WO2019176490A1 - Fiber sheet, and fiber sheet producing method - Google Patents

Fiber sheet, and fiber sheet producing method Download PDF

Info

Publication number
WO2019176490A1
WO2019176490A1 PCT/JP2019/006504 JP2019006504W WO2019176490A1 WO 2019176490 A1 WO2019176490 A1 WO 2019176490A1 JP 2019006504 W JP2019006504 W JP 2019006504W WO 2019176490 A1 WO2019176490 A1 WO 2019176490A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fiber sheet
sheet
sheet material
collector
Prior art date
Application number
PCT/JP2019/006504
Other languages
French (fr)
Japanese (ja)
Inventor
洋亮 中川
金村 一秀
竜太 竹上
邦行 神長
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020505723A priority Critical patent/JP7163363B2/en
Publication of WO2019176490A1 publication Critical patent/WO2019176490A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Definitions

  • the present invention relates to a fiber sheet and a fiber sheet manufacturing method.
  • a fiber sheet made of fiber is known.
  • the fiber include a so-called nanofiber having a nano-order diameter of several nm or more and less than 1000 nm, and a so-called micron fiber having a diameter of several micrometers or more and less than 1000 ⁇ m.
  • Patent Document 1 includes a plurality of nanofibers made of a thermoplastic resin (thermoplastic polymer) and a lump formed by adhesion of nanofibers, and a lump that satisfies a predetermined condition.
  • a nanofiber sheet containing a predetermined amount or more per unit area is described.
  • pores having a diameter of 5 ⁇ m or less are formed between nanofibers.
  • Such fiber sheets are actively developed for use in various fields.
  • Examples of expected applications include filters, and examples of filters include solid-gas separation filters that separate solids and gases, and solid-liquid separation filters that separate solids and liquids.
  • an electrospinning method is known as a method for producing a fiber such as a nanofiber and a fiber sheet.
  • the electrospinning method is also referred to as an electrospinning method, and is performed using, for example, an electrospinning device (also referred to as an electrospinning device) having a nozzle, a collector, and a power source.
  • an electrospinning device also referred to as an electrospinning device having a nozzle, a collector, and a power source.
  • a voltage is applied between a nozzle and a collector by a power source, and for example, the nozzle is negatively charged and the collector is positively charged.
  • the filter is required to have filtration accuracy as separation performance, but the fiber sheet described in Patent Document 1 has insufficient filtration accuracy when used for filtration.
  • the filter is also required to have durability, but the fiber sheet described in Patent Document 1 may be detached from the fiber piece when used for filtration.
  • an object of the present invention is to provide a fiber sheet that is excellent in filtration accuracy and in which desorption of fiber pieces is suppressed, and a fiber sheet manufacturing method for manufacturing the fiber sheet.
  • the fiber sheet of the present invention is made of fiber and has pores.
  • the average pore diameter of the pores is in the range of 2 ⁇ m to 20 ⁇ m.
  • the ratio of holes having a hole diameter in the range of DA ⁇ 0.80 to DA ⁇ 1.20 is at least 90%.
  • is preferably 20 ° or less.
  • the fiber is preferably formed of a cellulosic polymer, and the cellulosic polymer is preferably cellulose acylate, and the cellulose acylate includes cellulose acetate propionate, cellulose acetate butyrate, and cellulose triacetate. It is preferable that it is either.
  • the fiber sheet manufacturing method of the present invention includes a collecting step, a tension applying step, and a heating step, and collects fibers and manufactures a fiber sheet in which holes are formed.
  • the collection process includes a polymer and a solvent, and the charged solution is attracted to a collector that is charged with a polarity opposite to that of the solution or that has a potential of zero, thereby sheeting the fiber formed of the polymer. Collect as material.
  • the tension applying step applies tension to the sheet material.
  • the fibers are bonded to each other by heating the sheet material to which tension is applied.
  • the fiber sheet manufacturing method further includes a cooling step of cooling the fiber sheet obtained in the heating step in a state where tension is applied, and the tension is released after cooling.
  • the heating step it is preferable to heat the sheet material to the glass transition point or more and the melting point or less of the polymer.
  • the present invention it is possible to obtain a fiber sheet that is excellent in filtration accuracy and in which detachment of fiber pieces is suppressed.
  • FIG. 6 is a SEM image of the fiber sheet obtained in Comparative Example 2.
  • the fiber sheet should just contain the fiber 11, and in addition to the fiber 11, you may provide the other fiber from which a raw material differs.
  • the XY plane is the film surface of the fiber sheet 10
  • Z is the thickness direction of the fiber sheet 10.
  • the diameter of the fiber 11 is approximately 1.8 ⁇ m in the present embodiment, but is not particularly limited.
  • the diameter of the fiber 11 is preferably in the range of 0.1 ⁇ m to 5 ⁇ m. This is because the detachment of the fiber piece is further suppressed.
  • the suppression of the fiber piece detachment means that the fiber piece detachment from the fiber sheet 10 is suppressed, and the suppression of the fiber piece detachment leads to excellent durability.
  • FIG. 1 only a part on one sheet surface side in the thickness direction Z of the fiber sheet 10 is drawn in order to avoid complication of the drawing. Therefore, the fiber sheet 10 has a structure in which the fibers 11 are further overlapped in the thickness direction Z.
  • the thickness of the fiber sheet 10 is preferably in the range of 5 ⁇ m to 5000 ⁇ m, more preferably in the range of 10 ⁇ m to 3000 ⁇ m, and still more preferably in the range of 20 ⁇ m to 1000 ⁇ m. In this example, it is 50 ⁇ m.
  • the fiber sheet 10 has a plurality of holes 12.
  • the air holes 12 are formed so as to penetrate through in the thickness direction Z of the fiber sheet 10 among the air gaps defined as the space regions defined by the fibers 11. Accordingly, some voids exist as a space region that does not penetrate in the thickness direction Z, for example, is closed by the fiber 11, without forming the air holes 12 penetrating in the thickness direction Z.
  • the average pore diameter of the plurality of holes 12 is DA (unit: ⁇ m).
  • the average pore diameter DA is in the range of 2 ⁇ m to 20 ⁇ m.
  • the processing amount per unit time is increased as compared with the case where the average pore diameter DA is less than 2 ⁇ m.
  • a large amount of processing per unit time means that filtration efficiency is good.
  • the average pore diameter DA is 20 ⁇ m or less, detachment of the fiber pieces is suppressed when used as a filter for filtration, for example, compared to a case where the average pore diameter DA is larger than 20 ⁇ m.
  • the average pore diameter DA is more preferably in the range of 3 ⁇ m to 15 ⁇ m, and still more preferably in the range of 4 ⁇ m to 10 ⁇ m.
  • the average pore diameter DA can be obtained by the following method. First, a 5 cm square (5 cm ⁇ 5 cm) is cut out from the fiber sheet 10 to obtain a sample. After immersing this sample in GALWICK (manufactured by POROUS MATERIAL) having a surface tension of 15.3 mN / m, the average pore diameter DA is determined by measuring by a bubble point method using a palm porometer (manufactured by POROUS MATERIAL). can get.
  • GALWICK manufactured by POROUS MATERIAL
  • the ratio of holes 12 having a hole diameter in the range of DA ⁇ 0.80 to DA ⁇ 1.20 (hereinafter referred to as a predetermined hole ratio) is at least 90%, that is, 90%. That's it.
  • the predetermined vacancy ratio (unit:%) is more preferably 95% or more, further preferably 98% or more, and is preferably closer to 100% in this way.
  • the predetermined pore ratio was calculated from the sum (quantity) of pores 12 that is DA ⁇ 0.80 or more and DA ⁇ 1.20 or less with respect to the pore size distribution obtained from a palm porometer (manufactured by POROUS MATERIAL). . Specifically, using the pore size distribution output by the palm porometer (correlation data between the pore size and the abundance of pores having the pore size), the range of DA ⁇ 0.80 to DA ⁇ 1.20 is used. The ratio of the amount of holes having a hole diameter to the total amount of holes was determined as a predetermined hole ratio.
  • the fibers 11 are bonded to each other in a portion overlapping in the thickness direction Z and / or a portion in contact in the sheet surface direction (in the XY plane) of the fiber sheet 10, and in this example as well. Yes. In this way, the fibers 11 are fixed to each other. By this fixing, the fiber sheet 10 is further suppressed from detaching the fiber pieces.
  • the fiber 11 is made of a polymer, more specifically, a thermoplastic resin (polymer).
  • the thermoplastic resin of this example is a cellulose polymer 15 (see FIG. 3).
  • the cellulosic polymer 15 is preferably cellulose acylate.
  • Cellulose acylate is a cellulose ester in which some or all of the hydrogen atoms constituting the hydroxy group of cellulose are substituted with acyl groups.
  • Cellulose acylate includes cellulose acetate propionate (hereinafter referred to as CAP, melting point Tm is 188 ° C. or higher and 210 ° C. or lower, glass transition point Tg is 147 ° C.), and cellulose acetate butyrate (hereinafter referred to as CAB, melting point Tm). Is 195 ° C. or higher and 205 ° C. or lower, glass transition point Tg is 141 ° C.) and cellulose triacetate (hereinafter referred to as TAC, melting point Tm is 290 ° C., glass transition point Tg is 200 ° C.). preferable. Thereby, it can be used as a filter with high filtration accuracy and high durability even under high temperature conditions of, for example, 100 ° C. or more and 140 ° C. or less.
  • CAP cellulose acetate propionate
  • CAB cellulose acetate butyrate
  • Tm cellulose acetate butyrate
  • TAC cellulose triacetate
  • the fibers 11a, 11b, 11c,... Extend in a direction along one sheet surface (hereinafter referred to as a first sheet surface) 10A.
  • the direction along the surface may extend with an in-plane component parallel to the first sheet surface 10A, and may be bent in the surface.
  • the other sheet surface (not shown, hereinafter referred to as the second sheet surface) and the first sheet surface 10A may be regarded as parallel. Therefore, the fibers 11a, 11b, 11c,... Extend in the direction along the second sheet surface.
  • it describes as the fiber 11.
  • An angle formed by the fiber 11 and the first sheet surface 10A is ⁇ (unit: °).
  • the angle ⁇ formed is defined within a range of 0 ° to 90 °, that is, 0 ° ⁇ ⁇ ⁇ 90 °.
  • the formed angle ⁇ is preferably 20 ° or less, and thus extends in the direction along the first sheet surface 10A.
  • the angle ⁇ formed to avoid complication of the drawing is shown only for the fiber 11b, but the same applies to the other fibers 11b, 11c,.
  • the formed angle ⁇ is more preferably 15 ° or less, and further preferably 10 ° or less.
  • the formed angle ⁇ can be obtained using an SEM (Scanning Electron Microscope) image, and is also obtained by this method in this example.
  • SEM Sccanning Electron Microscope
  • the fiber sheet 10 is cut in the thickness direction, and an image on the SEM is observed.
  • a part of the longitudinal direction of one fiber 11 is observed in a line segment shape.
  • Twenty of the line-shaped fiber portions are arbitrarily selected, and the angles ⁇ 1, ⁇ 2, ⁇ 3,..., ⁇ 20 (unit: °) formed by each of them are measured.
  • An average value of the measured angles formed by these 20 is obtained by a calculation formula of ( ⁇ 1 + ⁇ 2 + ⁇ 3 +... + ⁇ 20) / 20, and is defined as an angle ⁇ formed therefrom.
  • a filter that can be particularly preferably used is for food (including beverages), for medical use, for ultra-high precision separation performance, because there is a concern about contamination of fiber pieces (contamination).
  • It is a filter for pure water and high-purity chemical liquid. Specific examples include a filter for removing fine particles and / or microorganisms from beverages, a pretreatment filter for industrial pure water, and a test filter for collecting specific cells from body fluids such as blood and saliva.
  • the test filter include a test filter for blood glucose level test, urine sugar test, lifestyle-related disease test, genetic test, tumor marker test, blood test, and the like.
  • the fiber sheet 10 is manufactured by a manufacturing method having a sheet material forming step and a fiber sheet forming step.
  • the sheet material forming step the sheet material 16 (see FIG. 3) is formed.
  • the sheet material 16 is a precursor of the fiber sheet 10.
  • the fiber sheet 10 is formed from the sheet material 16.
  • the sheet material forming equipment 20 shown in FIG. 3 is for forming the sheet material 16 using an electrospinning method.
  • the sheet material forming facility 20 includes a solution preparation unit 21 and a sheet material forming device 22.
  • the details of the sheet material forming apparatus 22 are shown in another drawing, and only a part of the sheet material forming apparatus 22 is shown in FIG.
  • the solution preparation unit 21 is for preparing the solution 25 that forms the fiber 11.
  • the solution preparation unit 21 prepares the solution 25 by dissolving the cellulose polymer 15 in the solvent 26 of the cellulose polymer.
  • a mixture of dichloromethane and methanol is used as the solvent 26.
  • the solvent 26 is methanol, ethanol, isopropanol, butanol, benzyl alcohol, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate.
  • the sheet material forming facility 20 includes pipes 33a to 33c that connect the solution preparation unit 21 and the sheet material forming apparatus 22, and the sheet material forming apparatus 22 includes nozzles 36a to 36 that are arranged in a state of being separated from each other. 36c.
  • the pipes 33a to 33c are for guiding the solution 25.
  • the pipe 33a connects the solution preparation unit 21 and the nozzle 36a
  • the pipe 33b connects the solution preparation unit 21 and the nozzle 36b
  • the pipe 33c connects the solution preparation unit 21 and the nozzle 36c.
  • the solution 25 is discharged from each of the nozzles 36a to 36c.
  • the solutions 25 exiting from the nozzles 36a to 36c form the fibers 11, respectively.
  • a long support 37 is used for collecting the fibers 11 and supporting the sheet material 16, and the support 37 is moved in the longitudinal direction.
  • the horizontal direction in FIG. 3 is the width direction of the support 37
  • the depth direction in FIG. 3 is the movement direction of the support 37.
  • the nozzles 36 a to 36 c are arranged in this order in the width direction of the support 37.
  • the number of nozzles 36 is three, but the number of nozzles 36 is not limited to this.
  • Each of the pipes 33a to 33c is provided with a pump 38 for sending the solution 25 to the nozzle 36. By changing the rotation speed of the pump 38, each flow rate of the solution 25 exiting from the nozzles 36a to 36c is adjusted.
  • the nozzles 36a to 36c are held by a holding member 41.
  • the holding member 41 and the nozzle 36 constitute a nozzle unit 42 of the sheet material forming apparatus 22.
  • the sheet material forming apparatus 22 will be described with reference to FIG. FIG. 4 shows the case seen from the nozzle 36a side of FIG. 3, and only the nozzle 36a is shown for the nozzle 36 in order to avoid complication of the drawing.
  • the sheet material forming apparatus 22 includes a spinning chamber 45, the nozzle unit 42 described above, a stacking unit 50, a power source 51, and the like.
