WO2019176483A1 - ウェアラブル検知デバイス - Google Patents
ウェアラブル検知デバイス Download PDFInfo
- Publication number
- WO2019176483A1 WO2019176483A1 PCT/JP2019/006284 JP2019006284W WO2019176483A1 WO 2019176483 A1 WO2019176483 A1 WO 2019176483A1 JP 2019006284 W JP2019006284 W JP 2019006284W WO 2019176483 A1 WO2019176483 A1 WO 2019176483A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sweat
- detection device
- suction
- wearable
- detection electrode
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
- A61B10/0064—Devices for taking samples of body liquids for taking sweat or sebum samples
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/10—Devices for withdrawing samples in the liquid or fluent state
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/10—Devices for withdrawing samples in the liquid or fluent state
- G01N1/12—Dippers; Dredgers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/48707—Physical analysis of biological material of liquid biological material by electrical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/84—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N37/00—Details not covered by any other group of this subclass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2217/00—General characteristics of surgical instruments
- A61B2217/002—Auxiliary appliance
- A61B2217/005—Auxiliary appliance with suction drainage system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0406—Constructional details of apparatus specially shaped apparatus housings
- A61B2560/0412—Low-profile patch shaped housings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0431—Portable apparatus, e.g. comprising a handle or case
Definitions
- the present invention relates to a wearable detection device that detects ions contained in sweat.
- Dehydration is a symptom that often occurs in hyperthermia disorders commonly referred to as heat stroke. Heatstroke increases in the hot summer season, but the most common place in Japan is “housing”, followed by “working” and “exercising”. By gender and age, elderly people are more likely to be “residential”, young men and women are “exercising”, and adult men who are thought to have a lot of activity in high-temperature environments are “working” Occurs. When severe heat stroke occurs, there are cases in which dehydration occurs and urgent transportation occurs even in winter when the temperature falls and the temperature drops. These dehydration symptoms are symptoms in which the person's condition can be grasped and the occurrence can be suppressed by correctly adjusting the surrounding environment and food and drinks.
- the concentration of sodium ions and potassium ions is as important as the amount of sweat.
- Potassium is present as ions in human intracellular fluid
- sodium is present as ions in extracellular fluid.
- the amount of blood in the cell moves to the extracellular fluid, so that the human blood volume is generally maintained at about 1/13 of the body weight.
- Non-patent Document 2 As a countermeasure against heat stroke as described above, there is a report on ion concentration in sweat using a wearable device equipped with an ion sensor (Non-patent Document 2).
- Non-Patent Document 2 describes the ion concentration in the sweat of a person collected in a high-temperature environment with respect to 5 subjects with 29-37, 56-101, 55-107, 75- 117, 67-127 (mEq / L), K ion is 2.8-3.7, 3.1-4.6, 3.6-5.1, 4.7-5.9, 4.4 -5.3 mEq / L.
- Potassium ions are often present in intracellular fluids, and the concentration of potassium ions varies in plasma, but the concentration variation is much smaller than that of sodium.
- Eq milli equivalent
- mol substance amount
- K monovalent ions
- the ion concentration contained in sweat depends on the individual's blood ion concentration. Therefore, even in the physiologically normal range, it is expected that there are individual differences in concentration at a level of several tens of mM. For these reasons, in the determination of dehydration as described above, it is important to accurately measure the concentration of ions contained in sweat during sweating.
- sweat due to perspiration is accumulated at the location of the ion sensor over time. For this reason, in the technique described above, the detected ion concentration is in the accumulated sweat and is different from the ion concentration contained in the sweat sweated at the time of detection.
- measuring the concentration of ions contained in sweat is thought to make it possible to grasp the state of the human body such as heat stroke. There is a problem that the concentration of ions contained in can not be measured accurately.
- the present invention has been made to solve the above problems, and an object of the present invention is to make it possible to more accurately measure the concentration of ions contained in perspiration at the time of perspiration.
- the wearable detection device includes a sheet-like base material made of a flexible resin, and a suction port formed on the base material made of the flexible resin.
- a suction flow path for sucking more sweat, a detection electrode that can be contacted with sweat sucked from the suction port and detecting ions contained in the sweat, and an ion concentration by electrochemical measurement using the detection electrode A measurement chip for performing measurement and a battery serving as a power source for the measurement chip are provided.
- the wearable detection device includes an indicator that is arranged in a suction channel that is a predetermined distance away from the suction port of the suction channel and that develops color when contacted with water, and the base material and the suction channel are made of a transparent resin. ing.
- the suction flow path is formed integrally with the base material.
- the detection electrode includes a sodium ion detection electrode for detecting sodium ions and a potassium ion detection electrode for detecting potassium ions.
- the measurement chip has a communication function for transmitting the measurement result.
- the measurement chip and the battery are formed on the base material.
- the suction channel is provided, an excellent effect is obtained that the concentration of ions contained in sweat at the time of perspiration can be measured more accurately.
- FIG. 1A is a cross-sectional view showing a configuration of wearable detection device 100 in the embodiment of the present invention.
- FIG. 1B is a cross-sectional view showing a partial configuration of wearable detection device 100 according to the embodiment of the present invention.
- FIG. 2 is a perspective view showing a partial configuration of wearable detection device 100 in the embodiment of the present invention.
- FIG. 3 is a cross-sectional view showing a configuration of wearable detection device 100 in the embodiment of the present invention.
- the wearable detection device 100 includes a base material 101, a sodium ion detection electrode 102, a potassium ion detection electrode 103, a reference electrode 104, a suction channel 105, a measurement chip 106, and a battery 107.
- 1A shows a cross section taken along the line aa ′ of FIG. 1B.
