacer member made of a dielectric material and disposed between the band member and the antenna substrate.
PCT/JP2019/007328 2018-03-14 2019-02-26 Biological-information measuring device WO2019176530A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018047014A JP7102176B2 (en) 2018-03-14 2018-03-14 Biological information measuring device
JP2018-047014 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019176530A1 true WO2019176530A1 (en) 2019-09-19

Family

ID=67908266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007328 WO2019176530A1 (en) 2018-03-14 2019-02-26 Biological-information measuring device

Country Status (2)

Country Link
JP (1) JP7102176B2 (en)
WO (1) WO2019176530A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101900792B1 (en) * 2017-03-02 2018-09-20 윤형수 Automatic Smart Rice Cooker System

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311132A (en) * 1986-07-03 1988-01-18 大村 惠昭 Cuff for measuring blood pressure and blood rate of brain
US6231507B1 (en) * 1997-06-02 2001-05-15 Vnus Medical Technologies, Inc. Pressure tourniquet with ultrasound window and method of use
JP2010207274A (en) * 2009-03-06 2010-09-24 Sharp Corp Pulse wave measuring apparatus
JP2013146539A (en) * 2011-12-21 2013-08-01 Nippon Koden Corp Cuff and method for observing tissue under pressure by using the same
JP2017060637A (en) * 2015-09-25 2017-03-30 国立大学法人電気通信大学 Probe Holder
JP2017209454A (en) * 2016-05-27 2017-11-30 株式会社ユネクス Endothelial function measuring apparatus for brachial artery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311132A (en) * 1986-07-03 1988-01-18 大村 惠昭 Cuff for measuring blood pressure and blood rate of brain
US6231507B1 (en) * 1997-06-02 2001-05-15 Vnus Medical Technologies, Inc. Pressure tourniquet with ultrasound window and method of use
JP2010207274A (en) * 2009-03-06 2010-09-24 Sharp Corp Pulse wave measuring apparatus
JP2013146539A (en) * 2011-12-21 2013-08-01 Nippon Koden Corp Cuff and method for observing tissue under pressure by using the same
JP2017060637A (en) * 2015-09-25 2017-03-30 国立大学法人電気通信大学 Probe Holder
JP2017209454A (en) * 2016-05-27 2017-11-30 株式会社ユネクス Endothelial function measuring apparatus for brachial artery

Also Published As

Publication number Publication date
JP7102176B2 (en) 2022-07-19
JP2019154863A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
US11622694B2 (en) Pulse wave measurement device, pulse wave measurement method, and blood pressure measurement device
EP2786702B1 (en) Physiology signal sensing device
US20190307336A1 (en) Pulse wave measurement device, pulse wave measurement method, and blood pressure measurement device
WO2018123275A1 (en) Sphygmomanometer, and method and device for blood pressure measurement
US20200205682A1 (en) Pulse wave measurement device, blood pressure measurement device, equipment, method for measuring pulse wave, and method for measuring blood pressure
CN112584763A (en) Measuring apparatus
WO2019176529A1 (en) Biological-information measuring device
JP2019048009A (en) Blood pressure estimation device
US20190290142A1 (en) Pulse wave measurement device, pulse wave measurement method, and blood pressure measurement device
WO2019176530A1 (en) Biological-information measuring device
US11317818B2 (en) Blood pressure measurement device and blood pressure measurement method
US20200221959A1 (en) Vital sign measurement device, blood pressure measurement device, apparatus, vital sign measurement method, and blood pressure measurement method
CN110891480B (en) Measuring apparatus and measuring method
US20200138327A1 (en) Biometric antenna device, pulse wave measurement device, blood pressure measurement device, apparatus, biological information measurement method, pulse wave measurement method, and blood pressure measurement method
CN111479503A (en) Blood pressure estimating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768080

Country of ref document: EP

Kind code of ref document: A1