  • the spinning chamber 45 houses, for example, the nozzle unit 42 and a part of the stacking unit 50, and is configured to be hermetically sealed to prevent the solvent gas from leaking to the outside.
  • the solvent gas is obtained by vaporizing the solvent 26 of the solution 25.
  • the nozzle unit 42 is arranged in the upper part of the spinning chamber 45.
  • the tip from which the solution 25 of the nozzle 36 exits is directed to the collector 52 disposed below the nozzle 36 in FIG.
  • a tip opening When the solution 25 exits from an opening formed in the tip of the nozzle 36 (hereinafter referred to as a tip opening), a generally conical Taylor cone 53 is formed by the solution 25 in the tip opening.
  • the stacking unit 50 is disposed below the nozzle 36.
  • the stacking unit 50 includes a collector 52, a collector rotating unit 56, a support supply unit 57, and a support winding unit 58.
  • the collector 52 attracts the solution 25 from the nozzle 36 and collects the formed fiber 11 as the sheet material 16. In this embodiment, the collector 52 collects on the support 37 described later.
  • the collector 52 is composed of an endless belt formed of a metal strip.
  • the collector 52 may be made of a material that is charged when a voltage is applied by the power supply 51, and is made of, for example, stainless steel.
  • the collector rotating unit 56 includes a pair of rollers 61 and 62, a motor 60, and the like.
  • the collector 52 is stretched horizontally around the pair of rollers 61 and 62.
  • a motor 60 disposed outside the spinning chamber 45 is connected to the shaft of one roller 61 and rotates the roller 61 at a predetermined speed. This rotation causes the collector 52 to move and circulate between the rollers 61 and 62.
  • the moving speed of the collector 52 is, for example, 0.2 m / min, but is not limited thereto.
  • the support body 37 made of a strip-shaped aluminum sheet is supplied to the collector 52 by the support body supply section 57.
  • the support 37 is for collecting the fibers 11 and obtaining the sheet material 16.
  • the support body supply unit 57 has a delivery shaft 57a.
  • a support roll 63 is attached to the delivery shaft 57a.
  • the support roll 63 is configured by winding a support 37 around a core 64.
  • the support winding unit 58 has a winding shaft 67.
  • the winding shaft 67 is rotated by a motor (not shown), and the support body 37 on which the sheet material 16 is formed is wound around the core 68 to be set.
  • the sheet material forming apparatus 22 has a function of forming the fiber 11 and a function of forming the sheet material 16, and the fiber and the sheet material are manufactured by the electrospinning method.
  • the support 37 may be placed on the collector 52 and moved by moving the collector 52.
  • the sheet material 16 may be formed by directly collecting the fibers 11 on the collector 52. However, depending on the material forming the collector 52 or the surface state of the collector 52, the fiber sheet 10 may be attached and attached. It may be difficult to remove. For this reason, as in the present embodiment, it is preferable to guide the support body 37 on which the sheet material 16 is difficult to stick onto the collector 52 and to integrate the fiber 11 on the support body 37.
  • the power source 51 applies a voltage to the nozzle 36 and the collector 52, thereby charging the nozzle 36 to the first polarity and charging the collector 52 to the second polarity opposite to the first polarity. Part.
  • the solution 25 is charged and exits the nozzle 36 in a charged state.
  • the holding member 41 and the nozzle 36 are electrically connected, and the voltage is applied to the nozzle 36 via the holding member 41 by connecting the power source 51 to the holding member 41.
  • the method of applying the voltage is not limited to this.
  • a voltage may be applied to each nozzle 36 by connecting a power source 51 to each nozzle 36.
  • the nozzle 36 is charged positively (+) and the collector 52 is negatively charged ( ⁇ ).
  • the polarity of the nozzle 36 and the collector 52 may be reversed.
  • the collector 52 side may be grounded and the potential may be set to zero.
  • the solution 25 is ejected from the Taylor cone 53 toward the collector 52 as a spinning jet 69 by charging due to application of voltage.
  • the solution 25 is charged by applying a voltage to the nozzle 36, but the solution 25 may be charged in the pipe 33 and the charged solution 2 may be guided to the nozzle 36.
  • the distance L between the nozzle 36 and the collector 52 varies depending on the type of the cellulosic polymer 15 and the solvent 26 and the mass ratio of the solvent 26 in the solution 25, but is preferably in the range of 30 mm to 500 mm. In this embodiment, it is set to 150 mm, for example.
  • the voltage applied to the nozzle 36 and the collector 52 is preferably 5 kV or more and 200 kV or less, and from the viewpoint of forming the fiber 11 to be thin, the voltage is preferably as high as possible within this range. In this embodiment, it is 40 kV, for example.
  • a voltage is applied by the power source 51 to the nozzle 36 and the collector 52 that circulates and moves.
  • the nozzle 36 is positively charged as the first polarity
  • the collector 52 is negatively charged as the second polarity.
  • the solution 25 is continuously supplied from the solution preparation unit 21 to the nozzle 36, and the support 37 is continuously supplied onto the moving collector 52.
  • the solution 25 is charged positively as the first polarity by passing through each of the nozzles 36a to 36c, and exits from the tip openings of the nozzles 36a to 36c in a charged state.
  • the collector 52 attracts the solution 25 that has exited from the tip opening while being charged to the first polarity.
  • a Taylor cone 53 is formed at the tip opening, and the spinning jet 69 is ejected from the Taylor cone 53 toward the collector 52.
  • the spinning jet 69 charged to the first polarity splits into a smaller diameter due to repulsion due to its own charge and / or extends to a smaller diameter while drawing a spiral trajectory while heading toward the collector 52.
  • the fiber 11 is collected as the sheet material 16 on the support 37 (collecting step).
  • the solution 25 is ejected from the nozzle 36 toward the support 37, but the solution 25 may be ejected by a method that does not use a nozzle.
  • the electro bubble spinning method is a method of forming a fiber 11 by supplying a compressed gas to the solution 25 and applying a voltage to the generated bubbles to cause the solution 25 to fly linearly from the bubble surface.
  • the method is introduced.
  • the wire fixed electrode method is a method of forming the fiber 11 by applying a solution to a wire having both ends fixed and applying a voltage between the wire and the collector.
  • a fiber forming apparatus using this wire fixed electrode method is sold by El Marco Co., Ltd., for example.
  • a large amount of solvent 26 is evaporated from the spinning jet 69 toward the collector 52 so that the fibers 11 do not adhere to each other on the support 37 even if they are in contact with each other, or the adhesion is kept small even if they are adhered. It is preferable to make it.
  • the collected fiber 11 is sent to the support winding portion 58 together with the support 37 as the elastic sheet material 16.
  • the fiber sheet 10 is wound around the core 68 in a state where the fiber sheet 10 overlaps the support 37. After the winding core 68 is removed from the winding shaft 67, the sheet material 16 is separated from the support 37.
  • the sheet material 16 obtained in this way is long, but after that, for example, it may be cut into a desired size, and in this example, it is cut into, for example, a circle.
  • the temperature adjustment device 81 includes a housing part 82 and a temperature adjustment mechanism 83.
  • the accommodating portion 82 accommodates the sheet material 16 therein.
  • the accommodation unit 82 is provided with a mounting table 86 on which the sheet material 16 is placed.
  • the configuration of the accommodation unit 82 is not particularly limited, and a commercially available thermostat or the like may be used.
  • the temperature adjustment mechanism 83 adjusts the temperature inside the accommodating portion 82, thereby heating, cooling, or holding the sheet material 16 accommodated therein at a constant temperature.
  • the temperature inside the accommodating portion 82 set by the temperature adjustment mechanism 83 is regarded as the temperature of the sheet material 16.
  • the fiber sheet 10 is formed from the sheet material 16 by the following method.
  • the sheet material 16 is held by a frame 87.
  • the frame 87 is a tension applying member that applies tension to the sheet material 16.
  • tensile_strength is provided with respect to the sheet
  • the tension is preferably suppressed to a level that does not cause wrinkles and sagging in the sheet material 16, and the area of the sheet material 16 (the surface area along the XY plane) is preferably as small as possible.
  • the frame 87 is a circular shape that holds the sheet material 16 in a state where the sheet material 16 is exposed at the center, but the tension applying member can apply the above-described tension that does not change the area of the sheet material 16.
  • the frame 87 is not limited. However, the tension applying member preferably retains the entire periphery rather than retaining a part of the periphery of the sheet material 16 so as not to cause wrinkles and sagging more reliably in heating and cooling described later.
  • the sheet material 16 held by the frame 87 and applied with tension is accommodated in the accommodating portion 82.
  • the sheet material 16 is heated by the temperature adjustment mechanism 83 through the accommodating portion 82.
  • the sheet material 16 is heated in a state where tension is applied, and the fibers 11 are bonded to each other in the sheet material 16 whose temperature has been increased, whereby the fiber sheet 10 is obtained (heating process).
  • tensile_strength provision process has a heating process.
  • the fiber sheet 10 By heating in a state where tension is applied, the fiber sheet 10 having an average pore diameter DA in the range of 2 ⁇ m or more and 20 ⁇ m or less and a predetermined void ratio of 90% or more is obtained, and the angle ⁇ formed is 20 Less than °. Further, the fibers 11 are bonded to each other, so that the fiber pieces are prevented from being detached during use such as filtration. Note that the longer the time of the heating step, the smaller the angle ⁇ can be made. However, considering the viewpoint of suppressing the fiber 11 from being excessively melted, the time for the heating step is preferably within a range of 10 seconds to 1200 seconds, and more preferably within a range of 30 seconds to 900 seconds. preferable. The time for the heating process is a time for maintaining the temperature of the sheet material 16 at a set temperature.
  • the melting point of the cellulose polymer 15 is Tm (unit is ° C.), and the glass transition point is Tg (unit is ° C.).
  • the sheet material 16 is preferably heated to a temperature of Tg or more and Tm or less.
  • Tg melting point
  • the fibers 11 are softened and the fibers 11 are easily fused (bonded by melting) as compared with the case of heating to a temperature lower than Tg.
  • Tm melting point of the cellulose polymer 15
  • Tg unit is ° C.
  • Tg glass transition point
  • the tension applying step preferably includes a cooling step after the heating step. That is, it is preferable to cool the fiber sheet 10 obtained in the heating step in a state where tension is applied (cooling step). Thereby, the predetermined hole ratio of the fiber sheet 10 is easily held by the state immediately after the heating step.
  • the tension is preferably released after the cooling step.
  • a circulating belt is used as the collector 52, but the collector is not limited to a belt.
  • the collector may be a fixed flat plate or a cylindrical rotating body.
  • the support body 37 it is preferable to use the support body 37 so that the sheet material 16 can be easily separated from the collector.
  • a rotating body a cylindrical sheet material made of fibers is formed on the peripheral surface of the rotating body. Therefore, after spinning, the cylindrical sheet material is extracted from the rotating body, and is formed into a desired size and shape. Cut it.
  • Example 1 to [Example 7]
  • the fiber sheet 10 was manufactured using the sheet material forming equipment 20 and the temperature adjusting device 81, and Examples 1 to 7 were obtained.
  • the cellulosic polymer 15 used is described in the “Polymer” column of Table 1.
  • Table 1 when the acyl group of the cellulose acylate used as the polymer is a propionyl group, it is described as “Pr”, and when it is a butanoyl group, it is described as “Bu”.
  • the “acyl group content” (unit: wt%) in Table 1 is the catalog value of Eastman Chemical Company as it is.
  • the concentration of the cellulose polymer 15 in the solution 25 was 8% by mass. This concentration is obtained by ⁇ M1 / (M1 + M2) ⁇ ⁇ 100, where M1 is the mass of the cellulose polymer 15 and M2 is the mass of the solvent 26.
  • the heating process was performed during the tension application process.
  • the temperature of the sheet material 16 set in the heating step and the time for which the temperature is maintained are described in the “temperature” column and “time” column of “heating step” in Table 1.
  • the average diameter of the fiber 11 was 1.8 ⁇ m.
  • the average value of the diameters was obtained by measuring the diameters of 100 fibers 11 from an image taken with a scanning electron microscope and calculating the average value.
  • the obtained fiber sheet 10 was evaluated for filtration accuracy and fiber piece detachment. Evaluation methods and evaluation criteria are as follows. The evaluation results are shown in Table 1. In addition, the SEM image of the cross section in the thickness direction of the fiber sheet 10 obtained in Example 1 is shown in FIG.
  • Filtration accuracy 1 mass% of crosslinked acrylic polydisperse particles (manufactured by Soken Chemical Co., Ltd.) having an average particle diameter of 10 ⁇ m were dispersed in pure water and filtered with a fiber sheet 10.
  • the particle size distribution of each liquid before and after filtration was measured using a particle size distribution measuring device (manufactured by BECKMAN COULTER Co., Ltd.). From the obtained particle size distribution before and after filtration, the trapping rate of particles larger than the average pore diameter DA of the fiber sheet 10 is obtained as ⁇ (number of particles before filtration) ⁇ (number of particles after filtration) ⁇ / (number of particles before filtration). )] ⁇ 100%, and evaluated according to the following criteria.
  • a and B are acceptable and C and D are unacceptable.
  • the fiber sheet 10 was attached to a stainless line holder (KS-47 manufactured by Advantech Co., Ltd.), and 1 L (liter) of pure water was filtered.
  • the filtered liquid (filtrate) was captured by a grid filter.
  • the entire surface of the grid filter on the capturing side was observed with a microscope, the number of fiber pieces was counted, and evaluated according to the following criteria. A and B are acceptable and C and D are unacceptable.
  • the results are shown in the “fiber piece detachment” column of Table 1.
  • B The number of fiber pieces was 6 or more and 10 or less.
  • C The number of fiber pieces was 11 or more and 20 or less.
  • D The number of fiber pieces was 21 or more.
  • Comparative Example 1 to [Comparative Example 4]
  • the heating process was not performed, or the temperature of the sheet material 16 in the heating process was changed, and these were designated as Comparative Examples 1 to 3.
  • the comparative example 4 was implemented as a manufacturing method without a tension