- the substrate 101 is made of a flexible resin and is formed in a sheet shape.
- the base material 101 can be wound around, for example, a forearm, an upper arm, or a wrist.
- the contact surface 101a of the base material 101 is a surface that contacts the human skin.
- the substrate 101 is attached to the human body with the contact surface 101a in contact with the human skin.
- the sodium ion detection electrode 102, the potassium ion detection electrode 103, and the reference electrode 104 are capable of contacting sweat sucked from the suction port 105 a of the suction flow path 105, and detection for detecting ions contained in the sweat Electrode.
- the suction channel 105 is made of a resin having flexibility and is formed on the base material 101.
- the suction channel 105 sucks the sweat secreted from the sweat glands in the skin of the human body to be attached.
- the suction channel 105 is formed integrally with the base material 101.
- the suction channel 105 sucks liquid into the inside from the suction port 105a formed on the contact surface 101a of the base 101 using surface tension by a well-known fine channel.
- the sweat suction speed can be adjusted by designing the width and height of the flow path.
- the suction channel 105 includes a suction port 105a, a channel 151, a branch channel 152, and suction units 153a and 153b.
- the suction port 105a is open to the contact surface 101a.
- the flow channel 151 communicates the suction port 105a and the branch flow channel 152.
- the branch channel 152 communicates the channel 151 with the suction portions 153a and 153b.
- the suction port 105 a and the suction portions 153 a and 153 b communicate with each other through the flow channel 151 and the branch flow channel 152.
- the suction portions 153a and 153b are formed with a plurality of columnar portions 154 that connect the floor surface and the ceiling surface.
- the flow path 151 and the branch flow path 152 have a cross-sectional dimension in a range where capillary action occurs with respect to the liquid.
- interval of the floor surface and ceiling surface of suction part 153a, 153b is the state which the liquid which infiltrated suction part 153a, 153b can contact both surfaces simultaneously.
- the interval between the columnar portions 154 adjacent to the suction portions 153a and 153b is such that the liquid that has entered the suction portions 153a and 153b can be in contact with both at the same time.
- the sweat that has reached the suction port 105a is sucked into the suction units 153a and 153b through the channel 151 and the branch channel 152 by capillary action.
- the sodium ion detection electrode 102, the potassium ion detection electrode 103, and the reference electrode 104 are formed on the inner wall of the flow channel 151.
- the sweat taken into the flow channel 151 from the suction port 105a passes through the sodium ion detection electrode 102, the potassium ion detection electrode 103, and the reference electrode 104 in contact therewith.
- the suction portions 153a and 153b are not limited to two, and by increasing the capacity as a structure in which more suction portions are connected, it becomes possible to continue sucking sweat for a longer time.
- the suction speed is changed depending on the height of the columnar portion 154 (the distance between the floor surface and the ceiling surface).
- a groove that does not communicate with the suction portions 153a and 153b from the suction port 105a may be formed. Due to this groove, there may be a large amount of sweating, and sweat that is excessive in measurement may be quickly discharged to the outside.
- the measurement chip 106 measures the concentration of ions by electrochemical measurement using a detection electrode.
- the measurement chip 106 has a communication function for transmitting the measurement result.
- the measurement chip 106 is formed (mounted) in contact with the base material 101.
- the battery 107 is a power source for the measurement chip 106.
- the battery 107 is composed of, for example, an air battery.
- the battery 107 is formed in contact with the base material 101.
- the clothes layer for protecting the wearable detection device 100 before use is removed for use, so that the battery 107 sealed with the clothes layer is brought into contact with the air, and power generation is started. Then, power supply to the measurement chip 106 is started.
- a connection request signal for wireless communication is transmitted to the measurement chip 106 that is in an operating state after power supply is started from the battery 107.
- This connection request signal is received, for example, by a mobile terminal device (not shown), and as a result, a wireless connection between the measurement chip 106 and the mobile terminal device is established.
- the measurement chip 106 in the operating state is detected by the fact that the sweat taken into the flow channel 151 from the suction port 105a has reached the sodium ion detection electrode 102, the potassium ion detection electrode 103, and the reference electrode 104. Obtain the concentration of ions and potassium ions.
- the measurement chip 106 transmits the obtained concentration value of each ion to the mobile terminal device.
- the operation of the installed application software makes it possible to compare the concentration value of each ion with the reference concentration value, etc. Issue warnings about dehydration symptoms.
- the sweat that is secreted from the sweat glands by perspiration and reaches the suction port 105a is sucked into the suction portions 153a and 153b via the flow channel 151 of the suction flow channel 105, so that a large amount of sweat is generated. Even if it occurs, it does not stay at the detection electrode and accumulate. For this reason, according to the embodiment, the sweat that contacts the detection electrode can be only the sweat immediately after sweating (secreting). As a result, according to the embodiment, the concentration of ions contained in perspiration at the time of sweating (immediately after) can be measured more accurately. In addition, according to the embodiment, it is possible to observe a time-series change in the component of sweat due to perspiration.
- an indicator layer 108 carrying an indicator that develops color by contact with water may be provided in the suction channel that is a predetermined distance away from the suction port 105a of the suction channel 105.
- the indicator layer 108 may be disposed at a location where the liquid (sweat) sucked in the suction channel 105 reaches the end.
- the indicator is, for example, cobalt chloride.
- the base material 101 and the suction channel 105 are made of a transparent resin.
- a support sheet made of polydimethylsiloxane (PDMS) is prepared.
- the support sheet may be made of, for example, hydrophilic PDMS.
- an electrode pattern made of Au is formed on the electrode forming surface of the support sheet at a location where the sodium ion detection electrode 102, the potassium ion detection electrode 103, and the reference electrode 104 are to be formed.
