WO2019176426A1 - Centrifugal pump - Google Patents

Centrifugal pump Download PDF

Info

Publication number
WO2019176426A1
WO2019176426A1 PCT/JP2019/005098 JP2019005098W WO2019176426A1 WO 2019176426 A1 WO2019176426 A1 WO 2019176426A1 JP 2019005098 W JP2019005098 W JP 2019005098W WO 2019176426 A1 WO2019176426 A1 WO 2019176426A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
crossover
blade
centrifugal pump
upstream
Prior art date
Application number
PCT/JP2019/005098
Other languages
French (fr)
Japanese (ja)
Inventor
和寛 塚本
ロマン プリュニエール
崇 沖原
孝英 長原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019176426A1 publication Critical patent/WO2019176426A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • F04D1/08Multi-stage pumps the stages being situated concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers

Definitions

  • the present invention relates to a centrifugal pump.
  • centrifugal fluid machine having a rotating centrifugal impeller has been used in various plants, air conditioners, liquid pumps, turbochargers and the like.
  • these fluid machines are required to have higher efficiency and higher operating range than ever before.
  • a centrifugal pump which is a type of centrifugal fluid machine, includes an impeller attached to a rotating shaft, a diffuser flow path provided on the outer peripheral side of the impeller, and a return flow path provided on the downstream side of the diffuser flow path.
  • a configuration including a curved flow path connecting the two flow paths is known.
  • a plurality of impellers are attached in multiple stages with respect to the rotating shaft.
  • a diffuser flow path, a curved flow path, and a return flow path are provided on a flow path that guides the fluid that has passed through the impeller and discharged radially outward to the next-stage impeller.
  • the diffuser channel and the return channel are often provided with stationary blade rows arranged in the circumferential direction.
  • Japanese Unexamined Patent Publication No. 2016-169672 (FIGS. 3A to 4B, etc.) Japanese Patent No. 3869816 (paragraph 0020, FIG. 9 (A) to (E), etc.)
  • the centrifugal pump described in Patent Document 1 is characterized in that at least one of the blade rows provided in the diffuser flow path or the return flow path is extended to the curved flow path (see FIGS. 3A to 4B). Further, the positional relationship between the extended blade and the blade provided in the return flow path is shifted to the suction surface side (downstream in the rotational direction of the impeller 6) of the extended blade.
  • the configuration is adopted. With this structure, loss is prevented from occurring in a bent flow path that is not provided with a conventional blade, and high efficiency is achieved.
  • the multistage fluid machine described in Patent Document 2 has blades communicating from the diffuser flow path to the curved flow path and the return flow path. Then, as shown in FIGS. 9A to 9E, a structure is proposed in which one side of the wall surface of the flow path constituted by the blades is configured in a straight line (paragraph 0020).
  • This structure is based on the premise that the hub side wall surface of the blade is straight, and the cross-sectional area of the blade is reduced by gradually changing the cross-sectional flow area between the blades on the hub side where the curved flow path is sharply bent. According to the report, it is possible to suppress an increase in loss due to a sudden change.
  • the reduction of the outer diameter reduces the speed reduction effect in the diffuser flow path, so the flow velocity flowing into the curved flow path increases.
  • the diffuser flow path is shortened, the effect of diverting the flow of the blade row in the flow path is reduced, so that the flow velocity component in the direction of turning in the circumferential direction is increased.
  • the flow that has flowed into the curved flow path portion while the flow velocity component in the swirl direction is large is easily separated from the blade surface in the curved flow channel or the blade surface in the return flow channel, and is easily separated. This is because the fact that the flow velocity component in the swirling direction is dominant means that the component in the direction in which the flow is peeled off from the blade is dominant, so that the flow is separated from the wall surface with the conventional structure.
  • the reduction in efficiency refers not only to the loss reduction in the static flow path but also to the effect of suppressing the reduction in efficiency of the next stage by making the angle of the flow flowing into the next stage impeller appropriate.
  • the present invention has been made in view of the above circumstances, and aims to provide a centrifugal pump with improved efficiency and high performance.
  • a centrifugal pump includes a plurality of centrifugal impellers attached to a rotating shaft, an annular partition provided around the rotating shaft of the centrifugal impeller, and a periphery of the annular partition.
  • a first radial flow path formed to guide the fluid that has passed through the centrifugal impeller to the outside in the radial direction of the centrifugal impeller, and the first radial flow path across the annular partition wall
  • a second radial flow path formed on the opposite side of the centrifugal impeller and configured to guide the fluid to a radially inner side of the centrifugal impeller, and the first radial flow path on an outer peripheral side of the annular partition wall
  • a curved flow path configured to communicate the first radial flow path from the first radial flow path to the second radial flow path, and the first radial flow path.
  • a channel formed in communication with the channel, the second radial channel, and the curved channel.
  • the crossover blade has a slit in the second radial flow path, and is positioned downstream of the crossover blade divided by the slit with respect to the fluid flow direction.
  • the leading edge of the downstream crossover blade is divided by the slit, and the centrifugal crossover blade is separated from the trailing edge of the upstream crossover blade positioned upstream with respect to the fluid flow direction. It is shifted upstream in the direction of rotation of the impeller.
  • a centrifugal pump with improved efficiency and high performance can be provided.
  • FIG. 1 is a longitudinal sectional view of a multistage pump according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a meridional surface in the vicinity of a stationary flow channel according to the first embodiment.
  • FIG. 3B is an I direction arrow view of FIG. 3A.
  • FIG. 3B is a view in the direction of arrow II in FIG. 3A.
  • FIG. 3 is an enlarged perspective view of the vicinity of a slit constituted by a crossover blade and a downstream blade in the return flow path according to the first embodiment.
  • FIG. 5 is an external view of a stationary flow path section according to Embodiment 2 of the present invention.
  • the present invention relates to a pump having a centrifugal impeller, and in particular, is an invention for reducing the outermost diameter of the pump and improving the efficiency.
  • FIG. 1 shows a longitudinal section of a multistage pump P according to Embodiment 1 of the present invention.
  • the casing 11 forms an outer shell.
  • a rotating shaft 12 that penetrates the casing 11 and extends in the horizontal direction is disposed at the center.
  • the casing 11 includes a suction port 15 for sucking fluid (arrow ⁇ 11 in FIG. 1) and a discharge port 16 for discharging the fluid after increasing the pressure (arrow ⁇ 12 in FIG. 1). Therefore, in the axial direction of the rotating shaft 12, the suction port 15 side is the upstream side, and the discharge port 16 side is the downstream side.
  • the casing 11 accommodates eight impellers 13 and seven stationary flow paths 21 corresponding to the seven impellers 13 excluding the final stage impeller 13.
  • the eight impellers 13 are fixed to the rotating shaft 12.
  • the number of impellers 13 is not limited to eight. That is, the number of impellers 13 is not limited as long as it is one or more.
  • FIG. 2 shows an enlarged cross-sectional view of the meridional surface in the vicinity of the stationary flow path 21 of the first embodiment.
  • the stationary flow path 21 forms an outlet-side flow path of the impeller 13 and an inlet-side flow path following the next-stage impeller 13, and is fixed to the casing 11.
  • the stationary flow path 21 is formed by an outer casing 11 and an inner annular partition wall 11k.
  • the stationary flow path 21 includes a diffuser flow path 22, a curved flow path 23, and a return flow path 24.
  • the rotary shaft 12 is rotationally driven by a drive source (not shown).
  • the impeller 13 is fixed to the rotating shaft 12 and rotates together with the rotating shaft 12.
  • the stationary flow path 21 will be described with reference to FIGS.
  • the flow path between adjacent impellers 13 is constituted by a stationary flow path 21.
  • the static flow path 21 has a role of changing the dynamic pressure of the fluid due to the rotation of the preceding impeller 13 to a static pressure and reducing the force of the swirling component of the fluid.
  • the fluid flows into the inside of the impeller 13 from the impeller inlet 13A located at the radial center of the impeller 13 ( ⁇ 21 in FIG. 2).
  • the fluid that has flowed into the impeller 13 receives a centrifugal force due to the rotation of the impeller 13, increases the pressure, and flows out from the outer impeller outlet 13 ⁇ / b> B toward the stationary flow path 21.
  • the fluid flowing out from the impeller outlet 13B flows into the diffuser flow path 22 ( ⁇ 22 in FIG. 2).
  • the fluid that has passed through the diffuser flow path 22 flows through the curved flow path 23, so that the flow direction is turned from the outward direction to the inward direction.
  • the flow turned inward is guided to the next stage impeller 13 through the return flow path 24.
  • the fluid passes through the stationary flow path 21 ( ⁇ 23 in FIG. 2) and is guided to the next stage impeller 13 (the right impeller 13 in FIG. 2).
  • FIG. 3A to 3C show the outer shape of the stationary flow path 21 with the casing 11 removed.
  • FIG. 3A shows a side view of the stationary flow path 21 with the casing 11 removed