Abstract

Provided are: a fiber sheet which has excellent filtration accuracy and in which the detachment of a fiber piece is suppressed; and a fiber sheet producing method for producing a fiber sheet. This fiber sheet (10) is formed of fibers (11, 11a, 11b, 11c). Pores (12) are formed in the fiber sheet (10). The average pore diameter DA of the pores (12) is within the range of 2-20 μm. In the fiber sheet (10), the proportion of pores having a pore diameter within the range of DA×0.80 to DA×1.20 in the pores (12) is at least 90%.

Description

ファイバシート及びファイバシート製造方法Fiber sheet and fiber sheet manufacturing method
 本発明は、ファイバシート及びファイバシート製造方法に関する。 The present invention relates to a fiber sheet and a fiber sheet manufacturing method.
 ファイバで形成されているファイバシートが知られている。ファイバとしては、例えば数nm以上1000nm未満のナノオーダの径を有するいわゆるナノファイバ、及び、数μm以上1000μm未満のマイクロメートルオーダの径を有するいわゆるミクロンファイバがある。 A fiber sheet made of fiber is known. Examples of the fiber include a so-called nanofiber having a nano-order diameter of several nm or more and less than 1000 nm, and a so-called micron fiber having a diameter of several micrometers or more and less than 1000 μm.
 ファイバシートとして、例えば特許文献1には、熱可塑性樹脂(熱可塑性ポリマー)からなる複数のナノファイバと、ナノファイバ同士の接着により生じた塊部とを有し、所定の条件を満たす塊部が、単位面積当たり所定量以上含まれているナノファイバシートが記載されている。このナノファイバシートは、ナノファイバ間に、直径が5μm以下の空孔が形成されている。 As a fiber sheet, for example, Patent Document 1 includes a plurality of nanofibers made of a thermoplastic resin (thermoplastic polymer) and a lump formed by adhesion of nanofibers, and a lump that satisfies a predetermined condition. A nanofiber sheet containing a predetermined amount or more per unit area is described. In this nanofiber sheet, pores having a diameter of 5 μm or less are formed between nanofibers.
 こうしたファイバシートは、種々の分野における用途開発が盛んに行われている。期待される用途には例えばフィルタがあり、フィルタとしては、固体と気体とを分離する固気分離フィルタ、及び、固体と液体とを分離する固液分離フィルタ、などが挙げられる。 Such fiber sheets are actively developed for use in various fields. Examples of expected applications include filters, and examples of filters include solid-gas separation filters that separate solids and gases, and solid-liquid separation filters that separate solids and liquids.
 ところで、ナノファイバなどのファイバ、及び、ファイバシートを製造する方法として、電界紡糸法が知られている。電界紡糸法は、特許文献1に記載されるように、エレクトロスピニング法とも呼ばれ、例えばノズルとコレクタと電源とを有する電界紡糸装置(エレクトロスピニング装置とも呼ばれる)を用いて行われる。この電界紡糸装置では、電源によりノズルとコレクタとの間に電圧を印加し、例えば、ノズルをマイナス、コレクタをプラスに帯電させる。 Incidentally, an electrospinning method is known as a method for producing a fiber such as a nanofiber and a fiber sheet. As described in Patent Document 1, the electrospinning method is also referred to as an electrospinning method, and is performed using, for example, an electrospinning device (also referred to as an electrospinning device) having a nozzle, a collector, and a power source. In this electrospinning apparatus, a voltage is applied between a nozzle and a collector by a power source, and for example, the nozzle is negatively charged and the collector is positively charged.
 電圧を印加した状態でノズルから原料である溶液を出した場合には、ノズルの先端の開口にテイラーコーンと呼ばれる溶液で構成される円錐状の突起が形成される。印加電圧を徐々に増加し、クーロン力が溶液の表面張力を上回ると、テイラーコーンの先端から溶液が飛び出し、紡糸ジェットが形成される。紡糸ジェットはクーロン力によってコレクタまで移動し、コレクタ上でファイバとして捕集され、コレクタ上にはファイバで構成されたファイバシートが形成される。このように得られたファイバシートを加熱処理に供することもあり、特許文献1でも加熱処理を行っている。 When a solution, which is a raw material, is taken out from the nozzle in a state where a voltage is applied, a conical projection composed of a solution called a Taylor cone is formed at the opening at the tip of the nozzle. When the applied voltage is gradually increased and the Coulomb force exceeds the surface tension of the solution, the solution is ejected from the tip of the Taylor cone and a spinning jet is formed. The spinning jet moves to the collector by the Coulomb force and is collected as a fiber on the collector, and a fiber sheet composed of fibers is formed on the collector. The fiber sheet thus obtained may be subjected to heat treatment, and even in Patent Document 1, heat treatment is performed.
特開2016-199828号公報JP 2016-199828 A
 フィルタには、分離性能であるろ過精度が要求されるが、特許文献1に記載されるファイバシートは、ろ過に用いた場合にはろ過精度が不十分である。また、フィルタには、耐久性も要求されるが、特許文献1に記載されるファイバシートは、ろ過に用いた場合にはファイバ片が脱離する場合がある。 The filter is required to have filtration accuracy as separation performance, but the fiber sheet described in Patent Document 1 has insufficient filtration accuracy when used for filtration. The filter is also required to have durability, but the fiber sheet described in Patent Document 1 may be detached from the fiber piece when used for filtration.
 そこで本発明は、ろ過精度に優れ、ファイバ片の脱離が抑制されたファイバシートと、そのファイバシートを製造するファイバシート製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a fiber sheet that is excellent in filtration accuracy and in which desorption of fiber pieces is suppressed, and a fiber sheet manufacturing method for manufacturing the fiber sheet.
 本発明のファイバシートは、ファイバで形成されており、空孔がある。空孔の平均孔径は2μm以上20μm以下の範囲内である。平均孔径をDAとするときに、空孔のうち、DA×0.80以上DA×1.20以下の範囲内の孔径をもつ空孔の割合が少なくとも90%である。 The fiber sheet of the present invention is made of fiber and has pores. The average pore diameter of the pores is in the range of 2 μm to 20 μm. When the average hole diameter is DA, the ratio of holes having a hole diameter in the range of DA × 0.80 to DA × 1.20 is at least 90%.
 ファイバとファイバシートのシート面とのなす角をθとし、0°≦θ≦90°とするときに、θが20°以下であることが好ましい。 When the angle between the fiber and the sheet surface of the fiber sheet is θ, and 0 ° ≦ θ ≦ 90 °, θ is preferably 20 ° or less.
 ファイバは、セルロース系ポリマーで形成されていることが好ましく、セルロース系ポリマーは、セルロースアシレートであることが好ましく、セルロースアシレートは、セルロースアセテートプロピオネートと、セルロースアセテートブチレートと、セルローストリアセテートとのいずれかであることが好ましい。 The fiber is preferably formed of a cellulosic polymer, and the cellulosic polymer is preferably cellulose acylate, and the cellulose acylate includes cellulose acetate propionate, cellulose acetate butyrate, and cellulose triacetate. It is preferable that it is either.
 本発明のファイバシート製造方法は、捕集工程と、張力付与工程と、加熱工程とを有し、ファイバを捕集し、空孔が形成されているファイバシートを製造する。捕集工程は、ポリマーと溶媒とを含み、帯電した状態の溶液を、この溶液と逆極性に帯電されたまたは電位をゼロにされたコレクタに誘引することにより、ポリマーで形成されたファイバをシート材として捕集する。張力付与工程は、シート材に張力を付与する。加熱工程は、張力が付与されている状態のシート材を加熱することにより、ファイバ同士を接着する。 The fiber sheet manufacturing method of the present invention includes a collecting step, a tension applying step, and a heating step, and collects fibers and manufactures a fiber sheet in which holes are formed. The collection process includes a polymer and a solvent, and the charged solution is attracted to a collector that is charged with a polarity opposite to that of the solution or that has a potential of zero, thereby sheeting the fiber formed of the polymer. Collect as material. The tension applying step applies tension to the sheet material. In the heating step, the fibers are bonded to each other by heating the sheet material to which tension is applied.
 ファイバシート製造方法は、加熱工程で得られたファイバシートを、張力が付与されている状態で冷却する冷却工程をさらに有し、張力を冷却の後に解除することが好ましい。 It is preferable that the fiber sheet manufacturing method further includes a cooling step of cooling the fiber sheet obtained in the heating step in a state where tension is applied, and the tension is released after cooling.
 加熱工程は、シート材をポリマーのガラス転移点以上融点以下に加熱することが好ましい。 In the heating step, it is preferable to heat the sheet material to the glass transition point or more and the melting point or less of the polymer.
 本発明によると、ろ過精度に優れ、ファイバ片の脱離が抑制されたファイバシートが得られる。 According to the present invention, it is possible to obtain a fiber sheet that is excellent in filtration accuracy and in which detachment of fiber pieces is suppressed.
本発明の一実施形態であるファイバシートの概略斜視図である。It is a schematic perspective view of the fiber sheet which is one Embodiment of this invention. なす角θの説明図である。It is explanatory drawing of angle | corner (theta) to make. シート材形成設備の概略図である。It is a schematic diagram of sheet material formation equipment. シート材形成装置の概略図である。It is the schematic of a sheet material forming apparatus. 温度調整装置の概略図である。It is the schematic of a temperature control apparatus. 実施例1で得られたファイバシートのSEM(Scanning Electron Microscope、走査型電子顕微鏡)画像である。2 is an SEM (Scanning / Electron / Microscope, scanning electron microscope) image of the fiber sheet obtained in Example 1. FIG. 比較例2で得られたファイバシートのSEM画像である。6 is a SEM image of the fiber sheet obtained in Comparative Example 2.
 図1に示す本実施形態のファイバシート10は、ファイバ11で形成されている。ただし、ファイバシートは、ファイバ11を含んでいればよく、ファイバ11に加えて、素材が異なる他のファイバを備えてもよい。図1では、XY平面をファイバシート10のフィルム面とし、Zをファイバシート10の厚み方向としている。 A fiber sheet 10 according to the present embodiment shown in FIG. However, the fiber sheet should just contain the fiber 11, and in addition to the fiber 11, you may provide the other fiber from which a raw material differs. In FIG. 1, the XY plane is the film surface of the fiber sheet 10, and Z is the thickness direction of the fiber sheet 10.
 ファイバ11の径は、本実施形態では概ね1.8μmであるが、特に限定されない。ファイバシート10を、固気分離用または固液分離用のフィルタとして用いる場合には、ファイバ11の径は0.1μm以上5μm以下の範囲内が好ましい。ファイバ片の脱離がより抑制されるからである。ファイバ片の脱離の抑制とは、ファイバシート10からのファイバ片の脱離が抑制されることを意味し、ファイバ片の脱離が抑制されていることは優れた耐久性につながる。なお、図1には、図の煩雑化を避けるために、ファイバシート10の厚み方向Zにおいて一方のシート面側の一部のみを描いてある。したがって、ファイバシート10は、ファイバ11が厚み方向Zにさらに多数重なった構造となっている。 The diameter of the fiber 11 is approximately 1.8 μm in the present embodiment, but is not particularly limited. When the fiber sheet 10 is used as a solid-gas separation or solid-liquid separation filter, the diameter of the fiber 11 is preferably in the range of 0.1 μm to 5 μm. This is because the detachment of the fiber piece is further suppressed. The suppression of the fiber piece detachment means that the fiber piece detachment from the fiber sheet 10 is suppressed, and the suppression of the fiber piece detachment leads to excellent durability. In FIG. 1, only a part on one sheet surface side in the thickness direction Z of the fiber sheet 10 is drawn in order to avoid complication of the drawing. Therefore, the fiber sheet 10 has a structure in which the fibers 11 are further overlapped in the thickness direction Z.
 ファイバシート10の厚みは、5μm以上5000μm以下の範囲内であることが好ましく、10μm以上3000μm以下の範囲内であることがより好ましく、20μm以上1000μm以下の範囲内であることがさらに好ましい。なお、本例では、50μmとしている。 The thickness of the fiber sheet 10 is preferably in the range of 5 μm to 5000 μm, more preferably in the range of 10 μm to 3000 μm, and still more preferably in the range of 20 μm to 1000 μm. In this example, it is 50 μm.
 ファイバシート10には空孔12が複数ある。空孔12は、ファイバ11によって画定された空間領域としての空隙のうち、ファイバシート10の厚み方向Zに貫通している状態に形成されているものである。したがって、空隙の中には、厚み方向Zに貫通した空孔12を形成せずに、厚み方向Zで非貫通、例えばファイバ11によって閉じられた空間領域として存在しているものもある。 The fiber sheet 10 has a plurality of holes 12. The air holes 12 are formed so as to penetrate through in the thickness direction Z of the fiber sheet 10 among the air gaps defined as the space regions defined by the fibers 11. Accordingly, some voids exist as a space region that does not penetrate in the thickness direction Z, for example, is closed by the fiber 11, without forming the air holes 12 penetrating in the thickness direction Z.
 ここで、複数の空孔12の平均孔径をDA(単位はμm)とする。平均孔径DAは、2μm以上20μm以下の範囲内である。平均孔径DAが2μm以上であることにより、2μm未満である場合に比べて、ファイバシート10を例えばろ過用のフィルタとして用いた場合に、単位時間当たりの処理量が多くなる。単位時間の処理量が多いとは、すなわちろ過効率がよいということである。平均孔径DAが20μm以下であることにより、20μmよりも大きい場合に比べて、例えばろ過用のフィルタとして用いた場合に、ファイバ片の脱離が抑制される。平均孔径DAは、3μm以上15μm以下の範囲内がより好ましく、4μm以上10μm以下の範囲内がさらに好ましい。 Here, the average pore diameter of the plurality of holes 12 is DA (unit: μm). The average pore diameter DA is in the range of 2 μm to 20 μm. When the average pore diameter DA is 2 μm or more, when the fiber sheet 10 is used as a filter for filtration, for example, the processing amount per unit time is increased as compared with the case where the average pore diameter DA is less than 2 μm. A large amount of processing per unit time means that filtration efficiency is good. When the average pore diameter DA is 20 μm or less, detachment of the fiber pieces is suppressed when used as a filter for filtration, for example, compared to a case where the average pore diameter DA is larger than 20 μm. The average pore diameter DA is more preferably in the range of 3 μm to 15 μm, and still more preferably in the range of 4 μm to 10 μm.
 平均孔径DAは、以下の方法で求めることができる。まず、ファイバシート10から5cm角(5cm×5cm)に切り出し、サンプルとする。このサンプルを、表面張力が15.3mN/mのGALWICK(POROUS MATERIAL社製)に浸漬した後、パームポロメーター(POROUS MATERIAL社製)を用いて、バブルポイント法で測定することにより平均孔径DAは得られる。 The average pore diameter DA can be obtained by the following method. First, a 5 cm square (5 cm × 5 cm) is cut out from the fiber sheet 10 to obtain a sample. After immersing this sample in GALWICK (manufactured by POROUS MATERIAL) having a surface tension of 15.3 mN / m, the average pore diameter DA is determined by measuring by a bubble point method using a palm porometer (manufactured by POROUS MATERIAL). can get.
 複数の空孔12のうち、DA×0.80以上DA×1.20以下の範囲内の孔径をもつ空孔12の割合(以下、所定空孔割合と称する)が少なくとも90%、すなわち90%以上である。このように、空孔12の孔径の分布が非常に小さいから、ろ過用のフィルタとして用いた場合には、優れたろ過精度で分離する。所定空孔割合(単位は%)は、95%以上であることがより好ましく、98%以上であることがさらに好ましく、このように100%に近いほど好ましい。 Among the plurality of holes 12, the ratio of holes 12 having a hole diameter in the range of DA × 0.80 to DA × 1.20 (hereinafter referred to as a predetermined hole ratio) is at least 90%, that is, 90%. That's it. Thus, since the distribution of the hole diameter of the air holes 12 is very small, when used as a filter for filtration, the pores 12 are separated with excellent filtration accuracy. The predetermined vacancy ratio (unit:%) is more preferably 95% or more, further preferably 98% or more, and is preferably closer to 100% in this way.