- the electrode pattern is formed by depositing Au by a sputtering method using a stencil mask or the like.
- the electrode pattern is formed at a location where the flow channel 151 of the suction flow channel 105 is disposed.
- a silver-silver chloride layer is formed on the formed electrode pattern.
- a sodium ion detection electrode 102 is obtained by dripping and drying a cocktail of a vinyl chloride base material containing an ionophore of sodium ions on one of the three electrode patterns.
- a cocktail of a vinyl chloride base material containing an ionophore of potassium ions is dropped onto one of the remaining two electrode patterns and dried, whereby the potassium ion detection electrode 103 is obtained.
- the remaining one electrode pattern is a reference electrode 104.
- a flow path sheet made of PDMS is formed.
- a mold having a flow path structure of a portion to be the suction flow path 105 is formed, a hydrophilic PDMS film is formed (applied) on the mold, and is heated (cured) (solidified) under predetermined heating conditions. What is necessary is just to make it a flow-path sheet
- the channel sheet is formed with a channel structure and columnar portions 154 to be the respective channels and suction portions 153a and 153b.
- the base material 101 in which the suction flow path 105 is integrally formed is obtained by bonding the flow path sheet thus formed and the support sheet.
- the adhesive surface on the electrode forming surface of the support sheet is bonded to the adhesive surface on the groove forming side of the flow path sheet.
- a layer made of hydrophobic PDMS is preferably formed on each bonding surface.
- the respective adhesive surfaces can be bonded to each other by the self-adhesive force of PDMS.
- a suction port 105a is formed in advance in the support sheet.
- the surface in contact with the skin and each flow channel of the suction flow channel 105 are hydrophilic, so that sweat is not repelled. Efficient suction of sweat can be used.
- the bonding surface is hydrophobic, it is possible to suppress the sweat sucked into each suction channel from leaking out from the bonding interface.
- a predetermined wiring pattern is also formed by the sputtering method similar to the above, and a metal colloid solution is used for the formed wiring pattern, for example.
- a metal colloid solution is used for the formed wiring pattern, for example.
- the contact surface 101a of the base material 101 described above is brought into contact with the skin and the base material 101 is attached to the human body.
- sweat generated by perspiration reaches the suction port 105 a, it is taken into the flow channel 151 and reaches the sodium ion detection electrode 102, the potassium ion detection electrode 103, and the reference electrode 104.
- the sweat travels inside the flow channel 151 and the branch flow channel 152 by capillary force, and reaches the suction portions 153a and 153b.
- the sweat that has reached the suction portions 153a and 153b is sucked into a plurality of columnar portions 154 having a diameter of 100 ⁇ m and a height of about 100 ⁇ m (for example, 300 ⁇ m), for example.
- the wearable detection device 100 may be attached to the surface of the skin 111 while being covered with a cover 109 as shown in FIG.
- the cover 109 is attached to the surface of the skin 111 with an adhesive layer 110 provided on the peripheral edge.
- the wearable detection device 100 is attached to a release paper (not shown), and the wearable detection device 100 is wrapped with the release paper and the cover 109.
- the wearable detection device 100 is peeled off from the release paper, and the contact surface 101a is attached to a portion of the skin 111 where the sweat comes out.
- the battery 107 is an air battery
- the cover sealing the air electrode of the air battery may be peeled off at the same time when releasing from the release paper.
- the perspired sweat reaches the suction port 105a and is sucked to reach the sodium ion detection electrode 102, the potassium ion detection electrode 103, and the reference electrode 104 provided in the flow channel 151, and this amount is sufficient (about 0.7 ⁇ L). Then, the ion concentration contained in sweat can be measured. In this measurement, the measured ion concentration is displayed on the mobile terminal device.
- a dehydration symptom determination state is obtained. For example, when the measured concentration of each ion deviates from the set normal state, it is determined as a dehydration symptom. Further, when the measured sodium ion concentration is less than or equal to 10 mEq / L, a low sodium symptom may be suspected, and this warning may be issued.
- the concentration of ions contained in sweat at the time of perspiration can be measured more accurately.
- sweat can be performed while a person is active, and the danger of dehydration can be notified based on the ion concentration of the component of the sweat.
- the wearable detection device of the present invention not only is the person who is wearing the wearable detection device aware of the dehydration that is occurring before he or she is aware of it, but there is also a risk of dehydration for another person who is accompanying or who is remotely located. Can be notified.