  • FIG. 3B shows a view in the direction I of FIG. 3A
  • FIG. 3C shows a view in the direction II of FIG. 3A.
  • the stationary flow path 21 has a first crossover blade 25 formed over the diffuser flow path 22, the curved flow path 23, and the return flow path 24.
  • a plurality of first crossover blades 25 are provided in the stationary flow path 21 uniformly in the circumferential direction.
  • the same number of second crossover blades 26 are arranged downstream of the first crossover blades 25.
  • a slit 27 is provided between the first crossover blade 25 and the second crossover blade 26.
  • the slit 27 has a uniform distance in the radial direction of the impeller 13 with respect to all the blades (25, 26) arranged in the circumferential direction.
  • the slit 27 connects the pressure surface 25a of the first crossover blade 25 and the negative pressure surface 26f of the second crossover blade 26 to the flow of fluid (arrow ⁇ 30 in FIG. 3C).
  • the position of the slit 27 is disposed in the return channel 24 where the curved channel 23 (see FIG. 2) ends. This is because when the slit 27 is formed in the bent flow path 23, the flow swells due to the bending of the flow path, and loss occurs. Further, the flow flows into the slit 27 in the curved flow path 23, the flow swells and a loss occurs. On the other hand, in the conventional Patent Document 1, the slit between the radial side end portions 25 and 35 seems to be located in the curved flow path (FIG. 4A of Patent Document 1, paragraph 0045, etc.). is there.
  • the slit 27 is preferably arranged at a position that is not too downstream in the return flow path 24.
  • momentum is brought from the pressure surface 25a side of the first crossover blade 25 into the thick velocity boundary layer on the suction surface 26f side of the second crossover blade 26 (see FIG. 3C).
  • 3C arrow ⁇ 30 becomes possible.
  • the velocity boundary layer can be thinned, and peeling can be suppressed. If the separation can be suppressed, an increase in loss due to the separation can be suppressed and the efficiency can be improved.
  • FIG. 4 shows the first crossover blade 25 and the second crossover blade in the return flow path 24 according to the first embodiment. An enlarged perspective view of the vicinity of the slit 27 constituted by 26 is shown.
  • the leading edge 26A of the second crossover blade 26 is the trailing edge of the first crossover blade 25. It is characterized in that it is shifted to the upstream side of the rotational direction of the impeller 13 (arrow ⁇ 31 in FIGS. 4 and 5) with respect to 25B, that is, located on the upstream side.
  • the return vane (31) is shifted to the downstream side with respect to the diffuser vane (21) (see FIG. 4A of Patent Document 1).
  • the pressure of the first crossover blade 25 is increased in the thick velocity boundary layer on the suction surface 26f (FIG. 3C, FIG. 5) side of the second crossover blade 26. It becomes possible to bring in the momentum of the fluid from the side of the surface 25a (FIGS. 3C and 5).
  • the velocity boundary layer of the suction surface 26f of the second crossover blade 26 can be thinned, and separation of fluid from the suction surface 26f can be suppressed. If the peeling can be suppressed, it is possible to suppress an increase in pressure loss due to the peeling, and it is possible to improve the efficiency.
  • FIG. 5 shows a comparison between the outlet blade angle ⁇ 1 of the hub side wall surface 28 (see FIG. 2) of the first crossover blade 25 in the return flow path 24 and the outlet blade angle ⁇ 2 of the shroud side wall surface 29 (see FIG. 2). Show.
  • the outlet blade angle of the trailing edge 25B of the first crossover blade 25 is such that the outlet blade angle ⁇ 1 of the hub side wall surface 28 (see FIG. 2) and the outlet of the shroud side wall surface 29 (see FIG. 2). It differs depending on the blade angle ⁇ 2.
  • the outlet blade angle ⁇ 1 on the hub side wall surface 28 side is circumferential with respect to the outlet blade angle ⁇ 2 on the shroud side wall surface 29 side (the rotational direction of the impeller 13 (arrow ⁇ 31 in FIG. 5)). It is characterized by having a (small) blade angle.
  • the exit blade angle ⁇ 1 is an arc centered on the center line of the impeller 13 at the point 25p where the center line 25o1 of the first crossover blade 25 on the hub side wall surface 28 passes the trailing edge 25B and the center line 25o1.
  • the exit blade angle ⁇ 2 is an arc centered on the center line of the impeller 13 at the point 25q where the center line 25o2 of the first crossover blade 25 on the shroud side wall surface 29 passes through the trailing edge 25B and the center line 25o2 The angle between the tangent line 13s of 13e.
  • outlet blade angle ⁇ 1 of the hub side wall surface 28 of the trailing edge 25B of the first crossover blade 25 is different from the outlet blade angle ⁇ 2 of the shroud side wall surface 29 is as follows. Due to the action of the centrifugal force on the fluid, the flow having a higher flow velocity in the curved flow path 23 is biased toward the shroud side wall surface 29 side located outside. Therefore, in the first crossover blade 25, the flow turning angle needs to be larger on the side of the shroud side wall surface 29 (see FIG. 2) than on the side of the hub side wall surface 28 (see FIG. 2).
  • the blade angle of the trailing edge 25B of the first crossover blade 25 is varied in the height direction of the first crossover blade 25 (the direction from the hub side wall surface 28 to the shroud side wall surface 29). That is, the blade angle of the trailing edge 25B of the first crossover blade 25 is such that the outlet blade angle ⁇ 1 on the side of the hub side wall 28 (see FIG. 2) in the return channel 24 is the shroud side wall in the return channel 24. Smaller than the outlet blade angle ⁇ 2 on the 29 (see FIG. 2) side.
  • the vane row (25, 26) communicates from the diffuser flow path 22 to the curved flow path 23 and the return flow path 24, and the blade (25, By suppressing the separation from the surface of 26), it is possible to reduce the loss and control the inflow angle of the next stage.
  • the highly efficient multistage pump P can be provided while reducing the outer diameter of the multistage pump P.
  • the reduction of the outer diameter of the multistage pump P can also reduce the exclusive space.
  • FIG. 6 shows an external view of the stationary flow path 21 portion according to Embodiment 2 of the present invention.
  • the second embodiment is characterized by having a slit 27 between the first crossover blade 25 and the second crossover blade 26, as in the first embodiment, but in the second embodiment, the first crossover blade 25 has the first crossover blade 26. By controlling the thickness 25t of the over blade 25, further increase in efficiency is realized.
  • the inter-blade flow path disconnection formed between adjacent first crossover blades 25 in the curved flow path 23 is performed. Controls the change in the cross-sectional area of the area.
  • the flow in a pipe having a curvature is likely to be separated from the flow because the flow direction changes suddenly at the bent portion.
  • two points are important: a gentle curvature or a small change in flow path cross-sectional area at the bent portion.
  • the first crossover blade 25 has an effect of turning the flow from the swirling direction to the flow direction of the curved flow path 23 even in the curved flow path 23. Therefore, a fluid load acts on the blade surface of the first crossover blade 25.
  • the fact that the load due to the fluid is acting means that the first crossover blade 25 is bent or twisted in the curved flow path 23, so that the adjacent first crossover blade 25 changes according to its shape change.
  • the channel cross-sectional area between them also changes.
  • the first crossover blade 25 is appropriately bent and the cross-sectional area of the flow path is reduced. It is possible to control so that the change of the signal is moderated or not changed.
  • the fluid flowing out from the impeller outlet 13B (see FIG. 2) of the centrifugal pump such as the multistage pump P is a flow in which the swirl direction component due to the rotation of the impeller 13 is dominant.
  • this swirl direction component is turned in the diffuser flow path 22 shown in FIG. 2, the swirl direction component is still dominant at the inlet 23i (see FIG. 2) of the bend flow path 23 in many cases. If the flow is guided to the return flow path 24 shown in FIG. 2 while maintaining this swirl direction component, the strong swirl component cannot be removed, so the suction surface 26f of the second crossover blade 26 (see FIG. 3C). ) Peeling easily occurs. Therefore, it can be said that the flow should be redirected as much as possible even in the curved flow path 23.
  • the thickness of the first crossover blade 25 is constant. In this case, the cross-sectional area of the flow path between the adjacent first crossover blades 25 becomes larger due to the bending of the flow path toward the return flow path 24.
  • the cross-sectional area when the cross-sectional area is enlarged in a flow path having a curvature, the flow is easily separated from the wall surface, and the loss increases. Therefore, the loss can be suppressed by changing the thickness of the crossover blade 2 in the curved flow path 23. Therefore, in a channel having a bend, reducing the channel cross-sectional area change as much as possible leads to an improvement in efficiency.
  • the blade thickness of the first crossover blade 25 in the curved flow path 23 is gradually increased from the outlet 22o of the diffuser flow path 22 (see FIG. 2) to the inlet 24i of the return flow path 24. It is thick. That is, as shown in FIG. 6, the thickness is gradually increased from the bent channel inlet blade thickness 25t1 to the bent channel outlet blade thickness 25t2.
  • the change in the cross-sectional area of the flow path between the first crossover blades 25 constituted by the first crossover blades 25 adjacent in the circumferential direction can be controlled so as to be gradual or not change. Become.
  • fluid loss in the bent flow path 23 can be suppressed, and efficiency can be improved.
  • the conventional Patent Document 1 has a constant thickness of the diffuser vane (21) (see FIG. 4A of Patent Document 1).

