WO2019176277A1 - Control device for variable-displacement oil pump and control method therefor - Google Patents

Control device for variable-displacement oil pump and control method therefor Download PDF

Info

Publication number
WO2019176277A1
WO2019176277A1 PCT/JP2019/001366 JP2019001366W WO2019176277A1 WO 2019176277 A1 WO2019176277 A1 WO 2019176277A1 JP 2019001366 W JP2019001366 W JP 2019001366W WO 2019176277 A1 WO2019176277 A1 WO 2019176277A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil pump
discharge pressure
variable displacement
target discharge
phase angle
Prior art date
Application number
PCT/JP2019/001366
Other languages
French (fr)
Japanese (ja)
Inventor
浩二 佐賀
孝太郎 渡辺
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019176277A1 publication Critical patent/WO2019176277A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/08Lubricating systems characterised by the provision therein of lubricant jetting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity

Definitions

  • the present invention relates to a control device and control method for a variable displacement oil pump used in an internal combustion engine, and more particularly to a control device and control method for a variable displacement oil pump that supplies hydraulic oil to a variable valve mechanism.
  • the hydraulic oil pressure is generally set lower as the rotational speed of the internal combustion engine is lower, and the hydraulic oil pressure is set higher as the rotational speed is higher. It is supposed to be configured. Further, the hydraulic VTC mechanism is configured so that the rotation of the internal combustion engine operates in a wide range from a low speed range to a high speed range.
  • the throttle valve is closed correspondingly, and the rotational speed of the internal combustion engine also decreases.
  • the target phase angle of the intake valve is also changed to the retarded angle side. Therefore, the hydraulic VTC mechanism changes the phase angle of the intake valve to the retarded angle side. Therefore, it is necessary to control the hydraulic oil.
  • An object of the present invention is to provide a control device and a control method for a variable displacement oil pump that can increase the response of a hydraulic VTC mechanism and bring it closer to a target phase angle at an early stage in a state where the rotational speed of the internal combustion engine is reduced. It is in.
  • the feature of the present invention is that the target discharge pressure of the hydraulic oil supplied from the variable displacement oil pump is maintained at the current target discharge pressure and supplied to the hydraulic VTC mechanism in a state where the rotational speed of the internal combustion engine decreases. Desirably, after the actual phase angle of the intake valve or exhaust valve reaches the target phase angle or near the target phase angle, the target discharge pressure of the hydraulic oil is reduced and supplied to the hydraulic VTC mechanism.
  • the target discharge pressure of the hydraulic oil from the variable displacement oil pump is not lowered, so that the hydraulic VTC mechanism can be operated quickly, and the hydraulic pressure
  • the responsiveness of the VTC mechanism can be improved and the target phase angle can be quickly approached.
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine including a hydraulic VTC mechanism according to an embodiment of the present invention. It is a block diagram explaining the change method of the phase angle by the hydraulic VTC mechanism shown in FIG. It is a block diagram explaining the schematic structure of the variable capacity oil pump system in FIG. It is explanatory drawing explaining the 1st pressure control of the hydraulic oil by a variable capacity oil pump.
  • FIG. 5 is a flowchart for explaining a control flow of the first embodiment of the present invention in the first pressure control shown in FIG. 4. It is explanatory drawing explaining the 2nd pressure control of the hydraulic fluid by a variable capacity oil pump. It is a flowchart figure explaining the first half of the control flow of the 2nd Embodiment of this invention in 2nd pressure control shown in FIG.
  • FIG. 7B is a flowchart illustrating the second half of the control flow in FIG. 7A. It is explanatory drawing which shows the change state of the target discharge pressure of the variable capacity oil pump in 2nd Embodiment.
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine including a hydraulic VTC mechanism according to an embodiment of the present invention.
  • the intake pipe 11 for introducing air into each cylinder of the internal combustion engine 1 is provided with an intake air amount sensor 12 for detecting the intake air flow rate QA of the internal combustion engine 1.
  • an intake air amount sensor 12 for example, a hot-wire flow meter that detects the mass flow rate of intake air can be used.
  • the intake valve 13 opens and closes the intake port of the combustion chamber 14 of each cylinder, and is provided with a fuel injection valve 15 for each cylinder in the intake pipe 11 upstream of the intake valve 13.
  • the fuel injected from the fuel injection valve 15 is sucked together with air into the combustion chamber 14 via the intake valve 13 and ignited and burned by spark ignition by the spark plug 16, and the pressure by this combustion causes the piston 17 to be applied to the crankshaft 18.
  • the crankshaft 18 is rotationally driven by being pushed down.
  • the crank angle sensor 27 detects the rotation angle of the crankshaft 18 and outputs a reference position signal REF and a unit angle signal POS of the crankshaft 18.
  • Each ignition plug 16 is directly attached with an ignition module 19 for supplying ignition energy to the ignition plug 16.
  • the ignition module 19 includes an ignition coil and a power transistor that controls energization to the ignition coil.
  • the exhaust valve 20 opens and closes the exhaust port of the combustion chamber 14, and the exhaust valve 20 is opened so that exhaust gas is discharged to the exhaust pipe 21.
  • a catalytic converter 22 having a three-way catalyst or the like is installed in the exhaust pipe 21, and exhaust gas is purified by the catalytic converter 22.
  • An air-fuel ratio sensor 23 is installed in the exhaust pipe 21 upstream of the catalytic converter 22 to detect the air-fuel ratio A / F based on the oxygen concentration in the exhaust.
  • the intake valve 13 and the exhaust valve 20 operate with the rotation of the intake camshaft 24 and the exhaust camshaft 25 that are rotationally driven by the crankshaft 18.
  • the intake valve 13 is opened and closed by a cam provided on the intake camshaft 24, and its phase angle (valve opening operating angle) is variable by the hydraulic VTC mechanism 26, so that the valve timing of the intake valve 13 is advanced, Be retarded.
  • the hydraulic VTC mechanism 26 is configured to change the phase angle by switching the hydraulic passage by the solenoid valve 34.
  • the cam angle sensor 28 detects a reference position signal (intake camshaft rotation angle signal) CAM from the intake camshaft 24.
  • the exhaust valve 20 is driven to open and close by a cam provided on the exhaust camshaft 25.
  • the water temperature sensor 29 detects the temperature (water temperature) TW of the cooling water of the internal combustion engine 1.
  • the oil temperature sensor 33 detects the oil temperature TO of the hydraulic oil in the oil pan or in the circulation path of the hydraulic oil (engine oil).
  • the accelerator opening sensor 30 detects the amount of depression of the accelerator pedal 31 (accelerator opening ACC).
  • the control device (control device: Engine Control Unit) 6 includes a microcomputer, and signals from various sensors provided in the internal combustion engine 1, for example, intake air flow rate QA, accelerator opening ACC, reference position signal REF, unit angle A signal POS, an air-fuel ratio A / F, a water temperature TW, an oil temperature TO, a rotation angle signal CAM, and the like are input.
  • a signal indicating the state of the ignition switch 32 which is a main switch for operating and stopping the internal combustion engine 1 is input to the control device 6. Based on this information, the control device 6 performs arithmetic processing in accordance with a program stored in advance, calculates the operation amounts or control amounts of various devices such as the fuel injection valve 15, the solenoid valve 34, and the ignition module 19, and so on. A control signal is output to the device.
  • the internal combustion engine 1 can be of various types such as a V type or a horizontally opposed type in addition to the illustrated serial type.
  • the fuel injection valve 15 injects fuel into the intake pipe 11 as an example, but a direct injection type internal combustion engine that injects fuel directly into the combustion chamber 14 may be used.
  • an exhaust side VTC mechanism that makes the opening / closing timing (valve timing) of the exhaust valve 20 variable may be provided.
  • FIG. 2 shows extracted main parts related to the change of the valve timing by the hydraulic VTC mechanism 26 in FIG.
  • the hydraulic VTC mechanism 26 is disposed at one end of an intake camshaft 24 (see FIG. 1) provided with an intake cam for opening and closing the intake valve 13.
  • the hydraulic VTC mechanism 26 is configured by combining a sprocket 41 that rotates in synchronization with the crankshaft 18 of the internal combustion engine 1 and a rotor 42 that is rotatably connected integrally with the intake camshaft 24 so as to be relatively rotatable. ing.
  • the sprocket 41 is connected to the crankshaft 18 of the internal combustion engine 1 by a timing belt (not shown), and rotates in synchronization with the crankshaft 18.
  • the sprocket 41 is provided with a cylindrical housing 43 that accommodates the rotor 42.
  • the housing 43 has a cylindrical shape in which both front and rear ends are formed, and the inner circumferential surface has a trapezoidal cross section, and partition walls 43a, 43b, and 43c provided along the axial direction of the housing 43 respectively protrude. It is installed.
  • a plurality of vanes 42 a, 42 b, 42 c extending in the radial direction are formed on the outer periphery of the rotor 42, and accommodating portions 44 a, 44 b, 44 c for accommodating these vanes 42 a, 42 b, 42 c are formed on the inner periphery of the housing 43.
  • accommodating portions 44 a, 44 b, 44 c for accommodating these vanes 42 a, 42 b, 42 c are formed on the inner periphery of the housing 43.
  • Each of the vanes 42a, 42b, and 42c has a substantially inverted trapezoidal cross section, and the accommodating portions 44a, 44b, and 44c are separated in the front-rear direction in the rotational direction, and both sides of the vanes 42a, 42b, and 42c, and the partition wall portions 43a and 43b. , 43c are formed with advance side hydraulic chambers 45a, 45b, 45c and retard side hydraulic chambers 46a, 46b, 46c.
  • the first hydraulic passage 47 supplies and discharges hydraulic pressure to the advance side hydraulic chambers 45a, 45b and 45c
  • the second hydraulic passage 48 supplies and discharges hydraulic pressure to the retard side hydraulic chambers 46a, 46b and 46c.
  • a hydraulic oil supply passage 49 and drain passages 50 and 51 are connected to both the hydraulic passages 47 and 48 via a passage-switching solenoid valve 34, respectively.
  • the hydraulic oil supply passage 49 is provided with a variable capacity oil pump 54 that pumps hydraulic oil in the oil pan 53, and the downstream ends of the drain passages 50 and 51 communicate with the oil pan 53.
  • a variable capacity oil pump 54 that pumps hydraulic oil in the oil pan 53
  • the downstream ends of the drain passages 50 and 51 communicate with the oil pan 53.
  • an internal spool valve body 34b relatively controls switching between the hydraulic passages 47 and 48, the hydraulic oil supply passage 49, and the drain passages 50 and 51.
  • the control device 6 controls the energization amount for the solenoid 34a that drives the solenoid valve 34 based on a duty control signal (operation amount) on which a dither signal is superimposed.
  • a duty control signal operation amount
  • the hydraulic VTC mechanism 26 when an off control signal with a duty ratio of 0% is output to the solenoid 34 a, the hydraulic oil pumped from the variable capacity oil pump 54 passes through the hydraulic passage 48 and the retard side hydraulic chambers 46 a, 46 b, The hydraulic oil in the advance side hydraulic chambers 45 a, 45 b and 45 c is discharged from the drain passage 51 into the oil pan 53 through the hydraulic passage 47.
  • the internal pressure of the retard side hydraulic chambers 46a, 46b, 46c increases while the internal pressure of the advance side hydraulic chambers 45a, 45b, 45c decreases.
  • the rotor 42 rotates to the maximum retardation side via the vanes 42a, 42b, and 42c.
  • the opening period of the intake valve 13 changes with a delay relative to the piston position. That is, when the energization to the solenoid 34a is cut off, the central phase of the valve operating angle of the intake valve 13 changes with a delay, and finally stops at the most retarded position.
  • the phase angle of the intake valve 13 can be controlled to an arbitrary position between the most retarded position and the most advanced position. Therefore, by adjusting the advance amount of the intake valve 13 according to the operating state of the internal combustion engine 1, the opening / closing timing, the valve overlap between the intake valve 13 and the exhaust valve 20, etc. can be changed.
  • FIG. 3 shows a configuration example of a variable displacement oil pump 54 that variably controls the target discharge pressure of hydraulic oil in FIG. 2 in accordance with the rotational speed as shown in FIG.
  • a suction port and a discharge port are provided on both sides of the pump housing 61, and a drive shaft 62 through which a rotational force is transmitted from the crankshaft 18 of the internal combustion engine 1 is disposed through substantially at the center.
  • a rotor 64 which is coupled to a drive shaft 62 and holds a plurality of vanes 63 on the outer peripheral side so as to be able to advance and retreat in a substantially radial direction, is provided on the outer peripheral side of the rotor 64 so as to be able to swing eccentrically.
  • the cam ring 65 in which the tip of each vane 63 is in sliding contact with the inner peripheral surface is accommodated.
  • a pair of vane rings 72 are slidably disposed on both side surfaces on the inner peripheral side of the rotor 64.
  • the cam ring 65 swings in a direction in which the amount of eccentricity is reduced around the pivot pin 69 in accordance with the discharge pressure introduced into the working chambers 67 and 68 that are separated by seal members 66a and 66b on the outer periphery.
  • the coil spring 70 oscillates in a direction in which the amount of eccentricity is increased by the spring force of the coil spring 70 that presses the lever portion 65a integrally provided on the outer periphery thereof.
  • the cam ring 65 is urged by the spring force of the coil spring 70 in the direction in which the amount of eccentricity is maximized to increase the discharge pressure.
  • the hydraulic pressure in the working chamber 67 exceeds a predetermined value
  • the discharge pressure is decreased by swinging in the direction in which the amount of eccentricity is reduced against the spring force of the coil spring 70.
  • the working oil 67 is supplied from the oil main gallery 73 to the working chamber 67 of the variable capacity oil pump 54, and the working oil is supplied to the working chamber 68 via the proportional solenoid valve 71.
  • the hydraulic VTC mechanism, the oil jet mechanism that cools the piston, the lubrication mechanism for the crank metal that is the bearing portion of the crankshaft, and the like are supplied.
  • the proportional solenoid valve 71 is duty controlled.
  • the proportional solenoid valve 71 When the proportional solenoid valve 71 has a duty of 100%, the working chamber 67 communicates with the drain (oil pan 53) to be in a low pressure state, while when the proportional solenoid valve 71 has a duty of 0%, hydraulic pressure is applied to the working chamber 67. Therefore, it will be in a high pressure state.
  • the discharge pressure is adjusted by the adjusted duty value between 100% duty and 0% duty.
  • the proportional solenoid valve 71 is supplied with a control signal (duty signal) from the control device 6 which is a control device, whereby the proportional solenoid 71 is driven to the instructed control position.
  • the oil main gallery 73 is provided with a hydraulic pressure sensor 74 that detects the discharge pressure of the variable capacity oil pump 54.
  • the output of the hydraulic sensor 74 is input to the control device 6 and used for feedback control of the discharge pressure of the variable capacity oil pump 54 to the target discharge pressure. Of course, it can be used for other controls.
  • a discharge pressure is set corresponding to the rotational speed.
  • the discharge pressure is set corresponding to the increase in the rotation speed, and the discharge pressure is changed from the minimum discharge pressure to the maximum discharge pressure in the range of the predetermined minimum rotation speed to the predetermined maximum rotation speed.
  • the range is adjusted.
  • the hydraulic oil discharge pressure can be adjusted by the duty ratio of the control signal applied to the proportional solenoid valve 71 (see FIG. 3).
  • the target discharge pressure of the variable displacement oil pump 54 is basically variably adjusted according to the rotation speed, and further detected by the hydraulic sensor 74.
  • the discharged pressure is feedback controlled to the set target discharge pressure.
  • the target discharge pressure of the hydraulic oil supplied from the variable capacity oil pump is maintained at the current target discharge pressure, and the hydraulic VTC mechanism.
  • the hydraulic oil discharge pressure is reduced and supplied to the hydraulic VTC mechanism.
  • This control flow is a control flow of the variable displacement oil pump, and the calculation of the target phase angle of the hydraulic VTC mechanism and the hydraulic pressure based on the calculation.
  • the drive control of the VTC mechanism is executed by another VTC control flow.
  • the VTC phase angle information such as the target phase angle and the actual phase angle is obtained in the VTC control flow and stored in a well-known work area (RAM), and is read from the work area in step S10 of FIG. 5 described below. Has been issued.
  • this control flow is started at the start timing every 10 ms cycle, and the start timing is generated by a compare match interrupt of a timer function built in the microcomputer. Then, the following control steps are executed upon arrival of the activation timing.
  • control steps are executed based on a program of the microcomputer, but these control steps can be replaced with a control function executed by the control means (microcomputer).
  • Step S10 the rotation speed is detected by the crank angle sensor 27, the oil temperature of the hydraulic oil is detected by the oil temperature sensor 33, and the discharge pressure of the hydraulic oil is detected by the hydraulic sensor 74.
  • the set parameters are temporarily stored and stored in the work area of the microcomputer. It should be noted that any other necessary parameters may be detected as appropriate. When a necessary parameter is detected, the process proceeds to step S11.
  • the target phase angle is obtained according to the rotational speed and load, and the actual actual phase angle is detected and stored in the work area of the RAM. ing. Therefore, in this control step, the VTC phase angle such as the target phase angle and the actual phase angle is read from the work area.
  • the hydraulic VTC mechanism performs the operation shown in FIG. 2 based on the VTC control flow.
  • Step S11 the current rotational speed (Np) detected in Step 10 is compared with the previous rotational speed (Np-1), and the current rotational speed (Np) is compared with the previous rotational speed (Np). It is determined whether the rotational speed (Np-1) has not changed or is greater than the previous rotational speed (Np-1). This determination is to determine whether the current internal combustion engine speed is constant or increasing (acceleration state), or in other words, whether the internal combustion engine speed is decreasing (deceleration state). It is.
  • the discharge pressure of the variable displacement oil pump is at least the same as or higher than the current target discharge pressure, so that the response of the hydraulic VTC mechanism deteriorates. If not, the process proceeds to step S12.
  • the current target discharge pressure is the target discharge pressure obtained from the rotation speed detected last time.
  • step S13 if the rotation speed of the internal combustion engine is decreasing, the discharge pressure of the variable displacement oil pump is at least lower than the current target discharge pressure, which may cause a deterioration in the responsiveness of the hydraulic VTC mechanism. As a thing, it transfers to step S13.
  • Step S12 Since the rotational speed is constant or increasing in Step S11, it is determined that it is at least equal to or higher than the current target discharge pressure. Therefore, in step S12, as shown in FIG. 4, the duty of the control signal corresponding to the current rotational speed (Np) is calculated and controlled to the target discharge pressure of the variable capacity oil pump corresponding to this duty. To do.
  • the actual discharge pressure detected by the hydraulic sensor 74 is compared with the target discharge pressure, and the duty of the control signal is finely adjusted so as to converge to the target discharge pressure.
  • the target discharge pressure is controlled in step S12, the process returns to the return and waits for the next start timing. In this state, the target discharge pressure of the variable displacement oil pump is at least the same as or higher than the current target discharge pressure, so that the responsiveness of the hydraulic VTC mechanism does not deteriorate.
  • Step S13 Since the rotational speed is decreasing in Step S11, the discharge pressure of the variable capacity oil pump is at least lower than the current target discharge pressure. However, if the current rotational speed (Np) is not so much lower than the previous rotational speed (Np-1), it can be considered that there is little risk of a deterioration in the response of the hydraulic VTC mechanism. It ’s good. Therefore, in step S13, the amount of change ( ⁇ N: Np ⁇ Np ⁇ 1) between the current rotational speed (Np) and the previous rotational speed (Np ⁇ 1) is obtained, and this amount of change ( ⁇ N) is a predetermined amount. It is determined whether or not it is within the range of the change amount threshold ( ⁇ Nshd).
  • step S13 If the change amount ( ⁇ N) is within a predetermined change amount threshold value ( ⁇ Nshd9) in step S13, the process proceeds to step S12 to execute the control of step S12 described above. If the change exceeds the range of the change amount threshold value ( ⁇ Nshd), the target discharge pressure of the variable capacity oil pump is greatly reduced, and the process proceeds to step S14.
  • step S13 can be omitted if it is not necessary. In this case, if it is determined in step S11 that the rotational speed is decreasing, the process proceeds to step S14 described below.
  • Step S14 the target discharge pressure of the variable displacement oil pump corresponding to the previous rotation speed, that is, the current target discharge pressure is maintained. Originally, the target discharge pressure is changed to a low target pressure corresponding to the current rotational speed, but a high target discharge pressure corresponding to the previous rotational speed is maintained by this step. Therefore, in a state where the rotational speed is decreased to a predetermined change amount or more, the target discharge pressure of the hydraulic oil supplied from the variable capacity oil pump is maintained at a high state and supplied to the hydraulic VTC mechanism.
  • step S15 If the target discharge pressure of the variable capacity oil pump corresponding to the previous rotation speed, that is, the current target discharge pressure is maintained, the process proceeds to step S15.
  • step S15 the actual phase angle ( ⁇ a) of the actual intake valve detected by the hydraulic VTC mechanism detected in step S10 is a predetermined angle ( ⁇ ) from the target phase angle ( ⁇ t) or the target phase angle ( ⁇ t). ), It is determined whether or not the phase angle near the target phase angle (hereinafter referred to as a set phase angle) is controlled.
  • the set phase angle ( ⁇ s) smaller than the target phase angle ( ⁇ t) by a predetermined phase angle ( ⁇ ) and the actual phase angle ( ⁇ a) are compared.