 所定空孔割合は、パームポロメーター(POROUS MATERIAL社製)から得られた孔径分布に対して、DA×0.80以上DA×1.20以下である空孔12の和(量)から算出した。具体的には、パームポロメーターが出力した孔径分布(孔径とその孔径をもつ空孔の存在量との相関関係データ)を用い、DA×0.80以上DA×1.20以下の範囲内の孔径をもつ空孔量の、全ての空孔量に対する割合を、所定空孔割合として求めた。 The predetermined pore ratio was calculated from the sum (quantity) of pores 12 that is DA × 0.80 or more and DA × 1.20 or less with respect to the pore size distribution obtained from a palm porometer (manufactured by POROUS MATERIAL). . Specifically, using the pore size distribution output by the palm porometer (correlation data between the pore size and the abundance of pores having the pore size), the range of DA × 0.80 to DA × 1.20 is used. The ratio of the amount of holes having a hole diameter to the total amount of holes was determined as a predetermined hole ratio.
 ファイバ11同士は、厚み方向Zで重なる部分、及び/または、ファイバシート10のシート面方向(XY平面内)において接している部分で、接着していることが好ましく、本例でもそのようにしている。このようにファイバ11同士は固定されている。この固定により、ファイバシート10は、ファイバ片の脱離がより抑制される。 It is preferable that the fibers 11 are bonded to each other in a portion overlapping in the thickness direction Z and / or a portion in contact in the sheet surface direction (in the XY plane) of the fiber sheet 10, and in this example as well. Yes. In this way, the fibers 11 are fixed to each other. By this fixing, the fiber sheet 10 is further suppressed from detaching the fiber pieces.
 ファイバ11は、ポリマーで形成されており、さらに具体的には熱可塑性樹脂(ポリマー)で形成されている。本例の熱可塑性樹脂はセルロース系ポリマー15(図3参照)である。セルロース系ポリマー15はセルロースアシレートであることが好ましい。セルロースアシレートは、セルロースのヒドロキシ基を構成する水素原子の一部または全部がアシル基で置換されているセルロースエステルである。 The fiber 11 is made of a polymer, more specifically, a thermoplastic resin (polymer). The thermoplastic resin of this example is a cellulose polymer 15 (see FIG. 3). The cellulosic polymer 15 is preferably cellulose acylate. Cellulose acylate is a cellulose ester in which some or all of the hydrogen atoms constituting the hydroxy group of cellulose are substituted with acyl groups.
 セルロースアシレートは、セルロースアセテートプロピオネート(以下、CAPと称する、融点Tmは188℃以上210℃以下、ガラス転移点Tgは147℃)と、セルロースアセテートブチレート(以下、CABと称する、融点Tmは195℃以上205℃以下、ガラス転移点Tgは141℃)と、セルローストリアセテート(以下、TACと称する、融点Tmは290℃、ガラス転移点Tgは200℃)とのいずれかひとつであることが好ましい。これにより、例えば100℃以上140℃以下の高温条件下においても、ろ過精度が高く、耐久性の高いフィルタとして用いることができる。 Cellulose acylate includes cellulose acetate propionate (hereinafter referred to as CAP, melting point Tm is 188 ° C. or higher and 210 ° C. or lower, glass transition point Tg is 147 ° C.), and cellulose acetate butyrate (hereinafter referred to as CAB, melting point Tm). Is 195 ° C. or higher and 205 ° C. or lower, glass transition point Tg is 141 ° C.) and cellulose triacetate (hereinafter referred to as TAC, melting point Tm is 290 ° C., glass transition point Tg is 200 ° C.). preferable. Thereby, it can be used as a filter with high filtration accuracy and high durability even under high temperature conditions of, for example, 100 ° C. or more and 140 ° C. or less.
 図2において、ファイバ11a,11b,11c,・・・は一方のシート面(以下、第1シート面と称する)10Aに沿った方向に延びている。沿った方向とは、第1シート面10Aに平行な面内成分をもって延びていればよく、その面内で曲がっていてもよい。なお、他方のシート面(図示無し、以下第2シート面と称する)と第1シート面10Aとは平行と見なしてよい。したがって、ファイバ11a,11b,11c,・・・は第2シート面に沿った方向にも延びている。なお、ファイバ11a,11b,11c,・・・を区別しない場合には、ファイバ11と記載する。 2, the fibers 11a, 11b, 11c,... Extend in a direction along one sheet surface (hereinafter referred to as a first sheet surface) 10A. The direction along the surface may extend with an in-plane component parallel to the first sheet surface 10A, and may be bent in the surface. The other sheet surface (not shown, hereinafter referred to as the second sheet surface) and the first sheet surface 10A may be regarded as parallel. Therefore, the fibers 11a, 11b, 11c,... Extend in the direction along the second sheet surface. In addition, when not distinguishing fiber 11a, 11b, 11c, ..., it describes as the fiber 11. FIG.
 ファイバ11と第1シート面10Aとのなす角をθ(単位は°)とする。ただし、なす角θは0°以上90°以下の範囲内で定義し、すなわち0°≦θ≦90°とする。なす角θは、20°以下であることが好ましく、このように、第1シート面10Aに沿った方向に延びている。なお、図2においては、図の煩雑化を避けるためになす角θは、ファイバ11bにおいてのみ示しているが、他のファイバ11b,11c,・・・についても同様である。なす角θは、15°以下であることがより好ましく、10°以下であることがさらに好ましい。 An angle formed by the fiber 11 and the first sheet surface 10A is θ (unit: °). However, the angle θ formed is defined within a range of 0 ° to 90 °, that is, 0 ° ≦ θ ≦ 90 °. The formed angle θ is preferably 20 ° or less, and thus extends in the direction along the first sheet surface 10A. In FIG. 2, the angle θ formed to avoid complication of the drawing is shown only for the fiber 11b, but the same applies to the other fibers 11b, 11c,. The formed angle θ is more preferably 15 ° or less, and further preferably 10 ° or less.
 なす角θは、SEM(Scanning Electron Microscope、走査型電子顕微鏡)画像を用いて求めることができ、本例でもその方法で求めている。まずファイバシート10を厚み方向で切断し、SEMでの画像を観察する。画像を観察した場合には、1本のファイバ11のうちの長手方向の一部分が線分状に観察される。その線分状のファイバ部分を、任意に20本選び、それら各々のなす角θ1,θ2,θ3,・・・,θ20(単位は°)を測定する。測定したこれら20個のなす角の平均値を、(θ1+θ2+θ3+・・・+θ20)/20の算出式で求め、これをなす角θとする。なお、画像から選び出す20本は、観察されるファイバ部分の中のうち、できるだけなす角θが大きいものを選ぶことが好ましい。 The formed angle θ can be obtained using an SEM (Scanning Electron Microscope) image, and is also obtained by this method in this example. First, the fiber sheet 10 is cut in the thickness direction, and an image on the SEM is observed. When an image is observed, a part of the longitudinal direction of one fiber 11 is observed in a line segment shape. Twenty of the line-shaped fiber portions are arbitrarily selected, and the angles θ1, θ2, θ3,..., Θ20 (unit: °) formed by each of them are measured. An average value of the measured angles formed by these 20 is obtained by a calculation formula of (θ1 + θ2 + θ3 +... + Θ20) / 20, and is defined as an angle θ formed therefrom. Of the 20 fiber parts to be selected from the image, it is preferable to select an observed fiber part having as large an angle θ as possible.
 上記構成によれば、ろ過精度に優れ、ファイバ片の脱離が抑制されているので、固体と液体との混合物(固体液体混合物)から目的とする物質を分離または除去するためのフィルタとして好適に利用することができる。そのようなフィルタの中でも、特に好ましく用いることができるフィルタは、ファイバ片の混入(コンタミネーション)が懸念され、高精度な分離性能が要求される、食品(飲料を含む)用、医療用、超純水用、及び高純度薬液用のフィルタである。具体的には、飲料から微粒子及び/または微生物を除去する除去用フィルタ、工業用純水の前処理ろ過フィルタ、血液や唾液などの体液から特定の細胞を捕集する検査用フィルタなどが挙げられる。検査用フィルタとしては、例えば、血糖値検査、尿糖検査、生活習慣病検査、遺伝子検査、腫瘍マーカー検査、及び、血液検査などの検査用フィルタなどがある。 According to the above configuration, since the filtration accuracy is excellent and the detachment of the fiber piece is suppressed, it is suitable as a filter for separating or removing a target substance from a mixture of solid and liquid (solid liquid mixture). Can be used. Among such filters, a filter that can be particularly preferably used is for food (including beverages), for medical use, for ultra-high precision separation performance, because there is a concern about contamination of fiber pieces (contamination). It is a filter for pure water and high-purity chemical liquid. Specific examples include a filter for removing fine particles and / or microorganisms from beverages, a pretreatment filter for industrial pure water, and a test filter for collecting specific cells from body fluids such as blood and saliva. . Examples of the test filter include a test filter for blood glucose level test, urine sugar test, lifestyle-related disease test, genetic test, tumor marker test, blood test, and the like.
 ファイバシート10は、シート材形成工程と、ファイバシート形成工程とを有する製造方法により製造される。シート材形成工程は、シート材16(図3参照)を形成する。シート材16は、ファイバシート10の前駆体である。ファイバシート形成工程は、シート材16からファイバシート10を形成する。 The fiber sheet 10 is manufactured by a manufacturing method having a sheet material forming step and a fiber sheet forming step. In the sheet material forming step, the sheet material 16 (see FIG. 3) is formed. The sheet material 16 is a precursor of the fiber sheet 10. In the fiber sheet forming step, the fiber sheet 10 is formed from the sheet material 16.
 図3に示すシート材形成設備20は、電界紡糸法を用いてシート材16を形成するためのものである。シート材形成設備20は、溶液調製部21とシート材形成装置22とを備える。なお、シート材形成装置22の詳細は別の図面に図示しており、図3においては、シート材形成装置22の一部のみを図示している。 The sheet material forming equipment 20 shown in FIG. 3 is for forming the sheet material 16 using an electrospinning method. The sheet material forming facility 20 includes a solution preparation unit 21 and a sheet material forming device 22. The details of the sheet material forming apparatus 22 are shown in another drawing, and only a part of the sheet material forming apparatus 22 is shown in FIG.
 溶液調製部21は、ファイバ11を形成する溶液25を調製するためのものである。溶液調製部21は、セルロース系ポリマー15をセルロース系ポリマーの溶媒26に溶解することにより、溶液25を調製する。 The solution preparation unit 21 is for preparing the solution 25 that forms the fiber 11. The solution preparation unit 21 prepares the solution 25 by dissolving the cellulose polymer 15 in the solvent 26 of the cellulose polymer.
 本実施形態では、溶媒26としてジクロロメタンとメタノールとの混合物を用いている。セルロース系ポリマー15としてセルロースアシレートを用いる場合には、溶媒26としては、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール、アセトン、メチルエチルケトン、シクロヘキサノン、メチルアセテート、エチルアセテート、プロピルアセテート、ブチルアセテート、ギ酸メチル、ギ酸エチル、ヘキサン、シクロヘキサン、ジクロロメタン、クロロホルム、四塩化炭素、ベンゼン、トルエン、キシレン、ジメチルホルムアミド、N-メチルピロリドン、ジエチルエーテル、ジオキサン、テトラヒドロフラン、1-メトキシ-2-プロパノールなどが挙げられる。これらは、セルロースアシレートの種類に応じて、単独で使用してもよいし、混合して使用してもよい。 In the present embodiment, a mixture of dichloromethane and methanol is used as the solvent 26. When cellulose acylate is used as the cellulose polymer 15, the solvent 26 is methanol, ethanol, isopropanol, butanol, benzyl alcohol, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate. Ethyl formate, hexane, cyclohexane, dichloromethane, chloroform, carbon tetrachloride, benzene, toluene, xylene, dimethylformamide, N-methylpyrrolidone, diethyl ether, dioxane, tetrahydrofuran, 1-methoxy-2-propanol and the like. These may be used alone or in combination depending on the type of cellulose acylate.
 この例において、シート材形成設備20は、溶液調製部21とシート材形成装置22とを接続する配管33a~33cを備え、シート材形成装置22は、互いに離間した状態に配されたノズル36a~36cを有する。配管33a~33cは、溶液25を案内するためのものである。配管33aは溶液調製部21とノズル36aとを接続し、配管33bは溶液調製部21とノズル36bとを接続し、配管33cは溶液調製部21とノズル36cとを接続する。これにより、ノズル36a~36cのそれぞれから溶液25が出される。ノズル36a~36cから出た溶液25は、それぞれファイバ11を形成する。なお、以降の説明において、配管33aと配管33bと配管33cとを区別しない場合には、配管33と記載する。また、ノズル36aとノズル36bとノズル36cとを区別しない場合には、ノズル36と記載する。 In this example, the sheet material forming facility 20 includes pipes 33a to 33c that connect the solution preparation unit 21 and the sheet material forming apparatus 22, and the sheet material forming apparatus 22 includes nozzles 36a to 36 that are arranged in a state of being separated from each other. 36c. The pipes 33a to 33c are for guiding the solution 25. The pipe 33a connects the solution preparation unit 21 and the nozzle 36a, the pipe 33b connects the solution preparation unit 21 and the nozzle 36b, and the pipe 33c connects the solution preparation unit 21 and the nozzle 36c. Thereby, the solution 25 is discharged from each of the nozzles 36a to 36c. The solutions 25 exiting from the nozzles 36a to 36c form the fibers 11, respectively. In the following description, when the pipe 33a, the pipe 33b, and the pipe 33c are not distinguished, they are described as the pipe 33. Moreover, when not distinguishing the nozzle 36a, the nozzle 36b, and the nozzle 36c, it describes as the nozzle 36. FIG.
 なおこの例では、ファイバ11の集積及びシート材16の支持に長尺の支持体37を用いており、この支持体37を長手方向に移動させている。支持体37の詳細については別の図面を用いて後述するが、図3における横方向は支持体37の幅方向であり、図3の紙面奥行方向が支持体37の移動方向である。ノズル36a~36cはこの順で、支持体37の幅方向に並べて配してある。この例では、ノズル36を3本としているが、ノズル36の本数はこれに限られない。なお、配管33a~33cのそれぞれには溶液25をノズル36へ送るポンプ38が設けられている。ポンプ38の回転数を変えることにより、ノズル36a~36cから出る溶液25の各流量が調節される。 In this example, a long support 37 is used for collecting the fibers 11 and supporting the sheet material 16, and the support 37 is moved in the longitudinal direction. Although details of the support 37 will be described later with reference to another drawing, the horizontal direction in FIG. 3 is the width direction of the support 37, and the depth direction in FIG. 3 is the movement direction of the support 37. The nozzles 36 a to 36 c are arranged in this order in the width direction of the support 37. In this example, the number of nozzles 36 is three, but the number of nozzles 36 is not limited to this. Each of the pipes 33a to 33c is provided with a pump 38 for sending the solution 25 to the nozzle 36. By changing the rotation speed of the pump 38, each flow rate of the solution 25 exiting from the nozzles 36a to 36c is adjusted.
 ノズル36a~36cは保持部材41により保持されている。この保持部材41とノズル36とにより、シート材形成装置22のノズルユニット42が構成されている。 The nozzles 36a to 36c are held by a holding member 41. The holding member 41 and the nozzle 36 constitute a nozzle unit 42 of the sheet material forming apparatus 22.
 シート材形成装置22について、図4を参照しながら説明する。図4には、図3のノズル36a側から見た場合を図示しており、図の煩雑化を避けるために、ノズル36についてはノズル36aのみを図示している。シート材形成装置22は、紡糸室45と、前述のノズルユニット42と、集積部50と、電源51等を備える。紡糸室45は、例えば、ノズルユニット42と、集積部50の一部などを収容しており、密閉可能に構成されることにより溶媒ガスが外部に洩れることを防止している。溶媒ガスは、溶液25の溶媒26が気化したものである。 The sheet material forming apparatus 22 will be described with reference to FIG. FIG. 4 shows the case seen from the nozzle 36a side of FIG. 3, and only the nozzle 36a is shown for the nozzle 36 in order to avoid complication of the drawing. The sheet material forming apparatus 22 includes a spinning chamber 45, the nozzle unit 42 described above, a stacking unit 50, a power source 51, and the like. The spinning chamber 45 houses, for example, the nozzle unit 42 and a part of the stacking unit 50, and is configured to be hermetically sealed to prevent the solvent gas from leaking to the outside. The solvent gas is obtained by vaporizing the solvent 26 of the solution 25.