Abstract

A centrifugal pump (P) of the present invention comprises: first crossover blades (25) in which a static flow path (21) is formed over a diffuser flow path (22), a curved flow path (23), and a return flow path (24); and the same number of second crossover blades (26) arranged in the return flow path (24) downstream of the first crossover blades (25). Between the first crossover blades (25) and the second crossover blades (26), slits (27) that have a uniform distance in a radial direction with respect to all the blades (25 and 26) arranged in a circumferential direction and connect pressure surfaces (25a) of the blades (25) and negative pressure surfaces (26f) to each other are provided. The centrifugal pump (P) is characterized in that, among the blades (25 and 26) separated by the slits (27), leading edges (26A) of the second crossover blades (26) are displaced on an upstream side in a rotational direction of a centrifugal impeller (13) with respect to trailing edges (25B) of the first crossover blades (25).

Description

遠心ポンプCentrifugal pump
 本発明は、遠心ポンプに関する。 The present invention relates to a centrifugal pump.
 従来から、回転する遠心式の羽根車を有する遠心式の流体機械は、様々なプラントや空調機器、液体圧送ポンプ、ターボチャージャー等において利用されている。近年の環境負荷低減の要求の高まりを受けて、これら流体機械には、従来以上の高効率化と高作動範囲化が求められている。 Conventionally, a centrifugal fluid machine having a rotating centrifugal impeller has been used in various plants, air conditioners, liquid pumps, turbochargers and the like. In response to the recent increase in demand for reducing the environmental load, these fluid machines are required to have higher efficiency and higher operating range than ever before.
 遠心式の流体機械の一種である遠心ポンプは、回転軸に取り付けられた羽根車と、羽根車の外周側に設けられたディフューザ流路と、ディフューザ流路の下流側に設けられたリターン流路と、その2つの流路を結ぶ曲がり流路とを備えた構成が知られている。 A centrifugal pump, which is a type of centrifugal fluid machine, includes an impeller attached to a rotating shaft, a diffuser flow path provided on the outer peripheral side of the impeller, and a return flow path provided on the downstream side of the diffuser flow path. In addition, a configuration including a curved flow path connecting the two flow paths is known.
 例えば、多段式遠心ポンプでは、回転軸に対して複数の羽根車が多段に取り付けられている。そして、羽根車を通過して半径方向外側へと排出された流体を次段の羽根車へと導く流路上に、ディフューザ流路、曲がり流路及びリターン流路が設けられている。ディフューザ流路とリターン流路には、周方向に配置された静止翼列が設けられることが多い。 For example, in a multistage centrifugal pump, a plurality of impellers are attached in multiple stages with respect to the rotating shaft. A diffuser flow path, a curved flow path, and a return flow path are provided on a flow path that guides the fluid that has passed through the impeller and discharged radially outward to the next-stage impeller. The diffuser channel and the return channel are often provided with stationary blade rows arranged in the circumferential direction.
 これらの流路では、主に羽根車から排出された流体の流速を減速させることで圧力を回復する効果と、次段の羽根車へと流入する流れの旋回角度を調整する効果を得ている。これらの効果をより効率的に得るために、下記の特許文献1、2のような様々な発明が提案されている。 In these flow paths, the effect of recovering the pressure mainly by decelerating the flow velocity of the fluid discharged from the impeller and the effect of adjusting the swirl angle of the flow flowing into the next stage impeller are obtained. . In order to obtain these effects more efficiently, various inventions such as the following Patent Documents 1 and 2 have been proposed.
特開2016-169672号公報(図3A~図4B等)Japanese Unexamined Patent Publication No. 2016-169672 (FIGS. 3A to 4B, etc.) 特許第3869816号公報(段落0020、図9(A)~(E)等)Japanese Patent No. 3869816 (paragraph 0020, FIG. 9 (A) to (E), etc.)
 特許文献1に記載の遠心ポンプでは、ディフューザ流路またはリターン流路に設けられた翼列の少なくとも一方が曲がり流路にまで延長されている構成(図3A~図4B参照)を特徴としている。また,延長された翼とリターン流路に設けられた翼との位置関係は、リターン流路に設けられた翼が延長された翼の負圧面側(インペラ6の回転方向の下流側)にシフトした構成を採用している。本構造により、従来翼が設けられていない曲がり流路における損失発生を抑制し、高効率化を図っている。 The centrifugal pump described in Patent Document 1 is characterized in that at least one of the blade rows provided in the diffuser flow path or the return flow path is extended to the curved flow path (see FIGS. 3A to 4B). Further, the positional relationship between the extended blade and the blade provided in the return flow path is shifted to the suction surface side (downstream in the rotational direction of the impeller 6) of the extended blade. The configuration is adopted. With this structure, loss is prevented from occurring in a bent flow path that is not provided with a conventional blade, and high efficiency is achieved.
 特許文献2に記載の多段流体機械では、ディフューザ流路から曲がり流路、リターン流路にかけて連通した翼を有している。そして、図9(A)~(E)に示すように、その翼によって構成される流路の壁面のうちの1辺が直線状に構成される構造を提案している(段落0020)。この構造は、特に翼のハブ側壁面が直線状とすることを前提としており、曲がり流路の曲がりが急なハブ側での翼間流路断面積変化を緩やかにすることで、断面積の急激な変化に伴う損失増加を抑制することができるとしている。 The multistage fluid machine described in Patent Document 2 has blades communicating from the diffuser flow path to the curved flow path and the return flow path. Then, as shown in FIGS. 9A to 9E, a structure is proposed in which one side of the wall surface of the flow path constituted by the blades is configured in a straight line (paragraph 0020). This structure is based on the premise that the hub side wall surface of the blade is straight, and the cross-sectional area of the blade is reduced by gradually changing the cross-sectional flow area between the blades on the hub side where the curved flow path is sharply bent. According to the report, it is possible to suppress an increase in loss due to a sudden change.
 特許文献1、2のいずれの構造にあっても、ディフューザ流路、曲がり流路、リターン流路全てにおいて翼が設けられており、特に曲がり流路への翼の付与による損失低減効果が得られているといえる。
 しかし、特許文献1、2の構造では、遠心ポンプの主要開発課題のひとつである、ポンプ外径縮小による効率低下がより大きくなると予想される。
In either structure of Patent Documents 1 and 2, blades are provided in all of the diffuser flow path, the curved flow path, and the return flow path, and in particular, the loss reduction effect can be obtained by applying the blades to the curved flow path. It can be said that.
However, in the structures of Patent Documents 1 and 2, it is expected that the efficiency decrease due to the reduction of the outer diameter of the pump, which is one of the main development problems of the centrifugal pump, will become larger.
 ポンプ外径縮小は、ポンプ体積の低減に繋がるため、コストの低減に直結する。そのため、高い効率を維持しつつ、より小さいポンプを開発することが必要となる。
 効率低下の要因は、以下の通りである。
The reduction in the outer diameter of the pump leads to a reduction in pump volume, which directly leads to a reduction in cost. It is therefore necessary to develop smaller pumps while maintaining high efficiency.
The causes of the decrease in efficiency are as follows.
 外径縮小によってディフューザ流路内における減速効果が小さくなるため、曲がり流路へ流入する流速が大きくなる。特に、ディフューザ流路が短くなることで、流路内で翼列が担う流れを転向させる効果も小さくなるため、周方向へと旋回する方向の流速成分が大きくなる。旋回方向への流速成分が大きいまま曲がり流路部へと流入した流れは、曲がり流路内の翼面またはリターン流路内の翼面から離れ易く、はく離しやすくなる。これは、旋回方向の流速成分が支配的ということは、流れが翼からはがれる方向の成分が支配的ということであるため、従来構造のままでは、流れが壁面からはく離することとなる。流れが壁面からはく離すると、圧力損失が生じて流体損失が増えるため、効率の低下に繋がる。加えて、翼面に添って流体が流れないため、周方向流速成分が支配的なままの状態でリターン流路出口に流体が到達するため、次段に設置された羽根車への流入角が小さくなり、流体の羽根車への流入が阻害されて次段の流体性能低下にも繋がる。 The reduction of the outer diameter reduces the speed reduction effect in the diffuser flow path, so the flow velocity flowing into the curved flow path increases. In particular, since the diffuser flow path is shortened, the effect of diverting the flow of the blade row in the flow path is reduced, so that the flow velocity component in the direction of turning in the circumferential direction is increased. The flow that has flowed into the curved flow path portion while the flow velocity component in the swirl direction is large is easily separated from the blade surface in the curved flow channel or the blade surface in the return flow channel, and is easily separated. This is because the fact that the flow velocity component in the swirling direction is dominant means that the component in the direction in which the flow is peeled off from the blade is dominant, so that the flow is separated from the wall surface with the conventional structure. When the flow peels from the wall surface, pressure loss occurs and fluid loss increases, leading to a decrease in efficiency. In addition, since the fluid does not flow along the blade surface, the fluid reaches the return flow passage outlet while the circumferential flow velocity component remains dominant, so the inflow angle to the impeller installed in the next stage is As a result, the fluid is impeded from flowing into the impeller, leading to a decrease in fluid performance at the next stage.
 ディフューザ流路内における流れの転向を大きくするために、流路内に設置された翼列を周方向に立てることで、外径縮小前と同程度の減速効果を得ることも可能である。しかしながら、翼列を周方向に立てると、低流量運転時に翼列部ではく離が生じやすくなり、安定に運転ができなくなる可能性がある。 
 そのため、外径縮小による効率低下を抑えられるような流路構造が求められている。ここでの効率低下とは、静止流路内の損失低減のみではなく、次段の羽根車へ流入する流れの角度を適切にすることで、次段の効率低下を抑える効果の双方を指す。
In order to increase the diversion of the flow in the diffuser flow path, it is possible to obtain the same speed reduction effect as before the outer diameter reduction by standing the blade rows installed in the flow path in the circumferential direction. However, if the blade row is set up in the circumferential direction, separation at the blade row portion is likely to occur during low flow rate operation, and stable operation may not be possible.
Therefore, a flow path structure that can suppress a decrease in efficiency due to a reduction in outer diameter is required. The reduction in efficiency here refers not only to the loss reduction in the static flow path but also to the effect of suppressing the reduction in efficiency of the next stage by making the angle of the flow flowing into the next stage impeller appropriate.