  • the actual phase angle ( ⁇ a) is obtained by comparing the set phase angle ( ⁇ s) smaller than the target phase angle ( ⁇ t) by a predetermined phase angle ( ⁇ ) with the actual phase angle ( ⁇ a).
  • the target phase angle ( ⁇ t) is converged with high accuracy. The reason will be described in step S16.
  • step S15 If it is determined in step S15 that the actual phase angle ( ⁇ a) has not reached the target phase angle, that is, the set phase angle ( ⁇ s), the determination in step S15 is continued again, and the actual phase angle ( ⁇ a) If it has been determined that has reached the vicinity of the target phase angle, that is, the set phase angle ( ⁇ s), the process proceeds to step S16.
  • Step S16 since the actual phase angle ( ⁇ s) of the intake valve has reached the set phase angle ( ⁇ s) by the hydraulic VTC mechanism, the phenomenon that the response of the hydraulic VTC mechanism deteriorates does not occur.
  • the target discharge pressure corresponding to the current rotation speed is controlled. As a result, the target discharge pressure becomes lower than the target discharge pressure set in step S14, and is set to a normal target discharge pressure corresponding to the current rotational speed.
  • the target discharge pressure is lowered when the set phase angle ( ⁇ s) smaller than the target phase angle ( ⁇ t) by a predetermined phase angle ( ⁇ ) is reached, so the vane of the hydraulic VTC mechanism
  • the actual phase angle ( ⁇ a) does not exceed the target phase angle ( ⁇ t). It becomes possible to calm down.
  • the target phase angle ( ⁇ t) is replaced with the set phase angle ( ⁇ s) in steps S15 and S16. It is also possible to compare the actual phase angle ( ⁇ a).
  • the hydraulic oil discharge pressure from the variable displacement oil pump is not reduced, so that the hydraulic VTC mechanism can be operated quickly.
  • the responsiveness of the hydraulic VTC mechanism can be improved and the target phase angle can be brought closer to the early stage.
  • FIGS. 6, 7A, and 7B a second embodiment of the present invention will be described with reference to FIGS. 6, 7A, and 7B.
  • the basic idea is the same as in the first embodiment, but the setting characteristics of the rotational speed and the target discharge pressure are different.
  • the target discharge pressure is set almost in proportion to the increase in the rotational speed.
  • the target discharge pressure is set stepwise.
  • the rotation speed (N1) or more and less than the rotation speed (N2) is set as the first pressure control region, and from the rotation speed (N2) or more to the rotation speed (N3), The second pressure control region is set, and the rotation speed (N3) or more is set as the third pressure control region.
  • the rotational speed has a relationship of N1 ⁇ N2 ⁇ N3.
  • the first pressure control region is set to the first target discharge pressure (P1)
  • the second pressure control region is set to the second target discharge pressure (P2)
  • the third pressure control region is set to the third target discharge pressure (P2).
  • the control duty is set to 80% for the first target discharge pressure (P1), 40% for the second target discharge pressure (P2), and 0% for the third target discharge pressure (P3). Is set.
  • the target discharge pressure has a relationship of P1 ⁇ P2 ⁇ P3.
  • the reason why the target discharge pressure is set stepwise with respect to the increase in the number of revolutions is to reduce the pump drive loss as much as possible and improve the fuel efficiency of the internal combustion engine.
  • the first pressure control region and the second pressure control region are controlled as shown in FIG. 4, extra work must be performed by the difference between the characteristics of FIG. 4 and FIG. 6, but the control is performed as in this embodiment. This is because the difference described above can be reduced, and as a result, it is not necessary to use the output of the internal combustion engine in vain.
  • each target discharge pressure is set corresponding to a hydraulic auxiliary mechanism provided in the internal combustion engine, and the first target discharge pressure (P1) corresponds to the hydraulic VTC mechanism, and the second target discharge pressure ( P2) corresponds to the oil jet mechanism, and the third target discharge pressure (P3) corresponds to the crank metal lubrication mechanism.
  • the hydraulic VTC mechanism is driven by hydraulic oil having a target discharge pressure in the first pressure control region, the second pressure control region, and the third pressure control region, and the oil jet mechanism is driven by the second pressure control region and the third pressure control region.
  • the crank metal lubrication mechanism is driven by hydraulic oil having a target discharge pressure in the third pressure control region. Since the oil jet mechanism and the crank metal lubrication mechanism are well-known structures, description thereof is omitted.
  • the variable displacement oil pump in the state where the rotational speed of the internal combustion engine decreases, the variable displacement oil pump The target discharge pressure of the hydraulic fluid supplied from the engine is maintained at the current target discharge pressure and supplied to the hydraulic VTC mechanism, and preferably the intake valve or the exhaust valve reaches the target phase angle or near the target phase angle.
  • the hydraulic oil target discharge pressure is reduced and supplied to the hydraulic VTC mechanism.
  • the responsiveness of the hydraulic VTC mechanism becomes a problem basically when shifting from the second pressure control region to the first pressure control region in the deceleration state in which the rotational speed of the internal combustion engine is decreasing.
  • control in these two areas will be described.
  • the third pressure control region can also be controlled in the same manner.
  • Step S20 Since step S20 is the same control step as step S10 shown in FIG.
  • Step S21 which pressure control region belongs is determined from the current rotational speed (Np) detected in step 20. For example, if the detected rotational speed (Np) is in the range of N1 or more and less than N2, it is the first pressure control region, and if it is in the range of N2 or more and less than N3, it is the second pressure control region, and N3 or more. Is the third pressure control region.
  • the process proceeds to step S21.
  • Step S22 the pressure control region of the current rotational speed (Np) is compared with the pressure control region of the previous rotational speed (Np-1), and the current pressure control region is ) Is determined from the pressure control region. This determination is made, for example, by determining whether or not the vehicle remains in the first pressure control region or the second pressure control region in FIG.
  • the target discharge pressure of the variable displacement oil pump is at least the current target discharge pressure (P1 or P2). Therefore, assuming that the response of the hydraulic VTC mechanism does not deteriorate, the process proceeds to step S23.
  • the first target discharge pressure (P1) in the first pressure control region is the lowest discharge pressure, but since the rotation speed is low, the transition speed to the target phase angle by the hydraulic VTC mechanism is not so problematic. Don't be.
  • step S24 if the current pressure control region is different from the previous pressure control region, the target discharge pressure of the variable displacement oil pump is at least different from the current target discharge pressure. The process proceeds to step S24 as a possibility of causing deterioration of.
  • Step S23 Since it is determined in Step S22 that the pressure control region is the same, in Step S23, the duty of the control signal corresponding to the current pressure control region is calculated as shown in FIG. To the target discharge pressure of the variable capacity oil pump corresponding to
  • the actual discharge pressure detected by the hydraulic sensor 74 is compared with the target discharge pressure, and the duty of the control signal is finely adjusted so as to converge to the target discharge pressure.
  • the target discharge pressure is controlled in step S23, the process returns to the return and waits for the next start timing. In this state, since the target discharge pressure of the variable displacement oil pump is at least the same as the current discharge pressure, the response of the hydraulic VTC mechanism does not deteriorate.
  • Step S24 It is determined in step S22 that the current pressure control region is different from the current (previous) pressure control region, and the target discharge pressure of the variable displacement oil pump is at least different from the current target discharge pressure. It becomes. The responsiveness of the hydraulic VTC mechanism becomes a problem when the target discharge pressure becomes low.
  • step S24 it is determined whether or not the current pressure control region is a pressure control region where the pressure is higher than the current (previous) pressure control region. For example, it is determined whether the transition from the first pressure control region to the second pressure control region or the transition from the second pressure control region to the first pressure control region.
  • step S24 If it is determined in step S24 that the current pressure control region is a pressure control region (second pressure control region) having a higher pressure than the current (previous) pressure control region (first pressure control region), the process proceeds to step S25. Conversely, if it is determined that the current pressure control region is a pressure control region (first pressure control region) whose pressure is lower than the current (previous) pressure control region (second pressure control region), the process proceeds to step S26.
  • Step S25 Since it is determined in Step S24 that the pressure control region (second pressure control region) is higher than the current one, in Step S25, as shown in FIG.
  • the duty of the control signal corresponding to the second pressure control region) is calculated and controlled to the target discharge pressure of the variable capacity oil pump corresponding to this duty. For example, the target discharge pressure is set higher by changing the duty from 80% in the first pressure control region to 40% in the second pressure control region.
  • the actual discharge pressure detected by the hydraulic sensor 74 is compared with the target discharge pressure, and the duty of the control signal is finely adjusted so as to converge to the target discharge pressure.
  • the target discharge pressure is controlled in step S25, the process returns to the return and waits for the next start timing. In this state, since the target discharge pressure of the variable displacement oil pump is higher than the current target discharge pressure, the response of the hydraulic VTC mechanism is not deteriorated.
  • Step S26 Since it is determined in Step S24 that the pressure control region (first pressure control region) is lower than the current one, in Step S26, the variable corresponding to the previous pressure control region (second pressure control region) is determined.
  • the target discharge pressure of the capacity oil pump that is, the current target discharge pressure is maintained. Originally, the target discharge pressure is changed to a low target pressure corresponding to the current low pressure control region (first pressure control region), but this step corresponds to the previous pressure control region (second pressure control region).
  • the high target discharge pressure is maintained. Therefore, in a state where the pressure control region is lower than the current level, the target discharge pressure of the hydraulic oil supplied from the variable displacement oil pump is maintained at a high state and supplied to the hydraulic VTC mechanism.
  • step S27 the actual phase angle ( ⁇ a) of the actual intake valve detected by the hydraulic VTC mechanism detected in step S20 is a predetermined angle ( ⁇ ) from the target phase angle ( ⁇ t) or the target phase angle ( ⁇ t). ), It is determined whether or not the target phase angle is controlled to the vicinity (hereinafter referred to as a set phase angle).
  • the set phase angle ( ⁇ s) smaller than the target phase angle ( ⁇ t) by a predetermined phase angle ( ⁇ ) and the actual phase angle ( ⁇ a) are compared.
  • the actual phase angle ( ⁇ a) is obtained by comparing the set phase angle ( ⁇ s) smaller than the target phase angle ( ⁇ t) by a predetermined phase angle ( ⁇ ) with the actual phase angle ( ⁇ a).
  • the target phase angle ( ⁇ t) is converged with high accuracy. The reason will be described in step S28.
  • step S27 If it is determined in step S27 that the actual phase angle ( ⁇ a) has not reached the target phase angle, that is, has not reached the set phase angle ( ⁇ s), the determination in step S15 is continued again, and the actual phase angle ( ⁇ a) When it has been determined that has reached the target phase angle, that is, the set phase angle ( ⁇ s), the process proceeds to step S28.
  • Step S28 since the actual phase angle ( ⁇ s) of the intake valve has reached the set phase angle ( ⁇ s) by the hydraulic VTC mechanism, the phenomenon that the response of the hydraulic VTC mechanism deteriorates does not occur.
  • the target discharge pressure in the pressure control region (first pressure control region) corresponding to the current rotational speed is controlled. Accordingly, the target discharge pressure becomes lower than the target discharge pressure set in step S26, and becomes a normal target discharge pressure corresponding to the rotation speed.
  • the target discharge pressure is lowered when the set phase angle ( ⁇ s) smaller than the target phase angle ( ⁇ t) by a predetermined phase angle ( ⁇ ) is reached, so the target discharge acting on the vane of the hydraulic VTC mechanism
  • the driving force based on the pressure smaller than the driving force based on the target discharge pressure set in step S26, it is possible to calm the actual phase angle ( ⁇ a) so as not to exceed the target phase angle ( ⁇ t). It becomes.
  • the present invention maintains the target discharge pressure of the hydraulic oil supplied from the variable capacity oil pump at the current target discharge pressure and supplies it to the hydraulic VTC mechanism when the rotational speed of the internal combustion engine decreases. Furthermore, it is desirable that the hydraulic oil discharge pressure is reduced and supplied to the hydraulic VTC mechanism after the actual phase angle of the intake valve or exhaust valve reaches the target phase angle or near the target phase angle.
  • this invention is not limited to above-described embodiment, Various modifications are included.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • control device for a variable displacement oil pump based on the embodiment described above, for example, the following modes can be considered.
  • a hydraulically driven variable valve mechanism that controls at least the opening timing (hereinafter referred to as phase angle) of an intake valve or an exhaust valve, and a variable displacement oil pump that supplies hydraulic oil to the variable valve mechanism
  • a control apparatus for a variable displacement oil pump used in an internal combustion engine comprising control means for variably controlling a target discharge pressure of hydraulic oil of the variable displacement oil pump in accordance with a rotational speed of the internal combustion engine,
  • the control means has a function of maintaining the target discharge pressure of the hydraulic oil supplied from the variable displacement oil pump at the current target discharge pressure and supplying it to the variable valve mechanism in a state where the rotation speed of the internal combustion engine decreases. It has.
  • the control means determines an acceleration state in which the rotational speed is increasing from a change in the rotational speed of the internal combustion engine and a deceleration state in which the rotational speed is decreasing.
  • the variable displacement oil pump is controlled so as to be a target discharge pressure corresponding to the detected rotational speed, and in the deceleration state, the current target discharge pressure is maintained.
  • a function of controlling a variable displacement oil pump is
  • control means is configured such that the actual phase angle of the intake valve or the exhaust valve in the deceleration state is a target phase angle, or the target After reaching a set phase angle that is in the vicinity of the phase angle, the hydraulic oil supplied from the variable displacement oil pump is supplied to the variable valve mechanism by reducing the current target discharge pressure.
  • the set phase angle is set to a phase angle smaller than the target phase angle by a predetermined phase angle.
  • the control means detects the rotational speed of the internal combustion engine at a predetermined cycle, and the rotational speed detected at the current cycle; A function for determining the acceleration state and the deceleration state from the magnitude of the rotation speed detected in the previous cycle, and the variable capacity so that the target discharge pressure corresponding to the detected current rotation speed is obtained in the acceleration state.
  • a function of controlling the oil pump, and a function of controlling the variable displacement oil pump so as to maintain the target discharge pressure corresponding to the previous rotational speed in the deceleration state.
  • control device of the variable capacity oil pump based on the embodiment described above, for example, the following modes can be considered.
  • a hydraulically driven variable valve mechanism for controlling at least the opening timing of the intake valve or exhaust valve (hereinafter referred to as a target phase angle), a hydraulic auxiliary mechanism mechanism different from the variable valve mechanism, Used in an internal combustion engine having a variable valve mechanism and a variable displacement oil pump that supplies hydraulic oil to the hydraulic auxiliary mechanism, and has a target discharge pressure of the hydraulic oil of the variable valve mechanism and the hydraulic auxiliary mechanism.
  • a control apparatus for a variable displacement oil pump comprising control means for variably controlling in accordance with the rotational speed of the internal combustion engine, wherein the control means is at least a predetermined first rotation according to the rotational speed of the internal combustion engine.
  • First eye A function of setting a discharge pressure and setting a predetermined second target discharge pressure higher than the first target discharge pressure in the second pressure control region; and the second pressure control by reducing the rotational speed of the internal combustion engine.
  • the target discharge pressure of the hydraulic oil supplied from the variable displacement oil pump is maintained at the second target discharge pressure in the second pressure control region, and the variable operation is performed.
  • a function for supplying to the valve mechanism is provided.
  • the control means determines that the first pressure control region has transitioned to the second pressure control region
  • the second pressure control region corresponds to the second pressure control region.
  • the control means determines that the variable pressure oil pump is controlled so as to reach the target discharge pressure, and when the transition from the second pressure control region to the first pressure control region is made, the second pressure control region corresponds to the second pressure control region.
  • a function of controlling the variable displacement oil pump so as to achieve a target discharge pressure.
  • control means is configured such that an actual phase angle of the intake valve or the exhaust valve in a deceleration state of the internal combustion engine is a target phase angle, Alternatively, after reaching a set phase angle that is in the vicinity of the target phase angle, the target discharge pressure of hydraulic oil from the variable displacement oil pump is changed from the second target discharge pressure to the first target discharge pressure, and A function for supplying to the variable valve mechanism is provided.
  • the set phase angle is set to a phase angle smaller than the target phase angle by a predetermined phase angle.
  • control means detects the rotational speed of the internal combustion engine at a predetermined cycle, and the first pressure control is performed based on the detected rotational speed. It has a function of determining whether it is a region or the second pressure control region.
  • variable valve mechanism is the first target set in the first pressure control region and the second pressure control region.
  • hydraulic auxiliary mechanism is an oil jet mechanism, and the oil jet mechanism is set in the second pressure control region. Driven by hydraulic fluid.
  • variable capacity oil pump based on the embodiment described above, for example, the following modes can be considered.
  • a hydraulically driven variable valve mechanism that controls at least the opening timing (hereinafter referred to as phase angle) of an intake valve or an exhaust valve, and a variable displacement oil pump that supplies hydraulic oil to the variable valve mechanism
  • a control method for a variable displacement oil pump used in an internal combustion engine comprising control means for variably controlling a target discharge pressure of hydraulic oil of the variable displacement oil pump in accordance with a rotational speed of the internal combustion engine, The control means detects the rotational speed of the internal combustion engine at a predetermined cycle, the rotational speed detected at the current cycle, and an acceleration state in which the rotational frequency is increased from a change in the rotational frequency detected at the previous cycle, A step of determining a deceleration state where the rotational speed is decreasing, and a step of controlling the variable displacement oil pump so as to achieve a target discharge pressure corresponding to the rotational speed detected in the current cycle in the acceleration state. And-up, in the deceleration state, and a step of controlling the variable capacity oil pump so as to maintain the current target discharge pressure corresponding
  • variable displacement oil pump based on the embodiment described above, for example, the following modes can be considered.
  • a hydraulically driven variable valve mechanism for controlling at least the opening timing of the intake valve or exhaust valve (hereinafter referred to as a target phase angle), a hydraulic auxiliary mechanism mechanism different from the variable valve mechanism, Used in an internal combustion engine having a variable valve mechanism and a variable displacement oil pump that supplies hydraulic oil to the hydraulic auxiliary mechanism, and has a target discharge pressure of the hydraulic oil of the variable valve mechanism and the hydraulic auxiliary mechanism.
  • a control method for a variable displacement oil pump comprising control means for variably controlling in accordance with the rotational speed of the internal combustion engine, wherein the control means corresponds to at least a predetermined first rotational speed range of the internal combustion engine.
  • the variable displacement oil pump is controlled to be the second target discharge pressure corresponding to the second pressure control region. And controlling the variable displacement oil pump so as to achieve the second target discharge pressure corresponding to the second pressure control region when it is determined that the transition from the second pressure control region to the first pressure control region is made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

According to the present invention, in a state in which the speed of an internal combustion engine (1) is reduced, a target discharge pressure of operating oil supplied from a variable-displacement oil pump (54) is maintained at the current target discharge pressure, and the operating oil is supplied to a hydraulic VTC mechanism (26). Furthermore, after, preferably, an intake valve or an exhaust valve has reached a target phase angle or near the target phase angle, the discharge pressure of the operating oil is reduced, and the operating oil is supplied to the hydraulic VTC mechanism (26). Even in the state in which the speed of the internal combustion engine is reduced, because the discharge pressure of the operating oil from the variable-displacement oil pump (54) is not reduced, it is possible to obtain a quick action of the hydraulic VTC mechanism (26) and to make the valve close to the target phase angle in an early stage by improving the responsiveness of the hydraulic VTC mechanism (26).