- DESCRIPTION OF SYMBOLS 100 Wearable detection device, 101 ... Base material, 101a ... Contact surface, 102 ... Sodium ion detection electrode, 103 ... Potassium ion detection electrode, 104 ... Reference electrode, 105 ... Suction flow path, 105a ... Suction port, 106 ... Measuring chip 107, battery, 108, indicator layer, 151, flow path, 152, branch flow path, 153a, 153b, suction part, 154, columnar part.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Hydrology & Water Resources (AREA)
- Biotechnology (AREA)
- Inorganic Chemistry (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
発汗された時点の汗に含まれるイオンの濃度がより正確に測定できるようにする。 吸引流路105は、可撓性を有する樹脂から構成されて基部101に形成されている。吸引流路105は、上述した検出電極に接触した汗を吸引する。吸引流路105は、よく知られた微細な流路による表面張力を利用して吸引口105aより内部に液体を吸引する。汗に含まれているイオンを検出するための検出電極であるナトリウムイオン検出電極102、カリウムイオン検出電極103、参照電極104は、吸引流路105の流路151の内壁に形成されている。
Description
本発明は、汗に含まれるイオンを検出するウェアラブル検知デバイスに関する。
脱水症は、一般に熱中症といわれる高体温障害において発生することが多い症状である。熱中症は、夏場の暑い時期の発生件数が増えるものであるが、国内での発生場所としては「住宅」が多く、次いで「作業中」、「運動中」となる。性別・年齢別で見ると、高齢者の「住宅」での発生が多く、若年層では男女ともに「運動中」、そして高温環境下での活動が多いと考えられる成人の男性が「作業中」に発生する。重度の熱中症となると、死に至り、気温の下がる冬季でも、脱水症状を起こして緊急搬送されるケースがある。これら、脱水症状は、本人の状態が把握でき、周辺環境や飲食物などを正しく調整することにより、発生を抑えることができる症状である。
高齢者の発生が屋内で発生している割合が多いのは、加齢に伴い、体の変化に対して鈍感になっており、自分で気づけない状況であることが考えられる。これは、けい椎などを損傷して体温調節機能に障害を持つ人にも共通する課題である。また、自身の変化に対する意思を示しにくい乳幼児も、付添人がいたとしても、気づかないうちに脱水症状が進行している場合がある。作業を実施している労働者においては、作業の進行を妨げないように、効率的に必要なタイミングで、確実な飲み水や冷却といった対応を実施することが望まれる。そこで、簡易的に脱水症状を測定できるセンサデバイスがあれば、脱水症状の発生を未然に抑え、危機的状況を引き起こす前に対応することができるようになる。
脱水症状かどうかを簡易的に測定する一般的な方法として、肌から蒸散あるいは流れ出てくる汗の量を測定する技術がある。この技術は、ろ紙などに汗を吸着させ、水があれば発色する色素を導入したろ紙などを用い、汗が吸着することによる発色する色の判断で、汗における水の量を判断する。この方法では、発汗量を認識し、それに応じた飲み水の摂取を促すことはできるものの、本当に脱水症状になりかかった際、すなわち、汗が出にくくなっている現象を把握するのは難しいものと考えられる。
脱水症状において、汗の量と同じく重要な指標となるのは、ナトリウムイオンおよびカリウムイオンの濃度である。人の細胞内液には、カリウムがイオンとして存在し、細胞外液にはナトリウムがイオンとして存在している。これらのイオン濃度差で生じる浸透圧に応じ、細胞内液の水が細胞外液に移動することで、人の血液量は概して体重の1/13程度に維持されている。脱水が起こり始めると、血液量の10%が喪失されると軽度の脱水症状と考えられ、30%喪失した状態は、危険を伴う可能性がある脱水症状に相当するといわれる。
高温環境下で大量に汗が出た場合には、細胞内液から細胞外液に水分が出にくくなるため、カリウム濃度が変化しない中で、ナトリウム濃度が上がる状況となる。この場合、細胞外液の塩濃度は上がることから、浸透圧の差が出なくなり、細胞外液の量も上がらず、血液量が上がらない。血液には、循環させることで体温を下げるラジエータ機能があるが、血液量が上がらなくなることで、体温を下げる効果も得られなくなる。
上述したような熱中症への対策として、イオンセンサを搭載したウェアラブル機器を用いた汗中のイオン濃度についての報告がある(非特許文献2)。
なお、汗中のイオン濃度には個人差があり、特にナトリウムイオンについては、上記のように脱水の状況や、脱水が始まるまでの状態によっても大きく変わる。例えば、非特許文献2には、高温環境下で採取された人の汗中のイオン濃度について、5人の被験者に対し、Naイオンでは、29-37,56-101,55-107,75-117,67-127(mEq/L),Kイオンは、2.8-3.7、3.1-4.6、3.6-5.1、4.7-5.9、4.4-5.3 mEq/Lとある。
カリウムイオンは、細胞内液に存在が多く、血漿中において、カリウムイオン濃度も変動はするが、その濃度変動はナトリウムに比べるとはるかに小さい。ここで、Eq(ミリ当量)は電解質量を表す単位であり、物質量(mol)×イオンの価数で表す。NaおよびKは、いずれも1価のイオンであり、上記単位は、molと等価である。
W. Gao et al., "Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis", NATURE, vol. 529, pp. 509-514, 2016.
L. B. Baker, et al., "Comparison of regional patch collection vs. whole body washdown for measuring sweat sodium and potassium loss during exercise", J. Appl. Physiol., vol. 107, pp. 887-895, 2009.