 本発明は上記実状に鑑み創案されたものであり、効率が向上し、性能が高い遠心ポンプの提供を目的とする。 The present invention has been made in view of the above circumstances, and aims to provide a centrifugal pump with improved efficiency and high performance.
 前記課題を解決するため、本発明の遠心ポンプは、回転軸に取り付けられた複数枚の遠心羽根車と、前記遠心羽根車の前記回転軸の周囲に設けられる環状隔壁と、前記環状隔壁の周囲に形成され、前記遠心羽根車を通過した流体を前記遠心羽根車の半径方向外側へと導くように構成された第1半径方向流路と、前記環状隔壁を挟んで前記第1半径方向流路とは反対側に形成され、前記流体を前記遠心羽根車の半径方向内側へと導くように構成された第2半径方向流路と、前記環状隔壁の外周側で、前記第1半径方向流路と前期第2半径方向流路とを連通させ、前記第1半径方向流路から前記第2半径方向流路へと前記流体を導くように構成された曲がり流路と、前記第1半径方向流路、前記第2半径方向流路及び前記曲がり流路に連通して形成されるクロスオーバー翼を備え、前記クロスオーバー翼は前記第2半径方向流路内においてスリットを有し、前記スリットによって分断された前記クロスオーバー翼のうち、前記流体の流れる方向に対して下流側に位置する下流側クロスオーバー翼の前縁が、前記スリットによって分断された前記クロスオーバー翼のうち、前記流体の流れる方向に対して上流側に位置する上流側クロスオーバー翼の後縁に対し、前記遠心羽根車が回転する方向の上流側にずれている。 In order to solve the above problems, a centrifugal pump according to the present invention includes a plurality of centrifugal impellers attached to a rotating shaft, an annular partition provided around the rotating shaft of the centrifugal impeller, and a periphery of the annular partition. A first radial flow path formed to guide the fluid that has passed through the centrifugal impeller to the outside in the radial direction of the centrifugal impeller, and the first radial flow path across the annular partition wall A second radial flow path formed on the opposite side of the centrifugal impeller and configured to guide the fluid to a radially inner side of the centrifugal impeller, and the first radial flow path on an outer peripheral side of the annular partition wall A curved flow path configured to communicate the first radial flow path from the first radial flow path to the second radial flow path, and the first radial flow path. A channel formed in communication with the channel, the second radial channel, and the curved channel. The crossover blade has a slit in the second radial flow path, and is positioned downstream of the crossover blade divided by the slit with respect to the fluid flow direction. The leading edge of the downstream crossover blade is divided by the slit, and the centrifugal crossover blade is separated from the trailing edge of the upstream crossover blade positioned upstream with respect to the fluid flow direction. It is shifted upstream in the direction of rotation of the impeller.
 本発明によれば、効率が向上し、性能が高い遠心ポンプを提供できる。 According to the present invention, a centrifugal pump with improved efficiency and high performance can be provided.
本発明の実施形態1に係る多段ポンプの長手方向断面図。1 is a longitudinal sectional view of a multistage pump according to Embodiment 1 of the present invention. 実施形態1の静止流路近傍の子午面断面拡大図。FIG. 2 is an enlarged cross-sectional view of a meridional surface in the vicinity of a stationary flow channel according to the first embodiment. ケーシングを外した状態の静止流路の側面図。The side view of the static flow path of the state which removed the casing. 図3AのI方向矢視図。FIG. 3B is an I direction arrow view of FIG. 3A. 図3AのII方向矢視図。FIG. 3B is a view in the direction of arrow II in FIG. 3A. 実施形態1に係る戻り流路内のクロスオーバー翼と下流翼によって構成されるスリット近傍部の拡大斜視図。FIG. 3 is an enlarged perspective view of the vicinity of a slit constituted by a crossover blade and a downstream blade in the return flow path according to the first embodiment. 戻り流路内のクロスオーバー翼のハブ側壁面の出口羽根角度とシュラウド側壁面の出口羽根角度との比較を示す図。The figure which shows the comparison with the exit blade | wing angle of the hub side wall surface of the crossover blade | wing in a return flow path, and the exit blade | wing angle of a shroud side wall surface. 本発明の実施形態2に係る静止流路部の外形図。FIG. 5 is an external view of a stationary flow path section according to Embodiment 2 of the present invention.
 以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
 本発明は、遠心式の羽根車を有するポンプに関し、特に、ポンプの最外径寸法を小さくし、かつ効率の向上を図る発明である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
The present invention relates to a pump having a centrifugal impeller, and in particular, is an invention for reducing the outermost diameter of the pump and improving the efficiency.
<<実施形態1>>
 図1に、本発明の実施形態1に係る多段ポンプPの長手方向断面を示す。
 実施形態1の多段ポンプPは、ケーシング11で外郭が形成されている。多段ポンプPは、ケーシング11を貫通して、水平方向に伸びる回転軸12が中央に配置されている。
<< Embodiment 1 >>
FIG. 1 shows a longitudinal section of a multistage pump P according to Embodiment 1 of the present invention.
In the multistage pump P of the first embodiment, the casing 11 forms an outer shell. In the multistage pump P, a rotating shaft 12 that penetrates the casing 11 and extends in the horizontal direction is disposed at the center.
 ケーシング11は、流体を吸込む(図1の矢印α11)吸込口15と、圧力を高めた後の流体を吐出する(図1の矢印α12)吐出口16とを備えている。そのため、回転軸12の軸方向においては、吸込口15の側を上流とし、吐出口16の側を下流とする。 The casing 11 includes a suction port 15 for sucking fluid (arrow α11 in FIG. 1) and a discharge port 16 for discharging the fluid after increasing the pressure (arrow α12 in FIG. 1). Therefore, in the axial direction of the rotating shaft 12, the suction port 15 side is the upstream side, and the discharge port 16 side is the downstream side.
 ケーシング11の内部には、8個の羽根車13と、最終段の羽根車13を除く7個の羽根車13に対応する7個の静止流路21とが収容されている。8個の羽根車13は回転軸12に固定されている。なお、羽根車13の数は、8個に限定されない。つまり、羽根車13の数は、1個以上であれば限定されない。 The casing 11 accommodates eight impellers 13 and seven stationary flow paths 21 corresponding to the seven impellers 13 excluding the final stage impeller 13. The eight impellers 13 are fixed to the rotating shaft 12. The number of impellers 13 is not limited to eight. That is, the number of impellers 13 is not limited as long as it is one or more.
 図2に、実施形態1の静止流路21近傍の子午面断面拡大図を示す。
 静止流路21は、羽根車13の出口側流路と次段の羽根車13に続く入口側流路を形成し、ケーシング11に固定されている。静止流路21は、外側のケーシング11と内側の環状隔壁11kとで形成されている。
FIG. 2 shows an enlarged cross-sectional view of the meridional surface in the vicinity of the stationary flow path 21 of the first embodiment.
The stationary flow path 21 forms an outlet-side flow path of the impeller 13 and an inlet-side flow path following the next-stage impeller 13, and is fixed to the casing 11. The stationary flow path 21 is formed by an outer casing 11 and an inner annular partition wall 11k.
 静止流路21は、ディフューザ流路22、曲がり流路23、および戻り流路24を含んで構成されている。
 回転軸12は、図示しない駆動源によって、回転駆動されている。
 羽根車13は、回転軸12に固定されており、回転軸12と共に回転する。
The stationary flow path 21 includes a diffuser flow path 22, a curved flow path 23, and a return flow path 24.
The rotary shaft 12 is rotationally driven by a drive source (not shown).
The impeller 13 is fixed to the rotating shaft 12 and rotates together with the rotating shaft 12.
 <静止流路21>
 次に、静止流路21について図2、図3を用いて説明する。
  図2に示すように、隣り合う羽根車13の間の流路は、静止流路21によって構成されている。静止流路21は、前段の羽根車13の回転による流体の動圧を静圧に変えるとともに、流体の旋回成分の力を低減する役割をもつ。
 流体は、羽根車13の径方向の中心部に位置する羽根車入口13Aから羽根車13の内部に流入する(図2のα21)。
<Static flow path 21>
Next, the stationary flow path 21 will be described with reference to FIGS.
As shown in FIG. 2, the flow path between adjacent impellers 13 is constituted by a stationary flow path 21. The static flow path 21 has a role of changing the dynamic pressure of the fluid due to the rotation of the preceding impeller 13 to a static pressure and reducing the force of the swirling component of the fluid.
The fluid flows into the inside of the impeller 13 from the impeller inlet 13A located at the radial center of the impeller 13 (α21 in FIG. 2).
 羽根車13に流入した流体は、羽根車13の回転による遠心力を受けて圧力が高められ、外周の羽根車出口13Bから静止流路21に向けて流出する。羽根車出口13Bより流出した流体は、ディフューザ流路22に流入する(図2のα22)。
 ディフューザ流路22を通過した流体は、曲がり流路23を流れることで流れの方向が外向きから内向きへと転向される。内向きへ転向した流れは、戻り流路24を経て次段の羽根車13へと導かれる。このように、流体は、静止流路21内を通過して(図2のα23)次段の羽根車13(図2の右側の羽根車13)へと導かれる。
The fluid that has flowed into the impeller 13 receives a centrifugal force due to the rotation of the impeller 13, increases the pressure, and flows out from the outer impeller outlet 13 </ b> B toward the stationary flow path 21. The fluid flowing out from the impeller outlet 13B flows into the diffuser flow path 22 (α22 in FIG. 2).
The fluid that has passed through the diffuser flow path 22 flows through the curved flow path 23, so that the flow direction is turned from the outward direction to the inward direction. The flow turned inward is guided to the next stage impeller 13 through the return flow path 24. Thus, the fluid passes through the stationary flow path 21 (α23 in FIG. 2) and is guided to the next stage impeller 13 (the right impeller 13 in FIG. 2).
 図3A~図3Cに、ケーシング11を外した状態の静止流路21の外形を示す。図3Aにケーシング11を外した状態の静止流路21の側面を示し、図3Bに図3AのI方向矢視図を示し、図3Cに図3AのII方向矢視図を示す。 3A to 3C show the outer shape of the stationary flow path 21 with the casing 11 removed. FIG. 3A shows a side view of the stationary flow path 21 with the casing 11 removed, FIG. 3B shows a view in the direction I of FIG. 3A, and FIG. 3C shows a view in the direction II of FIG. 3A.
 図3A~図3Cに示すように、静止流路21には、ディフューザ流路22、曲がり流路23、戻り流路24にかけて形成される第1クロスオーバー翼25を有している。
 第1クロスオーバー翼25は、静止流路21に周方向に均一に複数枚設けられている。そして、戻り流路24には、第1クロスオーバー翼25の下流に同一枚数の第2クロスオーバー翼26(図3C参照)が配置されている。
As shown in FIGS. 3A to 3C, the stationary flow path 21 has a first crossover blade 25 formed over the diffuser flow path 22, the curved flow path 23, and the return flow path 24.
A plurality of first crossover blades 25 are provided in the stationary flow path 21 uniformly in the circumferential direction. In the return flow path 24, the same number of second crossover blades 26 (see FIG. 3C) are arranged downstream of the first crossover blades 25.