Description

可変容量オイルポンプの制御装置及び制御方法Control device and control method for variable displacement oil pump
 本発明は内燃機関に使用される可変容量オイルポンプの制御装置及び制御方法に係り、特に可変動弁機構に作動油を供給する可変容量オイルポンプの制御装置及び制御方法に関するものである。 The present invention relates to a control device and control method for a variable displacement oil pump used in an internal combustion engine, and more particularly to a control device and control method for a variable displacement oil pump that supplies hydraulic oil to a variable valve mechanism.
 従来、特許文献1にあるような可変容量オイルポンプにおいては、一般的には内燃機関の回転数が低いほど作動油の油圧は低く設定され、回転数が高くなるにつれて作動油の油圧が高く設定される構成とされている。また、油圧VTC機構は、内燃機関の回転が低回転数領域から高回転数領域までの広い範囲で動作するように構成されている。 Conventionally, in a variable displacement oil pump as disclosed in Patent Document 1, the hydraulic oil pressure is generally set lower as the rotational speed of the internal combustion engine is lower, and the hydraulic oil pressure is set higher as the rotational speed is higher. It is supposed to be configured. Further, the hydraulic VTC mechanism is configured so that the rotation of the internal combustion engine operates in a wide range from a low speed range to a high speed range.
 ところで、自動車を減速するためにアクセルペダルの踏込量を小さくすると、これに対応してスロットルバルブが閉じられるため、内燃機関の回転数も減少するようになる。内燃機関の回転数が減少すると、吸気バルブの目標位相角も遅角側に変更されるようになるので、油圧VTC機構は、吸気バルブの位相角を遅角側に変更するため、これに対応して作動油を制御してやることが必要である。 By the way, if the amount of depression of the accelerator pedal is reduced in order to decelerate the automobile, the throttle valve is closed correspondingly, and the rotational speed of the internal combustion engine also decreases. When the rotational speed of the internal combustion engine decreases, the target phase angle of the intake valve is also changed to the retarded angle side. Therefore, the hydraulic VTC mechanism changes the phase angle of the intake valve to the retarded angle side. Therefore, it is necessary to control the hydraulic oil.
特開2012―62789号公報JP 2012-62789 A
 しかしながら、従来技術において、可変容量オイルポンプから吐出される作動油の吐出圧は、回転数が減少されると高圧制御状態から低圧制御状態に移行される。このため、油圧VTC機構に供給される作動油の吐出圧が急速に低下してしまうため、吸気バルブの位相角を進角状態から遅角状態に早期に遷移させるために必要な吐出圧の作動油を供給できず、油圧VTC機構の応答性(現在の進角位置から目標の遅角位置に遷移する速度)が悪化して、良好な運転状態を得ることができないという課題を有している。尚、上述の説明では、油圧VTC機構は吸気バルブを制御しているが、排気バルブを制御するものにおいても同様の課題を有している。 However, in the prior art, the discharge pressure of the hydraulic oil discharged from the variable capacity oil pump is shifted from the high pressure control state to the low pressure control state when the rotational speed is decreased. For this reason, since the discharge pressure of the hydraulic oil supplied to the hydraulic VTC mechanism is rapidly reduced, the operation of the discharge pressure necessary for the early transition of the phase angle of the intake valve from the advanced state to the retarded state is performed. Oil cannot be supplied, and the responsiveness of the hydraulic VTC mechanism (the speed of transition from the current advance position to the target retard position) is deteriorated, resulting in a problem that a good operating state cannot be obtained. . In the above description, the hydraulic VTC mechanism controls the intake valve, but the one that controls the exhaust valve also has the same problem.
 本発明の目的は、内燃機関の回転数が減少する状態で、油圧VTC機構の応答性を高めて早期に目標位相角に近づけることができる可変容量オイルポンプの制御装置及び制御方法を提供することにある。 An object of the present invention is to provide a control device and a control method for a variable displacement oil pump that can increase the response of a hydraulic VTC mechanism and bring it closer to a target phase angle at an early stage in a state where the rotational speed of the internal combustion engine is reduced. It is in.
 本発明の特徴は、内燃機関の回転数が減少する状態では、可変容量オイルポンプから供給される作動油の目標吐出圧を現在の目標吐出圧に維持して油圧VTC機構に供給し、更に、望ましくは吸気バルブ、或いは排気バルブの実位相角が目標位相角、或いは目標位相角の付近に達してから作動油の目標吐出圧を低下させて油圧VTC機構に供給する、ところにある。 The feature of the present invention is that the target discharge pressure of the hydraulic oil supplied from the variable displacement oil pump is maintained at the current target discharge pressure and supplied to the hydraulic VTC mechanism in a state where the rotational speed of the internal combustion engine decreases. Desirably, after the actual phase angle of the intake valve or exhaust valve reaches the target phase angle or near the target phase angle, the target discharge pressure of the hydraulic oil is reduced and supplied to the hydraulic VTC mechanism.
 本発明によれば、内燃機関の回転数が減少する状態であっても、可変容量オイルポンプからの作動油の目標吐出圧を低下させないので、油圧VTC機構の早い動作を得ることができ、油圧VTC機構の応答性を高めて早期に目標位相角に近づけることができるようになる。 According to the present invention, even when the rotational speed of the internal combustion engine is reduced, the target discharge pressure of the hydraulic oil from the variable displacement oil pump is not lowered, so that the hydraulic VTC mechanism can be operated quickly, and the hydraulic pressure The responsiveness of the VTC mechanism can be improved and the target phase angle can be quickly approached.
本発明の実施形態に係る油圧VTC機構を備える内燃機関の概略構成図である。1 is a schematic configuration diagram of an internal combustion engine including a hydraulic VTC mechanism according to an embodiment of the present invention. 図1に示す油圧VTC機構による位相角の変更方法を説明する構成図である。It is a block diagram explaining the change method of the phase angle by the hydraulic VTC mechanism shown in FIG. 図2における可変容量オイルポンプシステムの概略の構成を説明する構成図である。It is a block diagram explaining the schematic structure of the variable capacity oil pump system in FIG. 可変容量オイルポンプによる作動油の第1の圧力制御を説明する説明図である。It is explanatory drawing explaining the 1st pressure control of the hydraulic oil by a variable capacity oil pump. 図4に示す第1の圧力制御における本発明の第1の実施形態の制御フローを説明するフローチャート図である。FIG. 5 is a flowchart for explaining a control flow of the first embodiment of the present invention in the first pressure control shown in FIG. 4. 可変容量オイルポンプによる作動油の第2の圧力制御を説明する説明図である。It is explanatory drawing explaining the 2nd pressure control of the hydraulic fluid by a variable capacity oil pump. 図6に示す第2の圧力制御における本発明の第2の実施形態の制御フローの前半を説明するフローチャート図である。It is a flowchart figure explaining the first half of the control flow of the 2nd Embodiment of this invention in 2nd pressure control shown in FIG. 図7Aの制御フローの後半を説明するフローチャート図である。FIG. 7B is a flowchart illustrating the second half of the control flow in FIG. 7A. 第2の実施形態における可変容量オイルポンプの目標吐出圧の変化状態を示す説明図である。It is explanatory drawing which shows the change state of the target discharge pressure of the variable capacity oil pump in 2nd Embodiment.
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and various modifications and application examples are included in the technical concept of the present invention. Is also included in the range.
 図1は、本発明の実施形態に係る油圧VTC機構を備えた内燃機関の概略構成図である。 FIG. 1 is a schematic configuration diagram of an internal combustion engine including a hydraulic VTC mechanism according to an embodiment of the present invention.
 内燃機関1の各気筒に空気を導入するための吸気管11には、内燃機関1の吸入空気流量QAを検出する吸入空気量センサ12を設けている。吸入空気量センサ12としては、例えば吸気の質量流量を検出する熱線式流量計等を用いることができる。 The intake pipe 11 for introducing air into each cylinder of the internal combustion engine 1 is provided with an intake air amount sensor 12 for detecting the intake air flow rate QA of the internal combustion engine 1. As the intake air amount sensor 12, for example, a hot-wire flow meter that detects the mass flow rate of intake air can be used.
 吸気バルブ13は、各気筒の燃焼室14の吸気口を開閉し、吸気バルブ13の上流側の吸気管11に、気筒毎に燃料噴射弁15を備えている。燃料噴射弁15から噴射された燃料は、吸気バルブ13を介して燃焼室14内に空気と共に吸引され、点火プラグ16による火花点火によって着火燃焼し、この燃焼による圧力がピストン17をクランクシャフト18に向けて押し下げることで、クランクシャフト18を回転駆動する。クランク角センサ27は、クランクシャフト18の回転角を検出し、クランクシャフト18の基準位置信号REF及び単位角度信号POSを出力する。 The intake valve 13 opens and closes the intake port of the combustion chamber 14 of each cylinder, and is provided with a fuel injection valve 15 for each cylinder in the intake pipe 11 upstream of the intake valve 13. The fuel injected from the fuel injection valve 15 is sucked together with air into the combustion chamber 14 via the intake valve 13 and ignited and burned by spark ignition by the spark plug 16, and the pressure by this combustion causes the piston 17 to be applied to the crankshaft 18. The crankshaft 18 is rotationally driven by being pushed down. The crank angle sensor 27 detects the rotation angle of the crankshaft 18 and outputs a reference position signal REF and a unit angle signal POS of the crankshaft 18.
 点火プラグ16のそれぞれには、点火プラグ16に対して点火エネルギを供給する点火モジュール19が直付けされている。点火モジュール19は、点火コイル及び点火コイルへの通電を制御するパワートランジスタを備えている。 Each ignition plug 16 is directly attached with an ignition module 19 for supplying ignition energy to the ignition plug 16. The ignition module 19 includes an ignition coil and a power transistor that controls energization to the ignition coil.
 排気バルブ20は、燃焼室14の排気口を開閉し、排気バルブ20が開くことで排気ガスが排気管21に排出される。排気管21には、三元触媒等を備えた触媒コンバータ22が設置され、触媒コンバータ22によって排気を浄化する。また、触媒コンバータ22の上流側の排気管21に空燃比センサ23が設置され、排気中の酸素濃度に基づいて空燃比A/Fを検出している。 The exhaust valve 20 opens and closes the exhaust port of the combustion chamber 14, and the exhaust valve 20 is opened so that exhaust gas is discharged to the exhaust pipe 21. A catalytic converter 22 having a three-way catalyst or the like is installed in the exhaust pipe 21, and exhaust gas is purified by the catalytic converter 22. An air-fuel ratio sensor 23 is installed in the exhaust pipe 21 upstream of the catalytic converter 22 to detect the air-fuel ratio A / F based on the oxygen concentration in the exhaust.
 吸気バルブ13及び排気バルブ20は、クランクシャフト18によって回転駆動される吸気カムシャフト24及び排気カムシャフト25の回転に伴って動作する。吸気バルブ13は、吸気カムシャフト24に設けたカムによって開閉駆動され、油圧VTC機構26によって、その位相角(開弁作用角)が可変となっており、吸気バルブ13のバルブタイミングが進角、遅角される。油圧VTC機構26は、ソレノイドバルブ34によって油圧通路が切り替えられることで、位相角が変更されるようになっている。 The intake valve 13 and the exhaust valve 20 operate with the rotation of the intake camshaft 24 and the exhaust camshaft 25 that are rotationally driven by the crankshaft 18. The intake valve 13 is opened and closed by a cam provided on the intake camshaft 24, and its phase angle (valve opening operating angle) is variable by the hydraulic VTC mechanism 26, so that the valve timing of the intake valve 13 is advanced, Be retarded. The hydraulic VTC mechanism 26 is configured to change the phase angle by switching the hydraulic passage by the solenoid valve 34.
 カム角センサ28は、吸気カムシャフト24から基準位置信号(吸気カムシャフトの回転角信号)CAMを検出している。一方、排気バルブ20は、排気カムシャフト25に設けられたカムによって開閉駆動される。 The cam angle sensor 28 detects a reference position signal (intake camshaft rotation angle signal) CAM from the intake camshaft 24. On the other hand, the exhaust valve 20 is driven to open and close by a cam provided on the exhaust camshaft 25.
 水温センサ29は、内燃機関1の冷却水の温度(水温)TWを検出する。また、油温センサ33は、オイルパン内または作動油(エンジンオイル)の循環経路における作動油の油温TOを検出する。更に、アクセル開度センサ30は、アクセルペダル31の踏込量(アクセル開度ACC)を検出する。 The water temperature sensor 29 detects the temperature (water temperature) TW of the cooling water of the internal combustion engine 1. The oil temperature sensor 33 detects the oil temperature TO of the hydraulic oil in the oil pan or in the circulation path of the hydraulic oil (engine oil). Further, the accelerator opening sensor 30 detects the amount of depression of the accelerator pedal 31 (accelerator opening ACC).
 制御装置(制御装置:Engine Control Unit)6は、マイクロコンピュータを備え、内燃機関1に設けられた各種のセンサからの信号、例えば吸入空気流量QA、アクセル開度ACC、基準位置信号REF、単位角度信号POS、空燃比A/F、水温TW、油温TO及び回転角信号CAM等が入力される。 The control device (control device: Engine Control Unit) 6 includes a microcomputer, and signals from various sensors provided in the internal combustion engine 1, for example, intake air flow rate QA, accelerator opening ACC, reference position signal REF, unit angle A signal POS, an air-fuel ratio A / F, a water temperature TW, an oil temperature TO, a rotation angle signal CAM, and the like are input.
 また、制御装置6には、内燃機関1の運転及び停止のメインスイッチであるイグニッションスイッチ32の状態を示す信号が入力される。制御装置6は、これらの情報に基づき、予め記憶されたプログラムに従って演算処理を行い、燃料噴射弁15、ソレノイドバルブ34、及び点火モジュール19等の各種装置の操作量あるいは制御量を算出し、これらの装置に制御信号を出力して制御する。 Further, a signal indicating the state of the ignition switch 32 which is a main switch for operating and stopping the internal combustion engine 1 is input to the control device 6. Based on this information, the control device 6 performs arithmetic processing in accordance with a program stored in advance, calculates the operation amounts or control amounts of various devices such as the fuel injection valve 15, the solenoid valve 34, and the ignition module 19, and so on. A control signal is output to the device.
 尚、内燃機関1は、図示した直列型の他、V型あるいは水平対向型等の様々な形式とすることができる。また、ここでは燃料噴射弁15が吸気管11内に燃料を噴射するものを例に取ったが、燃焼室14内に直接燃料を噴射する筒内直接噴射式内燃機関であっても良い。更に、吸気側VTC機構26に加えて排気バルブ20の開閉時期(バルブタイミング)を可変とする排気側VTC機構を備えていても良い。 The internal combustion engine 1 can be of various types such as a V type or a horizontally opposed type in addition to the illustrated serial type. Here, the fuel injection valve 15 injects fuel into the intake pipe 11 as an example, but a direct injection type internal combustion engine that injects fuel directly into the combustion chamber 14 may be used. Further, in addition to the intake side VTC mechanism 26, an exhaust side VTC mechanism that makes the opening / closing timing (valve timing) of the exhaust valve 20 variable may be provided.
 図2は、図1における油圧VTC機構26によるバルブタイミングの変更に関係する要部を抽出して示している。油圧VTC機構26は、吸気バルブ13を開閉させる吸気カムが設けられた吸気カムシャフト24(図1参照)の一端に配設されている。油圧VTC機構26は、内燃機関1のクランクシャフト18と同期して回転するスプロケット41と、吸気カムシャフト24と一体的に回転可能に連結されたロータ42とを相対回転可能に組み合わせることによって構成されている。スプロケット41は、図示しないタイミングベルトによって内燃機関1のクランクシャフト18と連結され、クランクシャフト18と同期して回転する。 FIG. 2 shows extracted main parts related to the change of the valve timing by the hydraulic VTC mechanism 26 in FIG. The hydraulic VTC mechanism 26 is disposed at one end of an intake camshaft 24 (see FIG. 1) provided with an intake cam for opening and closing the intake valve 13. The hydraulic VTC mechanism 26 is configured by combining a sprocket 41 that rotates in synchronization with the crankshaft 18 of the internal combustion engine 1 and a rotor 42 that is rotatably connected integrally with the intake camshaft 24 so as to be relatively rotatable. ing. The sprocket 41 is connected to the crankshaft 18 of the internal combustion engine 1 by a timing belt (not shown), and rotates in synchronization with the crankshaft 18.
 スプロケット41には、ロータ42を収容する円筒状のハウジング43が設けられている。ハウジング43は、前後両端が開口形成された円筒状をなし、また、内周面に横断面が台形状をなし、それぞれハウジング43の軸方向に沿って設けられる隔壁部43a、43b、43cが突設されている。ロータ42の外周にはその径方向に延びる複数のベーン42a、42b、42cが形成され、ハウジング43の内周にはそれらベーン42a、42b、42cをそれぞれ収容する収容部44a、44b、44cが形成されている。 The sprocket 41 is provided with a cylindrical housing 43 that accommodates the rotor 42. The housing 43 has a cylindrical shape in which both front and rear ends are formed, and the inner circumferential surface has a trapezoidal cross section, and partition walls 43a, 43b, and 43c provided along the axial direction of the housing 43 respectively protrude. It is installed. A plurality of vanes 42 a, 42 b, 42 c extending in the radial direction are formed on the outer periphery of the rotor 42, and accommodating portions 44 a, 44 b, 44 c for accommodating these vanes 42 a, 42 b, 42 c are formed on the inner periphery of the housing 43. Has been.
 ベーン42a、42b、42cは、それぞれ断面が略逆台形状を呈し、収容部44a、44b、44cを回転方向の前後に隔成し、ベーン42a、42b、42cの両側と各隔壁部43a、43b、43cの両側面との間に、進角側油圧室45a、45b、45cと遅角側油圧室46a、46b、46cを形成する。 Each of the vanes 42a, 42b, and 42c has a substantially inverted trapezoidal cross section, and the accommodating portions 44a, 44b, and 44c are separated in the front-rear direction in the rotational direction, and both sides of the vanes 42a, 42b, and 42c, and the partition wall portions 43a and 43b. , 43c are formed with advance side hydraulic chambers 45a, 45b, 45c and retard side hydraulic chambers 46a, 46b, 46c.
 第1油圧通路47は、進角側油圧室45a、45b、45cに対して油圧を給排し、第2油圧通路48は、遅角側油圧室46a、46b、46cに対して油圧を給排する。両油圧通路47、48には、通路切り換え用のソレノイドバルブ34を介して、作動油供給通路49とドレイン通路50、51とがそれぞれ接続されている。 The first hydraulic passage 47 supplies and discharges hydraulic pressure to the advance side hydraulic chambers 45a, 45b and 45c, and the second hydraulic passage 48 supplies and discharges hydraulic pressure to the retard side hydraulic chambers 46a, 46b and 46c. To do. A hydraulic oil supply passage 49 and drain passages 50 and 51 are connected to both the hydraulic passages 47 and 48 via a passage-switching solenoid valve 34, respectively.
 作動油供給通路49には、オイルパン53内の作動油を圧送する可変容量オイルポンプ54が設けられ、ドレイン通路50、51の下流端はオイルパン53に連通している。ソレノイドバルブ34は、内部のスプール弁体34bが各油圧通路47、48と、作動油供給通路49及びドレイン通路50、51とを相対的に切り換え制御するようになっている。 The hydraulic oil supply passage 49 is provided with a variable capacity oil pump 54 that pumps hydraulic oil in the oil pan 53, and the downstream ends of the drain passages 50 and 51 communicate with the oil pan 53. In the solenoid valve 34, an internal spool valve body 34b relatively controls switching between the hydraulic passages 47 and 48, the hydraulic oil supply passage 49, and the drain passages 50 and 51.
 制御装置6は、ソレノイドバルブ34を駆動するソレノイド34aに対する通電量を、ディザ信号が重畳されたデューティ制御信号(操作量)に基づいて制御する。油圧VTC機構26においては、ソレノイド34aにデューティ比0%のオフ制御信号を出力すると、可変容量オイルポンプ54から圧送された作動油は、油圧通路48を通って遅角側油圧室46a、46b、46cに供給されると共に、進角側油圧室45a、45b、45c内の作動油が、油圧通路47を通ってドレイン通路51からオイルパン53内に排出される。 The control device 6 controls the energization amount for the solenoid 34a that drives the solenoid valve 34 based on a duty control signal (operation amount) on which a dither signal is superimposed. In the hydraulic VTC mechanism 26, when an off control signal with a duty ratio of 0% is output to the solenoid 34 a, the hydraulic oil pumped from the variable capacity oil pump 54 passes through the hydraulic passage 48 and the retard side hydraulic chambers 46 a, 46 b, The hydraulic oil in the advance side hydraulic chambers 45 a, 45 b and 45 c is discharged from the drain passage 51 into the oil pan 53 through the hydraulic passage 47.
 このように、ソレノイドにデューティ比0%のオフ制御信号を供給すると、遅角側油圧室46a、46b、46cの内圧が高くなる一方で、進角側油圧室45a、45b、45cの内圧が低くなり、ロータ42はベーン42a、42b、42cを介して最大遅角側に回転する。この結果、吸気バルブ13の開期間がピストン位置に対して相対的に遅角変化する。すなわち、ソレノイド34aへの通電を遮断すると、吸気バルブ13のバルブ作動角の中心位相は遅角変化し、最終的には、最遅角位置で停止する。 As described above, when an OFF control signal with a duty ratio of 0% is supplied to the solenoid, the internal pressure of the retard side hydraulic chambers 46a, 46b, 46c increases while the internal pressure of the advance side hydraulic chambers 45a, 45b, 45c decreases. Thus, the rotor 42 rotates to the maximum retardation side via the vanes 42a, 42b, and 42c. As a result, the opening period of the intake valve 13 changes with a delay relative to the piston position. That is, when the energization to the solenoid 34a is cut off, the central phase of the valve operating angle of the intake valve 13 changes with a delay, and finally stops at the most retarded position.
 また、ソレノイドにデューティ比100%のオン制御信号を出力すると、スプール弁体34bが矢印方向に駆動され、作動油は油圧通路47を通って進角側油圧室45a、45b、45c内に供給されて内圧が高くなると共に、遅角側油圧室46a、46b、46c内の作動油が油圧通路48及びドレイン通路50を通ってオイルパン53に排出され、遅角側油圧室46a、46b、46cの内圧が低くなる。 When an ON control signal with a duty ratio of 100% is output to the solenoid, the spool valve body 34b is driven in the direction of the arrow, and the hydraulic oil is supplied to the advance side hydraulic chambers 45a, 45b, 45c through the hydraulic passage 47. As the internal pressure increases, the hydraulic oil in the retarded-side hydraulic chambers 46a, 46b, 46c passes through the hydraulic passage 48 and the drain passage 50 and is discharged to the oil pan 53, where the retarded-side hydraulic chambers 46a, 46b, 46c The internal pressure is lowered.
 このように、ソレノイド34bにデューティ比100%のオン制御信号を供給すると、ロータ42は、ベーン42a、42b、42cを介して進角側へ最大に回転し、これによって、吸気バルブ13の開期間(バルブ作動角の中心位相)がピストン位置に対して相対的に進角変化する。 In this way, when the ON control signal with a duty ratio of 100% is supplied to the solenoid 34b, the rotor 42 rotates to the maximum advance side via the vanes 42a, 42b, and 42c, and thereby the opening period of the intake valve 13 is increased. (Center phase of the valve operating angle) changes relative to the piston position.
 従って、ソレノイド34bに供給する制御信号のデューティ比を変更することで、最遅角位置から最進角位置までの間の任意の位置に吸気バルブ13の位相角を制御することができる。よって、内燃機関1の運転状態に応じて吸気バルブ13の進角量を調節することによって開閉時期や吸気バルブ13と排気バルブ20のバルブオーバラップ等を変更できる。 Therefore, by changing the duty ratio of the control signal supplied to the solenoid 34b, the phase angle of the intake valve 13 can be controlled to an arbitrary position between the most retarded position and the most advanced position. Therefore, by adjusting the advance amount of the intake valve 13 according to the operating state of the internal combustion engine 1, the opening / closing timing, the valve overlap between the intake valve 13 and the exhaust valve 20, etc. can be changed.