 ノズルユニット42は紡糸室45内の上部に配される。ノズル36の溶液25が出る先端は、図4におけるノズル36の下方に配したコレクタ52へ向けてある。溶液25がノズル36の先端に形成されている開口(以下、先端開口と称する)から出る際に、先端開口には溶液25によって概ね円錐状のテイラーコーン53が形成される。 The nozzle unit 42 is arranged in the upper part of the spinning chamber 45. The tip from which the solution 25 of the nozzle 36 exits is directed to the collector 52 disposed below the nozzle 36 in FIG. When the solution 25 exits from an opening formed in the tip of the nozzle 36 (hereinafter referred to as a tip opening), a generally conical Taylor cone 53 is formed by the solution 25 in the tip opening.
 集積部50は、ノズル36の下方に配される。集積部50は、コレクタ52と、コレクタ回転部56と、支持体供給部57と、支持体巻取部58とを有する。コレクタ52はノズル36から出た溶液25を誘引し、形成されたファイバ11をシート材16として捕集するためのものであり、本実施形態では、後述の支持体37上に捕集する。 The stacking unit 50 is disposed below the nozzle 36. The stacking unit 50 includes a collector 52, a collector rotating unit 56, a support supply unit 57, and a support winding unit 58. The collector 52 attracts the solution 25 from the nozzle 36 and collects the formed fiber 11 as the sheet material 16. In this embodiment, the collector 52 collects on the support 37 described later.
 コレクタ52は、金属製の帯状物で形成された無端ベルトで構成されている。コレクタ52は、電源51によって電圧が印加されることにより帯電する素材から形成されていればよく、例えばステンレス製とされる。コレクタ回転部56は、一対のローラ61,62と、モータ60などから構成されている。コレクタ52は、一対のローラ61,62に水平に掛け渡されている。一方のローラ61の軸には紡糸室45の外に配されたモータ60が接続されており、ローラ61を所定速度で回転させる。この回転によりコレクタ52は移動し、ローラ61とローラ62との間で循環する。本実施形態においては、コレクタ52の移動速度は、例えば0.2m/分としているが、これに限定されない。 The collector 52 is composed of an endless belt formed of a metal strip. The collector 52 may be made of a material that is charged when a voltage is applied by the power supply 51, and is made of, for example, stainless steel. The collector rotating unit 56 includes a pair of rollers 61 and 62, a motor 60, and the like. The collector 52 is stretched horizontally around the pair of rollers 61 and 62. A motor 60 disposed outside the spinning chamber 45 is connected to the shaft of one roller 61 and rotates the roller 61 at a predetermined speed. This rotation causes the collector 52 to move and circulate between the rollers 61 and 62. In the present embodiment, the moving speed of the collector 52 is, for example, 0.2 m / min, but is not limited thereto.
 コレクタ52には、支持体供給部57によって、帯状のアルミニウムシートからなる支持体37が供給される。支持体37は、ファイバ11を集積させ、シート材16として得るためのものである。支持体供給部57は送出軸57aを有する。送出軸57aには支持体ロール63が装着される。支持体ロール63は支持体37が巻芯64に巻き取られて構成されている。支持体巻取部58は巻取軸67を有する。巻取軸67はモータ(図示無し)により回転され、セットされる巻芯68に、シート材16が形成された支持体37を巻き取る。このように、このシート材形成装置22は、ファイバ11を形成する機能と、シート材16を形成する機能とをもち、電界紡糸法によるファイバ及びシート材の製造が実施される。なお、支持体37は、コレクタ52上に載せ、コレクタ52の移動によって移動させてもよい。 The support body 37 made of a strip-shaped aluminum sheet is supplied to the collector 52 by the support body supply section 57. The support 37 is for collecting the fibers 11 and obtaining the sheet material 16. The support body supply unit 57 has a delivery shaft 57a. A support roll 63 is attached to the delivery shaft 57a. The support roll 63 is configured by winding a support 37 around a core 64. The support winding unit 58 has a winding shaft 67. The winding shaft 67 is rotated by a motor (not shown), and the support body 37 on which the sheet material 16 is formed is wound around the core 68 to be set. As described above, the sheet material forming apparatus 22 has a function of forming the fiber 11 and a function of forming the sheet material 16, and the fiber and the sheet material are manufactured by the electrospinning method. The support 37 may be placed on the collector 52 and moved by moving the collector 52.
 なお、コレクタ52の上にファイバ11を直接集積することによりシート材16を形成してもよいが、コレクタ52を形成する素材またはコレクタ52の表面状態等によってはファイバシート10が貼り付いてこれを剥がしにくい場合がある。このため、本実施形態のように、シート材16が貼り付きにくい支持体37をコレクタ52上に案内し、この支持体37上にファイバ11を集積することが好ましい。 The sheet material 16 may be formed by directly collecting the fibers 11 on the collector 52. However, depending on the material forming the collector 52 or the surface state of the collector 52, the fiber sheet 10 may be attached and attached. It may be difficult to remove. For this reason, as in the present embodiment, it is preferable to guide the support body 37 on which the sheet material 16 is difficult to stick onto the collector 52 and to integrate the fiber 11 on the support body 37.
 電源51は、ノズル36とコレクタ52とに電圧を印加し、これにより、ノズル36を第1の極性に帯電させ、コレクタ52を第1の極性と逆極性の第2の極性に帯電させる電圧印加部である。帯電したノズル36内を通過することにより、溶液25が帯電し、帯電した状態でノズル36から出る。なお、この例では保持部材41とノズル36とを導通させており、電源51を保持部材41に接続することにより、保持部材41を介してノズル36に電圧を印加しているが、ノズル36への電圧の印加の手法はこれに限られない。例えばノズル36の各々に電源51を接続することにより各ノズル36に電圧を印加してもよい。本実施形態ではノズル36をプラス(+)に帯電させ、コレクタ52をマイナス(-)に帯電させているが、ノズル36とコレクタ52との極性は逆であってもよい。なお、コレクタ52側をアースして電位を0としても良い。電圧の印加による帯電により、テイラーコーン53からは溶液25が紡糸ジェット69としてコレクタ52に向かって噴出される。なお、この例ではノズル36に電圧を印加することにより溶液25を帯電させているが、配管33において溶液25を帯電させ、帯電した状態の溶液2をノズル36に案内してもよい。 The power source 51 applies a voltage to the nozzle 36 and the collector 52, thereby charging the nozzle 36 to the first polarity and charging the collector 52 to the second polarity opposite to the first polarity. Part. By passing through the charged nozzle 36, the solution 25 is charged and exits the nozzle 36 in a charged state. In this example, the holding member 41 and the nozzle 36 are electrically connected, and the voltage is applied to the nozzle 36 via the holding member 41 by connecting the power source 51 to the holding member 41. The method of applying the voltage is not limited to this. For example, a voltage may be applied to each nozzle 36 by connecting a power source 51 to each nozzle 36. In this embodiment, the nozzle 36 is charged positively (+) and the collector 52 is negatively charged (−). However, the polarity of the nozzle 36 and the collector 52 may be reversed. The collector 52 side may be grounded and the potential may be set to zero. The solution 25 is ejected from the Taylor cone 53 toward the collector 52 as a spinning jet 69 by charging due to application of voltage. In this example, the solution 25 is charged by applying a voltage to the nozzle 36, but the solution 25 may be charged in the pipe 33 and the charged solution 2 may be guided to the nozzle 36.
 ノズル36とコレクタ52との距離Lは、セルロース系ポリマー15と溶媒26との種類と、溶液25における溶媒26の質量割合等によって適切な値が異なるが、30mm以上500mm以下の範囲内が好ましく、本実施形態では例えば150mmとしている。 The distance L between the nozzle 36 and the collector 52 varies depending on the type of the cellulosic polymer 15 and the solvent 26 and the mass ratio of the solvent 26 in the solution 25, but is preferably in the range of 30 mm to 500 mm. In this embodiment, it is set to 150 mm, for example.
 ノズル36とコレクタ52とにかける電圧は、5kV以上200kV以下が好ましく、ファイバ11を細く形成する観点では電圧はこの範囲内でなるべく高いほうが好ましい。本実施形態では例えば40kVとしている。 The voltage applied to the nozzle 36 and the collector 52 is preferably 5 kV or more and 200 kV or less, and from the viewpoint of forming the fiber 11 to be thin, the voltage is preferably as high as possible within this range. In this embodiment, it is 40 kV, for example.
 シート材形成設備20の作用を説明する。ノズル36と、循環移動するコレクタ52とには、電源51により電圧が印加される。これにより、ノズル36は第1の極性としてのプラスに帯電し、コレクタ52は第2の極性としてのマイナスに帯電する。ノズル36には、溶液調製部21から溶液25が連続的に供給され、移動するコレクタ52上には、支持体37が連続的に供給される。溶液25は、ノズル36a~36cのそれぞれを通過することにより第1の極性であるプラスに帯電し、帯電した状態で、ノズル36a~36cの各先端開口から出る。 The operation of the sheet material forming facility 20 will be described. A voltage is applied by the power source 51 to the nozzle 36 and the collector 52 that circulates and moves. As a result, the nozzle 36 is positively charged as the first polarity, and the collector 52 is negatively charged as the second polarity. The solution 25 is continuously supplied from the solution preparation unit 21 to the nozzle 36, and the support 37 is continuously supplied onto the moving collector 52. The solution 25 is charged positively as the first polarity by passing through each of the nozzles 36a to 36c, and exits from the tip openings of the nozzles 36a to 36c in a charged state.
 コレクタ52は、第1の極性に帯電した状態で先端開口から出た溶液25を誘引する。これにより、先端開口にはテイラーコーン53が形成され、このテイラーコーン53から紡糸ジェット69がコレクタ52に向けて噴出される。第1の極性に帯電している紡糸ジェット69は、コレクタ52に向かう間に、自身の電荷による反発でより細い径に分裂し、及び/または螺旋状の軌道を描きながらより細い径に伸びていき、支持体37上にファイバ11がシート材16として捕集される(捕集工程)。 The collector 52 attracts the solution 25 that has exited from the tip opening while being charged to the first polarity. Thereby, a Taylor cone 53 is formed at the tip opening, and the spinning jet 69 is ejected from the Taylor cone 53 toward the collector 52. The spinning jet 69 charged to the first polarity splits into a smaller diameter due to repulsion due to its own charge and / or extends to a smaller diameter while drawing a spiral trajectory while heading toward the collector 52. Then, the fiber 11 is collected as the sheet material 16 on the support 37 (collecting step).
 この例では溶液25をノズル36から出すことにより支持体37へ向けて飛ばしているが、ノズルを用いない方法で溶液25を飛ばしてもよい。例えば、エレクトロバブルスピニング法、または、ワイヤ固定電極法等がある。エレクトロバブルスピニング法は、溶液25に圧縮気体を供給し、発生した気泡に電圧を印加することにより気泡表面から溶液25を線状に飛ばし、ファイバ11を形成する方法であり、廣瀬製紙株式会社からその方法が紹介されている。ワイヤ固定電極法は、両端が固定されたワイヤに溶液を塗布し、ワイヤとコレクタとの間に電圧を印加することによりファイバ11を形成する方法である。このワイヤ固定電極法を用いたファイバ形成装置は、例えばエルマルコ株式会社から販売されている。 In this example, the solution 25 is ejected from the nozzle 36 toward the support 37, but the solution 25 may be ejected by a method that does not use a nozzle. For example, there is an electro bubble spinning method or a wire fixed electrode method. The electro bubble spinning method is a method of forming a fiber 11 by supplying a compressed gas to the solution 25 and applying a voltage to the generated bubbles to cause the solution 25 to fly linearly from the bubble surface. The method is introduced. The wire fixed electrode method is a method of forming the fiber 11 by applying a solution to a wire having both ends fixed and applying a voltage between the wire and the collector. A fiber forming apparatus using this wire fixed electrode method is sold by El Marco Co., Ltd., for example.
 支持体37上においてファイバ11同士が互いに接触しても接着しない、あるいは、接着してもその接着力が小さく抑えられるように、コレクタ52に向かう間に、紡糸ジェット69から溶媒26を多めに蒸発させることが好ましい。 A large amount of solvent 26 is evaporated from the spinning jet 69 toward the collector 52 so that the fibers 11 do not adhere to each other on the support 37 even if they are in contact with each other, or the adhesion is kept small even if they are adhered. It is preferable to make it.
 捕集されたファイバ11は弾力があるシート材16として支持体37とともに支持体巻取部58に送られる。ファイバシート10は、支持体37と重なった状態で巻芯68に巻かれる。巻芯68は巻取軸67から取り外された後に、支持体37からシート材16が分離される。このようにして得られたシート材16は長尺であるが、この後、例えば所望のサイズに切断してもよく、本例でも切断することにより例えば円形にしている。 The collected fiber 11 is sent to the support winding portion 58 together with the support 37 as the elastic sheet material 16. The fiber sheet 10 is wound around the core 68 in a state where the fiber sheet 10 overlaps the support 37. After the winding core 68 is removed from the winding shaft 67, the sheet material 16 is separated from the support 37. The sheet material 16 obtained in this way is long, but after that, for example, it may be cut into a desired size, and in this example, it is cut into, for example, a circle.
 図5に示す温度調整装置81は、シート材16からファイバシート10を形成するためのものである。温度調整装置81は、収容部82と温調機構83とを備える。収容部82は、シート材16を内部に収容する。この例の収容部82には、シート材16を載置する載置台86が設けられているが、収容部82の構成は特に限定されず、市販の恒温槽などを用いてよい。温調機構83は、収容部82の内部の温度を調整し、これにより、内部に収容されたシート材16を加熱、冷却、あるいは一定の温度に保持する。なお、本実施形態では、温調機構83によって設定した収容部82の内部の温度を、シート材16の温度と見なしている。 5 is for forming the fiber sheet 10 from the sheet material 16. The temperature adjusting device 81 shown in FIG. The temperature adjustment device 81 includes a housing part 82 and a temperature adjustment mechanism 83. The accommodating portion 82 accommodates the sheet material 16 therein. In this example, the accommodation unit 82 is provided with a mounting table 86 on which the sheet material 16 is placed. However, the configuration of the accommodation unit 82 is not particularly limited, and a commercially available thermostat or the like may be used. The temperature adjustment mechanism 83 adjusts the temperature inside the accommodating portion 82, thereby heating, cooling, or holding the sheet material 16 accommodated therein at a constant temperature. In the present embodiment, the temperature inside the accommodating portion 82 set by the temperature adjustment mechanism 83 is regarded as the temperature of the sheet material 16.