 第1クロスオーバー翼25と第2クロスオーバー翼26の間には、スリット27が設けられている。スリット27は、周方向に配置された全ての翼(25、26)に対して、羽根車13の径方向に均一距離を有している。スリット27は、流体の流れ(図3Cの矢印α30)に対して、第1クロスオーバー翼25の圧力面25aと第2クロスオーバー翼26の負圧面26fを接続する。 A slit 27 is provided between the first crossover blade 25 and the second crossover blade 26. The slit 27 has a uniform distance in the radial direction of the impeller 13 with respect to all the blades (25, 26) arranged in the circumferential direction. The slit 27 connects the pressure surface 25a of the first crossover blade 25 and the negative pressure surface 26f of the second crossover blade 26 to the flow of fluid (arrow α30 in FIG. 3C).
 スリット27の位置は、曲がり流路23(図2参照)が終わった戻り流路24内に配置する。何故なら、曲がり流路23内にスリット27を形成した場合、流路の曲りのために、流れが膨らみ損失が生じる。また、曲がり流路23内のスリット27に流れが流入し、流れが膨らみ損失が生じるからである。
 これに対して、従来の特許文献1では、半径方向側方側端部25、35間のスリットは、曲がり流路内に位置している(特許文献1の図4A、段落0045等)ようである。
The position of the slit 27 is disposed in the return channel 24 where the curved channel 23 (see FIG. 2) ends. This is because when the slit 27 is formed in the bent flow path 23, the flow swells due to the bending of the flow path, and loss occurs. Further, the flow flows into the slit 27 in the curved flow path 23, the flow swells and a loss occurs.
On the other hand, in the conventional Patent Document 1, the slit between the radial side end portions 25 and 35 seems to be located in the curved flow path (FIG. 4A of Patent Document 1, paragraph 0045, etc.). is there.
 加えて、スリット27は、戻り流路24における余り下流でない位置に配置するとよい。
 スリット27を設けることで、図3Cに示すように、第2クロスオーバー翼26の負圧面26f側の厚くなった速度境界層に第1クロスオーバー翼25の圧力面25a側から運動量を持ちこむ(図3Cの矢印α30)ことが可能となる。そのため、速度境界層を薄層化させ、はく離の抑制が可能となる。はく離を抑制できると、はく離に伴う損失の増加を抑えられ、効率の向上が可能となる
 図4に、実施形態1に係る戻り流路24内の第1クロスオーバー翼25と第2クロスオーバー翼26によって構成されるスリット27近傍部の拡大斜視図を示す。
In addition, the slit 27 is preferably arranged at a position that is not too downstream in the return flow path 24.
By providing the slit 27, as shown in FIG. 3C, momentum is brought from the pressure surface 25a side of the first crossover blade 25 into the thick velocity boundary layer on the suction surface 26f side of the second crossover blade 26 (see FIG. 3C). 3C arrow α30) becomes possible. For this reason, the velocity boundary layer can be thinned, and peeling can be suppressed. If the separation can be suppressed, an increase in loss due to the separation can be suppressed and the efficiency can be improved. FIG. 4 shows the first crossover blade 25 and the second crossover blade in the return flow path 24 according to the first embodiment. An enlarged perspective view of the vicinity of the slit 27 constituted by 26 is shown.
 図4に示すように、スリット27によって分断された第1クロスオーバー翼25と第2クロスオーバー翼26のうち、第2クロスオーバー翼26の前縁26Aは、第1クロスオーバー翼25の後縁25Bに対して、羽根車13の回転方向(図4、図5の矢印α31)の上流側にずれている、つまり上流側に位置していることを特徴としている。第2クロスオーバー翼26の前縁26Aは第1クロスオーバー翼25の間隔dに対して、約10~15%(=d1/d)程度ずらしている。これに対して、従来の特許文献1では、リターンベーン(31)をディフューザベーン(21)に対して下流側にずらしている(特許文献1の図4A参照)。 As shown in FIG. 4, of the first crossover blade 25 and the second crossover blade 26 divided by the slit 27, the leading edge 26A of the second crossover blade 26 is the trailing edge of the first crossover blade 25. It is characterized in that it is shifted to the upstream side of the rotational direction of the impeller 13 (arrow α31 in FIGS. 4 and 5) with respect to 25B, that is, located on the upstream side. The leading edge 26A of the second crossover blade 26 is shifted by about 10 to 15% (= d1 / d) with respect to the interval d of the first crossover blade 25. On the other hand, in Patent Document 1, the return vane (31) is shifted to the downstream side with respect to the diffuser vane (21) (see FIG. 4A of Patent Document 1).
 本実施形態1の特徴であるスリット27を設けることで、第2クロスオーバー翼26の負圧面26f(図3C、図5)側の厚くなった速度境界層に、第1クロスオーバー翼25の圧力面25a(図3C、図5)の側から流体の運動量を持ちこむことが可能となる。これにより、第2クロスオーバー翼26の負圧面26fの速度境界層を薄層化させ、負圧面26fからの流体のはく離を抑制できる。はく離を抑制できると、はく離に伴う圧力損失の増加を抑えることが可能となり、効率の向上が可能となる。 By providing the slit 27, which is a feature of the first embodiment, the pressure of the first crossover blade 25 is increased in the thick velocity boundary layer on the suction surface 26f (FIG. 3C, FIG. 5) side of the second crossover blade 26. It becomes possible to bring in the momentum of the fluid from the side of the surface 25a (FIGS. 3C and 5). As a result, the velocity boundary layer of the suction surface 26f of the second crossover blade 26 can be thinned, and separation of fluid from the suction surface 26f can be suppressed. If the peeling can be suppressed, it is possible to suppress an increase in pressure loss due to the peeling, and it is possible to improve the efficiency.
 また、第2クロスオーバー翼26の負圧面26fからの流体のはく離を抑制することで、負圧面26fに沿って流れを適切に転向することが可能となる。流れを適切に転向できると、羽根車13の旋回方向の成分が除去できるため、流体が円滑に次段の羽根車13に流入できる。そのため、次段の羽根車13の効率向上が可能となる。 Further, by suppressing the separation of the fluid from the suction surface 26f of the second crossover blade 26, it becomes possible to appropriately turn the flow along the suction surface 26f. If the flow can be properly turned, components in the turning direction of the impeller 13 can be removed, so that the fluid can smoothly flow into the subsequent impeller 13. Therefore, the efficiency of the next stage impeller 13 can be improved.
 図5に、戻り流路24内の第1クロスオーバー翼25のハブ側壁面28(図2参照)の出口羽根角度θ1とシュラウド側壁面29(図2参照)の出口羽根角度θ2との比較を示す。
 また、この構成において、第1クロスオーバー翼25の後縁25Bが有する出口羽根角度が、ハブ側壁面28(図2参照)の出口羽根角度θ1と、シュラウド側壁面29(図2参照)の出口羽根角度θ2とで異なっている。より具体的には,ハブ側壁面28側の出口羽根角度θ1の方が、シュラウド側壁面29側の出口羽根角度θ2に対し、周方向(羽根車13の回転方向(図5の矢印α31))に寝た(小さな)羽根角度を有していることを特徴としている。
FIG. 5 shows a comparison between the outlet blade angle θ1 of the hub side wall surface 28 (see FIG. 2) of the first crossover blade 25 in the return flow path 24 and the outlet blade angle θ2 of the shroud side wall surface 29 (see FIG. 2). Show.
In this configuration, the outlet blade angle of the trailing edge 25B of the first crossover blade 25 is such that the outlet blade angle θ1 of the hub side wall surface 28 (see FIG. 2) and the outlet of the shroud side wall surface 29 (see FIG. 2). It differs depending on the blade angle θ2. More specifically, the outlet blade angle θ1 on the hub side wall surface 28 side is circumferential with respect to the outlet blade angle θ2 on the shroud side wall surface 29 side (the rotational direction of the impeller 13 (arrow α31 in FIG. 5)). It is characterized by having a (small) blade angle.
 なお、出口羽根角度θ1とは、ハブ側壁面28での第1クロスオーバー翼25の中心線25o1が、後縁25Bを中心線25o1が通る点25pの羽根車13の中心線を中心とする円弧13eの接線13sとなす角をいう。同様に、出口羽根角度θ2とはシュラウド側壁面29での第1クロスオーバー翼25の中心線25o2が、後縁25Bを中心線25o2が通る点25qの羽根車13の中心線を中心とする円弧13eの接線13sとなす角をいう。 The exit blade angle θ1 is an arc centered on the center line of the impeller 13 at the point 25p where the center line 25o1 of the first crossover blade 25 on the hub side wall surface 28 passes the trailing edge 25B and the center line 25o1. The angle between the tangent line 13s of 13e. Similarly, the exit blade angle θ2 is an arc centered on the center line of the impeller 13 at the point 25q where the center line 25o2 of the first crossover blade 25 on the shroud side wall surface 29 passes through the trailing edge 25B and the center line 25o2 The angle between the tangent line 13s of 13e.
 第1クロスオーバー翼25の後縁25Bのハブ側壁面28の出口羽根角度θ1とシュラウド側壁面29の出口羽根角度θ2とが、異なる理由は下記である。
 流体への遠心力の作用によって曲がり流路23内でより流速の速い流れが、外側に位置するシュラウド側壁面29側に偏る。そのため、第1クロスオーバー翼25で、流れの転向角をハブ側壁面28(図2参照)の側よりもシュラウド側壁面29(図2参照)の側を大きくとる必要があるためである。
The reason why the outlet blade angle θ1 of the hub side wall surface 28 of the trailing edge 25B of the first crossover blade 25 is different from the outlet blade angle θ2 of the shroud side wall surface 29 is as follows.
Due to the action of the centrifugal force on the fluid, the flow having a higher flow velocity in the curved flow path 23 is biased toward the shroud side wall surface 29 side located outside. Therefore, in the first crossover blade 25, the flow turning angle needs to be larger on the side of the shroud side wall surface 29 (see FIG. 2) than on the side of the hub side wall surface 28 (see FIG. 2).
 そこで、第1クロスオーバー翼25の後縁25Bの有する羽根角度を第1クロスオーバー翼25の高さ方向(ハブ側壁面28からシュラウド側壁面29の方向)に異ならせる。つまり、第1クロスオーバー翼25の後縁25Bが有する羽根角度は、戻り流路24内のハブ側壁面28(図2参照)側の出口羽根角度θ1方が戻り流路24内のシュラウド側壁面29(図2参照)側の出口羽根角度θ2に対して小さい。 Therefore, the blade angle of the trailing edge 25B of the first crossover blade 25 is varied in the height direction of the first crossover blade 25 (the direction from the hub side wall surface 28 to the shroud side wall surface 29). That is, the blade angle of the trailing edge 25B of the first crossover blade 25 is such that the outlet blade angle θ1 on the side of the hub side wall 28 (see FIG. 2) in the return channel 24 is the shroud side wall in the return channel 24. Smaller than the outlet blade angle θ2 on the 29 (see FIG. 2) side.
 これにより、流体の負荷を第1クロスオーバー翼25のシュラウド側壁面29(図2参照)側(出口羽根角度θ2の側)でより大きく受けることで、圧力損失を抑え、効率を向上できる。
 これに対して、従来の特許文献1では、ディフューザベーン(21)の出口羽根角度は一定である(特許文献1の図4A参照)。
Accordingly, by receiving a larger load of fluid on the shroud side wall surface 29 (see FIG. 2) side (exit blade angle θ2 side) of the first crossover blade 25, pressure loss can be suppressed and efficiency can be improved.
On the other hand, in Patent Document 1, the exit vane angle of the diffuser vane (21) is constant (see FIG. 4A of Patent Document 1).