 図3は、図2における作動油の目標吐出圧を図4に示すように回転数に対応して可変制御する、可変容量オイルポンプ54の構成例を示している。 FIG. 3 shows a configuration example of a variable displacement oil pump 54 that variably controls the target discharge pressure of hydraulic oil in FIG. 2 in accordance with the rotational speed as shown in FIG.
 ポンプハウジング61の両側部に吸入口と吐出口が設けられ、ほぼ中央に内燃機関1のクランクシャフト18から回転力が伝達されるドライブシャフト62が貫通配置されている。ポンプハウジング61の内部には、ドライブシャフト62に結合され、外周側に複数のベーン63をほぼ半径方向へ進退自在に保持するロータ64と、このロータ64の外周側に偏心揺動自在に設けられ、内周面に各ベーン63の先端が摺接するカムリング65が収容配置されている。また、ロータ64の内周部側の両側面には、一対のベーンリング72が摺動自在に配置されている。 A suction port and a discharge port are provided on both sides of the pump housing 61, and a drive shaft 62 through which a rotational force is transmitted from the crankshaft 18 of the internal combustion engine 1 is disposed through substantially at the center. Inside the pump housing 61, a rotor 64, which is coupled to a drive shaft 62 and holds a plurality of vanes 63 on the outer peripheral side so as to be able to advance and retreat in a substantially radial direction, is provided on the outer peripheral side of the rotor 64 so as to be able to swing eccentrically. The cam ring 65 in which the tip of each vane 63 is in sliding contact with the inner peripheral surface is accommodated. A pair of vane rings 72 are slidably disposed on both side surfaces on the inner peripheral side of the rotor 64.
 カムリング65は、外周部にシール部材66a、66bを介して隔成された作動室67、68に導入される吐出圧に応じてピボットピン69を中心に偏心量が減少する方向へ揺動すると共に、その外周に一体的に有するレバー部65aを押圧するコイルばね70のばね力によって偏心量が増大する方向へ揺動するようになっている。 The cam ring 65 swings in a direction in which the amount of eccentricity is reduced around the pivot pin 69 in accordance with the discharge pressure introduced into the working chambers 67 and 68 that are separated by seal members 66a and 66b on the outer periphery. The coil spring 70 oscillates in a direction in which the amount of eccentricity is increased by the spring force of the coil spring 70 that presses the lever portion 65a integrally provided on the outer periphery thereof.
 そして、初期状態では、コイルばね70のばね力によってカムリング65を偏心量が最大となる方向へ付勢して吐出圧を増加させる一方、作動室67内の油圧が所定以上になると、カムリング65をコイルばね70のばね力に抗して偏心量が小さくなる方向へ揺動させて吐出圧を減少させる。 In the initial state, the cam ring 65 is urged by the spring force of the coil spring 70 in the direction in which the amount of eccentricity is maximized to increase the discharge pressure. On the other hand, when the hydraulic pressure in the working chamber 67 exceeds a predetermined value, The discharge pressure is decreased by swinging in the direction in which the amount of eccentricity is reduced against the spring force of the coil spring 70.
 この可変容量オイルポンプ54の作動室67にはオイルメインギャラリ73から作動油が供給され、作動室68には比例ソレノイドバルブ71を介して作動油が供給され、吐出した作動油を内燃機関1の上述した油圧VTC機構、ピストンを冷却するオイルジェット機構、クランクシャフトの軸受部であるクランクメタルへの潤滑機構等に供給するようになっている。尚、比例ソレノイドバルブ71はデューティ制御されている。 The working oil 67 is supplied from the oil main gallery 73 to the working chamber 67 of the variable capacity oil pump 54, and the working oil is supplied to the working chamber 68 via the proportional solenoid valve 71. The hydraulic VTC mechanism, the oil jet mechanism that cools the piston, the lubrication mechanism for the crank metal that is the bearing portion of the crankshaft, and the like are supplied. The proportional solenoid valve 71 is duty controlled.
 比例ソレノイドバルブ71がデューティ100%のときには、作動室67がドレイン(オイルパン53)に連通して低圧状態となる一方、比例ソレノイドバルブ71がデューティ0%のときには、作動室67に油圧を作用させるため、高圧状態となる。そして、デューティ100%~デューティ0%の間の調整されたデューティ値によって、吐出圧が調整される構成となっている。 When the proportional solenoid valve 71 has a duty of 100%, the working chamber 67 communicates with the drain (oil pan 53) to be in a low pressure state, while when the proportional solenoid valve 71 has a duty of 0%, hydraulic pressure is applied to the working chamber 67. Therefore, it will be in a high pressure state. The discharge pressure is adjusted by the adjusted duty value between 100% duty and 0% duty.
 比例ソレノイドバルブ71は制御装置である制御装置6から制御信号(デューティ信号)が供給されており、これによって比例ソレノイド71は指示された制御位置に駆動される。また、オイルメインギャラリ73には、油圧センサ74が配置されており、可変容量オイルポンプ54の吐出圧を検出している。この油圧センサ74の出力は、制御装置6に入力され、可変容量オイルポンプ54の吐出圧を目標吐出圧にフィードバック制御するために使用される。もちろん、これ以外の制御に使用できることはいうまでもない。 The proportional solenoid valve 71 is supplied with a control signal (duty signal) from the control device 6 which is a control device, whereby the proportional solenoid 71 is driven to the instructed control position. The oil main gallery 73 is provided with a hydraulic pressure sensor 74 that detects the discharge pressure of the variable capacity oil pump 54. The output of the hydraulic sensor 74 is input to the control device 6 and used for feedback control of the discharge pressure of the variable capacity oil pump 54 to the target discharge pressure. Of course, it can be used for other controls.
 このような可変容量オイルポンプ54においては、例えば、回転数に対応して吐出圧が設定されている。図4に示しているように、回転数の上昇に対応して吐出圧が設定されており、所定の最低回転数から所定の最大回転数の範囲で、吐出圧が最小吐出圧から最大吐出圧の範囲で調整されるようになっている。作動油の吐出圧は、比例ソレノイドバルブ71(図3参照)に与える制御信号のデューティ比によって調整することができる。 In such a variable capacity oil pump 54, for example, a discharge pressure is set corresponding to the rotational speed. As shown in FIG. 4, the discharge pressure is set corresponding to the increase in the rotation speed, and the discharge pressure is changed from the minimum discharge pressure to the maximum discharge pressure in the range of the predetermined minimum rotation speed to the predetermined maximum rotation speed. The range is adjusted. The hydraulic oil discharge pressure can be adjusted by the duty ratio of the control signal applied to the proportional solenoid valve 71 (see FIG. 3).
 したがって、制御信号のデューティ比と回転数を対応させていれば、可変容量オイルポンプ54の目標吐出圧は、基本的には回転数によって可変調整されるものとなり、更に、油圧センサ74で検出された吐出圧が、設定された目標吐出圧にフィードバック制御されることになる。 Therefore, if the duty ratio of the control signal is associated with the rotation speed, the target discharge pressure of the variable displacement oil pump 54 is basically variably adjusted according to the rotation speed, and further detected by the hydraulic sensor 74. The discharged pressure is feedback controlled to the set target discharge pressure.
 尚、実際の吐出圧をフィードバック制御せずに、目標吐出圧だけで制御する、いわゆるフィードフォワード制御することも可能であるので、本実施形態では両方の制御を適用することができる。 In addition, since it is also possible to perform so-called feedforward control in which the actual discharge pressure is controlled only by the target discharge pressure without performing feedback control, both controls can be applied in this embodiment.
 繰り返しになるが、上述したように、運転者によってアクセルペダルの踏込量が減少されて減速運転され、内燃機関の回転数が減少されると、可変容量オイルポンプから吐出される作動油の吐出圧は、高圧制御状態から低圧制御状態に移行される。このため、油圧VTC機構に供給される作動油の吐出圧が急速に低下してしまうため、吸気バルブの位相角を進角状態から遅角状態に早期に遷移させるために必要な吐出圧の作動油を供給できず、油圧VTC機構の応答性が悪化して良好な運転状態を得ることができないという現象を生じる。 Again, as described above, when the amount of depression of the accelerator pedal is reduced by the driver and the vehicle is decelerated and the number of revolutions of the internal combustion engine is reduced, the discharge pressure of the hydraulic oil discharged from the variable capacity oil pump Is shifted from the high pressure control state to the low pressure control state. For this reason, since the discharge pressure of the hydraulic oil supplied to the hydraulic VTC mechanism is rapidly reduced, the operation of the discharge pressure necessary for the early transition of the phase angle of the intake valve from the advanced state to the retarded state is performed. There is a phenomenon in which oil cannot be supplied, and the responsiveness of the hydraulic VTC mechanism is deteriorated so that a favorable operating state cannot be obtained.
 そこで、本発明の第1の実施形態では、内燃機関の回転数が減少する状態では、可変容量オイルポンプから供給される作動油の目標吐出圧を現在の目標吐出圧に維持して油圧VTC機構に供給し、更に、吸気バルブ、或いは排気バルブの実位相角が目標位相角、或いは目標位相角の付近に達してから作動油の吐出圧を低下させて油圧VTC機構に供給する、という構成を提案するものである。 Therefore, in the first embodiment of the present invention, in a state where the rotational speed of the internal combustion engine is reduced, the target discharge pressure of the hydraulic oil supplied from the variable capacity oil pump is maintained at the current target discharge pressure, and the hydraulic VTC mechanism. In addition, after the actual phase angle of the intake valve or exhaust valve reaches the target phase angle or near the target phase angle, the hydraulic oil discharge pressure is reduced and supplied to the hydraulic VTC mechanism. It is what we propose.
 以下、第1の実施形態になる制御フローチャートを図5に基づき説明するが、この制御フローは可変容量オイルポンプの制御フローであって、油圧VTC機構の目標位相角の演算や、これに基づく油圧VTC機構の駆動制御は、別のVTC制御フローによって実行される。ただ、目標位相角や実際の位相角といったVTC位相角情報は、VTC制御フローで求められて周知のワークエリア(RAM)に記憶され、以下に説明する図5のステップS10で、ワークエリアから読み出されている。 Hereinafter, the control flowchart according to the first embodiment will be described with reference to FIG. 5. This control flow is a control flow of the variable displacement oil pump, and the calculation of the target phase angle of the hydraulic VTC mechanism and the hydraulic pressure based on the calculation. The drive control of the VTC mechanism is executed by another VTC control flow. However, the VTC phase angle information such as the target phase angle and the actual phase angle is obtained in the VTC control flow and stored in a well-known work area (RAM), and is read from the work area in step S10 of FIG. 5 described below. Has been issued.
 また、この制御フローは10ms周期毎の起動タイミングによって起動されるものであり、起動タイミングは、マイクロコンピュータに内蔵されているタイマー機能のコンペアマッチ割り込みで生成されている。そして、この起動タイミングの到来によって以下の制御ステップが実行される。 Further, this control flow is started at the start timing every 10 ms cycle, and the start timing is generated by a compare match interrupt of a timer function built in the microcomputer. Then, the following control steps are executed upon arrival of the activation timing.
 ここで、以下の制御ステップはマイクロコンピュータのプログラムに基づきで実行されるものであるが、これらの制御ステップは、制御手段(マイクロコンピュータ)で実行される制御機能として置き換えることができる。 Here, the following control steps are executed based on a program of the microcomputer, but these control steps can be replaced with a control function executed by the control means (microcomputer).
 ≪ステップS10≫ステップS10においては、クランク角センサ27によって回転数が検出され、油温センサ33によって作動油の油温が検出され、油圧センサ74によって作動油の吐出圧が検出され、これらの検出されたパラメータは、マイクロコンピュータのワークエリアに一時的に格納されて記憶される。尚、この他にも必要なパラメータがあれば、適宜検出すれば良いものである。必要なパラメータが検出されるとステップS11に移行する。 << Step S10 >> In step S10, the rotation speed is detected by the crank angle sensor 27, the oil temperature of the hydraulic oil is detected by the oil temperature sensor 33, and the discharge pressure of the hydraulic oil is detected by the hydraulic sensor 74. The set parameters are temporarily stored and stored in the work area of the microcomputer. It should be noted that any other necessary parameters may be detected as appropriate. When a necessary parameter is detected, the process proceeds to step S11.
 尚、ここでは説明しないが、油圧VTC機構のVTC制御フローでは、回転数や負荷に応じて目標位相角が求められ、更に、実際の実位相角が検出されて、RAMのワークエリアに記憶されている。したがって、本制御ステップでは、ワークエリアから目標位相角や実位相角といったVTC位相角が読み出されている。尚、油圧VTC機構は図2に示す動作をVTC制御フローに基づいて実行するものである。 Although not described here, in the VTC control flow of the hydraulic VTC mechanism, the target phase angle is obtained according to the rotational speed and load, and the actual actual phase angle is detected and stored in the work area of the RAM. ing. Therefore, in this control step, the VTC phase angle such as the target phase angle and the actual phase angle is read from the work area. The hydraulic VTC mechanism performs the operation shown in FIG. 2 based on the VTC control flow.
 ≪ステップS11≫ステップS11においては、ステップ10で検出した今回の回転数(Np)と、前回の回転数(Np-1)との大小を比較して、今回の回転数(Np)が前回の回転数(Np-1)から変化していない、或いは前回の回転数(Np-1)より大きいかどうかを判定する。この判定は、現在の内燃機関の回転数が一定、或いは上昇中(加速状態)であるかどうか、逆に言えば内燃機関の回転数が下降中(減速状態)かどうかを判定しているものである。 << Step S11 >> In Step S11, the current rotational speed (Np) detected in Step 10 is compared with the previous rotational speed (Np-1), and the current rotational speed (Np) is compared with the previous rotational speed (Np). It is determined whether the rotational speed (Np-1) has not changed or is greater than the previous rotational speed (Np-1). This determination is to determine whether the current internal combustion engine speed is constant or increasing (acceleration state), or in other words, whether the internal combustion engine speed is decreasing (deceleration state). It is.
 内燃機関の回転数が一定、或いは上昇中であれば、可変容量オイルポンプの吐出圧は、少なくとも現在の目標吐出圧と同じ、或いは高いものとなるため、油圧VTC機構の応答性の悪化は生じないものとして、ステップS12に移行する。ここで、現在の目標吐出圧は、前回に検出された回転数によって求められた目標吐出圧である。 If the rotational speed of the internal combustion engine is constant or increasing, the discharge pressure of the variable displacement oil pump is at least the same as or higher than the current target discharge pressure, so that the response of the hydraulic VTC mechanism deteriorates. If not, the process proceeds to step S12. Here, the current target discharge pressure is the target discharge pressure obtained from the rotation speed detected last time.
 一方、内燃機関の回転数が下降中であれば、可変容量オイルポンプの吐出圧は、少なくとも現在の目標吐出圧より低いものとなるため、油圧VTC機構の応答性の悪化を生じる可能性があるものとして、ステップS13に移行する。 On the other hand, if the rotation speed of the internal combustion engine is decreasing, the discharge pressure of the variable displacement oil pump is at least lower than the current target discharge pressure, which may cause a deterioration in the responsiveness of the hydraulic VTC mechanism. As a thing, it transfers to step S13.
 ≪ステップS12≫ステップS11で回転数が一定、或いは上昇中なので、少なくとも現在の目標吐出圧と同じか、或いは高いものになると判定されている。このため、ステップS12においては、図4に示しているように、今回の回転数(Np)に対応した制御信号のデューティを演算し、このデューティに対応した可変容量オイルポンプの目標吐出圧に制御する。 << Step S12 >> Since the rotational speed is constant or increasing in Step S11, it is determined that it is at least equal to or higher than the current target discharge pressure. Therefore, in step S12, as shown in FIG. 4, the duty of the control signal corresponding to the current rotational speed (Np) is calculated and controlled to the target discharge pressure of the variable capacity oil pump corresponding to this duty. To do.
 この場合、油圧センサ74によって検出された実際の吐出圧が目標吐出圧と比較され、目標吐出圧に収束するように制御信号のデューティが微調整されている。ステップS12で目標吐出圧に制御されると、リターンに抜けて、次の起動タイミングの到来に待機する。尚、この状態では、可変容量オイルポンプの目標吐出圧は、少なくとも現在の目標吐出圧と同じか、或いは高いものになるため、油圧VTC機構の応答性の悪化は生じないものである。 In this case, the actual discharge pressure detected by the hydraulic sensor 74 is compared with the target discharge pressure, and the duty of the control signal is finely adjusted so as to converge to the target discharge pressure. When the target discharge pressure is controlled in step S12, the process returns to the return and waits for the next start timing. In this state, the target discharge pressure of the variable displacement oil pump is at least the same as or higher than the current target discharge pressure, so that the responsiveness of the hydraulic VTC mechanism does not deteriorate.
 ≪ステップS13≫ステップS11で回転数が下降中なので、可変容量オイルポンプの吐出圧は、少なくとも現在の目標吐出圧より低いものとなる。ただ、今回の回転数(Np)が、前回の回転数(Np-1)に対してさほど低下していない場合は、油圧VTC機構の応答性の悪化を生じる恐れは少ないと見做しても良いものである。このため、ステップS13においては、今回の回転数(Np)と前回の回転数(Np-1)との変化量(ΔN:Np-Np-1)を求め、この変化量(ΔN)が所定の変化量閾値(ΔNshd)の範囲内かどうかを判定している。 << Step S13 >> Since the rotational speed is decreasing in Step S11, the discharge pressure of the variable capacity oil pump is at least lower than the current target discharge pressure. However, if the current rotational speed (Np) is not so much lower than the previous rotational speed (Np-1), it can be considered that there is little risk of a deterioration in the response of the hydraulic VTC mechanism. It ’s good. Therefore, in step S13, the amount of change (ΔN: Np−Np−1) between the current rotational speed (Np) and the previous rotational speed (Np−1) is obtained, and this amount of change (ΔN) is a predetermined amount. It is determined whether or not it is within the range of the change amount threshold (ΔNshd).
 ステップS13で、変化量(ΔN)が所定の変化量閾値(ΔNshd9の範囲内であれば、ステップS12に移行して、上述したステップS12の制御を実行する。一方、変化量(ΔN)が所定の変化量閾値(ΔNshd)の範囲を超えて変化していれば、可変容量オイルポンプの目標吐出圧が大きく減少されるとしてステップS14に移行する。 If the change amount (ΔN) is within a predetermined change amount threshold value (ΔNshd9) in step S13, the process proceeds to step S12 to execute the control of step S12 described above. If the change exceeds the range of the change amount threshold value (ΔNshd), the target discharge pressure of the variable capacity oil pump is greatly reduced, and the process proceeds to step S14.
 尚、このステップS13は必要がなければ省略することもでき、この場合はステップS11で回転数が減少していると判定されると、以下に説明するステップS14に移行されることになる。 Note that this step S13 can be omitted if it is not necessary. In this case, if it is determined in step S11 that the rotational speed is decreasing, the process proceeds to step S14 described below.
 ≪ステップS14≫ステップS14においては、前回の回転数に対応した可変容量オイルポンプの目標吐出圧、つまり現在の目標吐出圧を維持する。本来であれば今回の回転数に対応した低い目標吐出圧に変更されるのであるが、本ステップによって前回の回転数に対応した高い目標吐出圧が維持されることになる。したがって、回転数が所定の変化量以上に減少している状態では、可変容量オイルポンプから供給される作動油の目標吐出圧が高い状態に維持されて油圧VTC機構に供給される。 << Step S14 >> In step S14, the target discharge pressure of the variable displacement oil pump corresponding to the previous rotation speed, that is, the current target discharge pressure is maintained. Originally, the target discharge pressure is changed to a low target pressure corresponding to the current rotational speed, but a high target discharge pressure corresponding to the previous rotational speed is maintained by this step. Therefore, in a state where the rotational speed is decreased to a predetermined change amount or more, the target discharge pressure of the hydraulic oil supplied from the variable capacity oil pump is maintained at a high state and supplied to the hydraulic VTC mechanism.
 このため、内燃機関の回転数が減少している状態であっても、可変容量オイルポンプからの作動油の目標吐出圧を低下させないので、油圧VTC機構の早い動作を得ることができ、油圧VTC機構の応答性を高めて早期に目標位相角に近づけることができるようになる。そして、前回の回転数に対応した可変容量オイルポンプの目標吐出圧、つまり現在の目標吐出圧を維持するとステップS15に移行する。 For this reason, even when the rotational speed of the internal combustion engine is decreasing, the target discharge pressure of the hydraulic oil from the variable displacement oil pump is not lowered, so that the hydraulic VTC mechanism can be operated quickly, and the hydraulic pressure VTC It becomes possible to increase the responsiveness of the mechanism and to approach the target phase angle at an early stage. If the target discharge pressure of the variable capacity oil pump corresponding to the previous rotation speed, that is, the current target discharge pressure is maintained, the process proceeds to step S15.
 ≪ステップS15≫ステップS15においては、ステップS10で検出した油圧VTC機構による実際の吸気バルブの実位相角(θa)が、目標位相角(θt)、或いは目標位相角(θt)より所定角(Δθ)だけ小さい目標位相角付近の位相角(以下、設定位相角と表記する)まで制御されたかどうかを判定する。本実施形態の場合、目標位相角(θt)よりも所定の位相角(Δθ)だけ小さい設定位相角(θs)と実位相角(θa)とが比較されている。 << Step S15 >> In step S15, the actual phase angle (θa) of the actual intake valve detected by the hydraulic VTC mechanism detected in step S10 is a predetermined angle (Δθ) from the target phase angle (θt) or the target phase angle (θt). ), It is determined whether or not the phase angle near the target phase angle (hereinafter referred to as a set phase angle) is controlled. In the case of this embodiment, the set phase angle (θs) smaller than the target phase angle (θt) by a predetermined phase angle (Δθ) and the actual phase angle (θa) are compared.
 この理由は、実位相角(θa)が目標位相角(θt)に達するまで、高い目標吐出圧の作動油を油圧VTC機構に作用させると、実位相角(θa)が目標位相角(θt)を超えてしまう恐れがあるからである。このため、本実施形態では、目標位相角(θt)より所定の位相角(Δθ)だけ小さい設定位相角(θs)と実位相角(θa)を比較することによって、実位相角(θa)が精度良く目標位相角(θt)に収束するようにしている。その理由はステップS16で説明する。 The reason for this is that when hydraulic oil having a high target discharge pressure is applied to the hydraulic VTC mechanism until the actual phase angle (θa) reaches the target phase angle (θt), the actual phase angle (θa) becomes the target phase angle (θt). It is because there is a risk of exceeding. For this reason, in this embodiment, the actual phase angle (θa) is obtained by comparing the set phase angle (θs) smaller than the target phase angle (θt) by a predetermined phase angle (Δθ) with the actual phase angle (θa). The target phase angle (θt) is converged with high accuracy. The reason will be described in step S16.