 ファイバシート10は、シート材16から以下の方法で形成される。まず、シート材16を、フレーム(枠)87により保持する。フレーム87は、シート材16に、張力を付与する張力付与部材である。張力は、シート材16に対して、面方向(XY平面の方向)に付与する(張力付与工程)。張力は、シート材16に、しわ及びたるみが生じない程度に小さく抑え、シート材16の面積(XY平面に沿った表面の面積)ができるだけ変わらない程度とすることが好ましい。フレーム87は、中央にシート材16が露呈する状態でシート材16を保持する円形であるが、張力付与部材は、シート材16の面積を変えない程度の上記張力が付与できるものであれば、フレーム87に限定されない。ただし、張力付与部材は、後述の加熱と冷却とにおいてしわ及びたるみをより確実に生じさせないために、シート材16の周囲の一部を保持するよりも周囲全体を保持する方が好ましい。 The fiber sheet 10 is formed from the sheet material 16 by the following method. First, the sheet material 16 is held by a frame 87. The frame 87 is a tension applying member that applies tension to the sheet material 16. A tension | tensile_strength is provided with respect to the sheet | seat material 16 in a surface direction (direction of XY plane) (tensile provision process). The tension is preferably suppressed to a level that does not cause wrinkles and sagging in the sheet material 16, and the area of the sheet material 16 (the surface area along the XY plane) is preferably as small as possible. The frame 87 is a circular shape that holds the sheet material 16 in a state where the sheet material 16 is exposed at the center, but the tension applying member can apply the above-described tension that does not change the area of the sheet material 16. The frame 87 is not limited. However, the tension applying member preferably retains the entire periphery rather than retaining a part of the periphery of the sheet material 16 so as not to cause wrinkles and sagging more reliably in heating and cooling described later.
 フレーム87に保持され、張力を付与された状態のシート材16を、収容部82に収容する。温調機構83により、収容部82を介してシート材16を加熱する。張力を付与した状態でシート材16を加熱し、温度が上昇したシート材16においてファイバ11同士を接着させ、ファイバシート10が得られる(加熱工程)。このように、張力付与工程は、加熱工程を有する。 The sheet material 16 held by the frame 87 and applied with tension is accommodated in the accommodating portion 82. The sheet material 16 is heated by the temperature adjustment mechanism 83 through the accommodating portion 82. The sheet material 16 is heated in a state where tension is applied, and the fibers 11 are bonded to each other in the sheet material 16 whose temperature has been increased, whereby the fiber sheet 10 is obtained (heating process). Thus, a tension | tensile_strength provision process has a heating process.
 張力を付与した状態で加熱することにより、平均孔径DAが2μm以上20μm以下の範囲であり、かつ、所定空孔割合が90%以上であるファイバシート10が得られ、さらに、なす角θが20°未満となる。また、ファイバ11同士が接着することにより、例えばろ過などの使用中においてファイバ片の脱離が抑制される。なお、加熱工程の時間は、長いほどなす角θをより小さくできる。ただし、ファイバ11の溶けすぎを抑制する観点も考慮し、加熱工程の時間は、10秒以上1200秒以下の範囲内であることが好ましく、30秒以上900秒以下の範囲内であることがより好ましい。加熱工程の時間とは、シート材16の温度を設定した温度に保持する時間である。 By heating in a state where tension is applied, the fiber sheet 10 having an average pore diameter DA in the range of 2 μm or more and 20 μm or less and a predetermined void ratio of 90% or more is obtained, and the angle θ formed is 20 Less than °. Further, the fibers 11 are bonded to each other, so that the fiber pieces are prevented from being detached during use such as filtration. Note that the longer the time of the heating step, the smaller the angle θ can be made. However, considering the viewpoint of suppressing the fiber 11 from being excessively melted, the time for the heating step is preferably within a range of 10 seconds to 1200 seconds, and more preferably within a range of 30 seconds to 900 seconds. preferable. The time for the heating process is a time for maintaining the temperature of the sheet material 16 at a set temperature.
 ここで、セルロース系ポリマー15の融点をTm(単位は℃)とし、ガラス転移点をTg(単位は℃)とする。加熱工程は、シート材16をTg以上Tm以下の温度に加熱することが好ましい。Tg以上の温度に加熱することにより、Tg未満の温度に加熱する場合と比べて、ファイバ11が軟化し、ファイバ11同士が融着(融解することにより接着)しやすくなる。また、Tm以下の温度に加熱することにより、Tmよりも高い温度に加熱する場合と比べて、ファイバ11の過度な溶けすぎにより空隙が無い膜状になったり、炭化することがより確実に防がれる。 Here, the melting point of the cellulose polymer 15 is Tm (unit is ° C.), and the glass transition point is Tg (unit is ° C.). In the heating step, the sheet material 16 is preferably heated to a temperature of Tg or more and Tm or less. By heating to a temperature equal to or higher than Tg, the fibers 11 are softened and the fibers 11 are easily fused (bonded by melting) as compared with the case of heating to a temperature lower than Tg. Further, by heating to a temperature below Tm, it is more reliably prevented that the fiber 11 is formed into a film without voids or carbonized due to excessive melting of the fiber 11 as compared with the case of heating to a temperature higher than Tm. Can be removed.
 張力付与工程は、加熱工程の後に、冷却工程を有することが好ましい。すなわち、加熱工程で得られたファイバシート10を、張力が付与されている状態で冷却すること(冷却工程)が好ましい。これにより、ファイバシート10の所定空孔割合が加熱工程直後の状態により保持されやすい。そして、張力の解除は、冷却工程の後に行うことが好ましい。 The tension applying step preferably includes a cooling step after the heating step. That is, it is preferable to cool the fiber sheet 10 obtained in the heating step in a state where tension is applied (cooling step). Thereby, the predetermined hole ratio of the fiber sheet 10 is easily held by the state immediately after the heating step. The tension is preferably released after the cooling step.
 この例では、コレクタ52として循環移動するベルトを用いたが、コレクタはベルトに限定されない。例えば、コレクタは固定式の平板であってもよいし、円筒状の回転体としてもよい。平板や円筒体からなるコレクタの場合にも、シート材16をコレクタから容易に分離することができるように支持体37を用いることが好ましい。なお、回転体を用いる場合には、回転体の周面にファイバからなる筒状のシート材が形成されるため、紡糸後に回転体から筒状のシート材を抜き取り、所望の大きさ及び形状にカットすればよい。 In this example, a circulating belt is used as the collector 52, but the collector is not limited to a belt. For example, the collector may be a fixed flat plate or a cylindrical rotating body. Also in the case of a collector made of a flat plate or a cylindrical body, it is preferable to use the support body 37 so that the sheet material 16 can be easily separated from the collector. When a rotating body is used, a cylindrical sheet material made of fibers is formed on the peripheral surface of the rotating body. Therefore, after spinning, the cylindrical sheet material is extracted from the rotating body, and is formed into a desired size and shape. Cut it.
  [実施例1]~[実施例7]
 シート材形成設備20と温度調整装置81とを用いて、ファイバシート10を製造し、実施例1~実施例7とした。用いたセルロース系ポリマー15は、表1の「ポリマー」欄に記載している。表1において、ポリマーとして用いたセルロースアシレートのアシル基がプロピオニル基である場合には「Pr」と記載し、ブタノイル基である場合には「Bu」と記載する。なお、表1の「アシル基含量」(単位は重量%)は、イーストマン ケミカル カンパニーのカタログ値をそのまま記載している。
[Example 1] to [Example 7]
The fiber sheet 10 was manufactured using the sheet material forming equipment 20 and the temperature adjusting device 81, and Examples 1 to 7 were obtained. The cellulosic polymer 15 used is described in the “Polymer” column of Table 1. In Table 1, when the acyl group of the cellulose acylate used as the polymer is a propionyl group, it is described as “Pr”, and when it is a butanoyl group, it is described as “Bu”. The “acyl group content” (unit: wt%) in Table 1 is the catalog value of Eastman Chemical Company as it is.
 溶媒26は、いずれも前述の通りジクロロメタンとメタノールとの混合物であり、質量比は、ジクロロメタン:メタノール=87:13とした。溶液25におけるセルロース系ポリマー15の濃度は8質量%とした。この濃度は、セルロース系ポリマー15の質量をM1とし、溶媒26の質量をM2とするときに、{M1/(M1+M2)}×100で求めたものである。 Solvent 26 was a mixture of dichloromethane and methanol as described above, and the mass ratio was dichloromethane: methanol = 87: 13. The concentration of the cellulose polymer 15 in the solution 25 was 8% by mass. This concentration is obtained by {M1 / (M1 + M2)} × 100, where M1 is the mass of the cellulose polymer 15 and M2 is the mass of the solvent 26.
 張力付与工程中に加熱工程を実施した。加熱工程において設定したシート材16の温度と、その温度に保持した時間とは、表1の「加熱工程」の「温度」欄と、「時間」欄とに記載する。ファイバ11の径の平均値は1.8μmであった。径の平均値は、走査型電子顕微鏡で撮像した画像から100本のファイバ11の径を測定し、平均値を算出することにより求めた。 The heating process was performed during the tension application process. The temperature of the sheet material 16 set in the heating step and the time for which the temperature is maintained are described in the “temperature” column and “time” column of “heating step” in Table 1. The average diameter of the fiber 11 was 1.8 μm. The average value of the diameters was obtained by measuring the diameters of 100 fibers 11 from an image taken with a scanning electron microscope and calculating the average value.
 得られたファイバシート10について、ろ過精度と、ファイバ片の脱離とを評価した。評価方法及び評価基準は以下の通りである。評価結果は表1に示す。なお、実施例1で得られたファイバシート10の厚み方向における断面のSEM画像を、図6に示している。 The obtained fiber sheet 10 was evaluated for filtration accuracy and fiber piece detachment. Evaluation methods and evaluation criteria are as follows. The evaluation results are shown in Table 1. In addition, the SEM image of the cross section in the thickness direction of the fiber sheet 10 obtained in Example 1 is shown in FIG.
 1.ろ過精度
 平均粒子径10μmの架橋アクリル多分散粒子(綜研化学株式会社製)を純水に1質量%分散させ、ファイバシート10でろ過した。ろ過前後のそれぞれの液の粒度分布を、粒度分布測定装置(BECKMAN COULTER株式会社製)を用いて測定した。得られたろ過前後の粒度分布から、ファイバシート10の平均孔径DAよりも大きい粒子の捕捉率を[{(ろ過前の粒子数)-(ろ過後の粒子数)}/(ろ過前の粒子数)]×100%で算出し、以下の基準で評価した。AとBとは合格であり、CとDとは不合格である。
    A;捕捉率が85%以上である。
    B;捕捉率が75%以上85%未満である。
    C;捕捉率が65%以上75%未満である。
    D;捕捉率が65%以下である。
1. Filtration accuracy 1 mass% of crosslinked acrylic polydisperse particles (manufactured by Soken Chemical Co., Ltd.) having an average particle diameter of 10 μm were dispersed in pure water and filtered with a fiber sheet 10. The particle size distribution of each liquid before and after filtration was measured using a particle size distribution measuring device (manufactured by BECKMAN COULTER Co., Ltd.). From the obtained particle size distribution before and after filtration, the trapping rate of particles larger than the average pore diameter DA of the fiber sheet 10 is obtained as {{(number of particles before filtration) − (number of particles after filtration)} / (number of particles before filtration). )] × 100%, and evaluated according to the following criteria. A and B are acceptable and C and D are unacceptable.
A: The capture rate is 85% or more.
B: The capture rate is 75% or more and less than 85%.
C: The capture rate is 65% or more and less than 75%.
D: The capture rate is 65% or less.
 2.ファイバ片の脱離
 ファイバシート10をステンレスラインホルダ(アドバンテック株式会社製KS-47)に取り付け、純水を1L(リットル)ろ過した。ろ過後の液(ろ液)をグリッドフィルタで捕捉した。グリッドフィルタの捕捉側表面の全面を顕微鏡により観察し、ファイバ片の個数を数え、以下の基準で評価した。AとBとは合格であり、CとDとは不合格である。結果は表1の「ファイバ片の脱離」欄に示す。
    A;ファイバ片の個数が0個以上5個以下であった。
    B;ファイバ片の個数が6個以上10個以下であった。
    C;ファイバ片の個数が11個以上20個以下であった。
    D;ファイバ片の個数が21個以上であった。
2. Detachment of fiber piece The fiber sheet 10 was attached to a stainless line holder (KS-47 manufactured by Advantech Co., Ltd.), and 1 L (liter) of pure water was filtered. The filtered liquid (filtrate) was captured by a grid filter. The entire surface of the grid filter on the capturing side was observed with a microscope, the number of fiber pieces was counted, and evaluated according to the following criteria. A and B are acceptable and C and D are unacceptable. The results are shown in the “fiber piece detachment” column of Table 1.
A: The number of fiber pieces was 0 or more and 5 or less.
B: The number of fiber pieces was 6 or more and 10 or less.
C: The number of fiber pieces was 11 or more and 20 or less.
D: The number of fiber pieces was 21 or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 さらに、実施例1で得られたファイバシート10を使用し、遺伝子検査を行った。具体的には、実施例1で得られたファイバシート10によりヒト全血をろ過した後、ファイバシート10上に残った白血球細胞を使用し、特許4058508号公報の明細書段落[0057]~[0061]に記載される方法に従って遺伝子検査を行った。その結果、特許4058508号公報に記載される実施例と同様の結果が得られた。 Furthermore, genetic testing was performed using the fiber sheet 10 obtained in Example 1. Specifically, after filtering human whole blood with the fiber sheet 10 obtained in Example 1, white blood cells remaining on the fiber sheet 10 are used, and paragraphs [0057] to [ [0061] Genetic testing was performed according to the method described in [0061]. As a result, the same result as the example described in Japanese Patent No. 4058508 was obtained.
  [比較例1]~[比較例4]
 加熱工程を実施しない、あるいは加熱工程でのシート材16の温度を変更し、これらを比較例1~比較例3とした。また、張力付与工程が無い製造方法として比較例4を実施した。
[Comparative Example 1] to [Comparative Example 4]
The heating process was not performed, or the temperature of the sheet material 16 in the heating process was changed, and these were designated as Comparative Examples 1 to 3. Moreover, the comparative example 4 was implemented as a manufacturing method without a tension | tensile_strength provision process.
 実施例と同様の方法及び基準で、ろ過精度とファイバ片の脱離との評価を行った。評価結果は表1に示す。なお、比較例2で得られたファイバシートの厚み方向における断面のSEM画像を、図7に示している。 ¡Evaluation of filtration accuracy and detachment of fiber pieces was performed by the same method and standard as in the examples. The evaluation results are shown in Table 1. In addition, the SEM image of the cross section in the thickness direction of the fiber sheet obtained by the comparative example 2 is shown in FIG.
 10  ファイバシート
 10A 第1シート面
 11,11a,11b,11c,・・・ ファイバ
 12  空孔
 15  セルロース系ポリマー
 16  シート材
 20  シート材形成設備
 21  溶液調製部
 22  シート材形成装置
 25  溶液
 26  溶媒
 33a~33c 配管
 36a~36c ノズル
 37  支持体
 38  ポンプ
 41  保持部材
 42  ノズルユニット
 45  紡糸室
 50  集積部
 51  電源
 52  コレクタ
 53  テイラーコーン
 56  コレクタ回転部
 57  支持体供給部
 57a 送出軸
 58  支持体巻取部
 60  モータ
 61,62  ローラ
 63  支持体ロール
 64  巻芯
 67  巻取軸
 68  巻芯
 69  紡糸ジェット
 81  温度調整装置
 82  収容部
 83  温調機構
 86  載置台
 87  フレーム
 L  距離
DESCRIPTION OF SYMBOLS 10 Fiber sheet 10A 1st sheet surface 11, 11a, 11b, 11c, ... Fiber 12 Hole 15 Cellulose polymer 16 Sheet material 20 Sheet material formation equipment 21 Solution preparation part 22 Sheet material formation apparatus 25 Solution 26 Solvent 33a- 33c Piping 36a to 36c Nozzle 37 Support body 38 Pump 41 Holding member 42 Nozzle unit 45 Spinning chamber 50 Accumulation section 51 Power supply 52 Collector 53 Taylor cone 56 Collector rotation section 57 Support body supply section 57a Delivery shaft 58 Support body winding section 60 Motor 61, 62 Roller 63 Support roll 64 Winding core 67 Winding shaft 68 Winding core 69 Spinning jet 81 Temperature adjusting device 82 Housing portion 83 Temperature adjusting mechanism 86 Mounting table 87 Frame L Distance