 上記構成によれば、ディフューザ流路22から曲がり流路23、戻り流路24へと連通する翼列(25、26)を有し、旋回方向成分が支配的な流入条件においても翼(25、26)の面からのはく離を抑制することで、損失の低減と次段流入流れ角の制御を可能とできる。 According to the above configuration, the vane row (25, 26) communicates from the diffuser flow path 22 to the curved flow path 23 and the return flow path 24, and the blade (25, By suppressing the separation from the surface of 26), it is possible to reduce the loss and control the inflow angle of the next stage.
 そのため、多段ポンプPのコストの低減と運用効率の向上を期待できる。従って、多段ポンプPの外径を縮小しつつ、効率の高い多段ポンプPを提供できる。また、多段ポンプPの外径縮小によって専有スペースの低減も可能となる。 Therefore, it can be expected to reduce the cost of the multistage pump P and improve the operation efficiency. Therefore, the highly efficient multistage pump P can be provided while reducing the outer diameter of the multistage pump P. In addition, the reduction of the outer diameter of the multistage pump P can also reduce the exclusive space.
 以上から、ポンプ外径縮小時においても高い効率を維持しつつ、全流量範囲域において安定した運転が可能な遠心ポンプを提供できる。 From the above, it is possible to provide a centrifugal pump capable of stable operation in the entire flow rate range while maintaining high efficiency even when the pump outer diameter is reduced.
<<実施形態2>>
 図6に、本発明の実施形態2に係る静止流路21部の外形図を示す。
 実施形態2は、実施形態1と同様に第1クロスオーバー翼25と第2クロスオーバー翼26との間にスリット27を有することは特徴の一つであるが、実施形態2では、第1クロスオーバー翼25の厚さ25tを制御することで、更なる高効率化を実現したものである。
<< Embodiment 2 >>
FIG. 6 shows an external view of the stationary flow path 21 portion according to Embodiment 2 of the present invention.
The second embodiment is characterized by having a slit 27 between the first crossover blade 25 and the second crossover blade 26, as in the first embodiment, but in the second embodiment, the first crossover blade 25 has the first crossover blade 26. By controlling the thickness 25t of the over blade 25, further increase in efficiency is realized.
 実施形態2では、曲がり流路23内で第1クロスオーバー翼25の厚さ25tを変化させることで、曲がり流路23内で隣接する第1クロスオーバー翼25同士が形成する翼間流路断面積の断面積変化を制御している。
 一般的に、曲率を有する管内流れは、曲がり部で流れの向きが急変することから、流れにはく離を生じ易い。曲がり部でのはく離を抑えるためには、曲率を緩やかにするか、曲がり部での流路断面積変化を小さくすることの2点が重要となる。
In the second embodiment, by changing the thickness 25t of the first crossover blade 25 in the curved flow path 23, the inter-blade flow path disconnection formed between adjacent first crossover blades 25 in the curved flow path 23 is performed. Controls the change in the cross-sectional area of the area.
In general, the flow in a pipe having a curvature is likely to be separated from the flow because the flow direction changes suddenly at the bent portion. In order to suppress the peeling at the bent portion, two points are important: a gentle curvature or a small change in flow path cross-sectional area at the bent portion.
 第1クロスオーバー翼25は、曲がり流路23内においても、流れを旋回方向から曲がり流路23の流路方向に転向させる効果を有する。そのため、第1クロスオーバー翼25の翼面には流体による負荷が作用している。流体による負荷が作用しているということは、曲がり流路23内で第1クロスオーバー翼25を曲げたり捻ったりしているため、その形状変化に応じて、隣接する第1クロスオーバー翼25の間の流路断面積も変化している。第1クロスオーバー翼25の間の流路断面積が急激に変化すると、流路断面積の変化に伴って、流体のはく離や増速に伴う損失が発生する。 The first crossover blade 25 has an effect of turning the flow from the swirling direction to the flow direction of the curved flow path 23 even in the curved flow path 23. Therefore, a fluid load acts on the blade surface of the first crossover blade 25. The fact that the load due to the fluid is acting means that the first crossover blade 25 is bent or twisted in the curved flow path 23, so that the adjacent first crossover blade 25 changes according to its shape change. The channel cross-sectional area between them also changes. When the flow path cross-sectional area between the first crossover blades 25 changes abruptly, loss due to fluid separation or acceleration occurs with changes in the flow path cross-sectional area.
 この流れの損失の発生を抑えるためには、第1クロスオーバー翼25の厚さ25tを曲がり流路23内で変化させることで、第1クロスオーバー翼25を適切に曲げながら、流路断面積の変化を緩やかにしたり、または、変化しないように制御することが可能となる。 In order to suppress the occurrence of this flow loss, by changing the thickness 25t of the first crossover blade 25 in the curved flow path 23, the first crossover blade 25 is appropriately bent and the cross-sectional area of the flow path is reduced. It is possible to control so that the change of the signal is moderated or not changed.
 一般的に、多段ポンプP等の遠心ポンプの羽根車出口13B(図2参照)から流出した流体は、羽根車13の回転に依る旋回方向成分が支配的な流れである。この旋回方向成分は、図2に示すディフューザ流路22内において転向されるものの、曲がり流路23の入口部23i(図2参照)においては、未だ旋回方向成分が支配的であることが多い。この旋回方向成分を維持したままの状態で、図2に示す戻り流路24に流れを導くと、強い旋回成分を除去しきれないため、第2クロスオーバー翼26の負圧面26f(図3C参照)ではく離を生じやすくなる。そのため、曲がり流路23内においても、できるだけ流れを転向させたいと言える。 Generally, the fluid flowing out from the impeller outlet 13B (see FIG. 2) of the centrifugal pump such as the multistage pump P is a flow in which the swirl direction component due to the rotation of the impeller 13 is dominant. Although this swirl direction component is turned in the diffuser flow path 22 shown in FIG. 2, the swirl direction component is still dominant at the inlet 23i (see FIG. 2) of the bend flow path 23 in many cases. If the flow is guided to the return flow path 24 shown in FIG. 2 while maintaining this swirl direction component, the strong swirl component cannot be removed, so the suction surface 26f of the second crossover blade 26 (see FIG. 3C). ) Peeling easily occurs. Therefore, it can be said that the flow should be redirected as much as possible even in the curved flow path 23.
 曲がり流路23内において、流体の旋回方向成分を除去するために第1クロスオーバー翼25に流体の負荷を作用させると、第1クロスオーバー翼25の厚みが一定の場合、曲がり流路23内において、隣接する第1クロスオーバー翼25の間の流路断面積が、戻り流路24に向かうに従って流路の曲りにより大きくなっていくこととなる。 When a fluid load is applied to the first crossover blade 25 to remove the swirl direction component of the fluid in the curved flow path 23, the thickness of the first crossover blade 25 is constant. In this case, the cross-sectional area of the flow path between the adjacent first crossover blades 25 becomes larger due to the bending of the flow path toward the return flow path 24.
 一般的に曲率を有する流路内で断面積を拡大すると、流れが壁面からはく離しやすくなり、損失が大きくなる。そのため、曲がり流路23内において、クロスオーバー翼2の厚さを変化させることで、損失を抑えられる。そこで、曲がりを有する流路内では、できるだけ流路断面積変化を小さくしてあげることが効率の向上に繋がる。 Generally, when the cross-sectional area is enlarged in a flow path having a curvature, the flow is easily separated from the wall surface, and the loss increases. Therefore, the loss can be suppressed by changing the thickness of the crossover blade 2 in the curved flow path 23. Therefore, in a channel having a bend, reducing the channel cross-sectional area change as much as possible leads to an improvement in efficiency.
 そのため、本実施形態2では、曲がり流路23内の第1クロスオーバー翼25の翼厚さを、ディフューザ流路22の出口22o(図2参照)から戻り流路24の入口24iにかけて、徐々に厚くしている。つまり、図6に示すように、曲がり流路入口翼厚さ25t1から曲がり流路出口翼厚さ25t2にかけて、徐々に厚くしている。 Therefore, in the second embodiment, the blade thickness of the first crossover blade 25 in the curved flow path 23 is gradually increased from the outlet 22o of the diffuser flow path 22 (see FIG. 2) to the inlet 24i of the return flow path 24. It is thick. That is, as shown in FIG. 6, the thickness is gradually increased from the bent channel inlet blade thickness 25t1 to the bent channel outlet blade thickness 25t2.
 本実施形態2の構造により、周方向に隣接する第1クロスオーバー翼25によって構成される第1クロスオーバー翼25の間の流路の断面積の変化が緩やか、または変化しない様に制御可能となる。
 そのため、曲がり流路23における流体の損失を抑制でき、効率の向上を実現できる。これに対して、従来の特許文献1は、本実施形態2と異なり、ディフューザベーン(21)の厚みは一定である(特許文献1の図4A参照)。
With the structure of the second embodiment, the change in the cross-sectional area of the flow path between the first crossover blades 25 constituted by the first crossover blades 25 adjacent in the circumferential direction can be controlled so as to be gradual or not change. Become.
As a result, fluid loss in the bent flow path 23 can be suppressed, and efficiency can be improved. On the other hand, unlike the second embodiment, the conventional Patent Document 1 has a constant thickness of the diffuser vane (21) (see FIG. 4A of Patent Document 1).
<<その他の実施形態>>
1.なお、前記実施形態1、2で様々な構成を説明したが、これらの構成を適宜組み合わせて構成してもよい。
2.なお、本発明は上述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変更可能である。
<< Other Embodiments >>
1. Although various configurations have been described in the first and second embodiments, these configurations may be combined as appropriate.
2. In addition, this invention is not limited to embodiment mentioned above, A various change is possible in the range which does not deviate from the meaning of this invention.
 11  ケーシング
 11k 環状隔壁
 12  回転軸
 13  羽根車(遠心羽根車)
 21  静止流路
 22  ディフューザ流路(第1半径方向流路)
 23  曲がり流路
 24  戻り流路(第2半径方向流路)
 25  第1クロスオーバー翼(上流側クロスオーバー翼、クロスオーバー翼)
 25B 後縁
 25t 厚さ
 25t1 曲がり流路入口翼厚さ
 25t2 曲がり流路出口翼厚さ
 26  第2クロスオーバー翼(下流側クロスオーバー翼、クロスオーバー翼)
 26A 前縁
 27  スリット
 28  ハブ側壁面(第1面)
 29  シュラウド側壁面(第2面)
 P   多段ポンプ(遠心ポンプ)
 θ1 シュラウド側の出口羽根角度(後縁の第1面側の羽根角度)
 θ2 ハブ側出口の羽根角度(後縁の第2面側の羽根角度)
11 Casing 11k Annular partition 12 Rotating shaft 13 Impeller (centrifugal impeller)
21 Static flow path 22 Diffuser flow path (first radial flow path)
23 Curved channel 24 Return channel (second radial channel)
25 First crossover wing (upstream crossover wing, crossover wing)
25B Trailing edge 25t thickness 25t1 Curved channel inlet blade thickness 25t2 Curved channel outlet blade thickness 26 Second crossover blade (downstream crossover blade, crossover blade)
26A Front edge 27 Slit 28 Hub side wall surface (first surface)
29 Shroud side wall (second surface)
P Multistage pump (centrifugal pump)
θ1 Outlet blade angle on the shroud side (blade angle on the first side of the trailing edge)
θ2 Blade angle at the hub side exit (blade angle on the second side of the trailing edge)