一方で、汗に含まれるイオン濃度は、個人の血中イオン濃度に依存する。従って、生理的に正常範囲にあっても、数十mMのレベルで濃度に個人差があることが予想される。これらのことより、上述したような脱水症状判断においては、発汗時の汗に含まれるイオンの濃度を正確に測定することが重要となる。これに対し、上述した従来のウェアラブル機器を用いた技術では、発汗による汗が、経時とともにイオンセンサの箇所に蓄積されていく。このため、上述した技術では、検出されるイオンの濃度は、蓄積されている汗におけるものであり、検出時に発汗された汗に含まれているイオン濃度とは異なる。
上述したように、汗に含まれるイオンの濃度を測定することで、熱中症などの人体の状態を把握することが可能になるものと考えられるが、従来の技術では、発汗された時点の汗に含まれるイオンの濃度が正確に測定できないという問題があった。
本発明は、以上のような問題点を解消するためになされたものであり、発汗された時点の汗に含まれるイオンの濃度がより正確に測定できるようにすることを目的とする。
本発明に係るウェアラブル検知デバイスは、可撓性を有する樹脂から構成されたシート状の基材と、可撓性を有する樹脂から構成されて基材に形成され、基材に形成された吸引口より汗を吸引する吸引流路と、吸引口より吸引した汗に接触可能とされて汗に含まれているイオンを検出するための検出電極と、検出電極を用いた電気化学測定によりイオンの濃度測定を行うための計測チップと、計測チップの電源となる電池とを備える。
上記ウェアラブル検知デバイスにおいて、吸引流路の吸引口より所定の距離離れた吸引流路内に配置され、水の接触により発色する指示薬を備え、基材および吸引流路は、透明な樹脂から構成されている。
上記ウェアラブル検知デバイスにおいて、吸引流路は、基材に一体に形成されている。
上記ウェアラブル検知デバイスにおいて、検出電極は、ナトリウムイオンを検出するためのナトリウムイオン検出電極と、カリウムイオンを検出するためのカリウムイオン検出電極から構成されている。
上記ウェアラブル検知デバイスにおいて、計測チップは、測定した結果を送信するための通信機能を備える。
上記ウェアラブル検知デバイスにおいて、計測チップおよび電池は、基材に形成されている。
以上説明したように、本発明によれば、吸引流路を設けるようにしたので、発汗された時点の汗に含まれるイオンの濃度がより正確に測定できるという優れた効果が得られる。
以下、本発明の実施の形態おけるウェアラブル検知デバイス100について図1A,図1Bを参照して説明する。ウェアラブル検知デバイス100は、基材101、ナトリウムイオン検出電極102、カリウムイオン検出電極103、参照電極104、吸引流路105、計測チップ106、電池107を備える。なお、図1Aは、図1Bのaa’線の断面を示している。
基材101は、可撓性を有する樹脂から構成され、シート状に形成されている。基材101は、例えば、前腕部、上腕部、手首などに巻き付けることが可能とされている。基材101の接触面101aが、人体の皮膚に接触する面となる。基材101は、接触面101aを人体の皮膚に接触させて人体に装着する。
ナトリウムイオン検出電極102、カリウムイオン検出電極103、参照電極104は、吸引流路105の吸引口105aより吸引された汗に接触可能とされ、この汗に含まれているイオンを検出するための検出電極である。
吸引流路105は、可撓性を有する樹脂から構成されて基材101に形成されている。吸引流路105は、装着される対象となる人体の皮膚における汗腺より分泌された汗を吸引する。吸引流路105は、基材101に一体に形成されている。吸引流路105は、よく知られた微細な流路による表面張力を利用し、基材101の接触面101aに形成されている吸引口105aより内部に液体を吸引する。流路の幅、高さなどの設計により、汗の吸引速度を調整することが可能である。
吸引流路105は、図2に示すように、吸引口105a、流路151,分岐流路152,吸引部153a,153bを備える。吸引口105aは、接触面101aに開口している。流路151は、吸引口105aと分岐流路152とを連通する。分岐流路152は、流路151と吸引部153a,153bとを連通する。実施の形態において、吸引口105aと吸引部153a,153bとが、流路151および分岐流路152により連通している。また、吸引部153a,153bには、この床面と天井面とをつなげる複数の柱状部154が形成されている。
ここで、流路151、分岐流路152は、液体に対して毛細管現象が発現する範囲の断面寸法とされている。また、吸引部153a,153bの床面と天井面との間隔は、吸引部153a,153bに浸入した液体が、両面に同時に接触可能な状態とされている。また、吸引部153a,153bの隣り合う柱状部154の間隔は、吸引部153a,153bに浸入した液体が、両者に同時に接触可能な状態とされている。
上述した吸引流路105によれば、吸引口105aに到達した汗は、毛細管現象により、流路151,分岐流路152を経て吸引部153a,153bに吸い取られるようになる。ここで、ナトリウムイオン検出電極102、カリウムイオン検出電極103、参照電極104は、流路151の内壁に形成されている。吸引口105aより流路151に取り込まれた汗は、ナトリウムイオン検出電極102、カリウムイオン検出電極103、参照電極104に接触して通過していくことになる。
吸引部153a,153bは、2つに限らず、より多くの吸引部を連結した構造として容量をより大きくすることにより、より長時間、汗を吸引し続けることが可能になる。また、実施の形態では、柱状部154の高さ(床面と天井面との間隔)によって吸引速度が変えられる。また、吸引口105a部から、吸引部153a,153bには連通しない溝を形成してもよい。この溝により、大量の発汗があり、測定には余剰となる汗について、迅速に外部へ流出でするようにしてもよい。
計測チップ106は、検出電極を用いた電気化学測定によりイオンの濃度測定を行う。また、実施の形態において、計測チップ106は、測定した結果を送信するための通信機能を備える。実施の形態において、計測チップ106は、基材101に接して形成(実装)されている。
電池107は、計測チップ106の電源となる。電池107は、例えば、空気電池から構成されている。実施の形態において、電池107は、基材101に接して形成されている。例えば、使用前のウェアラブル検知デバイス100を保護するための被服層が、使用のために除去されることにより、被服層により封止されていた電池107と空気との接触が起こり、発電が開始され、計測チップ106への給電が開始される。
電池107より給電が開始されて動作状態となった計測チップ106は、例えば、無線通信のための接続要求信号が発信される。この接続要求信号は、例えば、図示しない携帯端末装置により受信され、この結果、計測チップ106と携帯端末装置との間の無線接続が確立される。
また、動作状態となった計測チップ106は、吸引口105aより流路151に取り込まれた汗が、ナトリウムイオン検出電極102、カリウムイオン検出電極103、参照電極104に到達したことにより検出されたナトリウムイオン、カリウムイオンの濃度を求める。また、計測チップ106は、求めた各イオンの濃度の値を、携帯端末装置に送信する。測定された各イオンの濃度の値を受信した携帯端末装置では、導入されているアプリケーションソフトの動作により、各イオンの濃度値と、基準となる濃度値との比較などにより、音や表示などにより脱水症状に関する警報を発令する。