Claims (8)

  1.  ファイバで形成されており、空孔があるファイバシートにおいて、
     前記空孔の平均孔径が2μm以上20μm以下の範囲内であり、
     前記平均孔径をDAとするときに、前記空孔のうち、DA×0.80以上DA×1.20以下の範囲内の孔径をもつ前記空孔の割合が少なくとも90%であるファイバシート。
    In fiber sheets that are made of fiber and have holes,
    The average pore diameter of the pores is in the range of 2 μm to 20 μm,
    A fiber sheet in which, when the average hole diameter is DA, a ratio of the holes having a hole diameter in the range of DA × 0.80 to DA × 1.20 is at least 90%.
  2.  前記ファイバと前記ファイバシートのシート面とのなす角をθとし、0°≦θ≦90°とするときに、θが20°以下である請求項1に記載のファイバシート。 The fiber sheet according to claim 1, wherein θ is 20 ° or less when an angle formed by the fiber and a sheet surface of the fiber sheet is θ and 0 ° ≦ θ ≦ 90 °.
  3.  前記ファイバは、セルロース系ポリマーで形成されている請求項1または2に記載のファイバシート。 The fiber sheet according to claim 1 or 2, wherein the fiber is formed of a cellulosic polymer.
  4.  前記セルロース系ポリマーは、セルロースアシレートである請求項3に記載のファイバシート。 The fiber sheet according to claim 3, wherein the cellulosic polymer is cellulose acylate.
  5.  前記セルロースアシレートは、セルロースアセテートプロピオネートと、セルロースアセテートブチレートと、セルローストリアセテートとのいずれかである請求項4に記載のファイバシート。 The fiber sheet according to claim 4, wherein the cellulose acylate is any one of cellulose acetate propionate, cellulose acetate butyrate, and cellulose triacetate.
  6.  ファイバを捕集し、空孔が形成されているファイバシートを製造するファイバシート製造方法において、
     ポリマーと溶媒とを含み、帯電した状態の溶液を、前記溶液と逆極性に帯電されたまたは電位をゼロにされたコレクタに誘引することにより、前記ポリマーで形成された前記ファイバをシート材として捕集する捕集工程と、
     前記シート材に張力を付与する張力付与工程と、
     前記張力が付与されている状態の前記シート材を加熱することにより、前記ファイバ同士を接着する加熱工程と、
     を有するファイバシート製造方法。
    In a fiber sheet manufacturing method for collecting fibers and manufacturing a fiber sheet in which holes are formed,
    The fiber formed of the polymer is captured as a sheet material by attracting a charged solution containing a polymer and a solvent to a collector which is charged with a polarity opposite to that of the solution or whose potential is zero. Collecting process to collect,
    A tension applying step for applying tension to the sheet material;
    A heating step of bonding the fibers by heating the sheet material in a state in which the tension is applied;
    A fiber sheet manufacturing method comprising:
  7.  前記加熱工程で得られた前記ファイバシートを、張力が付与されている状態で冷却する冷却工程
     をさらに有し、
     前記張力を前記冷却の後に解除する請求項6に記載のファイバシート製造方法。
    A cooling step of cooling the fiber sheet obtained in the heating step in a state where a tension is applied;
    The fiber sheet manufacturing method according to claim 6, wherein the tension is released after the cooling.
  8.  前記加熱工程は、前記シート材を前記ポリマーのガラス転移点以上融点以下に加熱する請求項6または7に記載のファイバシート製造方法。 The fiber sheet manufacturing method according to claim 6 or 7, wherein in the heating step, the sheet material is heated to a glass transition point or more and a melting point or less of the polymer.
PCT/JP2019/006504 2018-03-14 2019-02-21 Fiber sheet, and fiber sheet producing method WO2019176490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020505723A JP7163363B2 (en) 2018-03-14 2019-02-21 fiber sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018046734 2018-03-14
JP2018-046734 2018-03-14
JP2018229385 2018-12-06
JP2018-229385 2018-12-06