Claims (6)

  1.  回転軸に取り付けられた複数枚の遠心羽根車と、
     前記遠心羽根車の前記回転軸の周囲に設けられる環状隔壁と、
     前記環状隔壁の周囲に形成され、前記遠心羽根車を通過した流体を前記遠心羽根車の半径方向外側へと導くように構成された第1半径方向流路と、
     前記環状隔壁を挟んで前記第1半径方向流路とは反対側に形成され、前記流体を前記遠心羽根車の半径方向内側へと導くように構成された第2半径方向流路と、
     前記環状隔壁の外周側で、前記第1半径方向流路と前期第2半径方向流路とを連通させ、前記第1半径方向流路から前記第2半径方向流路へと前記流体を導くように構成された曲がり流路と、
     前記第1半径方向流路、前記第2半径方向流路及び前記曲がり流路に連通して形成されるクロスオーバー翼を備え、
     前記クロスオーバー翼は前記第2半径方向流路内においてスリットを有し、
     前記スリットによって分断された前記クロスオーバー翼のうち、前記流体の流れる方向に対して下流側に位置する下流側クロスオーバー翼の前縁が,
     前記スリットによって分断された前記クロスオーバー翼のうち、前記流体の流れる方向に対して上流側に位置する上流側クロスオーバー翼の後縁に対し、前記遠心羽根車が回転する方向の上流側にずれていることを特徴とする遠心ポンプ。
    A plurality of centrifugal impellers attached to a rotating shaft;
    An annular partition provided around the rotary shaft of the centrifugal impeller;
    A first radial flow path formed around the annular partition and configured to guide the fluid that has passed through the centrifugal impeller to the radially outer side of the centrifugal impeller;
    A second radial flow path formed on the opposite side of the first radial flow path across the annular partition and configured to guide the fluid inward in the radial direction of the centrifugal impeller;
    The first radial flow path and the second radial flow path are communicated with each other on the outer peripheral side of the annular partition so as to guide the fluid from the first radial flow path to the second radial flow path. A curved flow path configured in
    A crossover blade formed in communication with the first radial flow path, the second radial flow path and the curved flow path;
    The crossover blade has a slit in the second radial flow path;
    Of the crossover wings divided by the slit, the leading edge of the downstream crossover wing located on the downstream side with respect to the fluid flow direction,
    Among the crossover blades divided by the slit, the upstream edge of the upstream crossover blade located upstream with respect to the fluid flow direction is shifted upstream in the direction in which the centrifugal impeller rotates. A centrifugal pump characterized by
  2.  請求項1に記載の遠心ポンプにおいて、
     前記上流側クロスオーバー翼の後縁の有する羽根角度が、前記クロスオーバー翼の高さ方向に異なる
     ことを特徴とする遠心ポンプ。
    The centrifugal pump according to claim 1,
    The centrifugal pump, wherein a blade angle of a trailing edge of the upstream crossover blade is different in a height direction of the crossover blade.
  3.  請求項1に記載の遠心ポンプにおいて、
     前記上流側クロスオーバー翼の後縁の有する羽根角度は、前記第2半径方向流路内において、前記環状隔壁の第1面の側の方が前記第1面に対向する第2面の側に対して小さい
     ことを特徴とする遠心ポンプ。
    The centrifugal pump according to claim 1,
    The blade angle of the trailing edge of the upstream crossover blade is such that, in the second radial flow path, the first surface side of the annular partition wall is closer to the second surface facing the first surface. Centrifugal pump characterized by its small size.
  4.  請求項1に記載の遠心ポンプにおいて,
     前記上流側クロスオーバー翼の厚さが前記曲がり流路内において変化する
     ことを特徴とする遠心ポンプ。
    The centrifugal pump according to claim 1,
    The centrifugal pump characterized in that the thickness of the upstream crossover blade changes in the curved flow path.
  5.  請求項1に記載の遠心ポンプにおいて、
     前記上流側クロスオーバー翼の後縁の有する羽根角度が、前記クロスオーバー翼の高さ方向に異なり、
     前記上流側クロスオーバー翼の厚さが、前記曲がり流路内において変化する
     ことを特徴とする遠心ポンプ。
    The centrifugal pump according to claim 1,
    The blade angle of the trailing edge of the upstream crossover blade is different in the height direction of the crossover blade,
    The centrifugal pump characterized in that a thickness of the upstream crossover blade changes in the curved flow path.
  6.  請求項1に記載の遠心ポンプにおいて、
     前記上流側クロスオーバー翼の後縁の有する羽根角度が、前記クロスオーバー翼の高さ方向に異なり、
     前記曲がり流路内において前記上流側クロスオーバー翼の厚さが前記第1半径方向流路側に対して前記第2半径方向流路側の方が厚くなっている
     ことを特徴とする遠心ポンプ。
    The centrifugal pump according to claim 1,
    The blade angle of the trailing edge of the upstream crossover blade is different in the height direction of the crossover blade,
    The centrifugal pump according to claim 1, wherein a thickness of the upstream crossover blade in the curved flow path is thicker on the second radial flow path side than on the first radial flow path side.
PCT/JP2019/005098 2018-03-15 2019-02-13 Centrifugal pump WO2019176426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-048639 2018-03-15
JP2018048639A JP2019157807A (en) 2018-03-15 2018-03-15 Centrifugal pump