 そして、ステップS15で、実位相角(θa)が目標位相角付近、つまり設定位相角(θs)に達していないと判定されると、再びステップS15の判定を継続し、実位相角(θa)が目標位相角付近、つまり設定位相角(θs)に達した判定されるとステップS16に移行する。 If it is determined in step S15 that the actual phase angle (θa) has not reached the target phase angle, that is, the set phase angle (θs), the determination in step S15 is continued again, and the actual phase angle (θa) If it has been determined that has reached the vicinity of the target phase angle, that is, the set phase angle (θs), the process proceeds to step S16.
 ≪ステップS16≫ステップS16においては、油圧VTC機構によって吸気バルブの実位相角(θs)が、設定位相角(θs)に達しているので、油圧VTC機構の応答性が悪化するという現象は発生せず、今回の回転数に対応した目標吐出圧に制御する。これによって、目標吐出圧はステップS14で設定されている目標吐出圧より低くなり、今回の回転数に対応した正規の目標吐出圧に設定される。 << Step S16 >> In step S16, since the actual phase angle (θs) of the intake valve has reached the set phase angle (θs) by the hydraulic VTC mechanism, the phenomenon that the response of the hydraulic VTC mechanism deteriorates does not occur. First, the target discharge pressure corresponding to the current rotation speed is controlled. As a result, the target discharge pressure becomes lower than the target discharge pressure set in step S14, and is set to a normal target discharge pressure corresponding to the current rotational speed.
 ここで、ステップS15、ステップS16では、目標位相角(θt)より所定の位相角(Δθ)だけ小さい設定位相角(θs)に達すると目標吐出圧を低くしているので、油圧VTC機構のベーンに作用する目標吐出圧に基づく駆動力を、ステップS14で設定されている目標吐出圧に基づく駆動力より小さくすることによって、実位相角(θa)が目標位相角(θt)を超えないように落ち着かせることが可能となる。 Here, in steps S15 and S16, the target discharge pressure is lowered when the set phase angle (θs) smaller than the target phase angle (θt) by a predetermined phase angle (Δθ) is reached, so the vane of the hydraulic VTC mechanism By making the driving force based on the target discharge pressure acting on the pressure smaller than the driving force based on the target discharge pressure set in step S14, the actual phase angle (θa) does not exceed the target phase angle (θt). It becomes possible to calm down.
 もちろん、実位相角(θa)が目標位相角(θt)を超えないように落ち着かせることができれば、ステップS15、ステップS16で、設定位相角(θs)に代えて、目標位相角(θt)と実位相角(θa)を比較することも可能である。 Of course, if the actual phase angle (θa) can be settled so as not to exceed the target phase angle (θt), the target phase angle (θt) is replaced with the set phase angle (θs) in steps S15 and S16. It is also possible to compare the actual phase angle (θa).
 本実施形態によれば、内燃機関の回転数が減少している状態であっても、可変容量オイルポンプからの作動油の吐出圧を低下させないので、油圧VTC機構の早い動作を得ることができ、油圧VTC機構の応答性を高めて早期に目標位相角に近づけることができるようになる。 According to the present embodiment, even when the rotational speed of the internal combustion engine is decreasing, the hydraulic oil discharge pressure from the variable displacement oil pump is not reduced, so that the hydraulic VTC mechanism can be operated quickly. In addition, the responsiveness of the hydraulic VTC mechanism can be improved and the target phase angle can be brought closer to the early stage.
 次に、本発明の第2の実施形態について図6、図7A、及び図7Bを用いて説明する。基本的な考え方は第1の実施形態と同様であるが、回転数と目標吐出圧の設定特性が異なっている。第1の実施形態では図4にある通り、回転数の増加にほぼ比例して目標吐出圧を設定しているが、第2の実施形態では図6にある通り、回転数の増加に対してステップ状に目標吐出圧を設定している点で異なっている。 Next, a second embodiment of the present invention will be described with reference to FIGS. 6, 7A, and 7B. The basic idea is the same as in the first embodiment, but the setting characteristics of the rotational speed and the target discharge pressure are different. In the first embodiment, as shown in FIG. 4, the target discharge pressure is set almost in proportion to the increase in the rotational speed. However, in the second embodiment, as shown in FIG. The difference is that the target discharge pressure is set stepwise.
 図6にある通り、回転数領域と目標吐出圧は3種類が設定されている。回転数の増加に対応して、回転数(N1)以上から回転数(N2)未満までは、第1圧力制御領域として設定され、回転数(N2)以上から回転数(N3)未満までは、第2圧力制御領域として設定され、回転数(N3)以上は、第3圧力制御領域と設定されている。ここで、回転数は、N1<N2<N3の関係を有している。 As shown in FIG. 6, there are three types of rotation speed range and target discharge pressure. Corresponding to the increase in the rotation speed, the rotation speed (N1) or more and less than the rotation speed (N2) is set as the first pressure control region, and from the rotation speed (N2) or more to the rotation speed (N3), The second pressure control region is set, and the rotation speed (N3) or more is set as the third pressure control region. Here, the rotational speed has a relationship of N1 <N2 <N3.
 また、第1圧力制御領域は第1目標吐出圧(P1)に設定され、第2圧力制御領域は第2目標吐出圧(P2)に設定され、第3圧力制御領域は第3目標吐出圧(P3)に設定されている。この場合の制御デューティは、例えば第1目標吐出圧(P1)では80%に設定され、第2目標吐出圧(P2)では40%に設定され、第3目標吐出圧(P3)では0%に設定されている。ここで、目標吐出圧は、P1<P2<P3の関係を有している。 The first pressure control region is set to the first target discharge pressure (P1), the second pressure control region is set to the second target discharge pressure (P2), and the third pressure control region is set to the third target discharge pressure (P2). P3). In this case, for example, the control duty is set to 80% for the first target discharge pressure (P1), 40% for the second target discharge pressure (P2), and 0% for the third target discharge pressure (P3). Is set. Here, the target discharge pressure has a relationship of P1 <P2 <P3.
 このように、回転数の増加に対してステップ状に目標吐出圧を設定している理由は、できるだけポンプ駆動損失を少なくして、内燃機関の燃費を向上するためである。例えば、第1圧力制御領域、及び第2圧力制御領域を図4に示すように制御すると、図4と図6の特性の差分だけ余分な仕事を行なわねばならないが、本実施形態のように制御すると、上述した差分を削減することができ、結果的に内燃機関の出力を無駄に使用しないで済むという理由からである。 Thus, the reason why the target discharge pressure is set stepwise with respect to the increase in the number of revolutions is to reduce the pump drive loss as much as possible and improve the fuel efficiency of the internal combustion engine. For example, if the first pressure control region and the second pressure control region are controlled as shown in FIG. 4, extra work must be performed by the difference between the characteristics of FIG. 4 and FIG. 6, but the control is performed as in this embodiment. This is because the difference described above can be reduced, and as a result, it is not necessary to use the output of the internal combustion engine in vain.
 更に、夫々の目標吐出圧は、内燃機関に設けられた油圧補機機構に対応して設定されており、第1目標吐出圧(P1)は油圧VTC機構に対応され、第2目標吐出圧(P2)はオイルジェット機構に対応され、第3目標吐出圧(P3)はクランクメタル潤滑機構に対応されている。 Furthermore, each target discharge pressure is set corresponding to a hydraulic auxiliary mechanism provided in the internal combustion engine, and the first target discharge pressure (P1) corresponds to the hydraulic VTC mechanism, and the second target discharge pressure ( P2) corresponds to the oil jet mechanism, and the third target discharge pressure (P3) corresponds to the crank metal lubrication mechanism.
 このため、油圧VTC機構は第1圧力制御領域、第2圧力制御領域、及び第3圧力制御領域での目標吐出圧の作動油で駆動され、オイルジェット機構は第2圧力制御領域、及び第3圧力制御領域での目標吐出圧の作動油で駆動され、クランクメタル潤滑機構は第3圧力制御領域での目標吐出圧の作動油で駆動される。尚、オイルジェット機構、クランクメタル潤滑機構は、良く知られている構成なので説明は省略する。 For this reason, the hydraulic VTC mechanism is driven by hydraulic oil having a target discharge pressure in the first pressure control region, the second pressure control region, and the third pressure control region, and the oil jet mechanism is driven by the second pressure control region and the third pressure control region. The crank metal lubrication mechanism is driven by hydraulic oil having a target discharge pressure in the third pressure control region. Since the oil jet mechanism and the crank metal lubrication mechanism are well-known structures, description thereof is omitted.
 次に、図7A、図7Bを用いて本実施形態の制御フローについて説明するが、基本的に第1の実施形態と同じように、内燃機関の回転数が減少する状態では、可変容量オイルポンプから供給される作動油の目標吐出圧を現在の目標吐出圧に維持して油圧VTC機構に供給し、更に、望ましくは吸気バルブ、或いは排気バルブが目標位相角、或いは目標位相角付近に達してから作動油の目標吐出圧を低下させて油圧VTC機構に供給する構成とされている。 Next, the control flow of the present embodiment will be described with reference to FIGS. 7A and 7B. Basically, as in the first embodiment, in the state where the rotational speed of the internal combustion engine decreases, the variable displacement oil pump The target discharge pressure of the hydraulic fluid supplied from the engine is maintained at the current target discharge pressure and supplied to the hydraulic VTC mechanism, and preferably the intake valve or the exhaust valve reaches the target phase angle or near the target phase angle. The hydraulic oil target discharge pressure is reduced and supplied to the hydraulic VTC mechanism.
 尚、油圧VTC機構の応答性が問題となるのは、基本的には内燃機関の回転数が下降している減速状態における第2圧力制御領域から第1圧力制御領域に移行する場合であるので、以下では、この2つの領域での制御について説明する。ただ、第3圧力制御領域についても同様のやり方で制御を行なうことができるのはいうまでもない。 Note that the responsiveness of the hydraulic VTC mechanism becomes a problem basically when shifting from the second pressure control region to the first pressure control region in the deceleration state in which the rotational speed of the internal combustion engine is decreasing. Hereinafter, control in these two areas will be described. However, it goes without saying that the third pressure control region can also be controlled in the same manner.
 ≪ステップS20≫ステップS20においては、図5に示すステップS10と同じ制御ステップなので説明を省略する。 << Step S20 >> Since step S20 is the same control step as step S10 shown in FIG.
 ≪ステップS21≫ステップS21においては、ステップ20で検出した今回の回転数(Np)から、どの圧力制御領域に属するかを求める。例えば、検出された回転数(Np)が、N1以上~N2未満の範囲であれば第1圧力制御領域であり、N2以上~N3未満の範囲であれば第2圧力制御領域であり、N3以上の範囲であれば第3圧力制御領域である。今回の回転数(Np)の領域が求まるとステップS21に移行する。 << Step S21 >> In step S21, which pressure control region belongs is determined from the current rotational speed (Np) detected in step 20. For example, if the detected rotational speed (Np) is in the range of N1 or more and less than N2, it is the first pressure control region, and if it is in the range of N2 or more and less than N3, it is the second pressure control region, and N3 or more. Is the third pressure control region. When the current rotational speed (Np) region is obtained, the process proceeds to step S21.
 ≪ステップS22≫ステップS22においては、今回の回転数(Np)の圧力制御領域と、前回の回転数(Np-1)の圧力制御領域とを比較して、今回の圧力制御領域が現在(前回)の圧力制御領域から変化していないどうかを判定する。この判断は、例えば図6の第1圧力制御領域、或いは第2圧力制御領域に留まっているかどうかを判定しているものである。 << Step S22 >> In step S22, the pressure control region of the current rotational speed (Np) is compared with the pressure control region of the previous rotational speed (Np-1), and the current pressure control region is ) Is determined from the pressure control region. This determination is made, for example, by determining whether or not the vehicle remains in the first pressure control region or the second pressure control region in FIG.
 今回の回転数が同じ圧力制御領域(第1圧力制御領域、或いは第2圧力制御領域)にあれば、可変容量オイルポンプの目標吐出圧は、少なくとも現在の目標吐出圧(P1、或いはP2)となるため、油圧VTC機構の応答性の悪化は生じないものとして、ステップS23に移行する。ただ、第1圧力制御領域の第1目標吐出圧(P1)は、最も低い吐出圧となっているが、回転数が低い領域なので、油圧VTC機構による目標位相角への移行速度はそれほど問題とならない。 If the current rotational speed is in the same pressure control region (first pressure control region or second pressure control region), the target discharge pressure of the variable displacement oil pump is at least the current target discharge pressure (P1 or P2). Therefore, assuming that the response of the hydraulic VTC mechanism does not deteriorate, the process proceeds to step S23. However, the first target discharge pressure (P1) in the first pressure control region is the lowest discharge pressure, but since the rotation speed is low, the transition speed to the target phase angle by the hydraulic VTC mechanism is not so problematic. Don't be.
 一方、現在の圧力制御領域が前回の圧力制御領域と異なっていれば、可変容量オイルポンプの目標吐出圧は、少なくとも現在の目標吐出圧とは異なったものとなるため、油圧VTC機構の応答性の悪化を生じる可能性があるものとして、ステップS24に移行する。 On the other hand, if the current pressure control region is different from the previous pressure control region, the target discharge pressure of the variable displacement oil pump is at least different from the current target discharge pressure. The process proceeds to step S24 as a possibility of causing deterioration of.
 ≪ステップS23≫ステップS22で同じ圧力制御領域と判定されているため、ステップS23においては、図6に示しているように、今回の圧力制御領域に対応した制御信号のデューティを演算し、このデューティに対応した可変容量オイルポンプの目標吐出圧に制御する。 << Step S23 >> Since it is determined in Step S22 that the pressure control region is the same, in Step S23, the duty of the control signal corresponding to the current pressure control region is calculated as shown in FIG. To the target discharge pressure of the variable capacity oil pump corresponding to
 この場合、第1の実施形態と同様に、油圧センサ74によって検出された実際の吐出圧が目標吐出圧と比較され、目標吐出圧に収束するように制御信号のデューティが微調整されている。ステップS23で目標吐出圧に制御されると、リターンに抜けて、次の起動タイミングの到来に待機する。尚、この状態では、可変容量オイルポンプの目標吐出圧は、少なくとも現在の吐出圧と同じであるため、油圧VTC機構の応答性の悪化は生じないものである。 In this case, as in the first embodiment, the actual discharge pressure detected by the hydraulic sensor 74 is compared with the target discharge pressure, and the duty of the control signal is finely adjusted so as to converge to the target discharge pressure. When the target discharge pressure is controlled in step S23, the process returns to the return and waits for the next start timing. In this state, since the target discharge pressure of the variable displacement oil pump is at least the same as the current discharge pressure, the response of the hydraulic VTC mechanism does not deteriorate.
 ≪ステップS24≫ステップS22で今回の圧力制御領域が現在(前回)の圧力制御領域と異なっていると判定され、可変容量オイルポンプの目標吐出圧は、少なくとも現在の目標吐出圧とは異なったものとなる。そして、油圧VTC機構の応答性が問題となるのは、目標吐出圧が低くなる場合である。 << Step S24 >> It is determined in step S22 that the current pressure control region is different from the current (previous) pressure control region, and the target discharge pressure of the variable displacement oil pump is at least different from the current target discharge pressure. It becomes. The responsiveness of the hydraulic VTC mechanism becomes a problem when the target discharge pressure becomes low.
 このため、ステップS24では、今回の圧力制御領域が現在(前回)の圧力制御領域より圧力が高い圧力制御領域かどうかを判定している。例えば、第1圧力制御領域から第2圧力制御領域に遷移するのか、或いは、第2圧力制御領域から第1圧力制御領域に遷移するのかを判定している。 Therefore, in step S24, it is determined whether or not the current pressure control region is a pressure control region where the pressure is higher than the current (previous) pressure control region. For example, it is determined whether the transition from the first pressure control region to the second pressure control region or the transition from the second pressure control region to the first pressure control region.
 ステップS24で、今回の圧力制御領域が、現在(前回)の圧力制御領域(第1圧力制御領域)より圧力が高い圧力制御領域(第2圧力制御領域)と判定されるとステップS25に移行し、逆に今回の圧力制御領域が、現在(前回)の圧力制御領域(第2圧力制御領域)より圧力が低い圧力制御領域(第1圧力制御領域)と判定されるとステップS26に移行する。 If it is determined in step S24 that the current pressure control region is a pressure control region (second pressure control region) having a higher pressure than the current (previous) pressure control region (first pressure control region), the process proceeds to step S25. Conversely, if it is determined that the current pressure control region is a pressure control region (first pressure control region) whose pressure is lower than the current (previous) pressure control region (second pressure control region), the process proceeds to step S26.
 ≪ステップS25≫ステップS24で現在より高い圧力制御領域(第2圧力制御領域)に遷移すると判定されているため、ステップS25においては、図6に示しているように、今回の高い圧力制御領域(第2圧力制御領域)に対応した制御信号のデューティを演算し、このデューティに対応した可変容量オイルポンプの目標吐出圧に制御する。例えば、第1圧力制御領域でのデューティ80%から、第2圧力制御領域でのデューティ40%に変更して目標吐出圧を高く設定する。 << Step S25 >> Since it is determined in Step S24 that the pressure control region (second pressure control region) is higher than the current one, in Step S25, as shown in FIG. The duty of the control signal corresponding to the second pressure control region) is calculated and controlled to the target discharge pressure of the variable capacity oil pump corresponding to this duty. For example, the target discharge pressure is set higher by changing the duty from 80% in the first pressure control region to 40% in the second pressure control region.
 この場合、第1の実施形態と同様に、油圧センサ74によって検出された実際の吐出圧が目標吐出圧と比較され、目標吐出圧に収束するように制御信号のデューティが微調整されている。ステップS25で目標吐出圧に制御されると、リターンに抜けて、次の起動タイミングの到来に待機する。尚、この状態では、可変容量オイルポンプの目標吐出圧は、現在の目標吐出圧より高くなるため、油圧VTC機構の応答性の悪化は生じないものである。 In this case, as in the first embodiment, the actual discharge pressure detected by the hydraulic sensor 74 is compared with the target discharge pressure, and the duty of the control signal is finely adjusted so as to converge to the target discharge pressure. When the target discharge pressure is controlled in step S25, the process returns to the return and waits for the next start timing. In this state, since the target discharge pressure of the variable displacement oil pump is higher than the current target discharge pressure, the response of the hydraulic VTC mechanism is not deteriorated.
 ≪ステップS26≫ステップS24で現在より低い圧力制御領域(第1圧力制御領域)に遷移すると判定されているため、ステップS26においては、前回の圧力制御領域(第2圧力制御領域)に対応した可変容量オイルポンプの目標吐出圧、つまり現在の目標吐出圧を維持する。本来であれば、今回の低い圧力制御領域(第1圧力制御領域)に対応した低い目標吐出圧に変更されるのであるが、本ステップによって前回の圧力制御領域(第2圧力制御領域)に対応した高い目標吐出圧が維持されることになる。したがって、現在より低い圧力制御領域に遷移する状態では、可変容量オイルポンプから供給される作動油の目標吐出圧が、高い状態に維持されて油圧VTC機構に供給される。 << Step S26 >> Since it is determined in Step S24 that the pressure control region (first pressure control region) is lower than the current one, in Step S26, the variable corresponding to the previous pressure control region (second pressure control region) is determined. The target discharge pressure of the capacity oil pump, that is, the current target discharge pressure is maintained. Originally, the target discharge pressure is changed to a low target pressure corresponding to the current low pressure control region (first pressure control region), but this step corresponds to the previous pressure control region (second pressure control region). The high target discharge pressure is maintained. Therefore, in a state where the pressure control region is lower than the current level, the target discharge pressure of the hydraulic oil supplied from the variable displacement oil pump is maintained at a high state and supplied to the hydraulic VTC mechanism.
 このため、内燃機関の回転数が減少している状態であっても、可変容量オイルポンプからの作動油の吐出圧を低下させないので、油圧VTC機構の早い動作を得ることができ、油圧VTC機構の応答性を高めて早期に目標位相角に近づけることができるようになる。そして、現在の圧力制御領域(第2圧力制御領域)に対応した可変容量オイルポンプの目標吐出圧を維持するとステップS27に移行する。 For this reason, even when the rotational speed of the internal combustion engine is decreasing, the discharge pressure of the hydraulic oil from the variable displacement oil pump is not lowered, so that the hydraulic VTC mechanism can be operated quickly, and the hydraulic VTC mechanism It becomes possible to improve the response of the first phase to approach the target phase angle at an early stage. When the target discharge pressure of the variable capacity oil pump corresponding to the current pressure control region (second pressure control region) is maintained, the process proceeds to step S27.
 ≪ステップS27≫ステップS27においては、ステップS20で検出した油圧VTC機構による実際の吸気バルブの実位相角(θa)が、目標位相角(θt)、或いは目標位相角(θt)より所定角(Δθ)だけ小さい目標位相角付近(以下、設定位相角と表記する)まで制御されたかどうかを判定する。本実施形態の場合、目標位相角(θt)よりも所定の位相角(Δθ)だけ小さい設定位相角(θs)と実位相角(θa)とが比較されている。 << Step S27 >> In step S27, the actual phase angle (θa) of the actual intake valve detected by the hydraulic VTC mechanism detected in step S20 is a predetermined angle (Δθ) from the target phase angle (θt) or the target phase angle (θt). ), It is determined whether or not the target phase angle is controlled to the vicinity (hereinafter referred to as a set phase angle). In the case of this embodiment, the set phase angle (θs) smaller than the target phase angle (θt) by a predetermined phase angle (Δθ) and the actual phase angle (θa) are compared.
 この理由は、実位相角(θa)が目標位相角(θt)に達するまで、高い目標吐出圧の作動油を油圧VTC機構に作用させると、実位相角(θa)が目標位相角(θt)を超えてしまう恐れがあるからである。このため、本実施形態では、目標位相角(θt)より所定の位相角(Δθ)だけ小さい設定位相角(θs)と実位相角(θa)を比較することによって、実位相角(θa)が精度良く目標位相角(θt)に収束するようにしている。その理由はステップS28で説明する。 The reason for this is that when hydraulic oil having a high target discharge pressure is applied to the hydraulic VTC mechanism until the actual phase angle (θa) reaches the target phase angle (θt), the actual phase angle (θa) becomes the target phase angle (θt). It is because there is a risk of exceeding. For this reason, in this embodiment, the actual phase angle (θa) is obtained by comparing the set phase angle (θs) smaller than the target phase angle (θt) by a predetermined phase angle (Δθ) with the actual phase angle (θa). The target phase angle (θt) is converged with high accuracy. The reason will be described in step S28.