上述した実施の形態によれば、発汗により汗腺より分泌されて吸引口105aに到達した汗は、吸引流路105の流路151を経由して吸引部153a,153bに吸い取られるので、汗が大量に発生しても、検出電極の箇所にとどまって蓄積することがない。このため、実施の形態によれば、検出電極に接触する汗を、発汗(分泌)された直後の汗のみとすることが可能となる。この結果、実施の形態によれば、発汗された時点(直後)の汗に含まれるイオンの濃度がより正確に測定できるようになる。また、実施の形態によれば、発汗による汗の成分の、時系列的な変化を観測することが可能となる。
また、吸引流路105の吸引口105aより所定の距離離れた吸引流路内に、水の接触により発色する指示薬を担持した指示薬層108を備えるようにしてもよい。指示薬層108は、吸引流路105で吸引する液体(汗)が最後に到達する箇所に配置すればよい。指示薬は、例えば、塩化コバルトである。この場合、基材101および吸引流路105は、透明な樹脂から構成する。吸引流路105により吸引した汗が、指示薬層108に到達すると、指示薬層108が発色(色が変化)する。この指示薬層108の発色の確認により、所定量の発汗が発生したことが、把握可能となる。
[実施例]
以下、実施例を用いてより詳細に説明する。はじめに、ウェアラブル検知デバイス100の作製について、簡単に説明する。まず、ポリジメチルシロキサン(PDMS)から構成された支持シートを用意する。支持シートは、例えば、親水性のPDMSから構成すればよい。次に、支持シートの電極形成面の、ナトリウムイオン検出電極102、カリウムイオン検出電極103、参照電極104を形成する箇所に、Auからなる電極パターンを形成する。例えば、ステンシルマスクなどを用いたスパッタリング法などにより、Auを堆積することで、上記電極パターンを形成する。電極パターンは、吸引流路105の流路151が配置される箇所に形成する。
以下、実施例を用いてより詳細に説明する。はじめに、ウェアラブル検知デバイス100の作製について、簡単に説明する。まず、ポリジメチルシロキサン(PDMS)から構成された支持シートを用意する。支持シートは、例えば、親水性のPDMSから構成すればよい。次に、支持シートの電極形成面の、ナトリウムイオン検出電極102、カリウムイオン検出電極103、参照電極104を形成する箇所に、Auからなる電極パターンを形成する。例えば、ステンシルマスクなどを用いたスパッタリング法などにより、Auを堆積することで、上記電極パターンを形成する。電極パターンは、吸引流路105の流路151が配置される箇所に形成する。
次に、形成した電極パターンの上に、銀塩化銀層を形成する。次に、3つの電極パターンの1つに、ナトリウムイオンのイオノフォア(ionophore)を含む塩化ビニル母体のカクテルを滴下して乾燥させることで、ナトリウムイオン検出電極102とする。また、残りの2つの電極パターンの一方に、カリウムイオンのイオノフォアを含む塩化ビニル母体のカクテルを滴下して乾燥させることで、カリウムイオン検出電極103とする。残りの1つの電極パターンは、参照電極104とする。このように各電極を形成した時点で、ナトリウムイオン検出電極102,カリウムイオン検出電極103に擬似汗成分を接触させ、これら検出電極の表面のコンディショニングを行ってもよい。
次に、PDMSからなる流路シートを形成する。例えば、吸引流路105とする部分の流路構造を備える型を形成し、この型に、親水性PDMSの膜を形成(塗布)し、所定の加熱条件で加熱して硬化(固化)し、型より離型することで、流路シートとすればよい。流路シートには、各流路や吸引部153a,153bとなる溝構造、および柱状部154が形成されている。このように形成した流路シートと、上記支持シートとを貼り合わせることで、吸引流路105が一体に形成された基材101とする。支持シートの電極形成面の接着面と、流路シートの溝形成側の接着面とを貼り合わせる。
流路シートの溝構造が形成されている側に、支持シートを貼り合わせる。この貼り合わせにおいて、各貼り合わせ面に、疎水性PDMSによる層を形成しておくとよい。この貼り合わせは、PDMSの自己接着力により各々の接着面同士を接着させることができる。なお、支持シートには、あらかじめ、吸引口105aを形成しておく。
上述した基材101によれば、皮膚に接触する面および吸引流路105の各流路内は、親水性となるので、汗がはじかれることがなく、吸引流路105においては、毛細管力を利用した汗の吸引が効率よく実施できる。また、貼り合わせ面は疎水性としているので、各吸引流路に吸引された汗が、貼り合わせの界面より漏れ出すことが抑制できるようになる。
次に、各検出電極および吸引流路105を備える基材101を形成した後、前述同様のスパッタリング法などによって、所定の配線パターンも形成し、形成した配線パターンに、例えば、金属コロイド溶液を用いることで、計測チップ106および電池107との配線を実施する。
上述した基材101の接触面101aを肌に接触させて基材101を人体に取り付ける。発汗により発生した汗が吸引口105aに到達すると、流路151に取り込まれて、ナトリウムイオン検出電極102、カリウムイオン検出電極103、参照電極104に到達する。次いで、汗は、流路151および分岐流路152の内部を毛細管力によって進行し、吸引部153a,153bに到達する。吸引部153a,153bに到達した汗は、例えば、直径100μm,高さ数100μm程度(例えば300μm)とされた複数の柱状部154の間に吸い込まれていく。
なお、ウェアラブル検知デバイス100は、図3に示すように、カバー109に覆った状態で皮膚111の表面に装着してもよい。カバー109は、周縁部に設けた接着層110により皮膚111の表面に貼り付ける。使用前は、図示しない剥離紙にウェアラブル検知デバイス100を貼り付けておき、剥離紙とカバー109とでウェアラブル検知デバイス100を包んでおく。
使用に際し、剥離紙からウェアラブル検知デバイス100を剥がし、接触面101aを皮膚111の汗が出る部分に装着する。電池107が空気電池の場合、剥離紙からの離型において、空気電池の空気極を封止しているカバーが同時に剥がれるようにしてもよい。これにより、剥離紙からウェアラブル検知デバイス100を剥がすと、前述したように、電池107からの給電が開始され、計測チップ106が動作を開始し、計測状態となる。
発汗した汗が吸引口105aに到達して吸引され、流路151に設けられたナトリウムイオン検出電極102、カリウムイオン検出電極103、参照電極104に到達し、この量が十分(約0.7μL)になると、汗に含まれるイオン濃度の計測が可能になる。この計測において、携帯端末装置には、計測されたイオン濃度が表示されるようになる。
例えば、測定開始から約20分程度は、調整時間とし、調整時間の後に、測定結果を用いた、例えば、脱水症状の判定状態となる。例えば、測定される各イオンの濃度が、設定されている正常状態をはずれた場合、脱水症状と判定する。また、測定されるナトリウムイオン濃度が10mEq/L相当以下であった場合には、低ナトリウム症状などが疑われることから、この警報を発令するようにしてもよい。
警報が発令された場合には、脱水状態などの異常な状態となっているリスクがあることから、ただちに冷暗所への移動、活動の停止、あるいは、飲料水の摂取などを行うことが望まれる。また、低ナトリウム症状が疑われる場合には、塩分を含む飲料の摂取が望まれる。