Publications (1)

Publication Number Publication Date
WO2019176426A1 true WO2019176426A1 (en) 2019-09-19

Family

ID=67906649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005098 WO2019176426A1 (en) 2018-03-15 2019-02-13 Centrifugal pump

Country Status (2)

Country Link
JP (1) JP2019157807A (en)
WO (1) WO2019176426A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171658A1 (en) * 2020-02-28 2021-09-02 日立グローバルライフソリューションズ株式会社 Pump device
JP2021134739A (en) * 2020-02-28 2021-09-13 日立グローバルライフソリューションズ株式会社 Multi-stage vortex pump device
WO2023023862A1 (en) * 2021-08-25 2023-03-02 Waterax Inc. Composite cross-over diffuser for a centrifugal pump, centrifugal pump comprising the same and corresponding manufacturing process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149597U (en) * 1988-04-05 1989-10-17
JP2013194558A (en) * 2012-03-16 2013-09-30 Mitsubishi Heavy Ind Ltd Centrifugal pump
JP2015094293A (en) * 2013-11-12 2015-05-18 株式会社日立製作所 Centrifugal turbomachine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149597U (en) * 1988-04-05 1989-10-17
JP2013194558A (en) * 2012-03-16 2013-09-30 Mitsubishi Heavy Ind Ltd Centrifugal pump
JP2015094293A (en) * 2013-11-12 2015-05-18 株式会社日立製作所 Centrifugal turbomachine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171658A1 (en) * 2020-02-28 2021-09-02 日立グローバルライフソリューションズ株式会社 Pump device
JP2021134739A (en) * 2020-02-28 2021-09-13 日立グローバルライフソリューションズ株式会社 Multi-stage vortex pump device
JP7194705B2 (en) 2020-02-28 2022-12-22 日立グローバルライフソリューションズ株式会社 Multistage centrifugal pump device
WO2023023862A1 (en) * 2021-08-25 2023-03-02 Waterax Inc. Composite cross-over diffuser for a centrifugal pump, centrifugal pump comprising the same and corresponding manufacturing process

Also Published As

Publication number Publication date
JP2019157807A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
US8308420B2 (en) Centrifugal compressor, impeller and operating method of the same
US11408439B2 (en) Centrifugal compressor and turbocharger
WO2019176426A1 (en) Centrifugal pump
JP2011089460A (en) Turbo type fluid machine
JP2010001851A (en) Centrifugal compressor having vaneless diffuser and vaneless diffuser thereof
WO2014087690A1 (en) Centrifugal compressor
JP2009057959A (en) Centrifugal compressor, its impeller, and its operating method
JP2016031064A (en) Multiple stage pump
CN112334665B (en) Mixed-flow compressor configuration for refrigeration system
TWI324221B (en)
JP2001200797A (en) Multistage centrifugal compressor
EP3567260B1 (en) Centrifugal rotary machine
JP7429810B2 (en) Multi-stage centrifugal fluid machine
JP2018178769A (en) Multistage fluid machine
JP4146371B2 (en) Centrifugal compressor
US20220186746A1 (en) Centrifugal or mixed-flow compressor including aspirated diffuser
JP2018080653A (en) Fluid machinery
WO2020075378A1 (en) Centrifugal fluid machine
JP2002122095A (en) Centrifugal pump
JP7433261B2 (en) multistage centrifugal compressor
JP2019007383A (en) Centrifugal fluid machine
JP3380897B2 (en) Compressor
WO2022064751A1 (en) Centrifugal compressor
JP3319815B2 (en) Swirl pump
JP6700893B2 (en) Impeller, rotating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768438

Country of ref document: EP

Kind code of ref document: A1