 そして、ステップS27で、実位相角(θa)が目標位相角付近、つまり設定位相角(θs)に達していないと判定されると、再びステップS15の判定を継続し、実位相角(θa)が目標位相角付近、つまり設定位相角(θs)に達した判定されるとステップS28に移行する。 If it is determined in step S27 that the actual phase angle (θa) has not reached the target phase angle, that is, has not reached the set phase angle (θs), the determination in step S15 is continued again, and the actual phase angle (θa) When it has been determined that has reached the target phase angle, that is, the set phase angle (θs), the process proceeds to step S28.
 ≪ステップS28≫ステップS28においては、油圧VTC機構によって吸気バルブの実位相角(θs)が、設定位相角(θs)に達しているので、油圧VTC機構の応答性が悪化するという現象は発生せず、今回の回転数に対応した圧力制御領域(第1圧力制御領域)の目標吐出圧に制御する。これによって、目標吐出圧はステップS26で設定されている目標吐出圧より低くなり、回転数に対応した正規の目標吐出圧となる。 << Step S28 >> In step S28, since the actual phase angle (θs) of the intake valve has reached the set phase angle (θs) by the hydraulic VTC mechanism, the phenomenon that the response of the hydraulic VTC mechanism deteriorates does not occur. First, the target discharge pressure in the pressure control region (first pressure control region) corresponding to the current rotational speed is controlled. Accordingly, the target discharge pressure becomes lower than the target discharge pressure set in step S26, and becomes a normal target discharge pressure corresponding to the rotation speed.
 本実施形態では、目標位相角(θt)より所定の位相角(Δθ)だけ小さい設定位相角(θs)に達すると目標吐出圧を低くしているので、油圧VTC機構のベーンに作用する目標吐出圧に基づく駆動力を、ステップS26で設定されている目標吐出圧に基づく駆動力より小さくすることによって、実位相角(θa)が目標位相角(θt)を超えないように落ち着かせることが可能となる。 In the present embodiment, the target discharge pressure is lowered when the set phase angle (θs) smaller than the target phase angle (θt) by a predetermined phase angle (Δθ) is reached, so the target discharge acting on the vane of the hydraulic VTC mechanism By making the driving force based on the pressure smaller than the driving force based on the target discharge pressure set in step S26, it is possible to calm the actual phase angle (θa) so as not to exceed the target phase angle (θt). It becomes.
 次に、以上のような制御ステップを実行した時の可変容量オイルポンプの目標吐出圧の変化状態を説明する。 Next, the change state of the target discharge pressure of the variable displacement oil pump when the above control steps are executed will be described.
 図8において、内燃機関の回転数が上昇して第1圧力制御領域から第2圧力制御領域に遷移する場合は、ステップS22、S24、S25を実行することによって、実線で示すような目標吐出圧の特性をたどることになる。この場合は、目標吐出圧が高くなる方向に遷移するので、油圧VTC機構の応答性の悪化は生じないものである。 In FIG. 8, when the rotational speed of the internal combustion engine rises and transitions from the first pressure control region to the second pressure control region, the target discharge pressure as shown by the solid line is obtained by executing steps S22, S24, and S25. Follow the characteristics of In this case, since the target discharge pressure is shifted in the increasing direction, the response of the hydraulic VTC mechanism is not deteriorated.
 一方、内燃機関の回転数が下降して第2圧力制御領域から第1圧力制御領域に遷移する場合は、ステップS22、S26、S27、S28を実行することによって、破線で示すような目標吐出圧の特性をたどることになる。この場合は、ステップ26において、現在の目標吐出圧が維持されるので、油圧VTC機構の応答性の悪化を抑制できるものとなる。更に、ステップS27で吸気バルブの実位相角が目標位相角に達すると、ステップS28で本来の目標吐出圧に遷移するようになる。 On the other hand, when the rotational speed of the internal combustion engine decreases and transitions from the second pressure control region to the first pressure control region, by executing steps S22, S26, S27, and S28, the target discharge pressure as shown by the broken line is shown. Follow the characteristics of In this case, since the current target discharge pressure is maintained in step 26, the deterioration of the responsiveness of the hydraulic VTC mechanism can be suppressed. Furthermore, when the actual phase angle of the intake valve reaches the target phase angle in step S27, the flow proceeds to the original target discharge pressure in step S28.
 本実施形態においても、内燃機関の回転数が減少している状態であっても、可変容量オイルポンプからの作動油の吐出圧を低下させないので、油圧VTC機構の早い動作を得ることができ、油圧VTC機構の応答性を高めて早期に目標位相角に近づけることができるようになる。 Even in the present embodiment, even when the rotational speed of the internal combustion engine is decreasing, the discharge pressure of the hydraulic oil from the variable displacement oil pump is not lowered, so that the hydraulic VTC mechanism can be operated quickly, The responsiveness of the hydraulic VTC mechanism can be improved and the target phase angle can be brought closer to the early stage.
 以上述べた通り、本発明は内燃機関の回転数が減少する状態では、可変容量オイルポンプから供給される作動油の目標吐出圧を現在の目標吐出圧に維持して油圧VTC機構に供給し、更に、望ましくは吸気バルブ、或いは排気バルブの実位相角が目標位相角、或いは目標位相角の付近に達してから作動油の吐出圧を低下させて油圧VTC機構に供給する構成とした。 As described above, the present invention maintains the target discharge pressure of the hydraulic oil supplied from the variable capacity oil pump at the current target discharge pressure and supplies it to the hydraulic VTC mechanism when the rotational speed of the internal combustion engine decreases. Furthermore, it is desirable that the hydraulic oil discharge pressure is reduced and supplied to the hydraulic VTC mechanism after the actual phase angle of the intake valve or exhaust valve reaches the target phase angle or near the target phase angle.
 これによれば、内燃機関の回転数が減少している状態であっても、可変容量オイルポンプからの作動油の吐出圧を低下させないので、油圧VTC機構の早い動作を得ることができ、油圧VTC機構の応答性を高めて早期に目標位相角に近づけることができるようになる。 According to this, even when the rotational speed of the internal combustion engine is decreasing, the discharge pressure of the hydraulic oil from the variable displacement oil pump is not lowered, so that the hydraulic VTC mechanism can be operated quickly, and the hydraulic pressure The responsiveness of the VTC mechanism can be improved and the target phase angle can be quickly approached.
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 以上説明した実施形態に基づく可変容量オイルポンプの制御装置としては、例えば以下に述べる態様のものが考えられる。 As a control device for a variable displacement oil pump based on the embodiment described above, for example, the following modes can be considered.
 吸気バルブ、或いは排気バルブの少なくとも開時期(以下、位相角と表記する)を制御する油圧駆動式の可変動弁機構と、前記可変動弁機構に作動油を供給する可変容量オイルポンプとを備えた内燃機関に使用され、前記可変容量オイルポンプの作動油の目標吐出圧を前記内燃機関の回転数に対応して可変制御する制御手段を備えた可変容量オイルポンプの制御装置であって、前記制御手段は、前記内燃機関の回転数が減少する状態では、前記可変容量オイルポンプから供給される作動油の目標吐出圧を現在の目標吐出圧に維持して前記可変動弁機構に供給する機能を備えている。 A hydraulically driven variable valve mechanism that controls at least the opening timing (hereinafter referred to as phase angle) of an intake valve or an exhaust valve, and a variable displacement oil pump that supplies hydraulic oil to the variable valve mechanism A control apparatus for a variable displacement oil pump used in an internal combustion engine, comprising control means for variably controlling a target discharge pressure of hydraulic oil of the variable displacement oil pump in accordance with a rotational speed of the internal combustion engine, The control means has a function of maintaining the target discharge pressure of the hydraulic oil supplied from the variable displacement oil pump at the current target discharge pressure and supplying it to the variable valve mechanism in a state where the rotation speed of the internal combustion engine decreases. It has.
 前記可変容量オイルポンプの制御装置の好ましい態様において、前記制御手段は、前記内燃機関の回転数の変化から回転数が上昇している加速状態と、回転数が下降している減速状態を判定する機能と、前記加速状態においては、検出された回転数に対応した目標吐出圧になるように前記可変容量オイルポンプを制御し、前記減速状態においては、現在の目標吐出圧を維持するように前記可変容量オイルポンプを制御する機能とを備えている。 In a preferred aspect of the control apparatus for the variable displacement oil pump, the control means determines an acceleration state in which the rotational speed is increasing from a change in the rotational speed of the internal combustion engine and a deceleration state in which the rotational speed is decreasing. In the acceleration state, the variable displacement oil pump is controlled so as to be a target discharge pressure corresponding to the detected rotational speed, and in the deceleration state, the current target discharge pressure is maintained. And a function of controlling a variable displacement oil pump.
 別の好ましい態様では、前記可変容量オイルポンプの制御装置の態様のいずれかにおいて、前記制御手段は、前記減速状態における前記吸気バルブ、或いは前記排気バルブの実位相角が目標位相角、或いは前記目標位相角の付近である設定位相角に達してから、前記可変容量オイルポンプから供給される作動油を現在の目標吐出圧を低下させて前記可変動弁機構に供給する機能を備えている。 In another preferred aspect, in any one of the aspects of the control device for the variable displacement oil pump, the control means is configured such that the actual phase angle of the intake valve or the exhaust valve in the deceleration state is a target phase angle, or the target After reaching a set phase angle that is in the vicinity of the phase angle, the hydraulic oil supplied from the variable displacement oil pump is supplied to the variable valve mechanism by reducing the current target discharge pressure.
 別の好ましい態様では、前記可変容量オイルポンプの制御装置の態様のいずれかにおいて、前記設定位相角は、前記目標位相角よりも所定の位相角だけ小さい位相角に設定されている。 In another preferable aspect, in any one of the aspects of the control device for the variable displacement oil pump, the set phase angle is set to a phase angle smaller than the target phase angle by a predetermined phase angle.
 別の好ましい態様では、前記可変容量オイルポンプの制御装置の態様のいずれかにおいて、前記制御手段は、所定の周期で前記内燃機関の回転数を検出し、今回の周期で検出した回転数と、前回の周期で検出した回転数の大小から前記加速状態と前記減速状態を判定する機能と、前記加速状態においては、検出された今回の回転数に対応した目標吐出圧になるように前記可変容量オイルポンプを制御する機能と、前記減速状態においては、前回の回転数に対応した目標吐出圧を維持するように前記可変容量オイルポンプを制御する機能とを備えている。 In another preferred aspect, in any one of the aspects of the control apparatus for the variable displacement oil pump, the control means detects the rotational speed of the internal combustion engine at a predetermined cycle, and the rotational speed detected at the current cycle; A function for determining the acceleration state and the deceleration state from the magnitude of the rotation speed detected in the previous cycle, and the variable capacity so that the target discharge pressure corresponding to the detected current rotation speed is obtained in the acceleration state. A function of controlling the oil pump, and a function of controlling the variable displacement oil pump so as to maintain the target discharge pressure corresponding to the previous rotational speed in the deceleration state.
 また、以上説明した実施形態に基づく可変容量オイルポンプの別の制御装置としては、例えば以下に述べる態様のものが考えられる。 Further, as another control device of the variable capacity oil pump based on the embodiment described above, for example, the following modes can be considered.
 吸気バルブ、或いは排気バルブの少なくとも開時期(以下、目標位相角と表記する)を制御する油圧駆動式の可変動弁機構と、前記可変動弁機構とは別の油圧補機機構と、前記可変動弁機構、及び前記油圧補機機構に作動油を供給する可変容量オイルポンプとを備えた内燃機関に使用され、前記可変動弁機構、及び前記油圧補機機構の作動油の目標吐出圧を前記内燃機関の回転数に対応して可変制御する制御手段を備えた可変容量オイルポンプの制御装置であって、前記制御手段は、前記内燃機関の回転数にしたがって、少なくとも、所定の第1回転数範囲に対応する第1圧力制御領域と、前記第1回転数範囲より高い所定の第2回転数範囲に対応する第2圧力制御領域とを設定すると共に、前記第1圧力制御領域においては所定の第1目標吐出圧を設定し、前記第2圧力制御領域においては前記第1目標吐出圧より高い所定の第2目標吐出圧を設定する機能と、前記内燃機関の回転数が減少されて前記第2圧力制御領域から前記第1圧力制御領域に遷移した状態においては、前記可変容量オイルポンプから供給される作動油の目標吐出圧を前記第2圧力制御領域の第2目標吐出圧に維持して前記可変動弁機構に供給する機能を備えている。 A hydraulically driven variable valve mechanism for controlling at least the opening timing of the intake valve or exhaust valve (hereinafter referred to as a target phase angle), a hydraulic auxiliary mechanism mechanism different from the variable valve mechanism, Used in an internal combustion engine having a variable valve mechanism and a variable displacement oil pump that supplies hydraulic oil to the hydraulic auxiliary mechanism, and has a target discharge pressure of the hydraulic oil of the variable valve mechanism and the hydraulic auxiliary mechanism. A control apparatus for a variable displacement oil pump, comprising control means for variably controlling in accordance with the rotational speed of the internal combustion engine, wherein the control means is at least a predetermined first rotation according to the rotational speed of the internal combustion engine. A first pressure control area corresponding to a number range and a second pressure control area corresponding to a predetermined second speed range higher than the first speed range, and a predetermined value in the first pressure control area First eye A function of setting a discharge pressure and setting a predetermined second target discharge pressure higher than the first target discharge pressure in the second pressure control region; and the second pressure control by reducing the rotational speed of the internal combustion engine. In the state of transition from the region to the first pressure control region, the target discharge pressure of the hydraulic oil supplied from the variable displacement oil pump is maintained at the second target discharge pressure in the second pressure control region, and the variable operation is performed. A function for supplying to the valve mechanism is provided.
 前記可変容量オイルポンプの制御装置の好ましい態様において、前記制御手段は、前記第1圧力制御領域から前記第2圧力制御領域に遷移したと判定すると、前記第2圧力制御領域に対応した前記第2目標吐出圧になるように前記可変容量オイルポンプを制御する機能と、前記第2圧力制御領域から前記第1圧力制御領域に遷移したと判定すると、前記第2圧力制御領域に対応した前記第2目標吐出圧になるように前記可変容量オイルポンプを制御する機能とを備えている。 In a preferred aspect of the control apparatus for the variable displacement oil pump, when the control means determines that the first pressure control region has transitioned to the second pressure control region, the second pressure control region corresponds to the second pressure control region. When it is determined that the variable pressure oil pump is controlled so as to reach the target discharge pressure, and when the transition from the second pressure control region to the first pressure control region is made, the second pressure control region corresponds to the second pressure control region. And a function of controlling the variable displacement oil pump so as to achieve a target discharge pressure.
 別の好ましい態様では、前記可変容量オイルポンプの制御装置の態様のいずれかにおいて、前記制御手段は、前記内燃機関の減速状態における前記吸気バルブ、或いは前記排気バルブの実位相角が目標位相角、或いは前記目標位相角の付近である設定位相角に達してから、前記可変容量オイルポンプからの作動油の目標吐出圧を、前記第2目標吐出圧から前記第1目標吐出圧に変更して前記可変動弁機構に供給する機能を備えている。 In another preferred aspect, in any one of the aspects of the control device for the variable displacement oil pump, the control means is configured such that an actual phase angle of the intake valve or the exhaust valve in a deceleration state of the internal combustion engine is a target phase angle, Alternatively, after reaching a set phase angle that is in the vicinity of the target phase angle, the target discharge pressure of hydraulic oil from the variable displacement oil pump is changed from the second target discharge pressure to the first target discharge pressure, and A function for supplying to the variable valve mechanism is provided.
 別の好ましい態様では、前記可変容量オイルポンプの制御装置の態様のいずれかにおいて、前記設定位相角は、前記目標位相角よりも所定の位相角だけ小さい位相角に設定されている。 In another preferable aspect, in any one of the aspects of the control device for the variable displacement oil pump, the set phase angle is set to a phase angle smaller than the target phase angle by a predetermined phase angle.
 別の好ましい態様では、前記可変容量オイルポンプの制御装置の態様のいずれかにおいて、前記制御手段は、所定の周期で前記内燃機関の回転数を検出し、検出した回転数から前記第1圧力制御領域、或いは前記第2圧力制御領域かを判定する機能を備えている。 In another preferred aspect, in any one of the aspects of the control device for the variable displacement oil pump, the control means detects the rotational speed of the internal combustion engine at a predetermined cycle, and the first pressure control is performed based on the detected rotational speed. It has a function of determining whether it is a region or the second pressure control region.
 別の好ましい態様では、前記可変容量オイルポンプの制御装置の態様のいずれかにおいて、前記可変動弁機構は、前記第1圧力制御領域と前記第2圧力制御領域で設定されている前記第1目標吐出圧と前記第2目標吐出圧の作動油によって駆動され、前記油圧補機機構はオイルジェット機構であり、前記オイルジェット機構は前記第2圧力制御領域で設定されている前記第2目標吐出圧の作動油によって駆動される。 In another preferable aspect, in any one of the aspects of the control device for the variable displacement oil pump, the variable valve mechanism is the first target set in the first pressure control region and the second pressure control region. Driven by hydraulic oil having a discharge pressure and the second target discharge pressure, the hydraulic auxiliary mechanism is an oil jet mechanism, and the oil jet mechanism is set in the second pressure control region. Driven by hydraulic fluid.
 さらに、以上説明した実施形態に基づく可変容量オイルポンプの制御方法としては、例えば以下に述べる態様のものが考えられる。 Furthermore, as a control method of the variable capacity oil pump based on the embodiment described above, for example, the following modes can be considered.
 吸気バルブ、或いは排気バルブの少なくとも開時期(以下、位相角と表記する)を制御する油圧駆動式の可変動弁機構と、前記可変動弁機構に作動油を供給する可変容量オイルポンプとを備えた内燃機関に使用され、前記可変容量オイルポンプの作動油の目標吐出圧を前記内燃機関の回転数に対応して可変制御する制御手段を備えた可変容量オイルポンプの制御方法であって、前記制御手段は、所定の周期で前記内燃機関の回転数を検出し、今回の周期で検出した回転数と、前回の周期で検出した回転数の変化から回転数が上昇している加速状態と、回転数が下降している減速状態を判定するステップと、前記加速状態においては、今回の周期で検出された回転数に対応した目標吐出圧になるように前記可変容量オイルポンプを制御するステップと、前記減速状態においては、前回の周期で検出された回転数に対応した現在の目標吐出圧を維持するように前記可変容量オイルポンプを制御するステップとを実行する。 A hydraulically driven variable valve mechanism that controls at least the opening timing (hereinafter referred to as phase angle) of an intake valve or an exhaust valve, and a variable displacement oil pump that supplies hydraulic oil to the variable valve mechanism A control method for a variable displacement oil pump used in an internal combustion engine, comprising control means for variably controlling a target discharge pressure of hydraulic oil of the variable displacement oil pump in accordance with a rotational speed of the internal combustion engine, The control means detects the rotational speed of the internal combustion engine at a predetermined cycle, the rotational speed detected at the current cycle, and an acceleration state in which the rotational frequency is increased from a change in the rotational frequency detected at the previous cycle, A step of determining a deceleration state where the rotational speed is decreasing, and a step of controlling the variable displacement oil pump so as to achieve a target discharge pressure corresponding to the rotational speed detected in the current cycle in the acceleration state. And-up, in the deceleration state, and a step of controlling the variable capacity oil pump so as to maintain the current target discharge pressure corresponding to a speed detected by the previous cycle.
 また、以上説明した実施形態に基づく可変容量オイルポンプの他の制御方法としては、例えば以下に述べる態様のものが考えられる。 Further, as another control method of the variable displacement oil pump based on the embodiment described above, for example, the following modes can be considered.
 吸気バルブ、或いは排気バルブの少なくとも開時期(以下、目標位相角と表記する)を制御する油圧駆動式の可変動弁機構と、前記可変動弁機構とは別の油圧補機機構と、前記可変動弁機構、及び前記油圧補機機構に作動油を供給する可変容量オイルポンプとを備えた内燃機関に使用され、前記可変動弁機構、及び前記油圧補機機構の作動油の目標吐出圧を前記内燃機関の回転数に対応して可変制御する制御手段を備えた可変容量オイルポンプの制御方法であって、前記制御手段は、少なくとも、前記内燃機関の所定の第1回転数範囲に対応する第1圧力制御領域に予め設定された第1目標吐出圧、及び前記第1回転数範囲より高い第2回転数範囲に対応する第2圧力制御領域に予め設定された前記第1目標吐出圧より高い第2目標吐出圧を求めるステップと、前記第1圧力制御領域から前記第2圧力制御領域に遷移したと判定すると、前記第2圧力制御領域に対応した前記第2目標吐出圧になるように前記可変容量オイルポンプを制御するステップと、前記第2圧力制御領域から前記第1圧力制御領域に遷移したと判定すると、前記第2圧力制御領域に対応した前記第2目標吐出圧になるように前記可変容量オイルポンプを制御するステップとを実行する。 A hydraulically driven variable valve mechanism for controlling at least the opening timing of the intake valve or exhaust valve (hereinafter referred to as a target phase angle), a hydraulic auxiliary mechanism mechanism different from the variable valve mechanism, Used in an internal combustion engine having a variable valve mechanism and a variable displacement oil pump that supplies hydraulic oil to the hydraulic auxiliary mechanism, and has a target discharge pressure of the hydraulic oil of the variable valve mechanism and the hydraulic auxiliary mechanism. A control method for a variable displacement oil pump comprising control means for variably controlling in accordance with the rotational speed of the internal combustion engine, wherein the control means corresponds to at least a predetermined first rotational speed range of the internal combustion engine. From the first target discharge pressure preset in the first pressure control region and the first target discharge pressure preset in the second pressure control region corresponding to the second rotation speed range higher than the first rotation speed range. High second target discharge pressure And determining the transition from the first pressure control region to the second pressure control region, the variable displacement oil pump is controlled to be the second target discharge pressure corresponding to the second pressure control region. And controlling the variable displacement oil pump so as to achieve the second target discharge pressure corresponding to the second pressure control region when it is determined that the transition from the second pressure control region to the first pressure control region is made. To perform the steps.