以上に説明したように、本発明によれば、吸引流路を設けるようにしたので、発汗された時点の汗に含まれるイオンの濃度がより正確に測定できるようになる。本発明のウェアラブル検知デバイスによれば、例えば、人が活動している状態で汗をかき、その汗の成分のイオン濃度を元に、脱水状態の危険性を知らせることができるようになる。これによって、ウェアラブル検知デバイスを取り付けている本人が気づかないうちに起こしている脱水状態への気づきだけでなく、付き添っている別の人や、遠隔にいる人にも、脱水状態の危険があることを通知することができる。また、脱水状態の危険をいち早く知ることで、重い症状に至る前に、予防策を講じることができるようになる。
なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
100…ウェアラブル検知デバイス、101…基材、101a…接触面、102…ナトリウムイオン検出電極、103…カリウムイオン検出電極、104…参照電極、105…吸引流路、105a…吸引口、106…計測チップ、107…電池、108…指示薬層、151…流路、152…分岐流路、153a,153b…吸引部、154…柱状部。
Claims (6)
- 可撓性を有する樹脂から構成されたシート状の基材と、
可撓性を有する樹脂から構成されて前記基材に形成され、前記基材に形成された吸引口より汗を吸引する吸引流路と、
前記吸引口より吸引した前記汗に接触可能とされて前記汗に含まれているイオンを検出するための検出電極と、
前記検出電極を用いた電気化学測定により前記イオンの濃度測定を行うための計測チップと、
前記計測チップの電源となる電池と
を備えることを特徴とするウェアラブル検知デバイス。 - 請求項1記載のウェアラブル検知デバイスにおいて、
前記吸引流路の前記吸引口より所定の距離離れた前記吸引流路内に配置され、水の接触により発色する指示薬を備え、
前記基材および前記吸引流路は、透明な樹脂から構成されていることを特徴とするウェアラブル検知デバイス。 - 請求項1または2記載のウェアラブル検知デバイスにおいて、
前記吸引流路は、前記基材に一体に形成されていることを特徴とするウェアラブル検知デバイス。 - 請求項1~3のいずれか1項に記載のウェアラブル検知デバイスにおいて、
前記検出電極は、ナトリウムイオンを検出するためのナトリウムイオン検出電極と、カリウムイオンを検出するためのカリウムイオン検出電極から構成されていることを特徴とするウェアラブル検知デバイス。 - 請求項1~4のいずれか1項に記載のウェアラブル検知デバイスにおいて、
前記計測チップは、測定した結果を送信するための通信機能を備えることを特徴とするウェアラブル検知デバイス。 - 請求項1~5のいずれか1項に記載のウェアラブル検知デバイスにおいて、
前記計測チップおよび前記電池は、前記基材に形成されていることを特徴とするウェアラブル検知デバイス。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/968,648 US12089824B2 (en) | 2018-03-12 | 2019-02-20 | Wearable sensing device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018043806A JP2019154677A (ja) | 2018-03-12 | 2018-03-12 | ウェアラブル検知デバイス |
JP2018-043806 | 2018-03-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019176483A1 true WO2019176483A1 (ja) | 2019-09-19 |
Family
ID=67906590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/006284 WO2019176483A1 (ja) | 2018-03-12 | 2019-02-20 | ウェアラブル検知デバイス |
Country Status (3)
Country | Link |
---|---|
US (1) | US12089824B2 (ja) |
JP (1) | JP2019154677A (ja) |
WO (1) | WO2019176483A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI746015B (zh) * | 2019-12-09 | 2021-11-11 | 財團法人工業技術研究院 | 穿戴式量測裝置及其生物標的物的量測方法 |
WO2024185194A1 (ja) * | 2023-03-03 | 2024-09-12 | マクセル株式会社 | 開封検知部材および開封検知システム |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022157541A1 (en) * | 2021-01-21 | 2022-07-28 | Zhibo Chen | Device for determining a fitness level |
CN113514523A (zh) * | 2021-06-01 | 2021-10-19 | 广州大学 | 使用全固态汗液传感芯片进行的汗液检测方法 |
CN114813868B (zh) * | 2022-04-29 | 2023-11-14 | 南京工业大学 | 一种基于金属有机框架衍生物的柔性汗液多标志物电化学传感器及其应用 |
CN114740060B (zh) * | 2022-05-06 | 2024-02-09 | 苏州大学 | 可穿戴式无源的汗液检测装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017023408A (ja) * | 2015-07-22 | 2017-02-02 | ライフケア技研株式会社 | 発汗量測定用パッチと発汗量測定装置 |
JP2017198577A (ja) * | 2016-04-28 | 2017-11-02 | セイコーエプソン株式会社 | 生体情報計測装置 |
US20180020966A1 (en) * | 2016-07-19 | 2018-01-25 | Eccrine Systems, Inc. | Sweat conductivity, volumetric sweat rate, and galvanic skin response devices and applications |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017218878A1 (en) * | 2016-06-17 | 2017-12-21 | The Board Of Trustees Of The University Of Illinois | Soft, wearable microfluidic systems capable of capture, storage, and sensing of biofluids |
US10736565B2 (en) * | 2016-10-14 | 2020-08-11 | Eccrine Systems, Inc. | Sweat electrolyte loss monitoring devices |
US11406321B2 (en) * | 2017-07-25 | 2022-08-09 | Epicore Biosystems, Inc. | Wearable fluidic system for measuring sweat composition |