Publications (1)

Publication Number Publication Date
WO2019176490A1 true WO2019176490A1 (en) 2019-09-19

Family

ID=67906517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006504 WO2019176490A1 (en) 2018-03-14 2019-02-21 Fiber sheet, and fiber sheet producing method

Country Status (3)

Country Link
JP (1) JP7163363B2 (en)
TW (1) TW201938872A (en)
WO (1) WO2019176490A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699692A (en) * 2020-05-21 2021-11-26 株式会社东芝 Method for producing fiber sheet and apparatus for producing fiber sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073958A1 (en) * 2008-12-25 2010-07-01 株式会社クラレ Filtration material for filters, and filter cartridge
JP2013139652A (en) * 2012-01-04 2013-07-18 Teijin Ltd Aramid fiber nonwoven fabric and method for producing the same
WO2018003357A1 (en) * 2016-06-30 2018-01-04 富士フイルム株式会社 Fiber composite, porous structure, and non-woven fabric

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162588A (en) 2010-02-04 2011-08-25 Fujifilm Corp Roll-like film and method for producing roll-like film
ES2774949T3 (en) 2010-08-10 2020-07-23 Emd Millipore Corp Retrovirus removal method
JP2013109116A (en) 2011-11-21 2013-06-06 Konica Minolta Advanced Layers Inc Method for manufacturing polarizing film protection film, polarizing film protection film, polarizing plate and liquid crystal display device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073958A1 (en) * 2008-12-25 2010-07-01 株式会社クラレ Filtration material for filters, and filter cartridge
JP2013139652A (en) * 2012-01-04 2013-07-18 Teijin Ltd Aramid fiber nonwoven fabric and method for producing the same
WO2018003357A1 (en) * 2016-06-30 2018-01-04 富士フイルム株式会社 Fiber composite, porous structure, and non-woven fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699692A (en) * 2020-05-21 2021-11-26 株式会社东芝 Method for producing fiber sheet and apparatus for producing fiber sheet
CN113699692B (en) * 2020-05-21 2023-09-12 株式会社东芝 Method and apparatus for producing fiber sheet

Also Published As

Publication number Publication date
TW201938872A (en) 2019-10-01
JPWO2019176490A1 (en) 2021-02-18
JP7163363B2 (en) 2022-10-31

Similar Documents

Publication Publication Date Title
JP4614669B2 (en) Filter material and filter
US8652229B2 (en) Particle filter system incorporating nanofibers
RU2598584C2 (en) Devices and methods for producing fibres
WO2009140385A1 (en) Particle filter system incorporating electret nanofibers
CN111918993B (en) Nonwoven fabric, fiber forming method, and nonwoven fabric manufacturing method
WO2016035473A1 (en) Nanofiber manufacturing method
CN110291241B (en) Sheet and sheet manufacturing method
JP4776986B2 (en) Sterilized filter media and sterile filter
JPH03161502A (en) Production of electrostatic spun yarn
WO2019176490A1 (en) Fiber sheet, and fiber sheet producing method
JP6840854B2 (en) Nonwoven fabric manufacturing method and equipment
WO2018155474A1 (en) Nanofiber manufacturing method and device
JP7214742B2 (en) nonwoven fabric
US20160199765A1 (en) Nonwoven fabric, air purifier using the same, and method for producing nonwoven fabric
JP7280369B2 (en) Non-woven fabrics and filters
JP2016125182A (en) Nonwoven fabric and air cleaner using the same, and manufacturing method of nonwoven fabric
JP2018095991A (en) Fiber structure
JP2009249744A (en) Method for producing nonwoven fabric
JP2017155375A (en) Electrospinning nozzle, and nanofiber producing device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505723

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766690

Country of ref document: EP

Kind code of ref document: A1