Claims (13)

  1.  吸気バルブ、或いは排気バルブの少なくとも開時期(以下、位相角と表記する)を制御する油圧駆動式の可変動弁機構と、前記可変動弁機構に作動油を供給する可変容量オイルポンプとを備えた内燃機関に使用され、前記可変容量オイルポンプの作動油の目標吐出圧を前記内燃機関の回転数に対応して可変制御する制御手段を備えた可変容量オイルポンプの制御装置であって、
     前記制御手段は、
     前記内燃機関の回転数が減少する状態では、前記可変容量オイルポンプから供給される作動油の目標吐出圧を現在の目標吐出圧に維持して前記可変動弁機構に供給する機能を備えていることを特徴とする可変容量オイルポンプの制御装置。
    A hydraulically driven variable valve mechanism that controls at least the opening timing (hereinafter referred to as phase angle) of an intake valve or an exhaust valve, and a variable displacement oil pump that supplies hydraulic oil to the variable valve mechanism A variable displacement oil pump control device comprising control means for variably controlling a target discharge pressure of hydraulic oil of the variable displacement oil pump corresponding to the rotational speed of the internal combustion engine,
    The control means includes
    In a state where the rotational speed of the internal combustion engine is reduced, a function is provided in which the target discharge pressure of hydraulic oil supplied from the variable displacement oil pump is maintained at the current target discharge pressure and supplied to the variable valve mechanism. A control apparatus for a variable displacement oil pump.
  2.  請求項1に記載の可変容量オイルポンプの制御装置であって、
     前記制御手段は、
     前記内燃機関の回転数の変化から回転数が上昇している加速状態と、回転数が下降している減速状態を判定する機能と、
     前記加速状態においては、検出された回転数に対応した目標吐出圧になるように前記可変容量オイルポンプを制御し、前記減速状態においては、現在の目標吐出圧を維持するように前記可変容量オイルポンプを制御する機能とを備えていることを特徴とする可変容量オイルポンプの制御装置。
    A control device for a variable displacement oil pump according to claim 1,
    The control means includes
    A function of determining an acceleration state in which the rotational speed is increasing from a change in the rotational speed of the internal combustion engine and a deceleration state in which the rotational speed is decreasing;
    In the acceleration state, the variable displacement oil pump is controlled to achieve a target discharge pressure corresponding to the detected rotational speed, and in the deceleration state, the variable displacement oil pump is maintained so as to maintain the current target discharge pressure. A variable displacement oil pump control device having a function of controlling the pump.
  3.  請求項2に記載の可変容量オイルポンプの制御装置であって、
     前記制御手段は、
     前記減速状態における前記吸気バルブ、或いは前記排気バルブの実位相角が目標位相角、或いは前記目標位相角の付近である設定位相角に達してから、前記可変容量オイルポンプから供給される作動油を現在の目標吐出圧を低下させて前記可変動弁機構に供給する機能を備えていることを特徴とする可変容量オイルポンプの制御装置。
    A control device for a variable displacement oil pump according to claim 2,
    The control means includes
    After the actual phase angle of the intake valve or exhaust valve in the deceleration state reaches a target phase angle or a set phase angle that is close to the target phase angle, the hydraulic oil supplied from the variable capacity oil pump is discharged. A control apparatus for a variable displacement oil pump, comprising a function of reducing a current target discharge pressure and supplying the reduced target valve pressure to the variable valve mechanism.
  4.  請求項3に記載の可変容量オイルポンプの制御装置であって、
     前記設定位相角は、前記目標位相角よりも所定の位相角だけ小さい位相角に設定されていることを特徴とする可変容量オイルポンプの制御装置。
    A control device for a variable displacement oil pump according to claim 3,
    The control apparatus for a variable displacement oil pump, wherein the set phase angle is set to a phase angle smaller than the target phase angle by a predetermined phase angle.
  5.  請求項2に記載の可変容量オイルポンプの制御装置であって、
     前記制御手段は、
     所定の周期で前記内燃機関の回転数を検出し、今回の周期で検出した回転数と、前回の周期で検出した回転数の大小から前記加速状態と前記減速状態を判定する機能と、
     前記加速状態においては、検出された今回の回転数に対応した目標吐出圧になるように前記可変容量オイルポンプを制御する機能と、
     前記減速状態においては、前回の回転数に対応した目標吐出圧を維持するように前記可変容量オイルポンプを制御する機能とを備えていることを特徴とする可変容量オイルポンプの制御装置。
    A control device for a variable displacement oil pump according to claim 2,
    The control means includes
    A function of detecting the rotational speed of the internal combustion engine at a predetermined period, and determining the acceleration state and the deceleration state from the rotational speed detected at the current period and the magnitude of the rotational speed detected at the previous period;
    In the acceleration state, a function of controlling the variable displacement oil pump so as to achieve a target discharge pressure corresponding to the detected current rotational speed;
    And a function of controlling the variable displacement oil pump so as to maintain a target discharge pressure corresponding to the previous rotational speed in the deceleration state.
  6.  吸気バルブ、或いは排気バルブの少なくとも開時期(以下、目標位相角と表記する)を制御する油圧駆動式の可変動弁機構と、前記可変動弁機構とは別の油圧補機機構と、前記可変動弁機構、及び前記油圧補機機構に作動油を供給する可変容量オイルポンプとを備えた内燃機関に使用され、前記可変動弁機構、及び前記油圧補機機構の作動油の目標吐出圧を前記内燃機関の回転数に対応して可変制御する制御手段を備えた可変容量オイルポンプの制御装置であって、
     前記制御手段は、
     前記内燃機関の回転数にしたがって、少なくとも、所定の第1回転数範囲に対応する第1圧力制御領域と、前記第1回転数範囲より高い所定の第2回転数範囲に対応する第2圧力制御領域とを設定すると共に、前記第1圧力制御領域においては所定の第1目標吐出圧を設定し、前記第2圧力制御領域においては前記第1目標吐出圧より高い所定の第2目標吐出圧を設定する機能と、
     前記内燃機関の回転数が減少されて前記第2圧力制御領域から前記第1圧力制御領域に遷移した状態においては、前記可変容量オイルポンプから供給される作動油の目標吐出圧を前記第2圧力制御領域の第2目標吐出圧に維持して前記可変動弁機構に供給する機能を備えていることを特徴とする可変容量オイルポンプの制御装置。
    A hydraulically driven variable valve mechanism for controlling at least the opening timing of the intake valve or exhaust valve (hereinafter referred to as a target phase angle), a hydraulic auxiliary mechanism mechanism different from the variable valve mechanism, Used in an internal combustion engine having a variable valve mechanism and a variable displacement oil pump that supplies hydraulic oil to the hydraulic auxiliary mechanism, and has a target discharge pressure of the hydraulic oil of the variable valve mechanism and the hydraulic auxiliary mechanism. A variable displacement oil pump control device comprising a control means for variably controlling the internal combustion engine according to the rotational speed,
    The control means includes
    According to the rotational speed of the internal combustion engine, at least a first pressure control region corresponding to a predetermined first rotational speed range and a second pressure control corresponding to a predetermined second rotational speed range higher than the first rotational speed range. A predetermined first target discharge pressure is set in the first pressure control region, and a predetermined second target discharge pressure higher than the first target discharge pressure is set in the second pressure control region. The function to set,
    In a state in which the rotational speed of the internal combustion engine is decreased and transitioned from the second pressure control region to the first pressure control region, the target discharge pressure of hydraulic oil supplied from the variable capacity oil pump is set to the second pressure. A control device for a variable displacement oil pump, comprising a function of supplying the variable valve mechanism while maintaining a second target discharge pressure in a control region.
  7.  請求項6に記載の可変容量オイルポンプの制御装置であって、
     前記制御手段は、
     前記第1圧力制御領域から前記第2圧力制御領域に遷移したと判定すると、前記第2圧力制御領域に対応した前記第2目標吐出圧になるように前記可変容量オイルポンプを制御する機能と、
     前記第2圧力制御領域から前記第1圧力制御領域に遷移したと判定すると、前記第2圧力制御領域に対応した前記第2目標吐出圧になるように前記可変容量オイルポンプを制御する機能とを備えていることを特徴とする可変容量オイルポンプの制御装置。
    A control device for a variable displacement oil pump according to claim 6,
    The control means includes
    A function of controlling the variable displacement oil pump so as to be the second target discharge pressure corresponding to the second pressure control region when it is determined that the transition from the first pressure control region to the second pressure control region is performed;
    A function of controlling the variable displacement oil pump so as to be the second target discharge pressure corresponding to the second pressure control region when it is determined that the transition from the second pressure control region to the first pressure control region is made; A control apparatus for a variable displacement oil pump, comprising:
  8.  請求項6、或いは請求項7に記載の可変容量オイルポンプの制御装置であって、
     前記制御手段は、
     前記内燃機関の減速状態における前記吸気バルブ、或いは前記排気バルブの実位相角が目標位相角、或いは前記目標位相角の付近である設定位相角に達してから、前記可変容量オイルポンプからの作動油の目標吐出圧を、前記第2目標吐出圧から前記第1目標吐出圧に変更して前記可変動弁機構に供給する機能を備えていることを特徴とする可変容量オイルポンプの制御装置。
    A control device for a variable displacement oil pump according to claim 6 or claim 7,
    The control means includes
    When the actual phase angle of the intake valve or the exhaust valve in the deceleration state of the internal combustion engine reaches a target phase angle or a set phase angle that is close to the target phase angle, the hydraulic oil from the variable displacement oil pump A control device for a variable displacement oil pump, wherein the target discharge pressure is changed from the second target discharge pressure to the first target discharge pressure and supplied to the variable valve mechanism.
  9.  請求項8に記載の可変容量オイルポンプの制御装置であって、
     前記設定位相角は、前記目標位相角よりも所定の位相角だけ小さい位相角に設定されていることを特徴とする可変容量オイルポンプの制御装置。
    A control device for a variable displacement oil pump according to claim 8,
    The control apparatus for a variable displacement oil pump, wherein the set phase angle is set to a phase angle smaller than the target phase angle by a predetermined phase angle.
  10.  請求項7に記載の可変容量オイルポンプの制御装置であって、
     前記制御手段は、
     所定の周期で前記内燃機関の回転数を検出し、検出した回転数から前記第1圧力制御領域、或いは前記第2圧力制御領域かを判定する機能を備えていることを特徴とする可変容量オイルポンプの制御装置。
    A control device for a variable displacement oil pump according to claim 7,
    The control means includes
    A variable displacement oil characterized by having a function of detecting the rotational speed of the internal combustion engine at a predetermined cycle and determining whether it is the first pressure control region or the second pressure control region from the detected rotational speed Pump control device.
  11.  請求項6に記載の可変容量オイルポンプの制御装置であって、
     前記可変動弁機構は、前記第1圧力制御領域と前記第2圧力制御領域で設定されている前記第1目標吐出圧と前記第2目標吐出圧の作動油によって駆動され、
     前記油圧補機機構はオイルジェット機構であり、前記オイルジェット機構は前記第2圧力制御領域で設定されている前記第2目標吐出圧の作動油によって駆動されることを特徴とする可変容量オイルポンプの制御装置。
    A control device for a variable displacement oil pump according to claim 6,
    The variable valve mechanism is driven by hydraulic fluid of the first target discharge pressure and the second target discharge pressure set in the first pressure control region and the second pressure control region,
    The hydraulic auxiliary mechanism is an oil jet mechanism, and the oil jet mechanism is driven by hydraulic oil having the second target discharge pressure set in the second pressure control region. Control device.
  12.  吸気バルブ、或いは排気バルブの少なくとも開時期(以下、位相角と表記する)を制御する油圧駆動式の可変動弁機構と、前記可変動弁機構に作動油を供給する可変容量オイルポンプとを備えた内燃機関に使用され、前記可変容量オイルポンプの作動油の目標吐出圧を前記内燃機関の回転数に対応して可変制御する制御手段を備えた可変容量オイルポンプの制御方法であって、
     前記制御手段は、
     所定の周期で前記内燃機関の回転数を検出し、今回の周期で検出した回転数と、前回の周期で検出した回転数の変化から回転数が上昇している加速状態と、回転数が下降している減速状態を判定するステップと、
     前記加速状態においては、今回の周期で検出された回転数に対応した目標吐出圧になるように前記可変容量オイルポンプを制御するステップと、
     前記減速状態においては、前回の周期で検出された回転数に対応した現在の目標吐出圧を維持するように前記可変容量オイルポンプを制御するステップとを実行することを特徴とする可変容量オイルポンプの制御方法。
    A hydraulically driven variable valve mechanism that controls at least the opening timing (hereinafter referred to as phase angle) of an intake valve or an exhaust valve, and a variable displacement oil pump that supplies hydraulic oil to the variable valve mechanism A control method for a variable displacement oil pump, comprising: a control means that is used in an internal combustion engine and variably controls a target discharge pressure of hydraulic oil of the variable displacement oil pump in accordance with a rotational speed of the internal combustion engine,
    The control means includes
    The number of revolutions of the internal combustion engine is detected at a predetermined period, the number of revolutions detected at the current period, the acceleration state where the number of revolutions has increased from the change in the number of revolutions detected at the previous period, and the number of revolutions decreased. A step of determining a decelerating state,
    In the acceleration state, controlling the variable displacement oil pump to a target discharge pressure corresponding to the rotation speed detected in the current cycle;
    And a step of controlling the variable displacement oil pump so as to maintain a current target discharge pressure corresponding to the rotational speed detected in the previous cycle in the deceleration state. Control method.
  13.  吸気バルブ、或いは排気バルブの少なくとも開時期(以下、目標位相角と表記する)を制御する油圧駆動式の可変動弁機構と、前記可変動弁機構とは別の油圧補機機構と、前記可変動弁機構、及び前記油圧補機機構に作動油を供給する可変容量オイルポンプとを備えた内燃機関に使用され、前記可変動弁機構、及び前記油圧補機機構の作動油の目標吐出圧を前記内燃機関の回転数に対応して可変制御する制御手段を備えた可変容量オイルポンプの制御方法であって、
     前記制御手段は、
     少なくとも、前記内燃機関の所定の第1回転数範囲に対応する第1圧力制御領域に予め設定された第1目標吐出圧、及び前記第1回転数範囲より高い第2回転数範囲に対応する第2圧力制御領域に予め設定された前記第1目標吐出圧より高い第2目標吐出圧を求めるステップと、
     前記第1圧力制御領域から前記第2圧力制御領域に遷移したと判定すると、前記第2圧力制御領域に対応した前記第2目標吐出圧になるように前記可変容量オイルポンプを制御するステップと、
     前記第2圧力制御領域から前記第1圧力制御領域に遷移したと判定すると、前記第2圧力制御領域に対応した前記第2目標吐出圧になるように前記可変容量オイルポンプを制御するステップとを実行することを特徴とする可変容量オイルポンプの制御方法。
    A hydraulically driven variable valve mechanism for controlling at least the opening timing of the intake valve or exhaust valve (hereinafter referred to as a target phase angle), a hydraulic auxiliary mechanism mechanism different from the variable valve mechanism, Used in an internal combustion engine having a variable valve mechanism and a variable displacement oil pump that supplies hydraulic oil to the hydraulic auxiliary mechanism, and has a target discharge pressure of the hydraulic oil of the variable valve mechanism and the hydraulic auxiliary mechanism. A control method for a variable displacement oil pump comprising a control means for variably controlling corresponding to the rotational speed of the internal combustion engine,
    The control means includes
    At least a first target discharge pressure preset in a first pressure control region corresponding to a predetermined first rotational speed range of the internal combustion engine and a second rotational speed range corresponding to a second rotational speed range higher than the first rotational speed range. Determining a second target discharge pressure higher than the first target discharge pressure set in advance in a two-pressure control region;
    Controlling the variable displacement oil pump to be the second target discharge pressure corresponding to the second pressure control region when it is determined that the transition from the first pressure control region to the second pressure control region is performed;
    When it is determined that the transition from the second pressure control region to the first pressure control region is made, the step of controlling the variable displacement oil pump so as to be the second target discharge pressure corresponding to the second pressure control region; A control method for a variable displacement oil pump, characterized in that it is executed.
PCT/JP2019/001366 2018-03-16 2019-01-18 Control device for variable-displacement oil pump and control method therefor WO2019176277A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-048926 2018-03-16
JP2018048926A JP2019157812A (en) 2018-03-16 2018-03-16 Control device of variable capacity oil pump and control method