WO2022055530A1 (en) * | 2020-09-10 | 2022-03-17 | Regents Of The University Of Minnesota | Additively manufactured self-supporting microfluidics |
-
2018
- 2018-03-12 JP JP2018043806A patent/JP2019154677A/ja active Pending
-
2019
- 2019-02-20 US US16/968,648 patent/US12089824B2/en active Active
- 2019-02-20 WO PCT/JP2019/006284 patent/WO2019176483A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017023408A (ja) * | 2015-07-22 | 2017-02-02 | ライフケア技研株式会社 | 発汗量測定用パッチと発汗量測定装置 |
JP2017198577A (ja) * | 2016-04-28 | 2017-11-02 | セイコーエプソン株式会社 | 生体情報計測装置 |
US20180020966A1 (en) * | 2016-07-19 | 2018-01-25 | Eccrine Systems, Inc. | Sweat conductivity, volumetric sweat rate, and galvanic skin response devices and applications |
Non-Patent Citations (1)
Title |
---|
KATO, YUTO ET AL.: "Development of Lactate Sensor in Perspiration Using Stretchable Biofuel Cell", LECTURE PREPRINTS OF JSAP SPRING MEETING, 3 March 2016 (2016-03-03) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI746015B (zh) * | 2019-12-09 | 2021-11-11 | 財團法人工業技術研究院 | 穿戴式量測裝置及其生物標的物的量測方法 |
WO2024185194A1 (ja) * | 2023-03-03 | 2024-09-12 | マクセル株式会社 | 開封検知部材および開封検知システム |
Also Published As
Publication number | Publication date |
---|---|
US20200405272A1 (en) | 2020-12-31 |
JP2019154677A (ja) | 2019-09-19 |
US12089824B2 (en) | 2024-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019176483A1 (ja) | ウェアラブル検知デバイス | |
WO2019176484A1 (ja) | ウェアラブル検知デバイス | |
JP6548013B2 (ja) | 発汗量測定用パッチと発汗量測定装置 | |
JP7102522B2 (ja) | 汗の組成物を測定するためのウェアラブル流体システム | |
US9918671B2 (en) | Sweat measurement device | |
US20150216471A1 (en) | Diagnostic device and method for sensing hydration state of a mammalian subject | |
US20070086927A1 (en) | Method and apparatus for point of care osmolarity testing | |
US20160262667A1 (en) | Device for measuring biological fluids | |
EP3675720B1 (en) | System and device for non-invasive drink detection | |
MX2010014273A (es) | Indicador de suficiencia de ropa. | |
US10842421B2 (en) | Sensing device, nursing bra, and manufacturing method thereof | |
WO2017053919A1 (en) | Headgear-mounted sweat sensing devices | |
US20220047217A1 (en) | Skin patch | |
Honda et al. | Wireless, Flexible, Ionic, Perspiration‐Rate Sensor System with Long‐Time and High Sweat Volume Functions Toward Early‐Stage, Real‐Time Detection of Dehydration | |
JP3208131U (ja) | おむつ湿度検知装置および監視システム | |
KR20160109098A (ko) | 상황 정보 기반 혈관성질환용 사용자 맞춤형 건강관리 방법 및 이를 위한 혈관성질환용 생체정보 측정 목걸이 | |
JP6376531B2 (ja) | 発汗監視装置及びその作動方法 | |
CN205725733U (zh) | 一种基于智能穿戴的养老t恤及其移动终端 | |
Yokus et al. | Wearable Sweat Rate Sensors | |
Benito-Lopez et al. | “Sweat-on-a-chip”: Analysing sweat in real time with disposable micro-devices | |
WO2016144529A1 (en) | Methods for manufacturing biological fluid sensor devices and devices, systems, and methods for measuring biological fluids | |
ES2652245T3 (es) | Dispositivo de medición de la pérdida hídrica | |
Kim et al. | All‐in‐One, Wireless, Multi‐Sensor Integrated Athlete Health Monitor for Real‐Time Continuous Detection of Dehydration and Physiological Stress | |
US20220280349A1 (en) | Smart diaper system and methods for making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19766608 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19766608 Country of ref document: EP Kind code of ref document: A1 |