Publications (1)

Publication Number Publication Date
WO2019176277A1 true WO2019176277A1 (en) 2019-09-19

Family

ID=67906555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001366 WO2019176277A1 (en) 2018-03-16 2019-01-18 Control device for variable-displacement oil pump and control method therefor

Country Status (2)

Country Link
JP (1) JP2019157812A (en)
WO (1) WO2019176277A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763026A (en) * 1993-08-20 1995-03-07 Nissan Motor Co Ltd Lubricating oil supplying device for engine
JP2012062789A (en) * 2010-09-14 2012-03-29 Toyota Motor Corp Control device for internal combustion engine
JP2014199011A (en) * 2013-03-29 2014-10-23 マツダ株式会社 Oil supply device for engine
JP2016160922A (en) * 2015-03-05 2016-09-05 マツダ株式会社 Oil supply device for engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763026A (en) * 1993-08-20 1995-03-07 Nissan Motor Co Ltd Lubricating oil supplying device for engine
JP2012062789A (en) * 2010-09-14 2012-03-29 Toyota Motor Corp Control device for internal combustion engine
JP2014199011A (en) * 2013-03-29 2014-10-23 マツダ株式会社 Oil supply device for engine
JP2016160922A (en) * 2015-03-05 2016-09-05 マツダ株式会社 Oil supply device for engine

Also Published As

Publication number Publication date
JP2019157812A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP4701871B2 (en) Engine control device
US6520131B2 (en) Valve timing control system for internal combustion engine
KR100816100B1 (en) Control apparatus and control method for a variable valve timing mechanism
US6397803B1 (en) Valve timing control system for internal combustion engine
WO2019176270A1 (en) Control device for variable-displacement oil pump and control method therefor
JP3309658B2 (en) Abnormality detection device for valve timing control device of internal combustion engine
JP6737650B2 (en) Control device and control method for variable displacement oil pump
JP3748517B2 (en) Valve timing control device for internal combustion engine
KR100429721B1 (en) Valve timing control system for internal combustion engine
JP4196441B2 (en) Valve characteristic control device for internal combustion engine
JP2002332874A (en) Valve timing controller of internal combustion engine
JP3699645B2 (en) Valve timing control device for internal combustion engine
JP3641595B2 (en) Valve timing control device for internal combustion engine
JP5018563B2 (en) Valve timing control device
WO2019176277A1 (en) Control device for variable-displacement oil pump and control method therefor
JP5249814B2 (en) Control device for variable valve mechanism
JPH11229915A (en) Catalyst temperature control device
JP4900217B2 (en) Variable valve controller
JP2008095610A (en) Valve timing control device for internal combustion engine
JP2019157813A (en) Control device of variable capacity oil pump and control method
JP2010077813A (en) Control device for internal combustion engine
JP2008163862A (en) Variable valve system control device of internal combustion engine
JP2002309974A (en) Control device for internal combustion engine
JP2015183534A (en) Variable valve mechanism control device and variable valve mechanism control method
JP2004245192A (en) Control device for variable valve timing mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767969

Country of ref document: EP

Kind code of ref document: A1